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TiO2 and [P6,6,6,14]2 fluorone highly hydrophobic ionic liquid
dye.

ART � C9SE00783K_GRABS



Funding information
Providing accurate funding information will enable us to help you comply with your funders' reporting mandates. Clear
acknowledgement of funder support is an important consideration in funding evaluation and can increase your chances of
securing funding in the future.

We work closely with Crossref to make your research discoverable through the Funding Data search tool (http://search.crossref.
org/funding). Funding Data provides a reliable way to track the impact of the work that funders support. Accurate funder
information will also help us (i) identify articles that are mandated to be deposited in PubMed Central (PMC) and deposit these
on your behalf, and (ii) identify articles funded as part of the CHORUS initiative and display the Accepted Manuscript on our web
site after an embargo period of 12 months.

Further information can be found on our webpage (http://rsc.li/funding-info).

What we do with funding information

We have combined the information you gave us on submission with the information in your acknowledgements. This will help
ensure the funding information is as complete as possible and matches funders listed in the Crossref Funder Registry.

If a funding organisation you included in your acknowledgements or on submission of your article is not currently listed in the
registry it will not appear in the table on this page. We can only deposit data if funders are already listed in the Crossref Funder
Registry, but we will pass all funding information on to Crossref so that additional funders can be included in future.

Please check your funding information
The table below contains the information we will share with Crossref so that your article can be found via the Funding Data
search tool. Please check that the funder names and grant numbers in the table are correct and indicate if any changes are
necessary to the Acknowledgements text.

Funder name
Funder's main
country of origin

Funder ID (for
RSC use only)

Award/grant number

Fundação para a Ciência
e a Tecnologia

Portugal 501100001871
PTDC/QUI-QUI/114236/2009, UID/
QUI/50006/2013, UID/QUI/50006/
2019

European Regional
Development Fund

European Union 501100008530

POCI-01-0145-FEDER-016387,
POCI-01-0145-FEDER-007265,
LISBOA-01-0145-FEDER-402-
022125
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Dye-sensitized solar cells using fluorone-based
ionic liquids with improved cell efficiency†

Ana L. Pinto,a A. Jorge Parola, a João P. Leal,bc Isabel B. Coutinho*d

and Cláudia C. L. Pereira *a1

Six trihexyltetradecylphosphonium chloride (P6,6,6,14Cl) based ionic liquids (IL) with dianionic fluorone

derivatives were synthesized with total exchange of chloride from the dianionic dye: Fluorescein (a),

Rose Bengal (b), Phloxine B (c), Eosin B (d), Eosin Y (e) and Erythrosine B (f). Spectroscopic

characterization of these viscous salts indicated the presence of the expected 1 or 2 strong absorption

bands. A total of 12 compounds, as sodium (from a to f) or as trihexyltetradecylphosphonium dianion

salts (from a0 to f0), were used for sensitization of nanocrystalline TiO2. Here, we report the sensitization

activity of these metal free dyes in terms of current–potential curve, open-circuit potential, fill factor,

and overall solar energy conversion efficiency which have been evaluated under 100 mW cm�2 light

intensity. We developed a strategy to improve the light harvesting of these conventional dyes by simple

cationic exchange which was accompanied by a minimum of 30% increase in the cell photovoltaic

conversion efficiency. Also, for Eosin B the binding to TiO2 apparently allows reduction of the –NO2

electron-withdrawing group to –NO2
2�. This provides a new interaction between the reduced nitro

group and the TiO2 surface, reflecting an improvement in the overall DSSC performance reaching its

maximum of 0.85% efficiency after light DSSC soaking. Factors that improve DSSC performance like

aggregate inhibition, increment of the electrode's quasi-Fermi level and slight red shift in the absorption

spectra of the tested anionic dyes were achieved by simple cationic exchange.

1 Introduction

Dye Sensitized Solar Cells (DSSCs) are now acknowledged as
economically viable photovoltaic systems and may actually
represent a low-cost alternative to traditional crystalline silicon
photovoltaics, silicon-based heterojunction solar cells (Si-HJT)
with energy conversion up to 26.6%.1

Many efforts have been made to change the different parts of
organic dyes to optimize DSSC performance.

