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Abstract

In the current era of technology, computers have shrinked to the point that more than

half of the world population always carries one with them - their mobile devices. These

are used in all sorts of different activities, constantly generating information that needs to

be stored or processed somewhere. To cope with the huge amounts of data generated by

all of these devices, applications have resorted to Cloud services to provide them with the

much needed computational and storage resources, but as these remote infrastructures

still represented a bottleneck communication wise, a new paradigm has been emerging,

Edge Computing. Instead of processing and storing all the data in more distant cloud

services, the data is spread among mobile devices and edge servers connected in a shared

network.

In order to fully take advantage of the low latency times experienced in the Edge,

applications still needed a distributed storage edge-oriented system, capable of handling

the contents generated by all of these mobile devices. The current state-of-the-art storage

systems are able to provide these applications with a storing platform that uses mobile

devices or edge servers as data storing points, but neither uses both.

In this thesis we propose a Key-Value Edge Storage System named Basil, that uses

both mobile devices and edge infrastructures as nodes of the system, capable of providing

users from different locations with a cohesive and consistent distributed storage system.

Furthermore, we will test our KV store against existing NoSQL storage models deployed

in the edge, as well as its own performance while varying the number of nodes it relies

on.

Keywords: Mobile Edge Computing, Key-Value, NoSQL, Peer-to-peer, Infrastructure,

Distributed Storage
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Resumo

Desde o aparecimento do primeiro computador, a tecnologia tem evoluído a um ritmo

exponencial. Com estes avanços, os computadores tem ficado cada vez mais pequenos, até

que hoje em dia, mais de metade da população mundial transporta sempre um consigo -

os seus telemóveis. Para lidar com a vasta quantidade de dados gerados por todos estes

dispositivos, as aplicações móveis recorreram a serviços Cloud para lhes fornecerem os

recursos computacionais e de armazenamento necessários. Como estas infra-estruturas

remotas ainda representam um entrave a nível de comunicação, um novo paradigma tem

emergido, Computação na “Edge”. Em vez de processar e guardar os dados em serviços

Cloud longínquos, os dados estão espalhados pelos telemóveis e servidores na “Edge” que

partilham a mesma rede.

Para aproveitar os baixos tempos de latência experienciados na “Edge”, as aplicações

ainda necessitam de um sistema distribuído de armazenamento orientado para a mesma,

capaz de lidar com os conteúdos gerados por tantos dispositivos. Alguns sistemas de

armazenamento, como o Cassandra ou o Krowd, são capazes de fornecer às aplicações

uma plataforma de armazenamento que usa ou os dispositivos, ou os servidores na “Edge”

como pontos de armazenamento, mas nenhum usa os dois.

Nesta tese propomos um sistema de armazenamento Key-Value orientado para a

“Edge”, construido em cima do Thyme, que usa ambos os telemóveis e servidores na

“Edge” como agentes do sistema, capaz de fornecer a utilizadores de diferentes regiões

um sistema de armazenamento distribuído coeso e consistente. Ademais, iremos testar

o nosso sistema KV contra outros modelos de armazenamento NoSQL orientados para

a “Edge”, tal como a própria performance do nosso sistema em função dos seus nós de

suporte.

Palavras-chave: Mobile Edge Computing, Key-Value, NoSQL, ponto-a-ponto, Infraestru-

tura, Armazenamento distribuído
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1
Introduction

1.1 Context and Motivation

In the last 20 years, the number of mobile devices has been escalating worldwide, reach-

ing a density of 128 devices per 100 persons in developed regions [19]. These have

been increasingly "smarter", and are no longer just a communication device, but a small

portable computer which has become the world’s favourite device to interact with the

digital world.

With so many devices, capable of employing an horde of different applications, the

amount of data being generated everyday has been growing accordingly, obliging mobile

applications to adopt Cloud services [5], to help them cope with their storage needs. This

continuous communication between mobile devices and remote data centers resulted

in a high and expensive network load for mobile network operators. This has affected

greatly affected online applications, where having low latency times is crucial to provide

a satisfying and appealing experience to the users.

In an IoT era, where everyday object has been "smartified", the conditions to explore a

more local and collaborative approach to Mobile Computing were significant enough to

try a different approach. A new architecture, Mobile Edge Computing, which is capable

of replicating the storage and data management services offered by the centralised Cloud

servers, but without resorting to remote data centers. Using the local infrastructures to

offer the same services, where mobile devices are also able to participate and support

Edge applications, the mobile base stations’ network load is greatly reduced, and the

user’s experience is greatly improved.

This new advances have motivated a change of paradigm, where the potential and

boundaries for Mobile Edge Computing are still being explored, and a lot of challenges

yet to be overcomed.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Mobile Edge Computing Architecture. Taken from [1]

1.2 Mobile Edge Computing

Mobile Edge Computing is an emerging technology that addresses the high network load

experienced by mobile end users. It does so by shifting computational tasks from the

data centers to a more local layer known as the Mobile Edge. The Mobile Edge has two

main components (illustrated on the Fig. 1.1): Edge devices, that include all type of

devices (both mobile phones and IoT devices) connected to a network; and the Edge

Cloud, located in mobile base stations, which are responsible for controlling the network

traffic, and are capable of hosting Cloud like applications.

There are mainly two approaches to this concept.

• Offloading through the Edge: Focuses on aggregating all the traffic directed to-

wards Cloud services, and either forwards it to remote infrastructures or to Cloudlets,

small-scaled cloud data centers composed by one or more computers deployed in

the Edge Cloud. In doing so, the overall latency is decreased, as the distance be-

tween the device users and the Edge Cloud is smaller than the distance between

device users and infrastructures Cloud, the consumption of bandwidth is reduced,

and the response times are shortened, as the requests are now handled by more

capable infrastructures.

• Computing in the Edge: On the other hand, this paradigm keeps the computational

and storage tasks it in the Edge, by distributing the data among the local mobile

2



1.3. PROBLEM

devices and Edge infrastructures.

This concept displays of the following advantages:

• Deployment Agility: Developers can quickly develop edge applications and deploy

them where needed. Edge applications program the device to operate in the way

each customer needs. For example, they can be programmed to only operate in the

local network but a hybrid approach with computation done at Cloud infrastruc-

tures is also a viable solution.

• Low response time: As the data doesn’t have to be deployed to infrastructure

Clouds but rather distributed among the Edge Nodes, the response time from the

system is greatly decreased.

• Lower operating expense: Although local network traffic is increased, network

bandwidth is conserved, by processing the data locally instead of sending it to

Cloud infrastructures.

Communication between Edge Nodes is essential, and it can be achieved using local

network technologies, e.g., Wi-Fi, Wi-Fi Direct, Bluetooth and ad-hoc [9], or a combina-

tion of any of these [22, 24, 26]. Mobile nodes can either communicate directly with one

another, through an access point, or they can communicate via their supporting Edge

servers, when they’re in different geographical regions.

Although this approach is not possible in some contexts, when the users don’t share

the same base station, the situations when they do, e.g., stadiums, concerts or university’s

campus, are worth trying for. The high density of mobile devices and the capable Edge

servers can cooperate to form a powerful pool of resources, capable of producing reduced

latency times, and an highly available distributed network of data storing replicas.

1.3 Problem

The problem that this thesis is addressing is the lack of storage support for mobile edge

applications, capable of supporting large clusters of users in the same geographical space,

who want to share content among them. Typical scenarios include venue events such as

football games or music concerts, where the users could benefit greatly if they queried

both each other for the desired contents, and Edge Infrastructures for popular items or

content from another venues.

Most of the existing Edge Storage systems don’t take advantage of the full possibilities

that exist in the whole Edge layer, using only Edge Infrastructures to support their system,

like Cassandra [15], or only a small number of mobile devices, like Krowd [10].

Although it is growing, the lack of research in this area, specially within NoSQL

models, has been an obstacle when searching for the appropriate techniques to deal with

the following challenges:

3



CHAPTER 1. INTRODUCTION

• How to distribute the network load in an even and fair way to the users?

• How to grant consistent data in a highly distributively Edge system?

• How to adapt the Key-Value data model to the Edge paradigm?

In the context of this thesis we addressed both the delete operation, and the global

list of keys in an Edge environment.

1.4 Proposed Solution

In this thesis, we propose a Key-Value storage framework for mobile Android clients, that

offers its users an highly available Edge Storage System, with an eventual consistency

level and a persistent data model design.

Using the work developed by Pedro Vieira in his thesis dissertation [29], which in-

cludes the Thyme incorporation of infrastructure servers, and changes to the Thyme

client, we propose a Key-Value abstraction layer, any possible necessary refinement up-

dates to the existing client, and some small changes on the infrastructure component to

cope with our system operations.

Moreover, besides the typical Key-Value operations, we also intend to implement some

additional methods, in order to take full advantage of Thyme’s architecture. To support

all of them, we will need to keep track of the existing keys in the system, which we plan

to do so, by keeping a shared collaborative key index on all the participating nodes of the

system. Given this proposition, the challenges we expect to face are the following:

• How to partition the key space evenly amongst the system nodes?

• How to deal with popular keys hotspots?

• How to maintain and propagate a global consistent key index in an Edge environ-

ment?

• How to implement a typical KV delete operation in an Edge environment?

1.5 Document Structure

Following this Chapter, we present an overview of the Thyme system on Chapter 2. Af-

terwards, in the Chapter 3, we introduce the most relevant aspects that concern our work,

and current state-of-the-art technologies and frameworks that make an attempt to solve

the problem exposed in the Section 1.3. On the Chapter 4, we present our thesis work,

followed by its case-study application on Chapter 5. Finally, we present the evaluation to

which our thesis work was submitted on Chapter 6, followed by the conclusions derived

from this work on Chapter 7.

4
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2
Thyme

In this chapter we start by presenting an overview of the Thyme system in

the Section 2.1, followed by the list of its available operations in the Section

2.2, and their described implementation on the Section 2.3.

We continue this chapter by explaining Thyme’s replication mechanisms

on the Section 2.4, defining a Namespace on Thyme’s framework in the Section

2.5, and how Thyme interacts with Edge Infrastructures on Section 2.6.

Finally, we close this chapter with the Section 2.7, where we detail the

features already offered by Thyme that we used in our work, and the features

we needed to cope with our solution.

2.1 Overview

Before starting the implementation of our Key-Value Storage, we must first understand

the layer that it will be built upon, Thyme. A topic-based time-aware publish/subscribe

system, designed specifically for mobile edge networks, that relies on peer-to-peer com-

munication between mobile devices to form a persistent collaborative storage system. It

is a unique system by two different reasons: its mobile edge oriented environment and its

ability to refer to subscriptions within a time scope that can refer to the past.

Thyme is a distributed system, without a central unit to manage all the nodes and

therefore requires a strong collaboration between the nodes to sustain a feasible system.

In order to do so, all the nodes in the system share the same responsibilities and have no

particular roles, meaning that they can either be a publisher, a subscriber or both.

5



CHAPTER 2. THYME

2.2 Thyme’s API

Along this dissertation, multiple references will be made about Thyme’s operations, as

they mainly compose most of the operations developed for this thesis work. In the follow-

ing list, we present a description of Thyme’s available methods signature.

publish(dataItem, tags, description, opHandler)

This method publishes objects in the system

dataItem – Object being published.

tags – Set of tags being associated with the object.

description – Description of the object, e.g. a small thumbnail or a brief

text describing the inserted object.

opHandler – Implementation of the behaviour to be executed upon the oper-

ations’ success or failure.

subscribe(tags, startTime, endTime, notHandler, opHandler)

This method allows users to issue subscriptions.

tags –Tag or set of tags being subscribed.

startTime – Starting time of the subscription’s lifetime.

endTime – Ending time of the subscription’s lifetime.

notHandler – Implementation of behaviour to be executed when notification

is received from this subscription.

opHandler – Implementation of behaviour to be executed upon the opera-

tions’ success or failure.

unPublish(objectId, opHandler)

This method unpublishes an object from the system.

objectId – Object’s id being unpublished.

opHandler – Implementation of behaviour to be executed upon the opera-

tions’ success or failure.

download(metaData, dowHandler)

This methods allows users to download items published in the system.

metaData – Object’s metadata being downloaded.

dowHandler – Implementation of behaviour to be executed upon the opera-

tions’ success or failure.

6



2.3. OPERATIONS

2.3 Operations

In this section we will be going through Thyme’s operations most relevant for our work

as we will be using them to compose our own storage’s operations. So, it is crucial that

we understand their syntax, behaviour and purpose.

2.3.1 Publish Data

The publish operation inserts a data object into the system under one or more topics,

which are the object’s associated tags. After a publish operation, a new metadata item

associated with the inserted object is generated and spread by the publisher with the

following fields:

• idobj: The published object’s identifier;

• T : A set of topics or tags for which the object will be stored under;

• s: A summarised representation of the shared object, e.g., a thumbnail of an image

in the case of a photo sharing network;

• tspub: The object’s publication timestamp to guarantee temporal perception;

• idowner: The publisher’s node identifier.

