
Filipe Silva Meirim

MSc Student

Static Verification of Cloud Applications with
Why3

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Carla Ferreira, Associate Professor,
NOVA University of Lisbon

Co-adviser: Mário Pereira, Post-doctoral researcher,
NOVA University of Lisbon

Examination Committee

Chairperson: António Ravara
Raporteur: Jorge Sousa Pinto

Member: Carla Ferreira

September, 2019

Static Verification of Cloud Applications with Why3

Copyright © Filipe Silva Meirim, Faculty of Sciences and Technology, NOVA University

Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Abstract

Nowadays large-scale distributed applications rely on replication in order to improve

their services. Having data replicated in multiple datacenters increases availability, but

it might lead to concurrent updates that violate data integrity. A possible approach to

solve this issue is to use strong consistency in the application because this way there is

a total order of operations in every replica. However, that would make the application

abdicate of its availability. An alternative would be to use weak consistency to make the

application more available, but that could break data integrity. To resolve this issue many

of these applications use a combination of weak and strong consistency models, such that

synchronization is only introduced in the execution of operations that can break data

integrity.

To build applications that use multiple consistency models, developers have the dif-

ficult task of finding the right balance between two conflicting goals: minimizing syn-

chronization while preserving data integrity. To achieve this balance developers have to

reason about the concurrent effects of each operation, which is a non-trivial task when it

comes to large and complex applications.

In this document we propose an approach consisting of a static analysis tool that

helps developers find a balance between strong and weak consistency in applications

that operate over weakly consistent databases. The verification process is based on a

recently defined proof rule that was proven to be sound. The proposed tool uses Why3

as an intermediate framework that communicates with external provers, to analyse the

correctness of the application specification.

Our contributions also include a predicate transformer and a library of verified data

types that can be used to resolve commutativity issues in applications. The predicate

transformer can be used to lighten the specification effort.

Keywords: Replication, Data Integrity, Static Analysis, Consistency, Synchronization,

Why3

v

Resumo

Atualmente aplicações de larga escala dependem de replicação de modo a poderem

melhorar os seus serviços. Ter dados replicados em múltiplos datacenters melhora a dis-

ponibilidade do sistema, mas ao mesmo tempo podem haver atualizações concorrentes

que violam a integridade dos dados. Uma possível abordagem para resolver esta situação

é utilizar consistência forte sobre a aplicação, porque deste modo existe sempre uma or-

dem total das operações em todas as réplicas. No entanto, isso faz com que a aplicação

abdique da sua disponibilidade. Uma alternativa é usar consistência fraca para tornar a

aplicação mais disponível, mas, isso pode quebrar a integridade dos dados. Para resolver

esta questão, diversas aplicações usam uma combinação de modelos de consistência fraca

e forte. Neste caso, sincronização apenas é introduzida no sistema quando são executadas

operações que podem colocar a integridade dos dados da aplicação em risco.

Para se construir aplicações que usam vários modelos de consistência, os developers
têm a difícil tarefa de encontrar o equilíbrio entre dois objetivos contraditórios: minimizar

sincronização enquanto se preserva a integridade dos dados. Para atingir este equilíbrio,

os developers têm de pensar nos efeitos concorrentes de cada operação, sendo uma tarefa

não-trivial quando se tratam de aplicações complexas e de larga escala.

Neste trabalho apresentamos uma abordagem que consiste numa ferramenta de aná-

lise estática para ajudar developers a encontrar o equilíbrio entre consistência fraca e forte

em aplicações que operam sobre bases de dados com consistência fraca. O processo de

verificação é baseado numa regra de prova que foi previamente provada correta. A fer-

ramenta proposta usa a plataforma Why3 para comunicar com provers externos para

analisar a correção da especificação duma aplicação.

As nossas contribuições também incluem um predicate transformer e uma biblioteca

de tipos de dados verificada, que podem ser usados para resolver problemas de comutati-

vidade. O predicate transformer pode ser usado para simplificar o esforço de especificação.

Palavras-chave: Replicação, Integridade dos dados, Análise estática, Consistência, Sin-

cronização, Why3

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Contributions . 3

1.4 Document Structure . 4

2 Background 5

2.1 Analysis of Programs . 5

2.2 Why3 Framework . 6

2.3 Consistency Models . 8

2.3.1 Operation Consistency Models . 8

2.3.2 Transaction Consistency Models . 9

2.4 CRDTs . 10

2.5 Hoare’s Logic . 12

2.6 Design by Contract . 13

2.7 Predicate Transformers . 14

2.7.1 Weakest Precondition Calculus . 15

2.7.2 Strongest Postcondition Calculus 16

2.8 CISE proof rule . 17

3 CISE3 Architecture 19

3.1 CISE3 Overview . 19

3.2 Proof Obligations Component . 20

3.3 Token System Component . 24

3.4 CRDTs library Component . 26

3.5 Strongest Postcondition Component . 26

4 Experimental Evaluation 29

4.1 Banking Application . 29

ix

CONTENTS

4.2 Auction Application . 35

4.3 Courseware Application . 40

5 Related Work 51

5.1 Quelea . 51

5.2 Q9 . 52

5.3 Repliss . 53

5.4 Hamsaz . 54

5.5 CISE tool . 55

5.6 CEC tool . 56

5.7 Tool Comparison . 56

6 Conclusion 59

6.1 Discussion . 59

6.2 Future Work . 60

6.3 Final Remarks . 60

Bibliography 61

A CRDTs library 67

A.1 Disable Once Flag . 67

A.2 Enable Once Flag . 67

A.3 Remove-wins Set . 68

A.4 Add-wins Set . 69

x

List of Figures

1.1 Concurrent execution of the withdraw operation. 3

2.1 Why3 as an intermediate language. 7

2.2 Remove-wins Set CRDT in Why3. 12

2.3 BNF of the ESC/Java language. 16

3.1 CISE3 architecture. 21

3.2 Generic program in Why3. 21

3.3 Generated commutativity and stability analysis function for operations f and g. 22

3.4 Generated stability analysis function for operations f and g. 24

3.5 BNF that represents our provided token system specification language. . . . 25

4.1 Specification and implementation of the banking application. 30

4.2 Statistics regarding the proof of the banking application. 30

4.3 Generated commutativity analysis function for the bank application. 32

4.4 Generated stability analysis functions for the bank application. 33

4.5 Statistics of the proof effort for the generated functions for the bank application. 34

4.6 Assume expression of withdraw_stability given the token system. 35

4.7 Specification and implementation of the auction application. 36

4.8 Statistics regarding the proof of the auction application. 37

4.9 Generated commutativity analysis function for the auction application. . . . 38

4.10 Generated stability analysis functions for the auction application. 39

4.11 Statistics of the proof effort of the generated functions for the auction appli-

cation. 40

4.12 Specification of the courseware application. 41

4.13 Statistics regarding the proof of the auction application. 42

4.14 Generated commutativity analysis function for enroll and remCourse. 44

4.15 Courseware application with a CRDT. 45

4.16 Generated stability analysis functions for the courseware application. 46

4.17 Statistics of the proof effort of the generated functions for the courseware

application. 48

4.18 Modified assume expression from enroll_remCourse_commutativity. 49

xi

List of Figures

A.1 Disable Once flag in Why3. 68

A.2 Enable Once flag in Why3. 69

A.3 Remove-wins Set CRDT in Why3. 70

A.4 Add-wins Set CRDT in Why3. 70

xii

List of Tables

2.1 Weakest Precondition Calculus Rules. 16

2.2 Strongest Precondition Calculus Rules. 17

5.1 Comparison between the studied tools. 58

xiii

C
h
a
p
t
e
r

1
Introduction

This chapter serves to contextualize and motivate the work from this thesis. Additionally

this chapter also presents our contributions and the structure of this document.

1.1 Context

Nowadays global-scale distributed applications, like social networks or online games,

rely on geo-replicated storage systems in order to improve user experience. These geo-

replicated storage systems consist of various replicas, scattered around the world, storing

copies of logic and data from the application. This enables operations to have low latency

since the requests are routed to the closest data centre, making the system more available

to the user. However, when updates occur simultaneously over different replicas, data

integrity can be compromised. A possible solution for this issue would be to introduce

synchronization in the system, by using a strong consistency model. On the other hand

the system can employ weak consistency. When a system uses weak consistency, if it

receives a request it does not wait for the synchronization between replicas. This way

the system becomes more available and its operations have low latency because after a

replica processes a request it sends an answer to the client immediately. However, there

is a possible loss of the correctness of the application due to undesirable concurrency

updates that can lead to the violation of data integrity invariants. On the other hand,

if strong consistency is used, the system behaves as a single centralised replica, thus

guaranteeing data integrity. However, due to this behaviour the availability of the system

will decrease [2, 37]. That being said, it is clear that each consistency model has its

benefits and downfalls. So, the goal is to build an application that has a high availability

combined with the guarantee of data integrity preservation.

1

CHAPTER 1. INTRODUCTION

In order to build applications that enjoy the advantages of weak and strong consis-

tency, it was proposed that geo-replicated systems could use a combination of these

models [2, 3]. Specifically, the approach is to use strong consistency whenever the cor-

rectness of the application is at risk and leverage the benefits of weak consistency when

the concurrent execution is safe. However, finding a balance between weak and strong

consistency is a non-trivial task [27]. This happens because the programmer needs to rea-

son about the concurrent effects of every operation, and decide which operations require

synchronization in order to assure the correctness of the application [2, 28].

Recently some static analysis tools have been proposed that assist the programmers

in determining which operations of an application need synchronization in a distributed

setting. These tools receive a specification of an application and then determine the

adequate consistency model, such that its availability is maximized and data integrity is

guaranteed.

1.2 Motivation

As mentioned before, large-scale applications rely on geo-replication to improve their

availability and user experience. However, with replication comes the issue of concurrent

operations breaking data integrity. As a motivation let us consider an example of a

simple bank application where a client can only withdraw and deposit money from an

account, and where each account must always have a non-negative balance. Let us also

consider we have two replicas where the balance of an account is 100€. If there are two

concurrent withdraw operations that are trying to remove 100€ from that account then

both operations are allowed because they are not trying to remove more money than the

existent amount in the account. So when the effects of the operations are propagated, we

reach a state where in both replicas the balance of that account is -100€. This breaks the

property that every account must always have a non-negative balance. To illustrate this

example we present Figure 1.1.

Applications like Amazon’s Dynamo [15] use weaker consistency semantics, thus pro-

viding high availability but at the possible cost of losing data integrity. Other applications

like Yahoo’s PNUTS [12] avoid data inconsistencies by requiring all operations that up-

date the system to be funnelled through a primary site, but this approach makes them less

available. So, we can observe that both concepts have their advantages and disadvantages.

However, recent approaches [2, 37, 50] have showed that it is possible to achieve both

data integrity and high availability by using a combination of strong and weak consis-

tency models, with the objective of leveraging the advantages of both. However, finding

the balance between these models is not trivial. If strong consistency is used in too many

places then the availability of the system will decrease but if used in too few places then

data integrity can be at fault. So, the main goal in these approaches is to find the places

in the system where data integrity is at risk and use strong consistency. In the remaining

2

1.3. CONTRIBUTIONS

withdraw(100):
✔

r1 r2

query: -100query: -100

σinit = 100(c)

withdraw(100):
✔

Figure 1.1: Concurrent execution of the withdraw operation.

components of the system the programmer employs weak consistency because the data

integrity is not at risk.

1.3 Contributions

The work of this thesis focuses on building a static analysis tool that can automatically

examine applications operating over weakly-consistent replicated databases. The goal of

our approach is to analyse an application and understand where to use synchronization,

in order to build an application that maximizes availability while guaranteeing data

integrity.

In our approach we propose that the programmer provides a sequential specification

of the application, for our tool to analyse. In the provided input the programmer needs

to specify the state of the application and its integrity invariants as well as the operations

of the application. Our approach is based on the proof obligations from the proof rule

proposed by CISE [28]. The result from these proof obligations are the places in the

system where conflicts can occur, and lead to the possible loss of data integrity. This way

the programmer knows where to introduce synchronization in the system.

In order to make the verification process more robust, we implemented our tool over

the deductive verification framework Why3 [19]. By implementing our tool over this

framework, the programmer does not have to worry about said process, only needing

to worry about writing the specification. And to aid the programmer with writing the

specification we present a strongest postcondition predicate transformer. This predicate

transformer automatically generates strongest postconditions, thus making the specifica-

tion process less cumbersome for the programmer.

3

CHAPTER 1. INTRODUCTION

Another contribution is a library of Conflict-free Replicated Data Types (CRDTs) [47]

verified and implemented using the Why3 framework. CRDTs are data types that guaran-

tee data convergence in a self-established way, by means of a deterministic conflict resolu-

tion policy. This library of CRDTs can be used by the programmer to erase commutativity

issues in applications, in a way that reduces the amount of introduced synchronisation.

Finally we present as a contribution a set of case studies that were implemented and

verified using our tool. This set of case studies helped us validate our approach.

The work developed in the context of this thesis also produced two articles. The first

one "CISE3: Verificação de aplicações com consistência fraca em Why3" presented in

INForum 2019 in Guimarães.

1.4 Document Structure

The remaining of this thesis is organized as follows. In Chapter 2 we provide some

preliminary concepts related to the work of this thesis. In Chapter 3 we describe the main

concepts of our prototype. In Chapter 4 we show three complete case studies used to

validate our approach. In Chapter 5 we present some static analysis tools that are related

to ours, also showing some comparisons between them. Finally in Chapter 6 we discuss

and summarize our approach, also presenting some future work.

4

C
h
a
p
t
e
r

2
Background

This chapter focuses on presenting the key concepts involved in this thesis. The main

concepts resolve around analysis of programs, the Why3 framework, consistency models,

CRDTs, Hoare’s logic, design by contract and predicate transformers.

2.1 Analysis of Programs

An important aspect regarding software construction is guaranteeing its correctness. By

correctness we mean that the program satisfies its safety and liveness properties. In order

to know what is the expected behaviour of a program there should be a specification

defined by the developers. Specifications are used because they are simple, making it

easier to analyse. However, specifications are usually incomplete and do not show the

full set of correct states a program can have, but all the states it covers must be correct.

To analyse a program’s behaviour, there are three kinds of analyses that can be per-

formed: dynamic analysis, static analysis or a combination of both. Dynamic analysis

techniques consist in verifying a program during its execution. Approaches to this tech-

nique can be some form of testing like unit/coverage testing, or runtime monitors to

constantly check that the program does not violate correctness. Theses violations how-

ever, are only visible after an unexpected behaviour occurs. Another kind of dynamic

analysis is runtime verification, which consists in checking formal properties during run-

time [48]. Analysing a program with dynamic analysis has some disadvantages, like the

introduction of an overhead to the system and the fact that it might not detect all the

errors. Additionally, it does not guarantee the absence of errors because, the program

may pass one test suite but there might be another test that could break the program.

As an alternative to dynamic analysis, we have static verification. Static verification de-

scribes the verification process done at compile time, by verifying the source code of the

5

CHAPTER 2. BACKGROUND

program instead of executing it. This technique can ensure the absence of errors of a

well defined kind, for example no null dereferences. It can also verify some correctness

properties like functionality and security. Another advantage of static analysis is that it

does not introduce any runtime overhead. However, this approach has some limitations

like the amount of time it consumes and the possibility of detecting false positives. A

false positive occurs when an error is said to exist when it does not. These false positives

occur because the static analysis verifies a program given a set of rules provided by the

programmer, so if they are not well defined then false positives can be detected.

The purpose of these two techniques, is to build high quality software, and can be

combined to get the best of both approaches. Normally when combining these techniques

the process starts with static analysis, proceeded by a dynamic analysis process done

having in mind the information obtained with the static analysis. The dynamic analysis is

more effective because with the information obtained by the static analysis it is possible

to restrict the sources of potential anomalies, thus having a decrease in the overhead

introduced in the system. By restricting the possible sources of errors with static analysis

the dynamic analysis will not be so broad and the test suites can be more precise [18].

Also, it is widely acknowledged that statically verifying every invariant is a difficult and

time consuming task. Dynamic analysis can improve on such situation, since it delegates

invariant checking for runtime execution. One example of a tool that combines both these

analysis techniques is Spark2014 [29].

2.2 Why3 Framework

Why3 is a framework that uses deductive program verification which is the "process of

turning the correctness of a program into a mathematical statement and then proving

it"[19]. Why3’s architecture is divided in two parts: a purely logical back-end and a

programs front-end [19]. The front-end part receives files that contain a list of modules,

from which verification conditions will be extracted, and subsequently sent to external

theorem demonstrators.

This tool provides a programming language called WhyML, which has two purposes:

writing programs and the formal specifications of their behaviours. Programs written

in WhyML have at their disposal a first order language with some features commonly

found in functional languages, like pattern-matching, algebraic types and polymorphism.

Also it offers some imperative features like records with mutable fields and exceptions.

The logic used to write formal specifications is an extension of the first-order logic with

polymorphic types, algebraic types, inductive predicates, and recursive definitions, as

well as a limited form of higher-order logic [22]. Another useful feature that WhyML

provides is ghost code that has the main purpose of facilitating specifications. This type

of code is similar to normal code in the sense that it is parsed, type checked and turned

into verification conditions in the same way [19]. A particularity of ghost code is that it

can be removed from a program without changing its final result. This happens because

6

2.2. WHY3 FRAMEWORK

Why3

automated theorem provers
CVC4, Alt-Ergo, Z3, Yices,

E, SPASS, Vampire, Gappa, etc.

proof assistants

Coq, PVS, Isabelle

Java code

Krakatoa

C code

Frama-C
Ada code

Spark2014EasyCrypt

CAOVerif Atelier B

1

Figure 2.1: Why3 as an intermediate language.

ghost code cannot be used in a regular code computation, and it cannot modify a regular

code mutable value [23]. Also this type of code cannot modify non-ghost data, just access

it, but regular code cannot modify or access ghost data, only ghost code can modify ghost

data. This language can also be used as an intermediate language for the verification of

programs written in C, Ada or Java in a similar fashion to the Boogie language [21]. The

programs are written in some language, then they are translated into a WhyML program

and finally the verification conditions are extracted and sent to the provers. Frama-C [34],

Spark2014 [29] and Krakatoa [20] are frameworks that use WhyML as an intermediate

language for the verification of programs written in C, Ada and Java respectively as it is

shown in Figure 2.1.

