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Abstract 

With an ageing population, the ability to easily regenerate bone defects in a manner that 

lessens patient site morbidity takes an even more important toll. As such the 

development of a biomaterial that is capable of successfully mimicking the native 

environment encountered in the human body is necessary in order to facilitate the 

regenerative process. 

 Since traditional orthopedic materials lack some of the necessary ability to mimic 

the native environment, new approaches must be taken, in this regard polyvinylidene 

difluoride (PVDF) presents a novel alternative. Since it can be produced via 

electrospinning in the form of a non-woven fiber matrix that mimics the morphology of 

the native extracellular matrix (EMC) as well as being able to simulate electrical signals, 

due to the appearance of a piezoelectric phase due to the electrospinning process, that 

act as cues for several cellular and molecular processes, including tissue regeneration. 

The work developed in this thesis aims to optimize the piezoelectric response under 

electrical stimulation of the electrospun matrixes by adjusting the spinning parameters in 

order to device an optimal scaffold for bone tissue growth and regeneration. 

 Structural analysis of the material, shows that the electrospinning process give 

origin to a new structural organization. When compared to the original PVDF powder, 

after processing the polymer presents higher crystallinity and also higher content of the 

 piezoelectric phase. However no significant differences were found in crystalline 

phases, porosity and overall crystallinity for samples spun under different conditions.  

 Cytotoxicity tests shown that PVDF mats present a non-cytotoxic behavior. 

Cellular tests under electric stimulus showed no statistical difference between samples 

with higher and lower piezoelectric response. However regardless of the sample type, 

the cells demonstrate a much higher metabolic activity when had received an external 

stimulus. 

 

Keywords: PVDF, electrospinning, piezoelectric response, bone tissue, regeneration 
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Resumo 

Com o envelhecimento da população, a habilidade de regenerar defeitos ósseos de 

forma simples e que evite a morbidade de pacientes toma um papel ainda mais 

importante. Como tal o desenvolvimento de um biomaterial capaz de imitar com sucesso 

o ambiente nativo do corpo humano é necessário para facilitar este processo de 

regeneração. 

 Uma vez que materiais ortopédicos clássicos não conseguem, de forma eficaz, 

replicar este tipo de ambiente são necessárias novas soluções, neste âmbito o fluoreto 

de polivinilideno (PVDF) apresenta uma nova e desejada alternativa. Isto graças à sua 

capacidade de ser produzido através do processo de electrospinning, o que lhe confere 

não só uma morfologia semelhante à da matriz extracelular (ECM) mas também a 

capacidade de simular sinais eléctricos que desencadeiam e participam em vários 

processos de regeneração celulares, inclusive processos de regeneração de tecido, isto 

graças ao aparecimento de fases piezoeléctricas criadas no processo de 

electrospinning. 

 Uma análise estrutural dos materiais demostrou que o processo de 

electrospinning dá origem a novas organizações estruturais dentro do material, que após 

o processo de fiação apresenta novas fases cristalinas e uma maior cristalinidade, 

quando comparado com o pó de PVDF utilizado para fazer as soluções. No entanto não 

foram encontradas diferenças significativas para a fases cristalinas, cristalinidade e 

porosidade apresentadas por membranas produzidas através de processos de fiação 

diferentes. 

 Após testes de citotoxicidade, foi visto que o PVDF não era citotóxico e foram 

iniciados ensaios de cultura celular, mais uma vez não foram encontradas diferenças 

significativas entre os diferentes grupos quando submetidos a um mesmo estímulo. No 

entanto as células demonstraram uma actividade metabólica muito superior quando 

submetidas a um estímulo externo. 

Palavras-chave: PVDF, electrospinning, resposta piezoeléctrica, tecido ósseo, 

regeneração 
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1. Introduction 

1.1. A general view 
Tissue engineering is a multidisciplinary branch that combines a variety of different 

approaches but typically it involves the use of a biomaterial as a scaffold, this biomaterial 

can then be combined with the use of staminal cells or other types of stimuli to promote 

its integration and the regeneration of certain biological tissues. [1, 2] 

        Materials used as scaffolds as for tissue engineering applications are designed to 

match structural morphological, mechanical and chemical properties of the native tissue. 
[3]. In this particular case we will study the use of piezoelectric PVDF fiber matrixes and 

see how electrical signals affects the mineralization process of bone tissue. To this end, 

the fibers will be produced changing several parameters in the electrospinning process 

to verify which one yields the best electrical response, the chosen fiber mats will then be 

characterized through SEM, DSC, FTIR, XRD and biocompatibility and bioactivity will be 

done with recourse to two bioreactors that allow for electrical stimulation of the 

membranes and see which ones maximize the biological response of the osteoblasts in 

in vitro conditions.  

1.2. Bone, a biological tissue 
Bone is described as an interconnected, highly organized, specialized and dynamic 

tissue made up of metabolically active cells and a vast intracellular matrix made up of 

collagen fibers and inorganic hardening substances forming a rigid matrix. [4 - 7] Like many 

of the other tissues present in the human organism, bone as the ability to self-regenerate 
[8] However in order for this to occur it is necessary to recruit specific mesenchymal cells, 

with the ability to later differentiate themselves into cells capable of initiating the 

osteogenic process. This cells e.g MSC’s, exist in the surrounding tissues as well as in 

the marrow and play a vital role in the regeneration of bone tissue due to their ability to 

differentiate into different types of biological tissues. [9, 6] 

1.3. Fracture healing an overview  
It is safe to assume that the regenerative potential of bone is strongly dependent on a 

series of biochemical, biomechanical, cellular, hormonal and pathological factors. [4, 8] 

        After a lesion, tissue regeneration occurs in three distinct but overlapping steps this 

being, inflammation, repair and remodeling [7] represented in figure 1. 
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Fig. 1 – Temporal progression of fracture healing, illustrating the, inflammatory, repair 

and remodeling steps as well as the cells and biological mechanisms participating in the 

healing process. (taken from [7]) 

 

 In the first stage, figure 1-a there is an acute inflammatory reaction and creation 
of a hematoma around area that suffered trauma. In an early stage the hematoma 
constricts the blood vessels around the injured area cutting the blood flow to the 
injury, this creates a rise in local pressure that results in a mechanical stimulus 
that facilitates the production of an ECM rich in fibrin, necessary for tissue repair. 
At a later time in the inflammatory stage, as the blood clots dissolve, begins the 
angiogenesis [7, 8]; 
 

 During the repair stage of fracture healing, figure 1-b vascular growth continues 
aided by the fibroblasts. As vascular growth progresses a collagen matrix is 
deposited forming a soft callus around the healing tissue, this callus however 
does not possess the mechanical properties of the original tissue and calcifies, 
in a period of 4 to 6 weeks, forming a bridge that connects the non-matured tissue 
to the fracture fragments [7, 8]; 

 

 Total fracture regeneration only occurs during the remodeling stage of the healing 
process, figure 1-c the callus fully calcifies and suffers and osteoclastic 
remodeling, leading to a fully matured tissue that can now assume his former 
functions [7, 8]. 

1.4. The use of biomaterials 
As it was seen fracture healing is not only a long and arduous process it is also 

intrinsically complex as many types of cells and growth factors are involved in the 

process [8] furthermore, this process can be even more adverse or even be made 

impossible without external aid if, e.g the patient suffers from bone disease like 

osteoporosis or in lesions above a critical size [7]. In cases such as this the use of grafts      

becomes necessary.  