• Lrep: The set of all nodes that are in possession of this object, containing only the

publisher node and his cell’s neighbours at the time of the creation (explained with

more detail at 2.4).

With the topology provided by the Cluster-Based Hash Table (CHT), this metadata

item is then distributed to the cells responsible for the given tags in T, accordingly to

the hash produced by each one of them as it is illustrated by the Figure 2.1. The selected

cell will store permanently the metadata item, while the actual data object stays in the

publisher’s cell nodes. As it is the metadata that’s being spread, instead of the object itself,

the system’s bandwidth and overall network resources are spared resulting in an overall

more efficient system.

At the time of the writing of this document, Thyme only allowed read operations on

the published objects, meaning that it wasn’t possible to edit or update the objects already

on the system. Ongoing work is addressing the ability to alter pre-published contents.

2.3.1.1 Unpublish Data

To remove values from Thyme, the authors implemented the inverse operation of publish,

the unpublish. The same actions are replicated, but instead of adding new object, an

existing one is removed. Upon an unpublish operation, the relevant object is no longer

7
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hash(“beach”)

hash(“summer”)

publish(      , “beach.jpg”, 

<“beach”, “summer”>)
13

5

2
hash(“beach”)

subscribe((“sun” & “sand”) | “beach”, 

tsstart, tsend)

hash(“sun”)

Figure 2.1: Example of Thyme’s publish and subscribe operations. The hash of the tags
("beach"and "summer") associated with the published image ("beach.jpg"), will determine
the cells responsible for its metadata management. Taken from [29].

included in incoming subscription requests, only being available for download if the

downloading user has received a notification from previous subscription requests.

The metadata files from the object are deleted from the respective tags cells. The object

itself is deleted from the active replicas, but not from the passive ones, who downloaded

the object on purpose. Still, the object won’t be available for future download requests,

as its metadata files were indeed removed.

2.3.2 Subscription and Data Retrieval

Users can subscribe to existing tags by sending a message to the network containing the

subscription metadata with the following fields :

• idsub: The subscription identifier;

• q: A query’s logic formula, where keyword conjunctions and disjunctions are al-

lowed;

• tss: The initial timestamp of published data to be retrieved, where past references

are allowed. To get all the data from the beginning of the system related to the

specified query, users must specify with the parameter 0;

• tse: The timestamp’s upper bound of published data to be retrieved, where future

references are allowed. To receive all future data matching the query,∞ should be

used;

• idowner: The requesting user identifier;

• cellowner: The identifier of the logical cell where the user is located.

From q, Thyme deduces what cells from the CHT shall receive the subscription request

(as seen in the Figure 2.1), in a minimising way in order to reduce the amount of packets

circulating through the system. Upon receiving the request, the nodes within the deduced

cells are now responsible for storing and managing the active subscription list within the

given time bounds, tss and tse, notifying the users with object’s metadata when one is

published, (as it is illustrated in Fig. 2.2). When the notified users wish to download a

8
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Figure 2.2: Thyme’s subscription notification & data retrieval process. Taken from [29].

certain data item, they must send a data retrieval message to one the replicas, according

to a replica selection algorithm, in the Lrep field. If the closest replica doesn’t reply within

a given threshold, possibly for going offline or leaving the network, the user’s client will

keep iterating the list of replicas, until one of them provides the requested data. After

this, the receiving node is now part of the Lrep of the downloaded object.

2.4 Replication

Replication is a sensitive matter in edge peer-to-peer systems as it represents a trade-

off between saving user’s storage space and granting them high availability. Thyme’s

approach has both in consideration with the following mechanisms:

• Active Replication: After a publish operation, the new data object is broadcasted

by its author to other nodes inside the same cell. This allows them to also reply

to data retrieval requests for that object, relieving the author’s network load and

maintaining the object in the system in case the author leaves the network;

• Passive Replication: Users who download items also act as replicas by providing

the remaining users with data retrieval points outside of its original publisher’s cell.

Once again, this contributes for the item’s durability in the system and relieves the

original cells from data retrieval requests.

The list of replicas for a particular object is saved on its metadata under the Lrep field,

where each replica is identified by its idnode and cellnode.

9
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Figure 2.3: Overlapping Thyme Namespaces. Taken from [29].

2.5 Namespaces

A ”Namespace” in Thyme’s universe is defined as a domain for an employing application.

Thyme allows for multiple, even overlapped, Namespaces to coexist in the same area

without any conflicting issues, like synchronisation and shared resources problems, but

can only belong to one Namespace at a time.

When initiated, Thyme can either join an existing Namespace, by scanning the packets

being transmitted in the network, (e.g. "hello"messages ), for a predefined amount of

time, or, start his own Namespace. To do so, the user must specify multiple parameters

such as its name, and how long it should be active. If he does, a unique identifier is

generated, and a cluster based cell is created to accommodate the Namespace’s incoming

mobile nodes.

Nodes that belong to different overlapped networks can collaborate between them-

selves to provide the whole system an higher availability and performance. These nodes

will be able to store data objects and metadata from different Namespaces but can only

reply to data requests from nodes that reside where the requested item lies (Fig. 2.3).

2.6 Thyme-GardenBed

Thyme-GardenBed [29] incorporates infrastructure servers, deployed in base stations

located in the Edge Cloud layer (in the Fig.1.1), to complement the existing system com-

posed of mobile nodes. These servers are ideally connected through wired means among

themselves, where each one is responsible for managing a basic service set in different

areas, thus allowing groups of clients from different locations to share data items between

them. These nodes are also able to communicate with cloud services or external databases

for long-term persistent storage or analytic purposes, if the infrastructure engineer de-

cides to.

To sustain this multi-region system, this component is divided into two distinct pieces:

the client and the server. The client shares subscription responsibilities with the local

cells, and extends the subscription requests to all the other infrastructure servers in the

10
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system. On the other hand, the server manages local subscription requests and download

operations, and also processes incoming subscription requests from other infrastructure

servers, replying them with the relevant local popular items from the current infrastruc-

ture.

To accommodate these functionalities, Thyme-Infrastructure’s storage layer employs

the following caching mechanisms:

• Local Popularity Cache: Stores the most popular items from the instances that are

running on the current region. This allows for the local clients to download these

objects directly from the infrastructure, instead of inquiring their neighbors for a

replica, resulting in an overall more efficient and faster process. This cache will also

be used to serve the subscription requests from other remote clients.

• Prefetch Cache: Cache that contains metadata and data items originated from

remote clients. These items are periodically disseminated by other infrastructures,

so that the current infrastructure local clients can access items from other regions.

• Global Cache: This cache moves the items that were initially in the Prefetch Cache
and were later considered relevant (i.e. specifically downloaded) by at least one

mobile client of the current infrastructure’s node. The purpose of this cache, is to

not overload the Prefetch Cache with irrelevant items, and preserve the relevant ones

durability in the system. This way, future local users can discover and access items

from other parts of the system.

2.7 Using Thyme for our Work

Thyme already offers the core features one needs in any Edge Storage System. Mechanisms

like its active and passive replication techniques, its node clustering algorithm, and its

namespace management are essential to any proper Storage System oriented for the Edge.

Besides its core features, Thyme also offers the main operations that any storage

system must have: the ability to insert, retrieve and remove values from its system.

All these indispensable aspects were extended to our solution, but some Key-Value

related features were still required. Features like the ability to inspect the current list of

tags in the system, the ability to associate or disassociate tags from an existing object or

the ability to query items from a given tag. Nevertheless, all of these details are explained

with more detail on the Section 4.
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3
State of the Art

This chapter serves to give the readers an overall perception of the NoSQL

landscape, with special attention to the Edge systems. We start with an

overview of the database model, followed by the definition of the seven dimen-

sions that characterize a NoSQL system in the Section 3.1.3. Along these di-

mensions, we exemplify with different techniques employed by current state-

of-the-art technologies. On the Section 3.2, we study some Edge Storage sys-

tems, in order to learn their approaches to the previous defined dimensions.

Finally, on the Section 3.3, we present some final remarks and conclusions

from this research.

3.1 NoSQL

NoSQL is a Database Model that became popular in the beginning of the 1990’s [16],

where the traditional Relational Database (RDB) model could no longer sustain the great

amount of data being generated by the emergence of the Internet in a viable way. This

was due to the limits of vertical scaling of the data nodes and the complexity of horizontal

scaling these same nodes in an efficient way. As RDBs were not designed to work in a

distributed environment, the cost of join and transaction operations in this environment

were too costly resulting in a decreased performance.

Instead of storing the data in a rigid structured way, the NoSQL model stores it in

an adaptable and unstructured way that thrives in distributed environments due to its

low degree of dependence between data records. In this era of IoT, where information

is constantly being generated by so many different devices, the need to cope with it in

an efficient way is essential. The NoSQL model is able to do so, by abstracting join

operations from the storage level [7], as they are often too expensive, and leaving them
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Row A

Row B

Column 1 Column 2 Column 3 Column 4

Value Value Value Value

Column 1 Column 2 Column 3 Column 4

ValueValueValueValue

Figure 3.1: Wide-Column Store Data Model.

to the application level where the data can either be joined or denormalized. The first

approach requires gathering data from several physical nodes so then we are able to

join them, this results in an excessive effort for most contexts in decentralized systems.

Denormalization on the other hand, involves replication of the data, or parts of it, in

different physical nodes, which allows optimized queries on the denormalized attributes

but also raises inconsistency problems between nodes holding the same attributes.

3.1.1 NoSQL Models

There are three main ways to prescribe a data layout for the stored data, that will dictate

the replication and partition policies for the system:

• Wide-Column or Column Families Model: The data is stored by column (Fig. 3.1)

and not by row as in the RDB model. With this independence between attributes

of a single row, it is possible to apply data compression algorithms per column and

distribute columns that are not often queried together across different nodes. Some

notable Wide-Column stores are Amazon DynamoDB [3], Apache Cassandra [15]

and Bigtable [6].

• Document Oriented Model: The data is stored in a document-oriented fashion (Fig.

3.2), where a document is a series of fields with attributes identified by an ID. This

allows queries on the document’s fields.

• Key-Value Model: The data is saved under a binary relation (Fig 3.3) between a

Key and a set of Values, where the Key will be the unique identifier for the multiple

Values. This allows for a distribution of the keys among a set of physical nodes.

3.1.2 Why the Key-Value Model

Our choice favours the Key-Value model, because this model thrives on Edge environ-

ments not only for its simple data model, allowing data items to be identified by a single
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Key A

Key B

Doc
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Figure 3.2: Document-Store Data Model

Key A Values

Key B Values

Figure 3.3: Key-Value Data Model.

key, but also for having the nature of the stored values transparent to the database, mak-

ing data queries operations efficient, and the partition of they keys flexible.

This also reflects on the simple operations this model has to offer:

• Get(key): Given a key, the database returns the values stored associated with the

given key.

• Put(key, value): Given a key and a value, the database either stores the value under

the new key, or, if the key already exists, joins the new value to the list of values

associated to the given key.

• Delete(key): Given a key, the database deletes all the values associated to it from

the system. This implementation may vary from case to case, as it can be a very

destructive operation in a shared database.

3.1.3 Comparison Dimensions

Along this dissertation, we will compare our proposed Key-Value storage with other

NoSQL storages using several dimensions. Along the next sections, we’ll be defining

these dimensions, where we’ll refer some technologies and common techniques that are

relevant for our work, and conclude them with the approach employed by our foundation

layer - Thyme.
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3.1.3.1 Persistence

This dimension refers to method of storing data employed by a system, to ensure that it

remains accessible until it’s deliberately removed. Some ways to do so include the use of

indexes, files, databases and distributed file systems. Another alternative is to keep data

in RAM and periodically make snapshots of them to persistent media.

Thyme does it by actively replicating its own data items (detailed in the section 2.4),

making sure they are available until their owner decides otherwise. On the edge server,

the data is also cached, and may be directed to external cloud databases if the system

engineer desires to, enforcing even more the data’s persistence in the whole system.

3.1.3.2 Replication

It’s a technique used to guarantee high availability and durability, which consists on

having data replicated on multiple physical nodes. It guarantees high availability because

if the original node fails, the database can still provide the client with the desired data,

which may also mean an increase of performance if writing or reading is permitted on

the replicas, relieving some of the load on the original node. One of the most common

examples of replication is the Master-Slave mechanism, where the Master is the original

node that receives all the write operations and replicates them to its Slaves, the backup

nodes. When writing operations are allowed on the Slaves nodes, the mechanism is called

Master-Master. Depending on the replication technique being used, different levels of

consistency can be guaranteed.

As seen in the Section 2.4, Thyme already addresses this dimension by actively and

passively replicating the data upon its publication.

3.1.3.3 API

Here we just want to compare the type of programming interface used to access the

database. For NoSQL databases, the most common is the HTTP protocol but there are

other alternatives, such as database’s own native clients in certain programming lan-

guages.

Although Thyme already has its own API, listed in the Chapter 2, our implementation

will have a different API. Besides the typical Key-Value operations, we will also need a

method to list all the keys in our storage. All of these will be implemented by calls to

Thyme’s API.