The framework focuses on the concept of task, a list of declarations followed by a goal.

These tasks can be extracted from the files given to the front end component or can be

obtained from a file given directly to the back end of the framework. These tasks then

suffer some transformations in order for the specified theorem prover to comprehend

them and for the tasks to fit the prover’s logic. For example if we want to use Z3, then an

issue arises since its logic is different from Why3’s logic, hence the need for the transfor-

mations to be applied [8]. In order to ease the procedure of applying the transformations,

there is a text file called driver that is associated to every prover supported by Why3 [8].

This driver file contains the transformations to be applied, the output format, the list of

built-in symbols and corresponding axioms to ignore [19].

This framework has already been used to prove several realistic programs including

VOCAL an OCaml library [9, 42], a certified first-order theorem prover [10], an interpreter

for the language CoLiS [32], Strassen’s algorithm for matrix multiplication [11] and an

efficient arbitrary-precision Integer library [44].

7

CHAPTER 2. BACKGROUND

2.3 Consistency Models

2.3.1 Operation Consistency Models

Global distributed data stores with high availability and scalable information require

geo-replication in order to be more available in different parts of the globe. The CAP

theorem [27] shows that in order to maximize availability and tolerate network failures,

these systems must compromise their requirements for the consistency of its data. This

theorem says that in a distributed system it is impossible to simultaneously have these

three guarantees:

• Strong consistency: Every client of the data store observes the effects of the most

recent write operation.

• Availability: All operations finish eventually.

• Partition-tolerance: The system is not vulnerable to network partitions. Network

partitions are anomalies that fraction the system into multiple components. In the

case of a network partitioning, if a replica from a component sends a message to

another replica outside that same component, then that message will be lost.

The impossibility of having these three properties in a distributed system is proved by

contradiction. Assuming there is a network consisting of at least two nodes, it is possible

to divide it into two non-empty disjoint sets S1,S2. It is assumed that all the messages

between partition S1 and partition S2 are lost. If a write operation occurs in a node in

partition S1 and then a read operation occurs in partition S2, then it will not be able to

witness the effects of the write operation.

In the properties shown above, there is one called strong consistency. However, consis-

tency is a spectrum where in one end there is strong consistency and at the other end there

is eventual consistency. Strong consistency is the strictest model and eventual consistency

is the less strict model when it comes to consistency guarantees. In strong consistency, the

system behaves as if only one replica existed, ensuring a total order of operations in every

replica. The data is passed to the replicas as soon as a write operation is issued to a replica.

However, during the time the replicas are being updated, the system does not process

another write operation until all the replicas are consistent. This model guarantees con-

sistency of the data but on the other hand, the system suffers a decrease in its availability

and an increase of the latency of its operations. On the other end of the spectrum there

is eventual consistency. Under this model when a replica receives a write operation it

executes it and then answers the client. After that, asynchronously, that replica sends the

effects of the write operation to the remaining replicas. This means that it is possible for

a new write operation to be processed without consensus with other replicas, hence the

possible violation of data integrity. The positives of this model are the high availability

of the system and the low latency of the operations. Since eventual consistency is less

8

2.3. CONSISTENCY MODELS

strict then strong consistency, then this model belongs to a range of consistency models

called weak consistency. Another well known example of a weak consistency model is

causal consistency. The causal consistency model is based on Lamport’s definition of the

happens-before relation [35] which captures the notion of causality by relating an oper-

ation to previous operations on the same replica and to other operations performed on

other replicas whose effects are propagated using messages. Normally causal consistency

is seen as a combination of the following four properties:

• Read your writes: A client must always be able to observe the effects of all previous

writes issued by itself.

• Monotonic Reads: Subsequent reads issued by the same client should observe either

the same state or the same state that has been modified by write operations.

• Monotonic Writes: The effects of multiple write operations issued by some client

must be observed in the same order that they occurred by the remaining clients.

• Writes follow reads: This guarantees that write operations come after read opera-

tions that have influenced them.

However, causal consistency by itself does not guarantee that the state of the system

converges because divergence can last forever without breaking any of its properties. Hav-

ing this in mind a consistency model has been proposed where geo-replicated systems

could use a combination of several consistency models, which is used by many systems

nowadays [2, 37, 50]. Specifically, the approach would be to use strong consistency when-

ever the correction of the application is at risk, and leverage weak consistency when the

operations are safe. This way it is possible to take advantage of an asynchronous execu-

tion when operations are safe [38], thus increasing availability and at the same time when

critical operations are executed, there is a guarantee of correctness of the application.

The main challenge regarding this consistency model is achieving the correct balance

between weak and strong consistency because the programmer needs to think about the

concurrent effects of the operations, and decide which operations require synchronisation

to assure the correction of the application. This is one of the main concerns approached

by this work.

2.3.2 Transaction Consistency Models

A transaction is an operation that groups multiple read and write operations into a single

coarse-grained operation that preserves the ACID properties:

• Atomicity (All-or-Nothing): All the operations have their intended effects or none

of them have, and this is essential because it prevents updates to the data store from

occurring only partially.

9

CHAPTER 2. BACKGROUND

• Correctness: The state of the data store respects all the invariants before and after

the execution of a transaction.

• Isolation: Each transaction executes with no interference from other concurrent

transactions, which means that either all the effects from a transaction are visible

or none of them is.

• Durability: The effects of a transaction that terminates successfully are not lost

independently of failures that might occur.

Together these properties provide the serializability model, a program semantics in

which a transaction executes as if it was the only one accessing the database. This model

allows concurrent operations to access the data store and achieve expected results because

it restricts the acceptable interactions between concurrent transactions [46].

There are several consistency models that can be used for transactions but the focus

in this section goes to the following:

• Read Committed (RC): Transactions that use this level of isolation only witness ef-

fects of write operations from transactions that committed, thus ensuring atomicity

of the transactions. This consistency model does not offer any other guarantees [6].

• Monotonic Atomic View (MAV): This consistency model strengthens the Read

Committed model by preventing lost updates. MAV also ensures that when an

operation from transaction T1 witnesses the effects of a transaction T2, then the

subsequent operations from T1 will also witness the effects of T2. This model is

helpful when it comes to enforcing the integrity of foreign key constraints, mate-

rialized views, indices and secondary updates. For this model to be used, the data

store only needs to keep track of the set of transactions that have been witnessed

by the running transaction, and before the execution of an operation it needs to be

ensured that the replica includes all the transactions in the set [1].

• Repeatable Read (RR): The semantics of this consistency model requires that the

transaction witnesses a snapshot of the state of the data store, and this snapshot can

be obtained from any replica of the system [6].

2.4 CRDTs

As it was mentioned in Section 2.3 with replication comes the issue of the consistency

of the stored data. Eventual consistency is an example of a model that can provide high

availability but at the same time introduces a lack of consistency guarantees, because it

does not guarantee that replicas will converge. Shapiro et. al [47] proposed a theoretically-

sound approach to eventual consistency called strong eventual consistency. This system

model proposes conditions to achieve convergence and avoid the complexity of ad-hoc

10

2.4. CRDTS

conflict resolution and roll-back [47]. The data types that satisfy the previous condi-

tions are called Conflict-free Replicated Data Types (CRDTs). These data types guarantee

convergence in a self-established way, despite failures. Also, these data types have a

deterministic conflict resolution policy by construction. CRDTs do not require synchro-

nization for an update to happen, and they remain responsive, available and scalable

despite high latency, faults or disconnection from the network [47]. CRDTs are mutable

objects that are replicated in a set of replicas that are interconnected by an asynchronous

network, which can partition and recover. In this network, processes that do not crash

are considered as correct, and in the case of a crash of a process, when it recovers it comes

back with its memory intact.

A client of a CRDT object has two types of operations he can call in order to commu-

nicate with it: read and update. Read operations are called to read the current state of

the object and the update operations serve to update the state of the object. Either one of

these methods are only applied in one replica and then the effects are propagated to the

remaining replicas asynchronously.

CRDTs can be divided into two categories: operation-based CRDTs and state-based

CRDTs. With state-based CRDTs, also known as Convergent Replicated Data Types

(CvRDT), every replica often sends its state to another replica in order to propagate

the updates that occurred to its state. The replica that receives the state from a remote

replica then merges it with its own state. This merge operation needs to be idempotent,

commutative and associative. The new state then has all the updates that occurred in

the replica that sent the state and the updates that occurred in the replica that received

the state and merged it. This kind of CRDTs only requires eventual consistency for all

the replicas to know the effects of an operation. Since this kind of CRDTs only requires

eventual consistency, there is the issue of inconsistency of the data since the replicas

only eventually receive the effects of a write operation executed in another replica. The

advantages of state based CRDTs are the high availability of the system and the low

latency of operations. The other kind of CRDTs are the Operation-based CRDTs, also

know as Commutative Replicated Data Type (CmRDT). Contrarily to the state-based

CRDTs, operation-based CRDTs do not provide the merge operation. With this kind

of CRDTs, the update operation is split in two: a prepare-update method and an effect-
update method. The prepare-update is executed at the replica where the operation was

invoked, and the effect-update is executed afterwards. The effect-update is executed at all

the remaining replicas that received this operation from the replica where the prepare-
update was executed. An update is only considered as being delivered at a replica when it

is included in its causal history [47]. Since this type of CRDTs requires causal consistency

for updates, then there is also the issue of not guaranteeing the consistency of the data.

There are several data structures that can be chosen from for the implementation

of a CRDT like a flag or a set for example. A set is an abstract data type that can only

store unique values without any specific order. Considering a set that has operations

add and remove, there is the possibility of originating sequences of operations that do

11

CHAPTER 2. BACKGROUND

1 type remove_wins_set ’a = {

2 mutable remove_wins_add: fset ’a;

3 mutable remove_wins_removes: fset ’a;

4 }

5

6 let ghost predicate equal (s1 s2: remove_wins_set ’a) =

7 s1.remove_wins_add == s2.remove_wins_add &&

8 s1.remove_wins_removes == s2.remove_wins_removes

9

10 val empty_set () : remove_wins_set ’a

11 ensures { is_empty result.remove_wins_add }

12 ensures { is_empty result.remove_wins_removes }

13

14 predicate in_set (elt: ’a) (s: remove_wins_set ’a) =

15 mem elt s.remove_wins_add && not (mem elt s.remove_wins_removes)

16

17 val add_element (elt: ’a) (s: remove_wins_set ’a) : unit

18 writes { s.remove_wins_add }

19 ensures { s.remove_wins_add = add elt (old s).remove_wins_add }

20

21 val remove_element (elt: ’a) (s: remove_wins_set ’a) : unit

22 writes { s.remove_wins_removes }

23 ensures { s.remove_wins_removes = add elt (old s).remove_wins_removes }

24

Figure 2.2: Remove-wins Set CRDT in Why3.

not commute when executed concurrently. For example, if there is a remove operation

and an add operation executed concurrently regarding the same object, more specifically

if the add(o) operation occurs after the remove(o) then the object o remains in the Set,

but if the operations are executed in the reverse order then object o would not be in the

set. One way of solving this issue is making sure that a remove(o) only affects add(o)
operations that are visible to remove(o). To achieve this, every element o from the set has

an associated unique tag t and then when an operation remove(o) occurs, all the tags from

o that the local replica knows are removed [47]. This way the set becomes an add-wins

set because the precedence is given to an add operation when executed concurrently with

a remove operation. If the precedence is given to the remove operation, then it becomes a

remove-wins set. An example of remove-wins set is presented in Figure 2.2.

2.5 Hoare’s Logic

The concept of Hoare’s logic was introduced by Hoare [30] and had the goal of providing

a logical basis in order to prove the properties of a computer program using deductive

reasoning. Deductive reasoning is the process of relating premises with conclusions such

that if all premises are true, the terms are not ambiguous, and the rules of deductive logic

are followed, then the conclusion is true.

One of the most important aspects in analysing a computer program, is checking

12

2.6. DESIGN BY CONTRACT

if given its properties and the consequences of its execution, the program reaches a

state that respects the expected behaviour of said program. The expected behaviour

of a program can be specified as a set of assertions regarding properties of a program

that need to be preserved before and after its execution. These assertions are expressed

using mathematical symbols and logic. Hoare starts by dividing the assertions in two

categories: preconditions and postconditions. The preconditions specify the properties a

program must respect prior to its execution. If the properties specified are not preserved

prior to the execution of the program, then it is impossible to prove anything about its

execution. The postconditions express the properties that the program needs to respect

after its execution. With these two kinds of assertions, a notation is proposed in order

to illustrate the connection between them and the program. In this notation, we have

the program (Q), the preconditions (P) and the postconditions (R) resulting in {P} Q {R},

which can be translated to "If the assertions in P are true before the execution of Q,

then the assertions in R will be true after its completion" [30]. In the case where no

preconditions are provided, then the notation writes {true} Q {R}, because there are no

restrictions on the properties to be preserved by the program prior to its execution.

The axioms and rules of inference that were presented together with this notation in

Hoare’s paper, do not give a basis to guarantee that a program successfully terminates [30].

A possible cause of non-termination of a program is an infinite loop for example. Since

this logic does not guarantee the successful termination of a program, it only guarantees

partial correctness. Thus, the notation {P} Q {R} should be interpreted as "provided that

the program successfully terminates, the properties of its results are described in R" [30].

2.6 Design by Contract

Following the efforts of Dijkstra [17], Floyd [51], and Hoare [30] Meyer also addressed

the use of assertions in an object-oriented language [7]. Meyer specified some guidelines

regarding object-oriented construction in order to improve its reliability using assertions.

The term reliability is often associated with a programming technique called defensive
programming, which consists of including as many checks as possible, even if they are

redundant, to protect every module of a program from possible anomalies. The problem

of adding redundant checks to a software module is that it goes against the principle

of improving its quality, since it causes an increase of its runtime complexity. This hap-

pens because when more checks are added more software is added, which implies more

locations where things can go wrong so they also need to be verified, thus creating an

"infinite loop" where we are adding new software and checks for the software that was

just introduced.

Since defensive programming is not a very systematic approach to guaranteeing re-

liability, another solution is proposed more specifically, contract theory. This method

presents the notion of a contract for software development, which has an inspiration

from contracts that exist between people, where every party involved has obligations and

13

CHAPTER 2. BACKGROUND

benefits. In a contract, a benefit for one of the involved parties is usually an obligation for

another involved party. Specifying a contract in software can be achieved using assertions

which define the relation between the caller of the routine and the called routine. The

types of assertions that are used are the following:

• Preconditions: These assertions specify the requirements for a call of a routine,

more specifically the obligations for the callers of the routine. If there are no pre-

conditions on a routine then any state of computation is accepted before the exe-

cution of the routine. When there is a violation of a precondition then there is an

indication that a bug exists in the caller’s code or there is an error in its specification,

because it failed with its obligations.

• Postconditions: These assertions specify the properties that are ensured after the

execution of a routine, more specifically the obligations of the routine. If there are

no postconditions any state of computation is accepted after the execution of the

routine. When there is a violation of a postcondition then there is an indication of

a bug in the routine’s code since it failed with its obligations.

• Class Invariants: The invariant must be satisfied after the creation of every instance

of a class and it must also be preserved by every routine that is available for the

clients to call.

As previously mentioned, in defensive programming the focus is on using as many

checks as possible even if they are redundant. Using preconditions, on the other hand,

helps reducing the redundancy in tests. The stronger the precondition the bigger the

burden is to the client calling the routine making this routine more demanding, but the

stronger the postcondition is, the bigger the burden on the routine making the routine

more tolerant.

2.7 Predicate Transformers

The concept of a predicate transformer was introduced by Dijkstra [16]. A predicate

transformer consists of a mapping from one predicate to another predicate of a program-

ming language. Regarding predicate transformers, there are two kinds: the weakest

precondition and the strongest postcondition.

The terms "weakest" and "strongest" can be explained with a simple example: if A

implies B but B does not imply A, then B is "weaker" than A and A is "stronger" than B.

To better understand the previous explanation, here it is an example:
{x > 0} x := x+ 1 {x > 0}
{x > −1} x := x+ 1 {x > 0}

Above we have a function that increments the value of x which has two different

and valid preconditions according to Hoare’s logic. On the first example we have the

precondition {x > 0} and in the second example we have {x > −1}. The precondition

14

2.7. PREDICATE TRANSFORMERS

{x > −1} is weaker than {x > 0}, because the latter implies the first. For this function and

its precondition, {x > −1} is the weakest precondition.

The weakest precondition predicate transformer (wp) tries to find the weakest precon-

dition for a function S such that S must terminate and an allowed final state is reached.

On the other hand, the strongest postcondition predicate transformer (sp) states that if a

function S starts at a state that respects its preconditions, then if S terminates a state will

be reached that respects the strongest postcondition [26]. The weakest precondition cal-

culus guarantees the termination of the function S, whereas the strongest postcondition

calculus does not.

Predicate transformers can be used for the automatic inference of preconditions, post-

conditions or loop invariants, thus helping reduce the overhead on the part of the pro-

grammer when it comes to writing them [25]. Automated program verifiers normally

have a verification condition generator (VC gen) as a sub-component. These verification

condition generators are considered as predicate transformers in the sense that they apply

transformations to the VC’s before they are presented to an automated theorem prover.

In the following subsections, we will explain the semantics involving both kinds of

predicate transformers.

2.7.1 Weakest Precondition Calculus

For this kind of predicate transformer there are two variants: the weakest conservative

precondition calculus and the weakest liberal precondition calculus. The first type is

used to find the unique P, which is the weakest precondition for S and Q in the following

Hoare’s triple {P} S {Q} such that S terminates and produces a final state that respects Q.

The second type is used to find the unique P, which is the weakest precondition for S and

Q in the following Hoare’s triple {P} S {Q} such that either S terminates and S produces

a final state that respects Q or the execution of S does not terminate. For this section we

will focus on the weakest conservative precondition calculus.

The weakest precondition calculus is related to Hoare’s logic as we stated before, but

there are other comparisons that can be made. Hoare’s logic is relational1 because for

each Q there are many P such that {P} S {Q}, whereas WP is functional because for each Q
there is only one assertion WP(S,Q). WP respects Hoare’s logic because {WP (S,Q)} S {Q} is

true. Additionally, as it was mentioned Hoare’s logic only guarantees partial correctness,

but WP guarantees its termination, thus guaranteeing total correctness.

