
Francisco José Marcelino e Cunha

Bachelor in Computer Science

Optimizing Service Orchestration in OutSystems

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Advisers: Carla Ferreira, Associate Professor,
NOVA University of Lisbon
Paulo Ferreira, Software Engineer, OutSystems

Examination Committee

Chairperson: José Legatheaux Martins, Professor, NOVA University of Lisbon
Raporteur: António Menezes Leitão, Auxiliar Professor, IST
Members: Carla Ferreira, Associate Professor, NOVA University of Lisbon

Paulo Ferreira, Software Engineer, OutSystems

September, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/288868737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimizing Service Orchestration in OutSystems

Copyright © Francisco José Marcelino e Cunha, Faculdade de Ciências e Tecnologia, Uni-

versidade NOVA de Lisboa.

A Faculty of Sciences and Technology e a NOVA University of Lisbon têm o direito, per-

pétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exem-

plares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio

conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos

e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não

comerciais, desde que seja dado crédito ao autor e editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To Zero, may he always play around in dog heaven.

Acknowledgements

First off, I would like to thank Faculdade de Ciências e Tecnlogia da Universidade NOVA

de Lisboa (FCT-UNL), in particular the Informatics Department, for equipping me with

the essential skill set that will allow me to start off my professional career. Thank you to

OutSystems for providing a scholarship for this dissertation.

A big thank you to my advisers, Carla Ferreira and Paulo Ferreira for the mentoring

you granted me throughout this dissertation. You gave me the freedom to progress my

own way, but also total support whenever I needed. I still smile as I recall some of the

best moments in our regular meetings – those were great!

Thank you to my friends and colleagues at OutSystems, with whom I shared so many

laughs and snooker games, amusing lunchtime conversations and trips to the local su-

permarket. Those were António Ferreira, David Mendes, Francisco Magalhães, Joana

Tavares, João Gonçalves, Lara Borisoglebski, Mariana Cabeda, Michael Silva, Miguel

Loureiro, Miguel Madeira, Nuno Calejo and Nuno Pulido. You all made going in to work

infinitely better, and I am thankful for having had the amazing company of every single

one of you every day throughout this journey.

A huge thank you to my family. To my parents for their absolute, unconditional,

wholehearted support. To my brother for the amusing banters that never failed to brighten

up my mood. To my sister for being so understanding and for the great conversations that

always helped me clear my mind. Also thank you to Twix, our four-legged, energy-filled

family member who makes it an absolute joy to come home to.

Finally, a special thank you to my dearest, closest friends who mean the world and

beyond to me. You know who you are. Without you at my side I would have never been

the person I am today. The merit of this work – and of everything I have achieved thus

far – is also yours, and for that I am forever grateful.

vii

You have to always think one step ahead.
Like a... carpenter... that makes stairs...

Andy Bernard, The Office

Abstract

The growing demand for continuous development and deployment is causing many to

steer away from the traditional monolithic architectural style and opt instead for Service-

Oriented Architectures (SOAs). Adopting an architecture that is based on loosely-coupled

services leads to enhanced modularity and flexibility, further translated into a philoso-

phy of iterative, evolutionary development. The benefits of this development pattern

were also made available in the OutSystems low-code platform, with the introduction of

services as a new development building-block.

Moreover, the independence innate to the multiple services that comprise a SOA hints

at possible opportunities for task parallelism: as long as different remote calls to services

don’t interfere with each other, they could be performed in parallel. As an immediate

result, there could be speedups in multiple parts of an application’s layers. Idle time

waiting for data could be reduced, along with internal business logic that could be carried

out faster, factors that would positively impact the overall flow of any application.

In this thesis we propose the design and implementation of an optimization process

that targets the heart of the SOA: the orchestrator itself, the conductor of service inter-

action that enables the different business processes involved in a software system. The

work produced comprises a set of data analysis and representation techniques that work

together with the goal of detecting and informing opportunities for safe parallelism in the

interaction and composition of the services that make up software factories. The formal

definition of the algorithm is accompanied with a prototype that targets the OutSystems

platform, with the achievement of considerable speedups in common scenarios. The

results obtained suggest the viability of such a mechanism in the world of SOAs.

Keywords: OutSystems, OutSystems Platform, Data-Flow Analysis, Control-Flow Anal-

ysis, Parallelization Techniques, Dependence Analysis, Dependence Representation

xi

Resumo

A popularidade crescente de técnicas de continuous development e continuous integra-
tion está a levar muitos a deixar o tradicional estilo de arquitetura monolítica e optar, em

vez disso, por arquiteturas orientadas a serviços (SOAs). A adoção de uma arquitetura

baseada em serviços mais desacoplados resulta em melhorias de modularidade e flexibi-

lidade, traduzindo-se numa filosofia de desenvolvimento iterativo e evolutivo. Os bene-

fícios deste padrão de desenvolvimento foram disponibilizados na plataforma low-code
OutSystems, com a introdução de serviços como uma nova abstração de desenvolvimento.

Para além disso, a independência inata aos múltiplos serviços que compõem uma SOA

sugere possíveis oportunidades para o paralelismo de tarefas: desde que diferentes cha-

madas remotas a serviços não interfiram umas com as outras, podem ser realizadas em

paralelo. Como resultado imediato, poderia haver melhorias de performance em várias

partes da aplicação. O tempo de espera por dados poderia ser reduzido, juntamente com

a lógica interna da aplicação, que poderia ser executada mais rapidamente, fatores que

impactariam positivamente o fluxo geral de qualquer aplicação.

Nesta tese propomos o desenho e implementação de um processo de otimização cujo

alvo é o coração da SOA: o próprio orquestrador, o condutor das interações entre serviços

que permite a execução dos diferentes processos envolvidos num sistema de software.

O trabalho realizado foca a composição de um conjunto de técnicas de análise e repre-

sentação de dependências numa cooperação que visa identificar oportunidades para a

paralelização das chamadas aos diferentes serviços que compõem uma fábrica de software.

A definição formal do algoritmo desenvolvido é acompanhada por um protótipo de-

senvolvido para a plataforma OutSystems, no qual foram verificados speedups considerá-

veis em cenários de operações comuns. Os resultados obtidos sugerem a viabilidade de

uma solução desta natureza no mundo das SOAs.

Palavras-chave: OutSystems, Plataforma OutSystems, Análise de Data-Flow, Análise de

Control-Flow, Técnicas de Parallelização, Análise de Dependências

xiii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Solution Overview . 3

1.4 Contributions . 4

1.5 Outline . 5

2 Background 7

2.1 The OutSystems Platform . 7

2.1.1 Service Studio . 7

2.1.2 Exposing and Reusing Functionality 9

2.1.3 Server Actions and Service Actions 9

2.1.4 Database Manipulation Primitives 10

2.2 Key Concepts . 12

2.2.1 Dependence Analysis . 12

2.2.2 Data Dependence . 13

2.2.3 Control Dependence . 16

2.2.4 Representing Dependences . 19

2.3 The Three Rules for Safe Parallelism . 21

3 Related Work 23

3.1 Static Analysis Techniques . 23

3.1.1 The Limitation of Static Analysis 24

3.2 Dynamic Analysis Techniques . 25

3.3 Hybrid Analysis Techniques . 27

3.4 Discussion . 29

4 Implementation 31

4.1 Defining a Grammar . 31

4.2 Solution . 33

4.2.1 Overview . 35

4.2.2 Read-Write Set Extraction . 35

4.2.3 Data-Flow Analysis . 39

xv

CONTENTS

4.2.4 Control-Flow Analysis . 44

4.2.5 Program Dependence Graph . 49

4.2.6 Analysis of Parallelism . 50

4.3 Prototype in OutSystems . 54

5 Evaluation 59

5.1 Common Patterns . 59

5.2 On the Development Guidelines Proposed 68

6 Conclusions 71

6.1 Contributions . 72

6.2 Future Work . 72

Bibliography 75

xvi

C
h
a
p
t
e
r

1
Introduction

This chapter introduces the thesis, contextualizing the problem and discussing the moti-

vation behind it. After an overview of the proposed solution and expected contributions,

the outline of the remaining document is reviewed.

1.1 Context

The paradigm of Service-Oriented Architecture (SOA) has been gaining significant trac-

tion in the IT world. Microservices, in particular, have become a dominant architectural

style choice in the service-oriented software scene, with many large-scale Web compa-

nies thoroughly using them [4]. The adoption of SOA raises the degree of independence

in both development and deployment life-cycles. The increased reuse of functionality,

coupled with a higher flexibility to evolve the software system make up some of the top

drivers of SOA, according to a survey conducted by Baroudi et al. [6].

A fundamental aspect of any SOA is the behind-the-scenes interaction and composi-

tion of independent services that takes place when higher-level endpoints are consumed,

in order to carry on specific business processes. This coordination can be done in two

main ways, orchestration and choreography, with our focus being on the former. The

orchestrator works as a centralized composite service that invokes and combines the dif-

ferent services in a coordinated fashion; this makes sensible orchestration essential for

the success of SOA systems.

An orchestrator has to coordinate several requests, respecting the dependencies among

them and any protocols they might follow. Naive orchestration strategies perform the re-

quests sequentially, spending time just waiting for the results. Moreover, the orchestrated

services themselves may be orchestrators as well, meaning that this idle time waiting for

results can grow surprisingly fast.

1

CHAPTER 1. INTRODUCTION

A possible strategy to improve the efficiency of the orchestration process is to apply

task parallelism when performing requests that are independent of each other. There

is plenty of investigation and relevant work around the identification of parallelism,

alongside the verification of its correctness. Techniques range from static, to dynamic, to

hybrid. Static techniques are typically based on dependence analysis algorithms [1, 18,

37], whilst dynamic ones tend to focus on speculative execution [12, 15, 45] or (dynamic)

transactional memory [23, 41]. There is also a body of hybrid techniques [16, 40] that

combine elements from both approaches.

1.2 Motivation

The OutSystems Platform is a low-code development platform that enables rapid develop-

ment of applications in a mostly-visual way. Furthermore, the introduction of services in

OutSystems 11 made it possible to opt for SOA as the structural backbone of one’s appli-

cation. The highly independent nature of SOAs fuels an idea of potential task parallelism

between service calls that do not depend on each other. When developing an application

in the OutSystems platform, we have knowledge of consumed APIs and their dependen-

cies within a software factory. We can thus leverage that knowledge in an attempt to

inform parallelization of the orchestration that guides the communication between the

different services in runtime. In other words, remote calls to independent services could

be performed in parallel, bringing significant speedups in many scenarios.

To exemplify, consider a hypothetical online platform focused around books, readers

and book reviews, architected under a service-oriented model, with independent services

for books details, readers and reviews. Using a search feature, the visitor can get the basic

details for a particular book, given that book’s title. In the meantime, the readers and

reviews for the particular book are also fetched and then displayed.

Behind the scenes, this interaction flow involves three API calls to three different

services. First, one to the books service, in order to fetch the details of the book whose

title matches the name passed by the user. Among these details is the book’s identifier,

which is then used as input to the service calls to the readers and reviews services.

Figure 1.1 illustrates how that task is currently done in OutSystems. Each node

represents the respective service call. The figurative time elapsed between the moment a

call is started and the moment it returns is labeled on top of each node.

time
getBooks

t1

getReaders

t2

getReviews

t3

Figure 1.1: Performing remote service calls sequentially.

Unless the developer resorts to custom code, the three calls are handled synchronously

and one after the other. On this sequential process, as portrayed in Figure 1.1, the total

2

1.3. SOLUTION OVERVIEW

time elapsed for all the information to be ready for the visitor would be given by t1 +t2 +t3.

Now consider Figure 1.2. What if we knew that, after the call to the books service, the

calls to the readers and reviews services could be carried in parallel?

time
getBooks

t1
getReaders

t2

getReviews

t3

Figure 1.2: Performing independent remote service calls in parallel.

By parallelizing the independent remote calls, we would cut the total time needed

from t1 + t2 + t3 to t1 +max{t2, t3}. Assuming that the three calls take similar time to

complete, this would mean a speedup of roughly 33% regarding the sequential version.

1.3 Solution Overview

There are a few key principles that guide the design and behaviour of our proposed solu-

tion. First and foremost, the solution must always guarantee correctness of the optimized

program. Not finding opportunities for safe parallelism could be an acceptable worst

case scenario; marking as parallelizable tasks that are effectively not safe to parallelize,

however, is never an acceptable output.

Moreover, the solution should introduce little-to-no runtime overhead; the number of

remote API calls inside OutSystems software factories could be arbitrarily large, and so

even a small amount of runtime overhead could cause some performance hindrance.

Finally, to implement a solution that is (mostly) invisible to the OutSystems developer

is another goal we consider rather important. Our solution should never impose an obsta-

cle nor require extra effort from the developer. Whether or not it finds opportunities to

optimize the program, that shouldn’t be noticeable on the development process.

With this in mind, the solution we propose has five fundamental high-level steps. To

start, a static analysis will scan the APIs of any remote services used in the application,

extracting information regarding which database entities are accessed by them. For illus-

tration purposes, we are here going to instantiate each step in the book-related scenario

presented in the previous section. For the three service calls in Figure 1.1, this scan would

yield the following results: a) none of the actions modify any database record, and b) all

of them read resources from different database tables.

That information is then integrated in the next two steps, where data and control

dependence analyses are run on the actions that perform the aforementioned remote calls.

Figure 1.1 is, in fact, one such action; an encapsulation of business logic that happens

to perform three remote API calls, one after the other. The dependence analyses will

3

CHAPTER 1. INTRODUCTION

conclude that there are no control dependences in our action – from Figure 1.1 this is

easily seen, as there is no branching of control-flow. There will, however, be a data de-

pendence detected: the calls to the readers and reviews services take as input a value

that is only known after getBooks returns – the book’s identifier, as mentioned in the pre-

vious section – and so that relative order must be preserved. Yet, no constraints between

the readers and reviews calls are detected - no data nor control dependence, and no

clashing database accesses - leading to the conclusion that the two can be parallelized.

After a fourth step, where the dependence information gathered is summarized into

a single, easily-parsable structure, this information is used to separate the operations of

the program into what would be dependence-independent sections. The entirety of this

information would then be consumed on the fifth and last step of our solution, where a

(safe) parallel version of the original program is generated. Though this last step is not

implemented in the work, the intuition behind it is thoroughly discussed.

1.4 Contributions

We wrap up this dissertation with the study, documentation and running prototype – in

the context of the OutSystems platform – of an optimization process for service orches-

tration. This optimization targets requests that require several remote API calls, with the

aim of finding and applying opportunities for informed parallel execution. This work

produced some results that stand out as individual contributions themselves:

• A static analysis algorithm that extracts information regarding database reads and

writes performed by remote API calls. This can be mapped to different platforms

and data sources;

• A dependence analysis algorithm, capable of summarizing both the control and

data dependences of different operations in a program during compile time. The

algorithm generates a Program Dependence Graph, and is capable of distinguishing

between the different types of data and control dependences. Despite our target

being the OutSystems platform, the algorithm is adaptable to other scenarios where

a graph representation can be constructed;

• An algorithm capable of partitioning the operations of a program based on the

dependences between the operations. This information can then be used to aid in

the construction of the optimized program;

• A working prototype targeting (a sub-set of) the OutSystems platform that em-

ploys the techniques described above. Though not extensively tested, the prototype

yielded favorable results, hinting at the viability and applicability of our solution.

4

1.5. OUTLINE

1.5 Outline

The rest of this report is organized as follows:

• Chapter 2 - Background: this chapter presents background information on the Out-

Systems platform, followed by concepts important for this thesis, with an emphasis

on dependence analysis calculation and representation;

• Chapter 3 - Related Work: this chapter elaborates on different techniques for paral-

lelization, wrapping up with a discussion of their viability for our use case;

• Chapter 4 - Implementation: here our solution is covered in detail, with every step

escorted with a practical example. Its application to the OutSystems model is also

discussed, as we elaborate on the prototype developed;

• Chapter 5 - Evaluation: presents the results obtained for this work;

• Chapter 6 - Conclusions: this chapter concludes the dissertation. After high-level

reflection on the solution developed and difficulties faced, a quick overview of

the work produced takes place; to close off, we discuss what we identified to be

worthwhile future work.

5

C
h
a
p
t
e
r

2
Background

This chapter starts out by presenting some background for the OutSystems platform, the

setting we are targeting. Alongside, relevant notions in the realm of program dependence

analysis will be presented, due to their usefulness in understanding if parts of a program

can be ran in parallel.

2.1 The OutSystems Platform

The OutSystems Platform is a low-code aPaaS1 that enables rapid development, agile de-

ployment and continuous management of cross-platform, enterprise-grade applications.

Inside Service Studio, the OutSystems development environment, developers can build

entire applications (from the user interface to the business logic) all in a visual, drag-and-

drop fashion. Furthermore, integration with external services and custom code is made

easy, meaning scalability and architecture are never compromised [30].

2.1.1 Service Studio

The OutSystems Service Studio is the low-code visual development environment for Out-

Systems applications. Inside the IDE, one can develop the different parts of the stack that

make up a fully-fledged application, ranging from the user interface all the way to the

database model. This is explained in more detail below.