Sun and co-workers reported an increase in dye efficiency
using a NO2 group that attaches to the TiO2 surface despite its
electron withdrawing character.2 This “auxiliary anchor”
concept is not exclusive to nitro groups; it has for instance been
observed in other anchoring groups such as the hydroxyl group
or tetrazoles.3

Bio-inspired structures for 3photo-electrical conversion
DSSCs exist in nature, where organisms developed an efficient
strategy to improve light capture by using special molecular
units called light harvesting antennas. These units comprise
several pigments whose role is to collect incident solar photons
at different wavelengths and to taper them through efficient
energy transfer steps into a single molecular unit which in turn
triggers the photoinduced electron transfer chain.4Natural light
harvesting antennae consist of chromophores such as chloro-
phylls, carotenoids, lutein, etc. Chlorophylls have a very high
molar extinction coefficient (approx. 100 000 M�1 cm�1) owing
to their highly conjugated monomeric units. The rst applica-
tion of the antenna effect in a hybrid photoelectrochemical
device was reported by Scandola and co-workers as early as 1990
with the complex cyano-bridged trinuclear
{[Ru(bpy)2(CN)2]2Ru(bpy(COO)2)2}

2�.5

The intrinsic photon capturing and associated photo-
induced electron transfer properties, typical of porphyrin mac-
rocycles, encouraged the idea of using these compounds as
antennae in articial photosynthesis.6 A number of efficient
porphyrin sensitizers have been reported by Grätzel, Diau, Yeh,
Lin, Wang, Imahori, and many other 4groups.7

Other bio-inspired photosensitizers are anthocyanins with
great potential to be used in DSSCs.8,9 The rst anthocyanin-
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based DSSC reported, cyanidin-3-glucoside, a natural dye
extracted from blackberries, had a conversion yield of 0.56%.10

The photosensitization of TiO2 semiconductors can also be
accomplished by using other classes of metal-free organic dyes
(uorone, triarylmethane, azo and thiazine-based) as
photosensitizers.11,12

Structurally, uorones consist of a xanthene ring with
terminal oxygen atoms which is connected to a phenyl moiety
through a quaternary carbon atom, which is known to be
perpendicular to the xanthene moiety and therefore not p-
conjugated with it.

These dyes have properties such as better anchorage to the
TiO2 surface, short adsorption time, chemical stability, and
a wide visible spectrum which makes them promising candi-
dates for use as sensitizers in dye-sensitized solar cells.

Molecular organization of dianionic uorone core deriva-
tives, including large size, a moderate degree of symmetry, and
delocalized charge, should favor the formation of an IL, when
combined with trihexyltetradecylphosphonium chloride,
a cation that easily forms ionic liquids with a broad array of
anions.13

Fluorescence and UV-vis spectroscopic studies of this family
of uorescein core ionic liquids when dispersed in an aqueous
medium as nanodroplets indicate the formation of strongly
uorescent J-type aggregates together with weakly uorescent
monomeric forms.14

Various investigations have been carried out on modied
oxide semiconductor photoanodes with doped metal nano-
particles,15 non-metal materials,16 cation or anion adsorption,17

etc., aiming to enhance the overall light to electricity conversion
efficiency of these devices.

In this work, six uorone dianionic compounds were tested
as sensitizers and the inuence of the countercation of the dye
on the DSSC performance was evaluated. Also, the presence of
a withdrawing –NO2 group in one of these structures that may
be reduced upon light exposure of the TiO2 attached dye high-
lights the possibility of a strong interaction between the
reduced nitro group and the TiO2 surface. The light exposure
effect provides a way to signicantly and irreversibly improve
solar cell efficiency. Moreover, it creates an opportunity to study
some of the most fundamental limiting factors of dye-sensitized
solar cells.

