
 

 

 

 

Guilherme Ramos Castelo 
 

Bachelor in Micro and Nanotechnologies Engineering 
 
 
 
 

Ambient-processed Low-cost Perovskite-based 
Photovoltaics 

 
 

Dissertation to obtain the degree of  
 

Master of Science in 
Micro and Nanotechnologies Engineering 

 
 
 

 

       
Adviser: Dr. Manuel J. Mendes, Assistant Professor, Faculty of Sciences 

and Technology – New University of Lisbon 

 
Co-Adviser: 

 

Dr. Ugur Deneb Menda, Pos-Doc Fellow, Faculty of Sciences and 

Technology – New University of Lisbon 

  

               

 
 
 
 

Examination Committee: 

 
Chairperson:   Dr. Rodrigo Ferrão de Paiva Martins  

Raporteur:   Dr. João Manuel Gregório Mascarenhas 
Member:   Dr. Manuel João de Moura Dias Mendes 

 
 

October, 2019 
 

 
 
 
 

 
 

 



Ambient-processed Low-cost Perovskite-based Photovoltaics 

 

II 

 

  



Ambient-processed Low-cost Perovskite-based Photovoltaics 

 

III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ambient-processed Low-cost Perovskite-based Photovoltaics 

Copyright © Guilherme Ramos Castelo, Faculdade de Ciências e Tecnologia, Universidade 

NOVA de Lisboa, 2019. 

 

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito, 

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de 

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio 

conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de 

admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não 

comerciais, desde que seja dado crédito ao autor e editor. 

 



Ambient-processed Low-cost Perovskite-based Photovoltaics 

 

IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ambient-processed Low-cost Perovskite-based Photovoltaics 

 

V 

 

 

 

“The past has no power over the present moment." – Eckhart Tolle   



Ambient-processed Low-cost Perovskite-based Photovoltaics 

 

VI 

 

 



Ambient-processed Low-cost Perovskite-based Photovoltaics 

vii 

 

Acknowledgements 

 Primeiramente quero agradecer ao Prof. Dr. Rodrigo Martins e à Prof. Dra. Elvira 

Fortunato por me garantirem todas as condições de trabalho para realizar a minha tese, graças às 

excelentes instalações e equipamento ao dispor de todos os estudantes de materiais e 

nanotecnologias, no CENIMAT e no CEMOP. Em especial atenção agradeço aos meus 

orientadores Prof. Manuel Mendes e Dra. Deneb Menda por me terem dado a oportunidade de 

investigar na área da energia solar, a qual me cativa bastante e que irá ter ainda mais 

importância na nossa sociedade nos próximos tempos. Quero também agradecer a toda a equipa 

do CENIMAT e do CEMOP pela ajuda prestada sempre que necessitei.  

 

 I want to give a special thanks to my co-adviser, Dra. Deneb Menda, for everything that 

has done for me during these months working on the laboratory, all the work and life advices, 

all the time explaining and helping me in the laboratory, all the e-beam depositions, for never 

giving up, for always trying to motivate me when the work was not going well and for always 

being a positive person. 

 

 Não posso deixar de agradecer aos meus camaradas do CENIMAT que me 

acompanharam nesta caminhada difícil, bem como aos amigos que fiz ao longo destes 5 anos 

magníficos e que sempre me apoiaram nas alturas mais difíceis, com os quais vivi momentos e 

histórias incríveis e memoráveis e com os quais espero vir a recordá-las ao longo da nossa vida, 

sempre com a mesma amizade, alegria e cumplicidade, tais como o Guilherme Ferreira, Luís 

Bettencourt , Renato Nora, Joan Concha, João Vieira, Mafalda Pina, Mariana Moniz, Inês 

Tavares, Joana Rodrigues, entre outros. 

 

 Por fim, não posso deixar de agradecer à minha família, principalmente à minha mãe, 

pai, avós e tia que sempre me motivaram e apoiaram nos momentos mais complicados da minha 

vida académica em que por vezes me sentia desanimado e sem esperanças, e também por 

sempre tentarem fazer de mim uma pessoa melhor através dos seus ensinamentos e carinho que 

sempre me deram ao longo de toda a vida. 

  

 Um grandíssimo obrigado a todos vós! 

 

  



Ambient-processed Low-cost Perovskite-based Photovoltaics 

viii 

 

  



Ambient-processed Low-cost Perovskite-based Photovoltaics 

ix 

 

Abstract 

Perovskite solar cells (PSC) are one of the most promising photovoltaic (PV) 

technologies due to their quick and simple production, as well as their exceptional 

optoelectronic properties. However, their high price compared to the commercialized Si-based 

solar cells and their low scalability are some drawbacks that must be overcome. 

In this thesis, these drawbacks were surpassed by substituting the costly materials by 

low-cost alternatives. Instead of Spiro-OMeTAD [1] as the hole transport material (HTM), a 

much cheaper material, CuSCN was used [2]. Furthermore, all the fabrication processes were 

performed in air under ambient conditions, avoiding the high cost and scalability problems 

associated with the use of a glove box. Considering this philosophy of low-cost development of 

the PSCs, the active layer was composed by MAI and PbI2 as the precursors, which were 

dissolved in γ-Butyrolactone (GBL), while maintaining the TiO2 as the electron transport 

material (ETM). Incisive analysis of the individual layers of the solar cells were performed by 

many characterization tools such as spectrophotometry, XRD and SEM-EDS. 

As a result of several optimizations, a solar cell with VOC, JSC, FF and PCE values of 

0.86 V, 15.29 mA/cm2, 0.64 and 8.48%, respectively was fabricated surpassing the previous 

efficiency record of 6.35% obtained in previous works [3]. 

 

Keywords: Perovskite Solar Cells, Low-Cost Photovoltaics, CuSCN, MAPbI3, Spin-Coating 
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Resumo 

Células solares de perovskita (PSC) são uma das mais promissoras tecnologias 

fotovoltaicas (PV) devido à sua produção rápida e simples, bem como às suas excecionais 

propriedades optoeletrônicas. No entanto, o seu elevado preço, comparativamente ao das células 

solares de silício comercializadas, e a sua baixa escalabilidade, são inconvenientes que devem 

ser ultrapassados. 

 Nesta tese, estes inconvenientes são ultrapassados através da substituição dos materiais 

mais caros por alternativas de baixo custo. Em vez de ser Spiro-Ometad [1] o material 

transportador de buracos (HTM), é utilizado um material muito mais barato, o CuSCN [2]. Para 

além disso, todos os processos de fabricação foram realizados em condições ambientais 

normais, evitando assim os custos e problemas de escalabilidade associados à utilização de uma 

“glove box”. Considerando esta filosofia de desenvolvimento de células de perovskita com 

baixo custo, a camada ativa é composta por MAI e PbI2 como percursores, que foram 

dissolvidos em γ-Butirolactona (GBL), mantendo-se o TiO2 como o material transportador de 

eletrões (ETL). Uma análise incisiva de todas as camadas foi efetuada, usando diversas 

ferramentas de caracterização, como espectrofotometria, XRD ou SEM-EDS. 

 Como resultado de várias otimizações, foi obtida uma célula solar com PCE de 8.48%, 

com VOC de 0.86 V, JSC de 15.29 mA/cm2 e FF de 0.64, superando assim o recorde de 

eficiência de 6,35% obtido nos trabalhos anteriores [3]. 

 

Palavras-chave: Células Solares de Perovskita, Dispositivos Fotovoltaicos de Baixo Custo, 

CuSCN, MAPbI3, Spin-Coating 
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Motivation and Objectives 

The exponential growth of our global society requires a sustainable and renewable 

energy source that can secure our energetic needs. Solar energy industry is the main candidate to 

achieve this objective, due to its low pollution and impact in the environment, as well as its 

“infinite” sustainability because it only requires an energy source that is abundant (in one hour, 

the surface of the Earth receives enough solar energy to sustain all the energetic necessities of 

the humanity for one year) and reliable, the sunlight. Besides electricity generation 

(photovoltaics), solar energy can be used to generate heat (solar thermal), to purify water, to 

power satellites and, also, to reduce the CO2 emissions [4]. 

The harvesting of solar energy by photovoltaic (PV) technology has been improving 

rapidly over the last decades, and the most dominant type of solar cells on the market are the 

silicon-based ones. Although this type of cells has achieved power conversion efficiencies 

(PCE) over 26% [5], their fabrication process requires vacuum and high temperatures, which 

leads to high production costs, and their morphology does not allow an alteration of shape or 

transparency. Due to these drawbacks, there has been an increasing focus on thin film solar cells 

for as an alternative, because they exhibit potential to have higher efficiencies, require simpler 

and cheaper production methods and can be produced on flexible or semi-transparent substrates. 

One of the most promising classes of thin film solar cells are the perovskite solar cells 

(PSCs), due to the rapid increasing of their PCE, their easier and cheaper production techniques, 

such as spin-coating, that do not require vacuum neither extremely high temperatures, as well as 

their amazing optoelectronic and morphological properties. 

This thesis objective is to produce low-cost perovskite solar cells through simple and 

quick production techniques, while aiming to improve their performance and efficiencies, using 

TiO2 as the electron transport material (ETM), MAPbI3 as the active layer material and CuSCN 

as the hole transport material (HTM). Special focus is given on the active (perovskite) layer 

parameters and characterization, due to its extreme importance on the quality of the cell, as well 

as on the hole transport layer (HTL) because it is the use of CuSCN, instead of the typically 

used Spiro-MeOTAD, as the hole transport material, that significantly reduces the fabrication 

costs of the cells. In order to achieve these objectives, several parameters of the layers were 

studied, using many characterization equipment, such as the X-ray diffraction (XRD), the 

scanning electron microscope (SEM), the UV-Vis-NIR spectrophotometer and the solar 

simulator. For the electron transport layer (ETL), it was tested the effect of planar and 

mesoporous architecture and Li+ doping on the performance of the cells. For the perovskite 

layer, it was studied the impact of some perovskite parameters, such as its solution 

concentration, the volume of solvent deposited, the annealing time and temperature, on the 

overall quality of the cells. Finally, for the HTL, it was studied the influence of the CuSCN 

solution concentration and volume deposited, on the performance and morphology of the cells. 
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Figure 1 - Plot describing the best efficiencies obtained by all types of solar cells. (This plot is 

courtesy of the National Renewable Energy Laboratory, Golden, CO). 

