
Technical Challenges of Microservices
Migration

JOÃO CARLOS RIBEIRO DIAS NEVES
Outubro de 2019

Technical Challenges of Microservices Migration

João Carlos Ribeiro Dias Neves

Dissertation to obtain the Master’s degree in Informatics Engineering,
Specialization in Software Engineering

Supervisor: Isabel Azevedo

Porto, 2019

ii

iii

In dedication to all the human beings that fight for what they believe in, exchanging excuses

and complaints by proactivity, hard work and determination. Also dedicated to coffee and loud

music.

iv

v

Abstract

The microservices architecture is a recent trend in the software engineering community, with

the number of research articles in the field increasing, and more companies adopting the

architectural style every year. However, the migration of a monolith to the microservices

architecture is an error-prone process with a lack of guidelines for its execution. Also,

microservices introduce a lot of different challenges that are not faced when following a

monolithic architecture.

This work aims to fill some gaps in current microservices research by providing a catalogue of

the currently most common challenges of adopting this architectural style, and possible

solutions for them. For this reason, a systematic mapping study was executed analysing 54

different articles. Also, 30 industry professionals participated in a questionnaire regarding the

topic. Furthermore, a participant observation experiment was performed to retrieve additional

industry data.

Moreover, one of the identified challenges – distributed transactions management – was

further detailed and a solution implemented using the choreographed saga pattern. The

solution is publicly available as an open-source project.

Finally, multiple experts in the microservices field validated the results of the research and the

distributed transactions solution and provided insights regarding the value of this work.

Keywords: microservices, migration, distributed transactions, saga pattern, systematic

mapping study, industry survey

vi

vii

Resumo

A arquitetura de microserviços é uma tendência recente na comunidade de engenharia de

software, com o número de artigos publicados sobre o tema a aumentar, assim como o número

de empresas a adoptar o estilo arquitetural todos os anos. No entanto, o processo de migração

de um monolito para uma arquitetura orientada a microserviços tem um alto potencial de erros,

uma vez que existe falta de orientações sobre como conduzir o processo corretamente. Para

além disso, os microserviços introduzem muitos desafios diferentes que não são enfrentados

no desenvolvimento de um sistema monolitico.

Este trabalho pretende preencher algumas destas lacunas na investigação da arquitetura de

microserviços através da construção de um catalogo dos principais desafios enfrentados ao

adoptar o estilo arquitetural e soluções possíveis para estes. Por este motivo, um systematic

mapping study foi desenvolvido, analisando 54 artigos diferentes. Para além disso, 30

profissionais da industria responderam a questionario sobre o tema. Finalmente, para obter

dados adicionais da indústria, uma experiência de migração foi realizada e observada de forma

ativa.

Ainda, um dos desafios identificados – gestão de transações distribuídas – foi detalhado e uma

solução implementada usando o padrão de sagas coreografadas. A solução está publicamente

disponível como um projecto open-source.

Finalmente, vários peritos em microserviços avaliaram os resultados deste trabalho, incluindo

a solução desenvolvida para gestão de transações distribuídas, e deram feedback relativamente

ao valor deste trabalho.

Palavras-chave: microservices, migração, transações distribuidas, saga pattern, systematic

mapping study, questionario à industria.

viii

ix

Acknowledgements

First of all, I must thank with the deepest love to my mother and father, who showed me the

value of hard work for the things and people we love and always managed to provide everything

I ever needed to achieve all my objectives while improving as a human being.

I would also like to acknowledge my big sister, who has always been my second mother, for

showing me the value of logical reasoning and helping me improve it since I was a baby.

Also, I would like to thank my life partner for all the support, patience, and continuous

encouragement that she provided through the process of researching and writing this thesis. I

apologise for all the hours that I invested in this work and not on her, and for all the deep

breaths heard.

Furthermore, I must thank my thesis advisor Isabel Azevedo of ISEP, who instantly answers e-

mails with all the help anyone would ever need and is always ready for a meeting to discuss the

work. Without her availability to help when I ran into trouble, this accomplishment would

probably not be achieved.

Moreover, I want to thank all the amazing human beings and extraordinary professionals that

have taught me all I know, during all the years of study and work, which allowed me to become

the Software Engineer I am today.

I would also like to thank all the participants of the industry survey for providing me with

valuable data who made this work possible.

Finally, I must thank the experts who were involved in the validation survey for this project.

Without their passionate participation and input, the validation survey could not have been

successfully conducted.

Thanks to all of you, who made this accomplishment possible.

x

xi

Table of Contents

1 Motivation ... 1

1.1 Context ... 1

1.2 Document structure .. 4

2 Value analysis ... 5

2.1 New Concept Development Model ... 5

2.2 Opportunity identification .. 6

2.3 Opportunity analysis ... 7

2.4 Idea Generation and Enrichment .. 8

2.5 Idea Selection ... 9
2.5.1 Analytic Hierarchy Process (AHP) ... 9

2.6 Concept Definition .. 13
2.6.1 Value proposition .. 13

3 Background .. 17

3.1 Microservices architecture ... 17
3.1.1 Benefits ... 18
3.1.2 Attention points ... 19
3.1.3 Consistency, availability and partition-tolerance 22

3.2 Software refactoring .. 23

4 State of the art ... 25

4.1 Microservices migration research ... 25
4.1.1 Existent approaches .. 25
4.1.2 Comparison of existent approaches .. 27

4.2 Distributed transactions .. 29
4.2.1 Two-phase commit (2PC) .. 29
4.2.2 Saga .. 29
4.2.3 Comparison of existent approaches .. 35

4.3 Related technologies ... 36
4.3.1 Two-phase commit (2PC) .. 36
4.3.2 Saga pattern.. 37

5 Problem statement .. 41

5.1 Problem description .. 41

5.2 Objectives .. 43

5.3 Contributions of this work ... 43

5.4 Work methodology .. 44

xii

6 Microservices migration research ... 45

6.1 Design... 45
6.1.1 Requirements ... 45
6.1.2 Design alternatives ... 46
6.1.3 Final design .. 48

6.2 Data from research literature .. 57
6.2.1 Conducting the search for primary studies .. 57
6.2.2 Screening .. 57
6.2.3 Classification system... 59
6.2.4 Coding: data extraction and aggregation .. 59
6.2.5 Analysis and report ... 62

6.3 Data from industry ... 66
6.3.1 Introduction ... 66
6.3.2 Existing system analysis ... 70
6.3.3 Designing the new architecture.. 72
6.3.4 Implementing the new system ... 75
6.3.5 Questionnaire feedback ... 79

6.4 Participant observation ... 79
6.4.1 Context ... 80
6.4.2 Design of the new system ... 80
6.4.3 Migration process ... 82
6.4.4 Monitoring ... 83
6.4.5 Testing ... 84

6.5 Results summary .. 84
6.5.1 Technical challenges and solutions catalogue 85
6.5.2 Migration approaches catalogue ... 88

6.6 Threats to validity .. 89

7 Distributed transactions solution .. 91

7.1 Analysis ... 91
7.1.1 Context ... 91
7.1.2 Domain model ... 92
7.1.3 Requirements ... 94
7.1.4 Design alternative .. 96

7.2 Design and implementation... 97
7.2.1 Logical view ... 97
7.2.2 Implementation view .. 99
7.2.3 Use cases specification ... 104
7.2.4 Implementation process .. 107

8 Evaluation .. 109

8.1 Work validation by experts of the field ... 109
8.1.1 Preparation ... 111
8.1.2 Evaluation .. 111

9 Conclusions .. 117

xiii

9.1 Achieved objectives... 117

9.2 Difficulties along the way .. 118

9.3 Future work .. 119

References .. 121

Appendix A .. 125

Appendix B .. 134

Appendix C .. 138

xiv

xv

Table of Figures

Figure 1 - The new concept development (NCD) (Koen et al., 2001) .. 6

Figure 2 - AHP hierarchical model tree .. 10

Figure 3 – Types of corporate systems (Baškarada et al., 2018).. 21

Figure 4 - Architectural refactoring catalogue example (Zimmermann, 2015) 24

Figure 5 – Successful choreography example .. 31

Figure 6 – Failed choreography example ... 32

Figure 7 - Successful orchestration example ... 33

Figure 8 - Failed orchestration example .. 34

Figure 9 - Service transaction management. ... 42

Figure 10 - Microservices migration challenges study design ... 49

Figure 11 - Systematic mapping study stages .. 50

Figure 12 - Questionnaire overall structure (Saaya et al., 2007) ... 55

Figure 13 - Systematic mapping study classification framework ... 59

Figure 14 - Questionnaire - Participants professional experience (X: years of experience, Y:

Number of responses) .. 66

Figure 15 –Questionnaire - Participants professional role .. 67

Figure 16 Questionnaire – Description of the system before migration 67

Figure 17 - Questionnaire - Number of services before migration (Y: Number of responses, X:

Number of services) ... 68

Figure 18 - Current stage of migration ... 68

Figure 19 - Pie chart of migrations delivery time ... 69

Figure 20 - Questionnaire - Reasons to migrate to microservices ... 69

Figure 21 - Questionnaire- Sources used to analyse the existing system 70

Figure 22 - Questionnaire - Reasons for analyzing the existing system..................................... 71

Figure 23 -Questionnaire - Main challenges faced while analyzing the existing system 71

Figure 24 - Questionnaire - Activities performed while designing the new system 72

Figure 25 - Questionnaire - New architecture documentation method 73

Figure 26 - Questionnaire - Value delivery plan for the migration .. 74

Figure 27 - Questionnaire - Main challenges of designing the new system 74

Figure 28 - Questionnaire - Migration strategy to begin the implementation 75

Figure 29 - Questionnaire - First functionalities to migrate strategy... 76

Figure 30 - Questionnaire - Migration process used to adopt the new system 76

Figure 31 - Questionnaire - Data migration strategy ... 77

Figure 32 - Questionnaire - Planned number of services vs final number of services 78

Figure 33 - Questionnaire - Main challenges faced when implementing the new system 79

Figure 34 - Participant observation system high-level view .. 81

Figure 35 - Strangler pattern example (Narumoto et al., 2017) .. 82

Figure 36 - Event decorating example ... 83

Figure 37 - Sapher domain model .. 93

Figure 38 – Sapher use case diagram ... 95

xvi

Figure 39 – Orchestrated sagas solution high-level view ... 96

Figure 40 - Sapher high-level design view .. 98

Figure 41 - Sapher configuration implementation view .. 99

Figure 42 - Sapher handlers mediation .. 100

Figure 43 - Sapher execution state handling .. 101

Figure 44 - Sapher logger extensibility ... 102

Figure 45 - Sapher persistence extensibility... 103

Figure 46 - Sapher configuration sequence diagram ... 104

Figure 47 - Sapher state load sequence ... 104

Figure 48 - Sapher compensation actions .. 105

Figure 49 - Sapher retry execution ... 105

Figure 50 - Sapher idempotency .. 106

Figure 51 - Sapher timeout policy execution ... 106

Figure 52 - Research validation - Participants job titles ... 112

Figure 53 - Research validation - Main challenges grade ... 113

Figure 54 - Research validation – Solutions and best practices grade 114

Figure 55 - Distributed transactions solution evaluation – non-functional requirements 115

Figure 56 - Distributed transactions solution evaluation - functional requirements evaluation

 .. 115

xvii

Table of Tables

Table 1 - AHP evaluation table ... 11

Table 2 - AHP normalized matrix ... 11

Table 3 - AHP criteria priorities .. 11

Table 4 – Business model canvas ... 15

Table 5 – Comparison of previous microservices research works ... 28

Table 6- Saga alternatives comparison .. 35

Table 7 - Comparison of distributed transactions implementations ... 36

Table 8 - Saga technologies comparison .. 39

Table 9 – Microservices migration challenges requirements .. 45

Table 10 - Research question 1 following the PICOC framing (RQ1) .. 52

Table 11 - Research question 2 following the PICOC framing (RQ2) .. 52

Table 12 - Research question 3 following the PICOC framing (RQ3) .. 53

Table 13 - Microservices migration challenges systematic mapping study applied I/E criteria 53

Table 14 - Selected papers after the screening stage of the systematic mapping study 57

Table 15 - Problems identified in systematic mapping study .. 60

Table 16- Solution and approaches identified in systematic mapping study 60

Table 17 - Best practices identified in systematic mapping study ... 61

Table 18 - Design patterns identified in systematic mapping study .. 61

Table 19 -Five most referenced challenges in the literature ... 62

Table 20 - Most common challenges classsification (avoidable or intrinsic) 64

Table 21 - Most common solutions to adopt the microservices architecture 64

Table 22 - Questionnaire - Planned Number of Services vs Final number of services............... 78

Table 23 Distributed transactions solution non-functional requirements 94

Table 24 – Data model for saga transaction .. 97

Table 25 - Likert scale ... 110

Table 26 - Mean intervals for the evaluation of the problems identified 110

Table 27 - Mean intervals for the evaluation of the solutions and patterns identified 110

Table 28 - Research validation - Participants years of experience .. 112

Table 29 – Distributed transactions solution evaluation – Means .. 116

Table 30 - Work evaluation - total means .. 116

Table 31 - Objectives achievement .. 117

xviii

xix

Acronyms and Glossary

Acronyms

ACID Atomicity, Consistency, Isolation, and Durability. An ACID transaction consists

of a group of requests in which all of them must be successful. This mechanism

ensures database consistency by coordinating multiple requests. If one fails, all

the previous ones are rollback. For this reason, either all of the requests are

successful or all fail, and the database remains consistent (Richards, 2015).

CRM Customer-relationship management.

DevOps DevOps constitutes a methodology focused on unifying software development

(Dev) and IT Operations (Ops) (Trihinas et al., 2018). It is composed of a set of

practices that use automation and monitoring to improve the efficiency of the

software creation process (Trihinas et al., 2018).

ERP Enterprise resource planning.

ESB Enterprise Service Bus.

SI Sample Issue.

SOA Service Oriented Architecture.

Glossary

Organizational Agility “capacity to flexibly respond to changes in the environment by quickly

adjusting product and service offerings” (Baškarada et al., 2018)

xx

1

1 Motivation

This chapter has the objective of introducing the work described in this document. It contains

the motivation context and the structure of this document.

1.1 Context

Over the years, there has been some debate on the comparison of monolithic application

architecture with modular application architecture and the advantages and disadvantages of

each one (Strimbei et al., 2015).

Regarding monolithic architecture, the literature does not define the term accurately. In 1998,

Aoyama referred to monolithic architecture as the “conventional” approach (Aoyama, 1998).

He argued that systems should be developed towards a more “component-based software

engineering” (CBSE) approach to take better advantage of object-oriented software reuse

possibilities. He also lists this architectural style along with the waterfall software development

approach, stating that this was the old style of software development - before the rise of the

internet technology - which goes against the needs of the market with the widespread usage of

internet and personal computers (Aoyama, 1998). However, Aoyama never clearly defined the

monolithic architecture. In 2012, having as a starting point the Aoyama article, Lake elaborates

this definition, considering that a monolithic system consists of an integrated architecture

where all the fundamental application elements are organised together in a single executable

or unit (Lake, 2012).

In his vision, in a monolithic system “the user interface elements can be mixed with the program

logic, and the data management code”, he argues that this approach has the advantage of

having lower complexity on the interaction between the different modules of the system as

they are gathered in a single unit of software (Lake, 2012). Also, it is easier to understand a

specific process as all the elements of it can be found in the same codebase (Lake, 2012). In

2017, the monolith was more formally defined: “A monolith is a software application whose

modules cannot be executed independently.” (Dragoni et al., 2017).

2

In general, the “monolith” and “monolithic” terms are used for lack of a better designation to

refer to a system in which the different architectural elements are together in a single

executable, unit or block (Strimbei et al., 2015).

Due to this nature, these system components are maintained and packaged together,

distributed and deployed as a whole (Dragoni et al., 2017). Some of the benefits of this

architectural style were mentioned before. However, this approach also suffers from different

issues, for example:

 Any change in any module of the application requires the entire system to reboot,

which can cause downtimes (Dragoni et al., 2017).

 Usually, the strategy to increase the capacity of an application to handle more requests

simultaneously is to create more instances of the same software, splitting the load

between them. When a performance bottleneck is detected, it is usually produced by

only one of the modules. However, with a monolithic approach, the entire system must

be replicated instead of a single module, which is naturally a waste of resources (Ren

et al., 2018).

 Monolithic applications size grows over the years, which can cause the system

maintainability to be reduced as its complexity increases if good software design

practices are not followed. It leads to a “product unmaintainable with a reasonable

effort” (Fritzsch et al., 2018).

The increasing use of cloud computing environments and hardware virtualisation makes this

issues more relevant, as the industry moves their efforts of software development towards

better scalability and reduced infrastructure costs (Dragoni et al., 2017).

In order to create competitive advantage, it is becoming increasingly critical for companies to

have that kind of flexibility on their systems, in order to achieve greater organisational agility –

“capacity to flexibly respond to changes in the environment by quickly adjusting product and

service offerings” (Baškarada et al., 2018).

For all these reasons, some systems get to a certain point where there is an identified need for

restructuring this kind of systems by researchers of the field (Strimbei et al., 2015).

Microservices oriented architecture has been regarded as a promising solution (Baškarada et

al., 2018) that conjugates scalability, maintainability, ease of deployment, reduced

infrastructure costs, technology heterogeneity, resilience, reusability, among others (Carrasco

et al., 2018).

Some authors still suggest that software development should begin with a monolith, but over

time and with better knowledge of the system complexities it should be migrated to a

Microservices oriented architecture to avoid the limitations of a monolithic architecture (Fowler,

2015a). This pattern is usually called “Monolith First”.

The microservices architectural style is a recent trend in the software engineering community

since it was first publicly proposed by Fowler and Lewis in 2014 (Fritzsch et al., 2018). However,

3

the term was first discussed at a workshop near Venice in 2011 where different authors and

experts of the field debated some techniques similar to the microservices architecture,

including some of the SOA principles (Fowler and Lewis, 2014). These techniques and principles

were consolidated in the microservices architectural style and that definition started the

referred trend.

The literature defines microservice as a small application (generally less than a couple of
thousand lines of code) with a single responsibility (a functional, non-functional, or cross-
functional requirement) that can be independently deployed, scaled, and tested (Baškarada et
al., 2018). It must be cohesive and independent of other processes, interacting with them via
messages using a clearly defined interface (Dragoni et al., 2017).
In 2017 a microservice architecture was defined as “a distributed application where all its

modules are microservices” (Dragoni et al., 2017).

On the microservices architectural style, each module of the system must be identified and

isolated on a single microservice. Therefore, the functionality must be divided through the

services using the appropriate granularity, to achieve high cohesion inwards and loose coupling

outwards (Fritzsch et al., 2018).

Even though a microservice is usually not as complex as a monolithic system, the microservice

does not constitute a system by itself, so this comparison is misleading (Baškarada et al., 2018).

The complete microservice architecture is composed of all the microservices communicating

between each other, and that is what constitutes the system (Dragoni et al., 2017). Therefore,

the development of a microservice is more straightforward than the construction of a

monolithic system, but it must be deployed and integrated with the rest of the system to have

value (Carrasco et al., 2018).

Following this architectural style, the following advantages can be achieved (Ren et al., 2018):

 All the components of a system are deployed independently, and each one can follow

a different technology stack

 When a bottleneck is identified on a single component, the available resources can be

used to replicate it, which was not possible with the monolithic approach, and naturally

leads to better usage of the available resources.

Furthermore, the flexibility that microservices allow contributes to better reusability and makes

it easier to replace a single component of the system, without necessarily having downtime,

like on monoliths (Carrasco et al., 2018). The authors highlight the possibility of the

development team to use different technology stacks on each component.

For all these reasons, different companies are migrating their monolithic systems to this

microservice architecture, including Amazon, Netflix, Google, IBM, Uber, Alibaba, among others

(Ren et al., 2018).

4

1.2 Document structure

This document is divided into 9 different chapters, which are followed by references and

appendix sections.

1. This first chapter introduces the reader to the developed work by presenting the

motivation context and the document structure.

2. Value analysis - presents the value analysis of this work, containing the different steps

of the new concept development model of Peter Koen and a business model canvas of

the project.

3. Background- describes different crucial concepts related to this work that may help the

readers understand the following chapters.

4. State of the art – the most recent stage in microservices adoption research and

distributed transactions management solutions are described and compared, along

with related technologies.

5. Problem statement – describes the problem to be addressed, the work objectives and

contributions, and the work methodology used.

6. Microservices migration research - the design of the performed research is defined and

justified. Also, the systematic mapping study, industry questionnaire and participant

observation study are described, and the results analysed.

7. Distributed transactions solution – the analysis of the implemented solution is

described along with a technical description of the developed software.

8. Evaluation - evaluates the quality of the final work using an industry questionnaire

answered by experienced professionals of the field and hypothesis testing using the

questionnaire provided data.

9. Conclusions – describes the conclusions obtained with the outputs of this work. In this

chapter, the achieved objectives are described along with the difficulties faced during

this project, contributions of the accomplished work and future work that can be done

or continued in this topic.