In order to explain the weakest precondition calculus rules, we will consider a sim-

ple language, which is the representative of the actual intermediate language used in

ESC/Java [45], whose BNF is presented in Figure 2.3.

Every execution of a statement from the language shown in Figure 2.3, either blocks,

goes wrong (e.g. failure to terminate caused by an infinite loop) or terminates [36]. The

1Not to be confused with Relational Hoare’s logic [5]

15

CHAPTER 2. BACKGROUND

S,T ::= Id := Expr
| assert Expr
| assume Expr
| S ; T
| S or T

Figure 2.3: BNF of the ESC/Java language.

Stmt wp (Stmt,Q)

x := E Q [x := E]
assert E E ∧ Q

assume E E⇒ Q
S ; T wp(S, wp(T , Q))

S or T wp(S,Q) ∧ wp(T,Q)

Table 2.1: Weakest Precondition Calculus Rules.

first statement is the assignment which sets the variable Id to the value of Expr. The fol-

lowing statements are the assert statement and the assume statement, which only execute

if expression Expr attached evaluates to true. If the expression of the assert statement

evaluates to false then the execution goes wrong and if the expression of the assume

statement evaluates to false the execution blocks. The statement S ; T is the sequential

composition of S and T, where T only executes if S terminates. The last statement is S or T ,

which corresponds to the arbitrary choice between S and T.

In order to execute the weakest precondition calculus we evaluate the provided func-

tion S and postconditions Q. Depending on which statement is found on the code, a

specific transformation is applied in order to achieve the weakest precondition. For each

possible statement of the language being analysed, we apply the associated transforma-

tion, that can be seen in Table 2.1 [17]. The assignment statement rule, Q [x := E] has

the same meaning of let x = E in Q end. The remaining rules presented in Table 2.1 are

self-explanatory.

2.7.2 Strongest Postcondition Calculus

The strongest postcondition predicate transformer (SP) is a function that receives as

input a precondition P and a function S and returns the unique Q, which is the strongest

postcondition of S with regard to its precondition P such that {P} S {SP (S,P)} must be

satisfied. SP does not guarantee the termination of function S received as an input,

thus only guaranteeing partial correctness like Hoare’s logic. Similar to the weakest

precondition predicate transformer, SP is also functional in the sense that for a given

function S and its preconditions P, there is only one Q that is the strongest postcondition

of S.

As it was done in the previous section, we consider the intermediate language used

16

2.8. CISE PROOF RULE

Stmt sp (Stmt,P)

x := E ∃x′. x = E(x← x′) ∧ P (x← x′)
assert E E ∧ P

assume E E ∧ P
S ; T sp(T, sp(S,P))

S or T sp(S,P) ∨ sp(T,P)

Table 2.2: Strongest Precondition Calculus Rules.

in ESC/Java in order to present the semantics of the strongest postcondition calculus.

The semantic rules for the strongest postcondition calculus are presented in Table 2.2.

The assignment statement rule, states that a there is variable x′ such that the logical

conjunction of the assignment of E to x with Q is true, by replacing in the expression

E and Q every occurrence of x with x′. The remaining rules presented in Table 2.2 are

self-explanatory.

2.8 CISE proof rule

CISE [28] presents a proof rule and tool for proving the preservation of integrity in-

variants in applications built over replicated databases. For this proof rule a generic

consistency model is proposed, and it allows the definition of specific consistency models

for each operation of the application. This consistency model assumes causal consistency

which means that the communication between replicas guarantees causality. This means

that if a replica sends a message containing the effect of an operation o2 after it sends or

receives a message containing the effect of an operation o1, then no replica will receive the

message about o2 before it receives the one about o1. The causal propagation of messages

can solve some issues. However, just the use of causal consistency does not ensure the

preservation of some integrity invariants [28]. One problem that can occur is when two

operations update the database, without being aware of the effects of each other.

CISE’s proposed consistency model allows the strengthening of causal consistency, by

letting the programmer specify which operations cannot be executed concurrently. This is

done using a token system T, containing a non-empty set of tokens Tokens and a conflict

relation ./ over tokens. The set Tokens presents the tokens that can be associated with the

application’s operations and the conflict relation ./ states which tokens are conflicting.

If two operations with conflicting tokens try to execute concurrently, then they need to

be executed in a way that both operations know the effects of one another, making them

causally dependent. Since operations with conflicting tokens are causally dependent,

causal message propagation ensures that every replica will execute those operations in

the same order. CISE’s proof rule is modular, in the sense that it allows for the tool to

reason about the behavior of each operation individually [28]. Also, the proof-rule is

state-based because it reasons in terms of states obtained by evaluating the effects that

17

CHAPTER 2. BACKGROUND

operations have on the state of the application.

Following the proof rule presented by CISE, the CISE tool was developed with the

purpose of automating said proof rule. This tool is SMT-based, meaning it uses off-the-

shelf SMT solvers to discharge generated verification conditions. The CISE tool has had

two iterations [38, 41]. The first version of the tool was developed by Najafzadeh et

al. [41], and used Z3’s low-level APIs directly [40], making it difficult to use. The second

version of the tool was developed by Marcelino et. al. [38], in which the specifications

were written in Boogie [4]. Boogie generates a set of verification conditions from the

programmer’s specification, and then discharges them to an SMT solver. One advantage

this tool has over the Z3 version is the fact that the specifications are written in a higher-

level specification language. That means the programmer does not have to deal with Z3’s

low-level API. However, there is a downfall of using Boogie, which is its current lack of

active maintenance. Both tools provide a counterexample when the verification process

fails.

CISE’s proof rule proposes three proof obligations: the safety analysis, the commuta-

tivity analysis, and the stability analysis. These three proof obligations can be resumed

as follows:

• Safety Analysis: Verifies if the effects of an operation, when executed without any

concurrency, preserve the invariants of the application.

• Commutativity Analysis: Verifies if every pair of different operations commute,

i.e., if the operations are executed in any order, then the same final state is reached

starting from the same initial state.

• Stability Analysis: Verifies if the pre-conditions of an operation are stable under

the effects of each operation of the system. If two operations are stable, they can be

safely executed concurrently.

If there is a pair of operations where one of them can violate the other’s precondition

when executed concurrently, then a set of tokens is associated to these operations. The

idea is to associate pairs of tokens with the specified conflict relation, thus stating that

these operations cannot be executed concurrently. In the Z3 version of the tool the to-

kens are only associated to the operations, ignoring their parameters, only allowing for

a coarse-grained approach [41]. For the Boogie version of the tool the token association

mechanism became more fine-grained, testing different values for the parameters of each

pair of conflicting operations. This was done to find the cases where the combination of

parameters could break the invariants. The programmer associates tokens to arguments

of the operations and states, via a conflict relation, which arguments have conflicting to-

kens. When operations that have arguments with conflicting tokens execute concurrently,

then if the arguments have the same value they need to be synchronised in order to be

safely executed [38].

18

C
h
a
p
t
e
r

3
CISE3 Architecture

In this section we discuss how our tool CISE3 works. In Section 3.1 we present an overview

of our tool. In Section 3.2 we present how our tool performs the three proof obligations

from the CISE proof rule, presented in Section 2.8. In Section 3.3 we discuss the specifi-

cation of token systems, using our provided DSL. In Section 3.4 we present our CRDTs

library for the resolution of commutativity issues. In Section 3.5 we present the imple-

mentation of the strongest postcondition calculus from our tool.

3.1 CISE3 Overview

In this thesis we are proposing a static analysis tool, to automatically analyse applications

operating over weakly consistent databases with the aid of the deductive verification

framework Why3 [21]. This approach follows the proof rule proposed by CISE [28]. Since

our approach is based on CISE’s proof rule we assume causal consistency as mentioned in

Section 2.8. This assumption can be relaxed to eventual consistency, as we discuss later

in Section 6.2.

As we mention in Section 2.2, the Why3 framework provides a programming and

high level specification language. From programs written and annotated using WhyML,

are generated verification conditions, that can be sent to several of the more than 25

supported theorem provers. This diversity allows to rectify some limitations from other

proof tools that just support one theorem prover, usually an SMT solver. Simultaneously,

the Why3 framework also provides a graphic environment for the development of pro-

grams, where we can interact with several theorem provers, perform small interactive

proof steps [14], as well as, visualising counter-examples.

The Why3 framework can be extended via plug-ins like in the cases of Jessie [39] and

Krakatoa [20]. The integration of new plug-ins into Why3 is relatively simple: we write

19

CHAPTER 3. CISE3 ARCHITECTURE

a parser for our target language, whose intermediate representation should me mapped

to an non-typed AST of the WhyML language. Finally, we use the typing mechanism

from Why3 to generate a typed version of the previous AST. The WhyML program that

is generated after this typing phase, can now be analysed by the Why3 framework. The

CISE3 tool is a plug-in for the Why3 framework whose target language is WhyML which

is why we also leveraged the already existing parser for the WhyML language.

The CISE3 architecture presented in Figure 3.1 has four components:

• Proof Obligations Component: This component is related with the execution of

the three proof obligations from CISE’s proof rule. After the execution of this

component the programmer knows the pairs of non-commutative and conflicting

operations.

• Token System Component: This component is related with the specification and

validation of a token system defined by the programmer. For this component we

provide a DSL that programmers can use in order to specify token systems. When

the programmer provides a token system to our tool then the "Proof Obligations

Component" suffers some modifications as discussed in Section 3.3.

• CRDTs library Component: This component is related with the use of CRDTs for

solving commutativity issues found in applications. For this part of our tool, we

provide a library of CRDTs implemented and verified using the Why3 framework.

After the execution of the "Proof Obligations Component" the programmer is aware

of the pairs of non-commutative operations and can use a CRDT from this library

to solve this issue as seen in Figure 3.1.

• SP Component: This component is related with the automatic generation of strongest

postconditions for operations of the applications to be analysed by our tool. For

this component we provide a strongest postconditions predicate transformer over a

DSL of ours, similar to a subset of the WhyML language.

We believe that our choice of the Why3 framework, and basing our tool on its archi-

tecture of plug-ins, has allowed for a reduction of the development and validation effort

for CISE3. Also, developing our tool over a mature framework allows us to evolve for the

analysis of more realistic examples.

3.2 Proof Obligations Component

As we mention in Section 2.8, the safety analysis from the CISE proof rule consists of

verifying if an operation when executed without any concurrency does not break an

integrity invariant of the application. As an input, the programmer provides to the tool

the specification of the application’s state and its invariants, as well as the sequential

implementation and specification of each operation. As an example of a generic Why3

20

3.2. PROOF OBLIGATIONS COMPONENT

Figure 3.1: CISE3 architecture.

1 type τ [@state] = { x : τx }

2 invariant { I }

3

4 let f (x : τ1) (state: τ)
5 requires { P1 }

6 ensures { Q1 }

7 = e1
8

9 let g (y : τ2) (state: τ)
10 requires { P2 }

11 ensures { Q2 }

12 = e2
13

Figure 3.2: Generic program in Why3.

program we consider the program presented in Figure 3.2. This program is composed

by operations f and g, and the type of the state of the application τ , with the invariant I

associated to it.

When the programmer is specifying the type of the state of the application, he needs

to associate to it the tag [@state], so it is possible to identify this type as the representa-

tive of the state, as it is seen in Figure 3.2. The type τ possesses a set of fields represented

21

CHAPTER 3. CISE3 ARCHITECTURE

1 let ghost f_g_commutativity () : (τ, τ)
2 returns { (s1, s2) → eq s1 s2 }

3 = val x1 : τ1 in

4 val state1 : τ in

5 val x2 : τ2 in

6 val state2 : τ in

7 assume { P1 (x1,state1) ∧ P2 (x2,state2) ∧
8 eq state1 state2 }

9 f x1 state1;

10 g x2 state1;

11 g x2 state2;

12 f x1 state2;

13 (state1, state2)

14

Figure 3.3: Generated commutativity and stability analysis function for operations f

and g.

by x, whose types are represented as τx. Additionally, in the code shown in Figure 3.2

there is the definition of operations f and g. Every operation must have an instance of the

state of the application passed as an argument so it can be used later in the generation

of commutativity and stability analysis functions. In the code from Figure 3.2, the pre-

conditions of operation f are represented as P1, the postconditions are represented as Q1

and its body is represented as e1. The specification of the operation g is similar to the one

of f, but in this case the preconditions, postconditions and body are represented by P2,

Q2 and e2 respectively.

The Why3 framework by itself already has the ability of verifying for each operation,

if its implementation adheres to the specification. Also, the programmer by specifying the

state of the application with its integrity invariants, can use Why3 to verify if an operation

breaks them or not, given its implementation. In the cases where a verification condition

from the program is not discharged, the framework can present a counter-example [13].

That said, it is possible to state that Why3 is capable of performing the safety analysis

without changing anything within the framework.

For the remaining two proof obligations of the CISE proof rule, our tool automati-

cally generates functions that verify the commutativity and stability between pairs of

operations. Given the code from the application, CISE3 uses Why3’s parser to obtain

an in memory representation of the contents of the WhyML program. After the pro-

gram is parsed, for each pair of different operations a commutativity analysis function is

generated automatically, which also verifies the stability between those operations.

For the generic application presented in Figure 3.2, our tool only generates one func-

tion for the commutativity and stability analysis between operations f and g. The gen-

erated function is presented in Figure 3.3. If Why3 is able to prove that the function

presented in Figure 3.3 respects the specification, then operations f and g commute and

do not conflict. This function starts by generating two equal states of the application, as

22

3.2. PROOF OBLIGATIONS COMPONENT

well as the arguments for each operation in lines 3 to 6. The construction val..in is used

in WhyML to generate a constant of a certain type. For instance, the expression in line 4

generates a value of type τ , binding such value to the variable state1. An expression of

the form (val x : γ in) is syntactic sugar for (let x = any γ in). The next step is

the assume expression in line 7, which has the purpose of restricting the values that the

generated arguments can possess in order to preserve the preconditions of the operations

being analysed. The assume expression also states that both generated states must be the

same, because f and g are executed in alternative orders but both orders of execution must

start from the same initial state. Then operation f is executed, followed by the execution

of operation g over state1, in lines 8 and 9. This execution of f and g is followed by the

alternative order of execution but over state2 in lines 10 and 11. After these alternated

executions of operations f and g, if the final states are the same then we assume that f and

g commute. To verify if two states are the same, the postcondition uses a state equality

relation (eq). This equality relation is a field by field comparison of the record type of

the state of the application. The equality relation between states can be automatically

generated by our tool, if the programmer does not provide one. In Chapter 4 we present

several case studies that require an equality relation provided by the programmer.

For the stability analysis in the function of Figure 3.3, we try to prove the preservation

of the precondition of an operation after the execution of another operation, (e.g., the

precondition of g in the state obtained after the execution of f). So, in the first order

of execution over state1 we check if the preconditions of operation g are preserved and

in the second order of execution over state2, our tool tries to prove the preservation of

the preconditions of operation f. If we are not able to prove one of these two assertions,

then we assume that f and g are conflicting and that they cannot be safely executed

concurrently. Otherwise, f and g are not conflicting. This way, we can perform the

commutativity and stability analysis for each pair of different operations in a single step.

One important remark regarding the generated functions by our tool, is the name of

the arguments that are generated inside them. The generated arguments do not have the

same names as in the operations signature, because our tool changes them due to possible

conflicts that can occur between argument names of different operations. In order to solve

this issue, our tool adds a suffix after the name of each argument, thus avoiding any name

clashes. Also, in the assume expression our tool changes the names of the variables in

the preconditions of the analysed operations, so there is a match with the new generated

names.

For the remaining stability analysis, our tool generates a function for each operation.

Each of these remaining functions have the purpose of checking if there can be multiple

concurrent executions of the same operation. Given the generic program presented in

Figure 3.2, to check the stability of operations f and g, our tool generates the functions

presented in Figure 3.4.

The functions presented in Figure 3.4 start by generating the initial state and the

arguments for the operation calls in lines 2 to 5 and in lines 11 to 14. Similar to the

23

CHAPTER 3. CISE3 ARCHITECTURE

1 let ghost f_stability () : ()

2 = val x1 : τ1 in

3 val state1 : τ in

4 val x2 : τ1 in

5 assume { P1 (x1,state1) ∧
6 P1 (x2,state1)}

7 f x1 state1;

8 f x2 state1;

9

10 let ghost g_stability () : ()

11 = val x1 : τ2 in

12 val state1 : τ in

13 val x2 : τ2 in

14 assume { P2 (x1,state1) ∧
15 P2 (x2,state1)}

16 g x1 state1;

17 g x2 state1;

18

Figure 3.4: Generated stability analysis function for operations f and g.

commutativity analysis functions, the assume expression in line 6, for example, is also

used to restrict the values that the generated arguments and states can take so the pre-

conditions of the operation being analysed can be preserved. Lastly, the operation is

executed consecutively in lines 7 to 8 and in lines 16 to 17. To check if an operation is not

conflicting with itself, we use our tool to try to prove this stability analysis function. In

case we are not able to prove the generated function, due to a violation of a precondition

on the second call to the operation, then we assume that there cannot be multiple concur-

rent executions of that operation. As it was pointed out for the commutativity analysis

function, in the stability analysis functions the name of the generated arguments and the

assume expression suffer modifications, to avoid name clashes between arguments from

different operations.

3.3 Token System Component

After the analyses from our tool are performed, the programmer is aware of the pairs

of conflicting operations of the application. With this information the programmer can

provide a token system to our tool and check if the consistency model that it represents

is sound. This is done by executing CISE3 over the application’s specification once again.

Given the token system, if we are able to discharge every generated verification condition,

then the associated consistency model is considered sound. The programmer can execute

our tool several times iteratively refining the token system each time, in order to find

the less strict consistency model that guarantees data integrity. The idea of defining a

token system to represent the consistency models of an application comes from CISE, as

explained in Section 2.8. In Chapter 4 we show some examples of the definition of token

24

3.3. TOKEN SYSTEM COMPONENT

tokenSystem ::= tokenDef
| conflictsDef

tokensDef ::= token tokensDef
| token

token ::= token opId tokenId+

| argtoken opId argId tokenId
conflictsDef ::= conflict conflictsDef

| conflict
conflict ::= tokenId conflicts tokenId

Figure 3.5: BNF that represents our provided token system specification language.

systems for our case studies, as well as its repercussions in the execution of our tool.