1. Introduction 

 History of Solar Cells 

Solar cells are widely used on today’s society, where they play a vital role of ensuring 

the energetic sustainability of our world. They only require a source of photons that, hopefully, 

will never cease to exist, the Sun, contrary to the other traditional energy sources that require 

non-renewable resources, such as fossil fuels or uranium, to generate energy. 

Solar cells tend to be assumed as being a recent technology, but they were invented 65 

years ago (1954). The first solar cell was silicon based and it was created by Chapin, Fuller, and 

Pearson at Bell Laboratories in New Jersey [6]. This cell had an efficiency of 6% but, in just 6 

years (1960), Hoffman Electronics were able to get the efficiency up to 14% [7]. Since those 

times, the solar energy industry has increased exponentially through the years and nowadays, it 

is possible to produce solar cells with efficiencies up to 47% [8].  

 

There are many types of solar cells and they are divided in three generations. The first 

generation cells are made by crystalline silicon wafers, they can be single crystal (higher 

efficiency) or multicrystalline (cheaper and easier production) solar cells. This generation still 

represents around 90% of the photovoltaic devices that currently exists worldwide [9]. The 

second generation consists of solar cells fabricated with thin film's materials, such as a-Si, 

CdTe, CIS and CIGS solar cells. They have lower efficiencies than the first generation cells but 

they are more visually pleasing, can be produced on larger areas and allow more applications on 

transparent and flexible substrates [10]. The third generation also consists of thin film 

technology but using organic, flexible and less toxic materials such as polymeric, dye 

sensitized, nanocrystal and perovskite solar cells [11]. 
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Figure 2 - Representation of the energy conversion process of a solar cell [12]. 

 

Perovskite solar cells (PSCs) are one of the most promising technologies to be a 

commercial alternative to the silicon solar cells. PSCs have low processing costs, are composed 

of abundant raw materials, produce low CO2 emissions and have many remarkable possible 

applications like using them in building facades or in tandem perovskite−Si architecture as top 

cells [13]. Since their introduction in 2009, when the higher obtained efficiencies were around 

3.8%, this technology witnessed an astonishing evolution and now (2019) the record 

efficiencies have reached over 25% [14],[15],[16]. Perovskite solar cells (PSCs) have been 

improving considerably, not only in terms of power conversion efficiency (PCE) but also 

regarding the device metrics such as the short-circuit current densities (JSC), that have been 

reaching high values, as well as the fill factor (FF) and their corresponding open-circuit voltages 

(VOC) values [17]. Therefore, to improve the PSCs efficiencies even more it is necessary to 

further increase the VOC and FF values by reducing or eliminating any recombination pathways 

that might occur in the cell [18]. It is also vital for practical application to reduce the cells' 

production costs, increase their short lifetime, increase their efficiencies on flexible substrates 

and try to reduce their toxicity (e.g. due to presence of Lead, Pb), although it is lower compared 

to the Si technology [19]. 

 

1.2.1 Perovskite Properties 

Perovskite materials follow the general formula ABX3 and adopt a crystal structure 

arrangement where the ‘A’ and ‘B’ are cations (A is monocation, bigger than the dication B) 

that coordinate with the ´X´ anion. Normally, A is an organic molecule, such as FA or MA, B is 

either Sn or Pb and X is a halogen, like I, Cl, Br, or a combination of them. Since it is possible 

to adjust the material properties by mixing the different integrating elements it is common to 

achieve different variations of the organometal halide CH3NH3BX3 that can form cuboctahedral 

and octahedral geometries, whose properties were first described by Weber in 1978 [20], [21], 

[22], [23]. These perovskite compounds have excellent properties for PV applications such as: 

(a) strong optical absorption of the visible and near-infrared spectra due to s-p antiboding 

coupling; (b) low surface recombination rate; (c) harmless grain boundary effects; (d) high 

electron and hole mobilities and diffusion lengths; (e) high tolerance to structural and shallow 
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point defects; (f) adjustable band-gap; (g) high carrier mobility and lifetime; (h) solution 

processability [20], [23], [24], [25]. They also exhibit different electronic properties, depending 

on the specific type of perovskite material, such as superconductivity, piezoelectric, 

semiconductivity and thermoelectric properties [25], [26], [27]. 

 

 

Figure 3 - Crystal structure of perovskites with the generic ABX3 configuration [25]. 

Although the perovskite materials have many beneficial properties, they also have some 

negative aspects like their toxicity caused by the lead, the photocurrent hysteresis observed in 

current density−voltage (J−V) curves of the cells, poor stability when exposed to high 

temperatures and illumination and, most importantly, their sensitivity to humidity and moisture 

which limits, considerably, the lifetime and overall quality of the cells [28]. This occurs because 

the MA cation is connected to the lead and iodide, by weak hydrogen bonds, which are easily 

broken or decomposed by water molecules [29]. To avoid these problems, the PSCs are 

normally fabricated in a glove box, or other highly controlled environment, that can regulate and 

maintain optimal atmospheric conditions, to enhance the performance and durability of the solar 

cells. Producing high efficiency PSCs without using these expensive equipment and controlled 

environments is a remarkable achievement, that represents the reduction of the PSCs 

manufacturing and selling price [28]. 

 

1.2.2 Architecture and Configuration 

A perovskite solar cell has a more complex structure compared to a typical solar cell 

(Figure 2), with some apparent differences in the configuration of its layers as it is an hetero-

junction. Normally, PSCs are composed of the following 6 layers: a) Transparent substrate, 

most commonly a transparent conductive oxide (TCO) coated on glass; b) Semiconductor 

compact layer, normally made of TiO2 (n-type material which forms a n-i junction that regulates 

the flow of the electrons), known as the electron transport layer (ETL); 3) Semiconductor 

mesoporous layer, that acts as a scaffold for the perovskite layer deposition, which limits  the 

hysteresis effects and promotes the motion of the electrons to the compact layer, increasing the 

carrier-collection efficiency, even if the photon absorption length is higher than the diffusion 

length of the charge carrier; 4) Active perovskite layer, which absorbs the light and creates the 

charge separation that leads them to their electrodes; 5) Hole transport layer (HTL), that is 

composed of a p-type material that acts as an i-p junction that regulates the hole transport 

mechanism; 6) Metallic electrode contact, normally made of gold, that allows a good bonding 

with the other layers. The valence band of the HTL must be higher than the perovskite valence 
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band and the ETL conduction band must be lower than the perovskite conduction band, to 

achieve a more efficient charge extraction and movement [30], [31], [32], [33].  

The conventional n-i-p mesoscopic perovskite solar cell architecture (Figure 3(a)) is not 

exclusive, there are other variations of this structure. One is the inverted structure (p-i-n), where 

the layers are deposited in the reverse order of the conventional architecture (n-i-p) (Figure 

4(d)). Both of these architectures, n-i-p and p-i-n, can also function without the mesoporous 

layer, which results in, so called, planar structures (Figure 4(b) and Figure 4(c)). The main 

differences, that distinguish the mesoscopic from the planar structure, are that the latter 

eliminates the porous metal oxide framework, which causes the formation of two interfaces 

between the perovskite materials and the two layers (ETL and HTL) and the thickness of the 

ETL in both structures (ETL in a planar structure is much thinner compared to one in a 

mesoscopic structure) [34], [35], [36], [37]. 

 

 

Figure 4 - Schematics of the most used configurations of a perovskite solar cell (PSC): a) n-i-p 

mesoscopic, b) n-i-p planar, c) p-i-n planar, d) p-i-n mesoscopic [33]. 

1.2.3 Device Preparation and Fabrication 

After defining the configuration of the PSC, it is necessary to plan the composition and 

fabrication method of all the layers of the device. The most used deposition method is the spin-

coating, when working with small-area (<10 cm2) devices, because it is easy to operate, 

environmental friendly, cheaper and can achieve better film uniformity, compared to the other 

alternatives intended for large-area patterning like doctor blade coating, spray pyrolysis, dip-

coating, inkjet printing, vacuum sublimation, thermal and chemical evaporation [38], [39], [40], 

[41], [42]. 

Firstly, the ETL, has the purpose of extracting and collecting electrons efficiently, so it 

must be composed of reliable semiconductor electron transport materials like SnO2, ZnO or 

TiO2. The most preferable material to be used as an ETL material, regardless if it is for a planar 

or mesoscopic ETL structure, is the TiO2 due to its non-toxicity, chemical stability and 

favorable optical properties (transparent to the visible radiation, low absorption rate, high 

refractive index and high transmittance) [43], [44], [45]. These properties accompanied with the 

high electron transport length, increased electron injection rate, increased carrier lifetime, 

decreased electron-hole recombination rate and geometrical anti-reflection coating action 

created by the mesoporous material, makes TiO2 a great ETL material [46], [47]. However, it 

also has a big disadvantage: it requires the formation of a compact ultra-thin layer that requires 

high annealing temperature (higher than 400 °C), which prevents the use of some cheap, light 
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and flexible substrates, due to their low melting temperatures, and also requires expensive 

heating equipment and energy costs [48]. 