5

2 Value analysis

This chapter describes the value analysis of this work. “Value analysis is a systematic, formal

and organised process of analysis and evaluation” (Rich and Holweg, 2000) of possible solutions

to a specific problem with the purpose of improving the value of a product. Therefore, this

chapter has the objective of analysing the value for the customer this work creates.

In order to create value, this analysis verifies if the product meets the needs of the customer

and increases the product value by reducing the costs and/or improving product performance.

Reducing costs that bring no benefit to the customer and that do not have any impact on the

product performance naturally increase the profit and therefore the value provided by the

product.

On the following sections, the value analysis will be supported by the use of the New Concept

Development (NCD) model of Peter Koen (Koen et al., 2001). Furthermore, the value

proposition will also be described and illustrated by a business model canvas.

2.1 New Concept Development Model

The NCD model was developed to define best practices in the innovation process of creating or

establishing a product. This model provides a method to improve this process by defining a

universal language that distinguishes the different stages of an iterative process of innovation

(Koen et al., 2001).

The model consists of three key components:

 Five controllable key activity elements

o Opportunity identification;

o Opportunity analysis;

o Idea generation and enrichment;

o Idea selection;

6

o Concept definition

 The engine that powers the elements (leadership, culture, and business strategy);

 Influencing factors, which affect the innovation process and cannot be controlled by

the corporation (organisational capabilities, the outside world, and the enabling

sciences).

Figure 1 illustrates this model as a relationship model and not a linear process. This means that

ideas and concepts can iterate and move back and forwards across the five key elements, like

the circular shape and the arrows between the key elements suggest.

Figure 1 - The new concept development (NCD) (Koen et al., 2001)

Furthermore, the engine “represents senior and executive-level management support and

powers the five elements of the NCD model” (Koen et al., 2001). The engine and the five key

elements are influenced by the base of the circle, the influencing factors. Finally, the arrows

indicate that projects begin at Opportunity Identification or Idea Generation & Enrichment but

only leave the model after the Concept Definition.

“The influencing factors are the corporation’s organisational capabilities, customer and

competitor influences, the outside world’s influences, and the depth and strength of enabling

sciences and technology” (Koen et al., 2001).

The engine consists of leadership, culture and business strategy and “sets the environment for

successful innovation” (Koen et al., 2001).

2.2 Opportunity identification

This element has the objective of identifying opportunities that might be pursued. They can be

a “possibility to capture competitive advantage, or a means to simplify operations, speed them

up, or reduce their cost” (Koen et al., 2001). Opportunity identification may come from an

individual that recognises an unmet customer need or a problem to be solved.

7

One of the main techniques used to identify opportunities is technology trend analysis, which

consists of gathering information regarding technological trends and defining opportunities of

process or product improvement that may arise from it. This was the technique used in this

work.

An Increasing trend in microservices migration

Like defined in the context section of the previous chapter, there is a clear technology trend in

migrating monolithic systems to the microservices architecture. This happens because over

time the monolithic system size increases and becomes harder to manage. This mainly affects

the maintainability and scalability of the system but also has an impact on the software

development lifecycle and on organisational flexibility as the time needed to release new

features increases. The microservices architecture suggested by Martin Fowler in 2014 (Fowler

and Lewis, 2014) is a commonly chosen proposal to solve these problems. However, the

migration of a system to the microservices architecture may cause issues that have costs for

the companies that want to follow this architectural refactor. Nonetheless, the benefits that

the microservices architecture provides already proved to be worth the migration costs with

reference companies in the software engineering field like Amazon and Netflix migrating their

systems to this architectural style and evangelising it across the industry.

Therefore, an opportunity is identified in this migration process. If the migration costs or the

costs of the microservices architecture itself are reduced, then the microservices architectural

style becomes a more appealing solution for companies. It enables them to increase the

maintainability and scalability of their systems while reducing the time-to-market of new

features implemented in their software systems, at a reduced cost.

2.3 Opportunity analysis

This stage of the NCD model has the objective of analysing the identified opportunity to confirm

its viability. For that, additional information is required so that the opportunity identified can

be defined as a specific business and technology opportunity. This involves making early and

often uncertain technology and market assessments. The technique used may be the same used

on the opportunity identification stage, but while it was used with the objective to determine

if an opportunity existed, now more resources are expended so that the opportunity is defined

with further detail to verify its appropriateness and attractiveness (Koen et al., 2001). The

opportunity identified in the previous section is therefore analysed so that it is possible to

understand it better and the possibilities of value it may provide.

Since the official definition of microservices, there are multiple reports of migration processes,

systematic literature reviews regarding the subject and studies of best practices and patterns

for the microservices architecture style and for the migration process. These documents report

multiple common problems that still have no explicit or linear solution. They include

fundamental intrinsic issues of the microservices architecture style, like dealing with distributed

8

transactions across microservices and data synchronisation and consistency across multiple

databases. Issues of distributed systems, for instance, network-related problems, are another

inherent problem of the microservices field. The lack of clear guidelines for the migration of

monolithic systems to the microservices architecture is also reported, along with unexpected

complexity on the start of the microservices development. Furthermore, it is stated that it is

hard to have uniformity across microservices structures and that there is a need to have high

levels of automation on the deployment and testing processes of the microservices architecture.

This analysis defines multiple technical challenges that may be addressed regarding the

microservices architecture, pre and post-migration from a monolithic system. All of them

constitute an opportunity that can bring value to the customer.

2.4 Idea Generation and Enrichment

This key element of the NCD model may be a formal process with the objective of generating

new or modified ideas for the identified opportunity. It consists of “the birth, development, and

maturation of a concrete idea.” (Koen et al., 2001).

“Ideas may be generated by anyone with a passion for a particular idea, problem, need, or

situation.” (Koen et al., 2001).

On this work, the brainstorming technique was used in order to generate and enrich ideas for

the identified opportunity. From the brainstorming sessions, the following enumerated ideas

were made. These ideas contribute to the objectives of this work by defining approaches to

mitigate possible challenges of microservices migrations or by solving specific issues of this

process.

1. Migrate a monolithic system to a microservices architecture. The objective of this idea

is to identify the problems of this kind of migrations through practical experience,

defining solutions for the challenges faced.

2. Define a technical guide with best practices, conventions, and guidelines for

microservices migration. This idea has the purpose of defining technical guidelines to

avoid some of the common problems of the microservices architecture migration

process, or at least reduce their impact and costs.

3. Implement a solution to facilitate the distributed transactions management in a

microservices architecture. On this idea, the focus is narrowed to a specific issue that

should be solved and studied with more detail.

4. Use static analysis to inspect the existent monolithic system and generate suggestions

for the boundaries of each of the microservices to be developed – This idea provides

a tool to automatically define the boundaries of each one of the components of the

microservices architecture to be implemented, based on the existent monolithic system.

5. Use model-driven software engineering (MDSE) to create the microservices

architecture system based on a defined metamodel – This idea uses the MDSE

9

approach to generate a skeleton of the microservices architecture providing a typical

structure for all the components of the microservice architecture.

6. Develop a framework or tool to implement automated integration tests between the

different components of the microservices architecture – The framework or tool

developed has the objective of simplifying the process of developing automated tests

in the microservices architecture.

2.5 Idea Selection

Idea Selection is the element of NCD where the idea with the most value is selected. This

process is affected by insights from the influencing factors and directives from the engine (Koen

et al., 2001). After the idea has been selected, further effort will be invested in pursuing and

defining it with more detail. The selection process can be just an individual choice between

many self-generated options. Usually, this stage is sustained by early personal judgements, with

only the idea itself to consider and without more information. Some techniques traditionally

used on this process and applied on this work are technical success probability and the strategic

fit.

2.5.1 Analytic Hierarchy Process (AHP)

Analytic Hierarchy Process (AHP) is a method to help on the decision-making process,

developed in 1980 by Thomas L. Saaty. In order to explain complex decision-making problems,

the method models the problem into hierarchical elements. The hierarchy levels are the

primary objective, the criteria that define a right decision, and the alternatives that are being

considered (Ulkhaq et al., 2018). Therefore, this method was chosen to select the idea that

brings the most value from the alternatives described in the Idea Generation and Enrichment

section.

Following the AHP method, the hierarchy tree presented in Figure 2 was developed. The first

layer defines the main objective of this work that the selected idea should help achieve.

Furthermore, the middle layer consists of the following criteria used to evaluate each one of

the ideas and choose the best one accordingly.

 Time Restrictions – If the idea presents time restrictions as this work has a pre-defined

due date and is limited by it.

 Infrastructure Restrictions – Mandatory Infrastructure requirements for the idea

success. The infrastructure available for this work is limited.

 Current Relevancy – Current value for the stakeholder. One of the objectives of this

work is to increase the knowledge of the current state of the microservices architecture

research, practice, challenges and needs

 Technical success probability – If the idea is achievable with the restrictions of this work

with a high success probability.

10

Figure 2 - AHP hierarchical model tree

Finally, on the lowest hierarchical level, the six ideas described in the Idea Generation and

Enrichment section are presented.

Based on these criteria, it is possible to evaluate and select the best idea to achieve the main

objective. Table 1 below describes the considered weight for each of the criterions following

the AHP scale. To accomplish the primary goal of this work, it is essential that the idea is

currently relevant and presents the current value. Given the type of project described in this

document, there are also some time and infrastructure restrictions that should be considered,

as well as the probability of technical success of the chosen idea.

11

Table 1 - AHP evaluation table

Evaluation Criteria Time
Restrictions

Infrastructure
Restrictions

Current
Relevancy

Technical
success
probability

Time Restrictions 1 2 0.33 0.50

Infrastructure
Restrictions

0.50 1 0.25 0.33

Current Relevancy 3 4 1 3

Technical success
probability

2 3 0.33 1

Sum 6.5 10 1.91 4.83

After defining the weight of each criteria using a pairwise comparison on the table above, the

matrix must be normalised to retrieve the priorities of each measure by calculating the mean

value of each row. To generate the normalised matrix each cell should be divided the total of

the correspondent column. This is presented in Table 2.

Table 2 - AHP normalized matrix

Evaluation
Criteria

Time
Restrictions

Infrastructure
Restrictions

Current
Relevancy

Technical
success
probability

Mean

Time
Restrictions

0.154 0.2 0.173 0.104 0.158

Infrastructure
Restrictions

0.077 0.1 0.131 0.068 0.094

Current
Relevancy

0.462 0.4 0.524 0.621 0.501

Technical
success
probability

0.308 0.3 0.173 0.207 0.247

Sum 1 1 1 1 1

Calculated the normalised matrix, it is possible to define the priorities of each criterion for the

process of idea selection. This is defined in Table 3 below.

Table 3 - AHP criteria priorities

Priority Criterion Rate

1 Current Relevancy 50.1%

2 Technical Success Probability 24.7%

3 Time Restrictions 15.8%

4 Infrastructure Restrictions 9.4%

12

The AHP method concludes that the current relevancy is the most important criterion to apply

while selecting the idea with the most value. Technical success probability comes after,

followed by time restrictions and then infrastructure restrictions. Therefore, we can now

analyse the described ideas based on these priorities to select one.

1. Migrate a monolithic system to a microservices architecture – There are multiple

reports of migrated monolithic systems, and most of the migrations did not solve any

problem or largely increased the knowledge of the community. Therefore, this idea is

not considered currently relevant. Furthermore, it would require high infrastructural

resources which are not available for this work.

2. Define a technical guide with best practices, conventions, and guidelines for

microservices migration - This idea may be considered currently relevant as there is an

evident lack of guidelines on microservices migrations reported on the literature.

However, it may not respect the time restrictions of this work. Furthermore, this is a

highly sophisticated solution that may not be able to achieve high technical success.

3. Implement a solution to facilitate the distributed transactions management in a

microservices architecture - This idea is currently relevant as it solves a recently

reported issue and can be designed to achieve a high technical probability of success

and respect the time restrictions. It may present some difficulties regarding

infrastructure restrictions, but they can be surpassed.

4. Use static analysis to inspect the existent monolithic system and generate suggestions

for the boundaries of each of the microservices to be developed – There are multiple

solutions and studies regarding this topic. Therefore, this idea is not considered

currently relevant as it has already similar solutions on the market.

5. Use model-driven software engineering (MDSE) to generate the microservices

architecture system based on a defined metamodel – This idea is currently relevant as

it solves some of the reported problems using a different approach. However, the

technical success probability of this idea may be hard to measure as it is a disruptive

idea with some uncertainty level.

6. Develop a framework or tool to implement automated integration tests between the

different components of the microservices architecture – Similarly to idea 4. There are

multiple solutions to perform automated integration testing on the microservices

architecture. Therefore, this was not considered a currently relevant idea.

Therefore, following the analysis and comparison of each one of the ideas, the selected plan to

achieve the objectives of this work is idea 3 - Implement a solution to facilitate the distributed

transactions management in a microservices architecture.

13

2.6 Concept Definition

This project has the purpose of identifying the current state of microservices architecture

adoption. This study should provide a list of the most common problems since the year this

work started (2018). The research can use methods like literature review, and industry surveys

or interviews. Therefore, the main requirements are an increased knowledge of the

microservices architecture and a catalogue of common challenges and best practices in

microservices adoption. Also, the implementation of a solution to manage distributed

transactions should be provided. It should be reusable by multiple teams, providing a generic

and abstract approach that can be adapted to any microservices oriented system with reduced

costs.

The value of the concept defined above will be described in more detail in the following sections

where a business model canvas of the solution is presented.

2.6.1 Value proposition

As mentioned in the previous sections and chapters, based on various public documents, there

is a trend of companies migrating their systems to a microservices oriented architecture to be

more flexible. This flexibility is related to their capacity of adapting to environmental changes

or business needs (organisational agility) with inferior costs, which can be achieved with a

microservices oriented architecture as it improves the maintainability of the system, as

explained before. Furthermore, one of the advantages of microservices is having more flexible

scalability and optimised infrastructural costs.

However, even with companies which are references in the software development industry,

like Amazon and Netflix migrating their systems to the microservices architecture, there are still

some significant issues in this process as related on public documentation and the answers of

an industry questionnaire developed and analysed in this project.

This work intends to help solve this problem by analysing and compiling all the issues reported,

identifying the most common ones and finding the best solutions for them. Furthermore, this

work defines a clear separation between avoidable problems and intrinsic problems of this

process that cannot be avoided, but which impact can be minimized.

Also, distributed transactions, which is one of the main challenges, will be further detailed and

addressed to implement a solution and reduce this issue when migrating to the microservices

architecture.

Therefore, with this work, companies will be able to migrate to microservices architectures with

reduced costs. Also, the final system may be better engineered than without the knowledge

generated by this work, and for that reason, this work can improve the maintainability,

performance, reusability, and other characteristics of the system, which leads to a more

resilient system which can be easily adapted to future business needs. Additionally, a clear

14

solution for distributed transactions will be provided so teams that want to implement

microservices architecture will have one less challenge to face.

In order to present this idea in a more structured way, the following Canvas model was

developed. Therefore, analysing the model shown in Table 4, stakeholders can find the answers

to some business questions like for example Key Partners, Key Activities, Key Resources, Value

Proposition, Customer Relationships, Channels, Customer Segments, Cost Structure, and

Revenue Streams.

Table 4 cost structure and revenue streams sections clearly show the main reason for the value

of this solution. There are almost no costs on using the developed solution, but there are many

benefits like providing more resilient systems with higher maintainability, reusability, and

increased performance while reducing the overall infrastructural costs of the system. All these

benefits are related to the correct use of the microservices architecture and avoiding the main

problems of migrating monolithic systems to microservices.

15

Table 4 – Business model canvas

Key Partners

-Google Scholar,
ACM, IEEE, and
other digital
libraries.

-The industry
professionals
that answer the
questionnaires.

-Companies
willing to
participate in
the study, both
through
answers to
questionnaires
and providing
support to
experiments.

Key Activities

-Systematic
Literature
Review to
identify
common
problems and
solutions.

-Industry
questionnaire to
confirm the
literature review
findings.

-Design and
implementation
of a solution for
the distributed
transactions
issue

Value Propositions

-Identification of the
currently most
common challenges
faced adopting a
microservices
architecture. This
allows companies to
avoid or at least be
aware of these
problems, leading to
an overall better
microservice
oriented final
system.

-The solution
provided to the
distributed
transactions
challenge will also
reduce the costs of
microservice
architecture
adoption as there will
be fewer problems to
address.

Customer
Relationships

-Industry
questionnaires
identifying the
most common
problems and
evaluating the
final solution
viability and
quality.

-Implementation
of the final
solution in an
interested
company.

Customer
Segments

- Companies
that are
interested in
performing a
microservice
migration or
solving
problems
that they are
currently
facing on
microservice
oriented
systems.

Key Resources

- Public
documentation
regarding
microservices
architecture and
migrations.
- Industry
knowledge of
the field

Channels

Digital Libraries,
Technology blogs,
Technology
conferences,
Companies
presentation

Cost Structure

- The knowledge provided by the study has
no costs.
- The solution developed may require some
infrastructural costs to be used.

Revenue Streams

- Reduced technical debt;
- Reduced migration time;
- Reduced infrastructure costs;
- Possibly faster development of new features;
- Solution to some of the most common
problems;

16

17

3 Background

This chapter presents key concepts related to microservice architecture (Section 3.1) and

software refactoring (Section 3.2) which are important for the correct understanding of the rest

of the document.

3.1 Microservices architecture

As mentioned before, Microservice, as a concept, was first discussed at a workshop near Venice

in May 2011, where the participants used the term to describe a typical architectural style that

they had been exploring. In May 2012, the group decided to keep the name and started to

spread the new architectural style they had defined on different conferences and case studies.

Some of the creators of the concept are Martin Fowler, James Lewis, Fred George, Adrian

Cockcroft, among others (Fowler and Lewis, 2014). The architectural approach started to get

followers at a fast pace, but it was after the publication of Martin Fowler and James Lewis

regarding the topic on grey literature that more articles and case studies started to appear and

the adoption of the concept increased (Pautasso et al., 2017a, p. 1).

The following definition of the concept, defined by Sam Newman and detailed in his book

“Building Microservices” in 2015, will be the one used in this document: “Independently

deployable services that work together, modelled around a business domain”.

A microservice is an independent component that can be deployed in isolation. However, a

microservice alone presents no value which leads to the concept of microservices architecture:

“A microservice architecture is a distributed application where all its modules are microservices”

(Dragoni et al., 2017). Therefore, a microservices oriented system consists of a distributed

application in which its behaviour depends on the communication, composition, and

coordination of its microservices via messages (Dragoni et al., 2017).

Microservices are one of the latest trends in software architecture, an evolution of the older

concept of Service Oriented Architecture (SOA), but while SOA relies on heavyweight

18

middleware like Enterprise Service Buses (ESB) or SOAP WSDL (Web Services Description

Language), Microservices rely only on simpler technologies, like REST (Representational State

Transfer). Furthermore, SOA is usually viewed as an integration solution of already existent

systems, while microservices are typically used to develop new and individual software systems

(Jamshidi et al., 2018). As a curiosity, before the term “microservices” was established in 2011,

similar architectural styles were designed with different names being used. Netflix, for example,

used the name “Fine-Grained SOA” for their initial implementation of a similar architecture

(Dragoni et al., 2017).

With that in mind, microservices architecture defines that every microservice should have

specific and individual responsibility and are generally small and simple systems without

significant complexity. Furthermore, they are independently executable systems accessible

through a well-defined network interface and only deliver business value when executing

together with other microservices, forming a more complex final system (Larrucea et al., 2018).

This strategy increases software agility as each microservice can be independently deployed,

versioned, scaled, operated or even replaced without affecting any other service, as long as the

network interface is not changed (Jamshidi et al., 2018).

3.1.1 Benefits

Microservices independence emphasises loose coupling and high cohesion concepts, offering

different benefits to companies (Dragoni et al., 2017).

Flexibility

The modularity of a microservices oriented system allows an organisation to keep up with

changes in the business environment, providing high flexibility on the modifications necessary

for it to stay competitive on the market (Dragoni et al., 2017). This type of systems is designed

to have high independence and bounded context between its components, leading to high

maintainability while being able to add new features (Dragoni et al., 2017).

Maintainability

By definition, a microservice code is restricted to a single responsibility. Therefore, it is easier

to understand it than in a monolithic architecture. IDE’s can quickly load the code, and the build

is lighter than in a traditional monolith. Working with smaller code bases increases

development velocity and allows the development teams to have a real idea of the side effects

of any modification to the codebase.

Frequent and fast deliveries

As a microservices oriented system is composed of various small software components, it

naturally leads to a high number of software releases in which each version is faster as the size

of each element is smaller than traditionally. Typically, this is made using lightweight container

technologies and DevOps practices, with the deployment pipeline entirely automated, allowing

19

the team to deliver working software on arbitrary schedules in a matter of seconds (Jamshidi et

al., 2018).

Scalability

“Scalability” can be ambiguous. On one side, it can be the runtime scalability of the system,

referring to the system adaptability to handle a higher volume of requests. Alternatively, it can

be the development scalability, regarding the possibility of having multiple engineers working

on the software at the same time (Jamshidi et al., 2018). Either way, microservices improves

both kinds of scalability as the unit of scaling is each microservice.