In Figure 3.5 we present the grammar of our DSL for specifying token systems. The

first two productions from the grammar are straight forward so firstly we focus on the

token production. The first rule from the token production, describes the declaration of a

non-empty list of tokens, associated with an operation. Each token can only be declared

once, as it cannot be associated to more than one operation. The second rule from the

token production describes the association of tokens to arguments of an operation. The

last production, illustrates how the programmer can declare two tokens as being in con-

flict. The tokens that are used in the conflict production must both have been defined

previously. When two tokens declared with the keyword token are conflicting, the opera-

tions associated to those tokens cannot be executed concurrently in any situation. In this

case, our tool will not generate any analysis function regarding the analysis for the pair of

conflicting operations. If two tokens that were declared with the argtoken keyword are

conflicting, the operations associated to the tokens can only execute concurrently if the

value of the arguments are different. In this case, our tool assumes that two operations

with conflicting arguments only execute concurrently when the values of the arguments

are different.

To illustrate our token system specification language let us consider the following

example: our tool is executed over the application from Figure 3.2 and finds out operation

f is conflicting with itself. Given this information, the programmer can provide the

following token system:

1 token f tau

2 tau conflicts tau

The token system presented above shows a consistency model where operation f

should not be safely executed in concurrence with itself in any situation. So, given this

token system our tool does not generate the stability analysis f_stability. However, let

us consider that the conflict regarding operation f is only related to one of its parameters

arg. In this case the programmer can provide a more refined token system like the one

below:

25

CHAPTER 3. CISE3 ARCHITECTURE

1 argtoken f arg tau

2 tau conflicts tau

Now, this token system depicts a consistency model where f can only be safely exe-

cuted concurrently when the value of arg is different in each concurrent execution of f.

Given this new token system, our tool changes the assume expression from the f_stability

function in Figure 3.4. The new assume expression is presented below:

1 assume { P1 (x1,state1) ∧ P1 (x2,state1) ∧ (arg1 , arg2)}

3.4 CRDTs library Component

A mostly frequent issue that can occur in geo-replicated systems is data divergence due

to the execution of non-commutative operations, in different orders in different replicas.

A possible solution to this issue is the introduction of CRDTs in the application code. As

mentioned in Section 2.4, CRDTs guarantee the convergence of data in a self-established

way. With this in mind, we present a library of CRDTs implemented and verified using

the Why3 framework. The goal of this library is to provide programmers with a verified

solution in order to solve commutativity issues that are uncovered by our tool. The

programmer can also provide its own CRDT specifications in WhyML and use them to

solve commutativity issues. In Chapter 4 we show a case study where a CRDT is used to

solve a commutativity issue discovered by our tool. Also, all the CRDTs implemented for

our library are presented in Appendix A.

3.5 Strongest Postcondition Component

As previously mentioned the goal of our approach is to help the programmer reason about

the correctness of weakly consistent distributed applications. Even if the programmer

only has to provide the specification of the application, finding the best specification for

an application can be a tough task. So, in order to help the programmer with this chore

we provide a strongest postcondition generator. This predicate transformer can be used

by the programmer in case she needs help reasoning about the postconditions of each

operation, as stated in Section 2.7.

For this component we provide a DSL to write specifications targeting our strongest

postcondition calculus. This DSL is similar to a subset of the WhyML language, making

it easier for the programmer to integrate the generated postcondition in the application.

The input the programmer needs to provide to our predicate transformer consists of

the implementation and preconditions of the operation. Our strongest postcondition

generator follows the rules presented in Table 2.2. Another important remark about this

DSL is that it does not support any form of loop constructors. In Chapter 4 we present

some case studies where we applied our strongest postcondition calculus.

26

3.5. STRONGEST POSTCONDITION COMPONENT

Let us discuss some design choices regarding our predicate transformer and its target

language. First of all, the case studies evaluated by our tool do not have global variables.

This departs away from a more traditional presentation of a strongest postcondition

calculus [17]. Every variable used in an operation is passed as a parameter, which can

raise the problem of aliasing. In order to explain how we cope with this issue let us first

consider the following signature for operation f:

1 val f (x : τ1) (state: τ) : τres

According to the type system from Why3 [24], all arguments from an operation are

separated from each other, using here some Separation Logic vocabulary [43]. By that we

mean that there are no two arguments pointing to the same memory location. Since our

predicate transformer only has in consideration the arguments of the operation, then the

problem of aliasing is mitigated.

Another implementation choice regarding our predicate transformer is related to

the integrity invariants over the state. Our predicate transformer does not include the

integrity invariants in the generated postconditions. We make this choice because when

the programmer writes the specification of an application in Why3, she does not need

to explicitly include the state invariants. Why3 automatically adds any type invariants

as a precondition and postcondition of operations. So, since Why3 inserts the integrity

invariants by itself, our predicate transformer does not need to do it.

27

C
h
a
p
t
e
r

4
Experimental Evaluation

In this chapter we evaluate our tool over a set of three case studies: a banking application,

an auction application, and a school registration application.

4.1 Banking Application

In this section we present a complete case study of a simple banking application. This

case study is similar to the example presented in Section 1.2. In this application we have

a set of bank accounts, over which a client can only deposit or withdraw money. For this

case we abstract the security aspects regarding which client can access which account,

with every client being able to access every account. The sequential implementation and

specification for this case study are presented in Figure 4.1.

The specification of operations deposit and withdraw are standard: it is not possible to

deposit or withdraw negative values and also a client cannot withdraw more money than

what is available in the account. The specified state of the application corresponds to a

record with just one field named balance, which represents the accounts with each index

of the array representing a different account. There is an integrity invariant associated to

the state of the application. This invariant states that at any point during the execution

of the application, the balance of each account must be non-negative. The proof effort for

this sequential program is presented in Figure 4.2. The green cells represent the verifica-

tion conditions that were discharged automatically by the specified external prover. That

being said this table shows that the safety analysis is successfully performed.

For this example the programmer needs to introduce the predicate state_equality

that represents the equality relation between states, as we can observe in Figure 4.1. In

order for our tool to identify state_equality as the equality relation between states, the

programmer must associate the tag [@state_eq]. If the programmer does not specify

29

CHAPTER 4. EXPERIMENTAL EVALUATION

1 type state [@state] = {

2 balance : array int

3 } invariant{ forall i. 0 ≤ i < length balance → balance[i] ≥ 0 }

4

5 let deposit(accountId amount: int) (state : state): unit

6 requires { amount > 0 }

7 requires { accountId ≥ 0 ∧ accountId < length state.balance }

8 ensures { state.balance[accountId] =

9 old(state.balance)[accountId] + amount }

10 ensures { forall i. i , accountId →
11 state.balance[i] = (old state.balance)[i] }

12 = state.balance[accountId] ← state.balance[accountId] + amount

13

14 let withdraw(accountId amount: int) (state : state) : unit

15 requires { amount > 0 }

16 requires { state.balance[accountId] - amount ≥ 0 }

17 requires { accountId ≥ 0 ∧ accountId < length state.balance }

18 ensures { state.balance[accountId] =

19 old(state.balance)[accountId] - amount }

20 ensures { forall i. i , accountId →
21 state.balance[i] = (old state.balance)[i] }

22 = state.balance[accountId] ← state.balance[accountId] - amount

23

24 predicate state_equality [@state_eq] (s1 s2 : state)

25 = array_eq s1.balance s2.balance

26

Figure 4.1: Specification and implementation of the banking application.

Proof obligations A
lt
-E

rg
o
2
.3
.0

C
V
C
4
1
.5

Z
3
4
.5
.0

lemma VC for state 0.00 0.03 0.02
lemma VC for deposit 0.01 0.05 0.01
lemma VC for withdraw 0.01 0.05 0.01

Figure 4.2: Statistics regarding the proof of the banking application.

30

4.1. BANKING APPLICATION

the predicate state_equality, our tool automatically generates an equality relation, as

specified in Section 3.2. For the specific case of comparing arrays, a simple structural

comparison would not be sufficient to prove if they are equal. Therefore, in this case

there is the need for a point-wise comparison between the elements of the arrays, which

is accomplished by using the function array_eq from Why3 standard library.

When the programmer is writing the specification, she can use our strongest postcon-

dition predicate transformer to automatically obtain the postconditions for each opera-

tion. To execute our predicate transformer for operation deposit, the input the program-

mer needs to provide to our tool is the one below, followed by the generated postcondition:

1 deposit (amount, accountId : int) (state : state) : unit

2 requires {amount > 0}

3 requires {accountId ≤ (length (state.balance))}

4 requires {accountId > 0}

5 = state.balance[accountId] ← (state.balance[accountId] + amount)

1 exists v0. state.balance[accountId] = v0 + amount &&

2 amount > 0 &&

3 accountId ≤ length (state.balance) &&

4 accountId > 0

The generated postcondition states that there exists a value v0 representing the previ-

ous balance of the account which is accessed by the index accountId. Then, a value amount

is deposited to the balance of the account v0. The remaining information refers to the

propagation of the preconditions of operation deposit. Now the programmer can repeat

the process for operation withdraw by providing the specification for the operation. The

specification for withdraw, followed by the generated postcondition, is presented below:

1 withdraw (amount, accountId : int) (state : state) : unit

2 requires {amount > 0}

3 requires {accountId ≤ (length (state.balance))}

4 requires {accountId > 0}

5 requires {(balance[accountId] - amount) ≥ 0 }

6 = state.balance[accountId] ← (state.balance[accountId] + amount)

1 exists v0 . state.balance[accountId] = v0 + amount &&

2 amount > 0 &&

3 accountId ≤ length (state.balance) &&

4 accountId > 0 &&

5 v0 - amount ≥ 0

The generated postcondition states that there exists a value v0 representing the previ-

ous balance of the account being accessed by the index accountId. Then, a value amount

is removed from the balance of the account v0. The remaining information from the

generated postcondition refers to the propagation of the preconditions from the withdraw

operation.

31

CHAPTER 4. EXPERIMENTAL EVALUATION

1 let ghost deposit_withdraw_commutativity () : (state, state)

2 ensures { match result with

3 | x1, x2 → state_equality x1 x2

4 end }

5 = val ghost accountId1 : int in

6 val ghost amount1 : int in

7 val ghost state1 : state in

8 val ghost accountId2 : int in

9 val ghost amount2 : int in

10 val ghost state2 : state in

11 assume { ((amount1 > 0 ∧ accountId1 ≥ 0 ∧
12 accountId1 < length (balances state1)) ∧
13 amount2 > 0 ∧
14 ((balances state2)[accountId2] - amount2) ≥ 0 ∧
15 accountId2 ≥ 0 ∧
16 accountId2 < length (balances state2)) ∧
17 state_equality state1 state2 };

18 withdraw accountId2 amount2 state1;

19 deposit accountId1 amount1 state1;

20 deposit accountId1 amount1 state2;

21 withdraw accountId2 amount2 state2;

22 (state1, state2)

23

Figure 4.3: Generated commutativity analysis function for the bank application.

Comparing the postconditions of each operation from Figure 4.1 and the generated

postconditions, we verify that the latter are more verbose. However, they are automati-

cally generated. This helps the programmer to understand which postcondition must be

supplied. In fact, an appropriate witness for the existentially quantified variable v0 is

(old state).balance, with which we recover the postconditions supplied in Figure 4.1.

In the implementation presented in Figure 4.1 we can observe that the application

only has two operations: deposit and withdraw. Since there is only one pair of different

operations, our tool only generates a single function for the commutativity analysis. The

generated function is presented in Figure 4.3.

In the function of Figure 4.3 we start by generating the arguments amount1, accountId1,

state1, amount2, accountId2, and state2 which are used for the calls to operations deposit

and withdraw. The expression assume has the purpose of restricting the space of possible

combinations of values for the generated arguments, so that the preconditions of the

analysed operations are preserved and both generated states are equal. After that, op-

eration withdraw is executed over state1 followed by the execution of operation deposit

over state1. If we are not able to prove that the preconditions of the call to deposit

are preserved, then we assume that deposit and withdraw are conflicting and cannot be

safely executed concurrently. Afterwards, operation deposit is executed over state2,

followed by the execution of operation withdraw over state2. As it was done with the

previous order of execution of operations, for this sequence if we are not able to prove

32

4.1. BANKING APPLICATION

1 let ghost withdraw_stability () : unit

2 = let ghost accountId1 = any int in

3 let ghost amount1 = any int in

4 let ghost state1 = any state in

5 let ghost accountId2 = any int in

6 let ghost amount2 = any int in

7 assume { (amount1 > 0 ∧
8 ((balances state1)[accountId1] - amount1) ≥ 0 ∧
9 accountId1 ≥ 0 ∧ accountId1 < length (balances state1)) ∧
10 amount2 > 0 ∧
11 ((balances state1)[accountId2] - amount2) ≥ 0 ∧
12 accountId2 ≥ 0 ∧ accountId2 < length (balances state1) };

13 withdraw accountId1 amount1 state1;

14 withdraw accountId2 amount2 state1

15

16 let ghost deposit_stability () : unit

17 = let ghost accountId1 = any int in

18 let ghost amount1 = any int in

19 let ghost state1 = any state in

20 let ghost accountId2 = any int in

21 let ghost amount2 = any int in

22 assume { (amount1 > 0 ∧
23 accountId1 ≥ 0 ∧ accountId1 < length (balances state1)) ∧
24 amount2 > 0 ∧
25 accountId2 ≥ 0 ∧ accountId2 < length (balances state1) };

26 deposit accountId1 amount1 state1;

27 deposit accountId2 amount2 state1

28

Figure 4.4: Generated stability analysis functions for the bank application.

the preservation of the preconditions of withdraw, then we assume deposit and withdraw

are conflicting and cannot be safely executed concurrently. Lastly, a pair containing both

final states state1 and state2 is returned, and if they are equal we know that deposit and

withdraw commute. In this case, we are able to prove every verification condition gener-

ated by this function, meaning that operations deposit and withdraw commute and do

not conflict. That said, these operations can be safely executed concurrently because they

do not put data integrity at risk. Since there are no commutativity issues regarding these

operations, there is no need to introduce a CRDT in this application. So, with function

deposit_withdraw_commutativity we are able to execute the stability and commutativity

analysis between deposit and withdraw in one step.

Now, we proceed to the remaining stability analysis where we verify for each operation

if there can be multiple concurrent executions of said operation. For this analysis, our

tool generates a stability analysis function for each operation of the application. In this

case study, our tool generates the stability analysis functions presented in Figure 4.4.

Initially, every stability analysis function generates the arguments that will be used in

the calls to the operation, as we saw in the commutativity analysis function. Also, similar

to the commutativity analysis function, the assume expression restricts the search space

33

CHAPTER 4. EXPERIMENTAL EVALUATION

Proof obligations A
lt
-E

rg
o
2
.3
.0

C
V
C
4
1
.5

Z
3
4
.5
.0

VC for deposit withdraw commutativity 0.07 (5s) FAILURE
VC for withdraw stability precondition 1 0.00

precondition 2 0.00
precondition 3 0.01
precondition 4 0.00
precondition 5 (1s) (1s) FAILURE
precondition 6 0.00

VC for deposit stability 0.00 0.02 0.01

Figure 4.5: Statistics of the proof effort for the generated functions for the bank applica-
tion.

of values that the arguments can take so that the preconditions of the first operation call

are preserved. Additionally, the assume expression is used to ensure that both generated

states are equal. After that, the operation being analysed is called consecutively, and

we are not able to prove the preservation of the preconditions of the operation prior to

the second call, then that operation is conflicting with itself. In this case study, every

verification condition for function deposit_stability is proved automatically, ensuring

that deposit is not conflicting with itself. However, for the stability analysis function

withdraw_stability, we are not able to prove the preservation of the preconditions for

the second operation call. This means that withdraw is conflicting with itself, therefore,

there cannot be multiple concurrent executions of this operation. The proof effort for the

commutativity and stability analysis functions can be seen in Figure 4.5. In this table we

can see that precondition 5 cannot be proved by any external prover available. It is this

precondition that makes us assume that withdraw is conflicting with itself.

As we observed in Section 2.8, a token system can be used to specify a specific con-

sistency model over an application. Since the analysis phase of our tool is complete, the

programmer already knows which operations are conflicting, and in this case there is

only one conflict: withdraw is conflicting with itself. The programmer must supply a

token system, which can then be analysed by our tool. A sound token system for this

application can be seen below:

1 token withdraw tau

2 tau conflicts tau

This token system defines a token tau which is associated to operation withdraw and it

conflicts with itself. That said, our tool does not generate the stability analysis function for

withdraw. Consequently, our tool only generates the functions deposit_withdraw_commutativity

and deposit_stability, which we have seen in this section to have been automatically

proved. So, every generated verification condition is proved automatically, thus the token

34

4.2. AUCTION APPLICATION

1 assume { (amount1 > 0 ∧
2 ((balances state1)[accountId1] - amount1) ≥ 0 ∧
3 accountId1 ≥ 0 ∧ accountId1 < length (balances state1)) ∧
4 amount2 > 0 ∧
5 ((balances state1)[accountId2] - amount2) ≥ 0 ∧
6 accountId2 ≥ 0 ∧ accountId2 < length (balances state1) ∧
7 accountId1 , accountId2 };

8

Figure 4.6: Assume expression of withdraw_stability given the token system.

system and its underlying consistency model are considered sound.

Realistically, if the application from this case study is executed under the consistency

model presented above, when a user is trying to withdraw money from an account, no

other client can be withdrawing money from any account. So, this consistency model is

too strict for the application and heavily decreases its availability. However, if we analyse

the conflict of the withdraw operation, then we understand it is related specifically to the

argument accountId instead of the operation as a whole. That said, the programmer can

now provide another (more refined) token system to our tool to check its soundness. This

new token system is presented below:

1 argtoken withdraw accountId tau

2 tau conflicts tau

This new token system states that the argument accountId of the operation withdraw,

that has the token tau associated, is conflicting with itself. That said, our tool modifies

the assume expression from operation withdraw_stability, adding the restriction that the

argument accountId must have different values in each concurrent execution of operation

withdraw. The modified assume expression is presented in Figure 4.6. With this modi-

fication in the assume expression, every generated verification condition is discharged,

meaning that the token system presented above, and its underlying consistency model

are sound.