 Bone grafts can be autologous, when they come from the patient, however this 

come with several disadvantages due to the fact that additional surgery is required to 

remove the graft from the patient, which in itself incurs several risks and extends the 

recovery time for the patient also the quantity of bone that can be extracted to make a 
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graft is limited. As an alternative to autologous bone grafts there are also homologous 

bone grafts, this ones come from third parties such as cadavers, removing the risks of 

an additional surgery but bring different set of problems to consider, such as the 

possibility of infection and patient rejection. Taking these facts into account, synthetic 

bone grafts present a viable and appealing alternative. [10 - 13]  

1.5. Piezoelectricity in bone tissue 
Bone is a dynamic tissue in constant adaptation and remodeling through complex 

feedback mechanisms, involving electro-mechanical processes, due to its piezoelectric 

characteristics. The mechanical stress produces electrical signals and these signals 

represent a stimulus that promotes bone growth and remodeling according to Wolff’s 

law. [14] 

 In 1892, Julius Wolff postulated that the remodeling of bone tissue architecture 

occurred as a response to mechanical stimuli, Wolff’s Law. [15] The piezoelectric effect 

plays an important physiological role when it comes to bone tissue growth. In the 60’s it 

was observed that bone tissue presented a low piezoelectric coefficient (≈ 0.7 pC/N) and 

that it derived from small mechanical stimuli, manly from the collagen fibers sliding 

against one another.[16] After this discovery piezoelectricity was the phenomenon used to 

describe bone growth and reabsorption in response to a mechanical stimulus. 

 Basset and Becker latter described Wolff’s Law as a loop of negative feedbacks, 

where an applied physical load causes tension along the bone, this tension is felt in the 

less dense  and therefore softer areas of the bone in a greater extent than it is felt in the 

harder and denser areas. The strain is then transformed into an electric field that gadders 

and aligns ions and macromolecules, e.g Ca2+ and PO4
3- existing in the ECM attracting 

them to the pole with the opposite charge, stimulating bone tissue growth and 

regeneration and promoting favorable graft/patient interactions. [17] 

 It is the safe to say that changes in the surrounding environment act as stimuli 

that are first translated as an electric response that triggers certain cellular events that 

are key to the regeneration process. [18] [14] 

1.6. Piezoelectric scaffolds 
Piezoelectric scaffolds present a novel and exciting prospect in the field of tissue 

engineering thanks to their intrinsic properties. Piezoelectric materials are capable of 

producing an electric charge when receiving a small mechanical stimulus similar to the 

ones found in a dynamic in vivo environment. [1] This allows piezoelectric materials to 

simulate biological cues hence promoting greater cellular growth and differentiation 

when compared to non-piezoelectric materials. [19] However there are still other 

parameters to take into account in regards of patient-graft interaction, for the graft to be 

accepted by the host, favorable biomaterial/cell interactions must occur. [8] 

 Ideally the biomaterial is not just accepted and tolerated by the surrounding 

environment, it much more desirable that the material plays an active role in the 

biological events providing an appropriate environment that allows for proper cellular 

adhesion and signaling. [20, 21] 

 As such, electrospun polymeric membranes present a very attractive option for 

tissue engineering applications. Polymers present very attractive properties when 

compared to inorganic materials. They are light, inexpensive, mechanically and 

electrically tough, they show excellent compatibility with other organic and inorganic 

materials. [14] 
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 By utilizing the electrospinning technique we are able to obtain non-woven fiber 

mats, with fibers as small as a few dozen nanometers in diameter. These fiber mats 

mimic the ECM exceptionally well as they are highly porous, said porosity is 

interconnected and present a very large surface area to volume ratio, making them ideal 

for cell adhesion, differentiation and proliferation. [20, 6, 22]
 Further more altering the 

production parameters such as applied voltage, distance to the collector, polymer 

concentration, polymer flow rate and ambient humidity change the mats morphology, 

topography and porosity. [23]  

 In particular altering the applied voltage and polymer concentration have a strong 

effect in fiber size and morphology [20, 24, 25] making them parameters of vital importance 

seeing how membrane topography and fiber morphology have a direct impact on cells 

cytoskeleton being capable of altering the cells own deformability. [5] Further adding to 

these parameters importance is the fact that osteoblasts are cells that are anchorage 

dependent, meaning that they can only proliferate when attached to the substrate. [20, 6, 

26, 3] Adding to its processing advantages, the electrospinning technique allows for further 

post-processing refining of the obtained mats allowing them to be customized with the 

desired cues for triggering and guiding cellular events. [21, 27, 3]  

1.7. Polyvinyldene fluoride 
Polyvinyldene fluoride, PVDF, (-CH2-CF2-)n is a semi-crystalline biopolymer with 

excellent mechanical properties, an high chemical resistance, good thermal stability and 

excellent electroactivity. [26, 28] PVDF can be processed in order to present four crystalline 

phases α, β, δ and ϒ depending on the processing conditions. 

 Since the hydrogen atoms are positively charged and de fluoride atoms are 

negatively charged, PVDF is inherently polar. However, the net polar moment of the 

material in its original state is zero due to the random orientation of the individual 

crystallites, however permanent dipole polarization of PVDF is obtained through 

mechanical stretching of the polymer. Stretching provides a preferential alignment of the 

molecular chains, [29] in this particular case stretching is obtained by the electric field 

generated during the electrospinning process. 

 The β-phase has an all-trans (TTT), planar conformation, figure 2-b giving a 

higher permanent dipole and as a result better electroactive properties when compared 

to the other phases and therefore is the most desirable phase for this types of 

applications [28, 30], this change in conformation can be brought about by mechanical 

stretching inherent to electrospinning process, in this case mechanical stretching was 

obtained using an electrospinning process coupled with a rotating collector drum [27]. This 

type of behavior can also be found in the δ and ϒ phases but to a lesser extent were as 

the α phase presents a trans-gauche (TG+TG-) conformation, figure 2-a making the 

dipoles in the monomers to face in opposite directions and thus resulting in a non-polar 

crystal. 
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Fig. 2 – Different phases of Polyvinyldene fluoride a) α-phase conformation were the 

dipoles face in opposite directions, b) β-phase conformation showing a permanent dipole  

(adapted from [17]) 

 

 

Cellular adhesion is considered one of the most important factors when it comes to 

cell/biomaterial interactions. [27] Focal adhesions (FA’s) are predominant mechanism by 

which the cells physically connect and interact with the ECM, comprised of extracellular 

molecules that act as structural and biochemical support for the surrounding cells and 

contains cues that act as stimuli that trigger biological events. [2, 21, 31] As such the 

development of a biomaterial that can successfully mimic the native ECM and direct 

cellular events is a fundamental component in tissue engineering.  

 In the direct piezoelectric effect an electric potential is generated in response to 

a mechanical solicitation. In the inverse piezoelectric effect an electrical charge produces 

a mechanical response in the material. Studies have showed that the surface charge 

present in these types of substrates coupled with their ability to mimic the mechanical 

and electrical stimuli present in the human body, has a great influence in certain cellular 

behaviors such as cell adsorption, proliferation, differentiation and growth. [20, 7, 17, 24] 

 As such PVDF’s intrinsic properties and adding the fact that it can be produced 

by means of electrospinning, make this material a prime candidate for applications in 

tissue engineering. 