Regarding the “runtime scalability”, each microservice can be scaled to support its specific

needs, independently of the rest of the system. If the microservice oriented system has a

performance bottleneck on a specific microservice, it can be scaled in isolation (Baškarada et

al., 2018). On the other side, “development scalability” is also improved as each microservice

can be developed, deployed and operated independently by different engineers or different

teams, which naturally allows the parallel introduction of new features (Jamshidi et al., 2018).

Technological heterogeneity and team autonomy

Each microservice is intended to be able to be autonomously developed, deployed and

executed. Therefore, this creates a bounded unit in which the team can make localised

decisions – for example, programming language, database technology, libraries and

frameworks, among others. Technology heterogeneity leads to a more scalable organisation,

where each team can define its strategy for the evolution of its services (Jamshidi et al., 2018).

Fault tolerance

On a monolithic architecture, a service with bugs can cause problems like performance issues,

memory leaks, connection failures or even the complete crash of the application. However, in

microservices architecture, only the specific service is affected. Microservices isolate system

errors and limit their impact across the system. With a well-designed microservice architecture,

errors are separated on a single function and do not propagate to the rest of the system,

allowing the distributed system to handle the failure on a more graceful way or even recover

from it.

3.1.2 Attention points

Section 3.1.1 made clear that there are some advantages for companies to implement

microservices. For that reason, renowned companies like Amazon, Deutsche Telekom, LinkedIn,

Netflix, SoundCloud, The Guardian, Uber, and Verizon are migrating their services to a

microservice oriented architecture (Larrucea et al., 2018). However, microservices also have

some less positive aspects that teams should be aware of before adopting the architectural

style.

20

Monolith decomposition

Migrating a monolith to the microservices architecture is considered less risky than

redeveloping an entire system as microservice architecture (Larrucea et al., 2018). However, it

is common for teams to face challenges associated with monolith decomposition (Baškarada et

al., 2018).

There must be a balance between the isolation of the service responsibilities and the right size

of the microservice. Each microservice must have a single responsibility, high cohesion, and low

coupling, but it should not be so small that the system becomes too complex (for instance doing

a single microservice for each possible single operation). Finding the right granularity for each

microservice is one of the biggest challenges of this kind of architecture (Fritzsch et al., 2018).

Continuous monitoring, integration, and delivery

First of all, microservices require continuous architecture monitoring and deployment,

versioning and deprecating of the services (Larrucea et al., 2018). DevOps practices can help

the teams with this, which is the main reason for the usual association of microservices with

DevOps practices. Some practitioners even reported that being able to apply DevOps practices

was the main reason for microservices adoption and vice-versa, clearly showing a positive

association of both guidelines (Baškarada et al., 2018).

However, if this kind of automations are not well established, the deployment process becomes

a bottleneck on the software development process (Baškarada et al., 2018), as the

microservices architecture typically has many services to be deployed.

Testing process complexity

The testing processes are more complex than in a traditional monolith (Larrucea et al., 2018).

A single microservice can be tested independently in a similar way that a single monolithic

system. A microservice is probably even quicker to be tested as it is usually smaller. However,

a microservice architecture presupposes various microservices are coordinating between each

other, and that is why whenever a microservice is changed, it needs to be tested along with all

the other microservices in which it depends or that depend on it. Thus, the testing process is

more complicated when comparing to a single monolith. These tests can include unit,

integration, system and acceptance testing. However, testing distributed systems is inherently

more challenging than testing centralised monoliths because they are less stable and have

different possible ways of failure and recovery. Testing all the possibilities is a challenge and

practically impossible. DevOps practices suggest automating all these tests to minimise the

issue, removing it as a bottleneck on the development process (Baškarada et al., 2018).

State management and data consistency

State management becomes more difficult (Larrucea et al., 2018) when using the microservices

architecture.

21

Following the microservices architecture guidelines, each microservice should have its data

store, which means that there is no single source of truth. Furthermore, complex business

processes usually require the use of a message broker to establish communication between the

different services. As a result, this asynchronous messaging may lead to inconsistencies in

individual data stores. Some prototypes have used a shared database between microservices

to deal with this problem, but this can be seen as out of pattern with the microservices

architecture guideline as each microservice is not entirely independent. For these reasons,

there is still some debate regarding orchestration and choreography of the communication

between the services. Microservices guidelines define that orchestration should be avoided

(opposite to the SOA approach). However, orchestration can be valuable to solve consistency

problems when implementing complex business processes (Baškarada et al., 2018).

No silver bullet

As microservices have a big hype around them, they are usually seen as a silver bullet to solve

all the problems of monolithic applications. However, their advantages come with many

attention points, as explained in this section, which can cause high costs for the teams.

Therefore, the teams should evaluate if microservices are the best approach for their system.

Alternatives without microservices should not be discarded, and all potential solutions should

be compared (Carrasco et al., 2018).

On a set of interviews with 19 software architects, all of them reported that microservices solve

most of the problems of monolithic applications. However, they are no silver bullet for all kinds

of systems (Baškarada et al., 2018). Figure 3 illustrates the architects’ point of view.

Figure 3 – Types of corporate systems (Baškarada et al., 2018)

One of the main benefits of the microservices architecture is the adaptability to changes in

business requirements and the flexibility regarding infrastructural costs. Therefore, they

represent a viable solution for systems that have constant changes in business requirements or

that require infrastructure support, among other use cases. However, they are not useful for all

kinds of software projects, mainly because of the complexity and overhead that they present at

the beginning of the development (Baškarada et al., 2018).

Also, some authors recommend starting the development of the software as a monolith and

only migrating it later to microservicesto first have a vision of the functional and non-functional

22

requirements. This knowledge allows the design of a reliable microservices oriented solution –

this technique is called Monolith First (Fowler, 2015a).

Furthermore, as stated previously in this section, microservice architecture can typically present

some consistency problems or delays. Therefore, if complete consistency is a requirement of

the software project, microservices may not be the way to go.

Requires experienced staff

As this approach is recent and presents a relatively high degree of technical complexity, it needs

experienced engineers or teams that can learn the technology (Larrucea et al., 2018). The

technical complexity derives in significant part from the fact that the microservices architecture

is inherently distributed and implementing and sustaining such a system is more complex than

monolithic software (Baškarada et al., 2018). The engineers must be aware of the requirements

of distributed computing and be ready to implement DevOps practices like continuous

integration, delivery, and monitoring. One of the challenges of distributed systems is how to

manage distributed transactions, which is an issue addressed by this work.

Distributed systems inherited problems

It also comes with a bundle of issues that are inherited from distributed systems and SOA, its

predecessor (Dragoni et al., 2017). Microservices developers and architects need to pay

attention to distributed systems challenges and issues, such as:

 Latency is not 0.

 Bandwidth is not infinite.

 The network may not be reliable.

 The network may not be secure.

 The network topology may change.

 The network may not be homogeneous.

 Transport cost is not zero.

For these reasons, all these topics must be considered when implementing a microservices

architecture. Therefore, experienced staff is required, and automated development processes

can be helpful to assure that microservices development does not become harder than

monolithic system development (Baškarada et al., 2018).

3.1.3 Consistency, availability and partition-tolerance

As previously described, microservices architecture assumes a distributed approach to web

services implementation, which usually have consistency, availability and partition tolerance as

desired characteristics of the system (Gilbert and Lynch, 2002). However, one of the standard

conjectures of software engineering, CAP Theorem or Brewer’s conjecture, states that a web

service cannot ensure more than two of those characteristics (Fox and Brewer, 1999). It was

proposed by Fox and Brewer in 1999 (Gilbert and Lynch, 2002) and proved by Gilbert and Lynch

in 2002. The reasoning behind this is that when a network partition happens, consistency can

23

only be ensured with some degree of unavailability while the partitions are synchronized. On

the other side, high availability is only possible to achieve without consistency, as there will be

some time where the partitions are not synchronised/consistent. Therefore, it is possible to

obtain high availability and consistency at the same time but only if the system is not partitioned

(Fox and Brewer, 1999).

Microservices architecture constitutes a partitioned system designed for high availability. For

this reason, CAP theorem is usually dealt with using the concept of eventual consistency

(Stricker et al., 2018). Consistency refers to how and when a client can see updates made to a

specific record of a storage system (Vogels, 2009). The author mentions two main types of

consistency:

 Strong consistency: After the update completes, any observer that accesses the object

will obtain the updated value.

 Weak consistency: It is not ensured that when an object is updated, all the following

accesses will retrieve the updated value. Before that, some conditions need to be met.

Inconsistency window is the name used to describe the period between the update and

the moment when any access will return the updated value.

Eventual consistency is a type of weak consistency. The storage system assurances that “if no

new updates are made to the object, eventually all accesses will return the last updated value.

If no failures occur, the maximum size of the inconsistency window can be determined based

on factors such as communication delays, the load on the system, and the number of replicas

involved in the replication scheme” (Vogels, 2009).

A distributed transaction consists of the communication between multiple services to

accomplish a single business transaction. Using eventual consistency, due to the

communication processes referred to as distributed transactions, the various microservices

may not be consistent at every moment.

3.2 Software refactoring

Refactoring is the process of improving the internal structure of software without altering its

external behaviour. It is mainly focused on improving non-functional requirements without

affecting the functional ones. It can be applied on different granularity levels, from code

refactoring to architectural refactoring. The term “refactoring” was introduced in 1990 by

William Opdyke and Ralph Johnson, and nine years later, Martin Fowler published a book

containing a catalogue of structural changes that were observed in multiple languages and

application domains (Murphy-Hill and Black, 2008). These structural changes are mainly code

refactoring techniques like methods or variables renaming, class splitting, among others. Over

the years, these techniques got much attention from researchers and practitioners and are

currently a mainstream practice of software engineering. There are manual and automatic tools

available to support this refactoring (Murphy-Hill and Black, 2008), with some of them being

24

included in the most recent Integrated Development Environments (IDE). Therefore, code

refactoring has been a success since it was first introduced.

However, architectural refactoring (AR) does not have the same support yet. AR consists of

activities that have the objective of solving indicators that the current architecture of the

system is not aligned with the current requirements and restrictions, which can cause issues

regarding maintainability, scalability, and others. These indicators are called architectural smells,

which is something that naturally happens over time with the incremental evolution of the

software (Zimmermann, 2015), and changes in both functional and non-functional

requirements.

Therefore, an AR improves one quality attribute of the system without affecting the overall

functionality. However, to achieve this, it might negatively influence other attributes, which is

a trade-off. The reasoning for this is that an AR revisits individual architectural decisions that

were made previously in the lifecycle of the project, but that may not be adequate for the

current requirements and restrictions. For these reasons, an AR selects alternative solutions for

architectural issues in order to achieve the current requirements and restrictions, which may

be different from the ones analysed when defining the initial architecture of the system. After

analysing the current requirements and deciding alternative solutions to the identified design

issues, the required changes must be implemented and documented. Contrary to code

refactoring, the implementation tasks of ARs usually refer to structural changes such as dealing

with components, subsystems and their interfaces. Some patterns in this kind of refactoring can

be identified, and Architectural Refactoring Catalogues emerge. Figure 4 represents an example

of an architectural refactoring catalogue. Migrating a monolithic system to a microservices

architecture can be considered an AR.

Figure 4 - Architectural refactoring catalogue example (Zimmermann, 2015)

25

4 State of the art

In order to define the best possible solution for the problem at hands, it is essential to

understand what is known or exists concerning the topic. Therefore, it is crucial to understand

what can be improved in the field or what has not been addressed yet. This chapter discusses

this and is divided into two sections, one for each objective of this work.

4.1 Microservices migration research

This section has the main aim of studying the literature to identify existent approaches for

microservice migrations research.

As previously mentioned, microservices architecture was officially introduced to the community

in 2014. Since then, research on the microservices migrations field has been evolving. In 2016,

a systematic mapping study identified three articles addressing the microservices migration

subject. One year after, in 2017, Di Francesco et al. pointed 16 studies approaching the topic.

Therefore, research on the matter is still evolving, and Microservices migration is referred to as

a future trend (Fritzsch et al., 2018). On this topic, some studies on microservices migrations

will be analysed and compared to identify what can be improved in this research field.

4.1.1 Existent approaches

The following approaches were identified in a research performed in February 2019. Therefore,

only documents or articles published between 2014 and February 2019 were considered.

“Microservices migration patterns” - (Balalaie et al., 2018)

The “microservices migration patterns” is an empirical study developed in 2017 and published

in 2018, focused on identifying the most common patterns on microservices migrations. The

study proposes a list of microservices migration patterns using a metamodel template defined

in the same work. The identified trends are obtained from the personal experience of the

26

authors and have been identified from empirical research of industrial scale microservices

migration projects. All the patterns refer to the migration planning phase of the migration. A

method to combine different patterns into a migration plan is also proposed.

“Microservices: A Systematic Mapping Study” - (Pahl and Jamshidi, 2016)

The work of Pahl and Jamshidi addresses the application of microservices as an option to

migrate services to a cloud computing infrastructure. This systematic mapping study published

in 2016 analyses 21 selected studies which were published until the end of 2015 and since the

emergence of the microservices architecture. The study aims to analyse existent literature to

answer the following questions.

1. What are the main practical motivations behind using microservices?

2. What are the different types of microservice architectures involved?

3. What are the existing methods, techniques and tools to enable microservice

architecture development and operation?

4. What are the current research issues, and what should be the future research agenda?

“Architectural Patterns for Microservices: a Systematic Mapping Study” (Taibi et al., 2018)

The objective of this work performed in 2018 is to analyse reports of microservices usage to

extract from those use cases the used microservices architecture patterns and principles. The

systematic mapping study presents identified common microservices patterns on a catalogue

using a defined template format that summarises the advantages, disadvantages, and lessons

learned for each of the designs. The study also describes some universal guiding principles of

the microservices architectural style.

“Migrating towards Microservice Architectures: an Industrial Survey” (Di Francesco et al.,

2018)

This 2018 research work consists of an empirical study of microservices migrations practices in

the industry. The authors performed several interviews and questionnaires to industry

microservices migrations practitioners. The work presents information regarding the completed

activities during the migration and the challenges faced. The objective was to identify the

recommended future direction on microservices migrations research and the most relevant

problems.

“Migrating towards Microservices: Architecture Smells” (Carrasco et al., 2018)

This study analyses both academic literature and grey literature, identifying a total of 58

documents. The main objectives of this 2018 work were to identify architectural bad smells (bad

smells is a commonly used term on software engineering when referring to bad practices)

present in the microservices architecture and the widely used solutions to avoid them.

27

4.1.2 Comparison of existent approaches

This section compares the previously described works, analysing the following characteristics

of each one:

 Coverage – As microservices is a broad theme with multiple issues to be addressed,

these characteristic analyses the topics covered in the described works.

 Publication year – This characteristic points the year in which the document was

published.

 Type – The type of study the work consists, which can be a survey, literature review,

reports, solutions proposals, and others.

 Objective – This characteristic identifies the primary goal the authors of the work

pretended to achieve with their research.

 Approach – The approach used in the study is indicated here.

 Target – The target source of information for the research.

Table 5 presents the described works side by side and the defined characteristics of each one.

The analysed works are a sample of the different kinds of existent research on the microservices

field. It is possible to conclude that most of the current research targets the existent literature.

One of the studies targets both the literature and the industry. However, it is based on reports

and the authors’ experience and no direct contact with industry practitioners was considered.

The only found work that directly addresses industry professionals does not compare it with

information present on literature. It is also the single study found addressing migration

challenges, while most of the studies focus on architectural patterns or best practices.

“Migrating towards Microservices: Architecture Smells” does discuss bad practices of

microservices adoption but only to contextualise proposed solutions and guidelines for the

correct usage of the architectural style. It is also noted that systematic mapping studies are a

common practice for literature reviews regarding this field.

28

Table 5 – Comparison of previous microservices research works

Name “Microservices
Migration
Patterns”

“Microservices: A
Systematic
Mapping Study”

“Architectural
Patterns for
Microservices: a
Systematic
Mapping Study”

“Migrating
towards
Microservice
Architectures:
an Industrial
Survey”

“Migrating
towards
Microservices:
Migration and
Architecture
Smells”

Coverage Migration
Patterns

Microservices
State of the art

Architectural
Patterns

Migration
practices and
challenges

Architecture
best practices

Publication
year

2018 2016 2018 2018 2018

Type Empirical study
of multiple
industry
projects

Literature review Literature
review

Empirical Literature
review

Objective Patterns
identification

Identifying the
existent research
on microservices

Pattern
identification

Gather industry
data for future
research

Identify
Microservices
Bad practices
and how to avoid
them

Approach Empirical
Research and
standards
definition

Systematic
Mapping study

Systematic
Mapping Study

Industry Survey Traditional
Literature
review

Target Literature and
Industry

Literature Literature Industry Literature

Therefore, analysing the existent research in the microservices field, the following points were

identified:

 Lack of research in microservices challenges. Most studies focus on patterns and best

practices.

 Comparison of the information retrieved from literature with industry testimonies is

not a main focus of the analysed studies.

 Systematic mapping studies are a common good practice for software engineering

literature reviews.

The aim of most of these studies is to identify common patterns or techniques used when

adopting microservices, but none focus specifically on identifying the most common technical

challenges. Furthermore, they do not cross the information from the literature with industry

reports. Therefore, they cannot be used to replace the immediate objectives of this work. The

present work will, therefore, address these issues and fill the identified research gaps in the

microservices field.

29

4.2 Distributed transactions

Distributed transactions are one of the main challenges of microservices adoption. When using

a monolithic architecture, transactions usually occur in a single database. However, when

splitting a monolith into a microservices architecture, these transactions are usually also divided

and start occurring in multiple services, creating a distributed transaction. The main issue is to

how to manage it across the entire architecture, dealing with issues such as atomicity, isolation

of concurrent requests, and consistency (Ntentos et al., 2019). This section describes some

existent solutions for this challenge.

4.2.1 Two-phase commit (2PC)

Two-phase commit is a classic technique proposed by Gray in 1978 to handle transactions using

two different phases to complete them (Gray and Lamport, 2006). In a distributed system, a

transaction is performed between two processes. In the context of the microservices

architecture, these processes are the microservices.

In the first phase of 2PC, all microservices lock resources to prepare for a data change. When

all the microservices involved are ready, the second phase begins and all the microservices

apply the actual changes. The global transaction manager (TM) has the responsibility of

coordinating the transaction process and calls the microservices to execute both of the

mentioned phases. If a single microservice fails in the first phase, the TM will abort the

transaction and rollback all the locked resources (Gray and Lamport, 2006).

One of the advantages of 2PC is that it ensures strong consistency of the transaction. The

transaction only ends if all the microservices are updated or if all of them are not modified.

Furthermore, the changes are not visible until the TM commits all the changes in all

microservices (Xiang, 2018).

To achieve this, 2PC is a blocking protocol as the resources are locked until the second phase

ends. This protocol was developed for database systems (Gray and Lamport, 2006), where

transactions take around 50ms to complete (Xiang, 2018) and therefore, these locks may not

be a problem. However, in the context of microservices, this is usually not the case as the

communication is made between different software components (web services). Therefore,

2PC may not be an excellent alternative to perform distributed transactions as it may become

a system bottleneck. Furthermore, if two transactions occur at the same time in the

microservices architecture, they may lock each other and cause a deadlock (Xiang, 2018).

4.2.2 Saga

Transactions between microservices are propagated across multiple systems, and therefore

they are usually slower than a local operation of a single database. This kind of transactions is

called long-lived transactions (LLT). Using the 2PC, while the LLT is being processed, other

30

smaller transactions are delayed. The saga concept was proposed by Garcia-Molina in 1987 and

dealt with this issue. An LLT is considered a saga “if it can be written as a sequence of

transactions that can be interleaved with other transactions” (Garcia-Molina, 1987). Following

this approach, either all the transactions of the saga are successful, or compensation

transactions are executed to amend the modifications applied by previous transactions. The

compensation is applied in reverse order so that the system returns to its former state, which

is useful to understand what is happening in the system in complex multi-transactional

processes and also to have a rollback mechanism without blocking the resources.

A compensation action does the opposite of the first operation. However, each change made

by a saga activity is not isolated, which means that other assets can use the resources modified

by one of the saga transactions before the saga is completed. Naturally, this can cause the

compensation transaction to fail and allow other assets to use incoherent data (Greenfield et

al., 2003), which is a disadvantage of this approach. Furthermore, as sagas are not consistent at

every moment, this technique uses the eventual consistency model described in Section 3.1.3

and are commonly applied in the microservices architecture, as it is used to achieve high

availability and partition tolerance. The implementation and debugging of a saga are highly

complex, with different challenges to be faced depending on the saga approach used. The

alternatives are described in sections 4.2.2.1 and 4.2.2.2.

4.2.2.1 Choreography-based saga

In a choreography-based saga, control is distributed over the different components of the

system, and there is not a central orchestrator service, which means that each service listens to

the other services events and decides what to do next (Rosa, 2018a).