Interface The elementary building block of User Interface (UI) development in OutSys-

tems is the Web Screen, a component that will translate into one of the screens in the

deployed application. Web Screens can be populated by composing visual widgets – such

as buttons, check-boxes and lists – in order to achieve all sorts of layouts. Web Screens

1Application Platform as a Service: https://www.outsystems.com/p/platform-as-a-service/

7

https://www.outsystems.com/p/platform-as-a-service/

CHAPTER 2. BACKGROUND

may have input variables and local variables. More so, they can hold one preparation
action, a place where the developer can define custom logic to be executed prior to the

screen’s rendering. The way screens flow onto one another can also be visualized, as

illustrated in Figure 2.1.

Figure 2.1: A simple UI flow of an OutSystems application.

Logic Pieces of an application’s business logic can be encapsulated inside actions, which

are developed in a visual, graph-like fashion using constructs such as conditions and

assignments, database queries and even other actions. Actions can have input parameters,

output parameters and local variables. It is also possible to integrate actions with external

web services.

Figure 2.2 illustrates a simple Server Action, a type of action that runs logic on the

server side. The orange node labeled GetBooksByRating is also a Server Action itself. The

output of GetBooksByRating is assigned to some variable that is local to the illustrated

action; this assignment is represented by the blue node labeled Books.

Figure 2.2: A simple Server Action.

Data Database modelling, including the management of Entities and their Attributes, is

also done through Service Studio. An application’s database schema (i.e., all the entities

and their interactions with each other) can also be visualized (Figure 2.3). For the cases

8

2.1. THE OUTSYSTEMS PLATFORM

when one is dealing with static data, the development experience can be further enriched

with strongly-typed, enumerate-like entities called Static Entities.

Figure 2.3: A simple database schema of an OutSystems application.

2.1.2 Exposing and Reusing Functionality

A typical OutSystems application is made out of multiple modules – named eSpaces – that

can be used across different applications. This modular fashion highlights the importance

of reusability all across the development process. The exposure and reuse of elements

(e.g., actions, UI widgets or data models) creates a producer-consumer relationship: the

module that implements and exposes functionality is the producer module, whereas the

module that reuses the exposed functionality is the consumer module. Elements exposed

by a producer module are considered as dependencies in the consumers [34].

When some exposed functionality is updated and the respective producer module

publishes the changes, an automatic impact analysis step is performed. As we will dis-

cuss below, the impact of those changes in the running consumer modules will be vary

according to the type of dependency between the producer module and its consumers.

2.1.3 Server Actions and Service Actions

In OutSystems, Server Actions (Figure 2.2) are said to run in-process, that is, they are

executed in the same process as the consumer module, as if they were defined there. For

this to be possible, the consumer module needs to know, in runtime, both the signature

and the implementation of the element exposed by the producer. In other words, exposing

a Server Action generates a strong dependence (Figure 2.4) from the consumer to the

producer module, in a tightly-coupled way. Each time the implementation of an exposed

Server Action changes, all the consumer modules must be refreshed and republished to

start using the latest version.

9

CHAPTER 2. BACKGROUND

Consumer

Producer

ProducerStrong

Figure 2.4: A strong dependence between producer and consumer modules.

With OutSystems’ version 11, Services and Service Actions were introduced [35].

From the standpoints of development and usage, Service Actions are similar to Server

Actions. The big difference, however, lies in the execution model and in the strength of the

producer-consumer relationship that is created. Service Actions are REST-based remote

calls; they are executed in a remote process, conversely to Server Actions. Exposing a

Service Action generates a weak dependence (Figure 2.5) from the consumer to the producer

module: each time the implementation of an exposed Service Action changes, that change

takes immediate effect in the consumer modules.

Consumer Producer

Exposed Element

Weak

Figure 2.5: A weak dependence between producer and consumer modules.

In this work, we want to explore the potential for parallelization of Service Actions

and similar abstractions to remote calls, where we have knowledge and control over both

the producer and the consumer modules.

2.1.4 Database Manipulation Primitives

Of particular relevance to us is information regarding data accesses done by the producer

and the consumer modules, so that possible interference can be identified. Thus, some

insights about the existing database manipulation primitives are worth discussing here.

Foundational to database modeling in OutSystems is the concept of Entity, an element

which allows the application developer to manage and persist business information. The

information held by each Entity is stored in attributes – much like columns in a relational

database table – and each instance of an Entity is called a record. For every Entity that is

created, the OutSystems Platform generates a set of Entity Actions, SQL abstractions for

simple CRUD2 functionality to act upon single records of the Entity. Entity Actions make

up one of the simplest primitives of database manipulation, and an example of such an

action can be seen in Figure 2.6 on the left.

Data fetching with the aim of retrieving multiple records from an Entity – or informa-

tion from multiple entities – is made possible with the use of Aggregates (Figure 2.6 in the

2Create, Read, Update and Delete, the four elementary functions of persistent storage.

10

2.1. THE OUTSYSTEMS PLATFORM

middle). Despite how expressive the OutSystems Domain-Specific Language is for han-

dling data (with these Entity Actions and Aggregates), there are times where the intricate

nature of some business logic demands the need to write more complex queries. To ac-

count for those situations, the OutSystems platform enables custom SQL to be developed

and encapsulated inside a SQL element (Figure 2.6 on the right).

Figure 2.6: Different ways to manipulate a database.

Entity Actions are automatically named in a predictable way (e.g., Get < Entity >,

CreateOrUpdate < Entity >), making it easy to identify which database table they read

or write. When dealing with Aggregates, we can access their sources to understand what

entities are being read – this can be seen in Figure 2.7, where an inner join between the

Book and BookReview entities is performed.

Figure 2.7: Sources view of an Aggregate in OutSystems.

Even when database manipulation is done with custom SQL, we can access the entities

used by knowing that their names are always inside curly brackets, as seen in Figure 2.8.

We could thus parse the queries in order to detect which entities are read from and which

ones are written to.

11

CHAPTER 2. BACKGROUND

Figure 2.8: A snippet of custom SQL in OutSystems.

2.2 Key Concepts

This section provides some key concepts for a proper understanding of this thesis. To

allow for a better flow, a simple code example, shown in Listing 2.1, will be used to

instantiate the various concepts presented throughout this chapter.

x = 25;

y = x * 2;

if (x > 0)

y = 0;

else

y = 1;

x = 5;

Listing 2.1: A simple program.

2.2.1 Dependence Analysis

Dependence analysis is the process of studying the relationship between program ele-

ments (e.g., instructions or statements) in terms of the data they access and the execution

paths they may follow.

In the context of program optimization, the set of all dependences for a program may

be viewed as inducing a partial order that must be followed in runtime to preserve the

semantics of the original program [18]. In compiler theory, dependence analysis commonly

used to determine whether it is safe to reorder or parallelize statements [1].

Dependence analysis is versatile when it comes to the granularity of the operations to

inspect. Besides individual statements, the analysis may be abstracted to higher levels; as

an example, sequences of statements can be considered instead. Extending the analysis

across multiple procedures (inter-procedural [25]) can also be done, though it comes with

considerable overheads in run time and memory consumption [21]. Dependence analysis

is twofold, consisting of both data and control dependence analysis, described in more

detail in the following sections.

12

2.2. KEY CONCEPTS

2.2.2 Data Dependence

A data dependence arises between two statements whenever they access the same variable

and at least one of the accesses is a write (as opposed to a read). A statement S2 is data
dependent on statement S1 if a variable appearing in S2 may have an incorrect value if the

two statements are reversed. This means that the execution order of the two statements

is not interchangeable, and so they’re not safely parallelizable.

Three types of data dependences can hinder opportunities for parallelism. A state-

ment S2 is flow dependent on S1 if S1 modifies a resource that S2 reads and S1 precedes

S2 in execution (represented as S1→ S2). Notationally we write S1 δ
f S2, where f stands

for flow, the type of dependence. Furthermore, flow dependence may also be called Read-

After-Write dependence, for which an example can be seen in Listing 2.2. Notice how, in

the example, variable x is read in statement S2 after being written to in statement S1. If

we were to reverse the order of execution of the two statements (i.e., if S2 were to execute

before S1), then the value of variable y would be different than the one obtained with the

original order.

Statement S1: x = 25;

Statement S2: y = x * 2;

Listing 2.2: Flow dependence example.

The opposite situation generates an anti-dependence (Write-After-Read): a statement

S2 is anti-dependent on S1 (written S1 δ
a S2) if S2 modifies a resource that S1 reads and

S1→ S2. An example of an anti-dependence can be seen in Listing 2.3. In the example,

swapping the execution orders of the two statements would cause variable y to read a

different value of variable x.

Statement S1: y = x * 2;

Statement S2: x = 25;

Listing 2.3: Anti-dependence example.

An output dependence between two statements occurs when the two modify the same

resource. Thus, a statement S2 is said to be output dependent on S1 (written S1 δ
o S2) if

S1 and S2 modify the same resource, with S1→ S2. Looking at Listing 2.4, we can identify

an output dependence between statements S1 and S3; if we were to execute S3→ S2→ S1

instead of S1→ S2→ S3, then S2 would read different values of variable x.

Statement S1: x = 25;

Statement S2: y = x * 2;

Statement S3: x = 5;

Listing 2.4: Output dependence example.

13

CHAPTER 2. BACKGROUND

Control Flow Graph

The base for many static techniques of dependence analysis is the Control Flow Graph

(CFG) [3], a directed graph that represents all the paths that might be traversed through

a program during its execution. The CFG is made out of a set of nodes N and a set of

directed edges E. Each node in the CFG is a basic block, i.e., a linear sequence of code

without jumps or branching, and the edges guide the transfer of control flow between

basic blocks. Many representations of the CFG have two special nodes to ease notation.

Conventionally labeled as Entry and Exit [18], those nodes represent the single entry and

exit points of the program, respectively. Every node is reachable from Entry, and Exit is

reachable from every node. A path in the CFG from nodes X to Y (where X,Y ∈ N) is

denoted as X →+ Y . Figure 2.9 shows a sample program and its respective CFG.

A

B

C

D

A

A

A

1

2

3

B

1

C

1

D

1

Entry

A

B C

D

Exit

T F

Figure 2.9: The CFG for the program of Listing 2.1.

Data-Flow Analysis

Data-Flow Analysis [1] refers to the set of compile-time analysis techniques that derive

specific information about how data flows along a program by observing such flow at

specific program points.

To perform any type of data-flow analysis we use the program’s CFG as a starting

point, considering the boundaries of each basic block as the program points of interest

to consider – this is enough to summarize the flow of data inside the entire block. For

each of these program points, a data-flow value is computed, an abstraction of the set of

all possible program states that can be observed for that point. Each program state will

hold just the information that is relevant to the particular analysis being applied.

14

2.2. KEY CONCEPTS

In any kind of data-flow analysis, the goal is to gather knowledge at both the en-

trance and the exit states of each basic block. For some basic block b, we represent these

knowledge points with INb andOUTb, respectively. The way this information is gathered

depends on whether the specific analysis is a forward analysis or a backwards one. In

forward data-flow analysis, the exit state of a block is a function of the block’s entry state;

the other way around is true for backwards analysis.

b

JOINb

INb

OUTb

TRANSb

Figure 2.10: Forward data-flow analysis.

Figure 2.10 depicts the key principles of forward data-flow analysis [1]. In forward

data-flow analysis, the knowledge at the entrance of a basic block b (INb) is a function

of the exit states of b’s predecessors. This function (the join function, here represented

JOINb) merges all OUTbi for all basic blocks bi that flow into b - in other words, the

predecessors of b. The knowledge at the exit state of b, OUTb, is a function of both INb
and of what is inside b itself. This function that maps INb to OUTb - called the transfer

function - is here represented as TRANSb. Mathematically, for some basic block b, INb
and OUTb can be defined as follows:

OUTb , TRANSb (INb)

INb , JOINp ∈ predecessors(b) (OUTp)
(2.1)

These equations hold for every data-flow problem; data-flow problems consist of solv-

ing these equations repeatedly until the the IN and OUT sets stabilize, i.e., reach what

is called a fixpoint. Of course, the transfer and the join functions will vary, depending on

the particular data-flow problem that is to be solved.

The computation of data-flow values is always an estimate. Knowing that, in general,

the exact path that an executing program will effectively follow through cannot be known

during compile time, the analysis assumes any path in the CFG can be taken, in a safe,

conservative way. If that weren’t the case, relying on its results for further computations

could lead to errors.

Not only does data-flow analysis serve as a framework for numerous compiler opti-

mizations [1, 42], but also for debugging tools [33], program verification [17] and paral-

lelization [18]. Of particular relevance to us is the usage of these techniques to compute

Read-Write Sets, the sets of variables read and written by a statement or program.

15

CHAPTER 2. BACKGROUND

Read-Write Sets

For conciseness, let R(S) and W(S) be the sets of variables read and written by, respectively,

statement S, and let S1 and S2 be two statements where S1→ S2. Under a scenario where

a variable is first written in S1 and then read in S2 we know for sure that W(S1)∩R(S2) , ∅.

Notice how this is the exact definition of flow dependence, and so we get to the following

equivalence: W(S1)∩ R(S2) , ∅ ⇐⇒ S1 δ
f S2. Similar equivalences can be achieved for

anti and output dependences, if we consider R(S1)∩ W(S2) and W(S1)∩ W(S2), respectively.

The absence of data dependence between any two statements S1 and S2 can thus be

guaranteed when the following predicate holds:

[W(S1)∩ R(S2)] ∪ [R(S1)∩ W(S2)] ∪ [W(S1)∩ W(S2)] = ∅ (2.2)

This is called Bernstein’s Condition [9], and is fundamental in the detection of opportu-

nities for parallelism, as will be discussed in Section 2.3.

2.2.3 Control Dependence

A statement S2 is control dependent on S1 (notationally S1 δ
c S2) if the execution of S2 is

conditionally guarded by S1. Consider the example shown in Listing 2.5, where S2 may

or may not execute, depending on the outcome of S1. In this situation, we say that S2 is

control dependent on S1.

Statement S1: if (x > 0)

Statement S2: y = 0;

Listing 2.5: Control dependence example.

Dominance and Postdominance

In [18], Ferrante et al. introduce a formal definition of control dependence in terms of

a CFG and postdominators. In graph theory, the concept of dominance [39] is defined as

follows: A CFG node X dominates a node Y if every path from Entry to Y has to pass

through node X. By definition, every node dominates itself, and thus, if X dominates Y

and X , Y then X is said to strictly dominate Y .

It is not uncommon for a CFG node to have more than one dominator. The immediate
dominator of a node X is the strict dominator of X that is closest to X on any path from

Entry to X in the CFG. Using this notion of immediate dominance, a dominance tree can

be constructed as a compact representation of the dominance relationship between nodes.

The dominator tree has the same nodes as the CFG, albeit in a different order. A node

in the dominator tree dominates all its descendants and immediately dominates all its

(direct) children.

16

2.2. KEY CONCEPTS

Here’s once again the Control-Flow Graph for our example program:

Entry

A

B C

D

Exit

T F

Figure 2.11: The Control-Flow graph for the program of Listing 2.1.

The dominator and postdominator trees for our example program would be as de-

picted in Figure 2.12 below:

Entry

A

B C D

Exit Entry

A B C

D

Exit

Figure 2.12: Dominator (left) and postdominator trees for the program of Listing 2.1.

The dominator tree and the CFG can be used together to construct a dominance frontier.

A node Y belongs to the dominance frontier of a node X (written Y ∈ DF(X)) if and only

if X dominates some predecessor of Y but does not strictly dominate Y .

Conversely, if a node Y appears in every path from node X to Exit, then Y is said

to postdominate X - or strictly postdominate X, if X , Y . Postdominance plays a funda-

mental role in control dependence analysis. As per the original definition from [18], two

conditions must hold for there to exist control dependence between two CFG nodes. A

node Y is control dependent on another node X if and only if:

1. There is a path X →+ Y such that Y postdominates every node between X and Y ;

2. X is not postdominated by Y .

17

CHAPTER 2. BACKGROUND

This relationship can be represented directly with a postdominance frontier (PDF). Intu-

itively, PDF(N) is the set of blocks closest to N where a choice was made of whether to

reach N or not. A node X is thus control dependent on another node Y if and only if

Y ∈ PDF(X). Figure 2.13 shows the DF and the PDF for every node of the original pro-

gram’s CFG, which can be constructed with the aid of both the CFG and the respective

dominance/postdominance tree.

Node (N) A B C D

DF(N) ∅ {D} {D} ∅

Node (N) A B C D

PDF(N) ∅ {A} {A} ∅

Figure 2.13: Dominance (left) and postdominance frontiers for the program of Listing 2.1.

Calculating the postdominance frontier in the CFG is shown equivalent [18] to calcu-

lating the dominance frontier in the reverse control flow graph3, and, in practice, it’s easier

and more efficient to opt for the latter.

The state-of-the-art is extensive when it comes to finding dominators [11, 14, 20, 29,

36]. Among the most widely adopted is the algorithm proposed by Tarjan and Lengauer

[29], based on depth-first search and union-find. With E and N representing the number

of edges and nodes of a graph, respectively, the simplified version of their algorithm

achieves an asymptotic complexity of O(E ∗ log(N)), with the more sophisticated version

granting an almost-linear O(E ∗α(E,N)), where α(E,N) is a very slow-growing function.

Other interesting approaches include that of Cooper et al. [14], who tackle the problem

of finding dominators with a data-flow oriented approach, ending with a much simpler –

though asymptotically bigger (O(N2)) – algorithm than Tarjan and Lengauer’s.

On Termination Sensitivity

The definition of control dependence presented by Ferrante et al. [18] is often referred to

as standard (or classical [10]). However, other definitions have proved useful under certain

scenarios, and so they’re worth considering. One of them is the notion of weak control

dependence, as introduced by Podgurski and Clarke [38].