A light exposure effect has been reported for various dye
sensitized systems.18 Oligothiophene ruthenium sensitizers
presented a 30% improvement in the power conversion effi-
ciency aer 12 days of light exposure at 60 �C and 1 sun
accompanied by a considerable improvement in both Jsc and
Voc.19 Based on a red shi of the spectral response of the solar
cells, the authors suggested the possible rearrangement of the
thiophene unit under the light soaking conditions.

In DSSCs ionic liquids have been used essentially as redox
mediators in dye sensitized solar cell electrolyte systems.20–23

Our main objective was to develop a new strategy to improve
DSSC performance by simple cationic exchange of any anionic
dyes. We purposely selected previously reported highly aggre-
gable compounds, with simultaneous low photoconversion

efficiency dyes, to more clearly evaluate the achieved
improvement.

Therefore, in this study, we have investigated the effect of
cation exchange of anionic compounds on the overall cell
performance parameters of six different uorone dyes as
[P6,6,6,14]

+ ionic liquids, which according to our literature over-
view are the rst ionic liquid dyes used for sunlight energy
conversion studies.

2 Experimental

The uorone (Fl) dyes reported in this study are Fluorescein (a),
Rose Bengal (b), Phloxine B (c), Eosin B (d), Eosin Y (e) and
Erythrosin Y (f) with structural formulae shown in Fig. 1.

IL salts of type [P6,6,6,14]2Fl were prepared by a standard
halide metathesis reaction between disodium salts of dyes (a–f)
and trihexyltetradecylphosphonium chloride (P6,6,6,14Cl) as
previously described.12,24 Full exchange of sodium was
conrmed by elemental analysis, nuclear magnetic resonance
spectroscopy and electrospray mass spectrometry.

2.1 Materials and instruments

Sodium salt dyes (Aldrich) were used as received; [P6,6,6,14]Cl
(Cytec), methanol (Aldrich, p.a.) and CDCl3 solvent were
purchased from Cambridge Isotopes.

Optical measurements. The UV-vis absorption spectra of the
solutions and the dyes adsorbed onto TiO2 in transmittance
mode were recorded by using a Varian Cary 5000. All the spectra
were collected at room temperature.

2.2 DSSC fabrication and photovoltaic characterization

The overall power conversion efficiency of a photovoltaic device
is one of the most important parameters in solar cell research,
and is dened by the short-circuit photocurrent density (Jsc), the
open-circuit photovoltage (Voc), the ll factor (FF), and the
incident light power (Pin):

h ¼ JscVocFF

Pin

The conductive FTO-glass (TEC7, Greatcell Solar) used for
the preparation of the transparent electrodes was rst cleaned
with detergent and then washed with water and ethanol. To
prepare the anodes, the conductive glass plates were immersed
in a TiCl4/water solution (40 mM) at 70 �C for 30 min, washed
with water and ethanol and sintered at 500 �C for 30 minutes.
The TiO2 nanocrystalline layers were deposited on the FTO
plates by screen-printing transparent titania paste (18NR-T,
Greatcell Solar) using a frame with polyester bres having 43.80
mesh per cm2. This procedure, involving two steps (coating and
drying at 125 �C), was repeated two times. The TiO2 coated
plates were gradually heated up to 325 �C, and then the
temperature was increased to 375 �C in 5 minutes, and aer-
wards to 500 �C. The plates were sintered at this temperature for
15 min, and nally cooled down to room temperature. Aer-
wards the TiO2 lm was treated with the same TiCl4/water
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solution (40 mM), following the procedure previously described.
A coating of reector titania paste (WER2-O, Greatcell Solar) was
deposited by screen-printing and sintered at 500 �C. Each anode
was cut into rectangular pieces (area: 2 cm � 1.5 cm) having
a spot area of 0.196 cm2 with a thickness of 15 mm. The titanium
oxide lm employed for UV-vis absorption experiments was
prepared by the doctor blade method: two edges of the glass
plate were covered with stripes of adhesive tape (3 M Magic) in
order to obtain a transparent ultrathin TiO2 lm with an esti-
mated thickness of about 6 mm. Dye solutions of the uorone
salts (0.5 mM) were prepared in methanol. The photoanodes
were prepared by soaking the screen-printed glass overnight
(�17 h) in the different dye solutions, at room temperature in
the dark. The excess dye was removed by rinsing the photo-
anodes in the same solvent as that employed in the dye
solution.