Following this alternative, a microservice starts the transaction and publishes an event. The

following service in the saga sequence listens to the message and publishes another. The

transaction ends when a service listens to the message from the previous transaction

participant and does not publish a new event, or there are no subscribers of the last event.

Figure 5 illustrates this mechanism.

31

Figure 5 – Successful choreography example

The case of a trip booking system was used. The trip is initially created in the TripBookingService

in a pending state. The trip-booking will only be complete when a car, a hotel and a flight are

booked. Therefore, the CarRentalService listens to the Trip_Created_Event and rents a car,

publishing the Car_Rented_Event. Similar processes happen for hotel and flight bookings. When

all are completed, TripBookingService listens to Flight_Booked_Event and updates the trip state

to complete.

In this example, the bookings are made in sequential order. An alternative would be to have all

the services (CarRentalService, HotelBookingService and FlightBookingService) listening to

Trip_Created_Event in parallel. In this scenario, the trip state would be set to complete by

TripBookingService when it had consumed all the required events (Car_Rented_Event

Flight_Booked_Event, and Hotel_Booked_Event).

The described executions are successful scenarios. However, in Figure 6, a situation where the

transaction failed is illustrated.

32

Figure 6 – Failed choreography example

The saga pattern suggests that when a failure happens, the transaction must be roll-backed

using compensation actions in reverse order. A compensation action does the exact opposite

of its correspondent action. These compensations must be applied in reverse order to the

standard transaction sequence to revert the events by the same procedure they occurred and

reset the system to its original state. In the example above, the HotelBookingService failed to

book a room, and therefore, a Hotel_Booking_Refused_Event was published. The other services

are ready to listen to this event to apply compensation actions to return to their original state.

CarRentalService must cancel the rented car, and the TripBookingService must set the trip state

as failed. FlightBookingService does not perform any action in this scenario, as

Hotel_Booked_Event was not published.

It is essential to define a transaction identifier (correlation ID) so that the different events can

be correlated to the same transaction, which is crucial to apply the compensation actions to the

right resources and to use monitoring practices to visualise process execution across the

multiple services.

The described approach to choreography-based saga is event-driven. However, there is also the

possibility of using the routing slip pattern to achieve this. With this approach, no events are

published. Instead, a routing slip containing all the steps of the transaction is attached to the

message. Therefore, each of the services marks its contribution as successful and sends a new

message using the same routing slip to the following address specified in the routing slip. If the

service is not successful, it marks its contribution as failed and sends a new message using the

same routing slip to the previous participant of the transaction to apply compensation actions.

When the previous participant receives the message, it applies the compensation action and

forwards the issue to the participant before it until the participant that started the transaction

is compensated and the system gets back to the original state.

33

Choreography approach allows all participants of the transaction to be loosely coupled as they

do not directly interact with each other; they react to messages. However, when the transaction

is complex and has many participants, it can become confusing, and it is difficult to identify

what events each service listens – this issue can be mitigated with good monitoring practices.

Furthermore, a cyclic dependency can also be created if two services are listening to messages

from each other, but this should be avoided.

4.2.2.2 Orchestration-based saga

In an orchestration-based saga, control is centralised in a single service. It is responsible for the

management of the saga transaction, including decision making and the business transaction

sequence (Rosa, 2018a). Figure 7 presents an example of this approach.

Figure 7 - Successful orchestration example

In this approach, there is a new service in the system. It has the responsibility of managing the

transaction and invoking other participants’ actions at the right moment following the

transaction sequence. This service is called orchestrator and knows the transaction flow

required to execute the specified request. In the provided example, the orchestrator receives a

request to book a trip. It recognises that to accomplish the solicitation it has to request

CarRentalService to rent a car, HotelBookingService to book a room and FlightBookingService to

book a flight. The orchestrator receives the correspondent replies, so it is aware of the success

or failure of the different operations to apply compensation actions if needed. Below in Figure

8 is an example of a failure in a transaction using orchestration-based saga pattern.

34

Figure 8 - Failed orchestration example

In this example, the orchestrator booked the car successfully, but there were no available rooms

to book the hotel. Therefore, when the orchestrator received the No rooms available reply, it

requested the CarRentalService to cancel the car it had rented. CarRentalService then replied

that the rented vehicle was successfully cancelled. If this was not the case, the orchestrator

could retry the request indefinitely or send a notification to the system administrator for

manual intervention.

A commonly used way to implement an orchestrator is applying the State Machine pattern and

using workflow automation tools with the business process model and notation (BPMN) to

define the transaction flow.

One of the main advantages of this approach is the inexistence of cyclic dependencies between

services as the orchestrator invokes the participants, but the opposite does not apply.

Furthermore, the distributed transaction orchestration is centralised in a single service and

therefore, the complexity does not increase with the number of steps the transaction requires.

One of the risks of using this approach is the concentration of too much logic in the orchestrator,

which is something that must be thought of when implementing this pattern. Also, contrary to

the choreography approach, using orchestration the infrastructure complexity increases as

there is one more service to manage. Finally, the orchestrator service is a single point of failure

for all the business processes that it manages.

Comparison

35

Table 6 compares the key characteristics of each approach. They have different advantages and

disadvantages. The choice of the best implementation is entirely dependent on the context in

which they are going to be applied.

Table 6- Saga alternatives comparison

 Orchestrated saga Choreographed saga

Coupling High Low

Responsibility Segregation Isolated Not Isolated

Dependencies Management Centralised Decentralised

Infrastructure Complexity High Low

Transaction management Centralised Decentralised

Regarding coupling, orchestrated saga requires a single component (the orchestrator) highly

coupled to all the other services which increase the overall coupling of the system. In the

choreographed saga, this is not an issue as the services only subscribe to messages and do not

need to be aware of all the other system components.

By following a centralised approach, the orchestrated saga isolates all the responsibility of

transaction management in a single component, which also isolates the management

of inter-service dependencies, and therefore it is easier to visualise the business process

in a single point and modify it. In the choreographed approach, this high-level view can

only be obtained by monitoring mechanisms that observe the messages flowing in the

system.

Finally, the orchestrated saga introduces one extra service in the system, which increases its

complexity and infrastructure requirements. Furthermore, it constitutes a single point of failure

for the success of any business transaction. The choreography approach avoids these issues.

4.2.3 Comparison of existent approaches

This section compares the previously described works, analysing the following characteristics

of each one:

 Approach – The procedure used to ensure distributed transactions.

 Consistency model – The way the approach deals with consistency.

 Resource Isolation – The way that resources are managed during the transaction

execution.

 Rollback mechanism – Fail recovery strategy used.

 Use context – In what context the technique is usually applied.

Table 7 presents the described implementations side by side and the defined characteristics of

each one.

36

Table 7 - Comparison of distributed transactions implementations

 Two-Phase Commit (2PC) Saga

Approach Locks resources until all
participants are ready to
apply modifications. If at
least one fails to prepare, the
resources are unlocked in its
previous state. Otherwise,
the modifications are
applied.

Saga applies the
modifications in every
resource sequentially. If one
execution fails, the
modifications are reverted
applying compensating
transactions in reverse
sequential order.

Consistency model Strong Consistency Eventual Consistency

Resource isolation Blocking Non-blocking

Rollback mechanism Changes are reverted before
being available.

Compensation transactions
are executed.

Use context Short-Lived Transactions Long-Lived Transactions

As previously mentioned, transactions between microservices are applied over the network and

sometimes over multiple software components. For this reason, they are usually Long-Lived

Transactions. Furthermore, microservices are, by definition, a distributed system designed to

ensure high availability. Therefore, following the CAP theorem, they are unable to provide

strong consistency. Usually, microservices architectures implement the eventual consistency

model.

In the microservices context, to implement 2PC, some degree of availability must be lost, and

some services may be locked for a relatively long time, which may affect the overall

performance and availability of the system.

Following these requirements and analysed the existent solutions, saga pattern presents a

better alternative to manage long-lived transactions in an environment where eventual

consistency is acceptable, like when using the microservices architectural style.

4.3 Related technologies

At a conceptual level, there are solutions which were analysed in Section 4.2. However, it is also

important to realize the available implementations and their advantages and disadvantages.

4.3.1 Two-phase commit (2PC)

There are some specifications and implementations of this technique. Starting with XA

Transactions, it is a specification of a protocol to implement 2PC that coordinates single

transactions that require access to multiple distributed resources, defined by Open Group in

1991. The specification ensures that any modification is committed in every affected resource.

Otherwise, all the modifications are fully rolled back (Open Group, 1991). The protocol defines

37

interfaces that should be followed to accomplish that mechanism. The transaction manager

(TM) or XA Coordinator manages the global transactions, and all the resources affected should

be enlisted in the TM.

Furthermore, the TM executes methods exposed by the resources. The methods exposed

manage the resource through a Resource Manager (RM). The RM is responsible for managing a

particular resource such as a database. This way, the methods “prepare” and “commit” of the

2PC previously explained are exposed by the resource and invoked by the TM in order to ensure

the ACID properties of transaction that access multiple resources.

Regarding the application side of the XA Protocol, the Java Transaction API (JTA) defined by Sun

Microsystems is a Java implementation of the specification. It consists of a high-level API to

facilitate the use of XA Transactions using Java software (Kosaraju, 2007). It consists of three

main components: a high-level java interface that defines the transaction boundaries, a Java

mapping of the main specification parts such as the XA resource, and finally JTA defines a Java

interface to ease the implementation of the transaction manager allowing Java applications to

manage transactions with 2PC. This java interfaces defined by JTA are implemented by different

frameworks, such as JBossTS, Atomikos and Bitronix JTA.

Finally, regarding the resources involved in a distributed transaction like databases or

messaging systems, there are also implementations for XA Transactions protocol. For instance,

MySQL database provides an implementation of the 2PC protocol. Also, Apache’s ActiveMQ

provides ways to follow the specification.

4.3.2 Saga pattern

This section presents some of the technologies used to implement the saga pattern. The set of

solutions analysed is heterogeneous, consisting of enterprise products, open-source libraries,

and even cloud provider services.

4.3.2.1 NServicebus

NServicebus is a framework for .NET systems that provides messaging and workflow

management features. The licensing is only free for personal use with paid options for

commercial use. It has a relevant usage in the microservices ecosystem, and one of its features

is the implementation of saga.

The framework isolates all the logic of saga state persistence in a single generic class that can

be inherited to define the saga steps and actions. Therefore, applications using the framework

only need to define the data to be persisted as the saga state and define what actions should

be executed in each step of the saga. The framework persists and manages the saga state. The

framework is message-driven and does not support HTTP messages.

A possible drawback is that it does not provide an explicit implementation for compensating

actions, except for a timeout feature when sagas are not completed in a given period. Also, in

order to use the saga implementation, other features of NServiceBus must be used, which can

38

require the refactoring of the system code if the framework is used in an existent service

(Particular, 2019).

4.3.2.2 Eventuate Tram

Eventuate Tram is a framework for Java systems that provides a way to send and receive

messages as part of a database transaction, ensuring that an application can atomically update

the database and publish messages.

Eventuate Tram Saga is the saga implementation of Eventuate Tram specifically for

microservices that use JDBC or JPA. Eventuate Tram Sagas does provide support for

compensating actions. Similarly, as with NServiceBus, in order to use Eventuate Tram Sagas, the

entire Eventuate Tram framework must be used, which may not be ideal in some use cases.

Also, Eventuate Tram support is paid, but the framework can be used for free (Richardson,

2019).

4.3.2.3 Aws Step functions

Aws Step functions is a tool to help the workflow management process of a distributed system.

It is different from the previously mentioned solutions as it is a service and not a framework

and allows a serverless implementation of the saga pattern. Aws Step functions provide a visual

workflow definition for the coordination of the components of a distributed system. It provides

intrinsic retries and error handling mechanisms. Also, it logs the state of each step of the defined

workflow, which allows the user to diagnose and debug problems quickly when a specific step

fails.

The advantage of this service is that it is technology agnostic and is generic enough to support

compensating actions by defining them in the workflow. Aws Step functions are free up to 4000

state transitions but charge a fee for each state transition after that (Amazon, 2019).

4.3.2.4 Camunda

Camunda is a Business Process Model and Notation (BPMN) engine for .NET, which usage is

allowed under the Apache 2.0 open source license (Camunda, 2019). It is essential to notice

that as saga pattern defines a business workflow or business process, the pattern can be

implemented as a state machine – following the orchestrated saga approach. BPMN is a

commonly used notation to design this kind of processes. Also, there are multiple BPMN

engines to execute the defined BPMN models that can work as a saga orchestrator. This

notation provides support for the representation of compensating actions which facilitates the

design of a saga workflow to be executed on a BPMN engine. Camunda also provides

observability mechanisms to monitor the execution of choreographed saga processes.

4.3.2.5 Workflow Core

Workflow Core is an open-source project which was started in November 2016 by the individual

contributor Daniel Gerlag. Over the years, twelve more individual contributors contributed to

the project. At least 39 software projects use the library developed by Gerlag. The .NET

workflow engine usage is allowed under the MIT open-source license. This project is the only

library found for distributed transaction management, opposite to the other described

39

technologies which are frameworks, workflow servers or cloud services. Therefore, it is the

most lightweight of the ones analysed in this section, not requiring the usage of any other

feature, framework or technology.

Also, the software provides saga implementations with compensation actions in an

orchestrated saga approach. It also provides detailed and helpful documentation for teams to

implement the framework in their systems. Workflow Core also supports Conductor, a

workflow server also developed by Daniel Gerlag, which provides a workflow server using

workflow core as its engine – not related with Netflix Conductor (Gerlag, 2019).

4.3.2.6 Netflix conductor

Conductor is a Java-based workflow orchestration engine developed by Netflix to manage their

microservices architecture distributed transactions. It runs in the cloud, providing an API that

allows clients to define and orchestrate workflows. The workflows can have compensation

actions defined, and the clients can be developed in any technology that can communicate with

the provided API. Conductor is free under the Apache 2.0 open-source license (Netflix, 2019).

4.3.2.7 Cadence

Cadence is a workflow orchestration engine quite similar to Netflix Conductor but developed

by Uber following the MIT open-source license (Uber Engineering, 2019).

4.3.2.8 Comparison

Table 8 compares the described technologies side by side.

Table 8 - Saga technologies comparison

Name License Tech Type Channels Saga
Approach

Software
Type

Source

NServicebus Free for
personal
use
only.

.NET Message
Driven

Orchestration-
oriented

Full
Framework

Open
Source

Eventuate
Tram

Free –
Apache
2.0.
Provides
paid
support
options

Java HTTP and
Message
Driven

Orchestration-
oriented

Full
Framework

Open
Source

Aws Step
Functions

Free up
to 4000
state
transitio
ns. Paid
after
that.

Cloud Agnostic Orchestration Cloud
Service

Closed
Source

40

Name License Tech Type Channels Saga
Approach

Software
Type

Source

Camunda Free –
Apache
2.0

Agnostic Agnostic Orchestration Framework Open
Source

Workflow
Core

Free –
MIT

.NET Agnostic Orchestration Library Open
Source

Netflix
Conductor

Free –
Apache
2.0

Agnostic Agnostic Orchestration Workflow
Server

Open
Source

Uber
Cadence

Free –
MIT

Agnostic Agnostic Orchestration Workflow
Server

Open
Source

Most of the solutions require structural changes to be adopted, either through the usage of a

framework or connecting the system to a workflow server or cloud service. Most of the

solutions are free and open source. Also, none of the identified technologies uses

choreographed sagas.

The microservices architectural style is an evolution from SOA, and one of the differences is the

recommended approach for service integration. In SOA, usually services were integrated using

orchestration through a service bus or business process server. However, multiple principles of

microservices (“smart endpoints, dumb pipes”, “decentralised governance”, “decentralised

data management”) suggest that the centralization of too much logic in a central orchestrator

increases the risk of having too much coupling between the services (Fowler and Lewis, 2014).

Therefore, one possible reason for choreographed sagas solutions to not be common is that

most tools used in microservices are still evolving from the original SOA context.

Another possible reason is that in choreographed sagas there is no central unit managing

distributed transactions, and therefore the implementation is directly related to each business

process, making it harder to implement in a generic solution.

41

5 Problem statement

This chapter describes the main problems to be addressed, along with the objectives,

contributions and methodology of this work.

5.1 Problem description

Even with renowned companies as early adopters of microservices, there is still few academic

research on the subject and empirical research is still limited (Baškarada et al., 2018). Also, the

transition to a microservice architecture is “an error-prone process with deep pitfalls resulting

in high costs for mistakes” (Carrasco et al., 2018). One of the problems identified is using a

system decomposition strategy which causes high coupling between the different services and

creates a “distributed monolith”, having both the limitations of a monolith and a distributed

system and none of the advantages of the microservices architectural style (Fritzsch et al., 2018).

Another problem with this process is how to deal with multi-tenancy and statefulness (Furda et

al., 2018).

In addition, architects and developers face different distributed systems challenges, as well as

systems integration difficulties (Ulander, 2017) when transiting to microservices. There is also

a more significant infrastructural complexity on the development of a microservice architecture.

Development teams need to be knowledgeable about DevOps practices (Baškarada et al., 2018)

to mitigate this issue, which is something that companies are often not aware when they decide

to migrate to microservices (Carrasco et al., 2018).

Furthermore, depending on the monolithic system, the migration to the microservices

architecture can be costly and a long-lasting effort (Fritzsch et al., 2018) for the company. Finally,

it is recognised a “lack of general guidelines for migrating monoliths towards microservices”

(Carrasco et al., 2018) and substantial qualms about technical aspects of microservice adoption

have been reported (Baškarada et al., 2018). The literature identifies “a lack of systematic

guidance on the refactoring process for existing monolithic applications” (Fritzsch et al., 2018).

Some of the publications discussing Microservices also mention the migration process, but it is

42

not the main focus of the documents. A 2016 systematic mapping study identified 3 out of 21

articles that deal with migration topics. In 2017, Di Francesco et al. pointed 16 out of 71 studies

approaching the subject. Therefore, research on the topic is still evolving, and microservices

migration is referred to as a future trend (Fritzsch et al., 2018).

In a monolithic system when there is the need to ensure consistency between multiple

resources, an ACID (atomicity, consistency, isolation, and durability) transaction is usually used

(Hasselbring and Steinacker, 2017). It consists of a group of requests in which all of them must

be successful. This mechanism ensures database consistency by coordinating multiple requests.

If a single request fails, all the previous ones are rollbacked. For this reason, either all of the

requests are successful or all fail, and the database remains consistent (Richards, 2015).

The microservices architecture is based on a distributed approach that suggests that each

microservice has its database and communicates with the other services through messages.

Figure 9 illustrates that when a service needs to send messages to multiple services, it is not

possible to ensure an ACID transaction.

Figure 9 - Service transaction management.

For this reason, implementing business transactions that require modifications on multiple data

sources is a challenge when using this architectural style as ACID transactions are applied to a

single database (Ciavotta et al., 2017).

Instead of using ACID transactions, microservices usually follow the traditional service-oriented

architectures approach and use BASE (Basic Availability, Soft state, Eventual Consistency)

transactions. Therefore, the database will eventually be consistent but is not always consistent

(Richards, 2015), which is a drawback of the microservices architecture that brings the

advantage of greater availability of the system.

When the business transaction splits between different microservices, it is called a distributed

transaction. More formally, a distributed transaction is “a transaction involving multiple

transaction managers” (Gray and Reuter, 1993). This kind of transactions is difficult to manage

and constitutes one of the main challenges of microservices architecture adoption, but it usually

happens when splitting a monolithic system to a microservices architecture as previously local

43

ACID transactions that occurred in the monolithic system will now be executed across the

microservices oriented distributed system (Cerny et al., 2017).

Thus, the problem addressed is the lack of knowledge and solutions to some of the challenges

faced while adopting the microservices architecture and the difficulty of implementing

distributed transactions, including data inconsistency or operations that were not entirely

successful due to failed requests in the middle of a distributed transaction. The contributions

of this work to those problems are detailed in the following sections of this chapter.

5.2 Objectives

The first goal of this work is to identify the current main challenges faced when adopting the

microservices architecture and the solutions commonly used, providing insights regarding the

architectural style for both researchers and industry practitioners.

Also, one specific challenge – management of distributed transactions – will be further detailed

and possible solutions analysed. This work intends to determine if there are viable solutions to

this issue in a microservices architecture and provide an implementation for easier

management of distributed transactions using one of those solutions in a microservices context.

Therefore, research was conducted on microservices adoption processes, and issues reported,

both in industry and in literature. Furthermore, existent solutions for distributed transactions

and challenges while implementing the identified alternatives were analysed and a solution

proposed.

Then, experts of the field also validated these results to ensure the viability of the solutions.

Summing up, this work has the following two main objectives:

1. Identify the most common technical challenges that teams currently face while
migrating to the microservices architecture and possible solutions.

2. Address the distributed transactions challenge specifically, proposing a solution to
ease the management of distributed transactions in a microservices architecture,
using choreographed sagas.