3.1.3.4 Implementation Language

This dimension refers to the programming language that the database is implemented

with. In some cases, it may affect the developer’s decision based on a required technology

or personal preference.
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Thyme was designed to be incorporated into any Android application, where the

official language of development is Java, and so was the choice of the Thyme’s authors.

3.1.3.5 Consistency

In a database there is a need to cope with concurrent reads and/or writes to be able to

provide the clients with valid and integrate data. Of course, in a distributed database,

maintaining Consistency is much more complex, and therefore more valuable, especially

when performance remains unaltered. Two of the main types of consistency when han-

dling a distributed database are:

Strong Consistency, which can be achieved by broadcasting all the data changes to

all the replicas as soon as a write request is handled by one of them. All subsequent

read/write request are put on hold while this process is being handled to ensure its

atomicity. This is probably one of the most costly and inflexible techniques to achieve

consistency, but a viable one in databases where data integrity cannot be risked.

And Eventual Consistency, which on the other hand is a more relaxed technique

but with weaker consistency guarantees. Write requests are propagated to other replicas

eventually, usually in periodic times, and don’t prevent the replicas from handling other

requests. It’s a viable technique for databases that prioritise Availability over Consistency.

Other known Consistency models preserved in NoSQL stores include: Casual Consis-

tency, Per-object Timeline Consistency and Parallel snapshot isolation [8].

Enforced by the Edge architecture, Thyme’s communication model is incapable of

coping with a state of Strong Consistency, as it would require long synchronised broadcast

messages constantly being transmitted through the whole system. We will be exploiting

Eventual Consistency techniques, what implications they might have on the system’s

metadata and what scenarios we must prepare for.

3.1.3.6 Sharding

To have an efficient distributed database, it must be able to partition the data among

the computing nodes in a viable way, this is described as the Sharding technique. Using

this technique, different data subsets are assigned to different nodes which allows the

database to distribute the load among them. There are 3 main Sharding techniques [12]:

Range-Sharding, Hash-Sharding and Entity-group Sharding.

Range-Sharding is done by partitioning data into ordered and contiguous value ranges,

allowing the system to perform efficient search tasks. To do so, the system needs a master

to manage assignments in a coordinated way as some shards may end more overloaded

than others, so the system must be able to detect and resolve these types of situations.

This technique is usually supported by Wide-Column stores like BigTable [6], HBase

[13] or Hypertable [14] and Document stores like MongoDB [20], RethinkDB [21] and

DocumentDB [2] [12].
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Another technique to partition the data amongst various physical nodes is Hash-

Sharding, where data is assigned to a shard according to a hash built from the primary key.

This technique has the advantage of not requiring a master node to regulate the Sharding

process and if the hash function produces an even distribution, it also guarantees an even

distribution of the data amongst the shards. The lack of a master node though, results

in unfeasible scans and thus only allowing lookups. Usually the shard assignment is

determined by serverid = hash(id) mod servers, but in a system where nodes are constantly

leaving and joining the system this can be a problem, as every time it happens, the data

records need to be reassigned. A solution to this problem is to use consistent hashing [17]

for the shard assignment, where records are not directly assigned to nodes but instead to

logical partitions, thus allowing a greater flexibility for the database, as not all the data

has to be reassigned when a node leaves or joins the system. This technique is used in

Key-Value stores and in some Wide-Column stores like Cassandra [15] or Azure Tables

[4] [12].

Finally, there’s Entity-group Sharding, where the data partitioning is entity driven.

There will be multiple partitions, where which one will be responsible for an entity or a

group of entities. The sharding process can be either determined by the application (e.g.

in G-Store [11] and Megastore [18]) or derived from transaction’s access patterns (e.g. in

Relational Cloud and Cloud SQL Server)[12]. Transactions between entity shared groups

are optimized, but different entity-groups transactions require more complex transaction

protocols.

As seen in the Chapter 2, Thyme employs a consistent hashing scheme by partitioning

the data amongst a cluster of logical cells, based on the hash produced by the data’s tags.

However, the existing scheme doesn’t take into account the workload that each cell is

responsible for, resulting in an unfair high network traffic for the cell’s respective mobile

devices. Further in this document, we will explore the possibilities for partitioning an

existing popular cell, in order to balance the workload sustained by all the devices.

3.1.3.7 Query Method

As the name suggests, this dimension looks to compare the methods to access the database

and the list of different ways of accessing these methods through the database API. The

methods are highly dependable from the database Sharding model, its data model and

consistency guarantees.

Existing query methods range from basic primary key lookups supported by every

NoSQL model, to complex filter queries, which are only supported by some models where

the values stored aren’t transparent to the database, e.g. Document-stores.

Although Thyme already has its own data retrieval operations, once again described

with more detail in Chapter 2, these will have to be adapted to function within the Key-

Value Model.
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3.2 NoSQL in Mobile Edge Networks

In this section we will be exploring existing NoSQL models deployed at the edge layer.

We will be iterating through their dimensions to see their approach in this type of envi-

ronment, learn from them and later compare own Key-Value Storage’s techniques with

the ones studied in this section.

3.2.1 Krowd

Krowd [10] is a decentralized distributed Key-Value store framework for applications

that share content between users connected in a network under the same access point. It

was developed for users who are attending live events which impacted the authors design

decisions. Krowd uses a distributed hash table (DHT) to store the key-value pairs amongst

the nodes in the network, which uses a consistent hashing scheme to route operations

based on the given key. It doesn’t store the actual data but rather its URI (Universal

Resource Identifier) under a key, which can be attributes of the content e.g. tags.

Besides the user’s mobile devices and the network access points, no other infrastruc-

tures are used to support this system whose architecture is composed by the following

three modules :

• Discovery and Communications: Responsible for announcing a device’s presence,

discovering other devices in the proximity, and communicating with them.

• KRoute: Given a key and data, this module is responsible for routing the data to

the correct device. To do so, it uses highest random weight hashing which consistently

maps the key to a unique device from the devices in the network.

• KVStore: Mounted on top of the KRoute component, this module handles remotes

procedure calls (RPC) to the system. It also contains a local hash table to store the

key-value pairs.

3.2.1.1 Persistence

Krowd is referred by its authors as a temporary infrastructure (since it was designed for

live events) and as a result, its Persistence guarantees are rather weak. Whenever a new

data item is inserted into the system, no events are triggered to preserve its durability

and even though the new item can be downloaded by other users, they can’t serve as data

retrieval points for the downloaded item. Thus if a user shares an item and then leaves

the network, this item won’t be downloadable anymore.

3.2.1.2 Replication

Krowd doesn’t employ any Replication technique. Users that download items from the

network can’t be denominated as replicas as they don’t receive neither read or write

requests.

19



CHAPTER 3. STATE OF THE ART

3.2.1.3 API

Krowd’s KVStore layer, which is responsible for handling remotes procedure calls (RPC)

to the system, implements two operations:

• Put(key, value): When the application stores a key-value pair, the KVStore module

creates and serializes a RPC put object which is sent to the device responsible for

the given key via the KRoute. When this device receives the RPC put object, its

KVStore extracts the key-value pair and stores it in its local hash table.

• Get(key): When the application requests a key, the KVStore module generates a get
RPC object which is routed to the correct device via the KRoute. On the correct

device, when KVStore receives this object, it extracts the key, checks with its local

hash table, and responds with the associated value, a list of URIs.

3.2.1.4 Implementation Language

There is no reference to Krowd’s implementation language in the authors paper[10].

3.2.1.5 Consistency

Krowd doesn’t support neither delete or edit operations on the stored data, so the only

consistency issues that may arise are when a put operation is performed on an existing

key and when an user that performed a put operation leaves the network. When the first

one happens, the new data’s URI is appended to list of values associated with the given

key on the device responsible for it. At the time of the developed solution, Krowd wasn’t

ready to accommodate churn (as it is noted by its authors in [10]), and so, no events are

triggered upon the exit of a user from the network.

Krowd’s consistency politics are eventual but its guarantees are rather weak.

3.2.1.6 Sharding

The KRoute module is responsible for partitioning the data amongst the devices in the

network and as it was mentioned in 3.2.1, it uses a highest random weight hashing (also

known as rendezvous hashing) scheme to do so. Each key is consistently mapped to a

unique device from the list of all devices provided by the Discovery and Communica-

tions module. No actual data is distributed amongst the devices but rather the data’s URI,

used to locate the data’s original publisher node.

3.2.1.7 Query Method

Users can query over the contents under a given key (by submiting a get operation), to

which the system will reply with a list of URIs for those same contents. The URIs are then

used to contact the devices that have the requested contents.
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3.2.2 Cassandra

Cassandra [15] is a Distributed Wide-Column Store for managing very large amounts of

structured data spread out across many infrastructure servers, while granting its clients

with a highly available system with no single point of failure. Its data model can be

described as a collection of tables, where each table is a distributed multi dimensional

map indexed by a key.

Due to its locality awareness, as it tries to find the closest replica to deliver users with

requested data, Cassandra can be a viable storage system for Edge environments.

3.2.2.1 Persistence

Cassandra approaches Persistence in two different ways:

• Local Persistence: Before writing the data to a disk, Cassandra registers the write

operation into a commit log that provides durability and recoverability to the given

data.

• System Persistence: To prevent data from getting lost, in case its original node

fails, Cassandra also replicas the data amongst a number of servers configured by

the system engineer.

3.2.2.2 Sharding

Cassandra partitions the data amongst its nodes by using consistent hashing, which

selects a node from a fixed circular "ring", based on the hash produced by the data’s key.

The selected node is now the coordinator node for the given key, and all the keys that are

in the region between it and its predecessor node in the "ring".

3.2.2.3 Replication

Cassandra allows for a custom configuration of the replication management. The number

of hosts N that replicate each data item can be specified, which will be managed by the

item’s coordinator node. Besides replicating the data items, the coordinator node is also

responsible for replicating the keys that fall within its range on N - 1 nodes in the "ring".

Cassandra also provides the system engineer with three different replication policies:

"Rack Unaware", "Rack Aware"and "Datacenter Aware".

3.2.2.4 Consistency

The consistency level granted by Cassandra is also user defined, and is impacted by the

replication configuration chosen. The different consistency levels vary mainly the number

of replicas for which the read and/or write requests are propagated to, which will directly

impact the availability of the system and the data accuracy.
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3.2.2.5 API

The Cassandra API consists of the following three simple methods:

• insert(table, key, rowMutation)

• get(table, key, columnName)

• delete(table, key, columnName)

Where table and key identify a row, and the columnName selects the desired field from

the requested row.

3.2.2.6 Implementation Language

Cassandra was originally developed for Java environments, but has since been adapted

to run on Python, C++, Go and Node.JS.

3.2.2.7 Query Method

Cassandra’s only query method is the get operation, which retrieves a row’s column iden-

tified by the row’s key in the given table. Due to the sharding scheme employed, this

operation is resolved on a one-hop lookup as all the nodes are aware of the system’s

topology.

3.2.3 Ephesus

Ephesus [23] is a decentralized distributed Key-Value store designed for mobile devices,

that requires no other computing and/or storage resources besides those provided by the

devices participating in the system. No Internet access is required to support this system,

it only depends on the participating interconnected mobile devices. The authors classify

it as an ephemeral system because it only exists as long as there are devices supporting it.

Ephesus focus on providing its users with a available and churn resistant system, with a

strong effort on data persistence as well.

3.2.3.1 Persistence

Due to the free movement of the mobile nodes, keeping a data item in this system may

present a challenge. The network’s topology may vary and some of the nodes may even

temporarily fall outside the network’s range. To make sure that the desired data items

are still accessible within the system, Ephesus replicates these items on several devices

also impacting positively the system’s overall performance.
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3.2.3.2 Replication

Ephesus employs a popularity-aware replication mechanism, combining active and pas-

sive replication, that prioritizes the most accessed data items granting them a higher

replication level. Each data item has a responsible node that tracks the amount and the

locations of the available replicas in the system, balancing the item’s passive and active

replicas. If the number of nodes passively replicating a data item (by downloading it)

starts increasing, the responsible node will start to decrease the number of active replicas.

On the other hand if the number of passive replicas starts decreasing, the number of

active ones has to be raised.

3.2.3.3 Sharding

Ephesus sharding scheme is supported by a Distributed Hash Table, that allows nodes

to have a partial knowledge of the network’s topology and to store their own contents,

reducing the overall broadcast search requests done in the system.

Replication wise, it would be unfair for the responsible nodes to handle all the repli-

cas of a key. So, to balance the workload with the other nodes, the index of the values

associated with a certain key are partitioned into smaller partial indexes, which its re-

sponsibility is shifted to other nodes. Whenever the partial indexes reach their fixed

size limit, these are locally cached, allowing other peers to only keep requesting the last

non-full partial index.

