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Abstract. An accurate offshore wind resource assessment is a key tool for planning marine 

wind renewable exploitation. To achieve this goal, without resort to an extensive and costly 

network of anemometric stations or buoys, it becomes necessary to use the so-called 

atmospheric mesoscale models. This work presents a high spatial resolution (1x1 km) offshore 

wind resource Atlas for Portugal and the model calibration steps. During the calibration steps, 

the most adequate: i) atmospheric parameterizations - physics options, ii)  initial and boundary 

conditions (IBC) meteorological datasets, and iii) data assimilation scheme were achieved 

through sensitivity tests using the common statistical metrics and hourly 

simulated/observational data. Results show that the most significant improvements are 

associated with the IBC dataset and the data assimilation scheme used. Thus, the results show 

that the assimilation procedures coupled with the new ERA-5 reanalysis dataset reduce 

significantly the errors of the wind speed and direction, especially the normalized mean square 

error. This reduction, depending on the different calibration setup, can be above 50%. The new 

Atlas confirms the previous indicators, Portugal presents a high wind power potential, 

especially for deep offshore regions. 

1. Introduction 

Offshore wind energy is a key contributor towards the decarbonisation of several electrical power 

systems. The opportunity for offshore wind deployment worldwide is significant but this technology 

still presents some technical limitations, especially, for deep offshore regions, and high costs, which 

includes a reliable wind resource assessment phase [1]. Indeed, an accurate offshore wind resource 

assessment, the so-called wind Atlas, is a crucial step to establish strategic plans for the marine wind 

renewable energy exploitation.  

The main challenge in evaluating the wind resource consists on installing accurate wind 

measurement equipment in open sea since a meteorological mast for depths higher than 30 m may not 

be cost effective [2]. Additionally, open sea wind experimental campaigns are typically collected 

during a limited spatial and time window, while wind observations inferred through satellites still 

present large amounts of missing/poor quality data and low spatial/temporal resolution [3]. Thus, to 

achieve a high quality offshore wind atlas without resort to an extensive and costly network of 

anemometric stations or buoys, it becomes necessary to use mesoscale numerical models. These 

models have the ability to describe the atmospheric phenomena for wind power purposes such as the 

atmospheric turbulence, stratification, land-sea interactions and sea-land-breeze processes.  

Several studies have been developed in order to produce regional or national wind atlases being the 

most popular the European wind Atlas [4]. This study was the first of this kind to produce a wind 
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(onshore and offshore) atlas for the majority of the European countries. In order to improve the 

development of wind atlases, several regional studies appeared with more robust mathematical 

methods to deal with local turbulence phenomena [5–7]. These studies were mathematically focused 

over specific regional areas such as coastal, forestry areas, complex orography and landscape. It was 

concluded that the state-of-the-art numerical models used for weather forecast purposes are a valuable 

tool to produce accurate wind Atlas at regional/national scale. These results are supported by recent 

works, e.g., [8–11] that computed climatological wind maps for heights near the most common hub 

height of commercial offshore wind turbines. The results from the previous works were validated 

using observational data mostly collected from buoys but also inferred from satellites that are capable 

of describing the wind behaviour only at the sea surface level.  

The first offshore wind Atlas for Portugal was produced in 2006 [12]. Thus, taking into account the 

improvements observed in the numerical simulation field and the lack of measurements to validate the 

previous Atlas, in this work, a new high spatial resolution wind Atlas is presented based on 

atmospheric numerical simulations using the MM5 model - "Fifth-generation Mesoscale Model" [13] 

after optimizing its configuration and input parameters. The optimization relies on identifying the most 

adequate: i) atmospheric parameterizations - physics options, ii) initial and boundary conditions (IBC) 

meteorological datasets for model, and iii) meteorological data assimilation scheme. The model is 

calibrated through sensitive tests using common statistical metrics and the simulated/observational 

data. The observed meteorological data are collected from different measurements systems, namely, 

oceanographic buoys, floating Light Detection and Ranging (LiDAR) systems, coastal anemometric 

masts and horizontal and vertical LiDAR systems using different heights above mean sea level 

(a.m.s.l.) height. Therefore, the LiDAR datasets available to calibrate the model represent an important 

contribution of this work since the previous works for assessing the Portuguese offshore wind resource 

were always validated with measurements collected at near-surface, which neglects some important 

atmospheric vertical phenomena (e.g., vertical thermal stratification). The high-resolution offshore 

wind Atlas obtained with this work will allow the identification of adequate areas for offshore wind 

park deployment supporting the ongoing spatial planning of marine energy sources for the maritime 

area of Continental Portugal.   