Regarding the perovskite film, it is of extreme importance to optimize this layer in order 

to dramatically improve the overall quality and performance of the solar cell. This optimization 

of the perovskite layer can be done by controlling the parameters that influence its quality, 

crystallinity, energy level (Figure 5), and other morphological and functional properties, such as 

the deposition method, annealing time and temperature, atmospheric conditions and the 

perovskite solution processing method [26], [48].  There are many solvents to process the 

perovskite solution, such as N, N-dimethylformamide (DMF), Dimethyl Sulfoxide (DMSO) or 

γ-butyrolactone (GBL). The GBL is normally a better solvent for I-based perovskites due to its 

high solubility and necessity lower temperatures, while DMF and DMSO are most advised for 

the Br-based ones, although they also perform well as I-based perovskites solvents. DMF and 

DMSO strongly coordinate Pb2+, whereas GBL leads to the formation of clusters in the solution 

due to the weak interactions that occur between lead ions and the GBL molecules. When using 

DMF or GBL as solvents, the interaction of MAI with PbI2 is slower, allowing a good 

crystallization of the MAPbI3 crystals, when the solvents are evaporating [50], [51], [52]. 

The HTL, whose job is to selectively collect the holes and transport them to the metallic 

electrode, prevents the damage of the perovskite layer, by separating it from the metallic 

contacts and also minimizes the charge recombination that would happen on that interface 

(perovskite layer – metallic contacts) otherwise [50]. The most used HTL material in PSCs, 

according to the literature, and the one that achieves higher efficiencies is the Spiro-OMeTAD 

[41], [53]. However, this material has some drawbacks such as its high production cost [1], 

quick degradation with environmental conditions, low conductivity and hole mobility in its 

pristine form, and also causes self-aggregation when deposited [54]. One good alternative is the 

Copper(I) Thiocyanate (CuSCN), an inexpensive [2] and abundant metal halide of singly 

ionized copper that has a well-aligned work function, high hole mobility, good thermal stability, 

suitable energy levels and it is not easily degraded [55], [56], [57], [58]. 

 

 

Figure 5 - Diagram of the energy level alignment of PSC layers used in this work (Based on [41]). 
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2. Methods and Materials 

 Device Fabrication 

The solar cells’ fabrication process consisted firstly by the etching of the fluorine-doped tin 

oxide (FTO) from the sides of the substrate, the cleaning of the glass substrates, the deposition 

of the electron transport layer (ETL), active layer (perovskite) and hole transport layer (HTL), 

and finally the gold contacts deposition. All the depositions, except the last one, were carried 

out via spin-coating (as presented in Figure 6) and the whole fabrication process was performed 

without a glove box, therefore there was no control or information of the temperature and 

moisture conditions. It is also important to refer that before each deposition, the unetched edges 

of the substrate were covered with kapton tape. Also, all the information regarding the reagents 

used in this work is presented in Table 11 from section B of Appendices. 

 

Figure 6 - Perovskite solar cell (PSC) layers deposition steps and corresponding annealing 

conditions. This work employed the conventional n-i-p superstrate configuration (Figure 4a). 

2.1.1 Substrate Preparation and ETL deposition 

The FTO coated glass substrates (100 mm x 100 mm x 2.2 mm, 13 Ω/sq, 82-84.5% of 

transmittance), cut into 2.5 cm x 2.5 cm, were etched with zinc powder, HCl + water solution 

and cotton buds. The substrates were then cleaned in an ultrasonic bath of detergent, ionized 

water (2 baths), acetone and ethanol, in this order for 15 minutes each, after which were dried 

with nitrogen flow and clean room paper and placed in the UV ozone system during 15 minutes 

for enhanced cleaning treatment. Regarding the ETL, it was firstly deposited the compact TiO2 

layer (c.TiO2), whose solution is described in section C.1 of Appendices. 120 µL of the c.TiO2 

solution were dropped on the substrate and spun at 4000 rpm for 35 s with a ramp of 2000 

rpm/s. The substrate was then dried at 120 °C for 10 minutes on the hot plate and then annealed 

in a furnace at 500°C for 30 minutes. After the substrate cools down, it is deposited the 

mesoporous TiO2 (mp.TiO2) layer, by dropping 120 µL of the mp.TiO2 solution (described in 

Section C.1 of Appendices) on the substrate which is then spun at 4000 rpm with a ramp of 

2000 rpm/s for 20 s and posteriorly dried for 10 min at 100 °C and annealed in the furnace for 

30 min at 450 °C. It was also tested to perform a Li+ treatment of the mp.TiO2 layer by 

depositing 150 µL, of LI-TFSI solution in acetonitrile (10mg/mL), at 3000 rpm with a ramp of 

2000 rpm/s for 20 s, which was later annealed at 450 °C for more 30 min. 
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2.1.2 Perovskite Solution Preparation and Deposition 

Before starting the perovskite layer deposition, the solutions (described in section C.2 of 

Appendices) were filtered through a 0.22 µm syringe filter and heated at 65 °C, as well as the 

substrate where it will be done the deposition. 100 µL of one of the solutions are then deposited 

and spin coated in a two-steps program at 1000 rpm for 10 s with a 500 rpm/s ramp and 5000 

rpm, with a 2000 rpm/s ramp, for 20 s. When executing the second step, a certain volume (80 

µL, 130 µL or 200 µL)) of toluene is poured on the substrate when there are 10 s left to the end 

of the program. After this process, the substrate is annealed at a defined temperature (65º, 110 

°C, 125 °C) on the hot plate during a certain duration (3, 10 or 20 min).  

2.1.3 HTL and Top Electrode Depositions 

For the HTL, three solutions of copper(I) thiocyanate (CuSCN) powder dissolved in 

diethyl sulfide, with different concentrations (20 mg/mL, 35 mg/mL and 50 mg/mL) were 

filtered through a 0.22 µm syringe filter, and different volumes (35 µL, 50 µL or 80 µL) were 

deposited on the substrates by drop casting method, 2 seconds after the spinning program of 25 

s at 3000 rpm with a 1000 rpm/s ramp started, and were then annealed at 65 °C for 2 min on the 

hot plate. Finally, the substrates are covered by acetate masks, produced by LASER (Universal 

LASER Systems) and the gold electrodes, with thicknesses around 100 nm and active areas 

dependent of the masks structure, are deposited by electron-beam evaporation under high 

vacuum, in a clean room. 

 Characterization 

2.2.1 SEM-EDS 

The top-surface and morphology images were obtained by Tabletop Microscope 

TM3030 Plus + Quantax 70 SEM and the cross-sectional images were examined by scanning 

electron microscopy (SEM) using a Carl Zeiss Auriga crossbeam (SEM-FIB) workstation 

instrument equipped with an Oxfotd Intruments Aztec X-ray energy dispersive spectrometer. 

2.2.2 XRD 

The crystal structures characterization of the substrates was done with X-ray diffraction 

(XRD) by using a PANalytical X’Pert Pro X-ray diffractometer in Bragg-Brentano geometry, 

with a monochromatic radiation source of Cu-Kα (λ=1.5406 Å). 

2.2.3  UV-Vis-NIR Spectroscopy 

The reflectance and total transmittance of all the samples were obtained by using a UV-

Vis-NIR - Perkin Elmer Lambda 950 spectrophotometer with a ISR-260 integrating sphere 

within a wavelength range of 300-1200 nm. 

2.2.4 Opto-electrical Characterization. 

The I-V curves of the cells were measured by VeraSol-2 LED Class AAA Solar 

Simulator from Oriel, using forward scan (ISC to VOC) under ambient conditions at RT and with 

illumination intensity of one Sun (1 kW/m2). 
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3. Results and Discussion 

This chapter consists in the presentation and discussion of the results obtained from the 

characterization studies performed on the produced solar cells. The opto-electrical 

characterization was the most abundantly performed one, to assess the performance of the 

perovskite solar cells (PSCs), but other characterization tools were also employed for 

morphological, optical and structural analyses. The devices that were opto-electrically 

characterized were slightly different from those used for the other types of characterizations 

because, although being fabricated within the same conditions and having the same composition 

and structure, their rear side was coated with the gold electrode, thus preventing the cells to be 

used for some of the other measurements. 

This chapter is divided into sections that analyse the influence of several parameters of 

the three main layers (electron transport layer, perovskite layer and hole transport layer) on the 

overall performance of a PSC with conventional n-i-p superstrate configuration (Figure 4a), 

giving special focus to the perovskite layer and the HTL. Through the study of these parameters, 

a PSC with an in-house record PCE (power conversion efficiency) was obtained, and its 

characterization and performance results are exhibited in this chapter, as well as a final study 

that regards the effect of time on the degradation of the PSCs. 

 ETL Layer Composition 

This section correlates the composition of the ETL with the performance of the PSCs. 

Preferably, the ETL should have a high transmittance to facilitate the passage of light that goes 

through it, reaching the active layer more effectively. In Figure 7 b), it is possible to see that the 

transmittance of the substrate with mesoporous TiO2 is higher than the one with only compact 

TiO2 layer. This happens due to the mesoporous layer acting as a geometrical anti-reflective 

coating on top of the compact layer, which reduces its reflectance (as shown on the same figure) 

and enhances its transmittance, while maintaining its low absorbance, observed in Figure 7 a), 

as it is desirable for the ETL [59],[60]. The mesoporous layer also works as a photonic structure 

that minimizes the diffraction between the TiO2 and the air, because its refractive index is lower 

than the one of the compact layer by itself (1.623 of the mp.TiO2 vs 1.789 of the c.TiO2) [61], 

which also contributes to the reduction of the total reflectance and corresponding increase of the 

total transmittance. Besides, the incorporation of the mesoporous TiO2 also provides a wider 

surface-area connection between the ETL and the active layer, resulting in a more homogeneous 

and continuous flow of light that reaches the perovskite layer. 
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Figure 7 - a) Absorbance spectrum of only the ETL deposited over FTO, with only compact TiO2 

layer (blue) and also with Mesoporous TiO2 over it (red), as well as the representation of the ETL 

architecture; b) Transmittance and Reflectance spectra of the same ETL. 