Each counter-electrode consisted of an FTO-glass plate (area:
2 cm � 2 cm) in which a hole (1.5 mm diameter) was drilled.
The perforated substrates were washed and cleaned with water
and ethanol in order to remove any residual glass powder and
organic contaminants. The Pt transparent catalyst (PT1, Great-
cell Solar) was deposited on the conductive face of the FTO glass
by the doctor blade method: one edge of the glass plate was
covered with a strip of adhesive tape (3 MMagic) both to control
the thickness of the lm and to mask an electric contact strip.
The Pt paste was spread uniformly on the substrate by sliding
a glass rod along the tape spacer. The adhesive tape strip was

removed, and the glass was heated at 550 �C for 30 min. The
photoanode and the Pt counter-electrode were assembled into
a sandwich type arrangement and sealed (using a thermopress)
with a hot melt gasket made of Surlyn ionomer (Meltonix 1170-
25, Solaronix SA).

The electrolyte was prepared by dissolving the redox couple,
I�/I2 (0.8 M LiI and 0.05 M I2), in an acetonitrile/valeronitrile
(85 : 15, % v/v) mixture. The electrolyte was introduced into the
cell via backlling under vacuum through a hole in the back of
the cathode. Finally, the hole was sealed with adhesive tape.

For each compound, three cells were assembled under the
same conditions, and the efficiencies were measured 10 times
for each one resulting in 30 measurements per compound.

3 Results and discussion

The ILs were synthesized via a two-step synthesis. Two equiva-
lents of trihexyltetradecylphosphonium chloride (P6,6,6,14Cl)
were added to a solution of Fluorescein (a), Rose Bengal (b)
Phloxine B (c), EosinB (d), EosinY (e) and Erythrosine B diso-
dium salts (f) dissolved in methanol. Aer one hour of stirring
the solvent was evaporated under reduced pressure and the
crude oily material was extracted with dichloromethane.12 The
characterization of all six viscous materials is consistent with
the structures of the precursors presented in Fig. 1 as [P6,6,6,14]

+

salts. These room temperature ionic liquids will be referred
hereaer to as a0 to f0.

Fig. 1 Organic dyes from a to f (as disodium salts) used in the synthesis of [P6,6,6,14]
+ ILs.

This journal is © The Royal Society of Chemistry 2019 Sustainable Energy Fuels, 2019, xx, 1–8 | 3
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The material thermal properties were evaluated with no
detection of the melting point between �100 �C and +100 �C
(see the ESI†).

3.1 Absorption behavior of the material

All spectra (a–f and a0–f0) exhibited the typical features of uo-
rones in a dianion state, i.e. a strong band and a much weaker
one at ca. 500 nm.

Band splitting has been observed in concentrated solutions
of uorescein dianions (a) due to the formation of dimers and
trimers (as shown in Fig. 2a). For instance, in basic aqueous
solutions, dimer formation results in two absorption bands, at
�505 and 470 nm, while trimer formation yields a spectrum of
three bands at �505, 470, and 457 nm (with the shape of
a shoulder).24

The electronic absorption spectra of the lms (right side of
the spectra) display bands in the visible region (400–700 nm) of
electromagnetic spectra. The absorption peak values (lmax) are
presented in Table 1, when adsorbed on a 6 mm TiO2 lm, as
sodium (a–f) and as [P6,6,6,14]

+ (a0–f0) salts (Fig. 2).
The most noticeable feature is the progression of bands that

are slightly enhanced over what is observed for b–e, when Na+ is
exchanged with [P6,6,6,14]

+ (b0–e0).
This observation agrees with the overall DSSC performance

improvement from a–e to a0–e0 and will be further discussed.
The most intense absorption band has been attributed to the

p–p* transition of uorescein's xanthene ring. The lower energy
for b0 to e0 may be attributable, at least in part, to the enhanced
vibronic structure induced by amore rigid environment in these
halouoresceins,25 when compared with b–e. Such an effect may
arise from enhanced coulombic interactions between uorones
and [P6,6,6,14]