3.2.3.4 Consistency

The contents stored in the system are immutable, but their metadata is not. This design

decision had some impact on the metadata’s consistency to which the authors prepared

for in the following scenarios: Whenever an index operation is issued, Ephesus needs to

update its locally cached partial indexes in order to know which one it will insert the

new metadata object. Since the partial indexes are cached, published metadata cannot

be removed. This raises a problem since the removal of published contents is allowed,

removing the data item from the DHT but keeping the corresponding entry in the in-

dex. To solve this situation, the system publishes a tombstone metadata object for the

removed content in the next non-full partial index, guaranteeing the system an eventual

consistency. Other relevant situations concern the publish and delete operations that are

not executed atomically, leaving the index in an inconsistent state in case the relevant

peers crash midway through the operation. The index is eventually consistent again, as

the locally cached indexes are updated when actions are prompted over the relevant data

items.
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3.2.3.5 Query Method

To provide users with contents of the system, Ephesus has a get function which works in

the following way: first the system checks if it is possible to serve the current operation

with the local storage. If not, the request is routed to the DLS for a system-wide search.

If the requested file is found, it is then locally stored by the requesting client.

3.2.3.6 API

Ephesus’s supported operations are the following:

• put(key, data): Stores data in the system with the identifier key;

• get(key): Retrieves the data item identified by key if it’s still in the system;

• remove(key): Deletes the content associated to the given key, if it exists and was

published by the issuing user;

• list(): Returns the list of contents currently published in the system;

• index(metadata): Adds metadata, which consists of a key to the associated data and a

summary of the data, to the system-wide index provided by the list() operation;

• publish(key, data, metadata): Combines both put and index operations into one with

their respective arguments;

• delete(key): Calls both remove and index operations with the given parameters;

3.2.3.7 Implementation Language

Ephesus was implemented in Java.

3.3 Discussion

Throughout this chapter, besides defining the dimensions that characterise a NoSQL

Storage, we performed a survey containing state-of-the-art NoSQL Storages that share

some features with our envisioned system, compared in the Table 3.1. Unlike ours, none

of them use mobile devices and Edge infrastructures simultaneously as nodes of the

system, but we could still gather some relevant information from their approaches to the

defined dimensions.

In Chapter 4, we present an overview of our system, our available operations and

how we implemented them, the consistency issues that arose during our work, and other

implementation details.
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4
Basil

In this chapter we will present our proposed solution Basil, starting with

a general overview of our system’s features, followed by a detailed list of its

available operations. On the Section 4.3, we explain how we integrate the

Thyme system to fit our system’s needs, and how we use it to handle Basil’s

keys on the Section 4.4. Over the Sections 4.6 and 4.7, we detailly explain our

operations, and the modifications done to the current Thyme system to cope

with Basil’s needs. We close this chapter by examining possible inconsistent

situations in our system on the Section 4.8, and list some of the most relevant

implementation details on the Section 4.9.

4.1 Overview

Basil is a fully collaborative Edge Key-Value Store, designed for mobile devices in the

same edge network who want to share any type of content between them. The data

resides on the actual devices, and its persistence is guaranteed by Basil through passive

and active replication mechanisms. Basil also accommodates users freedom of movement,

and supports their departure from the system, making a strong active effort to assure no

data is lost between these processes. As a collaborative system, all the mobile nodes in the

system act like storing points, compelled to answer to read and write requests towards

their stored objects, and to help other nodes integrate the system.

Although in this first approach the objects in the system are immutable, their meta-

data files aren’t. The objects already published can still be linked to new keys or unlinked

from previously associated keys. In order to manage the objects’ metadata, the nodes

are clustered, and each cluster is then responsible for handling the operations directed

towards a group of keys.
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We have also decided to introduce the concept of hierarchical namespaces to Basil,

as we felt that it would broaden the system’s features, thus making it more appealing

for possible employing applications. For example, one powerful possibility would be an

application capable of simulating a file system oriented for the Edge, where each directory

is abstracted into a key at the Basil layer.

Besides interacting with each other, the mobile nodes can also communicate with

infrastructures located at the Edge. The edge nodes act as central storing points for the

most popular items, and can also communicate with another remote infrastructure nodes

to broaden the system’s geographical range. This allows nodes from different venues, but

from the same Namespace, to share content between them. The infrastructure nodes can

also make use of Cloud services to store files in a more persistent manner, or for other

computing services.

The mobile nodes communicate directly with each other, via Peer-to-peer communica-

tion technologies, such as Bluetooth and Wi-Fi Direct, or indirectly through access points

(via Wi-Fi).

4.2 Basil’s API

Basil was built to integrate another system, just like we use Thyme, or to be directly

implemented in a mobile application. And as so, in order to facilitate its integration, we

will present a brief description of its available operations.

put(key, value, opHandler)

This method publishes an object in the system.

key – Key with which the object is being inserted under.

value – Object being inserted into the system.

opHandler – Implementation of the behaviour to be executed upon the oper-

ations’ success or failure. In case of success, this is where the inserted object’s id is

retrieved from.

putInAll(root, value, description, opHandler)

This method publishes an object under all the keys derived from a given root key.

root – Root to be interpreted as a group of keys where the object is being

inserted under.

link(key, objectId, opHandler)

This method links an existing object with a ney key.

objectId – Id of the object being linked.

key – New key being linked to the object.
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linkInAll(root, objectId, opHandler)

This method links an existing object with a root key.

root – Root to be interpreted as a group of keys to which the object is being

linked to.

get(key, downloadHandler, filter)

This method retrieves all the values published under a key.

key – Key from where the values are being retrieved.

downloadHandler – Implementation of the behaviour to be executed upon

the downloads success or failure.

filter – Implementation of the metadata filter being applied to the matches

values, before being sent back to the issuing user.

getFromAll(root, downloadHandler, filter)

This method returns all the values published under a directory.

getUntil(key, endTime, downloadHandler, filter)

This method returns the all the metadata files published under a key until a given

timestamp.

endTime – Superior timestamp limit for the incoming metadata files.

downloadHandler – Implementation of the behaviour to be executed upon

the downloads success or failure.

remove(objectId, operationHandler, fromAllKeys)

This method removes an object from the system.

objectId – Id of the object being removed.

operationHandler – Implementation of behaviour to be executed upon the

operation success or failure.

fromAll – Flag indicating if the object should be removed from all the tags

in system.

unlink(objectIdr, key, operationHandler)

This method unlinks a key from an object.

key – Key being dissociated from the object.

unlinkFromAll(objectIdentifier, root, operationHandler)

This method unlinks all the keys derived from a directory from an object.

root – Root to be interpreted as a group of keys to which the object is being

unlinked from.
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delete(key, operationHandler, fromAll)

This removes all the values published under a key by the issuing user.

key – Key being deleted from the system, as well as the values associated to

it.

operationHandler – Implementation of behaviour to be executed upon the

operation success or failure.

fromAllKeys – Flag indicating if the relevant values should be removed from

the given key or permanently erased from all the keys in the system,

listKeys()

This method returns the global list of keys.

4.3 Basil over Thyme

Still, Basil is just a Key-Value Interface Layer that makes the bridge between the employing

application and the Thyme system, thus making use of the latter’s Storage, Replication

and Routing mechanisms (explained in the Chapter 2 and illustrated on Fig. 4.1 and 4.2 )

to conduct its own operations.

Basil adapts Thyme’s Publish/Subscribe data model, by transforming tags into keys,
and shapes Thyme’s message-based architecture by immediately triggering all the notifi-

cation messages in a transparent way to its users, thus providing them with an abstraction

of an asynchronous Key-Value database. Besides these adaptions, some new operations

were added to the current Thyme system in order to comply with the Key-Value model,

such as the ability to link and unlink a Tag from an existing object, which are detailly

explained in the sections below. To avoid ghost objects in the system, i.e. objects without

tags (and therefore unreachable), the original object’s cell started being responsible for

keeping track of their objects tag counter.

Regarding Thyme’s time-awareness subscription properties, we have decided to not

include them in Basil’s retrieval operations. This is because we wanted to preserve the Key-

Value paradigm as an asynchronous storage system, and abstract it from its foundation

layer, a message-based synchronous system. And as so, all the subscribe operations issued

at the Thyme layer always have a time window between −∞ and the current moment.

4.4 Managing the Keys

In order to fully take advantage of the Key-Value data model, one should be able to see

all the existing keys in the system before performing any operation. In order to achieve

this, as the current Thyme version doesn’t disseminate tags, we decided to reserve a tag,

"KEYS", just to store our keys.
As soon as Basil is fully initialised, it executes a private operation, list(), which consists

of a subscribe operation to the reserved tag "KEYS", with a time span of [-∞,+∞]. Upon
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Application

Key-Value Interface

Thyme

Figure 4.1: Basil’s proposed Architec-
ture.

Figure 4.2: Thyme’s Architecture.
Adapted from [29]

receiving any notification, the notification handler is programmed to extract the key
from the received metadata files description field, and store it in Basil’s local key set. By

having this permanent subscription, we prevent duplicates from existing on the global

list, inspecting our own local list before publishing a new key.

Regarding the list’s contents, everytime a put or a link operation is issued, the user’s

local key list is queried for the inserted key to check if an extra publish operation is nec-

essary. The inverse verification is also made upon a remove, unlink or delete operation,

issuing an extra unpublish operation if the user has no more objects published under a

key that he published on the global list in the first place.

To minimise the overhead induced by this mechanism, the key objects are simple

strings, stored as the description of a null object. This way, the List operation is a 1-hop

operation, (instead of a 2-hop), allowing the clients to communicate directly with the

responsible cell to retrieve the global list, as it is illustrated on the Fig, 4.3.

At the infrastructure level, we have decided to instantly promote the KEYS to a popu-

larity level, such that, it is always broadcasted between different venues from the same

world. In the end, we have a global list of Keys from all the Basil instances, with a eventual

consistency level.

Also, in another attempt to reduce the number of duplicates on our global key list and

keep it precise, an extra unpublish operation is issued to remove the given key from the

list, if the user has published it on the global key list in the first place.

4.5 Hierarchical Namespaces

An hierarchical namespace, (not to be confused with Thyme’s Namespace), is the set

of leaves contained in a root key. For example, the leaves contained in the root key
"FCT\DI\AC\2019" are the following set of keys : [FCT\DI\AC\2019, FCT\DI\AC, FCT\DI,
FCT].

These namespaces are able to introduce an hierarchy concept to Basil, where keys can

either be a folder or a sub-folder. In order to cope with this abstraction, we implemented

the following operations: putInAll, linkInAll, unlinkFromAll and getFromAll. For each

operation, the given root key is interpreted as a hierarchical namespace, deriving the
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subscribe(KEYS)

Set of Keys

put(KEYS, ∅
)

Cell responsible for
the reserved key
KEYS

Node publishing a
new key, under the

description of a null
object

Node retrieving the
global list of keys
directly from the cell

Ack

Figure 4.3: Retrieval and publication of keys in the system.

respective key leafs, which are then passed on to the generic operations and are interpreted

as a normal set of keys.

4.6 Operations

The operations implemented in Basil are what really defines our work. In the following

sections, a detailed analysis will be presented for each operation, as well as their biggest

implementation challenges, changes to Thyme’s existing operations and messages, and

new operations added.

4.6.1 Inserting a new Value

Besides the typical Key-Value put operation behaviour, where a new object is inserted into

the system, our implementation hides another secondary mechanism to accommodate its

P/S foundation layer.

This operation starts by issuing a publish operation in Thyme with the inputs passed

to the put operation. Upon its successful completion, if the given key doesn’t exist in the

user’s local key list, a second publish operation is issued to the global key list. In case

the second publish operation fails, up until two extra publish operations are issued to the

global key list until one completes successfully.

In case the object being published is smaller than a stipulated threshold, we have

decided to store it as a description of its own metadata file. Just like the scenario described

on the Fig. 4.3, this optimisation allows for the direct download of the object from its

keys cell, being stored within its own metadata file. This way, the workload imposed by

Basil onto its nodes is decreased, as the download operation now only requires one op
instead of two, and no active replication mechanisms are necessary to persist the small

object published.
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The operations is considered unsuccessful if the publication of the value fails, or if the

publication of the new key fails after three tries.

4.6.1.1 Linking an existing Value with a new Key

If an object already exists in the system, and we just want to associate it with a new set of

keys, there is no need to republish it. Just like the operation link in the operative system

Unix [28], where an existing file can be linked to a pointer file, we link an existing object

with new keys instead of publishing it again.

The link operation can either be called explicitly by the programmer, or it can be

called inside the put operation if the user has already published or received the inserted

object. We only check if the object exists locally, because the cost of searching for an

object in a distributed Edge network like Thyme would be unbearable. It would require

querying through all the cells in the network for the given object, with the possibility of

extending the search to another venues. Not only would this congest the network with

heavy queries, it would also delay link and unlink operations, forcing the users to wait

until the search be completed.

4.6.2 Retrieving Values

As in any normal Key-Value database, the values from a given key can be retrieved through

the get operation. Ours is no different. The operation get starts by issuing a subscribe
operation at Thyme, automatically triggering all the received notifications, downloading

the objects as soon as their metadata files are received. But if the objects are small enough

to be included in their own metadata files, their respective notifications aren’t triggered,

and the object is extracted directly from the respective metadata.