An opto-electrical characterization of four cells with different ETL configurations was 

performed, with only a c.TiO2 layer, with two c.TiO2 layers, with the classic mesoscopic ETL 

(c.TiO2 layer + mp.TiO2 layer) and with the Li+ doping (c.TiO2 layer + mp.TiO2 layer + Li-

TFSI), because this last ETL composition achieved the best results in the latest M.Sc. work [3].  

The results were extracted from the I-V curves which already exhibited the open circuit voltage 

(VOC) and the short-circuit current density (JSC) and, also,  the equations presented in section A 

of Appendices were used to obtain the fill factor (FF), shunt resistance (RSH), series resistance 

(RS) and power conversion efficiency (PCE) of the cells. As can be seen, in Figure 8 and in 

Table 1, the cell that achieved the highest PCE value was the one who had a mesoscopic 

structure, whose ETL was composed only by a compact and mesoporous TiO2 layer. This led to 

the conclusion that a mesoscopic ETL, without Li+ treatment, is more reliable and achieves 

higher efficiencies so for all the following fabricated cells, analysed in this thesis, their ETLs 

were always deposited with this structure. 

 

 

Figure 8 - a) J-V and b) P-V measurements of the four best solar cells with different ETL, which 

are composed of: 1x c.TiO2 (black), 2x c.TiO2 (cyan), c.TiO2 + mp.TiO2 (red) and c.TiO2 + 

mp.TiO2 + Li-TFSI (blue). 
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Table 1 – Electrical performance values (VOC, Jsc,  FF, RSH, RS and PCE) for the best devices 

(illustrated in Figure 8) obtained from a batch of 28 samples. The active area of the devices is 0.12 

cm2. 

 Perovskite Layer 

The perovskite absorber layer is the one with most impact on the overall performance of 

the device, so, it is essential to obtain optimal conditions and quality for this layer. In this work, 

many studies regarding the perovskite layer were performed, many different perovskite 

solutions from the literature were prepared and tested, and several production parameters were 

compared and analysed. The perovskite solution that achieved the best results, on the initial 

trials, was the one described in Appendix C.2. Therefore, it was the solution used for all the 

studies presented in this thesis. 

To analyse the influence of the production parameters on the quality of the perovskite 

layer, as well as on the overall performance of the devices, opto-electrical, optical, 

morphological and structural characterization were performed, and the results were considered. 

Due to this study, it was possible to verify a continuous improvement of the devices 

performance, as can be seen by the results and conclusions described along this section. 

 

3.2.1 Effect of MAPbI3 solution concentration 

The perovskite solution concentration is a parameter that has not been studied much in 

the latest works, but it is a fundamental parameter to achieve a uniform perovskite layer with 

great quality. So, in this section, the effect of the MAPbI3 solution concentration is deeply 

studied and it is observed the impact that it has on the performance of the devices.  

Three solution concentrations (0.8 M, 1 M and 1.2 M) are investigated in this section, 

through the analysis of the optp-electrical, optical and structural characterization of different 

devices, which are composed by their respective solutions. 

The optical spectra represented in Figure 9 show an unexpected result for the 

absorbance values of the devices. The 1.2 M perovskite concentration cell exhibits higher 

absorbance values, followed by the 0.8 M and the 1 M cells, by this order, which is contrary to 

what was expected, because as the concentration of the perovskite layer rises there should be a 

reduction of the light passing through the perovskite layer, which would decrease the 

transmittance values and increase the absorbance values. This is not verified in this case because 

the 0.8 M concentration sample exhibited higher absorbance values than the 1 M sample. 

Besides, as will be later described in this section, the cell that achieved a higher efficiency was 

the one with 1 M concentration. This incongruity can be explained by the fabrication and 

characterization procedure adopted in this work, where some cells with similar configurations 

ETL Configuration VOC (V) Jsc (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

1 c.TiO2 layer 0.23 8.25 0.27 80.97 87.40 0.52 

2 c.TiO2 layers 0.43 6.51 0.29 822.62 390.98 0.81 

c.TiO2 + mp.TiO2 0.90 6.86 0.41 2657.19 365.16 2.52 

c.TiO2 + mp.TiO2 + Li-

TFSI 
0.68 3.60 0.43 6194.86 441.79 1.06 
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and composition, produced in identical conditions, were used only for the opto-electrical 

characterization, after the gold deposition, while the similar cells, without gold contacts, were 

used for the other characterization techniques (structural and optical). Even though the cells 

were produced in identical conditions, in perovskite technology it is quite difficult to achieve 

two exact twin cells, which explains these incongruities. Despite the differences between the 

absorbance values, the 1.2 M and 1 M samples have a similar band gap of 1.59 eV, while the 

0.8 M has a lower band gap of 1.56 eV (values obtained by the Tauc plot represented in Figure 

32 a) in section D of Appendices. 

 

 

Figure 9 - a) Absorbance, b) Transmittance and reflectance spectra of three devices, which 

structure is illustrated on a), that are composed of perovskite layers that have different solution 

concentrations: 0.8 M (blue), 1 M (red) and 1.2 M (black). 

  

 The XRD results of the three devices (Figure 10) exhibit the (110), (112), (211), (202), 

(220), (310), (224) and (314) planes at an angle 2θ of 14.20º, 19.97º, 23.61º, 24.5º, 28.46º, 

31.87º, 40.60º and 43.14º respectively, which denotes the presence of the tetragonal phase of the 

MAPbI3, marked with full circle on Figure 10 [62], [63], [64], [65]. It is also noticeable the 

existence of the PbI2 phase peak, due to its relatively low solubility in GBL, at an angle 2θ of 

12.67º, the FTO diffraction peaks at an angle 2θ of 26.52º and 37.75º, and the CuSCN peak at 

an angle 2θ of 34.85º, that are pointed out, in Figure 10, with an open circle, asterisk and 

cardinal, respectively [66], [67], [68], [69]. Comparing the three XRD graphs, it is observed that 

the MAPbI3 tetragonal phase peaks for the 0.8 M and 1.2 M are more intense than for the 1 M 

sample, which is a sign that these two substrates have a higher crystallinity in comparison to the 

1 M. These results together with the absorbance spectrum presented in Figure 9 a), go along 

with the litterature, that relates higher crystallinity with higher absorbance values.  
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Figure 10 - XRD results of the samples (all layers deposited except gold) fabricated with different 

perovskite concentrations: 0.8 M (blue), 1 M (red) and 1.2 M (black). Tetragonal perovskite 

crystal structure peaks marked with full circle; PbI2 peaks marked with open circle; FTO peaks 

marked with asterisk; CuSCN peaks marked with cardinal. 

 

The results obtained by the opto-electrical characterization measurements for this study 

are presented in Figure 11 by the J-V and P-V (power-voltage) curves extracted from the I-V 

curves of the PSCs. Table 2 describes all the electrical parameters of the PSCs, namely the open 

circuit voltage (VOC), short circuit current density (JSC), fill factor (FF), shunt resistance (RSH), 

series resistance (RS) and power conversion efficiency (PCE). By analysing these results, it is 

possible to observe a contradiction to the previous optical and structural analysis that pointed 

out the 1 M concentration substrate as having the lowest absorbance and crystallinity values. 

This is because the 1 M concentration cell achieved the best performance values, as can be seen 

by its PCE of 3.63%, which is more than 1% higher than that of the 1.2 M, and around two 

times higher than the one of the 0.8 M perovskite concentration. So, for all the following studies 

on this work, the 1 M perovskite solution concentration was used. 
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Figure 11 - a) J-V and b) P-V curves of the three best solar cells with different perovskite layer 

concentrations: 0.8 M (blue), 1M (red) and 1.2 M (black). 

 

Table 2 – Electrical performance values for the best devices (illustrated in Figure 11) obtained 

from a batch of 40 samples. The active area of the devices is 0.12 cm2. 

 

3.2.2 Effect of the toluene (anti-solvent) volume 

The toluene deposition during the spinning of the perovskite solution is a necessary step 

to ensure the washing of the GBL (perovskite solution solvent), that has a high boiling point 

(204 ºC) which makes it impossible to evaporate during the annealing process [70]. This 

technique is an effective way to achieve uniform crystallization, controlled morphology and 

high reproducibility of the perovskite solar cells. The most important parameter for tuning is the 

amount of washing solvent deposited, because it affects the particle size distribution of the 

perovskite which has a great influence in the interconnections between the crystal grains [71]. 

Therefore, taking into account that all the samples have an area of 2.5 cm x 2.5 cm and the 

perovskite solution volume deposited is always 100 µL, the effect of the volume of anti-solvent 

deposited, during the perovskite layer spin-coating procedure, was tested by drop-casting three 

chosen volumes of toluene (80 µL, 130 µL and 200 µL - adequate for samples with these 

characteristics) and then analysing the results of opto-electrical, morphological and optical 

characterizations of the produced devices. 

 

 

Concentration VOC (V) Jsc (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

0.8 M 0.75 4.61 0.54 25167.21 472.91 1.87 

1 M 0.76 8.87 0.54 5217.17 241.02 3.63 

1.2 M 0.64 3.72 0.56 6381.78 96.15 2.45 
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Figure 12 - a) Absorbance, b) Transmittance and reflectance spectra of three samples, whose 

structures are illustrated in the inset in a), that are composed of perovskite layers that were washed 

by toluene volumes of: 80 μL (red), 130 μL (black) and 200 μL (blue). 