5.3 Contributions of this work

The first main contribution of this work is the analysis and comparison of the available literature

regarding microservices with industry practitioners’ reports and observation. This work tries to

clarify what are the current most common challenges while adopting microservices, guiding

future researchers, and helping the industry to avoid the identified issues, while providing

possible solutions and best practices also identified in the research. Also, the result of this

analysis is compiled into a catalogue of activities or patterns related to architectural refactoring

in the context of microservices.

44

Finally, this work also provides an implementation of the saga pattern, which intends to

facilitate the management of distributed transactions in the microservices architecture,

supporting teams with a solution to implement this pattern following a choreographed

approach.

Furthermore, an article may be developed based on the output of this work and publicly

published on a recognised platform or conference so that a different perspective of reviews can

be gathered. Also, in the future, the developed solution can be applied in open source projects

or put in practice by other interested companies which can then provide their testimony on the

value of this project.

This document was written in English so that the final solution can reach a larger number of

professionals or companies, thus contributing to the dissemination of results and potentially

benefiting a variety of stakeholders.

5.4 Work methodology

The development of this work consisted of different phases:

 First, a narrative literature review was performed to validate the problem. With that

information, the objectives of this work were defined, and therefore, this work aims to

reduce the gap of missing research regarding microservices migration challenges by

identifying the most commonly reported problems. Also, another objective is to

support the management of distributed transactions in a microservices architecture by

further detailing the issue and exploring possible solutions through a set of experiments.

This first literature review helped define the context of the work and the problem to be

solved. Also, the gathered information helped conclude the value analysis of this

project.

 Once the problem context and the objectives of this work were defined, literature

research was performed through a systematic mapping study that helped identify the

most common challenges of microservices architecture adoption. Also, an industry

questionnaire regarding the same topic was created to corroborate the findings of the

systematic mapping study research. Finally, a participant observation study was also

conducted in order to understand industry practices, challenges and solutions.

 Regarding the distributed transactions issue, a set of existent approaches were

analysed, and the most adequate to the context of this work was chosen. A solution to

implement that approach was then designed and implemented.

 Finally, the created solution and research findings were presented to the industry and

evaluated through a survey in which expert professionals of the field can assess it and

provide insights regarding the work developed. Furthermore, the solution was

implemented on a microservices architecture to evaluate if it brings value and can solve

the problem this work proposes to address.

45

6 Microservices migration research

After analysing and comparing existent research regarding microservices (see Section 4.1), the

research plan for this work was defined. This chapter presents the research plan design,

followed by its results and concludes with a summary of the findings, and threats to validity.

6.1 Design

6.1.1 Requirements

After analysing previous work regarding research on microservices migrations (Section 4.1), it

was identified that there was not much research regarding the challenges found while migrating

to a microservices oriented architecture. Most of the existent studies focus on architectural

patterns, best practices or the current state of the architectural style to gather information for

future research. Also, they analyse literature, and only a few gather data from the industry. The

ones that examine data from the industry do not compare their results with literature findings.

Furthermore, the research is still evolving, and there have not been many studies in recent years.

For these reasons, the following requirements were defined for this research (Table 9).

Table 9 – Microservices migration challenges requirements

Requirement number Description

1 Focus on the challenges of microservices adoption

2 Identify the most common challenges

3 Compare data between literature and the industry

4 Only analyse data published since 2018

46

6.1.2 Design alternatives

To accomplish the defined requirements, alternative approaches can be used. To gather data

from the literature, different methods of literature review can be applied, and they constitute

design alternatives. From the industry side, there are also different techniques of data

collection to be implemented. Below are described and analysed available options and possible

alternatives that can be used in future work.

Literature research

To gather data from the literature, the following possible methods were identified.

1. Narrative literature review (NLR): this kind of literature review is also usually called

traditional literature review. The reviewer gathers and interprets literature in a given

field, without explicitly stating the inclusion and exclusion criteria used to select

documents for the review. NLR follows a subjective approach and the rules applied to

select the studies that are included in the analysis are usually based on the perspective

of the reviewer. It is often used for ‘opinion’ pieces, ‘expert’ reviews or students’ theses,

but it is not useful to contribute to an informed debate. The reason for this is that the

inclusion criteria may be ‘biased’, as mentioned above. Furthermore, as the search

strategy is not clearly defined, it is not possible to replicate the review. Also, relevant

studies could have been excluded as this kind of analysis does not follow a systematic

and exhaustive approach. Finally, the quality of the studies included in this kind of

review is usually not accessed. This means that low-quality studies may be included in

the analysis while other studies of higher quality are excluded (Torgerson, 2003).

2. Systematic literature review (SLR): A systematic literature review follows a more

rigorous approach when compared to the previously mentioned method. The search

strategy used on an SLR is explicit and open to scrutiny. This research technique

identifies all the available evidence regarding a specific theme. The data collected is

then screened for quality and synthesised into an overall summary of the available

research. As all found evidence is included in the study and the selection is catalogued

specifying the reasons for inclusion or exclusion of specific evidence, the results are

often less susceptible to subjectivity and can be replicated. This technique is useful as

a way to “summarise the results of primary research and for checking consistency

among such studies” (Torgerson, 2003).

3. Systematic Mapping Study (SMS): Systematic Mapping Studies are frequently seen as a

simplified version of SLR and can, therefore, accomplish similar results in less time. The

use of SMS in software engineering is considered to be very consistent and valuable in

the last years. Like in an SLR, all the evidence of a specific field is analysed and screened

following a systematic approach where all the criteria used are described. For this

reason, the study can be easily replicated. Furthermore, this technique creates a map

of the findings according to a previously defined classification framework, which gives

a clear view of the results (Sampaio, 2015).

47

Industry data collection

Analysing the previous work, it is possible to conclude that there are few studies comparing

literature research with industry professionals’ experiences. Therefore, it is essential to collect

quality data from the industry so that it can be compared against the data obtained from the

literature research. With that objective, the following alternatives were analysed.

1. Questionnaire: The most common field method of industry data collection. It consists

of sets of questions provided and answered in a written format. For this reason, they

can be easily and quickly administered. To ensure valid results, the questions cannot be

ambiguous, and the ordering and layout of the questionnaire must be carefully

designed. Questionnaires are time and cost-effective, as they do not require to

schedule any session to gather data. They can be answered when a software engineer

has time between tasks. Furthermore, web-based questionnaires have no costs as the

questions are delivered through the internet and data received in electronic form.

Some of the disadvantages of this technique are ambiguous and poorly-worded

questions, which can be problematic. Furthermore, even though it is relatively easy to

answer a questionnaire, return rates may be low. To refute a null hypothesis, high

response rates are needed. However, to understand trends with reasonable confidence,

low response rates are acceptable. Another disadvantage of questionnaires is that

responses may be highly subjective and based on the respondents own opinion

(Lethbridge et al., 2005).

2. Interviews: Interviews consists of a face to face conversation between one researcher

and one respondent. Similarly, as with questionnaire, before the interview, a fixed list

of carefully worded questions must be defined. The difference to the questionnaire

questions is that in an interview, the researcher can clarify any doubts that the

respondent might have regarding the questions. Furthermore, the interviewer can

deviate slightly from the script if he decided it is positive for the study. For this reason,

one of the main advantages of this technique is that it is highly interactive and flexible.

As for disadvantages, interviews are time and cost-inefficient. A meeting must be

scheduled, which means both the researcher and the respondent must be available at

the same time. Furthermore, one of the participants needs to travel to the defined

location, usually the researcher. As stated in the questionnaire, responses may be

subjective (Lethbridge et al., 2005).

3. Shadowing/Observation: The shadowing concept consists of the experimenter (the

researcher) following a willing participant while recording its activities. These activities

can include software engineers engaged in their work, or specific experiment-related

tasks, such as meetings or programming. Observation is a similar technique in which

the experimenter observes multiple willing participants instead of only one.

The main advantage of this method is that it gives fast results and is easy to implement

as long as there are willing participants, and the disadvantage is that the observer must

have a good understanding of the environment so that he can understand what is

happening and record what is essential for the study (Lethbridge et al., 2005).

48

4. Participant observation: This technique has some similarities with

shadowing/observation. The difference is that in participant observation, the observer

becomes part of the team it is observing and participates in key activities.

The main advantage of this technique is that software engineers are comfortable with

the researcher presence and act naturally, not influencing the study results. The

disadvantage is that the researcher may become too involved and lose perspective of

what is being observed (Lethbridge et al., 2005).

6.1.3 Final design

This study must be objective so that it brings the most value for this work. Therefore, regarding

literature research, to facilitate the assessment of the validity of the findings, the reader should

be able to replicate the study. For this reason, a systematic method must be used. As this work

presents some time restrictions, it would not be possible to apply an SLR approach properly.

Therefore, to accomplish the stated requirements, a systematic mapping study was used as the

literature review method as it allows an objective and systematic review of the existent

literature from a wide range of sources, in less time than an SLR. Furthermore, creating a map

of the findings gives a clear view of the results. Finally, in the software engineering field,

mapping studies are considered to be very consistent and valuable (Sampaio, 2015).

Regarding the industry data collection, a combination of the identified alternatives was used to

make up for the disadvantages of each technique individually. The primary method used was

the questionnaire, as it is the most cost-effective and commonly used. Furthermore, it does not

require much time from respondent allowing the study to gather data from a broader range of

professionals. However, it was clearly stated that the response rate is usually low in the

software engineering field. For this reason, interviews should also be performed to experts of

the area to gather additional valuable data. Finally, to avoid subjective information that can be

provided while using questionnaires and interviews, shadowing/observation and participant

observation was also performed so that a more accurate field perspective is included in the

study.

The defined general approach is detailed in the diagram in Figure 10. Some tasks can be done

in parallel to optimise time. Therefore, the work should begin with participant observation as it

can be done right from the start, at the same time that a search for willing participants of

shadowing/observation is performed. Furthermore, while performing these two activities, the

literature review protocol and questionnaire can be designed. After designing these last two

components of the study, they are put into practice by administering the questionnaire through

different channels and starting the literature research at the same time.

49

Figure 10 - Microservices migration challenges study design

In the case of having a low response rate on the questionnaire, interviews should be performed

to gather more evidence from industry experts. When all the components of the study are

finished, their results are analysed individually and then compared together to assemble the

conclusions of the study.

On the following sections, the detailed design of the literature research and questionnaire are

described.

50

6.1.3.1 Literature research design

The literature review described in the following sections presents a high-level overview of

existent research on microservices migration challenges. Furthermore, this review has the

objective of selecting and synthesising the reported experiences and challenges faced while

migrating to the microservices architecture, appraising all high-quality evidence relevant to

identifying the most common problems of the process.

The method used for this systematic mapping study is the one suggested by Sampaio and is

based on guidelines provided by multiple mapping studies on the software engineering field,

and by orientations for systematic reviews like the Cochrane Collaboration initiative (Sampaio,

2015).

Therefore, the study follows the six stages defined in Figure 11. These stages are as follows

(Sampaio, 2015):

Figure 11 - Systematic mapping study stages

 The protocol definition stage consists of the design stage of the research and

contributes to the reliability of the literature review and allows other researchers to

analyse or replicate the study more clearly.

 The stage of conducting the search for primary studies consists of identifying the initial

studies of the research. Every search information should be recorded. Then, possible

duplicates should be removed and the primary studies identified.

 Then, the screening stage consists of applying the inclusion/exclusion criteria defined

on the protocol to select only the valuable evidence. The used rules should be

registered, and decisions recorded.

 After the screening stage, a classification framework should be designed. The primary

objective of this artefact is to organise the selected papers in line with the research

questions defined in the protocol or search strategy. If the identified area is too broad,

research questions or inclusion/exclusion criteria should be refined in this stage.

51

 The coding stage consists of mapping the identified studies to the categories of the

classification framework and extracting and recording data to answer research

questions.

 Finally, the last stage consists of analysing the gathered data and reporting the findings.

On this stage, the research questions are answered, and threats to validity described.

Therefore, as the protocol is the design stage of a mapping study, the rest of this section

describes the defined protocol and search strategy.

Review boundaries

With a scoping performed before the mapping study, it is possible to identify that there are

multiple kinds of literature regarding the microservices architecture and migration processes.

The key material for this study are reports of performed migration processes, industry surveys,

and interviews regarding the topic, studies of common architectural and design patterns used

on this kind of systems, and other similar systematic literature reviews. Only literature

published since 2018 was evaluated to assure only cutting-edge knowledge was considered.

This study will use only digital libraries as they are the most used repository of research items

on the software engineering field (Sampaio, 2015), namely Google Scholar, IEEE Xplore, and

ACM Digital Library.

Research questions and goals

The primary goal of this review is to identify and analyse the most common challenges reported

during microservices migrations and possible solutions used to solve them. Also, it can help

researchers, students and industry practitioners better understand the available knowledge on

the microservices subject and existent migration processes.

The PICOC (Population, Intervention, Comparison, Outcomes, Context) model is a commonly

used framework on software engineering research to frame research questions to deliver well-

focused research (Sampaio, 2015). Using this model, the described target and goals of the

review can derive into the research questions presented in Table 10, Table 11, and Table 12.

52

Table 10 - Research question 1 following the PICOC framing (RQ1)

Research
question

What are the most common problems when migrating a monolithic system
to the microservice architecture?

Population Reports of performed migration processes, industry surveys, and interviews
regarding the topic

Intervention Identifying the key attention points while performing a microservices
migration

Comparison Number of times the challenge is referred on the reviewed literature

Outcomes The reported challenges with most references on the reviewed studies

Context Research on microservices migrations, and reported experiences in the
industry

Rationale There is a multitude of documents of different types and from various sources
and contexts reporting challenges with microservices architecture and
migration. RQ1 intends to map the available knowledge, identifying the most
common challenges reported across the reviewed literature.

Table 11 - Research question 2 following the PICOC framing (RQ2)

Research
question

Which of the problems reported are avoidable?

Population Reports of performed migration processes detailing problems identified. Also,
industry surveys, and interviews that report issues on this kind of migration.

Intervention Classifying identified problems as avoidable or intrinsic

Comparison Challenges are reported on some migrations but avoided on others

Outcomes Identification of avoidable problems of this kind of processes. Identification
of intrinsic problems to the microservices architecture adoption or migration

Context The same as RQ1

Rationale The microservices architecture some key attention points. The objective of
this research question is to distinguish the avoidable problems and the
intrinsic problems that occur when refactoring software systems to the
microservices architecture.

53

Table 12 - Research question 3 following the PICOC framing (RQ3)

Research
question

What are the most common solutions to adopt microservices architecture?

Population The same population of RQ1 and studies of common architectural and design
patterns used on this kind of systems, and other similar systematic literature
reviews.

Intervention Identifying similarities of practices and approaches while performing
architectural refactors to the microservices style.

Comparison The number of times a specific strategy or technique is used successfully in
migrations.

Outcomes A set of successful patterns to be applied to this kind of migration processes.

Context The same as RQ1.

Rationale Research on the adoption of microservices architecture is evolving. However,
there is still “a lack of systematic guidance on the refactoring process for
existing monolithic applications” (Fritzsch et al., 2018). This research question
has the objective of identifying successful patterns used in reported
migrations and experiences.

Screening method and Inclusion/Exclusion (I/E) criteria

After defining the boundaries of the review, its goals, and research questions, the selection

criteria were derived from the framed RQ to guide the screening process of the systematic

mapping study. During the screening process, the title, keywords, and abstracts of the primary

studies should be analysed. When these selected parts are not enough to decide following I/E

criteria, further parts of the document should be analysed, mostly the conclusions.

The defined criterions are described in Table 13.

Table 13 - Microservices migration challenges systematic mapping study applied I/E criteria

Criterion Description

I1 Technical reports of performed microservices migrations.

I2 Studies describing the problems faced with the microservices architecture or
during migration to this architectural style.

I3 Industry surveys and interviews regarding experiences while doing microservices
migrations.

I4 Studies providing architectural solutions, methods or techniques (e.g., tactics,
patterns, styles, views, models, reference architecture) specific for the
microservices architecture or distributed systems in general.

E1 Studies published before 2018.

E2 Studies not available as full-text.

E3 Books.

E4 Studies where microservices are only used as an example.

E5 Studies not written in English.

54

Search string

Finally, to conclude the search strategy applied in this mapping study, the search string is

defined aligned with the previously described I/E criteria and framed research questions:

((𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟 ∗ 𝑂𝑅 𝑚𝑖𝑐𝑟𝑜 − 𝑠𝑒𝑟𝑣𝑖 ∗ 𝑂𝑅 "micro servi" ∗) 𝐴𝑁𝐷 (𝑟𝑒𝑓𝑎𝑐𝑡 ∗ 𝑂𝑅 𝑟𝑒𝑒𝑛𝑔𝑖𝑛 ∗

𝑂𝑅 𝑚𝑖𝑔𝑟𝑎𝑡 ∗))

6.1.3.2 Questionnaire design

To collect data from industry experiences, a questionnaire must be administered to industry

professionals. Since the questionnaire targets professionals of the software industry, the

respondents did not have difficulties to answer a web-based questionnaire. As this type of

questionnaire also lows the cost of the data collection, it was the one selected.

Appropriate design is essential to gather quality data and valid responses. Therefore, the

questionnaire was designed based on some practical guidelines recommended by Saaya et al.

in 2007.

First of all, the questionnaire should motivate the respondent to answer since the beginning.

For this reason, a welcome message introducing the respondent to the questionnaire context

is mandatory (Saaya et al., 2007). Then, some screening questions should be included to verify

if the respondent belongs to the research population. Regarding the layout of the questionnaire,

it depends on the content and the number of questions of the questionnaire. Ideally, it should

be a non-scrollable single page. However, if that is not enough, it must be divided into pages

that fit within a monitor screen. This can cause too many pages if there are many questions.

Therefore, in that scenario, the questions should be divided into sections of the subject being

studied (Saaya et al., 2007).

The questions can be close-ended (dichotomous questions, multiple-choice, rank order scaling,

rating scale, constant sum) or open-ended (free text). However, there should always be an

option to provide an open-ended answer if the respondent wants to, which ensures that the

respondent can provide all the information he finds necessary and is not limited by the provided

answers style (Lethbridge et al., 2005).

At the end of the questionnaire, an appreciation message should be present. On this section,

the respondent should be able to contact the questionnaire author or provide any additional

comments (Saaya et al., 2007). Following the described guidelines, Figure 12 presents the

recommended structure for web-based questionnaires.

55

Figure 12 - Questionnaire overall structure (Saaya et al., 2007)

There are available tools that automatically deal with the framing, forms, and fields of the

questionnaire and its structure. It also deals with usability and navigation in the questionnaire

and provides multiple types of response formats and question types.

Furthermore, it provides an easy to analyse answer set by presenting some graphics illustrating

the answers statistics. Google Forms was the tool used in this work as it provides all these

features while following the recommended guidelines used for the questionnaire (Google,

2019). Furthermore, it allows the questionnaire to be answered only once by each respondent

using the google login but remaining anonymous. The login functionality is the

“Exclusion/Security question” mentioned in Figure 12, as it only allows each respondent to

answer once.

Regarding the layout of the questions, following the recommendations described above, they

were grouped into different sections according to the topic. The chosen sections were:

1. Cover page: This section presents a welcome message along with a description of the

questionnaire’s context. It also introduces the questionnaire structure and time

expected to complete it. To achieve a snowballing effect, the respondent is asked to

share the questionnaire with his contact network.

2. Introduction: This section has the purpose of gathering some information about the

respondent and the migration experience he has. The answers to this section provide

data regarding the years of professional experience of the respondent, his professional

role, the stage of the migration that he is at the time of the answers. Furthermore, it

contains some questions regarding the system before the migration and the reasons

56

that motivated the migration. It is composed of different multiple-choice questions and

some text input where the user is only allowed to insert numbers (number of years of

experience, for instance).

3. Existing system analysis: This section gathers data regarding the approach used to

analyse the current system before the migration. The respondent is asked what sources

he used to examine the system, the reasons to do it, and the four most significant

challenges that he faced while analysing the existing system.

4. Designing the new architecture: The objective of this section is to understand the

process used to design the new system. In this section, the respondent provides

information about the activities performed while designing the new system and how it

was documented. The respondent also describes if new functionalities were

implemented during the migration or if only existent features were present in the new

system. Then, the respondent indicates the four main challenges faced while designing

the new system.

5. Implementing the new system: On this section of the questionnaire, some answers are

provided regarding the process of microservices implementation. The respondent

describes how he started the implementation, how the first functionalities to migrate

were selected, what was the adoption process used and how data migrations were

performed if there were data model or database modifications. Finally, a final question

asks which the four main challenges were faced while implementing the new system.

6. Additional feedback: This final section contains three optional open-ended questions,

one allowing the respondent to provide any additional information regarding his

experience while migrating a system to a microservices architecture. Then, he is asked

to provide feedback regarding the questionnaire, and he can subscribe to the study

results by providing his e-mail address. An appreciation message ends the

questionnaire by thanking the respondent for his contribution.

Most of the questions provided are multiple-choice, but at the end of each section, the

respondent can answer an optional open-ended question to give any additional information.