 From what could be found in the literature many studies regarding the use of 

stimulus as a method do enhance cellular activity have already been done [1] [7], however 

the study, shown in this paper, of how the electrospinning parameters can be used to 

maximize the piezoelectric response of a fiber matrix and how in turn this translates to 

cellular behavior was not found in the literature and seems to be a pertinent approach to 

this types of studies. 
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2. Materials and methods  

2.1. Summary  
During the course of this thesis the production method of electrospun PVDF fiber mats 

was optimized in an attempt to create a fiber mat that could maximize the osteogenic 

response of osteoblastic cells. To this end several parameters such as polymer 

concentration, applied voltage, needle gauge, distance to the target and target rpm’s 

were tested. The chosen fiber mat was then characterized and underwent a series of 

tests to evaluate its viability in tissue engineering applications. 

2.2. Scaffold fabrication 
Polyvinyldene fluoride (Mw = 534 000 g/mol; #MKBY6618V Sigma-Aldrich) was mixed 

with acetone (#S7BED73SV Sigma-Aldrich) and Dimethylformamide (1719239 Fisher 

Chemical) in order to produce an array of solutions with concentrations spanning form 

17 to 21 % (wt/v) at two different solvent ratios, these being 6:4 and 1:1 of DMF to 

acetone respectively [1] [24]. 

 The polymer solutions, were left mixing on a heating plate at a temperature of 

approximately 75°C over a period of 48 h in order to obtain a homogenous solution and 

were then spun using the experimental set-up illustrated in figure A1.1 and the 

experimental conditions described in table 1. 

 

Table 1 - Experimental setup used in preliminary electrospinng experiments 

Applied 
voltage 

(kV) 

Distance 
to target 

(cm) 

Flow 
rate 

(ml/h) 

Deposition 
time (min) 

Needle 
Gauge 

Air 
humidity 

(%) 

Temperature 

(°C) 

15 15 1 30 23 45 – 50 21 ± 3 

 

This preliminary spinning process with a static collector, covered in aluminum foil was 

used to determine which solvent ratio was most suited for the desired application, this 

evaluation was made using SEM analysis. 

 After determining the most suited solvent ratio the solutions were then spun using 

the experimental set-up illustrated in figure A1.2, this time to evaluate which polymer 

concentration was best suited for the desired applications. 

 The polymer solutions were then spun in the same conditions as those shown in 

table 1 except this time a rotating collector drum, spinning at 2000 rpm was used. It is 

important to note that this time an accurate measurement of air humidity and room 

temperature was not possible since the system is not in an isolated chamber as the 

previous one. 

 Once again an evaluation of the fibers morphology and topography was made 

using SEM analysis. 

 

2.2.1. Spinning parameters 

The choice of the spinning parameters was made by choosing five different parameters 

at two different levels each, following a classical experimental design, DOE, with the 
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intent of maximizing the mats piezoelectric response. The chosen parameters and their 

respective high and low levels are shown in table 2 

 

Table 2 - Chosen parameters and respective level values for the electrosping parameters 

 

 

Levels 

A – Distance 
to target 

(cm) 

B – Applied 
voltage (kV) 

C – Needle 
gauge 

D – Flow 
rate (ml/h) 

E – Targets 
rotation 
(rpm) 

High (+) 

 

10 12 25 0.5 2500 

Low (-) 

 

15 15 23 1.0 2000 

 

2.2.2. Scaffold characterization 

Scanning electron microscopy (FIB-SEM) Zeiss Auriga microscope with an acceleration 

voltage of 5 kV was used to characterize the fibers in regards to their morphology and 

topography.  

 X-ray diffraction (XRD) measurements were made using an X´pert Pro from 

Panalytical, utilizing CuKα radiation (λ = 0.154 nm) an electrical current of 40 mA and a 

voltage of 45 kV, a step of 2ϴ = 0.02 and a step time of 1.0 s was used to characterize 

the fibers on their crystalline organization. 

 Fourier-transform infrared spectroscopy (FTIR) was used to characterize the 

chemical bonding structures. Measurements were made using an Attenuated Total 

Reflectance (ATR) sampling accessory (Smart iTR) equipped with a single bounce 

diamond crystal on a Thermo Nicolet 6700 Spectrometer. The spectra were acquired 

with a 45° incident angle in the range of 4500–525 cm−1 and with a 4 cm−1resolution In 

addition tapping tests were also used to characterize the fiber mats as to their 

piezoelectric response, this test were first made using single impact with a free falling 

object dropped from a fixed high and at a later date using a tapping machine to generate 

impacts at a fixed frequency of 1 Hz, the machine used was developed by Nuno Pinela 
[32]. 

2.4. Cytotoxicity tests  
To ensure that the material was fit to support cellular growth and differentiation 

cytotoxicity tests were conducted using Vero cells in accordance with the ISO 10993-5 

standard using the extract method. To this end 70 mg of spun material were sterilized 

using a 70% ethanol solution which was left to evaporate over a period of 48 h. 

 The material was then submerged in 2ml of culture medium consisting of , DMEM 

(Dulbecco′s Modified Eagle′s Medium, Sigma-Aldrich #D5030) supplemented with 1.0 

g/L D-glucose (Gibco, #15023-021), 3.7 g/L sodium bicarbonate (Sigma-Aldrich, 

#S5761), 1% GlutaMAX™ (L-alanyl-L-glutamine dipeptide, Life Technologies, #35050-

038), 1% sodium pyruvate (Gibco, #11360039), penicillin (100U/ml) and streptomycin 

(100 µg/mL) (Invitrogen, #15140122), 10% FBS (Fetal Bovine Serum, Invitrogen, 

#10270106).  

 The extracts were prepared by placing the material in contact with medium 

without FBS under orbital shaking in an oven at a temperature of 37°C. After 48h, 910μL 
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of extract was supplemented with 90 μL of FBS. The cell cultures were prepared in a 96 

multiwell plate, 6000 cells per well, 24h before receiving the extracts, five rows of five 

wells were prepared. The first row received extract corresponding to a concentration of 

35 mg/mL. Then, the extract was diluted by a factor of 2 for the second row of wells and 

this process was repeated until a dilution factor of 16 was reached for the wells in the 

fifth row. 

 

  In addition, two columns made up the positive control, were cells were killed 

using a 10% DMSO solution, and a negative (non-cytotoxic environment) control. 

Material cytotoxicity was evaluated using a medium solution prepared with 50% of a 0.04 

mg/ml resazurin solution in PBS and 50% of complete culture medium. After an 

incubation period of 2h, the absorbance was read at 570 nm and at 600 nm  to calculate 

the amount of resazurin metabolized in to resorufin and from these values calculate 

relative (to the negative control) cell viability in each experimental condition. All 

measurements were obtained using an ELx800 from BioTek. 

2.5. Cellular response tests 
One of the primary difficulties in evaluating the premise that a higher piezoelectric 

response is translated in higher cell activity, is that since osteoblasts are anchorage 

dependent, altering the morphology and topography of the substrate, as well as the 

crystalline phases present in the sample will influence molecular response. Many 

approaches were attempted, such as thermal ageing of the samples, in order to achieve 

an identical subtract in terms of morphology and topography but with no piezoelectric 

response. However since the Curie temperature of PVDF is far above its melting 

temperature any attempt to depolarize the samples, by disorganizing the preferential 

dipole orientation in the sample, resulted in a great deformation and alteration of the 

substrate. As such the chosen solution was to use samples that underwent different 

spinning conditions, and as such have different piezoelectric responses. 