 

 The three volumes of toluene resulted in cells with similar band gaps of 1.59 eV (value 

obtained by the Tauc plot represented in Figure 32 b) from section D of Appendices, and with 

close absorbance values , for the 80 µL and 200 µL that are relatively higher in comparison with 

the 130 µL ones, as shown in Figure 12 a). These results can be compared with the opto-

electrical characterization results, presented in Figure 14 and summarized in Table 3, where we 

observe that the highest efficiency (PCE) corresponds to the 80 uL sample, which also has the 

highest absorbance value, followed by the 200 uL and the 130 uL, by this order. This leads to 

the conclusion that volumes of toluene deposition around 80 µL provide high absorption values 

which seem to be linked with better performances of the cells.  

 

The influence of the volume of toluene deposited was also examined by the top-view 

SEM images represented in Figure 13, where it is possible to observe perovskite crystal 

structures with irregular shapes (some resembling a flower-like morphology), rough edges and 

high porosity that sometimes happen for perovskite solutions containing GBL as solvent [72]. It 

is also noticeable that the deposition of higher volumes of toluene seems to result in a wider 

disconnection of these crystals, creating larger gaps between them due to the washing of higher 

amounts of solvent, which contributes to the deagglomeration of the perovskite crystal structure 

resulting in a larger uncovered area beneath it [73].  

 

 

Figure 13 - Top-view SEM images of cells with perovskite layers washed by different toluene 

volumes: a) 80 μL, b) 130 μL, c) 200 μL. The samples are composed of all the layers with the 

exception of the gold contacts. 
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The results obtained by the opto-electrical characterization measurements for this study 

are presented in Figure 14 and in Table 3. In Figure 14 it is shown the J-V and P-V curves 

extracted from the I-V curves of the best contacts of the PSCs produced with different toluene 

washing volumes. Comparing the performance values of the three cells presented in Table 3, it 

is noticeable that the best cell is the one where 80 µL of toluene were dropped. This cell exhibits 

a VOC of 0.79 V, JSC of 11.32 mA/cm2, FF of 0.52, and PCE of 4.64%, which is relatively higher 

than the other cells. Although the FF value is higher for the 200 µL cell, the 80 µL has a much 

higher JSC and has the best PCE of the three. Therefore, as a result of this study, it is admitted 

that a toluene volume of 80 µL is ideal for better performances and electrical properties of the 

PSCs. As such, all the following studies on this work were performed using 80 µL of toluene as 

the chosen anti-solvent volume. 

 

 

Figure 14 - a) J-V and b) P-V curves of the three best solar cells with different volumes of toluene 

washing deposited: 80 μL (red), 130 μL (black) and 200 μL (blue). 

 Table 3 - Electrical performance values for the best devices (illustrated in Figure 14) obtained 

from a batch of 30 samples. The active area of the devices is 0.12 cm2. 

 

 

 

 

 

 

 

Toluene 

Volume 
VOC (V) Jsc (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

80 μL 0.79 11.32 0.52 2612.94 129.29 4.64 

130 μL 0.76 10.31 0.48 3440.99 209.62 3.75 

200 μL 0.79 9.26 0.55 2389.70 83.33 4.03 
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3.2.3 Effect of the Annealing Temperature of the Perovskite Layer 

An important factor that highly influences the quality of the perovskite layer and the 

performance results of its corresponding cell, is the annealing temperature. This fabrication 

parameter also has a big impact in the device morphology and optical properties, as it will be 

observed by the studies performed in this section. According to the literature, PSCs produced 

with higher annealing temperatures exhibit faster degradation and lower lifetime, while the ones 

annealed with temperatures below a certain threshold (around 54ºC), do not crystalize and 

remain with a yellow coloration [74]. So, the temperatures chosen to perform this study were 

65ºC (it is the pre-heating temperature of the substrates and, also the stirring temperature of the 

perovskite solution), 110ºC, which according to the literature is the temperature that provides 

higher efficiencies for this kind of perovskite [75], and 125ºC, that is a relatively high 

temperature which might cause a decay of its device performance values. 

In this study, as can be observed in the plots represented in Figure 15, the sample that 

obtained a higher absorbance was the one annealed at 110ºC, but its absorbance values do not 

differentiate much from the ones of the sample annealed at 125ºC. On the other hand, the 

sample annealed at 65ºC exhibited a much lower absorbance and much higher transmittance 

values than its competitors, which might be related to a weak crystallization of the perovskite 

layer, due to the low temperature, which causes the light to pass through it much more easily, 

which is undesirable for PSCs. Despite the existing disparity between the absorbance values of 

the samples, they all have the same band gap value of 1.59 eV, as shown in Figure 32 c) from 

section D of Appendices. 

     

 

Figure 15 - a) Absorbance, b) Transmittance and reflectance spectra of three samples, which 

structures are illustrated on a), that are composed of perovskite layers annealed at a temperature  

of: 65ºC (black), 110ºC (red) and 125ºC (blue). 

        

These three annealing temperatures also resulted in films with distinct surface 

morphologies, as can be seen in Figure 16. The SEM image of the sample annealed at 65ºC, 

Figure 16 a), reveals an inhomogeneous film with some zones where a full crystallization of the 

perovskite did not occur, probably due to the lack of enough temperature. For the annealing at 

110ºC, Figure 16 b), a highly homogeneous film with regular grain size is visible, whereas for 

the sample annealed at 125ºC, Figure 16 c), its SEM image exhibits an irregular grain size and 

an inhomogeneous film with many vacancies, which might be indicative that the annealing 
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temperature used (125ºC) is close to the maximum threshold that the perovskite can sustain 

before starting to occur the degradation of its organic compound (MAI).  

 

 

 

Figure 16 - Top-view SEM images of samples with different perovskite layer annealing 

temperatures: a) 65ºC,  b) 110ºC, c) 125ºC . The annealing process of the perovskite layer had a 

duration of 10 minutes for all three samples. All the PSC layers were deposited on these samples 

with the exception of the gold contacts. 

 The J-V and P-V curves extracted from the opto-electrical characterization results of 

this study are shown in Figure 16 and the electrical parameters of the cells are described in 

Table 4. It is visible that the best cell of this batch, in terms of electrical performance, is the one 

that had its perovskite layer annealed at 110ºC, as can be seen by its PCE of 5.32%, VOC of 0.70 

V, JSC of 11.84 mA/cm2 and FF of 0.65. The PCE value is superior to the one obtained for the 

cell annealed at 125ºC (4.39%) and even more superior compared to the cell annealed at 65ºC 

(3.63%). Although there is a considerable difference of efficiencies, the cells have almost 

identical VOC and FF values, which means that the parameter more affected by the annealing 

temperature was the JSC. Besides, it is also concluded by the analysis of these results that it is 

more difficult to achieve PSCs with high electrical performance if the annealing temperature is 

low rather than higher temperatures (the PCE of the 125ºC cell is considerably higher than the 

65ºC cell), which might be related to an incomplete crystallization of the perovskite layer.  

 

 

Figure 17 - a) J-V and b) P-V curves of the three best solar cells of which perovskite layer was 

annealed at different temperatures: 65ºC (black), 110ºC (red) and 125ºC (blue). 
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Table 4 - Electrical performance values for the best devices (illustrated in Figure 17) obtained from a 

batch of 30 samples. The active area of the devices is 0.12 cm2. 

3.2.4 Effect of the Annealing Time of the Perovskite Layer 

According to the literature, the annealing time influences the crystallization and 

morphology of the perovskite films, and it is a interesting parameter to study because it provides 

information needed to optimize the production costs and time of the PSCs. It was chosen a short 

annealing time of 3 minutes to verify if it would be enough for the crystallization of the 

perovskite structure, an annealing time of 10 minutes that was considered the best one in many 

works that used this perovskite material (MAPbI3) and also a longer annealing duration of 20 

minutes to notice if it would start causing the degradation of the perovskite layer, due to 

overheating [76]. During the annealing step, it was not visible any difference at the naked eye 

between the cells annealed for 3 minutes and the ones annealed for 10 minutes because the 

crystallization of the perovskite layer was almost instantaneous (transition from a yellow to a 

brown coloration) but for the cell that was annealed for 20 minutes it was possible to observe a 

slight change of color to a more yellowish tone, on the last 2 minutes of annealing, that might be 

a signal of some degradation of the perovskite layer due to overheating.  

 

 

Figure 18 - a) Absorbance, b) Transmittance and reflectance spectra of three samples, which 

structures are illustrated on a), that are composed of perovskite layers annealed at a temperature of 

110ºC during: 3 minutes (blue), 10 minutes (red) and 20 minutes (black). 

 An optical characterization study was performed and, as can be observed in the spectra 

represented in Figure 18, the sample that portrayed the best optical properties for a PSC (higher 

absorbance and low lower transmittance values) was the one annealed during 10 minutes, 

followed by the cell annealed for 20 minutes and the cell annealed during 3 minutes, by this 

order, which suggests that excessively short or long annealing times might not be advisable for 

the perovskite layer fabrication, as was referred before. Despite these differences on the optical 

Temperature VOC (V) Jsc (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

65ºC 0.68 8.26 0.65 5582.03 64.60 3.63 

110ºC 0.70 11.84 0.65 3371.72 59.01 5.32 

125ºC 0.70 10.21 0.61 2121.70 33.90 4.39 
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spectra, the cells annealed during 3 and 10 minutes obtained a similar band gap value of 1.59 eV 

whereas the cell annealed for 20 minutes presented a slightly lower band gap value of 1.58 eV, 

as in Figure 32 d) from section D of Appendices. 