The options for multiple-choice questions were obtained from multiple industry reports

regarding experiences of microservices migration. All the multiple-choice questions provide an

alternative “Other” where the respondent can specify any answer not present in the options

provided. The complete questionnaire is present in the appendix A.

After designing the questionnaire, it was administered to a closed group of engineers to

evaluate its quality before widely distributing it. The provided feedback helped improve the

wording of some questions to avoid ambiguity. Furthermore, the division between the sections

was more clearly defined so that respondents can clearly understand if they are answering to

the design or implementation phase. Also, two orthographic mistakes were detected and fixed.

The questionnaire will be distributed through mailing lists to industry professionals from

different companies, published in forums of communities with interest in the field and also

shared in networks like LinkedIn.

57

6.2 Data from research literature

6.2.1 Conducting the search for primary studies

Defined the protocol of this review, the search string was applied on the selected digital libraries

in order to gather the primary studies. Only studies published since 2018 with full-text available

in pdf format were considered. The search on Google Scholar identified 15 documents, IEEE

Xplore found 19 documents, and ACM Digital Library obtained 31 documents, forming a total

of 65 results. The search was performed on the 1st of February 2019. After merging the three

result sets and removing duplicates, 54 documents were left.

6.2.2 Screening

After gathering the 54 primary studies, the selection criteria (see Table 13 at Section 6.1.3.1)

were applied, and the following 18 documents were identified.

Table 14 - Selected papers after the screening stage of the systematic mapping study

Article Identifier Document Title Author(s) Publication
Year

1 A pattern language for
scalable microservices-
based systems

Gastón Márquez, Mónica
M. Villegas, Hernán
Astudillo

2018

2 AjiL: Enabling Model-
driven Microservice
Development

Jonas Sorgalla, Philip
Wizenty, Florian
Rademacher, Sabine
Sachweh, and Albert
Zündorf.

2018

3 From Monolithic to
Microservices An
Experience Report
from the Banking
Domain

Antonio Bucchiarone, Nicola
Dragoni, Schahram Dustdar,
Stephan T. Larsen, Manuel
Mazzara

2018

4 An Experience Report
on the Adoption of
Microservices in Three
Brazilian Government
Institutions

Welder Luz, Everton Agilar,
Marcos César de Oliveira,
Carlos Eduardo R. de Melo,
Gustavo Pinto, Rodrigo
Bonifácio

2018

5 Architectural Patterns
for Microservices: A
Systematic Mapping
Study

Davide Taibi, Claus Pahl,
Valentina Lenarduzzi

2018

6 Migrating towards
Microservice
Architectures: an
Industrial Survey

Paolo Di Francesco, Patricia
Lago, Ivano Malavolta

2018

58

Article Identifier Document Title Author(s) Publication
Year

7 Interface Quality
Patterns —
Communicating and
Improving the Quality
of Microservices APIs

Mirko Stocker, Olaf
Zimmermann, Uwe Zdun,
Daniel Lübke, Cesare
Pautasso

2018

8 Limiting Technical Debt
with Maintainability
Assurance – An
Industry Survey on
Used Techniques and
Differences with
Service- and
Microservice-Based
Systems

Justus Bogner, Jonas
Fritzsch, Stefan Wagner,
Alfred Zimmermann

2018

9 Microservices Xabier Larrucea, Izaskun
Santamaria, Ricardo
Colomo-Palacios, and
Christof Ebert

2018

10 Migrating Web
Applications from
Monolithic Structure to
Microservices
Architecture

Zhongshan Ren, Wei Wang,
Guoquan Wu, Chushu Gao,
Wei Chen, Jun Wei, Tao
Huang

2018

11 Migrating towards
Microservices:
Migration and
Architecture Smells

Andrés Carrasco, Brent van
Bladel, Serge Demeyer

2018

12 Migrating Enterprise
Legacy Source Code to
Microservices On
Multitenancy,
Statefulness, and Data
Consistency

Andrei Furda, Colin Fidge,
Olaf Zimmermann, Wayne
Kelly and Alistair Barros

2018

13 Partitioning
Microservices: A
Domain Engineering
Approach

Munezero Immaculée
Josélyne, Doreen Tuheirwe-
Mukasa, Benjamin
Kanagwa, Joseph
Balikuddembe

2018

14 Query Strategies on
Polyglot Persistence in
Microservices

Luís H. N. Villaça, Leonardo
G. Azevedo, Fernanda Baião

2018

15 Strategy and
procedures for
Migration to the Cloud
Computing

Naim Ahmad, Quadri
Noorulhasan Naveed,
Najmul Hoda

2018

59

Article Identifier Document Title Author(s) Publication
Year

16 Towards Micro Service
Architecture Recovery:
An Empirical Study

Nuha Alshuqayran, Nour Ali,
Roger Evans

2018

17 Using Microservices for
Legacy Software
Modernization

Holger Knoche and Wilhelm
Hasselbring

2018

18
Microservices
migration patterns

Armin Balalaie, Abbas
Heydarnoori, Pooyan
Jamshidi, Damian A.
Tamburri, Theo Lynn

2018

6.2.3 Classification system

After the papers have been screened according to I/E criteria, it is essential to develop a

classification system that enables the aggregation of the identified papers and the extraction of

data from the generated groups of documents. Therefore, considering the previously defined

research questions, the classification framework of Figure 13 was developed.

Figure 13 - Systematic mapping study classification framework

6.2.4 Coding: data extraction and aggregation

Framed the research questions, selected the papers respecting the defined I/E criteria and

developed the classification framework accordingly, the data of selected studies were

extracted and aggregated in the respective categories of the classification framework (see

Figure 13).

60

From this analysis, the following information can be identified:

Table 15 contains the problems identified,

 Table 16 the solutions and approaches used,

 Table 17 shows the best practices, and

 Table 18 the design patterns mentioned in the analysed literature.

Table 15 - Problems identified in systematic mapping study

Description References (Article
Identifier)

Number of
references

Testing Complexity on the microservices
architecture

5, 6, 9 3

Implementation Effort and Infrastructure
Management is more laborious than in monoliths
(especially at the beginning of the development)

5, 6 2

Network related issues 5, 11, 17 3

Data consistency issues 9, 11, 12, 17 4

Distributed monitoring and logging 6, 9 2

Decomposition of the pre-existing system with the
proper granularity and low coupling

5, 6, 9, 11, 17 5

Create uniformity across services 6 1

Continuous deployment and monitoring 5, 9, 11 3

State management 9, 12 2

Security 5, 9 2

Database splitting 9, 10 2

Inexperienced Team 9, 11 2

Table 16- Solution and approaches identified in systematic mapping study

Description References (Article
Identifier)

Number of
references

Identification of the dependencies of the pre-
existing system modules

6, 9, 15, 17, 18 5

Careful design of the business workflows 6, 15, 18 3

Domain Driven Design 3, 6, 11, 13, 14, 17, 18 7

Phased adoption 5, 6, 11 3

Parallel adoption 6, 11 2

Data kept ‘as is’ in the pre-existing system 6 1

Data was migrated to the new system by
implementing data migration procedures

6 1

Static code analysis to identify modules to be
decomposed both in services and databases

10, 17 2

Generation of microservices through Model-driven
engineering

2, 16 2

61

Table 17 - Best practices identified in systematic mapping study

Description References (Article
Identifier)

Number of
references

Microservices implementing self-healing 5 1

Prioritise the components to be migrated
through a previously defined criterion
(amount of dependencies, amount of users of
specific functionality, etc.)

6, 9, 18 3

Use DevOps methodology to automate testing
and deploy stages applying Continuous
Integration and Delivery (define the DevOps
strategy before starting the migration and
have a separate autonomous DevOps pipeline
for each microservice)

9, 11, 14, 15, 17, 18 6

Adopt an Agile approach 9 1

Monolith First: Start with a monolith and split
it into microservices incrementally through
refactoring instead of completely
redeveloping the whole system into
microservices

9, 11, 18 3

Messages between microservices should be
encrypted and authenticated

9 1

Have at least some experienced developers (in
distributed systems or microservices) in each
development team

11 1

Provide fine-grained, well defined and
documented microservices APIs and Interfaces

11, 14, 17, 18 4

Table 18 - Design patterns identified in systematic mapping study

Description References (Article Identifier) Number of
references

Service discovery 5, 1 2

Lightweight Containerization
(Ideally a container per Service)

1, 11, 14, 15, 16, 18 6

Database per service 5, 1, 10 3

API Gateway and Strangler
Pattern

5, 17, 18 3

Stateful messaging pattern 12 1

Partial state deferral pattern 12 1

State repository pattern 12 1

Stateful service pattern 12 1

Command Query Responsibility
Segregation (CQRS)

14 1

Event Data Pump 14 1

Circuit Breaker 1, 16, 17, 18 4

Load Balancer 1, 16, 18 3

Configuration Server 18 1

62

6.2.5 Analysis and report

At this point in the study, all the required information was extracted to the tables presented in

Section 6.2.4. This section analyses the results of the study and draws conclusions regarding the

framed research questions.

6.2.5.1 Research Question 1 (RQ1)

Regarding RQ1 (“What are the most common problems when migrating a monolithic system to

the microservice architecture?”), the five most referenced problems in literature are presented

in Table 19. Thus, these issues are reported with some consistency in the process of

microservices adoption.

Table 19 -Five most referenced challenges in the literature

Number Name Number of references

1 Decomposition of the pre-
existing system with the
proper granularity and low
coupling

5

2 Data consistency issues 4

3 Network related issues 3

4 Testing Complexity on the
Microservices architecture

3

5 Continuous deployment and
monitoring

3

Regarding the first issue, the most mentioned challenge of microservices migration is defining

the proper granularity for each service in order to ensure low coupling and high cohesion across

the system. Teams find difficulties decomposing the existing system to the microservices

architecture and defining the responsibilities of each one of the new services.

When the defined granularity is too coarse, the benefits of microservices are not worth it, and

the teams end up with a distributed monolith instead of a microservices architecture, as the

modules are not independently deployable and are highly coupled. This situation has all the

disadvantages of the monolith that the team was trying to solve as the system remains with low

maintainability, but now there is also the need to deal with distributed systems challenges.

However, when the granularity is too fine there are also some issues with performance due to

network latency (Carrasco et al., 2018). For this reason, it is important to decompose the

existing system following Domain-Driven Design strategies, such as the Business Capability

pattern, where the system is divided by the multiple business capabilities or entities defined in

the domain model.

Another highly referenced problem was “Data Consistency Issues”. The analysed studies refer

that while implementing Microservices, teams usually forget about the CAP theorem and deal

with difficulties regarding Data Consistency (Carrasco et al., 2018). This problem refers to the

63

difficulty of keeping a consistent state across all the Microservices. In a monolith, there is

usually a single database, which ensures data consistency as it is ACID and sequential.

However, in a distributed system such as the Microservices architecture, it is harder to ensure

consistency as the information must be transferred between multiple services and databases.

For this reason, to respect the CAP theorem, Microservices often adopt an eventual consistency

approach, which means that the system only guarantees that if no new updates are made to

the object, eventually all the databases will be consistent (Furda et al., 2018). The migration to

the Microservices architecture must be planned considering data consistency across the

distributed system in order to avoid unexpected data inconsistencies (Knoche and Hasselbring,

2018).

The last three most referenced issues had three references each:

 Network related issues due to the distributed nature of the microservices architecture

are caused by the need for the microservices to communicate among them, which was

not a need in the monolithic architecture. This communication increases the latency of

the requests, and the system must also be able to deal with communication failures

between the microservices in order to remain resilient. To achieve this, patterns such

as the circuit breaker can be used.

 Testing complexity on the microservices architecture was another identified challenge

as the integration between the microservices must also be tested, something that was

not a requirement in the monolith as it was a single service and did not communicate

with other components. One way to deal with this is to define Bounded Contexts as

specified by Domain Driven Design and implement integration tests only between the

components of those bounded contexts. This simplifies the boundaries of the tests,

making them more maintainable. To test the system between different bounded-

contexts, consumer-driven contracts (Chen, 2018) can be used.

 Finally, the last issue of the five most referenced was continuous deployment and

monitoring. Each microservice should have a smaller codebase than the monolith,

making the build and deploy processes faster. However, there are multiple services to

be deployed in a microservices architecture. Therefore, if the services are not

independently deployable, with individual continuous integration environments, the

deployment process becomes highly complex. Furthermore, instead of monitoring a

single service, in the microservices architecture, the different components are working

together towards a common end, and should, therefore, be monitored together in

order to easily visualise what is happening in the system and identify an issue when it

happens. A technique to help with this challenge is log aggregation and correlation ids.

There are possible solutions to the problems identified in Table 19, and some of them were

briefly mentioned. They may be able to completely avoid the problems or at least reduce their

impact, depending on the kind of issue.

64

6.2.5.2 Research Question 2 (RQ2)

RQ2 intends to classify the issues as avoidable or intrinsic: “Which of the problems reported are

avoidable?”. Therefore, analysing the gathered documents, it is possible to classify the issues

as described in Table 20. Challenges 1, 3, 4, and 5 are intrinsic to the distributed nature of the

microservices architecture and even though they can be reduced and managed they cannot be

wholly avoided. However, challenge 2 can be avoided entirely using the best practices of

software engineering and applying Domain Driven Design techniques to define the new system

boundaries.

Table 20 - Most common challenges classsification (avoidable or intrinsic)

Number Problem Classification

1 Data Consistency Issues Intrinsic

2 Decomposition of the pre-existing system with the proper
granularity and low coupling

Avoidable

3 Network related issues Intrinsic

4 Testing Complexity on the microservices architecture Intrinsic

5 Continuous deployment and monitoring Intrinsic

6.2.5.3 Research Question 3 (RQ3)

Regarding RQ3 “What are the most common solutions to adopt the microservices architecture?”,

the systematic mapping study concludes that the five most used solutions are the ones

described in Table 21.

Table 21 - Most common solutions to adopt the microservices architecture

Number Solution Type Number of
references

1 Domain-Driven Design Approach 7

2 DevOps practices Best Practice 6

3 Containerization/Container per Service Design Pattern 6

4 Circuit Breaker Design Pattern 4

5 Provide fine-grained, well defined and
documented microservices APIs and
interfaces.

Best Practice 4

The first, Domain-Driven Design, is an approach used to design the system modelled around the

business domain, providing better maintainability and flexibility to business changes. It helps to

identify well-defined boundaries of the system, achieving low coupling and high cohesion

between the different components. Furthermore, when using Domain Driven Design, a

ubiquitous language is created which facilitates the communication between business domain

experts, stakeholders and software engineers. This approach helps to define the boundaries

and granularity of the microservices when trying to decompose an existent monolith into the

microservices architectural style, avoiding the problem 2 of Table 20.

Then, DevOps is a set of best practices to increase an organisation’s ability to deliver software

faster, which is also one of the benefits mostly referenced regarding microservices architecture.

65

Therefore, both concepts should be developed together to achieve this purpose. Some authors

state that microservices are one of the practices of DevOps methodology and that the DevOps

strategy should be defined before starting the migration to the microservices architecture, and

each microservice should have a separate autonomous DevOps pipeline. These pipelines should

include the build, test, and deploy stages of the software development lifecycle and should be

highly automated, applying the concepts of Continuous Integration and Delivery. Monitoring

and logging practices are also enforced by this methodology. Therefore, applying the DevOps

methodology to microservices software development will largely reduce the intrinsic challenges

4 and 5 mentioned in Table 20.

While DevOps is all about quickly delivering software with high quality, automating the process

along the way, containerization purpose is to package the software that is being deployed in an

isolated way and optimizing infrastructural costs, therefore it is natural that Containerization is

the third most referenced solution in the literature. Traditionally, software was developed to

run in a specific environment and if the environment was modified, it could cause errors.

Containerization main objective is to bundle the software with all the necessary configuration

files, libraries and dependencies that are required to run the application in an efficient and bug-

free way across different computing environments.

Furthermore, containerization is a virtualization technique and therefore multiple software

containers can be run for a microservices architecture in one or more physical machines, where

each microservice can run independently on its own container, optimising the resources of the

physical machines that are running the containers.

The last two most referenced solutions both had 4 references:

 The circuit breaker design pattern wraps a specific remote call in a circuit breaker object,

which keeps track of the failures of the call being monitored. If these failures reach a

defined threshold, the circuit breaker trips and all further execution of the wrapped

remote call will return an error without actually executing the call, protecting any

further components that may be failing to respond. The circuit breaker can be reset

automatically after a defined time interval, or by manual intervention, depending on

the implementation. Often this pattern will protect against a range of errors that the

protected call could raise, such as network connection failures, helping to reduce the

intrinsic challenge 3 of Table 20.

 Finally, it was considered a best practice by multiple authors to have well-defined API

and contracts in the implemented microservices. This interface should be fine-grained

and documented. The reason for this is to ensure low coupling among the microservices

and high flexibility for future changes. Also, by defining fine-grained interfaces the

possibility of having breaking changes in the future is reduced. The documentation is

essential for all the teams working in the microservices oriented system being aware of

the functionalities provided by all the components and how to use them.

66

6.3 Data from industry

To gather data from the industry and to be able to compare it with data from the analysed

literature (see Section 6.2), a questionnaire was distributed to multiple software industry

professionals that have participated or are currently participating in the migration of a

monolithic system to the microservices architecture. The questionnaire was shared online using

LinkedIn, Twitter, and professional forums such as DevOps Porto community, and Agile Connect

Porto. Also, it was presented and distributed in technological conferences (such as TechInPorto)

and companies (such as Farfetch). Finally, it was distributed directly to experienced software

engineers and software architects. In total, thirty answers were obtained.

6.3.1 Introduction

The first section of the questionnaire – Introduction - has the purpose of introducing the

participant to the study and identifying the characteristics of the population being studied, and

also discarding participants with no value for the study – for example, someone who is not

experienced with microservices. Therefore, this section analyses the results obtained in this first

section.

As can be analysed in Figure 14, the average years of experience of the participants are around

9 years. Therefore, we can consider the audience is composed of senior professionals, with only

7 participants having less than 4 years of experience in a total of 30 response submissions.

Figure 14 - Questionnaire - Participants professional experience (X: years of experience, Y: Number of responses)

Regarding the professional role performed during the migration, the participants were mostly

Software Engineers (63.3%), and Software architects (30%), with only one Quality Assurance

Engineer and one Project Manager, as can been in Figure 15.

67

Figure 15 –Questionnaire - Participants professional role

The context of the migration performed by the participants was also investigated, to analyse if

it can bring value for the study. As described in Figure 16, most of the systems consisted of

monolithic applications, and only 10% of the participants stated that they migrated systems

where only some of the services were monoliths. One participant stated that he performed a

migration of a system with more than 100 services, which is a clear outlier.

Figure 16 Questionnaire – Description of the system before migration

To better clarify the context of the migration, the participants were asked to identify the exact

number of existent services before the migration. The average result was 16 services before the

migration. However, removing the previously identified outlier which stated that the system

had 330 services before the migration, the average becomes 5. This average is caused by

multiple participants stating that their system had more than ten services, which highly

increases the average result. However, most of the participants answered that their system only

had between one and three services, with the highest concentration of participants (10) stating

that they only had one service before the migration. Also, two participants had no services

before, which means that they developed the microservices architecture from scratch without

migrating an existing system, which can be better observed in Figure 17.

68

Figure 17 - Questionnaire - Number of services before migration (Y: Number of responses, X: Number of services)

Most of the participants have fully completed the migration or are close to completing, as can

be observed in Figure 18.

Figure 18 - Current stage of migration

The participants were also asked to compare the initial estimative of months necessary to

complete the migration and the time that it really took. Therefore, the answers of the

participants who already completed the migration (50%) were analysed, as only after

completing the migration we can have the real time it took. Comparing the answers of these

participants, we can conclude that most of the migrations got delayed, 28.6% of them took

twice the time that was estimated. Only 21.4% were on time, which indicates that some

unexpected challenges were faced during the migration, and therefore demonstrates the value

of this study to try to identify these challenges and their solutions, better preparing

professionals for their future migrations, which can be observed in Figure 19. It is also important

to mention that most of the migrations took more than six months to complete.

69

Figure 19 - Pie chart of migrations delivery time

To finish the first section of the questionnaire, participants were asked the four mains reasons

that made them decide to migrate to the microservices architecture. The answers are present

in Figure 20.

Figure 20 - Questionnaire - Reasons to migrate to microservices

Analysing Figure 20 it is possible to conclude that the most common reason for the migration

was “Performance or scalability” issues with 20 participants indicating this option.

Microservices allow more efficient management of the available resources, scaling better with

increasing volumes of data. As previously mentioned, one of the main benefits of microservices

is its flexibility to business changes and the possibility to quickly deliver new features. This is

70

mostly because of the low coupling of the microservices architecture, making it possible to

modify a part of the system without affecting any other module - this statements are supported

by the second and third most indicated reasons to migrate by the industry participants: “Long

time to release new features” and “High coupling” (of the monolith).

6.3.2 Existing system analysis

This section presents the answers to the second section of the questionnaire, which is focused

on the analysis of the existing system before the migration.

First, the participants were asked to specify the sources they used to analyse the existing system.