By definition, the dominator-based approach to find standard control dependences

only works under the assumption that the program terminates, i.e., reaches Exit. Weak

control dependence analysis, on the other hand, is termination-sensitive, meaning it

also captures the possibility of non-termination. In [21], the authors implement and

evaluate termination-sensitive support for weak control dependences in the context of

information flow, reporting a considerable hit in the precision of their analysis, due to

the increased conservatism associated with this type of dependences. Unless we find

3The reverse control flow graph (reverse CFG) can be obtained by reversing the direction of every edge in
the original CFG. The reverse CFG will have the same number of nodes and edges as the regular CFG. For
the dominance and postdominance computations, the roles of the Entry and Exit nodes are reversed as well.

18

2.2. KEY CONCEPTS

relevant scenarios that indicate otherwise, assuming termination should be reasonable

for our work. Therefore, standard control dependences should be sufficient.

2.2.4 Representing Dependences

Graphs are a flexible, widely used way of representing programs and their dependences.

With the program CFG as starting point, one can work their way to build graph rep-

resentations that showcase data dependences and control dependences individually or

collectively.

Data Dependence Graph and Control Dependence Graph

DFA techniques can be applied to gather the information needed to build a Data Depen-

dence Graph [27]. There is an edge X → Y in the Data Dependence Graph if and only

if Y is data dependent on X. Flow, anti and output dependences are differentiated and

marked accordingly in each edge.

Control dependences can be represented with the Control Dependence Graph [18],

which can be derived directly from the postdominance frontier of the CFG - or, equiv-

alently, the dominance frontier on the reverse CFG. Let DFR(Y) denote the dominance

frontier of some node Y in the reverse CFG. Node Y is said to be control dependent on

another node X if and only if X ∈ DFR(Y). Such dependence is represented with an edge

X → Y in the CDG. The Control Dependence Graph and the Data Dependence Graph

for the program of Listing 2.1 can be seen in Figure 2.14. Notice how the nodes of the

Control Dependence Graph are the program’s basic blocks, while the nodes of the Data

Dependence Graph are the program’s statements. This is due to the fact that control flow

does not change inside a basic block, but data flow does.

Entry

A D

B C

T F

A1

A2 A3

B1 C1

D1

δoδf δf

δo δo

δa δa

Figure 2.14: The Control Dependence Graph (left) and the Data Dependence Graph for
the program of Listing 2.1.

Space efficiency and reasonable scalability are among the main benefits of these

graphs that isolate the representation of dependences. However, having separate graphs

19

CHAPTER 2. BACKGROUND

for the different types of dependences may not be practical for all cases. Certain compu-

tations or optimizations that require interaction of both data and control dependences,

such as code motion4, would require one to create, manage and traverse the two graphs,

which could be inefficient.

Hybrid Dependence Graphs

Approaches that represent the two types of dependences in a single graph are known

as hybrid [37]. The Program Dependence Graph [18] is an example of such a graph,

consisting of a Data Dependence Graph augmented with control dependence arcs. This

can be an improvement over maintaining and traversing two different structures, assuring

the Program Dependence Graph many applications in the realm of compiler optimization,

namely in the detection of parallelism. The original algorithm behind the creation of

this graph involves many of the analysis techniques described in Section 2.2.2 and 2.2.3.

Figure 2.15 shows the Program Dependence Graph for the program of Listing 2.1.

Entry

A2 A1 A3

B1 C1

D1

T F

δf

δf

δo

δo

δo

δa

δa

Figure 2.15: The Program Dependence Graph for the program of Listing 2.1.

In an attempt to address some of the drawbacks of the Program Dependence Graph –

namely the spatial complexity involved and the difficulties in formal program correctness

verification [26] – Pingali et al. introduced the Dependence Flow Graph [26, 37].

While the Program Dependence Graph merely represents the two types of depen-

dences, the Dependence Flow Graph combines them. The nodes in a DFG communicate

with each other by exchanging information along the arcs, a task made possible by the

4Code motion is a compiler optimization technique that consists of moving operations around in a way
that improves performance without compromising the semantics of the original program [1].

20

2.3. THE THREE RULES FOR SAFE PARALLELISM

introduction of special operator nodes. To handle data flow, a global store model is im-

plemented with the aid of special load and store operators. Additional switch and

merge operator nodes are used to effectively combine control information with data de-

pendence information. This results in an executable hybrid graph, which the authors

argue facilitates both progressive development and proofs of correctness.

2.3 The Three Rules for Safe Parallelism

We can now start expanding on a concept of safe parallelism. The absence of both data and

control dependences is a requirement for running operations in parallel in a way that

does not alter the behavior of the sequential program. Moreover, the presence of either
one of those dependences is enough to invalidate opportunities for safe parallelism. This

knowledge might prove useful to short-circuit analysis algorithms.

Nevertheless, two otherwise parallelizable operations, i.e., operations that share no

data nor control dependences, might not be safe to execute in parallel if at least one of

them causes side-effects that might harm the behavior of the program. The relevance of

this characteristic is more evident when we enter the realm of speculative execution, as

will be discussed in the upcoming chapter.

We can thus say that two operations A and B are safely parallelizable if and only if all

the following conditions hold:

1. A and B are not data dependent on each other;

2. A and B are not control dependent on each other;

3. No ordering of their execution (A→ B or B→ A) could potentially cause unwanted

side-effects.

Finding opportunities for safe parallelism will be the focus of this work; this term will be

used throughout the next chapters.

21

C
h
a
p
t
e
r

3
Related Work

This chapter starts with an overview of some key static analysis techniques to find op-

portunities for task parallelism. As we come across the inherent conservatism of purely

static approaches, the idea of speculation is brought into the spotlight, opening up the

door for a whole body of dynamic and hybrid approaches. To finish off the chapter, we

discuss the techniques presented and review their suitableness for our problem.

Many of these techniques are oriented towards low-level code and/or heavily focused

on loops. Still, there are interesting ideas on these approaches, which makes their study

and abstraction to a higher level an interesting challenge by itself.

3.1 Static Analysis Techniques

Purely static analysis techniques are heavily based on the dependence analysis techniques

described in sections 2.2.2 and 2.2.3. The field of automatic optimization done by com-

pilers is where the bulk of related work on the subject can be found.

The absence of runtime overhead makes static approaches enticing. Implicit to this

body of techniques, however, is an inherent conservatism that can be seen as a double-

edged sword. On the one hand, it assures the non-existence of false positives; the con-

servative analysis will never mark as parallelizable tasks that are effectively not safe to

parallelize. On the other hand, conservatism can lead to false negatives, i.e., situations

where opportunities for safe parallelism are discarded due to the uncertainty of the anal-

ysis that ends up opting for the safe way. This aspect of static analyses will be discussed

throughout the chapter.

23

CHAPTER 3. RELATED WORK

Global Code Scheduling

Global Code Scheduling (GCS) [1] is a compiler optimization technique that works by

reordering operations across basic blocks, in ways that improve runtime efficiency. Based

on the concept of code motion, GCS is made possible after a static dependence analysis

step extracts the dependences that exist between operations. Once said extraction is

complete, operations can be moved across basic blocks and reordered, as long as:

• There are no data dependence nor control dependence violations;

• All operations in the original program are executed in the optimized program;

• The optimized program does not cause unwanted side-effects.

Though the reordering itself does not necessarily imply parallelization, the constraints

involved in the process of reordering make it similar to that of finding situations for safe

parallelism (as described in Section 2.3).

3.1.1 The Limitation of Static Analysis

There are cases where performing a conclusive dependence analysis during compile time

is simply not possible, e.g., when some information is only known in runtime, such as

user input. This leads to static approaches that are highly conservative, which therefore

fail to exploit certain opportunities for parallelism.

This property of static approaches has two sides to it. On the one hand, the high

degree of conservatism guarantees correctness of the optimized program, considering

that, under scenarios of uncertainty, a static analysis algorithm would opt for the safer

route. On the other hand, programs structured in certain (common) patterns will tend to

not benefit from added parallelism.

ActionA() {

...

readFromBooksTable(...);

...

...

}

ActionB(write: Boolean) {

...

if (write)

writeToBooksTable(...);

...

}

Figure 3.1: Two actions that may or may not access the same data.

Consider the pseudocode example of Figure 3.1. On the left, ActionA reads from a

Books database table. On the right, ActionB may or may not write to that same table,

depending on the value of the user input variable write.

Assuming this eventual interference to be the only obstacle to the safe paralleliza-

tion of ActionA and ActionB, could the two be safely parallelized? The impossibility of

knowing the value of argument write during compile time would lead a static analysis

24

3.2. DYNAMIC ANALYSIS TECHNIQUES

to conservatively opt for the safe route and declare unsafe the parallelization of ActionA

and ActionB. This prospect hints at the existence of possible trade-offs and alternative

solutions, and motivates the upcoming sections of this chapter.

3.2 Dynamic Analysis Techniques

Despite lacking the scalability of static techniques, purely dynamic approaches are plenty

and bring interesting ideas to the table.

Software Thread-Level Speculation

Thread-Level Speculation (TLS) [43] is a dynamic parallelization technique that uncov-

ers parallelism that static approaches fail to exploit, by launching multiple threads to

perform different tasks, optimistically, only ensuring absence of dependence violations

during runtime. Considering there is no actual reordering of operations, TLS ensures that

the resulting parallel program’s semantics remains true to that of the original program.

In a standard TLS implementation, the sequential program is first broken down into

separate units of work (or tasks), each one to be executed on a different thread, according

to a thread spawning strategy. Considering the efficiency of this entire execution model

is highly impacted by the partitioning technique chosen, thread spawning should not be

purely random, and different techniques exist to fit different needs [13, 31].

As the application executes, each thread running in parallel collects and maintains

information regarding all of its accesses to shared memory in a speculative buffer [45]. The

speculative buffer, local to each thread, keeps thread-specific changes until it is proven

that no conflicts between threads occurred. Due to this uncertainty of success during

execution, threads whose tasks access shared memory are said to be speculative.

During – or after1 – speculative execution of each thread, a conflict detection phase

takes place to ensure that there were no dependence violations between any threads

running speculatively. This inspection will dictate whether it is safe to propagate the

local changes to the shared memory – i.e., commit, if there were no conflicts – or if the

buffered changes should be erased (or rolled-back), in case some conflict was detected. In

case of a rollback, the conflicting thread is to execute again until success. The life-cycle

of a speculative thread is summarized in Figure 3.2.

As opposed to hardware TLS [2, 19], software TLS [12, 15] is not restricted to special-

ized processors and/or modified memory systems. However, the need for software TLS to

buffer speculative updates for an indefinite time period, only committing them to shared

memory when the speculation is guaranteed to succeed, can lead to significant storage

overheads. Introduced by Oancea et al., SpLIP [32] is an implementation of software TLS

that addresses this issue by performing shared memory updates in-place, keeping an undo

1The conflict detection phase may take place on every speculative access (Eager Conflict Detection) or
after a thread has finished its whole execution (Lazy Conflict Detection) [45].

25

CHAPTER 3. RELATED WORK

Thread
Spawn

Speculative
Execution

Conflict
Detection

Shared
Memory

Success
(Commit)

Failure
(Rollback)

Figure 3.2: Life-cycle of a speculative thread.

log in case conflicts occur. This optimistic approach requires much lower storage needs

and leads to faster commits. Potential rollbacks, however, are more expensive to perform

than in common software TLS, making this technique rather weak for situations where

the conflict rate is not minimal.

Software Transactional Memory

Software Transaction Memory (STM) is a concurrency control mechanism for shared

memory systems – as opposed to a parallelization technique – pioneered by Shavit and

Touitou [41]. Under the STM model, a shared memory is solely mutated by means of

transactions, blocks of code that perform shared memory accesses and are meant to ex-

ecute atomically. Blocks that are to run as transactions are manually annotated by the

programmer, a task that is usually carried out in a declarative fashion, using high-level

abstractions such as the one proposed by Harris and Fraser in [23]. Constructs like this

make STM a rather concise and readable option, as can be seen in Listing 3.1.

atomic (i != 0) {

shared_memory->read(x)

shared_memory->write(y)

}

Listing 3.1: Example of a transaction, following a syntax similar to the one proposed

in [23]. The use of a condition (i , 0, in this case) is optional. The operations on shared

memory are wrapped inside an annotated block. Implementations of STM following this

same style can be found for various languages, e.g., [5, 44].

While executing concurrently, transactions access and update the shared resources

directly, without ensuring mutual exclusion – a behavior that makes STM a type of Opti-

mistic Concurrency Control [28]. All the read/write accesses to shared memory – known

as the data set of a transaction – are recorded in a log. As the transaction finishes its

tasks, it checks for possible conflicts that may have happened in the meantime. If no

conflicts were found, then the work performed by the transaction is effectively commit-

ted to shared memory. If, on the other hand, a conflict is found, one of the conflicting

transactions is automatically aborted; its changes to shared memory are rolled-back and

the transaction is rerun. This process is repeated until all transactions succeed.

26

3.3. HYBRID ANALYSIS TECHNIQUES

TLSTM: Unifying TLS and STM

In [7], Barreto et al. propose TLSTM, a hybrid approach that complements Software

Transactional Memory (STM) with Thread-Level Speculation (TLS). The way TLSTM

operates is twofold. On a first step, the programmer manually annotates sections of code

as transactions, as they would under standard STM. This results in a coarse-grained

parallelization, where each transaction is to run on a different thread.

Right before the execution of each user-defined transaction, TLS is applied to specula-

tively break down the transaction into multiple, finer-grained tasks. For this second step,

the spawning strategy can be backed up by compile-time code inspections, or it can be

done purely in runtime.

Dependence-Aware Scheduling

Dependence-Aware Scheduling (DAS) [46], as introduced by Zhuang et al., is a dynamic

parallelization technique that strives to reduce worst-case scenario slowdown. On its

core, DAS works by simultaneously launching, on program start-up, a main thread that

keeps running the program sequentially and a pool of worker threads.

While the main thread is running, the parallel worker threads calculate dependences

for different, independent slices of the program not yet executed by the main thread. In

case the dependences calculated do not constraint execution, i.e., slices do not depend on

each other, then the worker threads execute the slices in advance.

It’s worth noticing that the original focus of DAS is on loops. As a consequence, the

slices analysed – and eventually executed – by the worker threads correspond to specific

loop iterations. Before executing an iteration, the main thread checks if the work has

already been done; if that’s the case, then it skips the iteration and proceeds execution.

The effectiveness of this technique lies in both the slice calculation function and the or-

chestration work of a scheduler thread, that assigns different slices to the different worker

threads. Nevertheless, on a worst-case scenario, i.e., a scenario where no opportunities

for parallelism are found, the main thread runs the program sequentially, with the only

slowdown-inducing overhead coming from the “completeness” checks.

Though originally focused on loop iterations, the nature and granularity of the slices

to be examined by the worker threads could be adapted to one’s needs. As an example,

one could opt to steer the dependence analyses away from loop iterations and towards

remote calls or specific procedures.

3.3 Hybrid Analysis Techniques

Hybrid techniques attempt to overcome the limitations of static approaches by extending

the analysis to runtime whenever needed, i.e., when the information available at com-

pile time is not enough to prove the presence – nor the absence – of opportunities for

27

CHAPTER 3. RELATED WORK

parallelism. This extension tends to be done without resorting to speculative, conflict-

management-inducing techniques so common in purely dynamic techniques.

Sensitivity Analysis for Automatic Parallelization

Rus et al. introduced Sensitivity Analysis (SA) [40], a hybrid technique for compiler opti-

mization where low-overhead runtime evaluations complement an initial static analysis.

This strategy is focused on the finding and parallelization of DO-ALL2 loops, though the

core idea should be applicable to other scenarios as well.

The SA algorithm works by statically creating a Dependence Set for every loop. A

Dependence Set is defined as the intersection of the Read-Write Sets (discussed in Sec-

tion 2.2.2) of the entire loop, across all iterations.

If enough information is available at compile time, then the Dependence Set will be

conclusively proved either empty or non-empty, i.e., the loop will be proved parallel or

not. The generated code for the loop will be either the parallel version or the sequential

one, respectively. In case the problem cannot be solved in compile time, the Dependence

Set is turned into a boolean predicate and inserted into the generated code, guarding a

parallel version of the loop. The runtime evaluation of the predicate will then dictate

which version of the code should be executed; the parallel one, in case the predicate

evaluates to true, or the sequential one otherwise.

Optimistic Hybrid Analysis

More than strictly a parallelization technique, the authors of Optimistic Hybrid Analysis

(OHA) [16] argue that their approach can be seen as a general-purpose framework for

different types of analyses. Foundational to OHA is the idea that an unsound static

analysis can be augmented with a sound dynamic analysis that executes speculatively,

resulting in a fast and precise hybrid analysis.

An initial runtime profiling step takes place with the aim of gathering assumptions

about the way the program executes. Since these dynamically-gathered assumptions are

not guaranteed to be true for all execution scenarios, they are referred to as likely invari-
ants of execution. Leveraging the likely invariants found, a subsequent static analysis

step takes place. The likely invariants relax the analysis, making it less conservative – and

thus more precise – than standard static analyses, at the cost of possibly lost soundness.

The soundness is thus guaranteed by a final dynamic analysis. This dynamic anal-

ysis is constructed optimistically, with just low-overhead checks to verify if the likely

invariants assumed do hold for the analyzed execution. If all the invariants hold during

runtime, the program is executed normally. Otherwise, execution is rolled-back and the

program is executed again after a traditional, non-optimistic hybrid analysis takes place.