 To evaluate the manner in which cells interacted with the electrospun matrixes 

and to see if the premise that a higher piezoelectric response did in fact yield better 

results in terms of cell adhesion, proliferation and ultimately osteogenic growth was valid, 

three sets of six samples were taken from two fiber matrixes spun in different conditions, 

and that exhibited very different electrical responses when submitted to a mechanical 

stimulus, the samples produced under the conditions ABCE (A+B+C+E+) presented a 

much higher electrical response when compared to samples spun under the CE (C+E+) 

conditions, table 3. These samples were also submitted to an alkaline phosphatase test 

to evaluate their metabolic response [6]. The test are made by introducing p-

nitrophenylphosphate (pNPP) to the culture medium that has alkaline phosphatase, an 

enzyme produced by the cells that will degrade the pNPP yielding p-nitrophenol, a 

chromogenic product that has a yellow color. The absorbance at 405 nm is then 

measured and compared between samples and a control group 

 In addition in order to see the effect of a dynamic stimulus environment two 

samples one spun in ABCE conditions, which showed a maximized response, and a 

sample spin under conditions CE, randomly chosen, were taken and placed in separate 

bioreactors and underwent a stimulation of 1.5 V at 1 Hz, in an attempt to characterize 

the cellular behavior when cells were put under the influence of an external stimulus and 

in the presence of an electroactive matrix with different piezoelectric responses. The 

bioreactor was developed by Carlos Marques (MSc thesis in biomedical engineering 

FCT/UNL, to be submitted). The stimulus was applied for 1 h periods every 12 hours. If 
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any significant cellular behavior changes were detected this could then in turn be 

attributed to the difference in piezoelectric response shown by the spun matrixes. 

. 
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3. Results and discussion  

3.1. Choosing a solvent ratio 
After the preliminary electrospinning process, using the static set-up the samples 

underwent SEM analysis to verify the fibers morphology, figure 3. 

 From the SEM images shown in figure 3 it is visible that a solvent ratio of 6:4 

creates a more disperse array of fibers rather than an interconnected highly porous 

matrix when compared with a solvent ratio of 1:1. Despite the presence of beads for 

lower concentrations for a solvent ration of 6:4, a solvent ratio of 1:1 was chosen in the 

experimental works. 

 

17% PVDF (wt/v)                                          6:4 ratio                                                                       1:1 ratio 

 

 

 

 

 

 

 

18% PVDF (wt/v)                                          6:4 ratio                                                                       1:1 ratio 

 

 

 

 

 

 

 

19% PVDF (wt/v)                                            6:4 ratio                                                                     1:1 ratio 
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3.2. Choosing a polymer concentration  
After the spinning processes illustrated in figure A1.2 the fibers were again analyzed with 

recourse to SEM imaging, figure 4.The SEM analysis shows that visible structural defects 

such as beads lessen as polymer concentration increases. As such a polymer 

concentration of 21% was chosen for the next set of experiments. 

Fig. 3 - SEM images at 500x amplification obtained from the electrospun PVDF fibers for different 

concentration and solvent ratios. On the left side are the solutions spun with an 6:4 DMF to acetone 

ratio and on the rigth the solutions spun with and 1:1 DMF to acetone ratio. The polymer concentration 

grows from top to bottom from 17 to 21% 

20% PVDF (wt/v)                                       6:4 ratio                                                                          1:1 ratio 

 

 

 

 

 

 

 

21% PVDF (wt/v)                                       6:4 ratio                                                                          1:1 ratio 
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Fig. 4 - SEM images at 2000x amplification of the aligned fiber mats obtained using the 

experimental set-up illustrated in figure A1.2. a) 17%; b) 18%; c) 19%; d) 20% and e) 

21% polymer solution with a solvent ratio of 1:1 

3.3. Piezoelectric tests 
All the 32 samples produced, with approximately 300 μm thickness, were submitted to 

single impact test in order to evaluate if a piezoelectric response existed, the test was 

performed by dropping a 15.17 g object from a 20 cm height on to a sample connected 

to a Hantek6022BE PC-Oscilloscope and measuring the electrical response given, data 

not shown. All samples produced an electrical response, and as such were submitted to 

tapping tests under dynamic mechanical stimulation.  

 All of the 32 samples were submitted to a dynamic mechanical stimulation test, 

using a Tektronix TDS 2001C oscilloscope; at a frequency of 1Hz to evaluate which 

yielded the best electrical response. A complete factorial design was implemented, 

resulting in a total of 25 experiments presented in the planning matrix shown in table 3. 
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The experiments were done, three times, in a random order to assure that all observed 

results are independent events. [32]  

 For the following calculations only the highest voltages measured in a peak was 

accounted for and not the voltage peak to peak, figure 7 , this is because most of the 

waves were asymmetric and the smallest peaks were often not measurable due to 

background noise, with some exceptions. 

 

 The results of the experiments as well run order in which the experiments were 

conducted are shown in the following table, where + represents the high level of given 

factor and - represents the low level of a given factor. According to table 2. 

 

Table 3 – Table showing the run order of the experiments consisting in a dynamic 

stimulation of the membranes at 1 Hz 

RUN 
ORDER 

A B C D E PEAK VALUE AT 
1,0 HZ (V) 

JOHNSONS 
TRANSFORMATION 

1 + - + + + 0,8 -0,287 

2 - + + - + 1 0,097 

3 - - + - + 0,29 -2,557 

4 + - - + + 0,56 -0,920 

5 + + + + - 0,6 -0,793 

6 - + - + + 0,72 -0,470 

7 - - - + + 2,1 1,648 

8 + + + + + 0,72 -0,470 

9 - - + + + 0,56 -0,920 

10 - - + - - 0,76 -0,376 

11 + + - + - 1,3 0,570 

12 - + + + - 0,8 -0,287 

13 - - + + - 2 1,512 

14 + - + + - 1,9 1,379 

15 - + + - - 0,7 -0,519 

16 - + + + + 0,52 -1,060 

17 + - - - - 6,4 - 

18 - - - - + 2 1,512 

19 + + + - - 1,3 0,570 

20 + + - + + 1,4 0,712 

21 + - - - + 0,68 -0,570 

22 - + - - - 1,4 0,712 

23 + - - + - 1,3 0,57 

24 - + - - + 1,1 0,265 
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25 + + - - + 0,68 -0,570 

26 - - - - - 1,4 2,085 

27 - - - + - 0,8 -0,287 

28 + - + - + 0,4 -1,611 

29 + + + - + 1,5 0,849 

30 + + - - - 0,6 -0,793 

31 + - + - - 0,4 -1,611 

32 - + - + - 1,1 0,265 

 

The data was then analyzed using the software Minitab®, a preliminary look at the data, 

utilizing an Anderson-Darling test for a significance level of 0.05 revealed that the 

residuals did not follow a normal distribution as shown in figure A2.1, in annex 2. 