Figure 21 presents the answers to this question.

Figure 21 - Questionnaire- Sources used to analyse the existing system

Analysing this figure, it is possible to conclude that most of the participants were mainly focused

in analysing the existing system through the source code as 21 out of 30 participants indicated

that choice. Also, data models schema and unwritten knowledge among engineers was also a

consistent choice with more than half of the participants indicating these sources. Meetings

and tests also presented some relevancy with thirteen and ten answers, respectively. Finally, it

is essential to notice that only 3 of the participants stated that they did not analyse the existing

system. Therefore, it is relevant to understand the reason for this analysis, which is the focus of

the next question.

71

Figure 22 - Questionnaire - Reasons for analyzing the existing system

Figure 22 shows the reasons the participants stated for analysing the existing system. The

answers remain consistent as the same three industry professionals indicated that they did not

analyse the existing system. The answers of the remaining 27 participants are highly coherent

as more than 20 say that the reasons were finding the dependencies in the existing system,

understanding it, as well as defining processes and APIs in the new system and architecting it.

To finish this section, participants were asked what were the main challenges faced in this stage

of the migration. The results are illustrated in Figure 23.

Figure 23 -Questionnaire - Main challenges faced while analyzing the existing system

The answers are distributed across multiple options, without a clear majority. However, the

most selected options were all related with lack of documentation, either regarding functional

characteristics, technical details or test cases specification.

72

6.3.3 Designing the new architecture

After analysing the existing system, the participants were asked some questions regarding the

process of designing the new architecture. This section will analyse the answers to those

questions.

Figure 24 - Questionnaire - Activities performed while designing the new system

Figure 24 illustrates the activities performed by the participants while designing the new system.

The answers go in line with one of the solutions identified in Section 6.2.5, as most participants

selected choices regarding Domain-Driven Design, defining the proper granularity for the new

services, and designing the business workflows accordingly.

As mentioned previously, to understand a system (either monolithic or microservices oriented),

documentation is essential. Therefore, it is crucial that the new system is well documented to

make it easier for future refactors to happen and even to expose the functionalities of the

system in a clear way to clients or consumers of the services. For these reasons, the participants

were asked in what way they documented the new architecture. The results are present in

Figure 25.

73

Figure 25 - Questionnaire - New architecture documentation method

In 30 participants, only 2 did not document the new architecture, which is a positive result.

Most of the participants created architectural documents and diagrams to define the new

architecture. However, only one of the participants mentioned API documentation, which may

be an issue. It is also interesting to see that 7 participants mentioned Domain-specific language

models to define the new architecture, which is a recent trend in software engineering that

seems to be starting to be used in the microservices professional community.

The next question is not just about the design of the new system but also how the migration

was planned regarding value delivery. Figure 26 shows the results of this question. 80% of the

participants delivered new functionalities during the migration; only 16.7% of the answers state

that new functionalities were not implemented. As mentioned in Section 6.3.1, most of the

migrations reported in the questionnaire took more than half a year to complete. Therefore, it

is justifiable that the migration also delivered new futures as most businesses are not able to

completely stop for 6 months without direct value delivery, as the value that microservices

provide can only be evaluated in the long term.

74

Figure 26 - Questionnaire - Value delivery plan for the migration

As a final question to this questionnaire section, the participants were asked what were the

main challenges faced in the design stage of the new system. The results can be seen in Figure

27.

Figure 27 - Questionnaire - Main challenges of designing the new system

It is possible to notice that there are multiple answers referring to the decomposition of the

existing system or of the business domain to model the new system components with the

proper granularity. The most interesting conclusion of this question is that the three most

selected answers are correspondent with three of the challenges identified in the Microservices

Migration research, in Section 6.2.5, Table 19:

 Reduce coupling among services in the new architecture – is directly related with the

challenged number 1 of Table 19: “Decomposition of the pre-existing system with the

proper granularity and low coupling”.

75

 Automation support for testing – is directly related with “Testing Complexity on the

Microservices architecture” identified previously, challenge number 4 of Table 19.

 Dealing with Data Consistency across services – is related with the distributed

transactions challenge that this work addresses and was also identified in the literature

study: “Data consistency issues”, challenge number 2 of Table 19.

6.3.4 Implementing the new system

This is the last section of the questionnaire referent to the migration process. It is focused on

the implementation of the microservices architecture and migration execution.

The first question was about the strategy used to start the migration. As it can be seen in Figure

28, most of the participants started their migration by re-implementing existing functionalities

as microservices. In Figure 26 we concluded that most participants delivered new functionalities

during the migration, which means that even though the migration started by migrating the

existing functionalities, during the complete process new features were also delivered in the

microservices architecture.

Figure 28 - Questionnaire - Migration strategy to begin the implementation

Either deciding to re-implement existing functionalities or implementing new ones, there must

be a prioritisation of what should be migrated first. The second question of this section is

precisely about that decision. The participant’s responses can be found in Figure 29. More than

half of the participants started to migrate the functionalities with fewer dependencies, probably

because those are the less coupled and therefore, it is easier to migrate them. However, the

other participants used other criteria for this decision. Some stated that they started by the

functionalities less used by the users, but there is also a participant who did the opposite and

started with the functionalities that were most important for the users. Business flexibility and

performance requirements were also mentioned.

76

Figure 29 - Questionnaire - First functionalities to migrate strategy

After defining the criteria used to prioritise functionalities to migrate, the participants were

asked what migration process was used to switch to the new system, among Parallel, Phased

or Big Bang adoption:

 Parallel adoption: Having all functionalities writing information on both systems at the

same time and reading operations only from one, being able to switch between the

systems.

 Phased adoption: Having some functionalities on the new system and some in the old

system.

 Big Bang adoption: Drop the old system and turn on the new one in a single step.

The results are shown in Figure 30. The most used process was phased adoption with 14

participants mentioning it, while 8 participants used the parallel strategy and only 3 used big

bang adoption.

Figure 30 - Questionnaire - Migration process used to adopt the new system

77

It is also essential to notice that 3 participants mentioned that they started with phased

adoption, but along the way, they needed to use parallel adoption for some features. No

correlation was found between the adoption process used and the project delivery being

delayed or not.

Then, the participants were asked how they handled data migrations in the process. The

answers can be seen in Figure 31.

Figure 31 - Questionnaire - Data migration strategy

The majority of the participants (22) migrated their data to the new system. Twelve of them

implemented the new system only capable of handling new data, while ten developed

compatibility with old data schemas. No correlation was found between the data migration

strategy and the adoption process mentioned in Figure 30.

The participants were then asked how many services they implemented in the new system. In

the “Designing the new architecture” section of the questionnaire, participants were asked how

many services they planned to have on the final system. The answers to both these question

will now be analysed comparing the expectations in the design stage with the reality at the end

of the migration. For this reason, the participants who are still in an early stage of the migration

(less than 50% migrated) will not be considered as the final number of services may still change.

The result of this analysis is present in Table 22.

78

Table 22 - Questionnaire - Planned Number of Services vs Final number of services

Planned number of services The final number of services Comparison

10 30 More services than planned

10 20 More services than planned

6 10 More services than planned

7 7 According to plan

150 350 More services than planned

50 50 According to plan

6 6 According to plan

12 14 More services than planned

10 10 According to plan

20 20 According to plan

15 15 According to plan

4 4 According to plan

30 35 More services than planned

20 20 According to plan

12 15 More services than planned

18 18 According to plan

10 10 According to plan

10 20 More services than planned

5 30 More services than planned

6 7 More services than planned

10 10 According to plan

With the data structured in Table 22 above, it is possible to visualise that some of the migrations

reported had an increase in the number of services that were initially planned, and not a single

migration had a decrease in the number of services. Figure 32 illustrates the percentages of

each kind of comparison more clearly.

Figure 32 - Questionnaire - Planned number of services vs final number of services

79

To conclude the last section of the questionnaire regarding the microservices migration, the

participants were asked what were the main challenges faced when implementing the system.

The results can be seen in Figure 33.

Figure 33 - Questionnaire - Main challenges faced when implementing the new system

Getting the initial prototype to work and dealing with data consistency were the two biggest

challenges identified, which is consistent with the previous results of this work. “Testing the

new system” was the second most selected challenge, which was also noticed in the systematic

mapping study. Finally, distributed monitoring and transactions are the third most selected

technical challenge. There were also some non-technical challenges identified that are worth

mentioning, regarding knowledge sharing and handling different thinking (regarding the

software architecture) for developers.

6.3.5 Questionnaire feedback

Finishing the questionnaire, the participants were asked to give some feedback regarding the

questions and their experience participating in the study.

The suggestions received were regarding the size of the questionnaire. Some participants said

that it should be more succinct, as some people may give up before completing it. Another

feedback provided was regarding the different sections of the questionnaire: a participant

stated that he got confused understanding the difference between the design and

implementation stages sections.

6.4 Participant observation

The last component of the microservices migration research is a participant observation

analysis of a real migration from a monolith to a microservices architecture done in a

80

professional context. This observation was done for several months, participating in software

engineering activities in a team of engineers and architects, from design to deployment of the

final solution.

As the project itself is confidential, only some technical details will be explained in order to bring

value to the microservices field, and the solution will be described generically, as similar as

possible to the real one.

6.4.1 Context

The initial system was a single monolith service that supported all the sections of the company

business. The code base had really low maintainability, and any modification of the system

often had unpredictable side-effects on other parts of the system. Furthermore, every time a

new feature was added, regression tests had to be manually executed, which would take

around a week to complete, and therefore the team was taking a long time to deliver new

features. Also, a lot of the business logic was defined in database stored procedures, and with

the increasing number of users, the system was not scalable enough to answer the business

requirements. Furthermore, as the single monolith supported the entire business, there were

multiple teams working in the service, which sometimes would create conflicts in deployments

and version control, delaying value delivery.

For these reasons, the team decided to decouple the modules of its ownership to an isolated

microservices architecture, which have more flexibility to business requirements and increased

scalability and maintainability. As the company was aware of the mentioned issues, the

management teams accepted the technological shift proposal, but as it would take around a

year to complete the migration, some new features, bug fixes and increased performance

through proper scalability had to be ensured. Therefore, with some small changes in the domain

model, the team also delivered some features that were on the company roadmap.

6.4.2 Design of the new system

The team ownership supported a sub-unit of the business – named X from now on. There were

some more experienced engineers in the team who had designed and implemented

microservices in the past and that recommended to use Domain-Driven Design practices to

define the new system boundaries and services granularity, oriented to the X Domain.

Following this suggestion, the team discussed how to design the new system, and some initial

conclusions arise:

 Develop the new system following an incremental and iterative approach – Phased

adoption;

 Define Boundary-Services: The system main purpose was to support X, and would,

therefore, be a bounded context, following Domain-Driven Design concepts. Boundary-

Services are responsible for managing communications with other bounded contexts.

81

 Define services for each sub-domain unit: Services who are the technical authority for

a specific business capability inside a bounded-context.

 Use asynchronous messaging through a message broker to ensure communication

between the multiple services: the reasoning for this decision was avoiding the

temporal coupling that synchronous communication requires.

o Using asynchronous messaging through a message broker, if service A needs

service B and service B is down, service A can publish its message and continue

to work as expected, when the service B comes back it will consume the

message and resume execution.

 The architecture should be event-driven and reactive to event triggers.

With these principles in mind, the design of the new system was similar to the one illustrated

in Figure 34.

Figure 34 - Participant observation system high-level view

The following boundary services were then used:

 XApi provides a REST API for external communication. It is also an abstraction layer that

converts REST requests into messages published to the message broker. In the case of

a GET request, it accesses other APIs to obtain the information required.

 EventHandler is responsible for subscribing to external events from other bounded

contexts. It works as an abstraction layer that adapts external events to an internal

format and may add additional information required for the system execution. The

internal message is published to the message broker, and any of the sub-domains can

subscribe it and execute their own business logic.

 EventDispatcher is the third boundary service defined and exposes all the events

triggered inside of the X domain so that other bounded contexts or external consumers

can receive this information and react to it. It also works as an abstraction layer as it

converts the format of the internal messages to an external contract.

 CommandDispatcher is the last of the boundary services, and its responsibility is to

publish commands that will directly trigger operations provided by other bounded

contexts.

82

6.4.3 Migration process

After defining the vision of the final microservices architecture and the principles to be followed,

the team defined the migration process to be used. One of the principles defined was to migrate

incrementally until the entire domain X was decoupled from the initial monolith (phased

adoption). For this reason, the team decided to use the strangler pattern, however after some

features had been migrated it was identified that some legacy systems were directly consuming

data from the old system database which stopped being supported. Therefore, the team

implemented the event decorating pattern to feed the new services data into the legacy

database so that the other teams could have more time to adapt their systems to the changes

and start consuming information from the services external API (XApi). For this reason, the

migration process followed a phased adoption approach for some features and parallel

adoption for others.

In the following sections, the strangler pattern and event decorating pattern usages will be

described in more detail.

6.4.3.1 Strangler Pattern

Strangler pattern suggests the creation of an abstraction layer on top of both the monolith and

the new system. This way, the consumers and clients are not affected for any changes below

the abstraction layer, and the migration can be done incrementally with no impacts (Narumoto

et al., 2017). An example of this approach can be found in Figure 35.

Figure 35 - Strangler pattern example (Narumoto et al., 2017)

Therefore, the first service of the new architecture was XApi, working as this abstraction layer

and redirecting all the calls to the monolith initially. Defined the abstraction layer, the team

started migrating an initial feature to the microservices architecture. At first, XApi was

redirecting write operations to both the legacy and the new system; however, read operations

were only performed in the legacy system. This allowed the team to keep the system behaviour

unchanged, while still feeding data to the new system in the production environment. With this

approach, the team was able to observe the new system and ensure that it was providing the

same behaviour as the monolith, and the information was consistent between the two. Also,

the new service could be tested under production environment heavy load before being truly

used by the final user. When the team was confident regarding all the requirements of the new

system, the read operations were redirected to the new service, and the monolith was no

83

longer supported. The same approach was followed for the other features, components or

entities of the monolith until the migration of domain X was complete.

6.4.3.2 Event Decorating

As previously mentioned, after some features were fully migrated and data was no longer

inserted in the legacy database, it was identified that some other monolith components were

tightly coupled to those database tables. Therefore, temporarily, the legacy database had to be

supported so that other teams would not be impacted. To achieve this, the team implemented

the event decorating pattern, as illustrated in Figure 36.

Figure 36 - Event decorating example

The new system services are identified by a hexagonal shape, while the old monolith is a square.

The responses of the microservices were subscribed by a proxy layer that published messages

for each one of the responses to a message queue “Inbox”. This message queue was consumed

by the “Legacy Feeder”, which was implemented with the sole responsibility of listening to

these messages, writing the changes into the legacy database and executing stored procedures

when required ensuring that the data was coherent with the legacy behaviour. With these

solutions, the other teams were able to rely on the legacy database until they adapted their

systems to the new microservices architecture of domain X.

6.4.4 Monitoring

The initial monolith had a single dashboard with all its logs, and it was possible to understand

what was happening in the system. However, the new system has more than 30 services and

having a different dashboard for each one would not be viable. Furthermore, it would not be

possible to have a global vision of what was happening in the system. For these reasons, the

team used the log aggregation concept and built a dashboard containing the log information of

all the services combined. To be able to manage all this information, all the system messages

are logged and contain mandatory properties:

 A correlation identifier: Single identifier of a business process instance. All the messages

flowing in the system to achieve a specific instance of a business process have the same

84

correlation identifier. It is generated by the service that initiates the business process

and is redirected by all the participant services. This allows the team to visualise the

flow of messages through all the services, and to identify where a possible issue exists

if the business process fails.

 A process name: A keyword that identifies the functionality that a specific message is

trying to achieve. It is not necessarily the name of the business process, as it regards a

specific microservice functionality. Each microservice must log the beginning and the

end of the process. When the end is not successful, the microservice will log the end of

the process with a warning or as an error. All these logs contain a correlation identifier.

 EntityId: Identifies the domain entity affected by the message, so that it is possible to

track changes to a specific entity instance to troubleshoot possible issues.

 Timestamp: Date and time when the log happened.

6.4.5 Testing

Testing was one of the hardest challenges the team faced during the migration. Only a few unit

tests were implemented in the first version of the microservices oriented system. Testing was

not taking into consideration when planning the migration and it was forgotten. The team

quickly understood this was a mistake as the delivery of new features was taking a long time as

manual regression tests still had to be performed. Furthermore, these manual tests in the

microservices architecture are much more complex and take more time. Because of this mistake,

one of the main benefits of microservices – fast delivery - could not be achieved.

To solve this problem, the team started implementing automated tests to cover existent

features. First, unit tests with a code coverage percentage of more than 80% were implemented.

Then component tests – black-box tests for a specific microservice - were developed, allowing

the quality assurance engineers to specify test cases through JSON notation. In the future, the

team plans to develop automated integration tests between the services that constitute sub-

domains of X, and use the concept of consumer-driven contracts to develop tests between sub-

domains.

6.5 Results summary

In the previous sections of this chapter, both literature and industry data were retrieved and

analysed, concluding the obtained results. This section has the objective of compiling all the

information of this chapter sections in a summary result which can be presented to

microservices researchers or practitioners in order to provide a catalogue of common

challenges currently faced, and some solutions that are currently being used for those issues.

85

6.5.1 Technical challenges and solutions catalogue

This section describes the technical challenges and correspondent solutions identified in the

microservices migration research. All the issues will be defined by presenting the problem

context, description, solution and origin.

6.5.1.1 Data consistency and distributed transactions

Problem context: Working with a monolith, usually teams have a single database where all the

transactions are applied or roll-backed if there is an error in the middle. When teams move to

the microservices architecture, they can no longer ensure the same ACID transactions as the

original data schema is decomposed in multiple services, most of the times each service with

its database.

Problem description: Ensuring consistency across the multiple databases that now exist in the

microservices system, and managing the distributed transactions that are now executed across

multiple services in order to fulfil a business process.

Solution: The two-phase commit should be avoided to benefit from the microservices

architecture advantages, as it would impact the performance and availability of the system.

Microservices were not designed for strict consistency requirements, and are therefore only

advised when eventual consistency is an option. Therefore, to handle data consistency and

distributed transactions in a microservices system with eventual consistency, a standard

solution is the implementation of the saga pattern to manage the distributed transactions and

ensure data consistency by executing compensation actions when there is a failure in the

middle of the business process.

Origin: Systematic mapping study, Industry questionnaire and participant observation.

6.5.1.2 Testing Complexity

Problem context: In a monolithic system, teams usually implement unit tests and automate

tests validating the integration of the application with database systems and other

infrastructural dependencies in order to verify if the business logic implementation is working

as expected. In a microservices system, there are now multiple services to test, and the

communication between them also needs to be validated.

Problem description: While in a monolith system, a single service needs to be tested, in the

microservices architecture, there are multiple services to be validated. Furthermore, the

integration among them also needs to be verified, which naturally increases the testing

complexity of the system.

Solution: A way to handle the increased complexity of the tests is to automate them in a

continuous integration pipeline, following DevOps principles. Also, integration tests between

different services should apply to specific bounded contexts, following Domain-Driven Design

concepts. Consumer-driven contracts testing may be used to validate the communication

86

between these different boundaries, in order to ensure that the communication contract

between the two parts remains valid.

Origin: Systematic mapping study, Industry questionnaire and participant observation.

6.5.1.3 Setup and execution of the initial prototype

Problem context: The initial setup of the microservices architecture demands more effort than

a monolithic system. The microservice architecture implies that multiple services are developed,

deployed and executed in the production environment. With a monolith, this is simpler as there

is a single service to setup and execute.

Problem description: As there are more components in a microservices architecture than in a

monolithic one, the initial setup of the system may be more complex. This phenomenon was

mentioned by authors and named “MicroservicePremium” (Fowler, 2015b).

Solution: When the microservices architecture is being developed from scratch the team should

try to use the monolith-first approach instead. Monolith-first suggests that even if an

application use case seems appropriate for the microservices architecture, the team should first

implement a monolith instead, and migrate it to the microservices iteratively as its complexity

and component boundaries become well defined, as Microservices are mostly useful on more

complex systems with well-defined boundaries (Fowler, 2015a).

Origin: Industry Questionnaire.

6.5.1.4 Creating uniformity across multiple services

Problem context: Microservice architecture implies that multiple services work together to

achieve a common objective. For this reason, teams must know the implementation details of

all these systems in order to define and implement new features.

Problem description: When there is no coherency, uniformity or standardisation across the

multiple services, their details become different. Therefore, it becomes harder for a software

engineer to move from one service to another while implementing new features.

Solution: A solution for this issue is to define coding and implementation conventions and

specify them through Model-Driven Software Engineering or defining a Domain Specific

Language, which allows the team to implement code generators that ensure uniformity across

multiple services. Therefore, the services would be more coherent. Also, static code analysis

tools can be used to ensure the fulfilment of the defined specification by all the implemented

services.

Origin: Industry Questionnaire.