2A loop presents DO-ALL parallelism when no iterations depend on any other iteration [1].

28

3.4. DISCUSSION

3.4 Discussion

In this section we will weigh the positives and negatives of the examined strategies, and

discuss their suitableness for our scenario.

The arbitrariness of program and action sizes to examine makes static analysis an

all-around viable pick. A purely static analysis should be more scalable than any other

type of analysis, due to not bringing runtime overhead. The fact that it is a conservative

approach implies that any opportunities for parallelism found are guaranteed to be safe.

Software TLS, the first dynamic technique we examined, requires no extra program-

mer effort, as it is completely automatic. Yet, it comes with two big difficulties that escalate

the runtime overhead: the thread spawning strategy and the presence of side-effects. The

success of TLS is strongly dependent on the thread spawning strategy used. Without a

very specific strategy, non-trivial non-numerical applications would end up having many

conflicts, causing rollbacks that will significantly degrade performance [32]. Even with

an optimal spawning strategy, speculative execution – and eventual re-execution – is

dangerous because the absence of unwanted side effects is never guaranteed. This would,

of course, be a violation of the definition of safe parallelism from Section 2.3.

With STM similar problems are encountered. STM is not fully automatic, requiring

the programmer to manually annotate transactions. Despite being low effort and an

overall elegant, composable technique, the manual process of specifying which operations

are to execute atomically (as transactions) is error-prone. The programmer must have a

deep understanding of the program semantics and make sure that the annotated blocks

are commutative for every possible execution order. They need to be aware of side-effects,

otherwise conflicts will happen, which may cause a large number of rollbacks/retries

and/or undefined behavior.

Ideally, every transaction should be referentially transparent3, i.e., every execution

should produce the same result. Adding a verification step to check the correctness of the

annotations could be a viable complement to this approach. Enforcement mechanisms for

transactions to be side-effect free – so that they can be safely rolled-back – have been done

before, namely in software TLS models implemented under the functional realm [22, 24],

where it is possible to isolate side-effect-free computation from side effects.

TLSTM naturally inherits the drawbacks of the previous approaches. DAS, on the

other hand, can exploit more opportunities for parallelism than purely static analysis

without resorting to speculation or execution rollbacks. Despite being the only dynamic

technique studied that can guarantee safe parallelization, we see two shortcomings of

this approach. First, any dependence analysis further than the loop-level analysis that

the authors work with might prove expensive to perform in runtime. Second, in the

worst-case scenario, an arbitrarily heavy analysis will be performed, ending up finding

no opportunities for safe parallelization. This worst-case scenario would be acceptable for

3Referential Transparency: https://wiki.haskell.org/Referential_Transparency

29

https://wiki.haskell.org/Referential_Transparency

CHAPTER 3. RELATED WORK

a static approach, but not so much for a dynamic one. The idea of performing dependence

analysis in parallel is something to consider, though.

The hybrid solutions we studied are fully automatic, in that they require no additional

intervention from the programmer. Furthermore, the fact that there is a static analysis

phase at all translates into a runtime overhead that will typically be smaller than that

of purely dynamic techniques. Yet, the two techniques are polarizing in the way the

combine compile time and runtime computation. While SA can be seen as a mostly-static

analysis technique that extends to runtime if needed, OHA is more of a runtime-heavy

approach backed up by a prior compile time analysis.

OHA suffers from drawbacks similar to those of purely dynamic techniques, namely

when it comes to speculative execution and rollbacks. SA, however, is an interesting tech-

nique for us to consider; it could be worth evaluating whether the benefits of extending

the static analysis surpass the runtime overhead introduced.

Based on this study, we made some decisions regarding the development of our so-

lution. Dynamic analyses are going to be avoided; though they might, in some cases, be

more accurate than purely static analyses, their potentially unsafe behavior combined

with the added runtime overhead go against two of the three design goals we described

in Chapter 1 (those were guaranteeing program correctness, focusing on low overhead

in runtime and keeping it all effortless and invisible to the developer). In fact, those

goals are so important to us that our solution will focus on purely static analyses. SA, the

mostly-static hybrid analysis technique, could be interesting to (potentially) enhance the

final code generation phase. It would require a considerable amount of additional work,

though, pushing it out of the time scope of this dissertation. Nevertheless, it could be

worth considering for future work.

30

C
h
a
p
t
e
r

4
Implementation

This chapter thoroughly covers the solution implemented during this dissertation. Every

algorithm used and/or developed will be explained, discussed and exemplified in a more

abstract, general-purpose way. Later on the chapter, we will focus on how these tech-

niques were applied to the prototype developed for the OutSystems platform. This will

come accompanied with relevant implementation details and technical considerations.

The chapter is organized in three sections. The first section will present a grammar

we defined with the aim of formalizing the scenarios that our solution can cover. Next,

the overall solution is discussed, with a focus on the design decisions that motivated each

individual step and always escorted with an illustrative example. To finalize, on the third

and last section of this chapter an exhibition and discussion of the prototype developed

for the OutSystems platform will take place.

4.1 Defining a Grammar

Despite the focus on the OutSystems platform, it is important to understand that the

algorithms that make up the solution that follows are, on a high level, applicable to both

different programming languages and different scenarios. To better convey this notion,

we defined a grammar (Figure 4.1) that represents the space in which our solution is

applicable. The grammar will be used throughout the upcoming sections, abstracting

away platform-specific notation and details whilst still being easily mappable to and from
the OutSystems platform.

Regarding this grammar – and therefore the scenarios covered by our solution – there

are a few important things to keep in mind. First and foremost, it is module-oriented;

the system we represent can be seen as a set of modules. Besides having their own local

definitions (~D), each module can import/reference functionality (~R) from other modules

31

CHAPTER 4. IMPLEMENTATION

U ::= ~M (system)

M ::=module(m, ~R, ~D) (module)

R ::=ref(m,f , r,w) (value reference)

D ::=n = τ (type definition)
| def f (n, ...n) s (function definition)

s ::=s ; s (sequence)
| while (b) do s (while loop)
| if (b) then s else s (conditional)
| write(n,e) (write)
| return e (return)
| skip (skip)

e ::=num (numeric literal)
| string (string literal)
| e⊕ e (binary operator)
| x (identifier)
| f (e) (call)
| e.a (field selection)
| { ~ak = e} (record literal)
| read(n) (read)

b ::=true (true)
| false (false)
| e == e (equality)
| b∧ b (conjunction)
| ¬b (negation)

τ ::=int (number type)
| string (string type)
| { ~ak : τ} (record type)
| nk (named type)

Figure 4.1: Syntax of the language.

32

4.2. SOLUTION

as well. Each reference R is uniquely identified by the namem of the module it belongs to,

and contains a function definition f . Moreover, each reference has their own Read-Write

Sets, here denoted r and w. Calls between modules are remote calls, and thus the main

target our analysis in the upcoming sections. For clarity, code samples will represent

these remote calls prefixed by the name of the respective module/service. We assume

that the only side-effects present in the language are solely performed by the read and

write operations, which resemble the basic data access operators of a database or some

other data source. This is a simplification from our side, considering that accurately

identifying different kinds of side-effects in an automatic fashion would be complex and

outside the time frame assigned to this work.

Common programming language constructs (e.g. conditions, loops) and primitive

types (e.g. numbers and strings) are also supported. There are also more complex data

types, such as record types, which describe records, collections of fields.

Finally, the language does not support exceptions, leaving that for future work. This

was a simplification, as our target - the OutSystems platform – does support them. Excep-

tions are troublesome when we are dealing with parallelism. Interruptions caused by an

exception in some thread make it difficult to resume the program’s flow; catching them

generates intricate logic, error-prone on a parallel setting. Moreover, adding support for

exceptions would translate into more intricate logic, introducing a considerable amount

of noise into the flow of our solution.

4.2 Solution

In this section we will present and discuss our solution in detail. To aid comprehension,

we will illustrate every single step of our solution with operations from the example sce-

nario presented in Chapter 1. To recall, we are talking about the book-centered platform

architected under a service-oriented model, with independent services and database ta-

bles for operations such as fetching book details, readers and reviews. This section first

introduces an overview of how our solution works on a high level, and further expands

on how every piece works individually, focusing on the motivation and design decisions

behind them. The next subsection focuses on Read-Write Sets Extraction, followed by

Data-Flow and Control-Flow analyses. Program Dependence Graphs are subsequently

explored, and the section closes with a discussion on the methodology employed to study

the dependence graph and give insights on opportunities for operation parallelism.

Before diving into the solution itself, we will now present an example operation to

be used throughout the next sections of this chapter, instantiated in the different phases

of our solution. This example is an extension of the example operation presented in Sec-

tion 1.2 under our hypothetical Service-Oriented Architecture. In this operation we call

SearchBook, where we first attempt to fetch a book’s details (ISBN, ID, author...), given

a title. If the book cannot be found in the system, the operation terminates. Otherwise,

we use the book’s ID (which we get from GetBookDetails) to increment the book’s view

33

CHAPTER 4. IMPLEMENTATION

count (i.e., the number of times the book is viewed in the platform) and to fetch the book’s

readers and reviews. This pictures a simple yet credible example operation; written in

our grammar, this operation would resemble the code shown in Listing 4.1.

// BooksService

def SearchBook(title)

details = BooksService.GetBookDetails(title); // "Details"

if (details.id != NOT_FOUND) then // "Found?"

BooksService.IncrementBookViewCount(details.id); // "Views"

ReadersService.GetBookReaders(details.id); // "Readers"

ReviewsService.GetBookReviews(details.id); // "Reviews"

Listing 4.1: Pseudocode of SearchBook.

The different functions called in SearchBook encapsulate data access operations. It is

important to know which operations are performed and which tables are accessed; how
they’re performed behind the scenes is not relevant here. Listing 4.2 shows the definitions

of these functions. Notice how GetBookDetails, for instance, performs a read operation

on a Books database table, and how IncrementBookViewCount performs both a read and

a write on that same table.

// BooksService

def GetBookDetails(title)

details = read(BooksTable B where B.title == $title);

return details;

// BooksService

def IncrementBookViewCount(id)

var oldCount = read(BooksTable B where B.id == $id).ViewCount;

write(BooksTable B where B.id == $id, oldCount + 1);

// ReadersService

def GetBookReaders(id)

readers = read(ReadersTable R where R.IdsOfBooksRead Contains $id);

return readers;

// ReviewsService

def GetBookReviews(id)

reviews = read(ReviewsTable R where R.BookId == $id);

return reviews;

Listing 4.2: Pseudocode of the operations called inside SearchBook.

Figure 4.2 illustrates the Control-Flow Graph for SearchBook. For brevity, the nodes

are named in accordance to the comments that escort each line-of-code in Listing 4.1.

34

4.2. SOLUTION

Entry Details Found? V iews Readers Reviews Exit
T

F

Figure 4.2: Control-Flow Graph for SearchBook.

This graph will serve as the starting point for many of the steps explored in the

upcoming subsections. As we will see, this is a good example to illustrate all the steps

that will take place throughout our solution.

4.2.1 Overview

Looking back at our solution overview in Chapter 1, there were a few initial directives

established to guide our solution. Those were guarantees of correctness, introduction of

little-to-no overhead in runtime, and that it should be invisible to the developer.

Furthermore, a new guideline organically emerged from the aforementioned ones,

and that is compositionality. Having a solution that is composable would lead to a nat-

urally loosely-coupled architecture, making it easier to develop, iterate and especially

test functionality in isolation. Another important point is that proving each of the com-

ponents’ correctness individually would grant us some confidence in assuring that their

composition would also be correct.

The solution we developed is a combination of purely-static techniques that are fol-

lowed through in a pipeline-like fashion, none of them requiring any intervention of the

developer. The first three analyses (Read-Write Set Extraction, Data-Flow Analysis and

Control-Flow Analysis) gather dependence information. Read-Write Set Extraction must

always precede Data-Dependence Analysis, but apart from that, the order of these three

is interchangeable.

The dependence information is then summarized into a single graph (Dependence

Graph), which is further used to analyse the original program in order to find opportuni-

ties for parallelism (Parallelism Analysis).

4.2.2 Read-Write Set Extraction

As concluded in Section 2.3, one of the conditions needed for safe parallelism is the

absence of unwanted side-effects. Furthermore, the grammar we defined in Section 4.1

dictates that the only side-effects we are considering are database reads and writes. The

first step of our solution is thus to extract information regarding database accesses per-

formed by the functions in our system; this information is what we call Read-Write Sets.

Granularity-wise, we’ll stop the analysis at the point where we know which tables are

accessed. A finer-grained exploration (e.g. table-row level) could allow for parallelism in

35

CHAPTER 4. IMPLEMENTATION

Input

ReadWrite

Set Extraction

DataFlow

Analysis

ControlFlow

Analysis

Dependence

Graph

P arallelism

Analysis
Output

Figure 4.3: Overview of our solution.

a broader range of scenarios. Consider as an example a loop where each iteration writes

to a different row of some database table T; whilst our algorithm would detect depen-

dences between every iteration, a row-level analysis would recognize the iterations as

independent, allowing them to be executed in parallel. We leave that for future work.

Information about Read-Write Sets is not enough to assure opportunities for safe

parallelism by itself, but it is enough to invalidate them: if we have two functions fA and

fB performing database accesses to the same same table, and at least one of those accesses

is a write (as opposed to a read), then their execution order is not interchangeable – we do

not need further analysis to prove that fA and fB are not safe to parallelize.

Data Access Pairs and Triples

A Read-Write Set is nothing more than a set of database access records. These records can

be seen as pairs, Data Access Pairs as we will call them from now on. Each Data Access

Pair identifies a database access that targets some table (DatabaseTableAccessed) and

executes either a read or a write operation (AccessType).

〈 DatabaseTableAccessed, AccessType 〉 (4.1)

Now, as with most of the upcoming steps in our solution, the starting point for Read-Write

Set Extraction is the Control-Flow Graph, which we traverse in order to extract Read-

Write Sets from every node. In practice, we will need to keep track of this information for

the different nodes. To do so, we assign a unique identifier to every node; the Data Access

Pairs are thus augmented into triples:

〈 NodeId, DatabaseTableAccessed, AccessType 〉 (4.2)

To exemplify, a read access on database table BooksTable performed in some node N

would be represented by the following triple:

〈 RealIdOfNodeN, BooksTable, READ 〉 (4.3)

36

4.2. SOLUTION

Algorithm

The algorithm to extract Read-Write Sets is shown in Listing 4.3. It takes a CFG as input

and creates Data Access Triples as it goes through every node extracting Read-Write Sets.

def ExtractReadWriteSets(cfg)

dataAccesses = [];

cfg.Nodes.ForEach { node:

nodeReadsAndWrites = ReadsWrites(node);

nodeDataAccesses = nodeReadsAndWrites.Map { rw:

〈 node.Id, rw.DatabaseTableAccessed , rw.AccessType 〉
});

dataAccesses.AddAll(nodeDataAccesses);

}

return dataAccesses;

Listing 4.3: Pseudocode of ExtractReadWriteSets.

Inspecting the code, it is noticeable that the bulk of the work in the extraction of Read-

Write Sets is made by the function called ReadsWrites. We defined this function for every

element of our grammar, as can be seen in equations 4.4 - 4.16 below:

ReadsWrites(num | string) , { } (4.4)

ReadsWrites(x) , { } (4.5)

ReadsWrites(skip) , { } (4.6)

ReadsWrites(read(n)) , { 〈 n, READ 〉 } (4.7)

ReadsWrites(write(n,e)) , { 〈 n, WRITE 〉 } ∪ ReadsWrites(e) (4.8)

ReadsWrites(e.a) , ReadsWrites(e) (4.9)

ReadsWrites(f (e)) , ReadsWrites(f) ∪ ReadsWrites(e) (4.10)

ReadsWrites(e1 ⊕ e2) , ReadsWrites(e1) ∪ ReadsWrites(e2) (4.11)

ReadsWrites(s1 ; s2) , ReadsWrites(s1) ∪ ReadsWrites(s2) (4.12)

ReadsWrites(return e) , ReadsWrites(e) (4.13)

ReadsWrites(while (b) do e) , ReadsWrites(b) ∪ ReadsWrites(e) (4.14)

ReadsWrites(if (b) then e1 else e2) ,
⋃

k=b,e1,e2

ReadsWrites(k) (4.15)

ReadsWrites(ak
n→= ek) ,

n⋃
k=1

ReadsWrites(ek) (4.16)

The ReadsWrites function is based on Data Access Pairs and set operations involving

those. Primitive data types, variables and the skip operation (4.4 through 4.6) do not

perform database accesses, and thus the ReadsWrites function returns the empty set.

37

CHAPTER 4. IMPLEMENTATION

For the primitive data reading operator (4.7), ReadsWrites directly maps read(n) to

a set with a single element, the Data Access Pair 〈 n, READ 〉. The data writing operator

(4.8) is not just a direct mapping, considering that a write(n,e) operation must have e

evaluated for Read-Write Sets as well.

For all other elements of the grammar (4.9 through 4.16), ReadsWrites is defined

recursively. Furthermore, it is defined in a conservative manner, as guided by the static

analysis approach we’re taking. This is made clear on cases such as 4.15, where the union
operator elucidates our intentions to accommodate for all possible scenarios.