4.2 Auction Application

In this section we present another complete case study, this time of a simple auction

application. This application consists of a collection of bids, the winning bid of the

auction and a flag that indicates if the auction is still open. For this application, we

also abstract from security aspects such as which user of the application can close the

auction, with every user being able to do so. The implementation and specification for

this application is presented in Figure 4.7.

The auction application has two operations: place_bid to place a bid, and close_auction

to close the auction. The specification for place_bid states that the bid that is going to

be placed must be non-negative, and the auction must be open. After the execution of

35

CHAPTER 4. EXPERIMENTAL EVALUATION

1 type state [@state] = {

2 mutable bid : array int;

3 mutable winning_bid : int;

4 mutable open : bool

5 }

6 invariant{ if not(open) then

7 length bid ≥ 0 ∧
8 (forall i. ≥ 0 ∧
9 i < length bid → winning_bid ≥ bid[i])

10 else winning_bid ≤ 0 }

11 invariant{ if length bid > 0 then

12 (forall i. i ≥ 0 ∧
13 i < length bid → bid[i] > 0)

14 else length bid = 0 }

15

16 let place_bid (b : int) (state : state) : unit

17 requires { b > 0 }

18 requires { state.open }

19 requires { state.winning_bid ≤ 0 }

20 ensures { length state.bid = length (old state.bid) + 1 }

21 = state.bid ← append state.bid (make 1 b)

22

23 let close_auction (state : state) : unit

24 requires { length state.bid ≥ 0 }

25 requires { state.open }

26 requires { state.winning_bid ≤ 0 }

27 ensures { forall i. i ≥ 0 ∧
28 i < length state.bid → (state.winning_bid ≥ state.bid[i])}

29 ensures{not(state.open) }

30 = for i = 0 to length state.bid - 1 do

31 invariant{ forall j. j ≥ 0 ∧
32 j < i → state.winning_bid ≥ state.bid[j] }

33 if state.bid[i] > state.winning_bid then

34 state.winning_bid ← state.bid[i]

35 done;

36 state.open ← false

37

38 predicate state_equality [@state_eq] (s1 s2 : state)

39 = val predicate (==) (b1 b2: bool)

40 ensures { result ↔ b1 = b2 } in

41 (array_eq s1.bid s2.bid) &&

42 (s1.winning_bid = s2.winning_bid) &&

43 (s1.open == s2.open)

44

Figure 4.7: Specification and implementation of the auction application.

36

4.2. AUCTION APPLICATION

Proof obligations A
lt
-E

rg
o
2
.3
.0

C
V
C
4
1
.5

Z
3
4
.5
.0

lemma VC for state 0.00 0.03 0.01
lemma VC for place bid 0.03 0.04 0.01
lemma VC for close auction 0.02 0.05 0.02

Figure 4.8: Statistics regarding the proof of the auction application.

operation place_bid the new bid is placed in the collection of bids. The specification for

close_bid states that the auction must be open, and there must be at least one bid. After

the execution of operation close_auction, the auction is closed and the winning bid of the

auction is decided. We associate two integrity invariants to the state of the application.

The first invariant states that at any point during the execution, if the auction is open

then the winning bid is negative, but when the auction is closed, then it must be greater

or equal then any bid from the collection of bids. The second invariant states that at any

point during the execution every bid from the collection of bids, is non-negative. The

proof effort for this sequential program is presented in Figure 4.8.

When the programmer is writing the specification, she can use our strongest post-

condition predicate transformer to automatically obtain the postconditions for each op-

eration. To execute our predicate transformer for operation place_bid, the input the

programmer needs to provide to our tool is the one below, followed by the generated

postcondition:

1 place_bid (b : int) (state : state) : unit

2 requires { b > 0 }

3 requires { state.open }

4 requires { state.winning_bid ≤ 0 }

5 = state.bid ← append (state.bid, make (1,b))

1 exists v0. state.bid = append (v0, make (1,b)) &&

2 b > 0 &&

3 state.open &&

4 state.winning_bid ≤ 0

The generated postcondition states that there exists a value v0 representing the previ-

ous collection of placed bids. Then, a bid b is inserted in v0. The remaining information

from the generated postcondition refers to the propagation of the preconditions from

the place_bid operation. As for operation close_auction, we cannot apply our predicate

transformer. This happens because our strongest postcondition calculus does not support

any kind of loop constructors.

Comparing the postconditions of each operation from Figure 4.7 and the generated

postcondition for place_bid, we verify that the latter are more verbose. However, they

37

CHAPTER 4. EXPERIMENTAL EVALUATION

1 let ghost place_bid_close_auction_commutativity () : (state,state)

2 ensures { match result with

3 | x1, x2 → state_equality x1 x2

4 end }

5 = let ghost b1 = any int in

6 let ghost state1 = any state in

7 let ghost state2 = any state in

8 assume { ((b1 > 0 ∧
9 open state1 = True ∧
10 winning_bid state1 ≤ 0 ∧
11 (forall i:int.

12 i ≥ 0 ∧ i < length (bid state1) → (bid state1)[i] > 0)) ∧
13 length (bid state2) ≥ 0 ∧
14 open state2 = True ∧
15 winning_bid state2 ≤ 0 ∧
16 (forall i:int.

17 i ≥ 0 ∧ i < length (bid state2) → (bid state2)[i] > 0)) ∧
18 state_equality state1 state2 };

19 close_auction state1;

20 place_bid b1 state1;

21 place_bid b1 state2;

22 close_auction state2;

23 (state1, state2)

24

Figure 4.9: Generated commutativity analysis function for the auction application.

are automatically generated. This helps the programmer to understand which postcon-

dition must be supplied. In fact, an appropriate witness for the existentially quantified

variable v0 is (old state).bid, with which we recover the postconditions supplied in

Figure 4.7.

Similar to the banking application, in this case study the programmer also needs to

specify the equality relation between sets state_equality. Since there is only one pair of

different operations, our tool only generates one function for the commutativity analysis

for the auction application. The generated function is illustrated in Figure 4.9. In this

case, we are not able to prove that the preconditions of operation place_bid are preserved

after the execution of operation close_auction. This happens because by closing the

auction, the flag open from the state of the application is changed, and in order for a user

to place a bid, the auction must be open. That said, we assume that these operations

cannot be safely executed concurrently. Since there is a verification condition that is not

discharged, prior to the return of the pair of the final states, one cannot check if the states

are the same, so we assume they do not commute. Similar to the bank application, in this

case study there is not a commutativity issue that can be solved with the introduction of

a CRDT in the system.

In this case study, our tool generates the stability analysis functions that are presented

in Figure 4.10. Every verification condition generated for function place_bid_stability

is discharged, ensuring that it is not conflicting with itself. However, for the stability

38

4.2. AUCTION APPLICATION

1 let ghost close_auction_stability () : ()

2 = let ghost state1 = any state in

3 assume { (length (bid state1) ≥ 0 ∧
4 open state1 = True ∧
5 w state1 ≤ 0 ∧
6 (forall i:int.

7 i ≥ 0 ∧ i < length (bid state1) → (bid state1)[i] > 0)) ∧
8 length (bid state1) ≥ 0 ∧
9 open state1 = True ∧
10 w state1 ≤ 0 ∧
11 (forall i:int.

12 i ≥ 0 ∧ i < length (bid state1) → (bid state1)[i] > 0) };

13 close_auction state1;

14 close_auction state1

15

16 let ghost place_bid_stability () : ()

17 = let ghost b1 = any int in

18 let ghost state1 = any state in

19 let ghost b2 = any int in

20 assume { (b1 > 0 ∧
21 open state1 = True ∧
22 w state1 ≤ 0 ∧
23 (forall i:int.

24 i ≥ 0 ∧ i < length (bid state1) → (bid state1)[i] > 0)) ∧
25 b2 > 0 ∧
26 open state1 = True ∧
27 w state1 ≤ 0 ∧
28 (forall i:int.

29 i ≥ 0 ∧ i < length (bid state1) → (bid state1)[i] > 0) };

30 place_bid b1 state1;

31 place_bid b2 state1

32

Figure 4.10: Generated stability analysis functions for the auction application.

analysis function close_auction_stability, we are not able to prove the preservation of

the preconditions for the second call to the operation so close_auction. This happens

because once an auction is closed, then it cannot be closed again. The proof effort for the

commutativity and stability analysis functions can be seen in Figure 4.11.

In this application, there are some conflicts between operations, specifically close_auction

conflicts with place_bid and with itself. Since at this point the analysis of the application

is done, the programmer is aware of the conflicting operations so now she can provide a to-

ken system to our tool, and verify if it is sound. A sound token system for this application

can be seen below:

1 token close_auction t1

2 token place_bid t2

3 t1 conflicts t1

4 t1 conflicts t2

This token system above states that operation close_auction has associated the token

39

CHAPTER 4. EXPERIMENTAL EVALUATION

Proof obligations A
lt
-E

rg
o
2
.3
.0

C
V
C
4
1
.5

Z
3
4
.5
.0

lemma VC for place bid close auction commutativity lemma precondition 0.01
lemma precondition 0.00
lemma precondition 0.01
lemma precondition 0.00
lemma precondition (1s) 0.03 FAILURE
lemma precondition 0.01
lemma precondition 0.01
lemma precondition 0.00
lemma precondition 0.01
lemma precondition 0.01
lemma precondition 0.01
lemma precondition 0.01
lemma precondition 0.01
lemma precondition 0.01
lemma postcondition (1s) 0.04 FAILURE

lemma VC for close auction stability lemma precondition 0.01
lemma precondition 0.00
lemma precondition 0.00
lemma precondition 0.00
lemma precondition (1s) 0.02 FAILURE
lemma precondition 0.00

lemma VC for place bid stability 0.01

Figure 4.11: Statistics of the proof effort of the generated functions for the auction appli-
cation.

t1 and operation place_bid has associated the token t2. The conflict relation from the

token system says that the operation close_auction is conflicting with itself and with

operation place_bid. As presented in Section 3.3, when two operation-level tokens are de-

clared as conflicting, our tool does not generate any verification condition for its analysis.

That said, for this application our tool would only generate the verification conditions for

the stability analysis of the place_bid operation. So, the consistency model depicted by

this token system, states that the only operation that can be safely executed concurrently

with another operation is place_bid, only being able to be safely executed concurrently

with itself. This consistency model is very strict for the application however, it cannot be

further refined so it is the less strict consistency model that preserves data integrity.

4.3 Courseware Application

In this section we present a last case study. It consists of a school registration system com-

posed by a set of students, a set of courses and an enrollment relation between students

and courses. As we did in the previous case studies, for this application we also abstract

from security aspects, such as any user being able to perform any action offered by the

application’s API. The implementation and specification for this application is illustrated

in Figure 4.12.

40

4.3. COURSEWARE APPLICATION

1 type state [@state] = {

2 mutable students : fset int;

3 mutable courses : fset int;

4 mutable enrolled : fset (int,int);

5 }

6 invariant{ forall i,j. mem (i,j) enrolled →
7 mem i students ∧ mem j courses }

8

9 let ghost addCourse (course : int) (state : state): unit

10 requires { course > 0 }

11 ensures {mem course state.courses}

12 = state.courses ← add course state.courses

13

14 let ghost addStudent (student : int) (state : state): unit

15 requires { student > 0 }

16 ensures {mem student state.students}

17 = state.students ← add student state.students

18

19 let ghost enroll (student course : int) (state : state): unit

20 requires { student > 0 ∧ course > 0 }

21 requires { mem student state.students }

22 requires { mem course state.courses }

23 ensures { mem (student,course) state.enrolled }

24 = state.enrolled ← add (student,course) state.enrolled

25

26 let ghost remCourse (course : int) (state : state): unit

27 requires { course > 0 }

28 requires { forall i. not (mem (i, course) state.enrolled) }

29 ensures { not (mem course state.courses) }

30 ensures { forall c. c , course →
31 mem c (old state).courses ↔ mem c state.courses }

32 = state.courses ← remove course state.courses

33

34 predicate state_equality [@state_eq] (s1 s2 : state)

35 = s1.students == s2.students &&

36 s1.courses == s2.courses &&

37 s1.enrolled == s2.enrolled

38

Figure 4.12: Specification of the courseware application.

41

CHAPTER 4. EXPERIMENTAL EVALUATION

Proof obligations A
lt
-E

rg
o
2
.3
.0

C
V
C
4
1
.5

Z
3
4
.5
.0

lemma VC for state 0.01 0.07 0.03
lemma VC for addCourse 0.01 0.06 0.05
lemma VC for addStudent 0.01 0.08 0.03
lemma VC for enroll 0.02 0.10 0.08
lemma VC for remCourse lemma type invariant 0.02 0.04 0.02

lemma postcondition 0.01 0.03 0.02
lemma postcondition 0.01 0.03 0.03

Figure 4.13: Statistics regarding the proof of the auction application.

In this application, addCourse adds a new course to the system, addStudent adds a

new student to the system, enroll registers a student in a course, and remCourse removes

a course from the system. The specifications of operations addCourse and addStudent

are very similar in the sense that they ensure the course and student, respectively, are

inserted in the system. The specification for the enroll operation states that both the

student and the course that is going to be enrolled, must be in the system prior to its

execution. Operation enroll ensures that the student will be enrolled in the course after

its execution. Lastly, the specification for the remCourse operation indicates that the course

that is going to be removed must not have a student enrolled in it. Also, this operation

ensures that the specified course will be removed from the system, and the remaining

courses will stay in the system. Another important thing to notice about the specifications

of these operations is that they are all represented as ghost code. This happens because

functions add and remove of the fset library from Why3, must be executed in a ghost

environment. There is no issue with using ghost code in this case study, because the goal

of CISE3 is not to verify the executable code of a distributed application. Instead, we are

concerned with analysing relations between operations.

The state of this application is represented by a record with three fields, which are the

three sets that store the students, courses and the enrolment relation between students

and courses. There is one integrity invariant associated to the state of the application.

This invariant states that at any point during the execution, if any student is enrolled in

a course, then the student and course must exist in the system. The proof effort for this

sequential program can be observed in Figure 4.13.

Similar to the previous two case studies, in this application the programmer also

needs to specify a predicate (state_equality) used for the comparison between states.

In order to compare two sets in Why3, a simple structural comparison is not enough to

prove that one set is equal to another. To compare two sets one requires an extensional

equality relation over sets, which can be achieved by using the function == from the Why3

fset library.

42

4.3. COURSEWARE APPLICATION

When the programmer is writing the specification, she can use our strongest postcon-

dition predicate transformer to automatically obtain the postconditions for each opera-

tion. To execute our predicate transformer over operation addCourse, the programmer

can provide to our tool the specification below, which is followed by the generated post-

condition:

1 addCourse (course: int) (state: state) : unit

2 requires {course > 0}

3 = state.courses ← add (state.courses,course)

1 exists v0. state.courses = add (v0,course) &&

2 course > 0

This postcondition states that there exists a value v0 of the type fset and that a

value course was inserted and the result of that insertion is now the set of courses of

the system state.courses. The remaining information refers to the preconditions of

operation addCourse. The input and output for the execution of our predicate transformer

for operation addStudent is similar to the one we present above. As for operation enroll,

the programmer provides the specification presented below, which is followed by the

generated postcondition:

1 enroll (student, course: int) (state: state) : unit

2 requires {student > 0}

3 requires {course > 0}

4 requires {mem (state.courses,course)}

5 requires {mem (state.students,student)}

6 = state.enrolled ← add (state.enrolled,[student,course])

1 exists v0. state.enrolled = add (v0, (student,course)) &&

2 student > 0 &&

3 course > 0 &&

4 mem (state.courses,course) &&

5 mem (state.students,student)

The generated postcondition presented above states that there exists a set v0 and that

the tuple (student,course) was inserted in it, and the result of that insertion is now

the relation enrolled from the system state.enrolled. The remaining information from

the generated postcondition refers to the preconditions of the enroll operation. Laslty,

since operation remCourse has a forall constructor in its preconditions, our strongest

postcondition calculus cannot be applied.

In Figure 4.12, we can observe four operations: addCouse, addStudent, enroll and

remCourse. Since the application has four operations, there are six pairs of different

operations. One of the generated functions for this application’s commutativity analysis

can be seen in Figure 4.14.

43

CHAPTER 4. EXPERIMENTAL EVALUATION

1 let ghost enroll_remCourse_commutativity () : (state, state)

2 ensures { match result with

3 | x1, x2 → state_equality x1 x2

4 end }

5 = let ghost student1 = any int in

6 let ghost course1 = any int in

7 let ghost state1 = any state in

8 let ghost course2 = any int in

9 let ghost state2 = any state in

10 assume { (((student1 > 0 ∧ course1 > 0) ∧
11 mem student1 (students state1) ∧ mem course1 (courses state1)) ∧
12 course2 > 0 ∧
13 (forall i:int. not mem (i, course2) (enrolled state2))) ∧
14 state_equality state1 state2 };

15 remCourse course2 state1;

16 enroll student1 course1 state1;

17 enroll student1 course1 state2;

18 remCourse course2 state2;

19 (state1, state2)

20

Figure 4.14: Generated commutativity analysis function for enroll and remCourse.

In this case we are not able to prove that the preconditions of operation enroll are

preserved after the execution of remCourse. This happens because when remCourse re-

moves one course from the system, then that course can be the course that a student

is trying to enroll in a concurrent execution of operation enroll. That said, we assume

that these operations cannot be safely executed concurrently. Since our tool is not able

to prove every verification condition prior to the return of the pair of the final states,

one cannot check if the states are the same at the end, so we cannot assert anything

about their commutativity. Apart from the functions enroll_remCourse-commutativity

and addCourse_remCourse_commutativity, all the remaining functions regarding the com-

mutativity and stability analysis of pairs of different operations are proved automatically,

meaning that the operations involved in the remaining pairs commute and do not conflict.

The function addCourse_remCourse_commutativity shows us a typical commutativity

issue over sets, which is the concurrent removal and addition of elements. Let us con-

sider the following example: if in one replica a user tries to add the student Filipe and

consequently removes him from the system, and in another replica the alternative order

of execution occurs, then in one replica Filipe is in the system but in the other one he

is not. This commutativity issue can be easily solved with a CRDT from our provided

library. To solve this issue the programmer needs to replace the Why3 set, that stores the

collection of courses, by a Remove-Wins set CRDT. The new code of the application with

the introduction of the CRDT can be seen in Figure 4.15. The generated stability analysis

functions for this application are presented in Figure 4.16.