We’ve added the possibility to perform selective queries through the filtering of the

matched metadata files at the keys cell. The filter can either be directly applied to the

matched metadata files based on a metadata attribute (e.g. the description field), or it

can be a selection algorithm (e.g. random selection). If both are applied, they follow the

order demonstrated on the Figure 4.4.

As of right now, there are two possible selection algorithms:

• Random Selection: Where a random number, or a specified number of files are

randomly selected from the matched metadata files of a subscription request.

• Partial Selection: Where the first n published objects are selected from the matched

metadata files of a subscription, where n is a number specified by the user.

To take advantage of Thyme’s time-awareness subscription properties, we’ve included

the getUntil operation that allows users to handle directly the matched metadata files

from objects yet to be published. Referring to future objects can be a powerful feature,

and we didn’t want to miss out the opportunity to include it in our system’s abilities.
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Metadata 1

Metadata 15

Metadata
Filter

Metadata 1

Metadata 13

Metadata 3

Metadata 5

Metadata 7

Metadata 11

Selection
Algorithm

Metadata 1

Metadata 5

Metadata 11

Figure 4.4: Order in which the metadata filter and the selection algorithm are applied to
the list of matched metadata files upon a subscription.

To cap of our retrieval operations, we conclude with the getFromAll operation, which

as mentioned in the Section 4.5, retrieves all the matched objects published under the

leaves keys derived from a given root key.

4.6.3 Removing Values

Removing a value in a typical distributed Key-Value database, erases it from circulating

in the respective network. In Basil, this behaviour is similarly replicated with the remove
operation.

Underneath, an Unpublish operation is issued at the Thyme level, which deletes all

the metadata files associated to the object identified by the objectId in its initial linked

tags cells, preventing the object from being included in future subscriptions. But, if the

same object has already been linked to new keys by another user, that same object will

still be available for download under those new keys.

If the object’s owner wants to indeed remove the object from the entire system, the

actual list of keys associated must be retrieved first, to issue all the necessary unpublish
operations. As this assertion has an higher communication cost comparing to a normal

remove operation, we have decided to make it optional by including a fromAllKeys flag in

the remove operation’s signature. This way, the users can remove their own objects from

the keys they associated it with, or they can ensure that the object is properly deleted from

the system.

4.6.3.1 Unlinking an existing Value from a Key

Just like we made it possible to link an existing value to a new key, we also made its

inverse operation possible, unlink an existing value from an already associated key. But

unlike the link operation, where any user can link an existing object with any key, the

unlink operation can only be performed by the object’s owner, or if the unlinked keys were

linked by the issuing user in the first place.
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4.6.4 Deleting a Key

Typically, on a Key-Value database, a delete operation erases all the values associated with

a given key. But we thought that this behaviour would be too destructive on an edge

collaborative storage like Basil, as it would allow users to eliminate any value in the

system, even if they weren’t the original publishers. And so, as a compromised solution,

our delete operation only removes the values from a given key that were published by the

issuing node in the first place.

Just like in the remove operation, where the users can ensure that the objects are

indeed removed from the system, the same decision is granted in the delete operation. In

order to so, before issuing the delete message, the node requests for the actual list of keys
from the objects being deleted, to assure that all their metadata files are indeed erased

from the system.

4.7 Changes to Thyme

In order to support Basil’s operations, new ones were added to Thyme’s API, and some of

the existing operations were slightly modified. These not only required the introduction

of new messages and data structures to Thyme’s system, it also called for a revision over

some of the existing ones.

Over the following subsections we’ll be detailly explaining the newly added changes,

as well as their purpose for our solution.

4.7.1 Linking and Unlinking existing objects

Until our implementation, Thyme didn’t support the ability to add or remove tags from a

published object. In order to so, first we needed some kind of structure to keep track of the

object’s set of tags. And so, to the storage layer we added a new structure, a Map<ObjectId,
Set<Tag>> tagsCounter, responsible for keeping track of the objects’ tags, maintained

by the object’s original cell. Whenever a new node enters a cell, it automatically starts

replicating this structure, which is transferred by its new cell’s peers. We chose the

object’s original cell to keep track of its list of linked tags because, by placing the object’s

tag counter closest to its original source, we are reducing the traffic between different cells.

To optimise the initial structure propagation, if the object is being actively replicated,

(which is also done at the publisher’s cell as previously stated in the Section 2.4), we

merge the active replication message with object’s tag counter initial message.

To Thyme’s publish operation, we’ve also added a boolean flag, indicating if a tag
counter should be kept for the object being published, preventing it from being linked

or unlinked with further tags. This was useful for our reserved tag "KEYS", whose key
objects won’t be associated with any other tag, and allows the responsible nodes to have a

reduced workload.
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Figure 4.5: Example interaction between nodes upon a link operation of an object to the
Tag B, previous already associated with the Tag A

4.7.1.1 Link Implementation

The link operation starts with the linking node sending a link message to the original

object’s cell containing the following fields:

• A NamespaceId identifying the Namespace where the object resides;

• An ObjectId identifying the object to link;

• A set of tags to be added to the object’s metadata.

On the original cell, upon receiving this link message, the receiving node will both

update its respective object’s tag counter and broadcast this message to its cell’s peers so

they can do the same. After this, the receiving node will send back an acknowledgement

link message containing 4 items:

• The relevant object’s identifier;

• The new tags linked to the object;

• The already associated tags;

• And the correct updated metadata for the relevant object.

Now, the first node is responsible for both rerouting the link message to the previously

associated tags cells, where the receiving nodes will update their object’s metadata, and

issuing a publish message with the newly updated metadata to the object’s new tags.

On the Fig. 4.5, it is illustrated the interaction between nodes from different cells,

when an object that was already associated with the tag A is being linked with the tag B.

36



4.7. CHANGES TO THYME

2: Publish message

1: Link m
essage

3: Link Ack m
essage

2: Link m
essage

Linker node

Nodes from the
original object's

cell

Nodes responsible
for Tag B

Nodes responsible
for Tag A

Figure 4.6: Alternative explored for the implementation of the link operation using the
same example from the Figure 4.5

Another possibility we explored, was to shift all the message handling to the object’s

original cell, to route the collateral publish and link messages. As it is depicted on the

Fig. 4.6, the nodes responsible for managing the object tags, would have to issue the

necessary publish and link messages themselves. In the end, in order to balance the

workload between all the nodes in the system, we decided to not pursue this option as

it would be unfair to the nodes handling the most popular objects, who would have an

heavier workload compared to the remaining nodes.

4.7.1.2 Unlink Implementation

The unlink operation is very similar to the link operation implementation wise. It starts

with the unlinking node sending an unlink message to the object’s original cell containing

the following fields:

• A WorldId identifying the Namespace where the object resides;

• An unique ObjectId to identify the relevant object;

• And a set of Tags to be dissociated from the object’s metadata.

A random node on the object’s original cell, upon receiving this message, will update

the object’s tag counter, and disseminate this message to its cell peers so they can do the

same. Then, the same node will send an acknowledgement message back to the unlinker

node containing the same WorldId, ObjectId and Tags. Besides these fields, this message

also contains another set of tags of which the object is also associated with.
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Figure 4.7: Interaction between nodes upon an unlink operation of an object with the Tag
B, previously associated with the Tags A and B

The unlinker node, upon receiving this acknowledgement message, is now responsible

for rerouting the unlink message to each of the tags cell that the object was already asso-

ciated with, so that the cells can update their metadata files, and an unpublish message

to the removed tags to stop including the object in the following subscriptions.

On the Fig. 4.7, it is illustrated the interaction between nodes from different cells,

when an object that was already associated with the tags A and B, is being unlinked from

the tag B.

4.7.2 Enforced Removal

With the ability to add tags to published objects, a revision needed to be made to Thyme’s

unpublish operation. Before our work, the set of tags associated with an object were

immutable, and therefore, an unpublish message to each of the associated tags was enough

to prevent its metadata files from being included in future subscriptions. But, with the

set of the object’s tags now being mutable, issuing an unpublish message for the initial tags
cell could not be enough. To resolve this issue, we could either disseminate the updated

metadata files, which would require keeping track of all the nodes’ lists of retrieved

metadata files to update them everytime a link/unlink would be issued, or an extra

message could be issued to the object’s original cell querying for their current list of tags.
We opted for the second option, as we believe that compared to the first, it would induce

the system in a lower communication effort to guarantee the removal of an object.

As it is shown on the Fig. 4.8, the enforced removal starts with the issuing node

requesting the current list of tags associated with a given object with a message containing

the following fields :
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Figure 4.8: Interaction between nodes in the system, upon an ensured unpublish operation
is issued.

• A WorldId identifying the Namespace where the object resides;

• And an unique ObjectId to identify the relevant object;

Finally, upon being returned the object’s current list of associated tags, the operation

is carried out as a normal Unpublish.

4.7.3 Unpublishing multiple objects

Removing multiple objects in Thyme would implicit issuing that many unpublish mes-

sages. But if all those objects are published under the same tag, one aggregated unpublish
message should suffice. As that is the case for our delete operation, we have decided to add

a new message type to Thyme’s array of messages, the aggregatedUnpublish message. This

new message instead of referring to only one object, as the unpublish message (referenced

in the Section 2.3.1.1), refers simultaneously to multiple objects at a time.

With this new message type, once again we are able to reduce the number of messages

circulating through the network, making an active effort to improve our system’s usability.

4.7.4 Status Update upon joining a new Cell

With the introduction of the new data structure tagsCounter at the storage layer, (respon-

sible for keeping track of the objects associated list of tags), a revision had to be made to

the current UpdateStatus message.

The UpdateStatus message is a message returned to the nodes who just joined a new

cell, so that they can aid its neighbour nodes with the cell’s incoming requests. As soon

as they enter a cell, they ask another random node for the cell’s state, which until our
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Figure 4.9: Concurrent Put and Delete calls to the same Cell.

implementation only included the list of received metadata files from the cell’s tags, and

the list of published files being actively replicated in that cell. To this two fields, we

added the list of associated tags from the objects originally published on the relevant cell.

With this addition, the newly joined nodes are now able to respond properly to in-

coming link, unlink and enforced remove operations.

4.8 Maintaining Consistency

Keeping consistency in a distributed Key-Value database can be challenging, specially

when multiple nodes can insert and remove multiple values simultaneously under the

same key. One of the concerning scenarios at the start of our solution, was when a delete
and put operation would be issued to the same key simultaneously by different nodes, that

it could result in a completely different outcome depending on which operation would

be handled first.

To exemplify this scenario, let’s consider there are three objects published under a key
A, and as demonstrated in the Fig. 4.9, a put and a delete operation are simultaneously

received by two different nodes in the cell. The two following scenarios could happen:

• A node receives the put propagation message before the delete propagation message,

and its values change in the following way: [Object1, Object2, Object3]
put
−−−→ [Object1,

Object2, Object3, Object4]
delete−−−−→ []

• A node receives the delete propagation message before the put propagation message,

and his values change in the following way: [Object1, Object2, Object3]
delete−−−−→ []

put
−−−→

[Object4]

This could be a problematic situation if the delete operation would actually delete all

the key’s values, as opposed to our implementation where it only deletes the user’s own
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Figure 4.11: Inconsistent get operations
to the same key.

values. And even so, if two put and delete messages sent from the same node happened

to be handled by two different nodes inside the same cell, we still wouldn’t have an

inconsistent state. This is because Basil’s operations are based on Thyme’s own message

types, where a put originates a publish message, and a delete originates an aggregated

set of unpublish messages. And as stated in the Subsection 2.3.1.1, to issue an unpublish
message, one must have the id of the object being removed. As this id is only returned

upon the object’s successful publication, this conflicting scenario would never arise.

The only inconsistent scenario that could eventually happen, is the one illustrated

on the Figures 4.10 and 4.11, where a get operation is issued to two different nodes

in the same cell, midway the propagation of two different objects. From the example

demonstrated, the left get would return the objects a, b and d, and the right get would

return the objects a, b and c.

This scenario although unlikely, may occur as there is no order preserved inside the

cells, allowing for an immediate propagation of the metadata files as soon as they are

received. This discards the necessity to enforce strong consistency policies, as eventually

all the nodes in the same cell converge to the same state.

4.9 Implementation Details

There are some implementation details that weren’t fully explained in the previous sec-

tions, but were essential for the development of our solution. In order to understand how

Basil’s operations were implemented, we will review the technologies and mechanisms

employed throughout our system.

4.9.1 Protocol Buffers

The previous authors of Thyme already used Protocol Buffers to serialize their messages,

and noted that when compared to other serialization mechanisms and formats, such as

XML, JSON and Java Serialization, this mechanism fitted better their needs[25]. Following
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Algorithm 1: Object Search in the Storage Layer
Result: Object’s Metadata

1 int i = 0;
2 while i < PublishedFiles.size() do
3 auxObject = PublishedFiles.get(i);
4 if auxObject == object then
5 return auxObject.Metadata;
6 else if auxObject.size() == object.size() then
7 if byteComparison(auxObject, object) then
8 return auxObject.Metadata;
9 i++;

10 end

their justified decision, we decided to also use Protocol Buffers to update and create the

messages listed in the previous sections.