Applying To Our Example

With the algorithm defined, we can now illustrate how it would be applied to our example

scenario. The ExtractReadWriteSets function is called, taking the Control-Flow Graph

as input:

Entry Details Found? V iews Readers Revióews Exit
T

F

Figure 4.4: Control-Flow Graph for SearchBook.

As each of the five nodes is traversed1, the ReadsWrites function is called. For theDetails

node, it would unroll like this (the original code is shortened for clarity):

ReadsWrites(details = read(BooksT able) ; return details) (4.12)

≡ ReadsWrites(details = read(BooksT able)) ∪ ReadsWrites(return details) (4.12)

≡ {〈 BooksT able, READ 〉} ∪ ReadsWrites(return details) (4.7)

≡ {〈 BooksT able, READ 〉} ∪ ReadsWrites(details) (4.13)

≡ {〈 BooksT able, READ 〉} ∪ { } (4.5)

≡ {〈 BooksT able, READ 〉} (-)

Assuming each node has an id field, we then use this information to instantiate a single

Data Access Triple:

〈 Details.id, BooksTable, READ 〉

This procedure would be very similar for the Readers and Reviews nodes, as their func-

tionality is identical to that of Details, the only difference being the tables accessed. This

would yield the following triples:

〈 Readers.id, ReadersTable, READ 〉

〈 Reviews.id, ReviewsTable, READ 〉
1The Entry and Exit nodes are ignored; refer to Chapter 2.

38

4.2. SOLUTION

The Found? node does not perform database accesses, and would thus not yield any triples.
The branches are omitted, as they are analysed next.

ReadsWrites(if (details.id ! = NOT _FOUND) then _ else _) (4.15)

≡ ReadsWrites(details.id ! = null) (4.15)

≡ ReadsWrites(details.id) ∪ ReadsWrites(null) (4.11)

≡ ReadsWrites(details) ∪ ReadsWrites(null) (4.9)

≡ { } ∪ ReadsWrites(null) (4.5)

≡ { } (-)

Finally, the V iews node is an interesting one, as it contains both read and write accesses:

ReadsWrites(readers = read(BooksT able) ; write(BooksT able,oldCount + 1)) (4.12)

≡ ReadsWrites(read(BooksT able)) ∪ ReadsWrites(write(BooksT able,oldCount + 1)) (4.12)

≡ {〈 BooksT able, READ 〉} ∪ ReadsWrites(write(BooksT able,oldCount + 1)) (4.7)

≡ {〈 BooksT able, READ 〉} ∪ {〈 BooksT able, WRITE 〉} ∪ ReadsWrites(oldCount + 1) (4.8)

≡ {〈 BooksT able, READ 〉} ∪ {〈 BooksT able, WRITE 〉} ∪ { } (4.5)

≡ {〈 BooksT able, READ 〉, 〈 BooksT able, WRITE 〉} (-)

This would generate two Data Access Triples:

〈 Views.id, BooksTable, READ 〉

〈 Views.id, BooksTable, WRITE 〉

The triples generated are enough to give us some useful insights. Notice how, in our

example, there is a clash in Read-Write Sets found in two of the generated triples, as they

access the same data source and at least one of the accesses is a write:

〈 Details.id, BooksTable, READ 〉

〈 Views.id, BooksTable, WRITE 〉

This means that, without needing any more information, we know for sure that Details

and Views cannot be safely executed in parallel. As we will see, this is a recurring pattern

in the upcoming steps of our solution: individual phases can flag impossibilities for par-

allelism, but not uncover opportunities for safe parallelism. The union of the information

gathered by all the phases, though, is.

4.2.3 Data-Flow Analysis

Consider Figure 4.5, the Control-Flow Graph for a simplified version of our example.

Entry Details Readers Exit

Figure 4.5: Control-Flow Graph of a simple program.

39

CHAPTER 4. IMPLEMENTATION

Recall that in the previous step of Read-Write Sets Extraction, we concluded that

Details and Readers both perform database accesses to different tables (BooksTable

and ReadersTable, respectively). This means that, based solely on this information,

Details and Readers are safe to be executed in parallel. However, looking back at Listing

4.1, we notice something important: GetBookReaders takes as input details.id, where

the details object is the output of GetBookDetails. This implies a data dependency

Details −→ Readers which requires a specific execution order and means the two nodes

are effectively not safely parallelizable. Finding these dependences is where data-flow

analysis comes into play as the next step in our pipeline.

Our strategy of data-flow analysis is twofold. A first step of Reaching Definitions

Analysis gives us insights on which variable definitions are active at each node. This is

the starting point we need to start checking for clashes (dependences) caused by variable

uses and definitions across nodes, a static analysis step we call Data Dependence Analysis.

Incorporating Read-Write Sets

Despite being gathered separately, in different phases, Read-Write Sets are treated in a

similar fashion to regular data dependences. Ultimately, Read-Write Sets represent data

accesses just as much as input/output scenarios that happen with regular variables, and

we should treat them that way. Thus, the output of the Read-Write Set Analysis phase is

injected into the entirety of the Data-Flow Analysis step.

Reaching Definitions

Reaching Definitions is a classic data-flow analysis algorithm that determines which

variable definitions (writes) may reach a given point in the code. The set of data-flow

equations (Chapter 2) for Reaching Definitions are as presented below, for some generic

node b:

OUTb , DEFb ∪ (INb −KILLSb)

INb ,
⋃

p ∈ preds(b)
(OUTp)

(4.20)

DEFb holds the set of variable definitions made in node b. For implementation pur-

poses, and throughout the remaining of this document, we will represent variable uses

(reads) and definitions (writes) as pairs 〈 Variable Used/Defined, BasicBlock 〉. The

IN , OUT , DEF and KILLS structures are all sets of V ariableDef inition. KILLSb holds

the set of all definitions that were killed (overwritten) in node b; as an example, if

node b (only) defines some variable v (a definition we would represent as 〈 v, b 〉), and

ALLDEFS(v) holds all definitions of v, then KILLSb , ALLDEFS(v) − 〈 v, b 〉. As

we will see, the computation of variable definitions (DEF) and definitions overwritten

(KILLS) makes reaching definitions an important first step for the calculation of data

dependences.

40

4.2. SOLUTION

Listing 4.4 shows the algorithm used to compute reaching definitions.

def ComputeReachingDefinitions(cfg)

cfg.Nodes.ForEach { N: OUTN = {}};

ChangedSet = CFG.Nodes;

while (ChangedSet != {}) do

N = ChangedSet.RemoveAny();

// Populate IN

INN =
⋃

p ∈ P redecessors(N)
OUTp;

OldOut = OUTN ;

// Populate OUT

OUTN =DEFN ∪ (INN −KILLSN);
if (OUTN != OldOut) then

ChangedSet = ChangedSet ∪ N.Successors();

Listing 4.4: Algorithm to compute reaching definitions.

Data Dependence Analysis

Data dependences are very similar to clashes in Read-Write Sets: if two operations OpA

and OpB both access some variable v and at least one of the accesses is an assignment (i.e.,

a definition, as opposed to an use), then there is a data dependence between OpA and OpB.

This means that, in the same way we need DEF to hold information regarding variable

definitions, it is also crucial to know where are variables used, so that we can find these

clashes. Here we assume that this knowledge of variable uses and definitions is available

for every node.

Recalling from Chapter 2, there are three types of data dependences: Read-After-Write

(or flow dependence, δf), Write-After-Read (or anti dependence, δa) and Write-After-Write

(or output dependence, δo). Though the actual types of dependences are not relevant

for our solution, it is crucial for our analysis to target each one of them individually in

order to uncover all existent data dependences. Listings 4.5, 4.6 and 4.7 demonstrate the

procedures we created to detect each type of dependence for node b. In practice, these

procedures will be applied to every node of the program we are analysing.

def ComputeReadAfterWriteDependences(n)

for each node b in the graph

for each VariableUse in node b, 〈 v,b 〉 do

for each VariableDefinition in INb where v is defined, 〈 v,n 〉 do

dependence detected: n
δf<v>−−−−−→ b

Listing 4.5: Algorithm to find Read-After-Write data dependences for some node n.

41

CHAPTER 4. IMPLEMENTATION

The algorithm of Listing 4.5 uncovers Read-After-Write dependences for scenarios such

as the one depicted in Figure 4.6.

... n

writes v

... b

reads v

...

Figure 4.6: Example graph scenario with a Read-After-Write data dependence.

Here we represent a data dependence between two nodes n and b as n −→ b. The type of

dependence and the variable involved are written on top of the arrow. The Read-After-

Write dependence n
δf<v>−−−−−→ b is read as node b reads a variable v that was previously written

in node n. The direction of the dependence establishes the relative execution order between

the two involved nodes. As we will see, this direction is relevant for the upcoming steps.

def ComputeWriteAfterReadDependences(n)

for each node b in the graph

for each VariableUse in b, 〈 v,b 〉 do

for each VariableDefinition in KILLSn where v is killed, 〈 v,n 〉 do

if (n.PostOrderIndex > b.PostOrderIndex) then

dependence detected: b
δa<v>−−−−−→ n

Listing 4.6: Algorithm to find Write-After-Read data dependences for some node n.

In Listing 4.6, the PostOrderIndex comparison is used to assure that the dependence

found is valid in terms of the program’s flow of execution. Post-order indexing is achieved

with a depth-first search where the successors of a node are visited (and indexed) before
the node itself is (post-order will be further discussed in the next subsection).

A Write-After-Read dependence is valid if and only if the write operation happens

effectively after the read one. Figure 4.7 below exemplifies the type of Write-After-Read

scenarios that would be discovered by the procedure of Listing 4.6.

... b

reads v

... n

writes v

...

Figure 4.7: Example graph scenario with a Write-After-Read data dependence.

As can be seen in Listing 4.7, Write-After-Write data dependences are detected by

looking at pairs of kills and definitions of the same variable across different nodes. Fig-

ure 4.8 below depicts the type of scenarios that would be signaled as Write-After-Write

dependences by our algorithm.

42

4.2. SOLUTION

def ComputeWriteAfterWriteDependences(n)

for each node b in the graph

for each VariableDefinition in KILLSb where v is killed, 〈 v,n 〉 do

if (n.postOrderIndex < b.PostOrderIndex) then

dependence detected: n
δo<v>−−−−−→ b

Listing 4.7: Algorithm to find Write-After-Write data dependences for some node n.

... n

writes v

... b

writes v

...

Figure 4.8: Example graph scenario with a Write-After-Write data dependence.

Notice how the procedures to compute Write-After-Read and Write-After-Write (List-

ings 4.6 and 4.7) data dependences make use of the PostOrderIndex; this is necessary in

order to make sure that the dependences found are valid in regards to the natural flow of

the analysed program. For Read-After-Write dependences this is not necessary; for some

basic block b, every variable definition on INb happened on some node that necessarily

precedes b in execution.

Applying To Our Example

The first step in applying data-flow analysis to our example is to summarize the variable

uses and definitions for each node. Table 4.1 displays such information. As an example,

both name and BooksTable are used (read) inside the Details node, whereas details is

defined (written). We’re identifying every definition with a shorthand, for brevity (in this

case #d and #B for the details and BooksTable definitions, respectively).

Details Found? Views Readers Reviews

Uses
name,

BooksTable
details

name,

BooksTable

name,

ReadersTable

name,

ReviewsTable

Defs details (#d) - BooksTable (#B) - -

Table 4.1: Variable uses and definitions for every node of our example.

The next step is to apply the algorithm of Reaching Definitions (Listing 4.4) to our

example, which would yield the results presented in Table 4.2.

This information is enough for us to uncover the data dependences existent in our

example. Applying the procedures examined in Listings 4.5, 4.6 and 4.7, three flow

dependences and one anti-dependence are uncovered, as shown in Figure 4.9.

43

CHAPTER 4. IMPLEMENTATION

Node (N) INN DEFN KILLN OUTN

Details ∅ {#d} ∅ {#d}

Found? {#d} ∅ ∅ {#d}

Views {#d} {#B} ∅ {#d,#B}

Readers {#d,#B} ∅ ∅ {#d,#B}

Reviews {#d,#B} ∅ ∅ {#d,#B}

Table 4.2: Reaching definitions for our example.

Details

Found?

V iews Readers

Reviews

δf

δa δf δf

δf

Figure 4.9: Data dependences found for our example program.

4.2.4 Control-Flow Analysis

Analysis of control flow comes into play to detect situations of conditional execution. The

concept of conditional execution is closely related to that of control dependence, as dis-

cussed in Chapter 2. Consider Figure 4.10 below, a stripped-down version of our original

example.

Entry Details Found? ... Reviews Exit
T

F

Figure 4.10: Control-Flow Graph of a simple program.

To detect control dependences between nodes (and therefore, scenarios of conditional

execution), we followed the techniques studied during the preparation phase, presented

in Chapter 2: creating a (post-) dominator tree and building a (post-) dominance frontier.

Algorithm

The topic of finding dominators in control-flow graphs has been thoroughly researched [11,

14, 20, 29, 36]. Two of the most well-known algorithms are Tarjan and Lengauer’s [29]

44

4.2. SOLUTION

and the one by Cooper et al. [14]. Though the former theoretically outperforms all other

algorithms when it comes to time complexity, its rather intricate implementation led us

to opt for the latter, which was the clear winner in the trade-off between performance

and implementation effort. Moreover, efficiency was not a critical criterion for us, as we

were more interested in studying the integration and pipelining of a set of techniques, and

not specific implementations.

The complete algorithm to detect control dependences is made up of three computa-

tion moments: post-order, post-dominator tree and post-dominance frontier. The original

algorithms by Cooper et al. operate over the nodes of the CFG indexed by post-order

value in order to compute the dominator tree and the dominance frontier. Post-order is a

depth-first-search traversal that consists of visiting all the successors of a node and only
then visit the node itself. The algorithm to compute the post-order indexes of nodes in a

graph is shown in Listing 4.8.

visitedNodes = {};

postOrderIndexes = [];

currentPostOrderIndex = 0;

...

def ComputePostOrder(rootNode)

visitedNodes.Add(rootNode);

rootNode.Successors().ForEach { succ:

if (!visitedNodes.Contains(succ)) then

ComputePostOrder(succ);

}

postOrderIndexes[rootNode] = currentPostOrderIndex++;

Listing 4.8: Algorithm to calculate the post-order indexes of nodes in a graph.

The function takes a root node as input, adds it to the set of nodes visited and recursively

calls ComputePostOrder for every successor of that root node. The code snippet assumes

the existence of three data structures: the aforementioned set of visited nodes, a counter

to keep track of the current post-order index and an array to hold the indexes calculated.

A

B

C

D

Figure 4.11: A simple graph.

For a given graph, there are multiple possible correct post-orders. Take a look at Figure

4.11: for this graph, calling ComputePostOrder with A as the root node could either yield

D,C,B,A or D,B,C,A, depending on the inner workings of the data structures/iterators

45

CHAPTER 4. IMPLEMENTATION

used and on the implementation itself. Though both post-orders are valid, this can be

a problem, something we will discuss at the end of the section. Now, because it is post-
dominance we are interested in, for the uncovering of control dependences, we will follow

the strategy discussed in Chapter 2: computing (regular) dominance relationships on the

reverse control-flow graph. This means that, before computing post-order and applying

the original algorithms proposed by Cooper et al. [14] (Listings 4.9, 4.10, 4.11), we will

reverse our original control-flow graph.

def ComputeImmediateDominators(cfg)

nodes = cfg.Nodes;

nodes.ForEach { n: doms[n] = Undefined };

doms[startNode] = startNode;

changed = true;

while (changed) do

changed = false;

for all nodes, b, in reverse postorder (except startNode)

newIdom = b.Successors().Where { c: doms[c] != Undefined }.First();

for all other predecessors, p, of b

if doms[p] != Undefined then

newIdom = Intersect(p, newIdom);

if doms[b] != newIdom then

doms[b] = newIdom;

Changed = true;

Listing 4.9: Cooper et al.’s algorithm to compute the dominator tree [14].

def Intersect(node1, node2)

finger1 = node1;

finger2 = node2;

while (finger1 != finger2) do

if (finger2 < finger1) finger2 = doms[finger2];

if (finger1 < finger2) finger1 = doms[finger1];

return finger1

Listing 4.10: Auxiliary Intersect function (Cooper et al. [14]).

46

4.2. SOLUTION

def ComputeDominanceFrontier()

CFG.Nodes.ForEach { n:

if (n.Predecessors() >= 2) then

n.Predecessors().ForEach { p:

runner = p;

while (runner != doms[b]) do

domFrontier[runner].Add(b);

runner = doms[runner];

}

}

Listing 4.11: Cooper et al.’s algorithm to compute the dominance frontier [14].

Applying To Our Example

Right after an initial step where we create the reverse control-flow graph of our original

graph, the post-order algorithm is applied on this reverse graph, indexing the nodes as

shown in Figure 4.12:

Entry

0

Details

1

Found?

2

V iews

3

Readers

4

Reviews

5

Exit

6

T

F

Figure 4.12: Reverse Control-Flow Graph of SearchBook, with each node indexed by
post-order.

Next, we compute the post-dominator tree for our example; we do so by comput-

ing dominators on the reverse control-flow graph. Considering we are looking for post-
dominators, we apply the dominator tree algorithm (Listing 4.9) to our reverse control-

flow graph and reverse the roles of the Entry and Exit nodes in the computation of those

post-dominators. Recalling the theory from Chapter 2, a node X is said to dominate a

node Y if X appears in every path from Entry to Y . To compute our post-dominator

tree, we just swap the Entry node for the Exit node in this formulae. The result is the

post-dominator tree presented in Figure 4.13.