In this case study, every verification condition generated for every stability analysis

function is proved automatically, allowing us to assume that every operation can be

44

4.3. COURSEWARE APPLICATION

1 type state [@state] = {

2 mutable students : fset int;

3 mutable courses : remove_wins_set int;

4 mutable enrolled : fset (int,int);

5 }

6 invariant{ forall i,j. mem (i,j) enrolled →
7 mem i students ∧ in_set j courses }

8

9 let ghost addCourse (course : int) (state : state): unit

10 requires { course > 0 }

11 ensures { state.courses.remove_wins_add =

12 add course (old state).courses.remove_wins_add }

13 ensures { state.courses.remove_wins_removes ==

14 (old state).courses.remove_wins_removes}

15 = add_element course state.courses

16

17 let ghost addStudent (student : int) (state : state): unit

18 requires { student > 0 }

19 ensures {mem student state.students}

20 = state.students ← add student state.students

21

22 let ghost enroll (student course : int) (state : state): unit

23 requires { student > 0 ∧ course > 0 }

24 requires { mem student state.students }

25 requires { in_set course state.courses }

26 ensures { mem (student,course) state.enrolled }

27 = state.enrolled ← add (student,course) state.enrolled

28

29 let ghost remCourse (course : int) (state : state): unit

30 requires { course > 0 }

31 requires { mem course state.courses.remove_wins_add}

32 requires { forall i . not (mem (i,course) state.enrolled)}

33 ensures { not (in_set course state.courses) }

34 ensures { forall c. c , course → mem c (old state).courses.

remove_wins_removes

35 ↔ mem c state.courses.remove_wins_removes}

36 = remove_element course state.courses

37

38 predicate state_equality [@state_eq] (s1 s2 : state)

39 = s1.students == s2.students &&

40 equal s1.courses s2.courses &&

41 s1.enrolled == s2.enrolled

42

Figure 4.15: Courseware application with a CRDT.

45

CHAPTER 4. EXPERIMENTAL EVALUATION

1 let ghost remCourse_stability () : ()

2 = let ghost course1 = any int in

3 let ghost state1 = any state in

4 let ghost course2 = any int in

5 assume { (course1 > 0 ∧
6 (forall i:int. not mem (i, course1) (enrolled state1))) ∧
7 course2 > 0 ∧
8 (forall i:int. not mem (i, course2) (enrolled state1)) };

9 remCourse course1 state1;

10 remCourse course2 state1

11

12 let ghost enroll_stability () : ()

13 = let ghost student1 = any int in

14 let ghost course1 = any int in

15 let ghost state1 = any state in

16 let ghost student2 = any int in

17 let ghost course2 = any int in

18 assume { ((student1 > 0 ∧ course1 > 0) ∧
19 mem student1 (students state1) ∧ mem course1 (courses state1)) ∧
20 (student2 > 0 ∧ course2 > 0) ∧
21 mem student2 (students state1) ∧ mem course2 (courses state1) };

22 enroll student1 course1 state1;

23 enroll student2 course2 state1

24

25 let ghost addStudent_stability () : ()

26 = let ghost student1 = any int in

27 let ghost state1 = any state in

28 let ghost student2 = any int in

29 let ghost state2 = any state in

30 assume { state_equality state1 state2 ∧ student1 > 0 ∧ student2 > 0 };

31 addStudent student1 state1;

32 addStudent student2 state1

33

34 let ghost addCourse_stability () : ()

35 = let ghost course1 = any int in

36 let ghost state1 = any state in

37 let ghost course2 = any int in

38 let ghost state2 = any state in

39 assume { state_equality state1 state2 ∧ course1 > 0 ∧ course2 > 0 };

40 addCourse course1 state1;

41 addCourse course2 state1

42

Figure 4.16: Generated stability analysis functions for the courseware application.

46

4.3. COURSEWARE APPLICATION

safely executed concurrently. The proof effort for the commutativity and stability analysis

functions prior to the introduction of a CRDT, is presented in Figure 4.17.

As mentioned before, in this application there is only one case of conflicting opera-

tions: enroll and remCourse. A possible solution for this conflict is the mutual exclusion

of these operations. This means that whenever there is the possibility of a concurrent

execution of enroll and remCourse, they must be executed sequentially to preserve data

integrity. One way for the programmer to check if this specific consistency model is sound

for this application, is to provide a token system that depicts it to our tool, and check if

every generated verification condition is proved. The token system that represents the

consistency model specified above is presented below:

1 token enroll t1

2 token remCourse t2

3 t1 conflicts t2

In this token system the programmer defines two tokens t1 and t2 that are associated

with operation enroll and remCourse respectively. The conflict relation of this token

system states that these tokens are conflicting. Given this token system, our tool does not

generate the function for the commutativity and stability analysis between enroll and

remCourse. That said, every generated verification condition is proved so the consistency

model represented by the token system is considered sound.

The consistency model associated to this token system is too strict for the application,

and decreases its availability by a significant amount. However, this consistency model

is not the best possible solution for this case study. By analysing the conflict involving

operations enroll and remCourse, we conclude that it is due to the argument course from

both operations. So, the programmer can refine the previous token system given this new

information. This new and more refined token system is shown below:

1 argtoken enroll course t1

2 argtoken remCourse course t2

3 t1 conflicts t2

The token system above states that the argument course from operation enroll has

associated the token t1 and the argument course from operation remCourse has associ-

ated the token t2, and t1 and t2 are conflicting. This means that operations enroll and

remCourse can only be executed if the values of the arguments course from each operation

are different. This solution is less strict than automatically disallowing their concur-

rent execution. Regarding the generated verification conditions by our tool, with the

newly provided token system, there is a change in the assume expression in the function

enroll_remCourse_commutativity, presented in Figure 4.18. The only difference from the

previous assume expression is the introduction of the assertion (not (course1 = course2)).

Given the above token system, every verification condition generated by our tool is proved

automatically, so the underlying consistency model is sound.

47

CHAPTER 4. EXPERIMENTAL EVALUATION

Proof obligations A
lt
-E

rg
o
2
.3
.0

C
V
C
4
1
.5

C
V
C
4
1
.6

Z
3
4
.5
.0

lemma VC for enroll remCourse commutativity lemma precondition 0.02
lemma precondition 0.05
lemma precondition 0.02
lemma precondition 0.04
lemma precondition (1s) (1s) (1s)
lemma precondition 0.02
lemma precondition 0.05
lemma precondition 0.06
lemma precondition 0.02
lemma precondition (1s) (1s) (1s)
lemma postcondition 0.02

0.14
(1s) (1s) (1s)

lemma VC for addStudent remCourse commutativity lemma precondition 0.02
lemma precondition 0.05
lemma precondition 0.03
lemma precondition 0.02
lemma precondition 0.03
lemma precondition 0.05
lemma postcondition (1s) (1s) (1s)

0.08
0.04

lemma VC for addStudent enroll commutativity lemma precondition 0.03
lemma precondition 0.10
lemma precondition 0.06
lemma precondition 0.03
lemma precondition 0.03
lemma precondition 0.02
lemma precondition (1s) (1s) (1s)
lemma precondition 0.05
lemma postcondition (1s) (1s) (1s)

0.04
(1s) (1s) (1s)

lemma VC for addCourse remCourse commutativity lemma precondition 0.01
lemma precondition 0.05
lemma precondition 0.02
lemma precondition 0.01
lemma precondition 0.02
lemma precondition 0.05
lemma postcondition 0.02

(1s) (1s) (1s)
0.05

lemma VC for addCourse enroll commutativity lemma precondition 0.03
lemma precondition 0.06
lemma precondition 0.08
lemma precondition 0.01
lemma precondition 0.02
lemma precondition 0.03
lemma precondition 0.05
lemma precondition (1s) (1s) (1s)
lemma postcondition (1s) (1s) (1s)

lemma VC for addCourse addStudent commutativity lemma precondition 0.02
lemma precondition 0.02
lemma precondition 0.02
lemma precondition 0.03
lemma postcondition (1s) (1s) (1s)

(1s) (1s) (1s)
0.04

lemma VC for remCourse stability 0.06
lemma VC for enroll stability 0.06
lemma VC for addStudent stability 0.03
lemma VC for addCourse stability 0.03

Figure 4.17: Statistics of the proof effort of the generated functions for the courseware
application.

48

4.3. COURSEWARE APPLICATION

1 assume { not course1 = course2 ∧
2 (((student1 > 0 ∧ course1 > 0) ∧
3 mem student1 (students state1) ∧
4 in_set course1 (courses state1)) ∧
5 course2 > 0 ∧
6 mem course2 (remove_wins_add (courses state2)) ∧
7 (forall i:int. not mem (i, course2) (enrolled state2))) ∧
8 state_equality state1 state2 };

9

Figure 4.18: Modified assume expression from enroll_remCourse_commutativity.

49

C
h
a
p
t
e
r

5
Related Work

This chapter presents and discusses other tools used for the verification of weakly consis-

tent applications. We focus on static analysis tools since this is the focus of this thesis. In

the end of this chapter we present a table comparing every studied tool with the tool we

developed.

5.1 Quelea

Quelea is a declarative programming model and tool for eventually consistent data stores.

This tool offers an expressive contract language which allows the programmer to specify

fine-grained application consistency properties. It is implemented as an extension of

Haskell and runs over Cassandra, an eventually consistent distributed data store. The

proof obligations are discharged with the help of the Z3 SMT solver. After a contract

classification process occurs the most efficient and sound consistency level is assigned to

each operation of the application [49].

For mapping operations to the appropriate consistency levels, the programmer needs

to declare application-level consistency constraints on operations, as contracts. These

contracts specify the set of allowed operation executions of the operation that has the

associated contract. Any execution that does not show an anomaly is considered as a well-

formed execution. By specifying the set of allowed executions of an operation, Quelea

then uses Z3 to help with the process of contract classification. Contract classification

leverages the power of Z3 to verify which of the previous specifications is the weakest and

which one is the strongest. To show the comparison a ≤ relation is used, which says that

if a specification ψx does not guarantee the constraints from specification ψy then: ψx ≤
ψy. The consistency-level that is associated to the operation is the weakest consistency

level that enables the preservation of the constraints of the operation’s contract [49].

51

CHAPTER 5. RELATED WORK

For the process of contract classification there is the need of contracts for each store

consistency level and they must also be provided by the programmer. Quelea supports

eventual, causal and strong consistency for operations, and for transactions it supports

RC, MAV and RR. This feature is implemented on top of the interface exposed by Cassan-

dra [49].

Comparing with CISE3 specification effort, the complexity of specifying contracts in

Quelea is high and time consuming, since it makes the programmer reason about possi-

ble concurrent interferences. Additionally, there is no guarantee that the contracts are

sufficient to assure the preservation of the application’s invariants. Also, CISE3 offers

a strongest postcondition predicate transformer, which Quelea does not. Due to these

reasons, we can state that Quelea requires a more difficult specification process com-

pared with CISE3. One similarity between Quelea and CISE3, is that they both allow the

programmer to introduce CRDTs in the specification. Also, Quelea only supports one

external prover, Z3, whereas our tool supports a wider variety. Lastly, CISE3 and Quelea

are both capable of showing a counterexample whenever an issue is found.

5.2 Q9

Q9 is a programming framework for replicated data types (RDTs), equipped with a

bounded verification technique that discovers and fixes weak consistency anomalies au-

tomatically [33]. It is embedded in OCaml and its symbolic execution engine is imple-

mented as a compiler pass that follows the typecheking in the OCaml 4.03 compiler. This

framework is used to analyse applications that are executed on top of eventually consis-

tent data stores. With the help of a symbolic execution engine it is possible to provide

bounded guarantees regarding the correctness of a program. The symbolic execution

engine explores a search space of abstract executions of a program. Each member of the

search space corresponds to a state of the program parametrized over the bound on the

number of concurrent effects [33]. For the verification to be done, the programmer only

has to specify the invariants of the program.

The Q9 framework is divided into three components. The first component is a trans-

lator that translates high-level programs with implicit effects, to a representation with

explicit effects. This first component serves to prepare the high-level program to be anal-

ysed and verified. In the second component, the verifier, we have the symbolic execution

engine as its main element. It performs the bounded verification technique, given the

k-bound as an input, and it works in a loop with an SMT solver, Z3 for example. The

k-bound serves to bound the number of concurrent effects that can occur concurrently in

a program p. By bounding the number of concurrent effects we also bound the number

of replicas that process them. This framework does not tackle the problem of fully un-

bounded verification, it can only guarantee k-safety of a program [33]. The third and final

component, the solver, handles the automatic reparations of the program’s consistency

anomalies.

52

5.3. REPLISS

The verification process executed in the second component progresses one operation

at a time and then one transaction at a time. Each operation/transaction is verified against

the current consistency model being analysed, starting at eventual consistency. If the ver-

ification determines the invariants are not preserved, then a counterexample is obtained

from the solver. After that, the symbolic execution engine in the verifier computes the

abstract representation, given the obtained counterexample. Then, the solver tests vari-

ous consistency models until it finds the less strict model that preserves the invariants,

given the abstract representation. Finally the solver informs the verifier of the selected

consistency model, and the verification process is repeated until all operations preserve

the program’s invariants. Otherwise, the strong consistency model is employed in the

system.

When the verification process is being carried out, the symbolic execution engine

generates verification conditions (VCs) for the SMT solver, based on the k-safety defi-

nition [33]. These VCs are then encoded as satisfiability queries in Z3, and if they are

satisfiable then the model that is being tested, can be used for the consistency repair

process, as stated above.

CISE3 does not restrict the number of concurrent effects that can occur over the state,

so CISE3 can guarantee a full verification of the application, instead of a bounded one.

However, Q9 has an automatic mechanism to repair issues discovered by the tool, and

CISE3 does not. Q9 also does not provide a strongest postcondition predicate transformer

but CISE3 does. This feature allows CISE3 to have a lighter specification process for the

programmer. Q9 also provides a collection of CRDT specifications, like CISE3. Also,

Q9 only supports one external prover, Z3, whereas our tool supports a wider variety.

Regarding the exhibition of counterexamples, both Q9 and CISE3 possess that feature.

5.3 Repliss

Repliss [52] is a verification tool used to reason about applications built over weakly

consistent databases. This tool allows programmers to write the consistency sensitive

code of their application using a domain specific language. Additionally, the programmer

also needs to write the specification of the program and its integrity invariants. Given

this information, Repliss translates this program into a sequential Why3 program, and if

this Why3 program is proved as being correct, then the initial program is ensured to be

correct.

The application’s code can employ CRDTs that are either provided by the underlying

database or by the programmer. This way the programmer delegates all synchronization

aspects to the database, which is the central idea of this tool and proof technique. De-

pending on the application, the programmer must decide which is the most adequate

data type, so its access becomes more efficient.

To verify if an application is correct, the tool avoids reasoning about all possible traces.

Instead, Repliss’s proof technique reasons about one procedure invocation at a time. In

53

CHAPTER 5. RELATED WORK

the scope of this tool, the applications offer to the clients an API, which consists of a set

of procedures that they can use to communicate with the application. An invocation of

a procedure executes code sequentially and interacts with the data store [52]. In order

to verify if a procedure invocation is correct, Repliss firstly checks if the initial state

maintains the invariant. Then, based on the application’s code, it verifies if the procedure

invocation maintains the invariant. When verifying a single procedure invocation, Repliss

does not consider concurrent executions at all program points. Since Repliss analyses

each procedure individually, its technique is modular like CISE’s proof rule.

In comparison with our tool, the DSL presented in Repliss is more limited than the

WhyML since it does not allow the programmer to write contracts for operations. So, by

developing our tool over Why3, we can write better specifications more easily. Other than

that, Repliss is similar to our tool in the sense that the reasoning about the operation’s

relations is done through the analysis of a sequential Why3 program. This allows the

programmer to introduce CRDTs in the application. Another difference this tool has com-

paring with CISE3, is the fact that the latter provides a strongest postcondition predicate

transformer to ease the specification process, while Repliss does not. Since Repliss tries to

prove a sequential Why3 program with the Why3 framework, then it can access the same

external provers as CISE3 and also display counterexamples when an issue is found.

5.4 Hamsaz

Hamsaz [31] is a static analysis tool that given a system’s specification and using the CVC4

SMT solver, decides the pairs of conflicting and dependent operations. The specification

of an object must include the state type and invariants as well as its operations [31]. The

goal of this tool is to automatically synthesize a correct-by-construction replicated system

that guarantees integrity and convergence. Also this system avoids unnecessary coordi-

nation having in mind the conflict and causal dependency relations between operations.

The tool uses a static analysis approach in order to calculate the conflict and dependency

relations. The core of Hamsaz’s approach is a sufficient condition for integrity and con-

vergence of replicated systems called well-coordination. Well-coordination states that

conflicting operations need synchronization, while operations that are dependent of each

other need causality.

In order to say that two operations are not conflicting they must S-commute and P-
concur with each other. Two operations S-conflict if from the same state prior to executing

those operations in different orders, results in different final states thus, requiring syn-

chronization. On the other hand, if from the same initial state, both orders of execution

of the operations reach the same final state, then they S-commute (state commute). Op-

eration o1 P-concurs (permissible-concurs) with operation o2 if o1 is invariant-sufficient

or if o1 P-R-commutes with o2 [31]. An operation is considered as invariant-sufficient
if it never breaks the invariant when it is executed. However, not all operations are

invariant-sufficient, for example in a bank application the withdraw operation could put

54

5.5. CISE TOOL

the balance to a negative value thus, breaking the invariant. Operation o1 P-R-commutes
(permissible-right-commutes) with operation o2 if o1 stays permissible when executed

right after o2 [31]. Some operation o is said to be permissible in some state σ if it satisfies

the invariant in σ and if it still preserves it after its execution. If two operations do not

P-concur then they P-conflict (permissible conflict) and require synchronization.

As mentioned above, invariant-sufficient operations always preserve the invariant.

However, there are operations that only preserve the invariant depending on previous

operations calls. An operation o2 is considered as being independent of o1 if o2 is invariant-

sufficient or if it P-L-commutes with o1. An operation o2 is said to P-L-commute with

operation o1 if it remains permissible if executed prior to o1 [31]. If o2 is dependent of

o1 then the execution of o2 should be postponed, so o1 can be executed first.