Protocol Buffers is a serialization mechanism developed by Google, which is universal

to any platform and programming languages, allowing distinct hardwares and software

solutions to use it interchangeably. Besides this adaptive characteristic, this mechanism

is also one of the fastest, beating XML by 20 to 100 times during transmissions, and its

generated packets are much smaller than the packets generated by other serialization

mechanisms.

All this mechanism needs, is a .proto file for each message, listing its fields and their

respective data types, which still include a large array of options, allowing its compiler

to build the message’s prototype.

4.9.2 Searching for Objects Locally

To perform a link or unlink operation, Basil needs to confirm that the pertinent object

exists in the system. Although we discarded the option to search through the whole

network, we still search locally with the implementation in Algorithm 1.

This implementation starts by comparing all the published object references from the

given world, and compares it to the given reference (on the line 4). If no match is found,

it proceeds to compare all the objects with the same size as the object being searched,

(line 6), by fragmenting the objects into chunks of 64 bytes and comparing them one by

one, stopping when a pair of chunks aren’t equal, (performed by the auxiliary function

byteComparison in the line 7). If all the chunks are indeed equal, then the object’s metadata

is returned (on the line 8). In case none of the published files match with the given object,

this process is repeated for the received files.

4.9.3 Notifications Policy

This concept was firstly introduced to Thyme’s subscriptions to make selective queries

possible. In order to materialise this concept, a new NotificationPolicy object was added
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to the current subscription containing two fields:

• An Integer representing the number of items to be retrieved;

• And an Enum representing the notification policy itself. As of right now, the two

possible policies are: PARTIAL and RANDOM

As of right now, only the metadata files from the past are filtered. If the subscription

has a time window in the future, all the incoming matched metadata files will be sent

regardless.

4.10 Summary

In this Chapter we presented Basil, the framework developed in the context of this thesis.

Besides listing all its operations, explaining their parameters and behaviour, we also

explained how we made use of its foundation layer, Thyme, changes we made to existing

operations, and the new operations we added to Thyme’s API.

Finally, we made an analysis of Basil’s consistency, focused on how the cells would

handle problematic concurrent operations, and if they would infer the system on an

inconsistent state.

On the next chapter we will present our case study application, a Quiz developed to

be possibly integrated in our university’s lectures, that will be our primary evaluation

target.
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5
Case Study: Class Quiz

In this chapter we will be presenting the mobile Android application devel-

oped as a case study for Basil. We start by presenting an overview, explaining

the application’s purpose and available functionalities on Section 5.1. Follow-

ing this, on Section 5.2 we describe all the operations available for the two

types of user supported, professor and student, alongside with its implemen-

tation details employing Basil.

5.1 Overview

Class Quiz is an application for Android devices that allows students to participate in live

class quizzes created by authenticated professors.

Professors can publish quizzes formed from a set of previously published questions

in the system, to which the students can join via the scanning of a QR code. The answers

submitted by the students are then collected and reported back to the professor, who

can group them by student or by question. Upon the quizzes completion, these are

automatically corrected. The students can then inspect their correction, as well as the

grades obtained in each one of them.

Class Quiz extends Basil to conduct its operations, and will serve as a proving target for

our developed solutions, as a well as our comparing target against another Edge storage.

Class Quiz can be installed on any Android device with the operating system version

4.1 (Jelly Bean) or higher. Due to Thyme’s nature, it doesn’t require any Internet con-

nection, only relying on Peer-to-peer communication technologies (such as Bluetooth and

Wi-Fi Direct), and communications via an Access Point (using Wi-Fi).
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Figure 5.1: Initial Application Home
Screen.

Figure 5.2: Authentication with the uni-
versity Gmail account.

5.2 Application Flow

The application flow starts with a simple LogIn activity (show on Fig. 5.1), which will

only authenticate accounts from the FCT official domain. The users will be authenticated

either as a Student or as a Professor. Depending on their roles, they will both have a

specific list of available operations.

5.2.1 Professor operations

If the user is authenticated as a Professor, he will be immediately prompted with a list of

possible operations, necessary to the creation and publication of a Quiz. The following

are:

• Create questions under one or more areas;

• Associate areas to existing questions;

• List all the areas and questions published on each of them;

• Create and Edit quizzes;

• Start a quiz by publishing it;

• Inspect the answers submitted to a quiz;
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Figure 5.3: Creation and Publication of a Question.

5.2.1.1 Publishing a Question

Before creating a Quiz, the Professor should make sure there are enough questions pub-

lished to form one. As shown in the Fig. 5.3, a question is composed by the following

fields:

• Question : The Question itself.

• Area : The area it is being published under.

• Right Answer : At least one right answer for the inserted question.

• Wrong Answer : At least one wrong answer for the inserted question.

After the mandatory fields are filled, the question is then published onto the system

through a put call in Basil, and is ready to be associated with future Quizzes.

The list of existing Areas, and questions published under each one, are then also

available in the Professors interface with the activities displayed on the Figures 5.4 and

5.5, which issues a get operation for each area in the global key list. The professors can

either remove a question, if they were the ones to publish it, link existing questions to new

areas, and also unlink them from other areas linked by them.

47



CHAPTER 5. CASE STUDY: CLASS QUIZ

Figure 5.4: List of existing Areas in the
System.

Figure 5.5: List of published questions
under the Area "Matemática".

5.2.1.2 Generating a Quiz

Unlike the questions, the quizzes must be created first before being published. This

way the professors can prepare the Quizzes before the classes, and publish it at a more

convenient time. As seen in the Fig. 5.6, the mandatory fields to generate a new Quiz are

the following:

Department : Department from which the Subject belongs to, and will be published

under.

Subject : Subject in which the Quiz is being evaluated, and will be published under.

Quiz Name : Name identifying the Quiz.

Area and Number of Questions : At least one area to be associated with the Quiz, and

the corresponding number of questions being asked in the quiz.

After built, the quizzes can either be edited or published as illustrated on the Fig.5.7.

Before being published, the Quizzes are wrapped into a JSON object containing: the

Quiz’s name, the Quiz’s answers key (where the answers from the students will be pub-

lished on), and a map for the areas associated with the Quiz and its corresponding number

of questions. This JSON object is then published with a put call onto Basil, under the
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Figure 5.6: Creation of a Quiz. Figure 5.7: List of the user’s Quizzes.

Quiz’s key which is created with the Quiz’s name, department and subject. After pub-

lished, this object can now be downloaded by the quiz’s attending students, and will be

interpreted at the application layer.

Also, as soon as a professor publishes a quiz, the application automatically issues a

getUntil operation for the quiz’s answers key, defining the superior timestamp limit as

the current’s timestamp plus the quiz’s duration. This way, only the answers published

within the quiz’s duration will be considered for the professor’s quiz correction.
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Figure 5.8: Scanning a QR Code contain-
ing the Quiz’s Key.

Figure 5.9: Screen upon starting an on-
going Quiz.

5.2.2 Students Operations

Upon being authenticated as a Student, the users are immediately prompted with a list

of possible operations that allows them to either join an ongoing quiz, or inspect results

obtained in past quizzes.

5.2.2.1 Joining a Quiz

To start a Quiz, the Students scan a QR Code through the mobile application, as it is

illustrated on the Fig. 5.8, which will contain the Key under which the Quiz is published

under.

Upon downloading the Quiz object from the scanned Key, the application will issue

a get operation with a random metadata selection filter for each of the Quiz’s areas with

its corresponding number of Questions, ensuring that each student will probably have

a different quiz. As soon as all the questions are downloaded, the students can start

answering the Quiz, as it’s shown on the Fig. 5.9.

As soon as the questions are solved and submitted, the respective answers are pub-

lished under the Quiz’s answers key. As the answer itself is such a small object, (composed

only by the student’s name, the question identifier and the list of submitted answers), it is

published as a description of a null object. This later allows the responsible professor to

retrieve the answers directly from the answer’s key metadata files, instead of downloading

them as a value, who can still group them by student or question.
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Figure 5.10: List of Quizzes done by a Student.

After participating on a Quiz, the students can later review them, as it is illustrated

on the Fig. 5.10, being able to check which questions they answered wrong and right,

and the grades obtained in each of the quizzes. The correction for each student is done

locally, as the downloaded questions in the start of the quiz already contain the respective

solutions.

5.3 Summary

Throughout this Chapter, we presented Class Quiz, the Android mobile application de-

veloped as a case study for Basil. This application allows professors to create and publish

quizzes, as well as the questions that form them. The students on the other hand, are able

to join any ongoing Quiz, as long as they scan its corresponding QR code, and can later

review the Quizzes they participated on.

The application as of right now, is oriented just for our university members, only

authenticating UNL FCT registered users, and joining the FCT World by default. But with

some simple authentication adjustments, this application could easily be integrated into

any university classes.

On the next chapter, we will present the evaluation done to our implemented system,

and to the application developed as our case study. We will also present the evaluation

results, and a constructed analysis derived from these.
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6
Evaluation

This chapter begins with a description of the methodologies used to char-

acterise and evaluate our proposed solution, and how we plan to compare it

against a database with edge awareness, Cassandra. In Section 6.2, we present

our simulation environment, the use-case generated for testing our system,

and how we implemented the employing application using Cassandra. On

Sections 6.3 and 6.4, we present and discuss the results obtained with both

Cassandra and Basil, while explaining the nature of such results. Finally, on

Section 6.5, we reflect on the more appropriate contexts for the employment

of our solution, and what distinguishes it from Cassandra.

6.1 Evaluation Methodologies

To validate our solution, we need to submit it to a variety of tests that simulate a real-

world edge environment. Throughout these tests, besides the number of active quizzes,

we will be ranging the number of participating nodes in the system to further test and

compare the scalability of our system. We conducted our tests to answer the following

questions:

• How much data does Basil need to generate?

• How does the network load vary?

• How scalable is Basil?

• How demanding it is for the mobile devices to use Basil?

• In which scenarios should engineers consider Basil?
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Besides performing an absolute evaluation to our system, we will also compare it to

another Key-Value Edge storage system, and further evaluate the scenarios in which our

solution prevails.

6.1.1 Absolute Evaluation

To purely evaluate Basil as a storage system, we will start by measuring its available

operations performance one by one. We are interested in the number of messages sent

per operation call, and the average load carried out by a message. These two metrics will

allows us to calculate the average load induced by an operation onto to the nodes in the

system. Besides evaluating the operations’ performance, we will also be measuring the

workload imposed by Basil onto its participating nodes, which is defined as the number

of messages sent, received and processed by a node.

We will then compare Basil’s performance using only mobile nodes, against its perfor-

mance while also interacting with an Edge infrastructure.

6.1.2 Comparing against Cassandra

Basil is the only Key-Value Edge oriented Storage framework that uses both mobile nodes,

and infrastructure nodes as active components in the system. And so, we wanted to

compare it against one of the most prevailing NoSQL storage at the moment, Cassandra,

which also has some Edge-oriented implementation details, (referenced in the Section

3.2.2).

We are expecting Cassandra to prevail over Basil whenever only one quiz is being

carried out, as the more powerful infrastructure can outperform the weaker mobile de-

vices. But as the number of attending students per quiz, and the number of active quizzes

is increased, Cassandra’s performance will surely decay, as the solo infrastructure will

be flooded with requests. Whilst in Basil, as each quiz is contained in its geographical

space, for our case-study a classroom, its performance is independent from the number of

ongoing quizzes. Still, Basil’s performance will most likely also decay when the number

of attending students is increased, as the proportional increasing number of circulating

messages will slow the executed operations.

We are expecting that, from a certain number of mobile nodes and ongoing quizzes,

Basil will prove itself as the more scalable system, against the solo Cassandra infrastruc-

ture. To prove so, we will be comparing both systems latency times, for read and write

operations, and hopefully find the pivotal point where Basil prevails over Cassandra.

6.2 Evaluation Environment

To truly evaluate Basil and Cassandra we would need a large quantity of mobile devices

to mimic a real world Edge scenario. Unfortunately, as this scenario is unfeasible, we will
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Figure 6.1: Example of a block of trace actions with a quiz action, its time span, the
executing node, and the action’s inputs.

resort to a simulator to simulate multiple mobile devices engaging and interacting with

each other in an Edge-like network.

Regarding our simulator, we used a custom trace-based simulation framework, pre-

viously developed in Java by some of Thyme’s authors, where each mobile device is sim-

ulated on a single thread on the same machine, all contained in the same network layer.

To do so, the simulator offers a network layer capable of supporting logical dissemination

of messages between any number of virtual nodes within a single machine. Also, some

of Thyme’s logic which depends on Android-specific classes and dependencies had to be

exchanged with the simulator’s counterparts.

Each trace is a txt file, which consists of some simulator specific actions, such as the

spawn of the mobile nodes, and multiple quiz actions (e.g. CREATE QUIZ, CREATE
QUESTION or ANSWER QUESTION) Each action is associated to a specific node, a rela-

tive time span, and the actions’ inputs as it is illustrated in the Fig. 6.1. As the time span

is relative, the trace’s execution can be sped up or slowed down, without compromising

the actions order.