Section 2 describes briefly some numerical modelling key features, transversal to every numerical 

mesoscale model, which can be used to reduce the uncertainty in the wind speed and direction 

characterization. Section 3 describes the input data and the methodology used. Section 4 presents and 

discusses the obtained results as well as the new offshore wind Atlas for Portugal. Finally, in section 5 

some conclusions are provided. 

 

2. Mesoscale modelling features to improve the wind resource characterization  

In the next subsection, a brief background of two relevant mesoscale numerical modelling features 

addressed in this work is presented. Although some modifications may be necessary, these features 

can be easily used in all numerical models.   

2.1. Meteorological Boundary and Initial Conditions 

One of the main sources of error and uncertainty in the wind resource assessment, when numerical 

mesoscale models are applied, is derived from the initial and boundary conditions (IBC) 

meteorological data that fed the model, which are essentially atmospheric information provided by 

reanalysis and/or analysis products [14]. Indeed, several authors show that these data have a crucial 

impact on the outcomes of the mesoscale model [15–17]. In addition to the physical parameterizations 

used by each global model that provide IBC meteorological datasets, the key differences between the 

IBC available are related to the: i) amount of observational data assimilated as well as the type of 

observational atmospheric equipment’s used; ii) data assimilation system; and iii) spatial horizontal 

and vertical resolution. Based on the aforementioned literature in table 1, a comparison of the different 

analysis and reanalysis datasets is provided. It should be highlighted that the results in the relevant 

literature [3,15,16,18,19] show that it is not completely clear which meteorological IBC product is the 

best since they present quite similar results and often the best product changes from one site to 
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another. Therefore, a sensitivity test of each IBC product for the region under study is always 

recommended. 

Table 1. Main characteristics of the most commonly applied IBC products (Adapted from: [3]). 

Dataset 
Time res. 

(hours) 

Assimilation 

system 

Horizontal res. 

(Lat. X Lon.) 

Vertical 

levels 

Temporal 

coverage 

NCEP-R2  6 3D-Var 2.50° x 2.50° 28 1979–Present 

CFSR 6 3D-Var 0.50° x 0.50° 64 2011–Present 

ERA-I 6 4D-Var 0.75° x 0.75° 60 1979–Present 

GFS 6 3D-Var 0.25° x 0.25° 64 2015–Present 

FNL 6 3D-Var 1.00° x 1.00° 52 1999–Present 

ERA-5 1 4D-Var 0.28º x 0.28º 72 2010–Present 

2.2. Data Assimilation  

The data assimilation consists of a numerical technique where observed data are combined with a 

“first guess” or “background forecast” product derived from a numerical weather prediction model 

(NWP) [20]. The combination of observations and the model give a reliable representation of the 

“true” state of the atmosphere or the “analysis” at a defined time. Broadly speaking, there are three 

different types of data assimilation techniques: the three-dimension variational data analysis (3DVAR) 

[21,22], the four-dimension variational data analysis (4DVAR) [23] and the four-dimensional data 

assimilation (FDDA) [24–26] concepts. The 3DVAR consists of an iterative minimization procedure 

able to minimize errors between the local observations and the “first guess” (or “background 

forecast”) product. The 4DVAR technique is a more complex method but still similar to 3DVAR. The 

main difference relies on the error minimization methodology. Commonly, the minimization for the 

3DVAR case is performed only for one time, while the 4DVAR case uses the concept of a time 

window period where different observations at different times are available to build a best-fitted 

minimization error state of the atmosphere.  

In fact, not every type of observation can be assimilated by 3DVAR or 4DVAR methods. For 

instance, the ones available at high frequency rates such as 10min interval [25]. Generally, 

observations with high frequency time rates are commonly used for wind power studies since they 

enable to describe the stratification and turbulence effects, which have a crucial impact in the wind 

resource characterization. Thus, for high rate time resolution observations, another type of data 

assimilation scheme should be used, namely the observational FDDA technique. The observational 

FDDA scheme can deal successfully with high frequency observational data for assimilation purposes 

presenting a low computational cost. Consequently, the observational FDDA technique is a promising 

technique for using data with high frequency, which can be an important feature to be included in 

wind resource assessment evaluations. The FDDA scheme basically adjusts the model’s dynamic 

balance to adapt the mass field variables and thus correct and reduce errors from the mass fields such 

as the wind speed [25,26]. This adjustment uses the so-called nudging coefficient, G, the time window, 

T, and influence radius, R, for observation assimilation [25].  