The final step is to compute the post-dominance frontier, given the immediate post-

dominators and the (reverse) control-flow graph of our program. Applying the algorithm

of Listing 4.11 we get the post-dominance frontier shown in Table 4.3.

By definition, and as explained in Chapter 2, a node X is control-dependent on a node

Y if and only if Y is present on the post-dominance frontier of X. Following this notion

and looking at our results in Table 4.3, we can see that Views, Readers and Reviews are

control-dependent on Found?, as can be seen in Figure 4.14.

47

CHAPTER 4. IMPLEMENTATION

Exit

Reviews Readers V iews Found?

Details

Figure 4.13: Post-dominator tree for our example.

Entry Details Found? Views Readers Reviews Exit

Post-Dom.

Frontier ∅ ∅ ∅ {Found?} {Found?} {Found?} ∅

Table 4.3: Post-dominance frontier for every node of our example.

Found?

V iews Readers Reviews

T T T

Figure 4.14: Control dependences found for our example program.

One thing to take into account is that cycles in directed graphs impose a problem

for the computation of post-order indexes. Consider an example graph where we have

edges X −→ Y and Y −→ X. When faced with such a scenario, the predecessor/successor

relationship between the two nodes is undefined. Whilst the post-order traversal algorithm

does terminate when faced with this type of graphs, the resulting indexing is not as clearly

defined. Keeping in mind that post-order indexing is the starting point for the control-

dependence algorithms, we can see that this particularity can translate into unreliable

results when we’re faced with cyclic graphs.

From what we researched, there is not a lot of literature on solving this type of sce-

narios for graphs. The only possible solution we found that could prove viable to handle

these cases could be to compute our graph’s Strongly Connected Components [8] (i.e.

grouping every loop into a single component) and apply post-order traversals on those

48

4.2. SOLUTION

components. The analysis and implementation of this technique is left for future work.

4.2.5 Program Dependence Graph

With both data and control dependences calculated, the next step is to summarize them

all into a single data structure, one that clearly displays all the dependences of every node

and is easy to parse and analyse. This data structure is the Program Dependence Graph2,

and the one for our example can be seen in Figure 4.15 below. The control and data

dependences found in the previous steps are represented with solid lines and dashed

lines, respectively.

Entry

Details

Found?V iews

Readers

Reviews

T

T

T

δf
δf δa

δf

δf

Figure 4.15: Program Dependence Graph for our example program.

Notice how, in the graph, there is an additional dependence between the Entry and

Details nodes. For every nodeN in the program dependence graph that has no incoming

edges, we create a dependence Entry −→ N ; this way we have a well-defined traversing

order and analyse the graph starting from the Entry node.

Moreover, because the types of data dependences are irrelevant to our analysis, we

restrict the number of data dependence edges from one node to another to one. For

representation purposes, our graph depicts both a flow and an anti dependence from

nodes Entry to Details. In practice, however, we only create an edge for the first of the

two dependences that is uncovered; having multiple edges conveys no extra information.
2Program Dependence Graphs were discussed in Chapter 2.

49

CHAPTER 4. IMPLEMENTATION

One important attribute of our Program Dependence Graph is that there will never

be circular dependences between nodes, e.g., for two nodes M and N , both dependences

M −→N andN −→M. The presence of circular dependences implies that we are ignoring

the program’s natural flow during the dependence calculation steps; not taking into

account this flow makes it rather difficult to parallelize blocks. This absence of circular

dependences is a result of the way data dependences are calculated, as the post-order

indexing on procedures 4.5, 4.6 and 4.7 is used to define a relative ordering between the

nodes, and thus, between their dependences. This will prove useful for the next step.

4.2.6 Analysis of Parallelism

The final step in our pipeline is to analyse the program dependence graph, looking at the

strictly-necessary dependences between the nodes and establishing a relative execution

order between them. The way we institute this order is by assigning every node to what we

call a section. A section holds a set of nodes, and is tagged with a number; no two sections

will ever have the same number, and we represent a section tagged i as Si . Consider

two sections, Si and Sj , where i < j. The tag numbers inform us that every node in Sj is

dependent on one or more nodes assigned to Si . In other words, the nodes in Sj should

only get to execute after all the nodes assigned to Si have finished their execution. If a

section has more than one nodes assigned to it, they can all, in theory, be safely executed

in parallel (although special attention is needed for a certain scenario, something we will

discuss shortly). This behavior is illustrated in Figure 4.16 below.

Si
NodeA

Si+1

NodeB

NodeC

Sequential

P arallel

Figure 4.16: Flow of node assignments to sections, and how it can be interpreted.

We determine which section a node gets assigned to by looking at the section tag

numbers of all the predecessors of that node in the graph. Consider an example where our

dependence graph contains two nodes, M and N . If there is a dependence edge M −→N ,

and M is assigned to section Sm, then N will necessarily be assigned to some section

Sn where m < n. If M −→ N is the only incident edge for N , then N gets assigned to

Sm + 1. Otherwise, we check for the maximum tag number in all of N ’s predecessors and

increment it, a behaviour exemplified in Figure 4.17 below.

The algorithm that traverses the dependence graph and assigns nodes to sections is shown

in Listing 4.12.

def AssignSectionsToNodes(pdg)

sections = empty map<Node, Section>;

50

4.2. SOLUTION

Si

A

B

C

Si

Si+1

A

B

C

Si

Si+1

Smax{i, i+1}+1

A

B

C

Figure 4.17: A simple Program Dependence Graph showcasing the assignments nodes to
sections. The dependence information on the edges is omitted for simplicity.

currentNode = pdg.Nodes.Entry;

toExplore = empty queue;

successors = currentNode.Successors();

toExplore.EnqueueAll(successors.SortedByIncomingEdges());

while (toExplore not empty) do

currentNode = toExplore.Dequeue();

for each incoming edge E into currentNode {

currentNode.AddDependenceFromSection(sections[E.nodeFrom]);

}

sections[currentNode] = Smax of DependencesFrom[currentNode] + 1;

for each node N in currentNode.Successors().SortedByIncomingEdges() {

if (N not in toExplore) then

toExplore.Enqueue(N);

}

Listing 4.12: Algorithm that assigns the Program Dependence Graph’s nodes to sections.

At its core, the algorithm works by looking at the incoming edges (the dependences) of

every node and tagging it accordingly. By default, the Entry node is always assigned to S0,

and the Exit node is omitted, as it is always the last one to execute. In our example, being

the only successor of Entry, the Details node gets assigned to S1, and so we proceed to

its successors. It is important that we hold the nodes yet to explore in a queue, and that

the successors of a node are added to that queue in ascending order of incident edges.

Figure 4.18 depicts why this is important.

The simplified versions of our example dependence graph represent different traversal

orders to explore the successors of the Details node. On the left graph, the Readers node

is explored before the Found? node. The problem with this approach is that at the point

where Readers is being analysed, the section of one of its dependences, Found?, is still

undefined, making it impossible to determine the section of Readers itself. If, on the other

hand, we start our traversal from the successor with the least amount of dependences, then

51

CHAPTER 4. IMPLEMENTATION

S1

S?

Smax{1, ?}+1

Details

Found?

Readers

S1

S2

Smax{1, 2}+1

Details

Found?

Readers

Figure 4.18: Simplified Program Dependence Graphs for our example, showcasing the
importance of the traversal order.

these cases of dependences between sibling nodes are handled correctly (graph on the

right). Applying the algorithm to our example scenario would yield the results displayed

in Table 4.4 below.

Node Dependences From Section

Entry − S0

Details Entry (S0) S1

Found? Details (S1) S2

Views Details (S1), Found? (S2) S3

Readers Details (S1), Found? (S2) S3

Reviews Details (S1), Found? (S2) S3

Table 4.4: Section assignments for the nodes in our example.

The information gathered regarding section assignments lets us reorganize the code

in a way that makes use of parallelism where possible. Following the rationale illustrated

in Figure 4.16, different sections are executed sequentially, following the order of the tag

numbers, whilst the nodes inside each section execute in parallel.

There are, however, a couple of special cases that do not fully comply with this rule,

and thus should be handled with care.

52

4.2. SOLUTION

First, if we have any two nodes that have been assigned to the same section but are

mutually exclusive in the flow of the original program, then these two nodes should not,
of course, be executed in parallel; that would translate into a violation of the semantics

of the original program. These are the scenarios where the Program Dependence Graph

would come in handy in this process of parallel code generation: when dealing with

nodes that have control dependences, inspecting the condition on the predecessor and the

label on the control dependence arc can grant a guard condition that the code generation

algorithm would use to escort the parallel execution of those same nodes.

Second, loops in the program present yet another interesting setting, as there can be

both parallelism across iterations and parallelism on the operations inside the body of the

loop. The operations that comprise the body of a loop are uncovered by inspecting the

Program Dependence Graph and checking if the branching of flow comes from a loop

node (i.e., not a conditional node). We assume parallelism across iterations on a for loop

can exist as long as no operation inside the body of the loop performs any operation that

mutates state somehow, such as database writes or variable definitions. Parallelism for

the operations inside the body of each iteration follows the aforementioned rules: if the

operations are assigned to the same section, then they can be safely executed in parallel.

Even though, due to time constraints, the step of parallel code generation was not

formalized - nor did it make it to the prototype – we believe that having this intuition is

quite a relevant stepping stone to achieve this in a future time. For clarity, Chapter 5 will

further exemplify these scenarios.

Below, Listing 4.13 recalls what the code for our original example looked like:

// BooksService

def SearchBook(title)

details = BooksService.GetBookDetails(title) // "Details", S1

if (details.id != NOT_FOUND) then // "Found?", S2

BooksService.IncrementBookViewCount(details.id) // "Views", S3

ReadersService.GetBookReaders(details.id) // "Readers", S3

ReviewsService.GetBookReviews(details.id) // "Reviews", S3

Listing 4.13: Code for our example scenario.

With the intuitions described above, the parallel code generation step would transform

the original code into something like what is shown in Listing 4.14. For illustration

purposes, assume the existence of a parallel construct that wraps some operations and

performs them in parallel.

// BooksService

def SearchBook(title)

details = BooksService.GetBookDetails(title); // "Details", S1

if (details.id != NOT_FOUND) then // "Found?", S2

53

CHAPTER 4. IMPLEMENTATION

parallel {

BooksService.IncrementBookViewCount(details.id); // "Views", S3

ReadersService.GetBookReaders(details.id); // "Readers", S3

ReviewsService.GetBookReviews(details.id); // "Reviews", S3

}

Listing 4.14: Parallel version of our original example.

What we gain by doing this is a significant cut in runtime. Let’s say that the runtime

for our original version of SearchBook, represented tSearchBook , is approximately given by

the sum of the runtimes of its operations:

tSearchBook = tDetails + tFound? + tV iews + tReaders + tReviews

With the optimized version shown in Listing 4.14, where operations Views, Readers and

Reviews are all executed in parallel, the runtime changes to the following:

tSearchBook = tDetails + tFound? +max { tV iews, tReaders, tReviews }

Considering how the remote calls make up the bulk of runtime, we can consider the

execution time of Found? to be negligible. Moreover, if we surmise that each service action

call takes approximately the same time to execute from start to finish - which is a rough,

nevertheless reasonable assumption, considering there is always some latency involved

- then, with the optimized version, we would achieve a relative speedup of around 50%

in this scenario. Naturally, different programs will yield different patterns, and therefore

different levels of operation parallelism exploitation. This is something we will address

as we discuss evaluation on Chapter 5.

4.3 Prototype in OutSystems

We developed a prototype in the context of the OutSystems platform, employing the

strategies and processes discussed in the previous chapter, and here we will discuss it

very briefly. Figure 4.19 shows the SearchBook operation implemented in OutSystems.

Figure 4.19: Our example scenario modeled in OutSystems.

54

4.3. PROTOTYPE IN OUTSYSTEMS

As Read-Write Sets get extracted from our actions, they are stored as Data Access

Triples in that action’s signature, a collection of metadata relevant to the action. A sim-

plified snippet of the signature for BookProcedure can be seen in Figure 4.20. When

omitted, the AccessType is a read access.

Figure 4.20: Action Signature of SearchBook displaying its Read-Write Sets.

As with software application development in general, the logic of an OutSystems

application is in constant, rapid change during development. Thus, we found it important

to make our analysis reactive in the prototype; when nodes get added, updated or removed

from an action, a new Read-Write Sets extraction is triggered and the new values are

updated on the action signature. This triggering is optimized to only happen for nodes

that can effectively perform database accesses, and therefore impact the Read-Write Sets.

Figure 4.21 presents those nodes, the database access primitives of OutSystems, which can

be roughly modeled by the read and write primitives from the language presented earlier.

To extract which database tables are accessed in an Advanced Query (the rightmost node

on the figure), we developed a simple SQL parser capable of distinguishing read from

write accesses and identifying the names of the tables accessed. Considering how Server

Actions and Service Actions3 can – and often do – encapsulate those same database access

primitives in their logic, they too are triggering nodes themselves. Due to the complex

life-cycle and internal behavior of these nodes, keeping the firing of events to a minimum

was also something we had to optimize.

The most dynamism on the prototype, however, is achieved with the propagation of

Read-Write Set changes to all the consumers of the action that suffered change, i.e., to

all the other actions that call it. Moreover, these consumers can themselves be called by

3Server and Service Actions in OutSystems were discussed in Subsection 2.1.3.

55

CHAPTER 4. IMPLEMENTATION

Figure 4.21: Database access primitives in OutSystems.

other actions (which can also be called by other actions...), and so those too need to have

their own Read-Write Sets refreshed. This behavior is depicted in Figure 4.22 below:

...

on ReadWrite
changes

notif
y

notif y

notif y

notif y

Figure 4.22: Propagation of Read-Write Set changes on our prototype.

Changes are propagated not only to actions from the same module but also across

modules, once the module is published and the consumers of that module fetch the lasted

updated version of it. Testing this behavior was the main reason why this step of Read-

Write Set Analysis was developed on the Service Studio (the OutSystems IDE) codebase.

All other analyses were developed on the compiler side.

Both the extractions of Read-Write Sets and the propagation of their changes support

recursive (Action A calls Action A) and mutually-recursive (Action A calls Action B and

Action B calls Action A) scenarios. Mutually-recursive scenarios proved particularly

challenging to handle, as Read-Write Set changes would cause the flow of notifications

(Figure 4.22) to create an infinite loop, terminating in a stack overflow. To handle these

situations, we augmented the events with information regarding which action caused the

triggering in the first place, so that it could be skipped by all the observers that also call

that same action in their own flow.

The remaining analyses that comprise our solution took place in the OutSystems com-

piler, which came with the inevitable overhead associated with learning and navigating

yet another large codebase.

The first thing that happens in the compiler side is the translation of the original

program graph modeled in OutSystems to a simpler version of it, mapping the original

nodes and edges to lighter structures that hold just the information we need. All the steps

56

4.3. PROTOTYPE IN OUTSYSTEMS

that come next are thus applied on top of this simplified version.

For Data-Flow Analysis, we built on an existing data-flow algorithm that already

existed in the compiler – though it was not complete for all nodes, and was only available

during a specific compilation moment, details that arose some challenge – enriching it

with more information. Normalizing the representation of Read-Write Sets so that they

could fit this analysis (i.e., be treated similarly to regular data dependences) was also an

important detail.

Throughout the implementation phase, care was taken to make sure that the code for

had a clean API and an organized, expandable and loosely-coupled structure; this made it

easier not only to develop and test each component in isolation, but also to accommodate

for future work changes.

57

C
h
a
p
t
e
r

5
Evaluation

One of our main goals for development was to evolve the prototype to a point where

identifying the next step of future work would be a reasonably straightforward task.

This checkpoint, as we call it, was successfully achieved with the sectioning algorithm

showcased in 4.2.6. Within the time frame of this dissertation, however, we were not able

to bring the OutSystems prototype to a code-generation phase, meaning we cannot see

the full result of our solution in practice. All the things discussed in Chapter 4 made their

way into the OutSystems prototype; this was, of course, the concrete target of our work,

and it is in that context in which we will evaluate our solution.

In this chapter, we will expand on the ways we evaluated our solution. The evaluation

was mostly based on empirical testing, once again with the help of the book-centered,

service-oriented platform example we have been using along the way. Different scenarios

will be instantiated in OutSystems, going from recurring patterns in user-facing software

applications to more specific edge cases, but always highlighting some aspect of our

solution. Whether we managed to respect the development guidelines we imposed in

Chapter 1 will also be a topic of discussion.

5.1 Common Patterns

Some UI patterns are very common in modern applications, and so is the logic that

handles the data fetching/management needed to back them up. In this section we will

present some of these well-known patterns in a simplified fashion, in the context of our

book-centered example. We will discuss how the underlying logic would be carried out

currently in OutSystems, and the applicability of our work.

59

CHAPTER 5. EVALUATION

Fetching Data from Multiple Sources

Displaying a handful of information from different sources in some kind of list is a

common occurrence in user-facing applications. Let’s assume that, as they enter our

application, the user is presented with a dashboard containing information about the

most popular books, the most popular reviews and the most prolific readers of the month

(i.e. the ones who have read the most books in that month). In OutSystems, we could

model this scenario with three Service Action calls, as shown in Figure 5.1.

Figure 5.1: OutSystems logic for fetching data from multiple sources.

Behind the scenes, each of these Service Actions will perform a remote call to the

respective service, which in turn will make the query to the appropriate database table.