  

 The results of the opto-electrical measurements are shown in Figure 19 and in Table 5, 

where it is possible to visualize the J-V and P-V curves extracted from the I-V results, and the 

values of the most important electrical parameters of the cells. The cell that exhibited the best 

performance values was annealed for 10 minutes, achieving a high PCE of 8.09%, a VOC of 0.85 

V, a JSC of 14.75 mA/cm2 and FF of 0.64. These values are much superior compared to the ones 

of its other two competitors, especially the VOC value (0.14 V higher than the 20 minutes’ cell 

and 0.16 V higher than the 3 minutes’ cell), which is the main factor of such a disparity 

regarding the PCE values obtained. The cell that achieved the lowest PCE value, out of the 

three, was the cell annealed during 20 minutes, which is probably a result of overheating which 

might have triggered the decomposition of the perovskite crystal structure, lowering the stability 

of the cell as well as its lifetime. Therefore, as was expected and pointed out in the literature, the 

optimal annealing time to achieve better electrical performance values, for annealing 

temperatures close to 110ºC, is around the 10 minutes mark, because it is long enough to allow 

the crystallization of the perovskite layer but not to overheat the film which would cause the 

degradation of the perovskite crystal structure, and the reduction of the performance values of 

the cell. 

 

 

Figure 19 - a) J-V and b) P-V curves for the three best cells that had their perovskite layers 

annealed for different durations: 3 minutes (blue), 10 minutes (red) and 20 minutes (black). 

Table 5 - Electrical performance values for the best devices (illustrated in Figure 19) obtained 

from a batch of 40 samples. The active area of the devices is 0.12 cm2. 

 

 

Duration  VOC (V) Jsc (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

3 min 0.69 12.71 0.70 4849.93 56.17 6.10 

10 min 0.85 14.75 0.64 6670.95 46.14 8.09 

20 min 0.71 12.32 0.59 2450.85 67.98 5.16 
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 HTL CuSCN Parameters 

The HTL is the layer responsible for the protection of the perovskite layer to prevent its 

quick degradation and, also has the function of “extracting” and transfer the holes from the 

perovskite layer, which requires a material with high hole mobility. Complementing these 

requirements with the philosophy of low-cost materials of this work, the choice for the HTM, as 

stated before, was the CuSCN which is a quite inexpensive and abundant p-type semiconductor 

with great thermal stability, high hole mobility and well-aligned work function [57]. Knowing 

the importance that this layer has on the overall performance of the PSC, it is fundamental that 

its fabrication parameters are studied and optimized. In this section the CuSCN solution 

concentration and the volume of solution deposited are studied through the analysis of the 

results obtained by the opto-electrical and optical characterizations performed. The CuSCN was 

always deposited above a perovskite layer fabricated according to the best parameters concluded 

in the previous section (concentration of 1 M, washed with 80 µL of toluene and annealed at 

110ºC for 10 minutes). Also, the annealing parameters of the CuSCN layer were the same for all 

the produced cells, because on a study performed on a early stage of this work it was concluded 

that when the HTL was annealed for 2 minutes at 65ºC, the CuSCN was dried, had a good 

adherence to the substrate and did not deteriorate the perovskite layer, which resulted in cells 

with better electrical performances. The deposition method of the HTL was also tested, as seen 

in Figure 33 (from Section D of Appendices) and Figure 34 (from section E of Appendices), and 

it was concluded that the drop-casting technique, which consists in dropping the CuSCN 

solution during the spinning (2 to 5 seconds after spinning started), exhibits better optical and 

electrical performances than if the CuSCN solution is deposited before the spinning, so it was 

the adopted method for all the depositions of CuSCN during this work. 

3.3.1 Effect of CuSCN Solution Concentration 

The study described in this section regards the influence of the CuSCN solution 

concentration on the performance of the PSCs. The main focus of this study was on the analysis 

of the optical and opto-electrical characterization results, showcased in this section, to identify 

which of the three chosen CuSCN solution concentrations (20 mg/ml, 35 mg/ml and 50 mg/ml 

is the most appropriate one to achieve a PSC with high performance. 

The results of the optical characterization are presented in Figure 20, where it is visible 

a great decrease of the absorbance values for the 20 mg/ml sample, which might be related to an 

insufficient thickness of the HTL due to the low concentration of CuSCN solution used. The 

other two concentrations used, exhibited more normal transmittance and absorbance values, 

with the 35 mg/ml sample having a slightly superior optical performance.  
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Figure 20 - a) Absorbance, b) Transmittance and reflectance spectra of three samples, which 

structures are illustrated on a), that possess HTLs with different CuSCN concentrations: 20 mg/ml 

(black), 35 mg/ml (red) and 50 mg/ml (blue). 

 From the opto-electrical characterization results the J-V and P-V curves of the cells 

produced with the three different CuSCN solution concentrations were extracted and are shown 

in Figure 21, with their respective electrical parameters being described in Table 6. As in the 

optical characterization, the 20 mg/ml cell also achieved lower results compared to the other 

two concentrations, as can be seen by its PCE that is less than half of the one obtained by the 35 

mg/ml cell, which makes it, the worst choice of concentration for this specific PSC structure and 

composition. On the other hand, both the 35 mg/ml and 50 mg/ml cells revealed much better 

electrical performances, with the 35 mg/ml having a slightly superior PCE of 4.72% against 

4.28 %, and also having higher VOC and FF, while the 5 mg/ml  achieved the highest JSC out of 

the three, 10.59 mA/cm2. In conclusion, according to the results obtained, for an HTL of PSC 

made with this specific layers and conditions, it is not advisable to use low concentrations of 

CuSCN nor too high concentrations, because as could be seen by the previous results even 

though the 50 mg/ml cell performance was close to the 35 mg/ml , there was already a decay in 

terms of absorbance and efficiency of the cell that might be related to excessive thickness of the 

HTL, which is unwanted, because the light that was not absorbed by the active layer needs to be 

transmitted through the HTL so it can be reflected by the gold contacts and be re-absorbed by 

the perovskite, and so, if the HTL is too thick, its transmittance will be reduced. 

 

 

 

 



Ambient-processed Low-cost Perovskite-based Photovoltaics 

 

 

23 

 

 

Figure 21 - a) J-V and b) P-V curves for the three best cells whose HTLs were fabricated with 

different CuSCN concentrations : 20 mg/ml (black), 35 mg/ml (red) and 50 mg/ml (blue). 

Table 6 – Electrical performance values for the best devices (illustrated in Figure 21) obtained 

from a batch of 35 samples. The active area of the devices is 0.12 cm2. 

 

3.3.2 Effect of CuSCN Volume Deposited 

In this section, the volume of CuSCN solution deposited is studied, and its impact on 

the HTL quality and on the performance of the cell is evaluated. After searching and analyzing 

many studies of the literature [57],[67],[77], there seems to be no existing consensus regarding 

the optimal volume for the CuSCN deposition, although it is possible to verify that for smaller 

samples the highest volumes of CuSCN deposited (above 100 μL) normally lead to reduced 

performance values. Therefore, knowing that the devices were fabricated on small substrates 

with an area of 2.5 cm x 2.5 cm, the selected volumes of CuSCN for this study were 35 μL, 50 

μL and 80 μL. As done for the previous studies, optical and opto-electrical characterizations 

were performed to decide which of the volumes provides more efficient cells. 

The results of the optical characterization of the three devices are illustrated in Figure 

22, where it is possible to observe similar absorbance and transmittance values for cells with 35 

μL and 50 μL of CuSCN, while that the absorbance values obtained for the 80 μL were much 

more reduced, probably because the study about the deposition of this volume of CuSCN was 

performed on a different batch than the other two volumes.  

 

Concentration VOC (V) Jsc (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

20 mg/ml 0.6 5.81 0.62 6561.10 93.33 2.38 

35 mg/ml 0.79 9.85 0.60 7032.18 81.11 4.72 

50 mg/ml 0.76 10.59 0.53 4350.35 138.49 4.28 
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Figure 22 - a) Absorbance, b) Transmittance and reflectance spectra of three samples, with 

structures as illustrated on a), on which were deposited different volumes of CuSCN, with a 

concentration of 35 mg/ml, over their pervoskite layers: 35 μL (black), 50 μL (red) and 80 μL 

(blue). 

  

The results of the opto-electrical characterization are illustrated as J-V and P-V curves 

in Figure 23 and the specific electrical values of the cells were extracted and summarized in 

Table 8. The cells obtained similar electrical efficiencies, which is usually an indicator that the 

parameter being study is not too relevant. Nevertheless, despite the values being close, there is 

still a cell that stands out from the others, the cell that had 50 μL of CuSCN deposited. This cell 

exhibited higher VOC, JSC and PCE values (0.71 V, 7.19 mA/cm2 and 2.42%, respectively) but 

showed a lower FF than the other two cells (0.47 against 0.57 of 80 μL cell and 0.67 of the 35 

μL cell). By observing these values, it is possible to conclude that this parameter (volume of 

CuSCN deposited) is the less relevant parameter studied until now, at least regarding the three 

volumes that were studied, because it did not seem to have a high influence on the overall 

performance of the cells. 

 

 

Figure 23 - a) J-V and b) P-V curves for the three best cells on which were deposited different 

volumes of CuSCN solution:  35 μL (blue), 50 μL (red) and 80 μL (black). 
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Table 7 – Electrical performance values for the best devices (illustrated in Figure 23) obtained 

from a batch of 25 samples. The active area of the devices is 0.12 cm2. 