With a p-value < 0.005 we reject the null hypothesis that the data is normally distributed, 

and as such an analysis of variance, ANOVA, is not possible. However it is also shown 

in figure.5 that only one result greatly escapes normality. That value corresponds to the 

residual of the experiment 17 in the run order, highlighted in red, table.3. To see if this 

result could be excluded from further calculations an outlier test, Grubb’s test, with a 

significance level of 0.05 was used, figure.A2.2 in annex 2. 

It is evident using this test that the value obtained in experiment 17, table 3, is an outlier 

and as such it will not come into consideration in any further calculations nor 

experiments. An additional Anderson-Darling test, with a significance level of 0.05 was 

performed in the data residuals after removing the outlier, figure.A2.3 in annex 2. 

 The Anderson-Darling test presented in figure A2.3, in annex 2, shows a p-value 

> 0.005 and as such we do not reject the null hypothesis and can assume that the 

residual data follows a normal distribution however the p-value for the Anderson-Darling 

test just barely meets the requirements for normality and further analysis shows that the 

residues may actually have a non-homogeneous variance as shown in figure A2.4, in 

annex 2, when plotted against the fitted values they seem to form a cluster around 0.9 

to 1.35. 

 As such a Johnson’s transformation was performed on the data, table 3 a new 

analysis was performed on the residuals of the transformed data figure 5 and figure 6. 
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Fig. 5 - Graphic representation of an Anderson-Darling test with a significance value of 

0.05 on the data residuals after a Johnsons tranformation 

 

Fig. 6 - Residual plots for transformed data showing how well they fit a normal 

distribution, their order versus the run order and their variance when compared with the 

fitted values as well as an histogram of their distribuition 
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The residuals for the transformed data now show much higher p-value in the Anderson-

Darling test meaning that they better fit a normal distribution, figure 5 when compared 

with the non-transformed ones shown in figure A2.1, in annex 2, in addition it is now safe 

to say that none of the principles of normality are being broken, the residuals are now 

normally distributed, they are independent form each other and they seem to present a 

homogenous variance, figure 6, and as such an analysis of variance ANOVA using the 

transformed data, table 4, to determine the combination of levels that maximizes the fiber 

mats piezoelectric response is now possible. 

 

Table 4 – ANOVA with a significance level of 0.05 utilizing the transformed data 

Source Degrees of 
freedom 

SS MS F-Value P-Value 

A 1 0.5435 0.54353 0.50 0.488 

B 1 0.0211 0.02114 0.02 0.891 

C 1 3.7502 3.75020 3.42 0.076 

D 1 0.3337 0.33372 0.30 0.586 

E 1 1.7819 1.78193 1.63 0.214 

Error 25 27.3838 1.09535   

Total 30 33.9136    

 

After the ANOVA analysis it is visible that for a significance value of 0.05 factors A, C 

and E have a significant impact in the piezoelectric response of the fiber mats. 

 The best combination of levels is then determined by adding the contributions of 

the significant effects, highlighted in green in table 4, at both high and low levels, this 

being represented by ∑ (+) and ∑(-) respectively and choosing the ones with the highest 

value since the goal is to maximize the piezoelectric response. 

 

Table 5 - Table showing the added contributions of the significant effects at both levels. 

 ∑(+) ∑(-) 

A -2.975 1.620 

C -6.084 4.729 

E -4.352 2.997 

 

According to results shown in table 5 the best levels for the effects that have a significant 

effect in the response are A+, C+ and E+ for all other effects that do not have a significant 

influence in the response their levels can be chosen in a way that they are more 

convenient for the research, usually they are chosen based on how affordable they are 

but since that parameter holds no weight in this particular case the final combination of 

levels was chosen based on the registered responses shown in table 3.  
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As such the combination of levels chosen in the experiments moving forward was 

A+B+C+D-E+ with a registered response of 1.5 V for a stimulation of 1 Hz, figure 7 c). The 

sample C+E+ was used as comparison and its results are shown in figure 7 b) and 7 d). 

 

 

Fig. 7 – a) piezoelectric response for single impact test in a fiber matrix spun in ABCE 

conditions, with a response of -0.439 V, b) piezoelectric response for single impact test 

in a fiber matrix spun in CE conditions, with a response of -0.273 V, c) piezoelectric 

response for dynamic impact test, at 1Hz in a fiber matrix spun in ABCE conditions, d) 

piezoelectric response for dynamic impact test, at 1Hz in a fiber matrix spun in ABCE 

conditions 

 

The measurements were first made using a piece of paper and no response was 

obtained, this served to prove that the fibers do indeed possess a piezoelectric response, 

however this does not guaranty an accurate reading since the measurements are made 

by taking the fibers deposited in an aluminum foil electrode placing an additional 

electrode on top of the fibers and applying a mechanical solicitation. This in turn can 

result in a capacitance change due to varying distance of the electrodes can generate 

artifacts that add to the true output signal. [34] In addition peaks should only show when a 

mechanical stimulus was applied to the sample, one each second, since the stimulus 

was done at one Hz, the presence of other peaks can be attributed to the triboelectric 

a) b) 

c) d) 
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effect, especially when taking into account that the PVDF is negatively charged (due to 

the fluoride atoms in its composition) when compared whit the aluminum used to make 

the electrical contacts. 

3.4. Scaffold Characterization 

3.4.1. XRD characterization 

The fiber mat spun under the chosen conditions was analyzed using an X-ray diffraction 

technique and the data was treated using the OriginPro 8.5 software in order to 

characterize it taking into account the crystallographic phases present and compare it to 

the unprocessed PVDF powder used to make the polymeric solutions, figure 8. 

 

Fig. 8 - XRD difractograms for PVDF samples, on the left the XRD specter for 

unprocessed PVDF powder and on the right the XRD specter for PVDF spun under the 

chosen conditions. 

Through observation of figure 8 it is visible that the unprocessed PVDF powder shows 

diffraction peaks at 2ϴ = 18.09°, 20.01°, 20.70°, 26.70° and 38.90° corresponding to α-

phase (1 0 0)/ (0 2 0), to the ϒ-phase (1 1 0), to the β-phase (2 0 0) to the ϒ-phase (0 2 

2) and to the α-phase (0 0 2) reflection planes respectively. [35] 

 In comparison the electrospun PVDF presents a diffraction pattern with peaks at 

2ϴ = 19.20°, 20.70° and 36.20° corresponding to the ϒ-phase (0 0 2), the β-phase (2 0 

0) and to the ϒ-phase (2 0 0) reflection planes respectively. There is also a diffraction 

peak at around 2ϴ = 40° corresponding to the α-phase (0 0 2) reflection plane. [35]. 

Showing a much higher content of  piezoelectric phase and a small amount of the non-

piezoelectric  phase. 