For the Cassandra tests, in order to produce real-world evaluation results, we hosted

the infrastructure server on a different machine from the machine simulating the mobile

devices. Regarding the simulated devices, depending on the system being evaluated, each

one is either running a Basil instance, or a simple Cassandra client. For Basil, we won’t be

measuring the latency times, since the mobile devices will all be simulated in the same

machine, thus not producing real-world values.

The machines used to run our simulations, hosting both the mobile devices and the

Cassandra server, had the following specifications:

• CPU : 2 Intel Xeon E5-2620 v2 (with Hyper-Threading)

• RAM : 64 GB

• Network Adapter : 2 NIC Intel Corporation I210 Gigabit Network Connection

6.2.1 Simulation Case-Study

To directly compare Basil and Cassandra’s performance, we had to submit them to the

exact same traces, where each one contains all the crucial operations for the realisation

of one or multiple quizzes.
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Figure 6.2: Multiple mobile devices run-
ning Basil being simulated within a sin-
gle machine

Figure 6.3: Multiple mobile devices be-
ing simulated within a single machine
interacting with a Cassandra instance
on another machine.

It starts with a professor node preparing a quiz, by publishing multiple questions

under different areas. For all our quizzes, we published three different questions per five

different areas each, resulting in fifteen questions overall per quiz. After the questions

are published and linked to a quiz, the quiz itself is published, and the students start

to retrieve it, alongside with its respective associated questions. After each question is

answered by all of the students, the professor node retrieves all the submitted answers in

order to correct it.

Regarding the quiz temporal structure, we reserved ten minutes for the creation and

publication of the quizzes, twelve minutes for the students to retrieve and answer the

questions, and one minute for its correction

6.2.1.1 Cassandra Implementation

In order to produce trustworthy evaluation results, we didn’t try to emulate Basil’s logical

structures in Cassandra, and instead implemented what we think was the best approach

to Cassandra’s data model. As soon as the cluster is instanced, four tables are created: a

quiz table, an areas table, a questions table and an answers table.

A Quiz Table, where each quiz object contains:

The quiz’s tag, as its primary key;

And the number of questions per different area, represented by a map.

An Area Table, where each area object contains:

The area’s name, as its primary key;

And a set of questions ids associated to it.

A Question Table, where each question object contains:

An id, as the question primary key;

The question itself;

A set of associated areas;
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A set of possible answers;

And a set of correct answers.

And finally, An Answer Table, where each answer object is composed by:

The id from the question answered,

The quiz’s tag containing the question answered,

The answer’s author,

And the answer it self.

The question’s id, quiz’s tag and author’s name altogether identify uniquely each

answer submitted, thus composing the answers primary key.

All the subsequent operations executed are then translated into simple inserts, updates,
and selects for the creation, modification and retrieval of the quiz’s objects respectively.

6.3 Absolute Evaluation Results

The following graphics refer to Basil’s own performance when sustaining the realisation

of a single Quiz, with a different number of participating nodes. In every simulation

scenario, we decided to use seven cells, one for each of the quiz’s keys, one cell for the quiz,

one for the quiz’s answers, and 5 cells for the questions for each different area. This way,

each cell is only responsible for a key, minimising Basil’s network traffic and reducing the

nodes workload.

In order to measure our solution’s scalability, we looked at the workload imposed onto

the participating nodes derived from utilising the system, depicted in the Fig. 6.5, and

the total number of messages received by the nodes, illustrated on the Fig. 6.4.

In order to provide a more complete evaluation for our system, we categorised the

messages (and their associated workloads) into two types:

Active messages, which refers to all the messages originated from user’s input, e.g. first

link message towards a cell;

And Passive messages, which refers to all the messages required from the nodes to

support the System, e.g. secondary link propagated inside a cell.

Analysing Fig. 6.4, we can see that the number of all messages exchanged throughout

the system is mainly composed by passive messages, with an average 68 % distribution

of all messages, while the active messages have an average of 29 %.

Regarding the messages fluctuation, we can see that there is a sudden increase in the

number of passive messages sent from the simulation with 40 nodes to the simulation

with 80 nodes. This rapid increase of passive messages derives from the substantial

increase of New Location messages, which are propagated throughout the network after a
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Table 6.1: Load and Distribution of Active Messages

Nodes Publish Subscribe Download New Location
11 148 76Kb 37 6Kb 75 7Kb 84 41Kb
21 268 140Kb 71 12Kb 256 23Kb 620 307Kb
41 559 297Kb 186 31Kb 642 59Kb 3030 1806Kb
81 1001 542Kb 398 66Kb 1391 128Kb 12635 8604Kb

� Total number of messages received
� Total load of the messages received

Table 6.2: Load and Distribution of Passive Messages

Nodes Publish Subscribe New Location
11 5 2Kb 20 3Kb 70 34Kb
21 330 172Kb 255 42Kb 3084 1524Kb
41 1272 673Kb 1186 197Kb 20181 12Mb
81 15738 8535Kb 5577 925Kb 152433 104Mb

successful download, informing the responsible cells of the new replicas location. This

abrupt increase can be explained with the fact that on the simulation with 40 nodes, there

may have been more cells responsible for multiple keys than on the simulation with 80

nodes, which would also raise the probability of the object’s keys sharing the same cell,

and thus requiring less New Location messages per download.

Analysing the Table 6.1, we can observe that the New Location messages is one of the

biggest stake in the messages distribution. Its abnormally high volume is due to the fact

that these messages are sent whenever an item is downloaded, and the item’s respective

original cell nodes are constantly updating the item’s metadata with new locations. But in

the scenarios with a smaller number of nodes, we note that these messages don’t have the

same message volume. This is because the probability of a node requesting for an item he

is already passive replicating is higher than the scenarios with more nodes, and therefore,

not needing to re-download it, no further New Location messages need to be issued. This

particular result raises a relevant problem for scenarios with particular popular items,

which should be attacked in the next iterations of this thesis work. One possible solution

could be to define a threshold for the number of locations associated to a item’s metadata,

which should be low enough to prevent congested cells, but high enough to still make

this item easy to download.

Regarding the Table 6.2, we can see that, by far, the biggest share in the Passive

messages distribution is represented by the New Location messages. This is because, in our

58



6.3. ABSOLUTE EVALUATION RESULTS

10 20 40 80

0

1,000

2,000

3,000

4,000

Mobile Nodes in the System

M
es

sa
ge

s
re

ce
iv

ed
by

a
si

ng
le

no
d

e

Active Messages
Passive Messages

All Messages

Figure 6.4: Number of messages received by the Nodes.

case-study, the download operation is the most frequent one, with each student issuing it

16 times per quiz, directly reflecting the number of passive messages broadcasted inside

each download item’s keys cell.

From the graphic 6.4 we can observe that the nodes using Basil, due to its high co-

operativity properties, are required to be in constant communication with each other in

order to keep the system’s state consistent and cohesive. Consequently, the number of

messages exchanged in the whole system increases almost exponentially when the num-

ber of participating nodes is incremented. Although most of the traffic is still contained

in the logical cells, this still represents a great communication load for nodes to endure,

specially for the most popular cells which handle a larger number of requests. But it’s

a price that distributed systems must pay to abdicate from centrality, specially in Edge

environments whose systems are solely sustained by mobile devices.

Varying the number of cells could have produced better results, as this would’ve widen

the hash space and distributed the nodes in an evener way. This would positively reflect

on the number of passive messages sent, as the cells would certainly contain fewer nodes.

For future iterations, this thesis work would benefit greatly of being able to dynamically

calculate the optimum number of cells given the number of nodes, and analysing the

network traffic inside each cell.

Still, on the busiest case scenario with 80 nodes, a node receives on average 120

messages per minute, while on the smallest case with only 10 nodes, the average drops to

only 3 messages per minute.

Regarding the workload required from the nodes in the system, we can see that it
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Figure 6.5: Workload inferred by Basil.

follows the same pattern as the graphic illustrated in the Fig. 6.4. The passive workload

inferred onto to the nodes increase abruptly from the 40 nodes test simulation case to

the 80 nodes case, once again, as a consequence from the high throughput of passive

messages registered, required to keep the state of the logical cells consistent.

On the heaviest case scenario with 80 nodes, a node transfer on average 77 Kb per

minute, while on the smallest case with only 10 nodes, the average drops to only 1 Kb

per minute. If we combine the data obtained from both the graphics in the Figures 6.4

and 6.5, we can derive that for a scenario with 80 nodes, each node receives on average

120 messages per minute, with an average of 642 bytes per message. As for the smaller

scenario with only 10 nodes, each node receives on average 3 messages per minute, with

each message averaging a size of just 333 bytes.

Before comparing Basil and Cassandra evaluation results on the next section, one

should take into account that Basil’s performance is independent from the number of

simultaneous ongoing quizzes, as the corresponding network traffic is contained in the

respective classroom, and unless the quizzes instances share the same infrastructure (as

in Cassandra), only the participating nodes will be affected by the corresponding quiz’s

workload.

6.4 Comparing against Cassandra

Whilst on the previous graphics we were interested in the metrics measured on the mobile

nodes, on Cassandra we are more interested in the variation of behaviour measured at the
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Figure 6.6: Cassandra Server measured metrics

infrastructure server (depicted in the Fig. 6.6), as these remain constant for the mobile

Cassandra clients. To directly compare the two storage systems, we choose the evaluation

results obtained from the simulations with 80 nodes, as we believe it is the scenario closest

to the real world.

When comparing the results obtained from using Basil and Cassandra to support

a single Quiz, we can observe that the single Cassandra infrastructure outperforms the

multiple collaborative mobile devices. This is mainly because Cassandra relies on a single

central node to process and storage all the data, and unlike Basil, no additional passive

messages are required to sustain the system, greatly reducing the network traffic.

But when comparing the two storage systems performance supporting multiple con-

current quizzes on the Fig. 6.7, we can observe that Basil’s workload stays constant

throughout the duration of multiple quizzes, as opposed to Cassandra, whose workload

is directly proportional to the number of ongoing quizzes. As mentioned before, this

happens because Basil’s network traffic is contained in its own geographic venue, in this

case the respective quiz’s classroom, and Cassandra’s network traffic is all routed to the

central infrastructure handling the quizzes generated data.

We can also notice, that employing Basil as the quizzes supporting storage system, as

opposed to Cassandra, starts being a viable alternative when the number of simultaneous

quizzes is equal or bigger than 19, which in the application’s context is a very plausible

number. This is of course, if the deciding criteria is the traffic and load endured by the

nodes in the system.

Regarding the latency times experienced in both cases, we can only reference other

articles as we didn’t get the opportunity to simulate real-world experiences in the context

of this thesis work. For Basil, we will reference the evaluation results obtained in Pedro
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Vieira’s master thesis [29], where Basil’s supporting system, Thyme, got an exhaustive

performance depiction. In its thesis, Pedro measured the latency times sustained in a

system solely composed by mobile nodes, and the same system integrated with an Edge

infrastructure. For the first scenario, the average latency times of all the operations

was registered with a duration of 375 ms, while on the second scenario with an edge

infrastructure, the same average dropped to 160ms per operation.

As expected, the more powerful Cassandra infrastructures are able to outperform

the cluster of weaker mobile devices for a single Quiz instance. But as the number of

instances is incremented, Cassandra’s throughput and latency times are expected to decay,

if of course, no infrastructure nodes are added to Cassandra’s ring of servers, while Basil’s

performance remains constant. To reproduce the same linearity with Cassandra, a server

would have to be allocated for each Quiz instance, guaranteeing that each instance’s

network traffic were isolated from each other.

6.5 Summary

When comparing the two frameworks, there is no doubt that Cassandra is the one who

presents the most prominent results performance wise, being the Data Storage technol-

ogy of election for the great majority of Tech Companies [27]. What Basil can offer that

Cassandra can’t, is a flexible, stable and horizontally scalable framework for edge environ-

ments, independent from remote and/or local infrastructures to support an employing

application.
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6.5. SUMMARY

In the end of the day, if an edge application requires a system to be constantly de-

livering data within a single instance, serving multiple requests concurrently while still

delivering at a steady and fast pace, Cassandra should be its choice. On the other hand,

if the application’s engineers are looking for an adaptable mobile-oriented system, so

independent that it’s able to function on a peer-to-peer network, and/or in a shared lo-

cal network, while still delivering decent performance results, then Basil is one serious

option to consider.
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Conclusions

In this chapter we present some of the conclusions derived from this dis-

sertation and some possible future improvements to our developed system.

7.1 Conclusion

In this dissertation, we present our developed Key-Value Storage for Edge environments,

Basil, alongside with its founding layer, Thyme. We start by presenting the latest’s core

features and available operations, explaining how will we accommodate them to Basil’s

requirements.

We then present our approach to the Key-Value model for Edge networks based on a

message-oriented system, where we propose an implementation to allow the association

and disassociation of keys from existing objects, and how are the keys managed and

dissipated throughout the whole system. The major contribution from this thesis’s work,

is a fully functional Key-Value Storage to handle data generated from mobile devices,

without resorting to external services or servers to mitigate the workload from the mobile

devices. Although the data doesn’t leave the devices, the system is also prepared to cope

with an Edge infrastructure to alleviate some of the workload from the devices, and to

broad the system’s geographical range.