 

 Best-performing Perovskite Solar Cell  

According to all the analysis of the results performed in the previous sections of this 

work, it was concluded that the composition and manufacturing parameters of all PSC layers 

have a great influence on their electrical performance. Considering the "winners" of each of the 

parameters tested in this work, a PSC was designed with all these parameters that are described 

in Table 8, which resulted in the cell with the best electrical performance, obtained under 

uncontrolled environmental conditions and with low manufacturing costs. As can be seen from 

the J-V and P-V curves represented in Figure 24, as well as by observing the electrical 

performance values of this cell shown in Table 9, this is the cell that exhibited the best opto-

electronic properties. The PCE value of 8.48 % obtained by this cell is noticeably high, given 

the conditions in which the cell was produced, as well as VOC, JSC and FF values of 0.86 V, 

15.29 mA/cm2 and 0.64, respectively, which leads to the belief that the selected properties and 

parameters, represented in Table 8, are the best suited ones to obtain PSCs with excellent 

electrical performance.  

 

Table 8 - Composition and fabrication parameters of the best perovskite solar cell obtained. 

 

Table 9 – Electrical performance values for the best performing PSC. Average PCE value 

obtained for this batch was 7.4% ± 1.1%. The active area of the device is 0.12 cm2. 

  

Volume VOC (V) Jsc (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

35 μL 0.68 4.87 0.67 7260.72 64.49 2.24 

50 μL 0.71 7.19 0.47 8816.29 236.88 2.42 

80 μL 0.66 5.73 0.57 9196.90 262.58 2.15 

 

ETL 

Perovskite 

Concentration 

Toluene 

Volume 

Perovskite 

Annealing 

Temperature 

Perovskite 

Annealing 

Time 

CuSCN 

Concentr

ation 

CuSCN 

Volume 

C.TiO2 + 

Mp.TiO2 
1 M 80 uL 110 ºC 10 min 

0.35 

mg/ml 
50 uL 

 VOC (V) Jsc (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

Best Cell 0.86 15.29 0.64 7625.98 47.56 8.48 
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Figure 24 - a) J-V and b) P-V curves of the best perovskite solar cell obtained in this work. The 

structure of the complete cell is also illustrated in a). 

  Due to unavailability of some characterization equipment (SEM and SEM-FIB) at the 

time of production of the best cell, the optical and morphologic characterizations were 

performed for a cell produced with the exact same parameters and conditions although it had 

obtained a lower PCE of 6.10%. 

An optical characterization study regarding the effect of the deposition of each layer, 

one by one, on the absorbance values of the device was performed, as shown in Figure 25 a). 

With the addition of each layer on the cell there is an increase of the absorbance values. 

However, with the addition of the the CuSCN layer, it is observed a slight decrease of the 

absorbance values of the cell after its deposition. This is merely attributed to the index-matching 

effect of this layer at the back of the cell rear, that slightly increases the transmission of the 

longer-wavelength light at the rear surface, which would not occur with the addition of the gold 

back contact layer to finalize the device.  

It was also taken a top-view SEM image of the cell, shown in Figure 25 b), where it is 

revealed a film with good coverage, small grain size (around 200 nm) and some vacancies, quite 

similar to the ones obtained for almost all the cells of this work that were produced with this 

same recipe and fabrication parameters.  

 

Figure 25 - a) Absorbance spectra obtained after each layer deposition, up until the HTL; b) Top-

view SEM image of a cell obtained by the best fabrication parameters identified in Table 8. 
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An EDS characterization of the cell was also performed to verify the presence of the 

expected elements on each layer of the PSC. As can be seen in Figure 26, the elements of each 

layer are distributed as expected. It is also possible to observe in the same figure that the  

perovskite layer has a good thickness (around 300 nm), which is beneficial to provide high light 

absorbance in most of the sunlight spectral range. However, some holes in the perovskite layer 

are also visible (probably because this SEM-FIB cross-section image was not taken in the same 

week that the cell was produced), which is a negative factor because these holes act as “tunnels” 

for the light to pass through them, causing increased transmittance and reduced absorbance 

values. 

 

 

Figure 26 - SEM-FIB Cross section with EDS mapping of a PSC produced with the best 

fabrication parameters identified in Table 8. 

 

 Perovskite Solar Cells Degradation 

The degradation of the PSC is one of the biggest problems of this technology that needs 

to be surpassed. Many things can cause the perovskite crystal to suffer degradation such as 

extended exposure to UV light, high temperature, humidity, prolonged exposure to oxygen, and 

also intrinsic factors like the vacancies that exist in the perovskite structure which can induce 

ion migration through the perovskite film leading to hysteresis effects and weak performances 

of the PSC. These factors can be minimized within an environment with controlled atmospheric 

conditions (e.g. glovebox). However, in this work there was little control over any of these 

parameters, the produced cells were left in closed boxes during the time frame that will be 

depicted in this section. 

Here we studied the degradation upon exposure to ambient conditions of PSCs produced 

with the same composition and fabrication parameters of the best-performing cell simply by 

looking at their appearance with naked eyes (Figure 27), by imaging the morphology of its 

layers (Figure 28), and by measuring its electrical performance (Figure 29 and Table 10).  
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Figure 27 - Degradation stages of PSCs with similar composition: a) Day of fabrication; b) 1 day 

after; c) 1 week after; d) 1 month after; e) 2 months after. 

  

 

Figure 28 - SEM-FIB cross-section images of two different PSCs with similar compositions, taken 

at different times: a) 2 days after the cell’s production; b) 2 months after the cell’s production. 

 

In Figure 27 it is possible to directly visualize the deterioration of the cells. As time passes 

by, they start losing their typical brown coloration, that is an indicator of the crystallization of 

the perovskite layer, and their coloration starts changing to a yellow colour after only 1 week of 

being exposed to ambient conditions (even though the cells were closed inside a box they are 

still affected by the ambient atmosphere) due to the formation of another phase of PbI2 .   

The SEM-FIB cross-section image presented in Figure 28 b) reveals a quite significant 

reduction of the perovskite layer thickness in the 2 months’ old cell (256 nm) compared to the 

image of the 2 days’ old cell (321 nm), shown in Figure 28 a). It is also visible a slight 

difference in the thicknesses of the CuSCN and c.TiO2 layers of each cell, which cannot be 

assured that is related to the time degradation because the studied cells are different and, so, 

even though they have the same composition and fabrication parameters, they are not exactly 

equal. Also, as the layers’ thicknesses were all calculated through the ImageJ software, the 

observed difference lies within the expected margin of error.                                               
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Figure 29 - a) J-V and b) P-V curves extracted from the opto-electrical characterization results of 

the same cell in two diferent days: Same day of production (red) and 5 days after production 

(black). 

The IV characterization was performed to the same cell in the day that it was produced and 

five days later, to verify the effect of time on the electrical performance of the cell. As can be 

seen by the J-V and P-V in Figure 29, and by the values of the electrical parameters shown in 

Table 10, the cell exhibited a cutback on all its electrical parameters, the VOC decreased 5%, the 

JSC decreased 20%, the FF value had a 13% reduction and the PCE value declined 33% which is 

a significant reduction for measurements made only 5 days apart.  

These results reveal that the bare PSCs have poor stability if they are left without 

encapsulation in ambient conditions, which demands for the implementation of effective 

encapsulants in future work. 

 

Table 10 - Electrical performance values for the data illustrated in Figure 29. The active area of 

the device is 0.12 cm2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 VOC (V) Jsc (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

Same Day 0.88 12.67 0.56 7735.93 98.17 6.23 

5 days after 0.84 10.16 0.49 4128.20 168.15 4.18 
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4. Conclusions and Future Perspectives 

This work had the objective of producing perovskite solar cells at ambient air 

conditions, using low-cost reagents, as well as basic and fast production techniques, while also 

focusing on improving their electrical performance and optical properties. This was achieved 

through a continuous study of the layers of the PSCs, which were composed of TiO2 as the 

electron transport layer (ETL) material, MAPbI3 as the active layer material and CuSCN as the 

hole transport layer (HTL) material. This study focused more deeply on the active and hole 

transport layer’s properties, and the optimization of their fabrication parameters. Nonetheless, 

some ETL configurations and materials were also tested to assure the best possible performance 

for the cells. In order to achieve valid conclusions about the parameters of the cells, many 

optical, morphological, structural and electrical characterizations were performed, and their 

results were systematically analysed and compared. 

Firstly, the configuration and composition of the ETL were studied, and it was 

concluded that the best approach, for the specific properties of our perovskite solar cells, is to 

operate with a mesoscopic ETL composed of a compact TiO2 and a mesoporous TiO2 layer. This 

conclusion was taken from the analysis of the electrical characterization results which showed 

that the cell produced with a single compact TiO2 layer plus a mesoporous TiO2 layer exhibited 

a much higher PCE value (2.52%) compared to the cells that had only a compact TiO2 layer 

(0.52%), or two compact TiO2 layers (0.81%), or the ones which were doped with Li+ (1.06%). 

It was also noticed an increase of the ETL transmittance values after depositing the mesoporous 

TiO2 layer, which is beneficial because the absorption of this layer should be as low as possible 

to allow the transmittance of light through it, so that it can reach the perovskite absorber layer.  

In the second section, four fabrication parameters and solution properties for the 

perovskite layer were studied and the best candidates of each parameter studied were picked. 