 

3. Data and Methodology  

The new wind offshore Atlas for Portugal, presented in this work, is based on atmospheric numerical 

simulations using the MM5 model. Figure 1a) shows the methodology applied in this work. The first 

step was the model calibration regarding the: meteorological initial and boundary conditions (IBC) 

dataset - step I.A), atmospheric parameterization (physics options) - step I.B), and meteorological data 

assimilation procedures - step I.C). Thus, the model calibration consists in the identification of the 

most adequate model configuration’ for each step (step I.A – I.C), figure 1b.  

Common statistical metrics (e.g., the normalized mean square error - RMSE, Bias, Pearson 

correlation, wind roses, etc.) [1,18] were implemented into an in-house toolbox (designated as 

Evaluation Toolbox) and the simultaneous hourly simulated/observational data were used to calibrate 

the model outputs. The metrics presented in this work intends to quantify the amplitude (related to the 

systematic tendency of a forecast model to under or overestimate a predetermined parameter) and the 
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phase errors (related to temporal consistency and the capability to reproduce the temporal variability 

of a predetermined parameter) of the model. Although, a special focus will be provided to the RMSE 

and correlation errors since phase errors can denote a severe weakness in the model performance to 

describe the wind flow variability [27]. As appointed by several authors, such errors cannot be easily 

removed by using linear corrections as it is usual for amplitude-related errors (e.g., Bias) [27,28]. 

Thus, a simulation with lower phase errors is preferred rather than a simulation with reduced 

amplitude errors [27,28]. This option allows the model to be able to simulate meteorological 

parameters with required physical consistency, i.e., variability over time. Additionally, for wind power 

generation purposes, the cubic dependence of wind speed requires low error variability otherwise; 

meaningful errors in the annual energy production can be obtained. To complement the previous 

statistical parameters, wind roses and the average wind speed binned into twelve directional sectors 

were also computed and analysed in this work to provide further insights regarding the directional 

errors.  

Due to the high computational effort required for the simulations, two distinct periods (a month 

representative of the typical summer and winter weather conditions) were used to calibrate the model 

– step I. After the calibration step, the offshore wind Atlas is produced using three consecutive years 

of data (2015 – 2018) and it is validated based on the available observed dataset – step II. For 

contractual confidentiality reasons it is not possible to show the average wind speed for some observed 

measurement systems, and, therefore, the focus will be given to the comparison of the common 

metrics applied in this type of work. 

 

 
a) 

 
b) 

Figure 1. a) A 

schematic diagram of 

the methodology 

applied in this work. 

b) Different 

configuration tested 

in each step of the 

model calibration – 

Step I.   

3.1. Data 

3.1.1. Observed dataset. The hourly observed meteorological data are collected from different 

measurements systems, namely, oceanographic buoys near the Portuguese coast (Raia - RA, 

Monican01 – M1, Monican02 – M2, Cabo Silleiro – CS and Golf de Cádiz - GC) [29,30], floating 

(LF) and nacelle (NL) LiDAR systems, coastal anemometric masts (Aguçadoura – AG) and both, 

horizontal – (Cabo São Vicente – CSV) and vertical (Cabo Penedo Saudade – CPS, Cabo Sardão – 

Csa) LiDAR systems with different measurement heights a.m.s.l.. The data from buoys are publicly 

available while the remaining datasets were obtained from national and international projects (e.g., 

FP7 Norsewind, FP7 DEMOWFLoat and P2020-OFFSHOREPlan). The different measurement 

systems used during the calibration and validation phase, are depicted in figure 2. The data cover the 

period from June 2014 to June 2018. The aforementioned data were used only for validation purposes. 

High resolution 
offshore wind Atlas

- Simulation of three 
consecutive years.