 

α 

ϒ

  α 

α 
α 

ϒ 

β 

α α 

β 
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3.4.2. FTIR characterization 

 

Fig. 9 – FTIR spectra of the unprocessed PVDF powder and the PVDF solution 

electrospun under the ABCE experimental conditions 

It is visible in figures 8 and 9 that the electrospinning process coupled with the 

mechanical strain from the rotating collector drum creates a crystalline structure much 

richer in electroactive crystalline phases when compared with the unprocessed PVDF 

powder. [29, 35]  When compared with the electrospun samples unprocessed powder 

shows peaks of much lower intensity in the β-phase peaks at 838 and 1280 cm-1 and a 

much higher intensity in the α-phase peaks at 612, 761, 795, 1147 and 1211 cm-1. [24] [25] 

[30] [36] 

 

3.4.3. FIB-SEM characterization 

 

Fig. 10 – a) SEM imaging at 2000x amplification of a fiber matrix electrospun under the 

conditions ABCE showing a preferential alignment of the fibers; b) Fiber size distribution 

of 40 counts total and a comparison to a normal distribution fitting 

 

The electrospinning process under the chosen conditions leads to a semi aligned quasi-

normal, distribution of the fibers with the bulk of the fibers having between 1.4 and 1.6 

μm of diameter, figure 10. Fiber sizes were obtained using the software ImageJ®. 

a) b) 
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3.5. Cytotoxicity tests  
The cytotoxicity tests were performed using the Biotool Vita-blue Cell Viability reagent, 

this reagent is a redox indicator which utilizes the blue and weakly fluorescent Resazurin 

reagent to reduce to pink and highly fluorescent Resofurin by dehydrogenase enzymes 

in metabolically active cells, being that the amount of Resofurin produced is directly 

proportional to the number of living cells. [37]  

 It was found that for all concentrations, the concentration to negative control ratio 

was superior to a 0.9 value meaning that the material was not cytotoxic and as such the 

material is fit for biological applications. The test sensitivity was also tested using the 

positive (C+) to negative (C-) control medium ratio and it showed a value 0.023 meaning 

that the test is indeed sensitive to the Resazurin to Resofurin reduction and not any 

external factors, both results are shown in figure 11 a) and b) respectively. 

 

 

Fig. 11 - a) figure showing the results of the several concentrations to negative control 

medium ratios, the values over 0.9 show the PVDF scaffolds as a non-cytotoxic medium; 

b) figure showing the positive (C+) to negative (C-) control ratio, the low value indicates 

that the test is indeed sensitive to the reduction of Resazuirn and not to external factors. 

 

3.6. Structural characterization  
It is important to state that due to the first batches of membranes being too thin thicker 

membranes with an exposure time of 2 h had to be produce, this in turn makes it so that 

the response of each of the membranes is not the one viewed in table 3 [38], new testing 

to assure the membranes response was not possible since there was a malfunction in 

the necessary equipment.  

3.6.1. Comparing sample groups  
Using equations 1 through 3 the molar fraction of α and β-phases in each sample can be 

calculated. [39] 
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𝐴762 =  𝑘𝛼
762 ∗ 𝑋𝛼 ∗ 𝑡 (𝑒𝑞. 1) 

𝐴1275 = 𝑘𝛽
1275 ∗ 𝑋𝛽 ∗ 𝑡 (𝑒𝑞. 2) 

𝐴1070 = 0.095𝑡 + 0.07 (𝑒𝑞. 3) 

 

Where Aj is the baseline-corrected absorbance at j cm-1, kj
i is the absorbance coefficient 

at j cm-1 for the i phase, Xi is the mole fraction of the i phase and t is the thickness of the 

sample in μm and it is obtained using the samples absorbance of infra-red radiation at 

1070 cm-1seeing as this peak is relatively independent from the samples crystallinity, the 

values for 𝐾𝛼
762 and 𝐾𝛽

1275 are 0.365 and 0.140 μm-1 respectively [39] [40]  Results for the 

mole fractions of each phase are shown in table 6 and the values used for the 

calculations are presented in annex 3. 

Table 6 – Mole fractions of both α and β phases present in the fiber mat samples 

 ABCE CE PVDF Powder 

Xα 0.06 0.04 0.34 

Xβ 0.63 0.61 0.21 

 

Through analysis of the FTIR spectra shown in figure 12 it is clear that both samples 

present a similar spectra meaning that the electrospinning process did not lead to a 

significant difference in molecular organization when comparing the two samples. The 

relative fraction of β-phase can be obtained using equation 2, for samples ABCE and 

CE, at 1275 cm-1, is 63% and 61% respectively. Meaning that modifying the spinning 

parameters does not have a great impact in the crystalline composition of both samples. 

However when comparing the spun samples to the original PVDF powder there is a 

noticeable increase in the amount of β phase and a decrease in the amount of α phase 

in the samples, verifying that the spinning process leads to a transformation of the non-

piezoelectric α phase into other piezoelectric phases more desirable for this kind of 

applications. Additional information on the vibrational modes of each of them can be 

found in annex 3. 

 

Fig. 12 - FTIR spectra comparing both samples, electrospun under different conditions 

used in static environment cellular culture test,  
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From what can be seen in figure 13, both samples present a very similar composition 

when it comes to the crystalline phases present in them although slight differences can 

be found. The sample electrospun under the conditions ABCE presents a slightly more 

intensive and broader peak at 2ϴ = 19.20° corresponding to the ϒ-phase (0 0 2) 

reflection, in addition the peaks at 2ϴ = 36.20 and 40°corresponding to the ϒ-phase (2 

0 0) and the α-phase (0 0 2) reflection planes respectively, are slightly more prominent 

in this sample when compared with sample CE. In addition the peak at 2ϴ = 20.06° 

corresponding to β-phase (2 0 0) reflection plane show a much higher intensity in sample 

ABCE when compared with sample CE. Meaning that the ABCE processing conditions 

favor the formation of β-phase (2 0 0) reflection plane when compared with the CE 

processing conditions. 

 

 

Fig. 13 - XRD difractograms comparing both samples, electrospun under different 

conditions used in static environment cellular culture tests, a) XRD spectrum of fiber mat 

spun under the conditions ABCE, b) XRD spectrum of fiber mat spun under the 

conditions CE 

 

In figure 14 it is presented SEM imaging of both samples ABCE and CE at 2000x 

amplification, their respective tread count distribution and how well that distribution fits a 

normal distribution. As it can be seen in figure 14 a), the sample processed under ABCE 

conditions presents a much more aligned fiber matrix when compared with the sample 

produced under CE conditions as well as a much more evenly distributed fiber diameter 

this is of extreme importance since an evenly distributed fiber diameter translates to an 

evenly distributed fiber mass which in turn translates to a similar resonance frequency 

throughout the entire device and as such an even response to the electrical stimulus, 

since the resonance of a piezoelectric material depends on several other factors such 

as elasticity and dampening effects. As described in Van Dyke’s model. [38] 

 

a) b) 

α α α α 

ϒ 

β 

ϒ 

β 
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Fig. 14 - – SEM imaging 2000x amplification and tread count distribution, 40 counts per 

sample, of the fiber diameters in both samples. a) sample electrospun under conditions 

ABCE, b) sample electrospun under conditions CE 

Additionally a DSC scan of the samples was made in order to quantify the samples 

overall crystallinity using equation 4.[30]  

𝑋𝐶(%) =  
𝐻𝑓𝑠

𝐻𝑓𝑡
∗ 100 (𝑒𝑞. 4) 

 

Fig. 15 - DSC scan of all samples showing their primary melting peaks (endothermic 

peaks) at around 160 °C 

Where Hfs the area beneath the primary melting peak for each sample, when plotting the 

heat flux data vs time , (in s), figure not shown, and corresponds to the fusion enthalpy 

of sample in J/g, Hft is the fusion enthalpy for a 100% crystalline sample, in case of β-

a) 

b) 
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PVDF this value is 104.6 J/g, the value for both α and ϒ-PVDF samples is unknown and 

is assumed as being the same as β-PVDF, following the work of Prest and Luca. [30][39][40] 

Results for sample crystallinity can be seen in table 7. 