+ as well as its viscosity/microuidity.
For b and c, the iodine and bromine atoms make the

xanthene ring more electron rich while its chlorine atoms make
the phenyl much more electron poor, leading to the electron
push–pull effect. This effect strengthens the electronic over-
lapping between the two p-systems and lowers the energy of the
S1 excited state which corresponds to higher absorption
wavelengths.26

The broadening of the optical absorption spectra and their
red-shiing are indications of adsorption interaction between
the dye and the semiconductor surface (Fig. 2). As can be seen,
the shiing in the TiO2 lm to lower energy values is more
pronounced for [P6,6,6,14]

+ salts compared with their Na+

equivalent, although the same qualitative behavior is
maintained.

In DSSCs, H- or J-aggregates of dyes are usually formed
during device fabrication, when the solvent evaporates. Aer
adsorption onto the5 TiO2 layer, they create a solid dye-TiO2 lm
that comprises the DSSC photoanode.

Dye aggregates are characterized by broadening of the
absorption spectra. For H-aggregates the spectrum shis to
lower wavelengths (hypsochromic) while for J aggregates it
shis to higher wavelengths (bathochromic) when compared to
the monomer absorption band.27 This behavior was observed
for [P6,6,6,14]

+
uorone dyes, with increment of lmax, when

Fig. 2 UV-vis absorption spectra of a–f and a0–f0 in ethanol (column
on the left) and solutions of 5 � 10�4 M adsorbed on a 6 mm TiO2 film
(column on the right). Abs(au) versus l (nm).

Table 1 Main bands in the absorption spectra of a–f and a0–f0

adsorbed on a TiO2 film in EtOH

Compound
Absorption
bands (nm) Compound

Absorption
bands (nm)

a 471, 498 a0 471, 498
b 521, 550 b0 521, 556
c 509, 543 c0 517, 549
d 522 d0 529
e 490, 522 e0 497, 531
f 506, 537 f0 506, 537
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adsorbed on the TiO2 surface compared to the dilute dye solu-
tion (le side spectra in Fig. 2), where we assume the absence of
aggregates. In contrast, lmax is lower when Na+ salts are adsor-
bed, suggesting that for these dyes H aggregates are preferably
formed. This was clearly observed for Rose Bengal (Fig. 2) and
Phloxine B dyes, which curiously are more prone to dye aggre-
gation due to their halide-substituted phenyl ring.28 Apparently,
the presence of [P6,6,6,14]

+ reduces the tendency of formation of
H-aggregates as can be concluded from the absorption spectra
(Fig. 2b) with lmax very close to that of the monomeric species.

3.2 Photovoltaic performance of DSSCs

DSSCs were fabricated using different photoanodes consisting
of either Na+ (a–f) or [P6,6,6,14]

+ (a0–f0) dianionic uorones
adsorbed on TiO2 structures.

The photocurrent–voltage plots for DSSCs assembled with
uorone dyes, a–f and a0–f0, are shown in Fig. 3.

For f, Na+ exchange with [P6,6,614]
+ did not produce any

increment in DSSC performance, as was observed for the other
uorones (a–e). We considered that 6a bulkier halogen atom, like
iodine, in f produces a very uniform distribution of the conju-
gated electronic system of their xanthene groups. This suggests
a larger contribution of dispersion forces in the heavy haloge-
nated xanthene aggregates, leading to a better alignment of
their monomeric units.29 This can be clearly observed through
analysis of the UV-vis spectra of f and f0 in solution and when
conned in TiO2 lms (Fig. 2f). Here, lmax is the same in diluted
solution, exclusively with monomeric composition, and when
the dyes are adsorbed on the anode surface.

This may suggest that for the remaining tested dyes (a–e), the
increment in DSSC performance may be directly related to the
reduction of H-aggregates, when adsorbed on the anode
surface.