Observed dataset
1.Wind speed and 

direction

2. Buoys, floating LiDAR, 
coastal LiDAR and 

anemometric stations 

Evaluation Toolbox
1.Intersect datasets

2.Compute statistical 
parameters (RMSE, Weibull 

distribution parameters, etc.)

3.Graphical Information

4.Automatic Reports

Model calibration – Step I
Sensitivity test to identify the most 

adequate:

• Reanalysis (step I.A)

• Physics options (step I.B)

• Assimilation (step I.C)

Atlas Validation - step II

Reanalysis (I.A)

1.Era-Interim
2.ERA 5

3.CFSR

4.GFS 

5.FNL

Physics options (I.B)

1.Explicit moisture

2. Cumulus

3.Planetary boundary 
layer

Assimilation (I.C)

1.No assimilation

2.Satellite Assimilation  
(grid nudging)

3.FDDA observation 
nudging 

Model Calibration – Step I
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Figure 2. Identification of the measurement systems 

location, type (symbol) and the measurement height 

a.m.s.l. used in this work. The underlines represent 

the data used only during the validation step, while 

the remaining data were used in both steps 

(calibration and validation). 

 

3.1.2. Databases used for the different assimilation schemes. Currently, some wind products derived 

from satellite-observation can provide accurate meteorological data [18] at low levels, typically 10 

meters above sea surface level, which can be assimilated in the mesoscale models [31,32]. In this 

work, the blended mean wind field estimated from scatterometers Advanced SCATterometer 

(ASCAT) and Oceansat-2 Scatterometer (OSCAT) with a horizontal resolution of 0.25x0.25 degrees 

and a temporal resolution of 6 hours [33] was employed during the assimilation procedures. 

Additionally, since the ECMWF reanalysis ERA-5 project [34] presents a spatial (~31 km) and 

temporal (1 hour) resolution it is also adequate for independent data assimilation, and therefore, it was 

also tested onto the assimilation procedure.  

3.2. Mesoscale numerical model and physical parametrizations 

Currently, the most applied NWP models in the wind sector are the Weather Research and Forecasting 

(WRF) and the Mesoscale Fifth Model (MM5) [13,35]. The extensive use of these models can be 

explained by i) their capabilities to accurately describe near surface atmospheric processes and ii) the 

free availability to public use. Despite the physical parameterizations improvement in the WRF 

mesoscale, the MM5 is still applied by several authors showing a similar and sometimes better 

performance when compared with WRF model, e.g., [36]. Therefore, and benefiting from the structure 

developed to generate the first offshore wind atlas for  Portugal [12] as well as the previous literature, 

the MM5 model was selected to obtain the high-resolution (1 x 1 km) offshore wind atlas.   

The orography, vegetation cover and dominant soil type information were obtained from the 

GTOPO30 [37] and USGS Land Cover database [38] projects, respectively. The numeric simulation 

was configured i) to restart every day during the simulation period and ii) for recording data every 

hour in three domains using a one-way nesting technique with spatial resolutions of 25, 5 and 1 km, 

figure 3. For all domains, a vertical grid with 26 irregular sigma layers was considered.  

The MM5 model allows the selection of several parametrizations to simulate physical processes such 

as radiation, planetary boundary layer, cloud microphysics, among others. To characterize as 

accurately as possible the wind speed and direction, the following physical processes, with the greatest 

impact on the wind resource characterization, were evaluated: explicit moisture schemes - IMPHYS; 
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planetary boundary layer schemes IBLTYP; and cumulus schemes – ICUPA, table 2. The options 

tested are in bold in table 2 leading to eighteen different combinations.  
 

 

Figure 3. The three nested 

domains for the MM5 simulation 

(D1 – 25km; D2 – 5km and D3 – 

1 km). 
 

Table 2. Physical options available on the MM5 model. 

IMPHYS IBLTYP ICUPA 

1-Dry 1-none 1-none 

2-Stable Precipitation 2- Bulk PBL 2-Anthes-Kuo 

3-Warm rain 3-Blackadar 3-Grell 

4-Simple ice 4-Burk-Thompson 4-Arakawa-Schubert 

5-Mixed-phase 5-Eta 5-Fritsch-Chappell 

6-Goddard 6-MRF 6-Kain-Fritsch 

- 7-Gayo-Seaman 7-Betts-Miller 

- 8-Pleim-Chang 8-Kain-Fritsch 2 

 

4. Results 

4.1. Initial and boundary conditions  

Taking into account the information from table 1 and works recently published regarding the wind 

speed assessment [3], five different meteorological IBC were tested (ERA-I, ERA-5, CFSR, GFS and 

FNL). In table 3, the statistical parameters (correlation, bias and RMSE) of the comparison between 

observed and simulated wind data by feeding the MM5 model with different meteorological IBC are 

presented.   