Hamsaz’s analysis for the conflicting operations is similar to the the analysis con-

ducted by our tool. However, Hamsaz performs an analysis to find causally dependent

operations which CISE3 does not. This analysis allows Hamsaz to only assume eventual

consistency. Since CISE3 does not perform this analysis we assume causal consistency,

which is a less relaxed assumption. Another similarity between Hamsaz and CISE3 is

that both tools allow the use of CRDTs. An advantage that CISE3 has over Hamsaz is that

it provides a strongest postcondition predicate transformer that eases the specification

process. One disadvantage CISE3 has over Hamsaz is that the latter, offers a set of proto-

cols for the automatic resolution of conflicts. Lastly, CISE3 also supports more than one

external prover and is capable of displaying counterexamples whenever an issue is found

during the analysis of the application, but Hamsaz only offers the latter feature.

5.5 CISE tool

The first version of the CISE tool proposes an approach where the programmer needs

to provide the specification of the application’s operations, the state of the application,

and the integrity invariants. For each operation of the application the programmer needs

to also provide its sequential implementation. The analysis of this tool consists of per-

forming the three proof obligations from the CISE proof rule, like our tool does. This

tool automates the proof rule by discharging the generated verification conditions us-

ing an SMT solver, in this case Z3. If a verification condition is not discharged then a

counter example is provided, that the programmer can visualize in order to understand

the source of the issue [41]. However, the counterexamples presented by Z3 are difficult

to understand.

For this tool the programmer needs to interact directly with Z3 low level APIs directly,

making it difficult to specify the required input. Since CISE3 is implemented over Why3

we provide a high-level programming language (WhyML) making it easier to specify

the input for our tool, comparing with the first version of the CISE tool. Additionally,

our tool offers the programmer an automatic mechanism for the generation of strongest

postconditions, which this tool does not. That being said, the specification effort for the

55

CHAPTER 5. RELATED WORK

CISE tool is higher comparing with our tool. Also, the CISE tool only supports one prover,

the Z3 SMT solver, but CISE3 is implemented over Why3, so it supports a wider range of

external provers. Another advantage of CISE3 is that our token system language allows

the programmer to define more fine-grained tokens, instead of only allowing tokens at

operation level, like this tool does. Lastly CISE3 allows for the introduction of CRDTs in

the application in order to solve commutativity issues and the CISE tool does not.

5.6 CEC tool

The CEC tool is the second version of the CISE tool. This tool follows the same principle

as its predecessor however, it provides a high-level verification language, an extension

of Boogie [4, 40]. In CEC the programmer writes the specifications in Boogie, which

then generates a set of verification conditions. These verification conditions are then sent

to the Z3 SMT solver, to be discharged. Also, like its predecessor, the CEC tool is also

capable of showing a counterexample whenever a conflict is detected, thus helping the

programmer understand what caused the conflict [38].

As an input for the CEC tool the programmer needs to specify the operations, state,

and integrity invariants of the application. Each operation is defined as a sequence of

reads and updates and has a precondition associated. In order to define the consistency

model to be employed over the application, the programmer provides a token system

that consists of a set of tokens and a conflict relation over them, like in our tool and in

the CISE tool [38]. The CEC tool allows the programmer to specify parameters from

operations that are conflicting.

The specification effort from the CEC tool is similar to the one from CISE3, since in

both the programmer writes the specification using a high-level specification language.

However, CISE3 has the advantage of offering an automatic generator of strongest post-

conditions. Regarding the resolution of commutativity issues using CRDTs, both the CEC

tool and CISE3, support this feature. Another similarity is the performed analyses from

CEC and CISE3, since they both rely on the three proof obligations provided by the CISE

proof rule. Lastly, this tool only supports one external prover, the Z3 SMT solver, whereas

CISE3, since is implemented over Why3, supports a wider variety of external provers.

5.7 Tool Comparison

In this section we summarise the comparisons between every studied tool. To resume this

section, we also present Table 5.1.

Counterexamples: Every studied tool has the ability of producing a counterexample

when an issue is found. However, apart from Repliss and CISE3 the counterexamples

that are presented are hard to understand since they are presented in the language of

56

5.7. TOOL COMPARISON

the SMT solver used by the tool. Since Repliss and CISE3 use Why3 for the verification

process, then the counterexamples they produce are more readable.

Bounded Verification: From the studied tools Q9 is the only tool that bounds the num-

ber of possible concurrent updates for the verification process. This is a disadvantage

from the other studied tools, which do not perform a bounded verification process.

Automatic Resolution: Only Q9 and Hamsaz present an automatic resolution policy.

External Provers Support: Apart from Repliss and CISE3, every studied tool only sup-

ports one external prover, an SMT solver. Quelea, Q9, the CISE and CEC tools support

Z3 and Hamsaz supports CVC4. Since Repliss and CISE3 use Why3 for the verification

process, then they have access to more than 25 external provers.

Consistency Assumptions: CISE3 and its predecessors (CISE and CEC tools) assume

causal consistency because they are based on the proof rule from the CISE proof rule.

For CISE3 this assumption can be relaxed as discussed in Section 6.2. The remaining

analysed tools assume eventual consistency which is more relaxed when comparing to

CISE3.

CRDTs support: Only the CISE tool is not capable of supporting the introduction of

CRDTs in the application specification. Another positive point from CISE3 is that we also

provide a library of verified CRDTs that programmers can use.

Specification Effort: Comparing the specification efforts from all the studied tools, we

reach the conclusion that specifying applications for Quelea and the CISE tool is difficult.

For Quelea the programmer needs to specify fine-grained contracts about the operations

of the application and reason about concurrent interference from other operations. As

for the CISE tool, the programmer needs to use the low-level API’s from Z3 in order write

the specification.

Predicate Transformer: From the studied tools only CISE3 provides a predicate trans-

former, more precisely a strongest postcondition generator. This metric is also related

to the previous one, since the use of a predicate transformer simplifies the specification

effort for the programmer. This way we can say that the specification effort for CISE3 is

slightly easier comparing to the other studied tools.

57

CHAPTER 5. RELATED WORK

Counter
Examples

Bounded
Verification

Automatic
Resolution

External
Provers

Consistency
Assumptions

CRDTs
Support

Specification
Effort

Predicate
Transformer

Quelea Yes No No One Eventual
Consistency

Yes High No

Q9 Yes Yes Yes One Eventual
Consistency

Yes Average No

Repliss Yes No No Multiple Eventual
Consistency

Yes Average No

Hamsaz Yes No Yes One Eventual
Consistency

Yes Average No

CISE
tool

Yes No No One Causal
Consistency

No High No

CEC
tool

Yes No No One Causal
Consistency

Yes Average No

CISE3 Yes No No Multiple Causal
Consistency

Yes Average Yes

Table 5.1: Comparison between the studied tools.

58

C
h
a
p
t
e
r

6
Conclusion

This chapter discusses the contributions from our work, and presents some future work

that can be done in order to improve said contributions.

6.1 Discussion

In this thesis we propose an automatic approach for the static analysis of weakly con-

sistent applications using the deductive verification framework Why3. To validate our

approach we designed several case studies which we analysed with our tool as seen in

Section 4.

The presented approach follows the proof rule proposed by CISE [28] and it takes

inspiration from previous tools implemented with the same purpose of trying to automate

the mentioned proof rule. Our approach is similar to these tools because it performs the

same analysis however, it improves them in the sense that it provides more features and

enhances the aspects already presented in the previous versions, as seen in Section 5.

To analyse an application we propose that the programmer provides as an input its

sequential specification and implementation. After that, the programmer uses CISE3 to

reason about the pairs of conflicting operations from the application. With this informa-

tion the programmer can then use a CRDT to solve commutativity issues, and specify

a token system in order to assess if a specific consistency model is sound over the ap-

plication. In order to aid the programmer’s specification effort, our tool also features a

strongest postcondition predicate transformer.

59

CHAPTER 6. CONCLUSION

6.2 Future Work

From this work we propose some main directions regarding future work, that can improve

our approach and make it more robust.

Firstly we want to add the causal dependency analysis from Hamsaz [31] to our al-

ready existing set of analyses. This analysis is capable of finding the set of causally

dependent operations from an application. At this moment without this analysis our

approach assumes causal consistency however, with the introduction of this analysis we

are able to relax that assumption and switch it to eventual consistency. We already rea-

soned about how to include this analysis and we already have the solution. This is not yet

implemented, by the time of writing, but we expect to have it by the time of presentation.

Secondly we want to improve and expand our library of CRDTs. The CRDTs from

our current library have very simple implementations, which can be optimized. Also, by

expanding our library with more CRDTs, it can be used to solve commutativity issues

from a wider variety of examples.

Lastly, we want to expand our target language for our strongest postcondition calculus.

Currently our target language does not support any form of loop constructors so, our

goal is to make it support for...each loops. In applications that operate over replicated

databases, for...each constructors are the most used kind of loops, so it would be important

for our target language to support them. Also, since they are bounded loop constructors

it is easier to prove their termination. We intend to follow the approach presented by

Filliâtre and Pereira, who proposed a modular specification of iteration regardless of the

underlying implementation [22]. In particular, the authors show how to verify correctness

of several iteration clients and implementations, based on bounded loops in the style of

the for...each constructor.

6.3 Final Remarks

Ultimately, we believe the objectives we set for this thesis were fulfilled. We believe our

approach represents a valid means of analysing applications operating over replicated

databases. The planned future work will allow our approach to become more robust and

useful over a wider set of applications.

60

Bibliography

[1] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. “Highly

Available Transactions: Virtues and Limitations.” In: Proc. VLDB Endow. 7.3 (Nov.

2013), pp. 181–192. issn: 2150-8097. doi: 10.14778/2732232.2732237. url:

http://dx.doi.org/10.14778/2732232.2732237.

[2] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Najafzadeh, and M.

Shapiro. “Putting Consistency Back into Eventual Consistency.” In: Proceedings of
the Tenth European Conference on Computer Systems. EuroSys ’15. Bordeaux, France:

ACM, 2015, 6:1–6:16. isbn: 978-1-4503-3238-5. doi: 10.1145/2741948.2741972.

url: http://doi.acm.org/10.1145/2741948.2741972.

[3] V. Balegas, C. Li, M. Najafzadeh, D. Porto, A. Clement, S. Duarte, C. Ferreira, J.

Gehrke, J. Leitão, N. Preguiça, R. Rodrigues, M. Shapiro, and V. Vafeiadis. “Geo-

Replication: Fast If Possible, Consistent If Necessary.” In: IEEE Data Engineering
Bulletin 39.1 (2016).

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. “Boogie: A

Modular Reusable Verifier for Object-oriented Programs.” In: Proceedings of the 4th
International Conference on Formal Methods for Components and Objects. FMCO’05.

Amsterdam, The Netherlands: Springer-Verlag, 2006, pp. 364–387. isbn: 3-540-

36749-7, 978-3-540-36749-9. doi: 10.1007/11804192_17. url: http://dx.doi.

org/10.1007/11804192_17.

[5] N. Benton. “Simple Relational Correctness Proofs for Static Analyses and Program

Transformations.” In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’04. Venice, Italy: ACM, 2004,

pp. 14–25. isbn: 1-58113-729-X. doi: 10.1145/964001.964003. url: http:

//doi.acm.org/10.1145/964001.964003.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. “A Critique of

ANSI SQL Isolation Levels.” In: Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’95. San Jose, California, USA: ACM,

1995, pp. 1–10. isbn: 0-89791-731-6. doi: 10.1145/223784.223785. url: http:

//doi.acm.org/10.1145/223784.223785.

61

https://doi.org/10.14778/2732232.2732237
http://dx.doi.org/10.14778/2732232.2732237
https://doi.org/10.1145/2741948.2741972
http://doi.acm.org/10.1145/2741948.2741972
https://doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/11804192_17
https://doi.org/10.1145/964001.964003
http://doi.acm.org/10.1145/964001.964003
http://doi.acm.org/10.1145/964001.964003
https://doi.org/10.1145/223784.223785
http://doi.acm.org/10.1145/223784.223785
http://doi.acm.org/10.1145/223784.223785

BIBLIOGRAPHY

[7] I. S.E. I. Bertrand Meyer and Usa. “Design by Contract: Making Object-Oriented

Programs That Work.” In: Proceedings of the Technology of Object-Oriented Languages
and Systems - Tools-25. TOOLS ’97. Washington, DC, USA: IEEE Computer Society,

1997, pp. 360–. isbn: 0-8186-8485-2. url: http://dl.acm.org/citation.cfm?

id=832251.832695.

[8] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. “Why3: Shepherd Your Herd

of Provers.” In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. Wroclaw, Poland, 2011, pp. 53–64. url: https://hal.inria.fr/hal-

00790310.

[9] A. Charguéraud, J.-C. Filliâtre, M. Pereira, and F. Pottier. VOCAL – A Verified
OCAml Library. ML Family Workshop 2017. Sept. 2017. url: https://hal.inria.

fr/hal-01561094.

[10] M. Clochard, C. Marché, and A. Paskevich. “Verified Programs with Binders.” In:

Programming Languages meets Program Verification. San Diego, United States: ACM

Press, Jan. 2014. url: https://hal.inria.fr/hal-00913431.

[11] M. Clochard, L. Gondelman, and M. Pereira. “The Matrix Reproved (Verification

Pearl).” In: Journal of Automated Reasoning 60.3 (2018), pp. 365–383. issn: 1573-

0670. doi: 10.1007/s10817-017-9436-2. url: https://doi.org/10.1007/

s10817-017-9436-2.

[12] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.

Jacobsen, N. Puz, D. Weaver, and R. Yerneni. “PNUTS: Yahoo!’s Hosted Data

Serving Platform.” In: Proc. VLDB Endow. 1.2 (Aug. 2008), pp. 1277–1288. issn:

2150-8097. doi: 10.14778/1454159.1454167. url: http://dx.doi.org/10.

14778/1454159.1454167.

[13] S. Dailler, D. Hauzar, C. Marché, and Y. Moy. “Instrumenting a weakest precon-

dition calculus for counterexample generation.” In: J. Log. Algebr. Meth. Program.
99 (2018), pp. 97–113. doi: 10.1016/j.jlamp.2018.05.003. url: https:

//doi.org/10.1016/j.jlamp.2018.05.003.

[14] S. Dailler, C. Marché, and Y. Moy. “Lightweight Interactive Proving inside an Auto-

matic Program Verifier.” In: Proceedings of the Fourth Workshop on Formal Integrated
Development Environment, F-IDE, Oxford, UK, July 14, 2018. 2018.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s Highly Available

Key-value Store.” In: SIGOPS Oper. Syst. Rev. 41.6 (Oct. 2007), pp. 205–220. issn:

0163-5980. doi: 10.1145/1323293.1294281. url: http://doi.acm.org/10.

1145/1323293.1294281.

62

http://dl.acm.org/citation.cfm?id=832251.832695
http://dl.acm.org/citation.cfm?id=832251.832695
https://hal.inria.fr/hal-00790310
https://hal.inria.fr/hal-00790310
https://hal.inria.fr/hal-01561094
https://hal.inria.fr/hal-01561094
https://hal.inria.fr/hal-00913431
https://doi.org/10.1007/s10817-017-9436-2
https://doi.org/10.1007/s10817-017-9436-2
https://doi.org/10.1007/s10817-017-9436-2
https://doi.org/10.14778/1454159.1454167
http://dx.doi.org/10.14778/1454159.1454167
http://dx.doi.org/10.14778/1454159.1454167
https://doi.org/10.1016/j.jlamp.2018.05.003
https://doi.org/10.1016/j.jlamp.2018.05.003
https://doi.org/10.1016/j.jlamp.2018.05.003
https://doi.org/10.1145/1323293.1294281
http://doi.acm.org/10.1145/1323293.1294281
http://doi.acm.org/10.1145/1323293.1294281

BIBLIOGRAPHY

[16] E. W. Dijkstra. “Guarded Commands, Nondeterminacy, and Formal Derivation

of Programs.” In: Programming Methodology: A Collection of Articles by Members of
IFIP WG2.3. Ed. by D. Gries. New York, NY: Springer New York, 1978, pp. 166–

175. isbn: 978-1-4612-6315-9. doi: 10.1007/978-1-4612-6315-9_14. url:

https://doi.org/10.1007/978-1-4612-6315-9_14.

[17] E. W. Dijkstra. A Discipline of Programming. 1st. Upper Saddle River, NJ, USA:

Prentice Hall PTR, 1997. isbn: 013215871X.

[18] F. Elberzhager, J. Münch, and V. T. N. Nha. “A Systematic Mapping Study on the

Combination of Static and Dynamic Quality Assurance Techniques.” In: Inf. Softw.
Technol. 54.1 (Jan. 2012), pp. 1–15. issn: 0950-5849. doi: 10.1016/j.infsof.

2011.06.003. url: http://dx.doi.org/10.1016/j.infsof.2011.06.003.

[19] J.-C. Filliâtre. “Deductive software verification.” In: International Journal on Soft-
ware Tools for Technology Transfer 13.5 (2011), p. 397. issn: 1433-2787. doi: 10.

1007/s10009-011-0211-0. url: https://doi.org/10.1007/s10009-011-0211-

0.

[20] J.-C. Filliâtre and C. Marché. “The Why/Krakatoa/Caduceus Platform for Deduc-

tive Program Verification.” In: Computer Aided Verification. Ed. by W. Damm and

H. Hermanns. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 173–177.

isbn: 978-3-540-73368-3.

[21] J.-C. Filliâtre and A. Paskevich. “Why3 – Where Programs Meet Provers.” In:

ESOP’13 22nd European Symposium on Programming. Vol. 7792. LNCS. Rome,

Italy: Springer, Mar. 2013. url: https://hal.inria.fr/hal-00789533.

[22] J.-C. Filliâtre and M. Pereira. “A Modular Way to Reason About Iteration.” In:

NASA Formal Methods. Ed. by S. Rayadurgam and O. Tkachuk. Cham: Springer

International Publishing, 2016, pp. 322–336. isbn: 978-3-319-40648-0.

[23] J.-C. Filliâtre, L. Gondelman, and A. Paskevich. “The Spirit of Ghost Code.” In: CAV
2014, Computer Aided Verification - 26th International Conference. Vienna Summer

Logic 2014, Austria, July 2014. url: https://hal.inria.fr/hal-00873187.