Following Basil’s chapter, we present our developed application, which was also the

use case for our evaluations, in which we exemplify a plausible employment of our sys-

tem, listing its available functionalities to further display Basil’s wide array of possible

implementations.

Ultimately, analysing the results obtained from the previous chapter, we can conclude

that our system demonstrates a greater horizontal scalability when employed by an typi-

cal Edge application, comparing it to another NoSQL Edge oriented infrastructure-based.
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Due to the fact that Basil’s communication is local and contained to its geographical space,

we also derive what scenarios most favour Basil, and what criteria should employing en-

gineers look for when considering Basil as their Edge Data Storage System.

7.2 Future Work

While our system is fully functional, we still believe that there are some implementa-

tions that could benefit the system’s overall performance and usability. Although these

implementations weren’t initially planned, their materialisation would still enrich our

framework, making it more appealing for possible employing applications. From those,

we list the following:

• Disseminate keys removal, so that the system’s nodes could have a constant consis-

tent list of keys. In Thyme, it would require some notification mechanism for active

subscriptions, whenever an object is unpublished.

• Eliminate possible inconsistent get operations, via a viable secondary mechanism to

assure consistent queries.

• Reduce the payload originated from Basil’s own system messages

• Further evaluate Basil in a real-world scenario to collect latency times and compare

it to another Edge oriented storage

These are some of the possible areas of improvement, in case this dissertation work

would be continued, or integrated with another system, that would develop Basil into a

more complete system.

66



Bibliography

[1] A. Ahmed and E. Ahmed. “A Survey on Mobile Edge Computing.” In: Jan. 2016.

doi: 10.1109/ISCO.2016.7727082.

[2] Amazon DocumentDB. Amazon. url: https://aws.amazon.com/documentdb/.

[3] Amazon DynamoDB. Amazon. url: https://aws.amazon.com/dynamodb/.

[4] Azure Tables. Microsoft Azure. url: https://azure.microsoft.com/en-us/

services/storage/tables/.

[5] M. T. Beck, M. Werner, S. F. L. Maximilian, and T. Schimper. “Mobile Edge Com-

puting: A Taxonomy.” In: (2014). doi: http://dx.doi.org/10.1002/andp.

19053221004.

[6] Bigtable. Google. url: https://cloud.google.com/bigtable/.

[7] A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. N. Schiaffino. “Persisting

big-data: The NoSQL landscape.” In: Inf. Syst. 63 (2017), pp. 1–23. doi: 10.1016/

j.is.2016.07.009. url: https://doi.org/10.1016/j.is.2016.07.009.

[8] A. Davoudian, L. Chen, and M. Liu. “A Survey on NoSQL Stores.” In: ACM Comput.
Surv. 51.2 (Apr. 2018), 40:1–40:43. issn: 0360-0300. doi: 10.1145/3158661. url:

http://doi.acm.org/10.1145/3158661.

[9] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R. Gandhi, and P. Narasimhan.

“The Case for Mobile Edge-Clouds.” In: 2013 IEEE 10th International Conference
on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Confer-
ence on Autonomic and Trusted Computing, UIC/ATC 2013, Vietri sul Mare, Sorrento
Peninsula, Italy, December 18-21, 2013. 2013, pp. 209–215. doi: 10.1109/UIC-

ATC.2013.94. url: https://doi.org/10.1109/UIC-ATC.2013.94.

[10] U. Drolia, N. D. Mickulicz, R. Gandhi, and P. Narasimhan. “Krowd: A Key-Value

Store for Crowded Venues.” In: Proceedings of the 10th International Workshop on
Mobility in the Evolving Internet Architecture, MobiArch 2015, Paris, France, Septem-
ber 7, 2015. 2015, pp. 20–25. doi: 10.1145/2795381.2795388. url: https:

//doi.org/10.1145/2795381.2795388.

[11] G-Store. url: http://g-store.sourceforge.net/.

67

https://doi.org/10.1109/ISCO.2016.7727082
https://aws.amazon.com/documentdb/
https://aws.amazon.com/dynamodb/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/services/storage/tables/
https://doi.org/http://dx.doi.org/10.1002/andp.19053221004
https://doi.org/http://dx.doi.org/10.1002/andp.19053221004
https://cloud.google.com/bigtable/
https://doi.org/10.1016/j.is.2016.07.009
https://doi.org/10.1016/j.is.2016.07.009
https://doi.org/10.1016/j.is.2016.07.009
https://doi.org/10.1145/3158661
http://doi.acm.org/10.1145/3158661
https://doi.org/10.1109/UIC-ATC.2013.94
https://doi.org/10.1109/UIC-ATC.2013.94
https://doi.org/10.1109/UIC-ATC.2013.94
https://doi.org/10.1145/2795381.2795388
https://doi.org/10.1145/2795381.2795388
https://doi.org/10.1145/2795381.2795388
http://g-store.sourceforge.net/


BIBLIOGRAPHY

[12] F. Gessert, W. Wingerath, S. Friedrich, and N. Ritter. “NoSQL database systems: a

survey and decision guidance.” In: Computer Science - R&D 32.3-4 (2017), pp. 353–

365. doi: 10.1007/s00450-016-0334-3. url: https://doi.org/10.1007/

s00450-016-0334-3.

[13] HBase. Apache. url: https://hbase.apache.org/.

[14] Hypertable. url: http://www.hypertable.org/.

[15] A. Lakshman and P. Malik. “Cassandra: a decentralized structured storage system.”

In: Operating Systems Review 44.2 (2010), pp. 35–40. doi: 10.1145/1773912.

1773922. url: https://doi.org/10.1145/1773912.1773922.

[16] N. Leavitt. “Will NoSQL Databases Live Up to Their Promise?” In: IEEE Computer
43.2 (2010), pp. 12–14. doi: 10.1109/MC.2010.58. url: https://doi.org/10.

1109/MC.2010.58.

[17] F. T. Leighton and P. W. Shor, eds. Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997. ACM,

1997. isbn: 0-89791-888-6.

[18] Megastore. Google. url: https://perspectives.mvdirona.com/2011/01/

google-megastore-the-data-engine-behind-gae/.

[19] mobiThinking. Global mobile statistics 2013 part a: Mobile subscribers; handset market
share; mobile operators. mobiThinking. 2013. url: https://mobiforge.com/

research - analysis / global - mobile - statistics - 2014 - part - a - mobile -

subscribers-handset-market-share-mobile-operators.

[20] MongoDB. url: https://www.mongodb.com/.

[21] RethinkDB. url: https://www.rethinkdb.com/.

[22] J. Rodrigues, E. R. B. Marques, L. M. B. Lopes, and F. M. A. Silva. “Towards a

middleware for mobile edge-cloud applications.” In: Proceedings of the 2nd Work-
shop on Middleware for Edge Clouds & Cloudlets, MECC@Middleware 2017, Las Vegas,
NV, USA, December 11 - 15, 2017. ACM, 2017, 1:1–1:6. doi: 10.1145/3152360.

3152361. url: https://doi.org/10.1145/3152360.3152361.

[23] J. A. Silva, R. Monteiro, H. Paulino, and J. M. Lourenço. “Ephemeral Data Storage

for Networks of Hand-Held Devices.” In: 2016 IEEE Trustcom/BigDataSE/ISPA,
Tianjin, China, August 23-26, 2016. 2016, pp. 1106–1113. doi: 10.1109/TrustCom.

2016.0182. url: https://doi.org/10.1109/TrustCom.2016.0182.

[24] J. A. Silva, J. Leitão, N. M. Preguiça, J. M. Lourenço, and H. Paulino. “Towards the

Opportunistic Combination of Mobile Ad-hoc Networks with Infrastructure Ac-

cess.” In: Proceedings of the 1st Workshop on Middleware for Edge Clouds & Cloudlets,
MECC@Middleware 2016, Trento, Italy, December 12-16, 2016. Ed. by R. Martins

and H. Paulino. ACM, 2016, p. 3. url: http://dl.acm.org/citation.cfm?id=

3022873.

68

https://doi.org/10.1007/s00450-016-0334-3
https://doi.org/10.1007/s00450-016-0334-3
https://doi.org/10.1007/s00450-016-0334-3
https://hbase.apache.org/
http://www.hypertable.org/
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1109/MC.2010.58
https://doi.org/10.1109/MC.2010.58
https://doi.org/10.1109/MC.2010.58
https://perspectives.mvdirona.com/2011/01/google-megastore-the-data-engine-behind-gae/
https://perspectives.mvdirona.com/2011/01/google-megastore-the-data-engine-behind-gae/
https://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators
https://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators
https://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators
https://www.mongodb.com/
https://www.rethinkdb.com/
https://doi.org/10.1145/3152360.3152361
https://doi.org/10.1145/3152360.3152361
https://doi.org/10.1145/3152360.3152361
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1109/TrustCom.2016.0182
http://dl.acm.org/citation.cfm?id=3022873
http://dl.acm.org/citation.cfm?id=3022873


BIBLIOGRAPHY

[25] J. Silva, H. Paulino, J. M. Lourenço, J. Leitao, and N. Preguica. “Time-Aware Re-

active Storage in Wireless Edge Environments.” In: Proceedings of the 16th EAI
International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, Houston, United States, November 12-14, 2019. ACM, 2019.

[26] A. Teófilo, D. Remédios, J. M. Lourenço, and H. Paulino. “GOCRGO and GOGO:

Two Minimal Communication Topologies for WiFi-Direct Multi-group Network-

ing.” In: Proceedings of the 14th EAI International Conference on Mobile and Ubiqui-
tous Systems: Computing, Networking and Services, Melbourne, Australia, November
7-10, 2017. Ed. by T. Gu, R. Kotagiri, and H. Liu. ACM, 2017, pp. 232–241. doi:

10.1145/3144457.3144481. url: https://doi.org/10.1145/3144457.3144481.

[27] U. of Toronto. Apache Cassandra NoSQL Performance Benchmarks. https://academy.
datastax.com/planet-cassandra/nosql-performance-benchmarks. 2012.

[28] I. University. Create a symbolic link in Unix. https://kb.iu.edu/d/abbe. [Last

modified on 2019-08-27 08:51:18]. 2019.

[29] P. Vieira. “A Persistent Publish/Subscribe System for Mobile Edge Computing.”

Master’s thesis. FCT NOVA, Nov. 2018.

69

https://doi.org/10.1145/3144457.3144481
https://doi.org/10.1145/3144457.3144481
https://academy.datastax.com/planet-cassandra/nosql-performance-benchmarks
https://academy.datastax.com/planet-cassandra/nosql-performance-benchmarks
https://kb.iu.edu/d/abbe




20
19

K
ey

-V
al

u
e

St
or

ag
e

fo
r

h
an

d
li

n
g

d
at

a
in

m
ob

il
e

d
ev

ic
es

Jo
sé

A
fo

n
so



José Pedro Serra Afonso
Bachelor in Computer Science and Engineering

Key-Value Storage for handling data in
mobile devices

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

December, 2019



José Pedro Serra Afonso
Bachelor in Computer Science and Engineering

Key-Value Storage for handling data in
mobile devices

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

December, 2019

Copyright © José Pedro Serra Afonso, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e pu-

blicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou

que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais

ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

20
19

Jo
sé

A
fo

ns
o

20
19

K
ey

-V
al

ue
S

to
ra

ge
fo

rh
an

dl
in

g
da

ta
in

m
ob

ile
de

vi
ce

s


	List of Figures
	List of Tables
	Listings
	Introduction
	Context and Motivation
	Mobile Edge Computing
	Problem
	Proposed Solution
	Document Structure

	Thyme
	Overview
	Thyme's API
	Operations
	Publish Data
	Subscription and Data Retrieval

	Replication
	Namespaces
	Thyme-GardenBed
	Using Thyme for our Work

	State of the Art
	NoSQL
	NoSQL Models
	Why the Key-Value Model
	Comparison Dimensions

	NoSQL in Mobile Edge Networks
	Krowd
	Cassandra
	Ephesus

	Discussion

	Basil
	Overview
	Basil's API
	Basil over Thyme
	Managing the Keys
	Hierarchical Namespaces
	Operations
	Inserting a new Value
	Retrieving Values
	Removing Values
	Deleting a Key

	Changes to Thyme
	Linking and Unlinking existing objects
	Enforced Removal
	Unpublishing multiple objects
	Status Update upon joining a new Cell

	Maintaining Consistency
	Implementation Details
	Protocol Buffers
	Searching for Objects Locally
	Notifications Policy

	Summary

	Case Study: Class Quiz
	Overview
	Application Flow
	Professor operations
	Students Operations

	Summary

	Evaluation
	Evaluation Methodologies
	Absolute Evaluation
	Comparing against Cassandra

	Evaluation Environment
	Simulation Case-Study

	Absolute Evaluation Results
	Comparing against Cassandra
	Summary

	Conclusions
	Conclusion
	Future Work

	Bibliography