Overall, the ERA-5 IBC dataset presents the best performance. For the wind speed, this dataset 

exhibits the highest correlation and the lowest RMSE values. For all simulations, the wind speed bias 

values are negative, indicating a tendency, on average, of the model to overestimate the wind speed, 

when compared with the observed data. For this statistical parameter, the best performance was 

attained by CFSR product. Regarding the average values of correlation, for the analysed IBC products, 

a high similarity was observed, nearly, 0.7. Figure 4a shows the average wind speed for the different 

wind direction sector. Results show that there are no directional systematic errors across the different 

measurement points, and the model performance is quite similar between the different IBC datasets, as 

previously discussed.  

The average correlation value for wind direction is nearly 0.7. Results show a positive bias in the wind 

direction, meaning that the model has a tendency to simulate the wind with a slight anti-clockwise 
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wind rotation. The reduced values of the bias for the different products enable to obtain, on average, a 

suitable characterization of wind direction, as depicted in figure 4b. According to this figure, with 

exception of GC station, the prevailing direction sector is only well identified for each measurement 

point using the ERA-5 IBC dataset. 

 

Table 3. Statistical parameters of the comparison between observed and simulated wind data–step I.A. 

IBC  

dataset 

Correlation Bias RMSE 

Wind Speed 

[Adim.] 

Wind Direction 

[Adim.] 

Wind Speed 

[m/s] 

Wind Direction 

[º] 

Wind Speed 

[m/s] 

Wind Direction 

[º] 

ERA-I 0.70 0.67 -0.32 7.53 2.47 54.10 

ERA-5 0.71 0.72 -0.27 6.11 2.34 49.56 

CFSR 0.69 0.68 -0.21 8.35 2.51 51.77 

GFS 0.71 0.70 -0.27 7.37 2.48 50.21 

FNL 0.71 0.68 -0.28 6.83 2.48 50.12 

 

 
a) 

 

 
b) 

Figure 4. Observed vs. model simulation results according to IBC dataset parameterizations: a) 

average wind speed for each direction sector and b) wind roses. The two letters at the top represent 

the name of each measurement location as presented in Figure 2. 
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4.2. Physical parameterizations  

Considering the physical parameterizations indicated in section 3.2, in table 4, the correlation, bias and 

RMSE values between the measured and simulated wind speed and direction are presented. Figure 5 

shows the average wind speed binned by wind direction and the wind rose. In this figure, since only 

minor differences were observed between each set of physical parameterizations, only two simulations 

for each set of IMPHYS were selected. The selected simulations are the ones that present lower wind 

direction RMSE (underlines set of parametrizations in table 4). 

 

Table 4. Statistical parameters of the comparison between observed and simulated wind data–step I.B. 

The underlines represent the physical options that show the lower RMSE within the same IMPHYS 

set of options. 

Physical 

options(IMPHYS - 

IBLTYP -ICUPA) 

Correlation Bias RMSE 

Wind 

Speed 

[Adim.] 

Wind 

Direction 

[Adim.] 

Wind 

Speed 

[m/s] 

Wind 

Direction 

[º] 

Wind 

Speed 

[m/s] 

Wind 

Direction 

[º] 