[24] J.-C. Filliâtre, L. Gondelman, and A. Paskevich. “A Pragmatic Type System for

Deductive Verification.” working paper or preprint. Feb. 2016. url: https://hal.

inria.fr/hal-01256434.

[25] C. Flanagan and S. Qadeer. “Predicate Abstraction for Software Verification.” In:

SIGPLAN Not. 37.1 (Jan. 2002), pp. 191–202. issn: 0362-1340. doi: 10.1145/

565816.503291. url: http://doi.acm.org/10.1145/565816.503291.

[26] G. C. Gannod and B. H. C. Cheng. “Strongest postcondition semantics as the formal

basis for reverse engineering.” In: Proceedings of 2nd Working Conference on Reverse
Engineering. 1995, pp. 188–197. doi: 10.1109/WCRE.1995.514707.

63

https://doi.org/10.1007/978-1-4612-6315-9_14
https://doi.org/10.1007/978-1-4612-6315-9_14
https://doi.org/10.1016/j.infsof.2011.06.003
https://doi.org/10.1016/j.infsof.2011.06.003
http://dx.doi.org/10.1016/j.infsof.2011.06.003
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1007/s10009-011-0211-0
https://hal.inria.fr/hal-00789533
https://hal.inria.fr/hal-00873187
https://hal.inria.fr/hal-01256434
https://hal.inria.fr/hal-01256434
https://doi.org/10.1145/565816.503291
https://doi.org/10.1145/565816.503291
http://doi.acm.org/10.1145/565816.503291
https://doi.org/10.1109/WCRE.1995.514707

BIBLIOGRAPHY

[27] S. Gilbert and N. Lynch. “Brewer’s Conjecture and the Feasibility of Consistent,

Available, Partition-tolerant Web Services.” In: SIGACT News 33.2 (June 2002),

pp. 51–59. issn: 0163-5700. doi: 10.1145/564585.564601. url: http://doi.

acm.org/10.1145/564585.564601.

[28] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro. “’Cause I’m

Strong Enough: Reasoning About Consistency Choices in Distributed Systems.” In:

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’16. St. Petersburg, FL, USA: ACM, 2016, pp. 371–

384. isbn: 978-1-4503-3549-2. doi: 10.1145/2837614.2837625. url: http:

//doi.acm.org/10.1145/2837614.2837625.

[29] D. Hoang, Y. Moy, A. Wallenburg, and R. Chapman. “SPARK 2014 and GNAT-

prove.” In: International Journal on Software Tools for Technology Transfer 17.6 (2015),

pp. 695–707. issn: 1433-2787. doi: 10.1007/s10009-014-0322-5. url: https:

//doi.org/10.1007/s10009-014-0322-5.

[30] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming.” In: Commun.
ACM 12.10 (Oct. 1969), pp. 576–580. issn: 0001-0782. doi: 10.1145/363235.

363259. url: http://doi.acm.org/10.1145/363235.363259.

[31] F. Houshmand and M. Lesani. “Hamsaz: Replication Coordination Analysis and

Synthesis.” In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019), 74:1–74:32. issn:

2475-1421. doi: 10.1145/3290387. url: http://doi.acm.org/10.1145/

3290387.

[32] N. Jeannerod, C. Marché, and R. Treinen. “A Formally Verified Interpreter for a

Shell-Like Programming Language.” In: Dec. 2017, pp. 1–18. isbn: 978-3-319-

72307-5. doi: 10.1007/978-3-319-72308-2_1.

[33] G. Kaki, K. Earanky, K. Sivaramakrishnan, and S. Jagannathan. “Safe Replication

Through Bounded Concurrency Verification.” In: Proc. ACM Program. Lang. 2.OOP-

SLA (Oct. 2018), 164:1–164:27. issn: 2475-1421. doi: 10.1145/3276534. url:

http://doi.acm.org/10.1145/3276534.

[34] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. “Frama-

C: A Software Analysis Perspective.” In: Form. Asp. Comput. 27.3 (May 2015),

pp. 573–609. issn: 0934-5043. doi: 10.1007/s00165-014-0326-7. url: http:

//dx.doi.org/10.1007/s00165-014-0326-7.

[35] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System.”

In: Commun. ACM 21.7 (July 1978), pp. 558–565. issn: 0001-0782. doi: 10.1145/

359545.359563. url: http://doi.acm.org/10.1145/359545.359563.

[36] R. Leino. Efficient Weakest Preconditions. Tech. rep. MSR-TR-2004-34. 2004, p. 11.

url: https://www.microsoft.com/en-us/research/publication/efficient-

weakest-preconditions/.

64

https://doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
https://doi.org/10.1145/2837614.2837625
http://doi.acm.org/10.1145/2837614.2837625
http://doi.acm.org/10.1145/2837614.2837625
https://doi.org/10.1007/s10009-014-0322-5
https://doi.org/10.1007/s10009-014-0322-5
https://doi.org/10.1007/s10009-014-0322-5
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
https://doi.org/10.1145/3290387
http://doi.acm.org/10.1145/3290387
http://doi.acm.org/10.1145/3290387
https://doi.org/10.1007/978-3-319-72308-2_1
https://doi.org/10.1145/3276534
http://doi.acm.org/10.1145/3276534
https://doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
https://www.microsoft.com/en-us/research/publication/efficient-weakest-preconditions/
https://www.microsoft.com/en-us/research/publication/efficient-weakest-preconditions/

BIBLIOGRAPHY

[37] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues. “Making Geo-

replicated Systems Fast As Possible, Consistent when Necessary.” In: Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementation.

OSDI’12. Hollywood, CA, USA: USENIX Association, 2012, pp. 265–278. isbn:

978-1-931971-96-6. url: http://dl.acm.org/citation.cfm?id=2387880.

2387906.

[38] G. Marcelino, V. Balegas, and C. Ferreira. “Bringing Hybrid Consistency Closer

to Programmers.” In: Proceedings of the 3rd International Workshop on Principles
and Practice of Consistency for Distributed Data. PaPoC ’17. Belgrade, Serbia: ACM,

2017, 6:1–6:4. isbn: 978-1-4503-4933-8. doi: 10.1145/3064889.3064896. url:

http://doi.acm.org/10.1145/3064889.3064896.

[39] Y. Moy. “The Jessie plugin for deductive verification in Frama-C.” In: ().

[40] S. S. Nair and M. Shapiro. Improving the ”Correct Eventual Consistency” Tool. Re-

search Report RR-9191. Sorbonne Université, July 2018. url: https://hal.inria.

fr/hal-01832888.

[41] M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and M. Shapiro. “The CISE

Tool: Proving Weakly-consistent Applications Correct.” In: Proceedings of the 2Nd
Workshop on the Principles and Practice of Consistency for Distributed Data. PaPoC ’16.

London, United Kingdom: ACM, 2016, 2:1–2:3. isbn: 978-1-4503-4296-4. doi: 10.

1145/2911151.2911160. url: http://doi.acm.org/10.1145/2911151.2911160.

[42] M. J. Parreira Pereira. “Tools and Techniques for the Verification of Modular State-

ful Code.” PhD Thesis. Université Paris-Saclay, Dec. 2018. url: https://tel.

archives-ouvertes.fr/tel-01980343.

[43] J. C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Structures.”

In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science.

LICS ’02. Washington, DC, USA: IEEE Computer Society, 2002, pp. 55–74. isbn:

0-7695-1483-9. url: http://dl.acm.org/citation.cfm?id=645683.664578.

[44] R. Rieu-Helft, C. Marché, and G. Melquiond. “How to Get an Efficient yet Verified

Arbitrary-Precision Integer Library.” In: 9th Working Conference on Verified Software:
Theories, Tools, and Experiments. Vol. 10712. Lecture Notes in Computer Science.

Heidelberg, Germany, July 2017, pp. 84–101.

[45] K Rustan, M Leino, J. B. Saxe, and R. Stata. “Checking Java programs via guarded

commands.” In: 1743 (Aug. 1999).

[46] M. Shapiro and P. Sutra. “Database Consistency Models.” In: CoRR abs/1804.00914

(2018). arXiv: 1804.00914. url: http://arxiv.org/abs/1804.00914.

65

http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1145/3064889.3064896
http://doi.acm.org/10.1145/3064889.3064896
https://hal.inria.fr/hal-01832888
https://hal.inria.fr/hal-01832888
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/2911151.2911160
http://doi.acm.org/10.1145/2911151.2911160
https://tel.archives-ouvertes.fr/tel-01980343
https://tel.archives-ouvertes.fr/tel-01980343
http://dl.acm.org/citation.cfm?id=645683.664578
http://arxiv.org/abs/1804.00914
http://arxiv.org/abs/1804.00914

BIBLIOGRAPHY

[47] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Conflict-Free Replicated

Data Types.” In: Stabilization, Safety, and Security of Distributed Systems. Ed. by

X. Défago, F. Petit, and V. Villain. Berlin, Heidelberg: Springer Berlin Heidelberg,

2011, pp. 386–400. isbn: 978-3-642-24550-3.

[48] J. Signoles. “From Static Analysis to Runtime Verification with Frama-C and E-

ACSL.” Habilitation Thesis. Doctoral dissertation. Université Paris-Sud, Orsay,

France, July 2018. url: publis/hdr.pdf.

[49] K. Sivaramakrishnan, G. Kaki, and S. Jagannathan. “Declarative Programming over

Eventually Consistent Data Stores.” In: SIGPLAN Not. 50.6 (June 2015), pp. 413–

424. issn: 0362-1340. doi: 10.1145/2813885.2737981. url: http://doi.acm.

org/10.1145/2813885.2737981.

[50] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. “Transactional Storage for Geo-

replicated Systems.” In: Proceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles. SOSP ’11. Cascais, Portugal: ACM, 2011, pp. 385–

400. isbn: 978-1-4503-0977-6. doi: 10.1145/2043556.2043592. url: http:

//doi.acm.org/10.1145/2043556.2043592.

[51] R. W. Floyd. “Assigning Meanings to Programs.” In: Mathematical Aspects of Com-
puter Science, Proceedings of Symposia in Applied Mathematics 19 (Jan. 1967). doi:

10.1090/psapm/019/0235771.

[52] P. Zeller. “Testing Properties of Weakly Consistent Programs with Repliss.” In:

Proceedings of the 3rd International Workshop on Principles and Practice of Consistency
for Distributed Data. PaPoC ’17. Belgrade, Serbia: ACM, 2017, 3:1–3:5. isbn: 978-

1-4503-4933-8. doi: 10.1145/3064889.3064893. url: http://doi.acm.org/10.

1145/3064889.3064893.

66

publis/hdr.pdf
https://doi.org/10.1145/2813885.2737981
http://doi.acm.org/10.1145/2813885.2737981
http://doi.acm.org/10.1145/2813885.2737981
https://doi.org/10.1145/2043556.2043592
http://doi.acm.org/10.1145/2043556.2043592
http://doi.acm.org/10.1145/2043556.2043592
https://doi.org/10.1090/psapm/019/0235771
https://doi.org/10.1145/3064889.3064893
http://doi.acm.org/10.1145/3064889.3064893
http://doi.acm.org/10.1145/3064889.3064893

A
p
p
e
n
d
i
x

A
CRDTs library

A.1 Disable Once Flag

It is a flag that once it is disabled, it can never be enabled afterwards. This data structure

offers the following operations:

• initializeFlag (): Initialises the flag to an enabled state and resets the was_disabled

variable.

• enable (): Enables the flag iff the flag has not been disabled yet.

• disable (): Disables the flag.

• status (): Returns the status of the flag, either enabled or disabled.

• equals (doflag): Checks if two Disable Once Flags are equal.

The specification of this CRDT can be seen in Figure A.1.

A.2 Enable Once Flag

This is a flag similar to the previous one but in this case once it is enabled, it can never be

disabled afterwards. This data structure offers the following operations:

• initializeFlag(): Initialises the flag to a disabled state and resets the was_enabled

variable.

• enable(): Enables the flag.

• disable(): Disables the flag iff the flag has not been enabled yet.

67

APPENDIX A. CRDTS LIBRARY

1 type ref_bool = { mutable b: bool }

2 val flag : ref_bool

3 val was_disabled : ref_bool

4

5 val initializeFlag () : unit

6 writes { flag, was_disabled }

7 ensures { flag.b }

8 ensures { not was_disabled.b }

9

10 val enable () : unit

11 requires { not was_disabled.b }

12 writes { flag }

13 ensures { flag.b }

14

15 val disable () : unit

16 writes { flag, was_disabled }

17 ensures { not flag.b }

18 ensures { was_disabled.b }

19

20 val status () : bool

21 ensures { result ↔ flag.b }

22

23 val equals (two : ref_bool) : bool

24 ensures { result ↔ flag.b = two.b }

Figure A.1: Disable Once flag in Why3.

• status(): Returns the status of the flag, either enabled or disabled.

• equals(eoFlag): Checks if two Enable Once Flags are equal.

The specification of this CRDT can be seen in Figure A.2.

A.3 Remove-wins Set

It is a set where a precedence is given to the remove operation. This set is able to resolve

the commutativity issues related to the addition and removal of elements from a set. This

data structure offers the following operations:

• add_element(elt): Adds the element elt to the remove_wins_add set.

• remove_element(elt): Adds the element elt, if it exists in the set, to the remove_wins_removes

set. Once this happens, elt will never be considered in the set even if it is added

later.

• in_set(elt,rwset): Checks if the element elt is inserted in the Remove-wins set

rwset.

• empty_set(): Returns an empty Remove-wins set.

68

A.4. ADD-WINS SET

1 type ref_bool = { mutable b: bool }

2 val flag : ref_bool

3 val was_enabled : ref_bool

4

5 val initializeFlag () : unit

6 writes { flag, was_enabled }

7 ensures { not flag.b }

8 ensures { was_enabled.b }

9

10 val enable () : unit

11 writes { flag, was_enabled }

12 ensures { flag.b }

13

14 val disable () : unit

15 requires { not was_enabled.b }

16 writes { flag }

17 ensures { not flag.b }

18

19 val status () : bool

20 ensures { result ↔ flag.b }

21

22 val equals (two : ref_bool) : bool

23 ensures { result ↔ flag.b = two.b }

Figure A.2: Enable Once flag in Why3.

• equals(rwset1, rwset2): Checks if two Remove-wins sets are equal.

The specification of this CRDT can be seen in Figure A.3.

A.4 Add-wins Set

It is a similar set to the previous one but in this case the precedence is given to the addition

operation. This set is able to resolve the commutativity issues related to the addition and

removal of elements from a set. This data structure offers the following operations:

• add_element(elt): Adds the element elt to the remove_wins_add set. Once this

happens elt is considered to be in the set even if it is removed.

• remove_element(elt): Adds the element elt, if it exists in the set, to the remove_wins_removes

set.

• in_set(elt,rwset): Checks if the element elt is inserted in the Add-wins set awset.

• empty_set(): Returns an empty Add-wins set.

• equals(awset1, awset2): Checks if two Add-wins sets are equal.

The specification of this CRDT can be seen in Figure A.4.

69

APPENDIX A. CRDTS LIBRARY

1 type remove_wins_set ’a = {

2 mutable remove_wins_add: fset ’a;

3 mutable remove_wins_removes: fset ’a;

4 }

5

6 let ghost predicate equal (s1 s2: remove_wins_set ’a) =

7 s1.remove_wins_add == s2.remove_wins_add &&

8 s1.remove_wins_removes == s2.remove_wins_removes

9

10 val empty_set () : remove_wins_set ’a

11 ensures { is_empty result.remove_wins_add }

12 ensures { is_empty result.remove_wins_removes }

13

14 predicate in_set (elt: ’a) (s: remove_wins_set ’a) =

15 mem elt s.remove_wins_add && not (mem elt s.remove_wins_removes)

16

17 val add_element (elt: ’a) (s: remove_wins_set ’a) : unit

18 writes { s.remove_wins_add }

19 ensures { s.remove_wins_add = add elt (old s).remove_wins_add }

20

21 val remove_element (elt: ’a) (s: remove_wins_set ’a) : unit

22 writes { s.remove_wins_removes }

23 ensures { s.remove_wins_removes = add elt (old s).remove_wins_removes }

24

Figure A.3: Remove-wins Set CRDT in Why3.

1 type add_wins_set ’a = {

2 mutable add_wins_add: fset ’a;

3 mutable add_wins_removes: fset ’a;

4 }

5

6 let ghost predicate equal (s1 s2: add_wins_set ’a) =

7 s1.add_wins_add == s2.add_wins_add &&

8 s1.add_wins_removes == s2.add_wins_removes

9

10 val empty_set () : add_wins_set ’a

11 ensures { is_empty result.add_wins_add }

12 ensures { is_empty result.add_wins_removes }

13

14 predicate in_set (elt: ’a) (s: add_wins_set ’a) =

15 mem elt s.add_wins_add

16

17 val add_element (elt: ’a) (s: add_wins_set ’a) : unit

18 writes { s.add_wins_add }

19 ensures { s.add_wins_add = add elt (old s).add_wins_add }

20

21 val remove_element (elt: ’a) (s: add_wins_set ’a) : unit

22 writes { s.add_wins_removes }

23 ensures { s.add_wins_removes = add elt (old s).add_wins_removes }

24

Figure A.4: Add-wins Set CRDT in Why3.

70

	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Contributions
	Document Structure

	Background
	Analysis of Programs
	Why3 Framework
	Consistency Models
	Operation Consistency Models
	Transaction Consistency Models

	CRDTs
	Hoare's Logic
	Design by Contract
	Predicate Transformers
	Weakest Precondition Calculus
	Strongest Postcondition Calculus

	CISE proof rule

	CISE3 Architecture
	CISE3 Overview
	Proof Obligations Component
	Token System Component
	CRDTs library Component
	Strongest Postcondition Component

	Experimental Evaluation
	Banking Application
	Auction Application
	Courseware Application

	Related Work
	Quelea
	Q9
	Repliss
	Hamsaz
	CISE tool
	CEC tool
	Tool Comparison

	Conclusion
	Discussion
	Future Work
	Final Remarks

	Bibliography
	CRDTs library
	Disable Once Flag
	Enable Once Flag
	Remove-wins Set
	Add-wins Set