The short circuit photocurrent density Jsc, open-circuit pho-
tovoltage Voc, ll factor FF, and efficiency h derived from photo
current–voltage measurements of different types of DSSCs are
summarized in Table 2. From a to e and a0 to e0, DSSC perfor-
mance parameters have an overall tendency of improving
photovoltaic cell efficiency.

As seen from Fig. 3 and Table 2, Erythrosine (f 7) shows the
highest photocurrent (Jsc ¼ 4.90 mA cm�2) and the highest
energy conversion efficiency (h¼ 1.3%). The decreasing trend of
cell efficiencies of the experimented uorone based dyes is as
follows: Rose Bengal (b) < Fluorescein (a) z Phloxine B (c) <
Eosin B (d) < Eosin Y (e) < Erythrosine (f).

Depending on the nature of the substituent, the xanthene
sub-unit acts as an electron acceptor (or donor), while the
phenyl moiety is the corresponding electron donor (or acceptor)
in photoinduced electron transfer (PET). The remote substitu-
tion in the phenyl ring is still capable of affecting the uores-
cence characteristics, especially the uorescence quantum yield
and lifetime.30

Fig. 3 J–V curves of DSSCs based on dyes a–f and a0–f0 measured under AM 1.5 solar light (100 mW cm�2), using 0.8 M LiI and 0.05 M I2 in
acetonitrile : valeronitrile (85 : 15, % v/v) as the electrolyte. Linear lines correspond to a–f dyes as disodium salts and dotted lines represent the
results for the corresponding [P6,6,614]

+ dianionic compounds, a0–f0.

Table 2 Photovoltaic performance parameters of DSSCs based on
fluorone dyes a–f (sodium fluorone salts) and a0–f0 (trihexylte-
tradecylphosphonium fluorone salts) under 100 mW cm�2 simulated
AM 1.5 illumination. The results presented are for the best performing
cell. N719 is the benchmark

Dye Voc (V) Jsc (mA cm�2) FF h (%)

a 0.44 1.9 0.63 0.53
a0 0.38 2.80 0.61 0.66
b 0.28 1.06 0.55 0.17
b0 0.31 2.22 0.58 0.41
c 0.40 1.98 0.64 0.51
c0 0.35 3.25 0.61 0.7
d 0.31 2.36 0.46 0.33
d0 0.37 3.59 0.63 0.65
e 0.34 3.07 0.62 0.66
e0 0.36 4.23 0.61 0.94
f 0.42 4.9 0.67 1.39
f0 0.41 4.8 0.66 1.31
N719 0.44 18.5 0.53 4.44
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Voc is the difference between the redox level of the electrolyte
and the quasi-Fermi level of the semiconductor; it can be
affected by the concentration of electrons in the conduction
band (CB) of the semiconductor and the magnitude of electron
recombination from the injected dyes to the oxidized
electrolyte.

Small cations, like Na+, are more readily adsorbed onto the
TiO2 electrode than the cations having larger sizes like
[PC6,6,6,14]

+, and in return, on the Na+ positively charged TiO2

surface a downward shi in the Fermi level occurs.
Hence, a drop in Voc occurs due to the positive shi of the

conduction band edge induced by the presence of surface Na+.31

This effect was clearly observed for dyes b, d and e, which have
higher photoelectron conversion efficiency improvement (Table
3).

The Fill Factor (FF) is a measure of the quality of the device.
FF varies with different fabrication methods, characterization
conditions, and the series resistance.32

The most straightforward way to increase Jsc is to absorb
a greater fraction of the incident light. Extending the dye's
absorption into near-infrared is an option for increasing the
photocurrent density.33 This was observed for a–e uorone dyes

aer cationic exchange, with a maximum absorption red-shi
of 6 nm for Rose Bengal (b), notably the dye which presented the
highest photocurrent efficiency improvement (141%) (Table 3).

We used N719, di-tetrabutylammonium cis-bis(isothiocya-
nato)bis(2,20-bipyridyl-4,40-dicarboxylato)ruthenium(II), as the
benchmark to control the relative quality of the overall results.