From left to right, the Service Action calls will target the Books, Reviews and Readers

database tables, respectively, and these accesses are detected by our Read-Write Sets

Extraction algorithm. There is no branching of control-flow, nor there are any input-

output data dependences, which leads to a simple Program Dependence Graph (node

names are shortened for display reasons):

Entry

P opular
Books

P opular
Reviews

Readers
Of

Month

T T T

Figure 5.2: Program Dependence Graph for our example of Figure 5.1.

The sectioning algorithm is then run, yielding the results displayed in Table 5.1.

The information in Table 5.1 tells us that, to the extent of assumptions of our algo-

rithm, the three service calls can all be executed in parallel. Due to the intrinsic simplicity

of this scenario – where we do not need any information that is only available in runtime

– injecting this information in the code generation step would signal the compiler to wrap

the three calls in a parallel block.

60

5.1. COMMON PATTERNS

Node Dependences From Section

Entry − S0

GetPopularBooks Entry (S0) S1

GetPopularReviews Entry (S0) S1

GetReadersOfTheMonth Entry (S0) S1

Table 5.1: Section assignments for the nodes in our example of Figure 5.1.

Let’s say that the runtime for our original version of this data-fetching logic is approx-

imately given by the sum of the runtimes of its operations:

ttotal = tGetP opularBooks + tGetP opularReviews + tGetReadersOf T heMonth

With the optimized version where operations GetPopularBooks, GetPopularReviews

and GetReadersOfTheMonth are executed in parallel, the runtime changes:

t′total =max { tGetP opularBooks, tGetP opularReviews, tGetReadersOf T heMonth }

If we once again suppose that each service action call takes approximately the same time

to execute from start to finish – which is a rough, nevertheless reasonable assumption,

then, with our optimized version, we would achieve a relative speedup of around 66% in

this scenario.

Conditional Data Fetching

Conditional data fetching represents a common pattern where it may or may not be feasi-

ble to execute actions in parallel. For instance, in Figure 5.3 we can see the OutSystems

logic necessary to look up a user in the database, given their name, and in case the user is

found, gather information regarding the books they’ve read.

In this example, the GetUserInfoByName and GetBooksReadByUser target two differ-

ent tables (Users and Books, respectively), and thus our algorithm detects no Read-Write

Set clashes between the two. Implementation details aside, it does, however, detect a data

dependence (input-output) between GetUserInfoByName and UserFound?, and a control

dependence between UserFound? and GetBooksReadByUser. No opportunities for safe

parallelization are found by our algorithm; in other words, it flags the program as bound

to execute in a sequential fashion - and rightfully so.

Nevertheless, there are scenarios of conditional data fetching where there is room for

some parallelism. Take a look at Figure 5.4, an extension of the previous example:

The difference from this example to the one of Figure 5.3 is the introduction of the

service call to GetTopReviewsByUser. Now, after the UserFound? verification we have

61

CHAPTER 5. EVALUATION

Figure 5.3: OutSystems logic for a simple example of conditional data fetching.

Figure 5.4: OutSystems logic for a simple example of conditional data fetching.

not one but two service calls. Given that only data reads are performed, there are no

Read-Write Set clashes between the two actions. This leaves us with a scenario similar

to that of Figure 5.1, and a dependence graph as shown in Figure 5.5. The dependence

graph would then allow us to section our nodes as displayed below in Table 5.2.

Taking into account that it is the service action calls that make up the bulk of runtime

in these pieces of logic, let’s say that the runtime for our original version is, once again,

approximately given by the sum of the runtimes of its service calls:

ttotal = tGetUserInf oByName + tGetBooksReadByUser + tGetT opReviewsByUser

With the optimized version where operations GetPopularBooks, GetPopularReviews

and GetReadersOfTheMonth are all executed in parallel, the runtime changes, grant a

relative speedup of roughly 33%:

t′total = tGetUserInf oByName + max { tGetBooksReadByUser , tGetT opReviewsByUser }

62

5.1. COMMON PATTERNS

Entry

User
Inf o

Found?

Books
Read

T op
Reviews

T T

δf

δf δf

Figure 5.5: Program Dependence Graph for our example of Figure 5.4.

Node Dependences From Section

Entry − S0

GetUserInfoByName Entry (S0) S1

UserFound? GetUserInfoByName (S1) S2

GetBooksReadByUser GetUserInfoByName (S1), UserFound? (S2) S3

GetTopReviewsByUser GetUserInfoByName (S1), UserFound? (S2) S3

Table 5.2: Section assignments for the nodes in our example of Figure 5.4.

63

CHAPTER 5. EVALUATION

Dependence-Independent, Yet Mutually Exclusive Operations

There are scenarios where sectioning information by itself is not enough to make decisions

on operation parallelism. As discussed near the end of Section 4.2.6, special care should

be taken when dealing with nodes that have control dependences in order to make sure

that the original semantics of the program are not violated. Figure 5.6 portrays such a

scenario: when a user wants to check some book, a Service Action call is made to fetch

the books’s details. If the book has any reviews – information that we can assume to

be available on the details fetched beforehand - those reviews are fetched; otherwise a

collection of similar books is requested and displayed instead.

Figure 5.6: Logic for an OutSystems operation with mutually exclusive calls, GetBookRe-
views and GetSimilarBooks.

Behind the scenes, all three Service Action calls in this operation perform database

read accesses; the absence of database writes means no Read-Write Set dependences ex-

ist. The condition node is data-dependent on the call to GetBookDetails (input-output

dependence), and the fetching of reviews and similar books are both control-dependent

on the HasReviews? condition and data-dependent on the information given by Get-

BookDetails. The Program Dependence Graph produced by our algorithm is displayed

on Figure 5.7.

The sectioning algorithm is then executed over our the Program Dependence Graph

of Figure 5.7, and the results are as displayed in Table 5.3.

There is a clear resemblance between the Program Dependence Graph and section

assignments of this example and the previous one, Conditional Data Fetching; this is

because in, practice, our novel example does perform conditional data fetching, and its

operations are of similar nature. There is, however, a key difference that makes this

example stand out as a special case, and that is the mutual exclusivity of GetBookReviews

and GetSimilarBooks. On the original program flow, there is never a scenario where both

operations get executed, meaning that, despite both being assigned to S3, their execution

in parallel would imply generating a program with semantics different from the original.

Thus, our algorithm ends up finding no opportunities for safe parallelism here.

64

5.1. COMMON PATTERNS

Entry

Book
Details

Has
Reviews?

Book
Reviews

Similar
Books

δf

T F

δf δf

Figure 5.7: Program Dependence Graph for our example of Figure 5.4.

Node Dependences From Section

Entry − S0

GetBookDetails Entry (S0) S1

HasReviews? GetBookDetails (S1) S2

GetBookReviews GetBookDetails (S1), HasReviews? (S2) S3

GetSimilarBooks GetBookDetails (S1), HasReviews? (S2) S3

Table 5.3: Section assignments for the nodes in our example of Figure 5.6.

65

CHAPTER 5. EVALUATION

For-Each Loops

Operating over each item in a collection of data is a rather common pattern in application

development. The most common way to do this in OutSystems is to use the ForEach

node, as illustrated in Figure 5.8.

Figure 5.8: OutSystems logic for an example with a for-each loop.

This example showcases what could be a fuzzy search operation based on keywords.

In this operation, a string with comma-separated keywords – which we can assume to be

given by user input – is first joined into a list; then, for each keyword, we fetch whatever

single book (for simplicity) matches the keyword the best. We can assume the matching

to be based on title similarity, though the inner logic is not relevant here. We can also

suppose that the operation always returns some book. Alongside the book itself, we then

fetch that book’s most popular review to then display this information to the user.

The list returned by JoinKeywords is fed not only to the ForEach node, but also to

the GetTopMatchBook operation; though GetTopMatchBook does only handle one item at

a time, our analysis is not fine-grained enough uncover this, and so a data dependence

is identified. The two nodes that comprise the body of the loop perform database read

accesses to the Books and Reviews tables; moreover, they are, control-dependent on

the ForEach node. The Program Dependence Graph for this example is displayed in

Figure 5.9.

Running the sectioning algorithm, the results are as shown in Table 5.4.

Under this scenario, safe parallelism inside the body of the loop is not possible, consid-

ering the data dependence between GetTopReviewForBook and GetTopMatchBook. Paral-

lelism across iterations, however, could be suitable here, as the operations inside the loop

simply perform database reads – there are no mutating operations.

Of course, how analysis of loop scenarios is admittedly rough, due to scope and time

constraints. Nevertheless, it is still applicable at least to simpler scenarios.

66

5.1. COMMON PATTERNS

Entry

Join
Keywords

ForEach
Keyword

T op Match
Book

T op Book
Review

δf

T T

δf

δf

Figure 5.9: Program Dependence Graph for our example of Figure 5.8.

Node Dependences From Section

Entry − S0

JoinKeywords Entry (S0) S1

ForEachKeyword JoinKeywords (S1) S2

TopMatchBook JoinKeywords (S1), ForEachKeyword (S2) S3

TopBookReview ForEachKeyword (S2), TopMatchBook (S3) S4

Table 5.4: Section assignments for the nodes in our example of Figure 5.8.

67

CHAPTER 5. EVALUATION

5.2 On the Development Guidelines Proposed

Back in Chapter 1, whilst giving an overview of our solution, we introduced what we

called solution design guidelines, a set of goals whose achievement would guide the deci-

sions made during the development of this work. In this section we will reflect on how

these guidelines were (or not) followed, and what this meant for the prototype.

“First and foremost, the solution must always guarantee correctness of the optimized pro-
gram. Not finding opportunities for safe parallelism could be an acceptable worst case scenario;
marking as parallelizable tasks that are effectively not safe to parallelize, however, is never an
acceptable output.”

Guaranteeing the correctness of a program is challenging, even more so as we enter the

realm of parallelism and asynchronicity. In the context of our problem, the conservative

behavior of the different pieces that make up our solution is somewhat of an assurance of

a minimum degree of correctness for each one of them. In practice, the multiple parts that

comprise our solution were unit tested, though some with more coverage than others. The

testing of the work developed as a whole was done empirically, based on an admittedly

short set of examples – and though the results obtained were mostly satisfying, it is fair

to say that this does not bring a whole lot of confidence in the correctness of our solution.

“The solution should introduce little-to-no runtime overhead; the number of remote API
calls inside OutSystems software factories could be arbitrarily large, and so even a small amount
of runtime overhead could cause some performance hindrance.”

The entirety of our solution can happen strictly in compile time, and so we can mark

this goal as completed. Nevertheless, part of our Read-Write Set analysis is done live

during development time, triggered by the changes the developer does, which is also

something we have to take into account. Though this dynamism is important to make our

solution be truly relevant in practice, we did not have the time to evaluate the true impact

of these computations on large OutSystems modules. In case this would prove too heavy,

a possible way to reduce the overhead could to change the trigger/invalidation strategy

to specific moments, such as to when an application is published. Though unrelated

to runtime overhead per se, the storage overhead of storing Read-Write Sets for every

action in a cumulative fashion should also be considered. On a large scale, minifying

the representation of the Data Access Triples or storing pointers to other nodes (and not

those nodes’ Read-Write Sets) could be viable options to reduce storage size.

“The solution should be mostly invisible to the OutSystems developer. Our solution should
never impose an obstacle nor require extra effort from the developer.”

We developed a solution that is fully automatic and also non-intrusive to the developer,

68

5.2. ON THE DEVELOPMENT GUIDELINES PROPOSED

checking this goal as met. The fully automatic facet reflects the fact that no intervention at

all is required from the developer. Furthermore, because everything happens behind the

scenes, there is no increase in development overhead. Now, to cover the full spectrum, we

expect the need for at least some developer interaction and awareness – there is definitely

a trade-off between developer work and range of opportunities for parallelism uncovered

– though the cases we handle with our solution can still be mostly invisible.

69

C
h
a
p
t
e
r

6
Conclusions

When dealing with remote action calls, an orchestrator has to coordinate several requests,

respecting the dependencies among them and any protocols they might follow. Naive

orchestration strategies perform the requests sequentially, spending time just waiting for

the results. Moreover, the orchestrated services themselves may be orchestrators as well,

meaning that this idle time waiting for results can grow surprisingly fast. A possible

strategy to improve the efficiency of the orchestration process, though, is to employ task
parallelism when performing requests that are independent of each other.

With this work we aimed to develop an algorithm that would analyse programs look-

ing for opportunities for safe parallelism between operations. A lot of the literature on the

uncovering of parallelism emphasizes scientific computation/loop-level parallelism [40,

46] or speculative execution [12, 13, 15, 32], which, though not directly viable for our use

case, hinted at some ideas and paths to follow.

We ended up achieving this by studying and developing a pipeline of dependence

analyses and dependence representation techniques. Design and development guidelines

were defined early on, highlighting our goal for a solution to be safe, unobtrusive to the

developer and to mostly take place in compile time. Though designed from the ground

up with general-purpose applicability in mind, these guidelines were also designed to

ensure our solution would be applicable to the low-code philosophy of OutSystems, the

platform for which we developed a working prototype.

The results we obtained via empirical testing were promising, and we are satisfied

with the work produced and with the individual contributions that came along with it.

Nonetheless, we would like to point out that, inherent to the problem we had in hands,

there is a whole range of promising future work waiting to be explored, something we

discuss in Section 6.2.

71

CHAPTER 6. CONCLUSIONS

6.1 Contributions

This dissertation produced the following contributions:

• A static analysis algorithm that extracts information regarding database reads and

writes performed by remote API calls. This can be mapped to different platforms

and data sources;

• A dependence analysis algorithm, capable of summarizing not only control and

data dependences, but also database-access dependences of different operations in

a program during compile time. The algorithm generates a Program Dependence

Graph, and is capable of distinguishing between the different types of data and con-

trol dependences. Despite our target being the OutSystems platform, the algorithm

is adaptable to other scenarios where a graph representation can be constructed;

• An algorithm capable of partitioning the operations of a program into different

sections, based on the dependences between those operations. This information can

then be used to aid in the construction of the optimized program;

• A working prototype targeting (a sub-set of) the OutSystems platform that employs

the techniques described above. A simple yet effective SQL parser was also de-

veloped under this context. Though not extensively tested, the prototype yielded

favorable results, hinting at the viability and applicability of our solution.

6.2 Future Work

As made clear in the previous chapter, the objectives for this work were fulfilled in

accordance with our initial objective. Even though it would have been ideal to have

achieved parallel code generation in the prototype, it ended up not being feasible within

the time allocated to this dissertation (at least without compromising other parts of the

solution). Nevertheless, the nature of the problem we had in hands opens up doors for a

whole range of future work that could be considered:

• Graphs with cycles: The lack of proper support for cyclic graphs is arguably the

biggest handicap in the solution we developed. Because they are so common in

programs, dealing with cyclic graphs correctly would be a major stepping stone to

a more complete solution. As discussed in Subsection 4.2.4, implementing Strongly

Connected Components [8] could be a good starting point;

• Handling exceptions: Adding support for programs with exception-handling logic

would further wide the applicability of our solution;

• Read-Write Set Analysis granularity: Implementing a more fine-grained Read-Write

Set Extraction analysis could translate into opportunities for parallelism that are

72

6.2. FUTURE WORK

not uncovered by our solution as it is right now; instead of inspecting database

accesses at a table level, diving deeper into table row level could leverage more

scenarios of parallelism. This was also mentioned in Section 4.2.2;

• Performance evaluation: A performance study on the impact of Read-Write Set recal-

culations and invalidations during design time would be valuable to assess whether

or not we should make changes to our technique. Evaluating the storage overhead

introduced as we store Read-Write Set triples in the way we currently do could also

be the target of some analysis;

• Implement code generation: Implementing parallel code generation in the prototype

would be the immediate next step to make it fully functional;

• SQL parser robustness: In our OutSystems prototype, the SQL parser mentioned

in Section 4.3 is only capable of distinguishing between reads and writes when it

comes to simple SQL queries. Though it was, by no means, the focus of this work,

further strengthening the parser to handle more complex queries could be valuable.

73

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers principles, techniques, and tools.
Reading, MA: Addison-Wesley, 1986.

[2] H. Akkary and M. A. Driscoll. “A Dynamic Multithreading Processor.” In: Pro-
ceedings of the 31st Annual ACM/IEEE International Symposium on Microarchitecture.

MICRO 31. Los Alamitos, CA, USA: IEEE Computer Society Press, 1998, pp. 226–

236. isbn: 1-58113-016-3. url: http://dl.acm.org/citation.cfm?id=290940.

290988.

[3] F. E. Allen. “Control Flow Analysis.” In: SIGPLAN Not. 5.7 (July 1970), pp. 1–19.

issn: 0362-1340. doi: 10.1145/390013.808479. url: http://doi.acm.org/10.

1145/390013.808479.

[4] N. Alshuqayran, N. Ali, and R. Evans. “A systematic mapping study in microser-

vice architecture.” In: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA). IEEE. 2016, pp. 44–51.

[5] J. Bakić. Shielder, a STM implementation for .NET. Accessed: 2018-12-22. 2013.

url: https://github.com/jbakic/Shielded.

[6] C Baroudi and F. Halper. “Executive Survey: SOA Implementation Satisfaction.”

In: Hurwitz and Associates (Jan. 2006).