Table 7 – Degree of crystalinity of each sample using the primary melting peak of each 

sample  

 

Finally, using equation 5 both of the fiber mats porosities were calculated and compared. 

To evaluate the scaffolds as to their porosity, thin films of PVDF with the same 

concentration were produced. The solution was poured on to glass plaques and left to 

dry at a temperature of approximately 90°C to ensure the formation of a dense film. [40] 

𝐹𝑖𝑏𝑒𝑟 𝑚𝑎𝑡 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (%) = (1 −
𝜌𝑓𝑖𝑏𝑒𝑟 𝑚𝑎𝑡

𝜌𝑡ℎ𝑖𝑛 𝑓𝑖𝑙𝑚
) ∗ 100 (𝑒𝑞. 5) 

Both samples presented very similar degree of porosity being that the ABCE samples 

and the CE samples presented (98.1 ± 0.2) % and a (98.0 ± 0.2) % respectively. Which 

means that the change in spinning parameters did not change the overall porosity of the 

fiber mats. All this factors in conjunction with the preferential alignment of the fibers could 

explain the superior response from part of the fiber matrixes produced under ABCE 

conditions.  

3.7. Cellular response tests 

3.7.1. Static tests  
Three sets of twelve membranes each (six of each type ABCE and CE) were seeded 

with a cell density of 20 000 cells/ cm2 and the adhesion of the cells was evaluated 24 h 

hours after the seeding was done and the proliferation of said cells was evaluated every 

two days for a period of 9 days after culture. It is of note that both experiments one and 

three had to be terminated due to unforeseen complications, and as such only the result 

from the second experiment will be presented. 

 Powder ABCE CE 

Xc(%) 38.2 44.6 44.9 
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Fig. 16 - Comparison of cellular adhesion betwen fiber matrixes during the second set 

of experiments  

 

Fig. 17 - Comparison of cellular proliferation rate between fiber matrixes in static 

regime during the second set of experiments 

From the data shown in figures 16 and 17 it is visible that the fiber matrix produced under 

the ABCE electrospinning conditions presents a higher adhesion and proliferation rate 

when compared to the ones produced under the CE electrospinning parameters. It is 

important to note that in experiments 1 and 3, data not shown, the CE group presented 

a higher adhesion rate than the ABCE sample but still with no significant differences 

between the two groups. 

 To verify if the data is statistically significant, a t-student statistic, with, a 

significance level of 0.05 and equal variance between samples was used from day 1 

(adhesion) to day 9 of the experiment. A chi-square statistic can be found in annex 4, 

showing that the variance is not significantly different for both samples in the same days, 
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however, one should note that in the last days of the experiment the p-value is close to 

0.05 meaning that for a larger population the samples could in fact present different 

variances at later stages. The t-student statistic, showed no significant differences 

between the proliferation rates of both sample groups in the 1st and 3rd days (p-value > 

0.05) however subsequent measurements show significant differences between both 

sample groups proliferation rates (p-value < 0.05) with this difference being statistically 

more significant as time passes. [33]  

 Cellular metabolic activity was measured at day 7 for both samples via an alkaline 

phosphatase test [6] these tests showed no statistical differences between the two 

samples and show little increase in metabolic activity when compared with the control 

medium, figure 18. 

 

Fig. 18 - p-nitrophenol present in both samples and in the control group at day 7 of the 

experiment 

It is visible from figure 18 that for a static regime there are no significant differences 

between the two groups when it comes to cell metabolic activity for a significance level 

of 0.05. [33] Equal variance was verified between all groups and is presented in annex 5. 

3.7.2. Dynamic tests  
The evaluation of cellular behavior in a dynamic environment proved to be a challenge, 

and several adaptations were made to the procedure and to the bioreactor itself, of the 

later the most important was the creation of a new orifice near the edge of the lead of 

the bioreactor, this allows for a proper medium change without the need to remove 

several components of the bio reactor which in turn create less disturbances in the 

culture environment. The Teflon ring was also changed for one with 17 and 24 cm of 

internal and external diameter respectively and a thickness of 1.5 mm. 

  As for the procedure, the one yielding the best results consisted in the seeding of 

cell using 500 μl of a solution with a cell concentration of 60 000 cells/ml, in an already 

fully assembled bioreactor. The use of such low volume assured that the cells would 

deposit themselves fully in the electrospun matrix and not in other areas of the bioreactor, 

as figure 19 a, shows, only 1% of the deposited cells did not reach the matrix and were 

instead deposited in the metallic net. After seeding the cells were left to adjust to their 
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new environment over a 24 hour period in a controlled atmosphere before any further 

tests were conducted. After the 24 h period and for all subsequent medium changes, the 

volume of fresh medium used was of 1 ml, to ensure the cells remained metabolically 

active. It is of note that between medium changes, and after tests, the samples were 

washed using a DMS solution to ensure no previous residue remained. An image of the 

used bio reactors is presented in annex 6. 

 

 

Fig. 19 - Microscopic imaging of the deposited cells, a) view of the metalical net of the 

bioreactor; b) view of the spin matrix 

As was done for the static environment cell proliferation, figure 20 and cellular metabolic 

activity, figure 21 were evaluated. 

 

Fig. 20 - Cellular proliferation rate for a five day period without a stimulus application, 

and for the subsequent days with the application of a 1 Hz, 1.5 V stimulus 

a)                                                                   b) 
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Fig. 21 - Normalized metabolic activity for cells seeded in both ABCE annd CE spun 

samples and for static and dynamic environments 

As seen in figure 20 there is no significant difference, for a significance level of 5%, 

between the proliferation rate of cells when comparing a static or a dynamic environment, 

this figure, however, shows an increase in the proliferation rate at day 8, after the cells 

had undergone 3 days of stimulus, followed by a decrease in the proliferation rate, day 

10, to levels more in accordance with the previously seen, this shows that the procedure 

is still in a very early stage and that are still outside factors interfering with cellular 

behavior. 

 When comparing metabolic activity of cells, figure 21, shows the normalized 

metabolic response of the cells. It is clearly visible that while no significant differences 

can be found in cellular activity for cells seeded in matrixes either spun in ABCE or CE 

conditions, there is a clear increase in the metabolic activity of cells when exposed to the 

stimulus provided in the dynamic environment. 
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4. Conclusions and future prospects  

XRD and FTIR results demonstrated that the electrospinning process coupled with the 

mechanical strain from the rotating collector drum did alter the structural organization of 

the samples when compared to the original unprocessed powder sample (higher  and 

lower  phase contents). In addition the DSC analysis showed an increase in the 

crystalline fraction of both samples when compared with the unprocessed powder. This 

findings would suggest that the electrospinning process facilitates the orientation and 

packaging of the polymer chains by coulombic forces exerted in the process enhancing 

piezoelectric properties. 