3.3 Nitro effect

An interesting phenomenon was found when measuring the
photoelectric properties of DSSCs fabricated with Eosin B (d
and d0) under simulated AM 1.5 G illumination (100 mW cm2).
Initially, the efficiencies were comparably low (ca. 0.16% for
d and 0.33% for d0). Aer a period of device testing, the effi-
ciencies of DSCs increased approximately two-fold to 0.65% (Jsc
¼ 3.59 mA cm�2, Voc ¼ 0.59 V, and FF ¼ 0.66, Fig. 4).

It was previously reported that continuous light exposure
provides a way to signicantly and irreversibly improve solar
cell efficiency.34 TiO2 works as a photobleaching catalyst, which
promotes photocatalytic oxidation of the dye.35 According to the
literature, it is likely, that there is a weak interaction between
the nitro group and the TiO2 surface when d and d0 are adsorbed
via the carboxylate group.36 This brings it in close 8contact with
the semiconductor surface and if reduced to NO2

2�, the nitro
group provides a means of other electronic coupling of the
molecule to the TiO2 surface increasing the ease of electron
injection from the sensitizer to the conduction band of TiO2,
ultimately increasing all DSSC parameters.37

For compounds d and d0, light exposure resulted in simul-
taneous improvements in the short-circuit current density (Jsc),
the open-circuit voltage (Voc), the ll factor (FF) and conse-
quently the photoelectrochemical conversion efficiency (h)
(Table 4).

From the six different tested uorone core dyes, aer
a period of device testing of approximately 3 minutes that

Fig. 4 Photovoltaic performances of DSCs of d0 upon successive light exposure. Each measurement corresponds to 16 s under the solar light
simulator.

Table 3 Photocurrent efficiency improvement after cation exchange
for the anions a–f (%)

Fluorone h improvement (%)

a 39%
b 141%
c 37%
d 91%
e 42%
f z0%

6 | Sustainable Energy Fuels, 2019, xx, 1–8 This journal is © The Royal Society of Chemistry 2019
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correspond to ten consecutive measurements, the efficiencies
of DSSCs increased approximately 112% for d and 100% for
d0 achieving a maximum of 0.34% for d and 0.65% for
d0 (Fig. 4).

The electron-withdrawing9 group, NO2, causes a red-shi in
the absorption spectra (Fig. 2); 5-nitro provides a positive charge
to the phenyl and an electric attraction to the xanthene, which
stabilizes the xanthene and decreases the energy gap between
the HOMO and LUMO (red shi). The results of investigation
indicate that for 3-(2-(5-(2-cyano-4-nitrophenyl)thiophen-2-yl)-5-
(dihexylamino)phenyl)propanoic acid the nitro group attaches
to the TiO2 surface, causing bleaching of the dye absorption but
increasing the ability of the dye to inject electrons into the
conduction band of TiO2.

A red shi from 522 nm and 530 nm for e to 529 nm and 543
nm for d was observed for the most intense bands compared to
the full xanthene brominated analogue, eosin Y (e). When the
extra anchoring mode is achieved, the nal photo-
electrochemical conversion efficiency is 0.34% for the disodium
salt and 0.65% for the diphosphonium equivalent.

4 Conclusion

Here we present and discuss a simple strategy for DSSC
performance optimization when anionic uorone dyes are used
for sensitization. The effect of long chain phosphonium cations
on the DSSC cell parameters can be compared to that of the pre-
cation adsorption technique used to improve the overall effi-
ciency of a DSSC over conventional photoanodes, especially
those using smaller cations. A hydrophobic environment for the
device is also recommended to minimize the direct contact
between the electrolyte and anode, reducing the recombination
rate too, since long alkyl chains repel iodide from the TiO2

surface.
We suggest an easy strategy for reducing aggregate forma-

tion and simultaneously increasing the electrode's quasi-Fermi
level (which will result in an increase in Voc) and in some cases
a red-shi of uorone anionic dyes, which together contribute
to an overall improvement from 37 to 141% in energy conver-
sion efficiency.

For one of the selected dyes, an overall increase in photo-
conversion efficiency was observed upon repeated light expo-
sure. This interesting result was previously reported in the
literature although very little exploited, and is a subject to be
explored by us in the near future.
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