2-4-3 0.71 0.72 -0.16 6.25 2.34 49.81 

2-4-6 0.70 0.72 -0.18 6.88 2.37 49.72 

2-5-3 0.72 0.72 -0.29 6.30 2.30 49.33 

2-5-6 0.69 0.72 -0.19 6.94 2.43 49.50 

2-7-3 0.71 0.72 -0.27 6.11 2.34 49.56 

2-7-6 0.68 0.71 -0.21 6.47 2.45 49.93 

4-4-3 0.70 0.71 -0.19 6.81 2.40 50.61 

4-4-6 0.68 0.71 -0.14 7.24 2.48 51.18 

4-5-3 0.69 0.71 -0.23 6.95 2.43 50.91 

4-5-6 0.67 0.70 -0.21 7.13 2.50 50.98 

4-7-3 0.69 0.70 -0.24 6.85 2.44 51.47 

4-7-6 0.67 0.70 -0.23 6.89 2.49 51.34 

5-4-3 0.73 0.72 -0.44 2.14 2.28 50.54 

5-4-6 0.72 0.72 -0.46 2.30 2.29 50.52 

5-5-3 0.72 0.72 -0.45 1.99 2.32 50.17 

5-5-6 0.72 0.72 -0.46 2.01 2.32 50.18 

5-7-3 0.72 0.72 -0.49 2.20 2.31 50.51 

5-7-6 0.72 0.72 -0.50 2.14 2.32 50.59 

 

From table 4 and figure 5, it is possible to verify a strong similarity in the values between the different 

parametrization sets. The highest differences are observed for the bias values with IMPHYS equal to 

5. Specifically, the wind speed bias is twice the bias identified for the remaining set of 

parameterization, while for wind direction this set shows the lowest bias values. This set of 

parameterization tends to show the lowest wind speed RMSE values meaning that it captures better the 

atmospheric variability. On average, the worst performance was observed for IMPHYS equal to 4 (low 

correlation and high RMSE values). On the other hand, and taking into account all the statistical 

parameters the best performance is associated with the set of parameterization IMPHYS equal to 2. 

Figure 5 supports that only slight differences can be observed between the different set of 

parameterizations, notwithstanding, the set of parameterization IMPHYS equal to 2 tends to show a 

higher agreement with the observed values in almost all measurement locations. In this sense, and 
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although there is no set of physical options that stands out clearly from the others, using the 

complementary information (e.g., extreme values), it was selected the combination 2-5-3 in this step, 

which represents a conservative configuration. 
 

 
a) 

 

 
b) 

Figure 5. Observed vs. model simulation results according to physical parameterizations: a) average 

wind speed for each direction sector and b) wind roses. The two letters at the top represent the name of 

each measurement location as presented in Figure 2. 

4.3. Data assimilation   

Several sensitivity tests were implemented to identify the most adequate assimilation scheme, the 

parameters (G, T and R) and the dataset. In table 5, a summary of the best performance achieved using 

only satellite data assimilation and the scheme FDDA observational technique (hereafter designated as 

observed-FDDA) using the ERA-5 dataset is presented, while figure 6 shows the average wind speed 

binned by wind direction and the wind rose. 

Table 5 and figure 6 show the benefit of data assimilation for the generation of the wind offshore Atlas 

for Portugal. A reduced improvement was observed for the assimilation based only on satellite 

information. This result can be partially explained by the use of information only at a low level of the 

atmosphere (10 m a.m.s.l.) and with a temporal resolution of 6 hours. On the other hand, meaningful 

improvements were found with the data assimilation based on information inferred by satellite in the 

ocean coupled with ECMWF reanalysis ERA-5 project. For wind speed, the observed-FDDA enable 

to increase 15% the correlation values, and reduce more than 20% the RMSE values when compared 

with the no assimilation results. Significant benefits are also observed in wind direction 

characterization. With this assimilation scheme, the wind speed bias error increased twice compared 
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with the no assimilation results. However, as previously described, linear corrections can be applied to 

reduce this type of error. Therefore, it was select the observed-FDDA scheme in this step. 
 

Table 5. Statistical parameters of the comparison between observed and simulated wind data- step I.C. 

Simulation 

Correlation Bias RMSE 

Wind 

Speed 

[Adim.] 

Wind 

Direction 

[Adim.] 

Wind 

Speed 

[m/s] 

Wind 

Direction 

[º] 

Wind 

Speed 

[m/s] 

Wind 

Direction 

[º] 

No Assimilation 0.72 0.72 -0.29 6.30 2.30 49.33 

Satellite Assimilation 
(G8,T4,R50) 

0.75 0.75 -0.06 5.84 2.15 46.56 

Observed-FDDA with  
ERA-5 (G16,T1,R50) 

0.83 0.77 -0.60 2.11 1.78 44.40 

 

 
a) 

 

 
b) 

Figure 6. Observed vs. model simulation results without and with different assimilation schemes: 

a) average wind speed for each direction sector and b) wind roses. The two letters at the top 

represent the name of each measurement location as presented in figure 2. 
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4.4. Offshore wind Atlas – Step II 

Using the evaluation toolbox and the dataset available during the validation phase, in table 6, the 

correlation, bias and RMSE values between the measured and simulated wind speed and direction are 

presented.   