 Comparing the both spun samples (ABCE spun with a distance between the 

needle tip and the collector of 10 cm, an applied voltage of 12 kV, a needle gauge of 

25G a flow rate of 1 mL/h, a collector drum spinning at 2500 rpm and CE spun with a 

distance between the needle tip and the collector of 15 cm, an applied voltage of 15 kV, 

a needle gauge of 25g, a flow rate of 1 mL/h and a rotation of the collector drum of 2500 

rpm), the XRD spectra are very similar the difference being that the peaks appearing in 

at 2ϴ = 36.2° and 40° (ϒ-phase (2 0 0) α-phase (0 0 2) reflection planes) present in the 

ABCE sample seem to be of a more residual nature in the sample spun under the CE 

conditions. Both samples present almost identical FTIR spectra and the relative fraction 

of β-phase is, as expected, also very similar. The ABCE sample presenting a mole 

fraction of β-phase of 63.0% to the 61.0% shown by the CE sample. This fact suggests 

that, although the electrospinning process does have a great impact in changing the 

crystallographic phases present in the original PVDF powder, changes in the spinning 

parameters did not have such a great impact in the crystallographic phases present in 

the final spun samples. This lead us to infer that the difference between piezoelectric 

responses in both samples is due to the superior fiber orientation shown by the ABCE 

samples as well as a more uniform fiber size distribution as shown in figure 14. This 

allows for a better alignment of the dipoles that translates to a more uniform and greater 

piezoelectric response. 

 Ideally the cellular response tests would be performed using matching samples 

in terms of morphology and topography and the only difference between them would be 

the piezoelectric response so that any variation in results could be attributed to this factor 

alone. However it has already been demonstrated that both sample groups present a 

different topography, and since osteoblasts are anchorage dependent this factor has a 

great influence in the way they behave. Cellular adhesion tests showed no significant 

differences between samples, this was also seen in cellular proliferation tests but only 

during the first days, from days to 5 to 9, after culture, cell proliferation took place at a 

higher rate in samples from the ABCE processing group, if this in large part because of 

the difference in piezoelectric coefficients or due to the different fiber sizes distribution 

still remains unknown. On the seventh day of the experiment an alkaline phosphatase 

test was done to measure the metabolic activity of the cells in each group, for a static 

regime there do not appear to be any significant differences between both groups, even 

between the samples and the control group there is not a significant difference, for a 

significance value of 0.05, two reasons were considered for this, either there were not 

enough cells in the groups to make a significant difference when compared with the 

control group or there could still be residue of previous washing processes done when 

the medium that feeds the cells is changed. This residue dilutes the total concentration 

in each well and could in theory influence the readings. 
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 For the future of this project there are a couple of paths to take, the first one is to 

repeat the spinning and selection processes but this time with deposition times of 2h 

since it is now known that shorter deposition times produce membranes that are too thin 

to be handled and tested in the cell culture. Another way to measure the piezoelectric 

response, preferably through the reverse effect (an electrical stimulus producing a 

mechanical response) would be a real step forward since this would allow for much 

accurate readings as it would remove the artifacts created by the impact in the contacts 

that is present in the measurements here presented and could even allow for a direct 

measurement of the piezoelectric coefficient d33. Also would allow for a better choice in 

parameters to use in dynamic tests (voltage and frequency of the signal). Several 

attempts were made to this end but with no reliable results, several substrates with 

different conductivities were used to deposit the fibers and this were the taken to undergo 

AFM analysis but no response was obtained, an impedance measurer was also used 

but the weight of the contacts was to big when compared to the of the fibers and did not 

allow them to freely vibrate when stimulated, an attempt to try and measure differences 

in the optic path of a laser using the department of material science optic bench was also 

tried but the fibers didn’t have a reflective enough surface. 

 There does not seem to be a significant difference, for a significance level of 0.05, 

between cellular behavior in both groups, but there is a significant increase in the 

metabolic activity of cells when comparing static and dynamic tests, the later presenting 

a much higher metabolic activity. However since the medium is in contact with metallic 

parts the stimulus will not only be felt by means of a piezoelectric response but also by 

means of electrical conduction through the medium as well, this presents a novel 

problem, to be solved since there will always be an electrical stimulus present in the 

bioreactor environment despite of the sample presenting a piezoelectric response or not. 

As such any differences in cell behavior cannot be solely attributed to a piezoelectric 

response, there will be a need to quantify how much of the differences is created by the 

current in the medium and how much of it is due to the piezoelectric response of the 

material, for this a bioreactor with a different design may be necessary, in order to try 

and apply a stimulus only through a piezoelectric response. 
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6. Annexes 

1 – Experimental electrospinning step-ups for static and rotating drum collectors  

 

Fig.A1. 1 - Schematic ilustration of electrospinning stratic target set up used in the 

preleminarie experiments (adapted from [23]) 

 

Fig.A1. 2 - - Schematic ilustration of rottating collector drum electrospinning set up used 

in the production of aligned PVDF fibers. (taken from [23]) 
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2 – Data treatment 

 

Fig.A2. 1- Graphic representation of the residuals for non-treated data showing a p-value 

< 0.005 

 

Fig.A2. 2 Grubs test for outliers showing an outlier for a significance level of 0.05, for 

experiment 17 in the running order with a value of 6.4 

76543210

0,29 6,40 4,82 0,000

Min Max G P

Grubbs' Test

Results 1,0 Hz

Outlier Plot of Results 1,0 Hz
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Fig.A2. 3 Graphic representation of the residuals for treated data, showing a p-value > 

0.005 

 

Fig.A2. 4– Residual plots for non-transformed data showing how well they fit a normal 

distribution, their orde versus the run order and their variance when compared with the 

fitted values as well as an histogram of their distribuition 
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3 – Vibration modes of the various peaks of PVDF spectrum.  

 

Fig.A3 1 - Vibrational modes of different peaks present in PVDF FTIR spetrum (taken 

from [42]) 

Table A3. 1 - Numerical values for the parameters used in the calculation of molar ohase 

fraction of the α and β-phases in both ABCE and CE samples 

 ABCE CE PVDF Powder 

A762 0.0238 0.0295 0.0250 

A1070 0.2746 0.2641 0.2599 

A1275 0.1899 0.1749 0.0649 
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4 – Results of the Chi-square hypothesis tests for equal variance in proliferation 

rates from days 3 to 9, after culture, for both ABCE and CE samples 

 

Fig.A4. 1 Two sample Standard deviation test, using a Chi-square statistic for day 3 after 

culture 

 

Fig.A4. 2 Two sample Standard deviation test, using a Chi-square statistic for day 5 after 

culture 

 



40 

 

 

Fig.A4. 3 Two sample Standard deviation test, using a Chi-square statistic for day 7 after 

culture 

 

Fig.A4. 4 Two sample Standard deviation test, using a Chi-square statistic for day 9 after 

culture 
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5 – Results of the Chi-square hypothesis tests for equal variance for p-

nitrophenol in both samples and control group 

 

Fig.A5. 5 - Two sample Standard deviation test, using a Chi-square statistic for alkaline 

phosphatase test between the ABCE and Control groups 

 

Fig.A5. 6 - Two sample Standard deviation test, using a Chi-square statistic for alkaline 

phosphatase test between the CE and Control groups 
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Fig.A5. 7 - Two sample Standard deviation test, using a Chi-square statistic for alkaline 

phosphatase test between the ABCE and CE groups 
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6-Bioreactors used in cellular culture tests 
 

 

Fig.A6 1 - Assembled and disassembled bioreactors used in cellular culture assays 

 