The tested parameters were the perovskite solution concentration, the volume of toluene 

deposited during the spinning, the annealing temperature and the annealing time of the 

perovskite layer. For the perovskite solution concentration, the cell that exhibited better 

electrical performance was the one that had perovskite with a concentration of 1 M, but the cells 

made with perovskite concentration of 0.8 M and 1.2 M achieved higher absorbance values. It 

was also visible that these two cells (0.8 M and 1.2 M) exhibited a higher crystallinity than the 1 

M cell, but notwithstanding, all three cells revealed, on the XRD, the presence of the perovskite 

tetragonal phase of (110), (112), (211), (202), (220), (310), (224) and (314) planes at an angle 

2θ of 14.20º, 19.97º, 23.61º, 24.5º, 28.46º, 31.87º, 40.60º and 43.14º respectively, and also 

revealed the presence of the PbI2  phase at an angle 2θ of 12.67º, as well as the same FTO phase 

at an angle 2θ of 26.52º and 37.75º, and CuSCN peak at an angle 2θ of 34.85º. As the cell made 

with perovskite solution concentration of 1 M was the one that got the highest PCE out of the 

three (3.63% vs 1.87% of the 0.8 M cell and 2.45% of the 1.2 M) it was the selected 

concentration used for all the other studies. For the toluene volume study, it was concluded that 

the cell on which 80 μL were deposited achieved the best electrical performance and optical 

values, as compared to the 130 μL and 200 μL that were also tested. The annealing temperatures 

tested were 65ºC, 110ºC and 125ºC, and the conclusions taken from this study were that the 

cells annealed at 110ºC exhibit more homogeneous surfaces, better optical properties and higher 

electrical performances. So, the annealing temperature used for the other studies was always 

110ºC, and the duration of the annealing selected was 10 minutes due to the electrical and 
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optical characterizations performed that revealed that a cell annealed for 10 minutes reaches 

higher absorbance values and PCE than if it annealed for a short time (3 minutes) or a long time 

(20 min).  

The effects of changing the concentration and volume of the CuSCN solution were also 

tested. Through the analysis of the optical and electrical results it was concluded that the most 

adequate concentration of CuSCN for this type of cells is 35 mg/ml, and the quantity of CuSCN 

solution deposited should be around 50 ml. 

It is also interesting to notice that for all of these studies the band gap values were all 

between 1.56 eV and 1.59 eV, which indicates that even though many different parameters were 

tested, the perovskites mantained similar band gap values. 

The best cell was produced by using the winners of each parameter study and it 

achieved a PCE of 8.48%, which >2% higher than the best PCE (6.35%) reported in the 

previous works of the group performed with similar equipment and laboratory conditions [3]. 

This is an impressive result knowing that there was no control of the humidity or temperature, a 

glove box was not used, and the reagents used were low-cost compared to the ones used to 

fabricate the cells with highest efficiencies in the literature. Although the cell exhibited a great 

electrical performance it was also noticeable, from the degradation study performed, that the 

cells have low stability if left under ambient conditions which leads to the reduction of their 

efficiencies as time passes by.  

 Future Perspectives  

As a future perspective, to achieve PSCs with higher electrical performance and higher 

stabilities it is vital that all the fabrication steps of the PSCs should be carried out inside a glove 

box, while also using a thermocouple on the hot-plate, to control the humidity and temperature 

conditions, that highly affect the quality of these cells. Also, a fine tuning of the parameters 

studied in this work should be done and it must be done a more profound structural 

characterization study throughout all the analysis of the parameters studied. 

It should also be performed some investigation regarding the ETL, more specifically 

studying other materials such as Tin Oxide (SnO2), Zinc Oxide (ZnO) or Cerium Oxide (CeO), 

for example, to test their effect on the quality of this layer and on the performance of the cells, 

as well as to explore the possibility of reducing the annealing temperature of the ETL, which 

would speed up and reduce the costs of the fabrication process. Besides, the reduction of the 

annealing temperature would also allow the fabrication of the PSCs on flexible substrates and 

even on paper substrates. Regarding the perovskite layer, it could be annealed using micro-wave 

annealing process [76], and also its composition could be altered to a lead-free perovskite, 

which would permit the reduction of the toxicity of the cells, that is a major drawback mainly 

caused by the lead iodide. 

It would be interesting to test different configurations of the PSCs such as inverted 

structures or also the implementation of a new layer between the CuSCN layer and the gold 

contacts, which could be made of graphene oxide (GO) or IZO, for example, as cells containing 

these two materials have been achieving great electrical results recently, as well as enhanced 

stability and durability under full solar intensity exposure [78]. 

Finally, it would also be appealing to integrate these PSCs on tandem solar cells with 

different configurations, for instance on silicon-perovskite tandem cells, on 

perovskite/perovskite tandem cells with optimized band gaps or even on CIGS-perovskite 

tandem cells’ structures. 
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Figure 31 - Effect of varations of the series and shunt resistance (RS and RSH, respectively) in the 

I-V curve of a solar cell [80]. 

 

 

 

Appendices 

A.  Solar Cell Parameters  

In this section it is explained how to calculate the solar cell’s parameters by analysing the 

I-V and P-V curves (Figure 30), obtained by the electrical characterization, and using the 

appropriate equations (presented below) to extract its values. It is also represented in Figure 31, 

the influence of the shunt and series resistances on the shape of the I-V curves and on the FF 

obtained. 

 

 

Figure 30 - Representation of the electrical parameters extraction of a solar cell from the I-V and 

P-V curves [79]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ambient-processed Low-cost Perovskite-based Photovoltaics 

 

 

42 

 

 

 

 

• ISC (short circuit current) is the current value for V = 0 V; 

• VOC (open circuit voltage) is the voltage value for I = 0 V; 

• The series resistance (Rs) and shunt resistance (Rsh) values are obtained by calculating the 

inverse of the IV curves slope, as shown in Figure 31. It is desirable that the Rs is as low as 

possible and the RSH as high as possible.  

• Imp and Vmp are the maximum current and voltage, respectively, and can be interpreted by 

analysing the IV curve, as illustrated in Figure 30;  

• Pmax (maximum power): Pmax = Imp 𝑥 Vmp (1) 

• FF (fill factor), approximation of the IV curve to a square: 𝐹𝐹 =
𝐼𝑚𝑝 𝑥 𝑉𝑚𝑝

𝐼𝑠𝑐 𝑥 𝑉𝑜𝑐
  (2) 

• PCE (Power conversion efficiency), ratio between Pmax and Plight (light power = 1000 

W/m2):        𝐹𝐹 =
𝑃𝑚𝑎𝑥

𝑃𝑙𝑖𝑔ℎ𝑡
 𝑥 100%  (3) 

 

B. Materials 

Table 11 - List of reagents used for this work, with their respective abbreviation, purity, CAS and 

company. 

Material Abbreviation Purity CAS Company 

Absolute Ethanol EtOH 99,99% 64-17-5 
FISHER 

CHEMICAL 

Transparent Titania (TiO2) 

Paste 
- 99% - 

SIGMA-

ALDRICH 

Copper (I) Thiocyanate CuSCN 96% 1111-67-7 ALFA AESAR 

Diethyl Sulfide - 98% 352-93-2 
SIGMA-

ALDRICH 

γ-Butyrolactone GBL 99% 96-48-0 PANREAC 

Hidrochloric Acid HCl 37% 017-002-01 FLUKA 

Lead Iodide PbI2 99% 10101-63-0 
SIGMA-

ALDRICH 

Lithium Salt Li-TFSI 99,95% 90076-65-6 
SIGMA-

ALDRICH 

Methylammonium Iodide MAI 98% 14965-49-2 
SIGMA-

ALDRICH 

Titanium (IV) Isopropoxide TTIP 97% 546-68-9 
SIGMA-

ALDRICH 

Toluene - 99.8% 108-88-3 
FISHER 

CHEMICAL 

Zinc Powder - 99.9% 9029-97-4 
SIGMA-

ALDRICH 
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C.  Solutions Preparation 

In this section it is described the recipes and preparation methods of some solutions 

referred in the experimental section. 

1. ETL 

The compact TiO2 (c.TiO2) solution was prepared by mixing two different solutions. 

One solution, composed of 18 µL of hydrochloric acid (HCL) in 1.25 mL of absolute ethanol 

(EtOH), was dropwise to a solution of 180 µL of titanium (IV) isopropoxide (TTPI) in 1.25 mL 

of absolute ethanol (EtOH), after both solutions had been stirring for around 30 min. 

The mesoporous TiO2 (mp.TiO2) was prepared by dissolving 120 mg of titania paste 

(Sigma-Aldrich) in 1 mL of absolute ethanol (EtOH). 

 

2. Perovskite Solutions 

The perovskite solutions were produced by dissolving lead iodide (PbI2) and 

methylammonium iodide (MAI) in γ-butyrolactone (GBL), with different concentrations (0.8 

M, 1 M and 1.2 M). 

For the 1 M perovskite solution, 461 mg of PbI2 and 159 mg of MAI were dissolved in 

1 mL of GBL and were left stirring at 65 ºC. 
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D.  Optical Characterization 

In this section, the Tauc plots used to obtain the band gap values of some produced cells 

studied in this work, are shown in Figure 32. Also, in Figure 33 it is studied the optical 

performance of two solar cells with two different CuSCN deposition methods. 

 

 

Figure 32 - Tauc plots with indication (arrows) of the band gap of each cell studied for the 

parameters: a) Perovskite solution concentration; b) Toluene washing volume; c) Perovskite layer 

annealing temperature; d) Perovskite layer annealing time. 
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Figure 33 - a) Absorbance, b) Transmittance and reflectance spectra of two samples, one on which 

the CuSCN deposition was done during the spinning by drop-casting method (red) and other on 

which the CuSCN deposition was performed before the spinning started (black). 

 

E. Opto-electronic Characterization 

 This section shows the J-V and P-V curves from the CuSCN deposition study, which 

compares the electrical performance between a cell on which CuSCN was deposited by drop-

casting and other one on which the CuSCN was deposited before the spinning started. 

  

 

Figure 34 - a) J-V and b) P-V curves extracted from the electrical characterization results of two 

cells on which were performed different CuSCN depostion methods: CuSCN deposited before the 

spinning started (black) and drop-casting while the substrate was already spinning (red). 

 

 

 

 