 

Table 6. Statistical parameters of the comparison between observed and simulated wind data- step II. 

Correlation Bias RMSE 

Wind Speed 

[Adim.] 

Wind Direction 

[Adim.] 

Wind Speed 

[m/s] 

Wind Direction 

[º] 

Wind Speed 

[m/s] 

Wind Direction 

[º] 

0.79 0.72 -0.14 8.27 2.55 47.33 

 
For the long-term simulations, and considering all the measurement locations depicted in figure 2, 

the wind speed presents i) a high correlation value, nearly, 0.80, and ii) a reduced bias error, -0.14 m/s. 

Comparing with the RMSE obtained during the calibration phase, a slight increase was observed. This 

result can be partly explained by some extreme weather conditions observed during the three years of 

simulated data. A systematic overestimation of the wind speed was observed during all simulations 

(calibration and validation phase), i.e., the wind speed simulated is always slightly above the observed 

data. For the wind direction, a moderate/high correlation value was achieved, 0.72, while the bias error 

shows a reduced error. The RMSE for wind direction is in line with the value attained during the 

calibration phase. Although not shown in detail in this work, the errors observed are not dependent on 

the measurement height meaning that the vertical stratification of the atmosphere was correctly 

simulated. In figure 7, the new high-resolution offshore wind Atlas for Portugal is presented.  

 

  
a) Wind speed 

 
b) Wind direction 

 
c) Power density 

Figure 7. Mean a) wind speed, b) wind direction (computed using the longitudinal and latitudinal 

wind components) and c) power density values for each cell of the D3 domain (1x1km). Results 

depicted for 100 meters a.m.s.l.. 

 

The results confirm that Portugal has a high wind energy potential, and the northern region is 

energetically more favourable. Indeed, in this region is foreseen the first Portuguese offshore floating 
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wind park in 2020. As expected, due to the typical weather conditions observed in Portugal, the most 

common typical wind directions are from the north/northwest sectors. 

 

5. Conclusions 

This paper presents the calibration and model setup procedures for obtaining the new offshore wind 

Atlas for Portugal with a spatial resolution of 1x1km adequate to describe the atmospheric variability 

derived from the wind phenomena over the sea and in the cross-border sea/land areas. Given the 

impracticability of studying, in detail, the Portuguese offshore wind potential using experimental data, 

the only viable way is through numerical simulations with mesoscale models. To overcome 

uncertainty associated with the use of these models, a set of sensitivity tests were performed to 

calibrate the MM5 mesoscale model using observed data gathered in national/international projects 

(meteorological nearshore meteorological stations, buoys, LiDAR systems). The calibration was 

focused on the following steps: i) initial and boundary conditions (IBC) meteorological dataset to feed 

the model, ii) atmospheric parameterization available in the model, and iii) meteorological data 

assimilation procedures. Using the most adequate calibration for each previous step, the new offshore 

wind Atlas, based on three years of data, was obtained and validated.    

Results show that the calibration procedure is crucial to improve the wind speed and direction 

characterization. The most meaningful improvement was associated with the data assimilation, 

followed by the IBC dataset used. On the other hand, the sensitivity tests for the atmospheric 

parameterization showed small differences among the different options tested. During the calibration 

phase, the best model setup enabled to obtain: average correlation values of 0.83 and 0.77 for wind 

speed and direction, respectively, and reduced wind speed RMSE values (1.78 m/s). During the 

validation phase, the model reduces, slightly, its performance by decreasing the correlation values and 

increasing the RMSE values. Notwithstanding, a reduction on the bias error to -0.14 m/s was 

observed.  

The validated offshore wind Atlas will support the identification of adequate areas for offshore 

wind park deployment and allowing to improve the spatial planning of marine energy sources for the 

maritime area of Continental Portugal. Although further research is required to enable its full 

validation (e.g., application of linear corrections based on observed data to mitigate the impact of 

systematic errors), the adoption of assimilation procedures coupled with the state of art of 

meteorological IBC presents a promising improvement in the accuracy of the wind resource 

assessment, especially, at regions where observed wind data are not available.    
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