[7] J. a. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and R. Guerraoui. “Unifying

Thread-level Speculation and Transactional Memory.” In: Proceedings of the 13th
International Middleware Conference. Middleware ’12. New York, NY, USA: Springer-

Verlag New York, Inc., 2012, pp. 187–207. isbn: 978-3-642-35169-3. url: http:

//dl.acm.org/citation.cfm?id=2442626.2442639.

[8] E. Bendersky. Directed graph traversal, orderings and applications to data-flow anal-
ysis. 2015. url: https://eli.thegreenplace.net/2015/directed- graph-

traversal-orderings-and-applications-to-data-flow-analysis/ (visited

on 08/12/2019).

[9] A. J. Bernstein. “Analysis of programs for parallel processing.” In: IEEE Transac-
tions on Electronic Computers 5 (1966), pp. 757–763.

75

http://dl.acm.org/citation.cfm?id=290940.290988
http://dl.acm.org/citation.cfm?id=290940.290988
https://doi.org/10.1145/390013.808479
http://doi.acm.org/10.1145/390013.808479
http://doi.acm.org/10.1145/390013.808479
https://github.com/jbakic/Shielded
http://dl.acm.org/citation.cfm?id=2442626.2442639
http://dl.acm.org/citation.cfm?id=2442626.2442639
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/

BIBLIOGRAPHY

[10] G. Bilardi and K. Pingali. “A Framework for Generalized Control Dependence.”

In: SIGPLAN Not. 31.5 (May 1996), pp. 291–300. issn: 0362-1340. doi: 10.1145/

249069.231435. url: http://doi.acm.org/10.1145/249069.231435.

[11] H. Christensen. “Algorithms for Finding Dominators in Directed Graphs.” Doctoral

dissertation. Aarhus Universitet, Datalogisk Institut, 2016.

[12] M. Cintra and D. R. Llanos. “Design Space Exploration of a Software Speculative

Parallelization Scheme.” In: IEEE Trans. Parallel Distrib. Syst. 16.6 (June 2005),

pp. 562–576. issn: 1045-9219. doi: 10.1109/TPDS.2005.69. url: https://doi.

org/10.1109/TPDS.2005.69.

[13] L. Codrescu and D. S. Wills. “On dynamic speculative thread partitioning and the

MEM-slicing algorithm.” In: 1999 International Conference on Parallel Architectures
and Compilation Techniques (Cat. No.PR00425). Oct. 1999, pp. 40–46. doi: 10.

1109/PACT.1999.807404.

[14] K. D. Cooper, T. J. Harvey, and K. Kennedy. “A Simple , Fast Dominance Algo-

rithm.” In: Rice University, CS Technical Report 06-33870 (Jan. 2001).

[15] F. H. Dang and L. Rauchwerger. “Speculative Parallelization of Partially Parallel

Loops.” In: Selected Papers from the 5th International Workshop on Languages, Com-
pilers, and Run-Time Systems for Scalable Computers. LCR ’00. London, UK, UK:

Springer-Verlag, 2000, pp. 285–299. isbn: 3-540-41185-2. url: http://dl.acm.

org/citation.cfm?id=648049.746025.

[16] D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanasamy. “Optimistic Hybrid

Analysis: Accelerating Dynamic Analysis Through Predicated Static Analysis.” In:

SIGPLAN Not. 53.2 (Mar. 2018), pp. 348–362. issn: 0362-1340. doi: 10.1145/

3296957.3177153. url: http://doi.acm.org/10.1145/3296957.3177153.

[17] M. B. Dwyer and L. A. Clarke. “Data Flow Analysis for Verifying Properties of

Concurrent Programs.” In: SIGSOFT Softw. Eng. Notes 19.5 (Dec. 1994), pp. 62–75.

issn: 0163-5948. doi: 10.1145/195274.195295. url: http://doi.acm.org/10.

1145/195274.195295.

[18] J. Ferrante, K. J. Ottenstein, and J. D. Warren. “The Program Dependence Graph

and Its Use in Optimization.” In: ACM Trans. Program. Lang. Syst. 9.3 (July 1987),

pp. 319–349. issn: 0164-0925. doi: 10.1145/24039.24041. url: http://doi.

acm.org/10.1145/24039.24041.

[19] R. J. Figueiredo and J. A. B. Fortes. “Hardware Support for Extracting Coarse-

Grain Speculative Parallelism in Distributed Shared-Memory Multiprocesors.” In:

Proceedings of the 2001 International Conference on Parallel Processing. ICPP ’02.

Washington, DC, USA: IEEE Computer Society, 2001, pp. 214–226. isbn: 0-7695-

1257-7. url: http://dl.acm.org/citation.cfm?id=645535.657150.

76

https://doi.org/10.1145/249069.231435
https://doi.org/10.1145/249069.231435
http://doi.acm.org/10.1145/249069.231435
https://doi.org/10.1109/TPDS.2005.69
https://doi.org/10.1109/TPDS.2005.69
https://doi.org/10.1109/TPDS.2005.69
https://doi.org/10.1109/PACT.1999.807404
https://doi.org/10.1109/PACT.1999.807404
http://dl.acm.org/citation.cfm?id=648049.746025
http://dl.acm.org/citation.cfm?id=648049.746025
https://doi.org/10.1145/3296957.3177153
https://doi.org/10.1145/3296957.3177153
http://doi.acm.org/10.1145/3296957.3177153
https://doi.org/10.1145/195274.195295
http://doi.acm.org/10.1145/195274.195295
http://doi.acm.org/10.1145/195274.195295
https://doi.org/10.1145/24039.24041
http://doi.acm.org/10.1145/24039.24041
http://doi.acm.org/10.1145/24039.24041
http://dl.acm.org/citation.cfm?id=645535.657150

BIBLIOGRAPHY

[20] L. Georgiadis, R. E. Tarjan, and R. F. F. Werneck. “Finding dominators in practice.”

In: J. Graph Algorithms Appl. 10.1 (2006), pp. 69–94.

[21] J. Graf. “Information Flow Control with System Dependence Graphs - Improving

Modularity, Scalability and Precision for Object Oriented Languages.” Doctoral

dissertation. 2016.

[22] R. H. Halstead Jr. “MULTILISP: A Language for Concurrent Symbolic Computa-

tion.” In: ACM Trans. Program. Lang. Syst. 7.4 (Oct. 1985), pp. 501–538. issn: 0164-

0925. doi: 10.1145/4472.4478. url: http://doi.acm.org/10.1145/4472.4478.

[23] T. Harris and K. Fraser. “Language Support for Lightweight Transactions.” In:

SIGPLAN Not. 38.11 (Oct. 2003), pp. 388–402. issn: 0362-1340. doi: 10.1145/

949343.949340. url: http://doi.acm.org/10.1145/949343.949340.

[24] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. “Composable Memory Trans-

actions.” In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. PPoPP ’05. New York, NY, USA: ACM, 2005,

pp. 48–60. isbn: 1-59593-080-9. doi: 10.1145/1065944.1065952. url: http:

//doi.acm.org/10.1145/1065944.1065952.

[25] S. Horwitz, T. Reps, and D. Binkley. “Interprocedural slicing using dependence

graphs.” In: ACM Transactions on Programming Languages and Systems (TOPLAS)
12.1 (1990), pp. 26–60.

[26] R. Johnson and K. Pingali. “Dependence-based Program Analysis.” In: SIGPLAN
Not. 28.6 (June 1993), pp. 78–89. issn: 0362-1340. doi: 10.1145/173262.155098.

url: http://doi.acm.org/10.1145/173262.155098.

[27] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. “Dependence graphs

and compiler optimizations.” In: Proceedings of the 8th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM. 1981, pp. 207–218.

[28] H. T. Kung and J. T. Robinson. “On Optimistic Methods for Concurrency Control.”

In: ACM Trans. Database Syst. 6.2 (June 1981), pp. 213–226. issn: 0362-5915. doi:

10.1145/319566.319567. url: http://doi.acm.org/10.1145/319566.319567.

[29] T. Lengauer and R. E. Tarjan. “A Fast Algorithm for Finding Dominators in a

Flowgraph.” In: ACM Trans. Program. Lang. Syst. 1.1 (Jan. 1979), pp. 121–141.

issn: 0164-0925. doi: 10.1145/357062.357071. url: http://doi.acm.org/10.

1145/357062.357071.

[30] M. LLC. The OutSystems Platform. 2019. url: https://www.outsystems.com/

platform/ (visited on 01/11/2019).

[31] P. Marcuello, A. González, and J. Tubella. “Thread Partitioning and Value Predic-

tion for Exploiting Speculative Thread-Level Parallelism.” In: IEEE Trans. Comput.
53.2 (Feb. 2004), pp. 114–125. issn: 0018-9340. doi: 10.1109/TC.2004.1261823.

url: https://doi.org/10.1109/TC.2004.1261823.

77

https://doi.org/10.1145/4472.4478
http://doi.acm.org/10.1145/4472.4478
https://doi.org/10.1145/949343.949340
https://doi.org/10.1145/949343.949340
http://doi.acm.org/10.1145/949343.949340
https://doi.org/10.1145/1065944.1065952
http://doi.acm.org/10.1145/1065944.1065952
http://doi.acm.org/10.1145/1065944.1065952
https://doi.org/10.1145/173262.155098
http://doi.acm.org/10.1145/173262.155098
https://doi.org/10.1145/319566.319567
http://doi.acm.org/10.1145/319566.319567
https://doi.org/10.1145/357062.357071
http://doi.acm.org/10.1145/357062.357071
http://doi.acm.org/10.1145/357062.357071
https://www.outsystems.com/platform/
https://www.outsystems.com/platform/
https://doi.org/10.1109/TC.2004.1261823
https://doi.org/10.1109/TC.2004.1261823

BIBLIOGRAPHY

[32] C. E. Oancea, A. Mycroft, and T. Harris. “A Lightweight In-place Implementation

for Software Thread-level Speculation.” In: Proceedings of the Twenty-first Annual
Symposium on Parallelism in Algorithms and Architectures. SPAA ’09. New York, NY,

USA: ACM, 2009, pp. 223–232. isbn: 978-1-60558-606-9. doi: 10.1145/1583991.

1584050. url: http://doi.acm.org/10.1145/1583991.1584050.

[33] R. A. Olsson, R. H. Crawford, and W. W. Ho. “A Dataflow Approach to Event-based

Debugging.” In: Softw. Pract. Exper. 21.2 (Feb. 1991), pp. 209–229. issn: 0038-

0644. doi: 10.1002/spe.4380210207. url: http://dx.doi.org/10.1002/spe.

4380210207.

[34] OutSystems. Expose and Reuse Functionality in OutSystems 11. Accessed: 2019-

01-15. 2018. url: https://success.outsystems.com/Documentation/11/

Developing _ an _ Application / Reuse _ and _ Refactor / Expose _ and _ Reuse _

Functionality_Between_Modules.

[35] OutSystems. Use Services to Expose Functionality in OutSystems 11. Accessed: 2019-

01-16. 2018. url: https://success.outsystems.com/Documentation/11/New_

in_OutSystems_11.

[36] K. Pingali and G. Bilardi. “Optimal Control Dependence Computation and the

Roman Chariots Problem.” In: ACM Trans. Program. Lang. Syst. 19.3 (May 1997),

pp. 462–491. issn: 0164-0925. doi: 10.1145/256167.256217. url: http://doi.

acm.org/10.1145/256167.256217.

[37] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill. “Dependence Flow

Graphs: An Algebraic Approach to Program Dependencies.” In: (July 1999). doi:

10.1145/99583.99595.

[38] A. Podgurski and L. A. Clarke. “A Formal Model of Program Dependences and Its

Implications for Software Testing, Debugging, and Maintenance.” In: IEEE Trans.
Softw. Eng. 16.9 (Sept. 1990), pp. 965–979. issn: 0098-5589. doi: 10.1109/32.

58784. url: https://doi.org/10.1109/32.58784.

[39] R. T. Prosser. “Applications of Boolean Matrices to the Analysis of Flow Diagrams.”

In: Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM Com-
puter Conference. IRE-AIEE-ACM ’59 (Eastern). New York, NY, USA: ACM, 1959,

pp. 133–138. doi: 10.1145/1460299.1460314. url: http://doi.acm.org/10.

1145/1460299.1460314.

[40] S. Rus, M. Pennings, and L. Rauchwerger. “Sensitivity Analysis for Automatic

Parallelization on Multi-cores.” In: Proceedings of the 21st Annual International
Conference on Supercomputing. ICS ’07. New York, NY, USA: ACM, 2007, pp. 263–

273. isbn: 978-1-59593-768-1. doi: 10.1145/1274971.1275008. url: http:

//doi.acm.org/10.1145/1274971.1275008.

78

https://doi.org/10.1145/1583991.1584050
https://doi.org/10.1145/1583991.1584050
http://doi.acm.org/10.1145/1583991.1584050
https://doi.org/10.1002/spe.4380210207
http://dx.doi.org/10.1002/spe.4380210207
http://dx.doi.org/10.1002/spe.4380210207
https://success.outsystems.com/Documentation/11/Developing_an_Application/Reuse_and_Refactor/Expose_and_Reuse_Functionality_Between_Modules
https://success.outsystems.com/Documentation/11/Developing_an_Application/Reuse_and_Refactor/Expose_and_Reuse_Functionality_Between_Modules
https://success.outsystems.com/Documentation/11/Developing_an_Application/Reuse_and_Refactor/Expose_and_Reuse_Functionality_Between_Modules
https://success.outsystems.com/Documentation/11/New_in_OutSystems_11
https://success.outsystems.com/Documentation/11/New_in_OutSystems_11
https://doi.org/10.1145/256167.256217
http://doi.acm.org/10.1145/256167.256217
http://doi.acm.org/10.1145/256167.256217
https://doi.org/10.1145/99583.99595
https://doi.org/10.1109/32.58784
https://doi.org/10.1109/32.58784
https://doi.org/10.1109/32.58784
https://doi.org/10.1145/1460299.1460314
http://doi.acm.org/10.1145/1460299.1460314
http://doi.acm.org/10.1145/1460299.1460314
https://doi.org/10.1145/1274971.1275008
http://doi.acm.org/10.1145/1274971.1275008
http://doi.acm.org/10.1145/1274971.1275008

BIBLIOGRAPHY

[41] N. Shavit and D. Touitou. “Software Transactional Memory.” In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing. PODC

’95. New York, NY, USA: ACM, 1995, pp. 204–213. isbn: 0-89791-710-3. doi:

10.1145/224964.224987. url: http://doi.acm.org/10.1145/224964.224987.

[42] A. Thakur and R. Govindarajan. “Comprehensive Path-sensitive Data-flow Analy-

sis.” In: Proceedings of the 6th Annual IEEE/ACM International Symposium on Code
Generation and Optimization. CGO ’08. New York, NY, USA: ACM, 2008, pp. 55–63.

isbn: 978-1-59593-978-4. doi: 10.1145/1356058.1356066. url: http://doi.

acm.org/10.1145/1356058.1356066.

[43] J. Torrellas. “Thread-Level Speculation.” In: Encyclopedia of Parallel Computing,
Springer Science+Business Media LLC (May 2011).

[44] P. Veentjer. Multiverse, a STM implementation in Java. Accessed: 2018-12-22. 2012.

url: https://github.com/pveentjer/Multiverse.

[45] P. Yiapanis, D. Rosas-Ham, G. Brown, and M. Luján. “Optimizing Software Run-

time Systems for Speculative Parallelization.” In: ACM Trans. Archit. Code Optim.
9.4 (Jan. 2013), 39:1–39:27. issn: 1544-3566. doi: 10.1145/2400682.2400698.

url: http://doi.acm.org/10.1145/2400682.2400698.

[46] X. Zhuang, A. E. Eichenberger, Y. Luo, K. O’Brien, and K. O’Brien. “Exploiting

Parallelism with Dependence-Aware Scheduling.” In: Proceedings of the 2009 18th
International Conference on Parallel Architectures and Compilation Techniques. PACT

’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 193–202. isbn: 978-

0-7695-3771-9. doi: 10.1109/PACT.2009.10. url: https://doi.org/10.1109/

PACT.2009.10.

79

https://doi.org/10.1145/224964.224987
http://doi.acm.org/10.1145/224964.224987
https://doi.org/10.1145/1356058.1356066
http://doi.acm.org/10.1145/1356058.1356066
http://doi.acm.org/10.1145/1356058.1356066
https://github.com/pveentjer/Multiverse
https://doi.org/10.1145/2400682.2400698
http://doi.acm.org/10.1145/2400682.2400698
https://doi.org/10.1109/PACT.2009.10
https://doi.org/10.1109/PACT.2009.10
https://doi.org/10.1109/PACT.2009.10

	Contents
	Introduction
	Context
	Motivation
	Solution Overview
	Contributions
	Outline

	Background
	The OutSystems Platform
	Service Studio
	Exposing and Reusing Functionality
	Server Actions and Service Actions
	Database Manipulation Primitives

	Key Concepts
	Dependence Analysis
	Data Dependence
	Control Dependence
	Representing Dependences

	The Three Rules for Safe Parallelism

	Related Work
	Static Analysis Techniques
	The Limitation of Static Analysis

	Dynamic Analysis Techniques
	Hybrid Analysis Techniques
	Discussion

	Implementation
	Defining a Grammar
	Solution
	Overview
	Read-Write Set Extraction
	Data-Flow Analysis
	Control-Flow Analysis
	Program Dependence Graph
	Analysis of Parallelism

	Prototype in OutSystems

	Evaluation
	Common Patterns
	On the Development Guidelines Proposed

	Conclusions
	Contributions
	Future Work

	Bibliography