87

6.5.1.5 Distributed monitoring

Problem context: In the microservices architecture, the business processes may require

multiple services to be fulfilled entirely. For this reason, to monitor the business process success,

the entire distributed system must be monitored.

Problem description: While in a monolith there is a single source of information to monitor, in

a distributed system there are multiple systems providing valuable information. Teams must

implement a way to easily visualise the data in order to be able to understand what is happening

in the system and be alerted if an error happens.

Solution: To mitigate this difficulty, the concept of Log aggregation should be used. It consists

of aggregating all the logs of multiple services in a single dashboard in order to centralise the

visualisation of what is happening in the system. These logs should contain valuable information

such as the process name, information specific to the business process, to the entity affected

and correlation data. Furthermore, all the messages should have a correlation identifier. A

correlation identifier is a unique key passed through all the messages required to fulfil a

business process instance. In this way, it is possible to visualise the messages flowing in the

system and identify where a possible error happened using monitoring and tracing tools.

Origin: Systematic mapping study, Industry Questionnaire, Participant Observation.

6.5.1.6 Decomposition of the pre-existing system with the proper granularity and low

coupling

Problem context: The existent monolith supports an entire business model in a single

executable component, usually with a single database schema for persistence. When adopting

the microservices architecture, one of the first steps is to decompose this single piece into

multiple services, each with its well-defined boundaries, in order to achieve low coupling in a

distributed system modelled around a business domain.

Problem description: When the responsibilities and boundaries of the new services are not well

defined, the services are not independent. For this reason, microservices are unable to provide

the business flexibility that the architectural style proposes. When this happens, usually teams

end the migration with a “distributed monolith” – a distributed system in which the different

components are highly coupled and dependent on each other.

Solution: Most successful microservices migrations identified used Domain Driven Design to

deal with this issue. Microservices should be independently deployable but work together to

achieve a common goal, modelled around a business domain. Domain Driven Design concepts

define the design of the system aligned with the domain model, specifying bounded contexts

and entities that are easily mapped to physical components of the microservices architecture.

Furthermore, the use cases and business workflows are defined across the multiple identified

entities or domain aggregates, and therefore the technical authorities for those specific

business capabilities are mapped in specific physical components with the proper granularity.

Origin: Systematic mapping study, Industry Questionnaire, Participant Observation.

88

6.5.2 Migration approaches catalogue

As a result of the research, some migration patterns and approaches were also identified, but

do not fit the catalogue of technical challenges presented in Section 6.5.1. However, they may

be useful in the planning of the migration technical execution in order to do it in an efficient

way with reduced errors possibility.

Three migration approaches were identified:

 Big Bang adoption: The results of this work research conclude that this is the less used

approach, but it was mentioned from some sources and should, therefore, be

considered. Using Big Bang adoption, the team shuts down the existing system and

enables the new microservices architecture in a single step. This approach was

considered to be the most dangerous one as if the architecture is not stable and has

any mistake, the entire system will collapse and there may be data corruption caused

by the new system errors. Therefore, when using this approach, there should be strong

and solid confidence in the new system, and a contingency and rollback plan should be

defined.

 Parallel adoption: Parallel adoption suggests that functionalities are implemented and

enabled in the new system, without shutting down the old system. This is achieved by

having both systems answering write operations, while the read operations are easily

redirected between the two systems. The essential difference between parallel and big

bang approach is that parallel adoption allows the team to validate the consistency of

the new system by comparing the existing system behaviour – which is the expected

one as it was the one previously provided - with the microservices architecture output.

This can be visualised in the microservices responses or data. During this validation

stage, the read operations are answered from the monolith as expected. When the

team is confident regarding the new system, then read operations can be redirected to

it.

 Phased adoption: This migration approach focuses on moving some functionalities to

the new system while other functionalities remain in the existing system. This approach

increments value to the microservices architecture iteratively. It allows the team to

evaluate the quality of the solution faster while improving the development process

along the way. The repetition of mistakes is avoided when using this approach.

Furthermore, most of the errors are centralised and isolated in smaller parts of the

overall system. For this reason, the first parts migrated are more prone to errors.

Therefore, a prioritization of what the first functionalities should be is essential. In this

work research, it was identified that there are multiple criteria used by teams for this

prioritisation: functionality relevancy to the stakeholders, components of the system

with fewer dependencies, number of users of specific functionality, among other

criteria that were less mentioned by research participants and the analysed literature.

89

Phased adoption can be combined with the other two mentioned approaches. These

combinations will now be better explained.

 Phased + Parallel: When combined with parallel adoption, each one of the sub-parts or

functionalities defined by the phased adoption prioritisation are migrated in parallel as

described above in “Parallel adoption”.

 Phased + Big Bang: Combined with Big bang adoption, each one of the modules

migrated in each iteration of the phased adoption is switched in a single step without a

previous parallel validation.

6.6 Threats to validity

Naturally, there are some threats to the validity of this work, which are described in this section.

First of all, some important information might be missing in the reports from the industry survey.

The cause for this is the static nature of the questionnaire (the same for all participants), which

limits the acquisition of information specific to each participant. Also, some participants might

have misinterpreted specific questions and therefore providing invalid answers.

Another threat to validity is the number of answers to the industry survey. As mentioned in 9.2,

if the survey did not have so many questions there would probably have been more participants.

If more answers were provided, a more geographically distributed study would be possible,

which would provide more valuable insights regarding the microservices topic.

Regarding participant observation, there is always the possibility of bias as the researcher

actively participated in the migration and may have been influenced by his perception of the

project.

Furthermore, the systematic mapping study is also influenced by some kind of bias as the

classification system used (Section 6.2.3), inclusion and exclusion criteria (Section 6.1.3.1), and

overall research plan (Section 6.1.3) is naturally influenced by the researcher experiences.

90

91

7 Distributed transactions solution

After concluding the research in microservices adoption most common challenges and best

practices, this chapter aims to present a solution implemented to solve one of the identified

challenges: Distributed transactions management.

7.1 Analysis

One of the goals of this work is to support the software engineering community with a solution

for the distributed transactions challenge of microservices migrations. Therefore, this section

will analyse possible design alternatives and requirements for the final solution.

7.1.1 Context

Section 4.2 analysed different existent approaches for implementing distributed transactions.

From that analysis, the conclusion is that saga pattern is the chosen approach to apply in this

work. The reason for this is that even though both strategies support failure-handling

mechanisms, 2PC compromises the system availability and performance while sagas handle

failures using compensating actions without locking the system resources, based on eventual

consistency. One of the main benefits of microservices is availability. Therefore, sagas are the

chosen approach in this context, which is the focus of this work. There are two ways to

implement the saga pattern, using orchestration or choreography:

 When using orchestration, having a separate service makes it easier to provide visibility

over the distributed transactions happening in the system, and the effort of adapting

the solution to different implementation scenarios is reduced as most of the logic is

implemented in a single new component. Also, using orchestration, it is easier to

control synchronous operations of request/reply and change the order in which they

must be executed (Bonham, 2019). However, the orchestrator service becomes highly

coupled to all the services it orchestrates, becoming a single point of failure for the

92

business processes it operates. Furthermore, this approach introduces the risk of

isolating too much logic in a single service over time, creating anaemic CRUD-based

services that are managed by a monolithic orchestrator service (Newman, 2015). When

that happens, the system is going against one of the microservices principles “smart

endpoints and dumb pipes” (Fowler and Lewis, 2014).

 The choreography approach is significantly more decoupled as any service can publish

events to an event stream and be plugged to the event stream to subscribe to events

from any other service. When there is the need to implement a new process, a service

only needs to be plugged into the event stream to consume the required events.

Therefore, following this approach, the services are decoupled from each other,

without a single service coordinating every step of the process. The tradeoff is that as

the transaction logic becomes distributed across the multiple services participating in

the process, the view of the business process becomes only implicit across the system

without a single point to be accessed explicitly. However, to mitigate this issue,

monitoring practices can be implemented, allowing professionals to visualise all the

events that are being published and consumed across the microservices architecture

and creating the explicit image of the business process (Newman, 2015).

The described solutions are viable for different use cases, and both are used in the industry.

Therefore, teams implementing the saga pattern should evaluate their use case to understand

where they should use orchestration or choreography. However, as described in Section 4.3.2,

there is no implemented solution to help teams implement choreographed sagas. All the

identified solutions are highly focused on orchestration and workflow rules management. For

this reason, this work contributes to the field by providing an implementation of choreographed

sagas that facilitates the usage of this approach when teams decide that it is the right approach

for their use case.

The developed solution has the primary purpose of helping software developers to implement

sagas in their microservices architecture. As the library follows the choreographic approach, it

was entitled Sapher – a mix of the words Saga and Choreographer.

7.1.2 Domain model

A business process consists of multiple steps. In a microservices architecture, each one of these

steps is usually executed in different services. Therefore, a business process step communicates

with others using messages. Services implement message handlers for the messages that they

need to act on to accomplish the mentioned interaction between steps.

These messages can be considered input messages when they start a business process step or

response messages when they are a response to a previously made request or a notification

that a step needs to receive to ensure the success of the distributed transaction.

Sapher domain model can be visualised in Figure 37 below.

93

Figure 37 - Sapher domain model

Also, the message handlers are idempotent so that message producers can use retry policies to

ensure the correct delivery of messages, supporting a more resilient system with more

reliability in business processes. For that reason, all the messages are associated with a

MessageSlip that contains the following information:

 Message identifier – a unique identifier of a message;

 Correlation identifier – a unique identifier of the transaction, and therefore of the

business process instance;

 Conversation identifier – the message identifier of the previous message in the

transaction.

Furthermore, message handlers also provide compensation for messages that require it. Each

process step state can be considered as failed after a specific time interval without being

updated, which is considered a timeout.

94

Also, each process step can have multiple handlers, and each handler can be assigned to

multiple steps in order to achieve a high reusability of business logic. Finally, a message can

have multiple handlers, depending on the process step they are being applied to.

7.1.3 Requirements

This section describes the identified requirements for this solution and is divided in non-

functional and functional requirements.

7.1.3.1 Non-functional requirements

As this work focus is on the microservice architecture style, the provided solution must respect

its patterns and guidelines. As concluded in Section 7.1.1, this work intends to contribute to the

field by providing an implementation of choreographed sagas, which is another requirement

for the final solution.

Furthermore, the technologies described in Section 4.3.2 showed most value when the

implementation did not require structural changes to the user code and was agnostic to

communication channels. Finally, failure-handling mechanisms should be supported. Table 23

presents the identified non-functional requirements for this solution.

Table 23 Distributed transactions solution non-functional requirements

Requirement number Description

1 Provide reduced effort in adapting the solution
to different implementation scenarios.

2 The microservices architecture patterns and
guidelines must be respected.

3 Usage of choreographed sagas

4 The solution must be agnostic to communication
channels.

5 The solution must provide failure-handling
mechanisms.

7.1.3.2 Functional requirements

Sapher was created to help developers, and therefore, all the use cases have the same actor: A

developer trying to implement distributed transaction in a microservices architecture.

In Figure 38, the identified use cases are illustrated in a use case diagram.

95

Figure 38 – Sapher use case diagram

As previously explained in this document (see Section 4.2), a distributed transaction is a

business process spanning across multiple services. Therefore, its definition is essential for the

implementation of distributed transactions, resulting in UC1.

Also, it is essential to control the state of the transaction so that actions may occur when

anything fails, and the user can understand what is happening in the system. UC2 provides this

functionality.

UC3 represents the compensation functionality that a saga implementation must provide.

To ensure no messages are lost, retries are essential in a distributed system, which is the

reasoning for UC4. However, to be able to do that, the consumers must be idempotent,

resulting in UC5.

In a distributed system, when a requesting service expects asynchronous replies, but the

response never reaches the requester, the transaction is as failed. UC6 provides this possibility

by allowing the user to define a time interval to wait for the response before marking the

transaction as failed.

UC7 and UC8 are related to maintainability, reusability and flexibility of Sapher. To avoid

duplicated code across different processes, the user can reuse the same message handlers in

96

different business processes. Also, the user can implement their logger and persistence logic as

long as they follow the extensibility contract defined by Sapher.

7.1.4 Design alternative

Analysed the possible strategies and the defined requirements, it was determined that the

choreography approach should be used as there is no solution to aid in the implementation of

choreographed sagas. The alternative would be to use orchestrated sagas. Therefore, this

section contains a high-level description of what that alternative would be.

The high-level view of the final solution is defined in Figure 39.

Figure 39 – Orchestrated sagas solution high-level view

The solution provides implementations for the two types of actors of an orchestrated saga

process, the orchestrator and the participant. The orchestrator offers an endpoint to start the

transaction and another to receive replies from the participants, which provide endpoints to

execute regular actions or compensation actions. Furthermore, the orchestrator records the

saga transaction state in a database with the data model described in Table 24. This information

is accessed via a web application provided by the saga orchestrator, providing visibility over the

system distributed transactions.

97

Table 24 – Data model for saga transaction

Property name Property type

TransactionId UUID

TransactionName String

Status String

Reason String

Step String

UpdatedDate DateTime

TransactionId is a unique identifier generated by the orchestrator for each transaction.

TransactionName is a label provided for the transaction. Status is a pre-defined range of Strings

(Started, Aborted, Complete, and Failed). Reason only has value when the Status is failed and

indicates the cause of failure. Step describes the label of the step in which the transaction is,

and UpdatedDate provides information regarding the last time the object was updated. This

model should be persisted in a non-relational database as it consists of a single entity with no

relationships.

The solution provides two distinct libraries to be used by the saga orchestrator service and the

saga participants respectively. The saga orchestrator library provides an abstract class

SagaOrchestrator which can be inherited to define endpoints for the transaction start and reply

channel. Furthermore, the implementation of SagaOrchestrator must define its Workflow using

the WorkflowBuilder class, which provides functionalities for identifying the different steps of

the transaction and compensation action for each one of them. It also defines the expected

replies for each one of the outlined steps and which ones should be considered successful. The

library is responsible for abstracting the coordination between the different steps defined,

execute compensation actions, and record the transaction state.

The SAGA participant library provides a SagaParticipant abstract class which can be

implemented to define endpoints for action and compensation handling. After the execution of

the action successfully, the SagaParticipant automatically informs saga Orchestrator of the

success.

7.2 Design and implementation

This section describes the solution and provides implementation details for the major

components and use cases it supports.

7.2.1 Logical view

Defined the domain model and the use cases to be addressed, Sapher was designed following

the high-level design illustrated in Figure 40.

98

Figure 40 - Sapher high-level design view

As defined in Section 7.1.2 following the defined domain model, each business process step is

executed in a different service, which respects the choreography approach. Sapher provides a

generic implementation of these steps, which are, from now on, entitled as “Sapher steps”.

Therefore, each microservice belonging to a distributed transaction should install Sapher and

define the Sapher steps in which they are an active participant. For this reason, a Sapher step

must have an input handler and can have multiple response handlers. In Sapher, an input

handler is called “HandlesInput” and a response handler “HandlesResponse”.

Figure 40 illustrates this in an example scenario constituted by three microservices, A, B, and C.

Service A contains two SapherSteps, one triggered by a user action and another by an external

system. Service B and C listen to the output of Service A triggering their own SapherSteps and

publishing messages that service A can listen to as responses, using response handlers, and

marking the business process step as successful. Finally, service C also listens to service B output

to mark its own SapherStep as successful. Service C does not provide any output, as it is the

final step of the business process. In each SapherStep, state management and persistence,

idempotency, retries, and timeouts are managed by Sapher entirely.

All of these mechanisms and functionalities will be further detailed in the following sections.

99

7.2.2 Implementation view

This section describes some details of Sapher implementation: Sapher and SapherSteps

modular configuration, handling mechanisms, and extensibility possibilities.

7.2.2.1 Configuration

Sapher is implemented in C#, using .NET technologies. Therefore, it uses the standard approach

of .NET libraries and extends .NET ServiceCollection, using Microsoft Dependency Injection to

define Sapher configuration details.

To do this, ServiceCollectionExtensions class provides an AddSapher method which allows the

user to define Sapher configurations by accessing SapherConfigurator interface. The

implementation allows the user to define logging, persistence, timeout and retry policies

configuration. Also, SapherConfigurator uses SapherStepConfigurator to define SapherSteps,

including its name, input handler, and response handlers. These handlers can be reused in

different steps, and a message can have multiple handlers in different SapherSteps. Sapher will

deliver the messages to all the SapherSteps that have any handler for the received message.

The method UseSapher of ServiceCollectionExtensions uses the generated SapherConfiguration

and SapherStepConfiguration instances to create Sapher and SapherStep instances following

the user configurations. This mechanism is illustrated in Figure 41.

Figure 41 - Sapher configuration implementation view

100

7.2.2.2 Handlers

SapherStepConfigurator only accepts valid handlers. A valid handler is a class which implements

the generic interfaces HandlesInput or HandlesResponse for a specific message type. Sapher

uses these interfaces in the mediator pattern applied for message delivery - Figure 42.

Figure 42 - Sapher handlers mediation

Sapher is agnostic to communication channels by providing a public method for message

delivery. Users can receive messages by http, consume them from a message broker of any

technology or any other communication channel, as long as they deliver the messages to Sapher

delivery method, along with the message’s message slip. Sapher acts as a mediator in message

delivery by identifying the steps that handle that message and delivering it to the specific

handler implementation configured in the AddSapher method previously described in this

section. If the delivery fails, Sapher follows the defined retry policy to try again to deliver the

message successfully.

Along with the mediation, Sapher ensures idempotency by persisting the message identifier

together with the business process step state. Therefore, the same message is never consumed

twice. More details can be seen in Figure 43.

101

Figure 43 - Sapher execution state handling

HandlesInput and HandlesResponse implementations must provide an InputResult and

ResponseResult, respectively. These data transfer objects (DTOs) are what allows Sapher to

persist the state of the business process implemented by those handlers.

A response message can only be handled after the step has been instantiated by an input

message. For that reason, InputResult contains the identifiers of the messages that were the

output of the input message execution, if there were any. Response messages are correlated

with these identifiers and therefore, the correspondent step state updated.

Both results allow the user to persist any valuable data regarding the execution.

HandlesResponse implementations receive the previously persisted data so that they can

coordinate the action to take, which can be useful to apply compensation actions.

If a SapherStep is instantiated by an input message where the InputResult contains output

messages, Sapher will apply the user-defined timeout policy to mark the business process step

as failed after a specified amount of time.

102

7.2.2.3 Logger

Sapher provides monitorization through logs of what is happening in the service, regarding

message handling, step state persistence, among other useful information. To do that, Sapher

provides a Logger interface and a LogEntry DTO, which can be implemented and extended

respectively by the user. Therefore, developers using Sapher can keep using any logging

framework that their microservice uses, or use a specific one for Sapher, as they prefer. If this

logging implementation is not defined, Sapher will not log any message. This can be seen in

Figure 44.

Figure 44 - Sapher logger extensibility

103

7.2.2.4 Persistence

Sapher persistence follows a similar approach to logging extensibility mechanism. Using the

repository pattern, Sapher provides an interface SapherDataRepository that users can

implement to use any storage engine as they see fit. Developers using Sapher also need to

implement the adapter pattern in order to map their data model to Sapher DTOs. If an

implementation of the repository is not provided, Sapher will use in-memory persistence to

keep the state of the transactions, which is not recommended for distributed production

environments.

Figure 45 - Sapher persistence extensibility

104

7.2.3 Use cases specification

This section provides specific implementation details for each one of the defined use cases,

ensuring that all of them are supported.

The definition of the business process step, logging extensions, and persistence configuration

are made in Sapher setup process. Therefore, the correspondents UCs of these features (UC1,

UC7, and UC8) can be visualised in Figure 46.

Figure 46 - Sapher configuration sequence diagram

When defining Sapher initial configuration, in the project setup, developers can define the steps

and their respective inputs and responses, and reuse them in different steps.

Regarding UC2, the users can see the state of execution of the steps by requesting this

information to Sapher, as can be seen in Figure 47.

Figure 47 - Sapher state load sequence

105

In UC3, developers require the configuration of compensation actions, which can be

accomplished by the implementation of HandlesResponse interface. A SapherStep that has a

response handler (HandlesResponse) assigned to a message will execute the implementation

of the mentioned interface. To facilitate the execution of compensation action, SapherStep

provides the data persisted in the step input execution stage. Therefore, developers can use

this information to apply compensation actions when receiving messages that require to do so.

The functionality can be analysed in Figure 48.

Figure 48 - Sapher compensation actions

To improve the resiliency of the system, UC4 requires the possibility of defining retry policies.

The retry policy is configured in the setup of Sapher, as described in Figure 46. However, it is

executed while delivering a message. When an exception is thrown during the delivery

sequence, Sapher will follow the retry policy. Therefore, if retries are enabled, Sapher will retry

the delivery the number of times specified, waiting for the specified time interval between each

try. The functionality can be observed in Figure 49.

Figure 49 - Sapher retry execution

106

When using retries, the microservices need to be idempotent in order to avoid duplicated

executions. Therefore, UC5 requires Sapher to implement idempotency in message consumers.

SapherStep persists the identifier of all the messages it handles to accomplish that feature.

When receiving a message, SapherStep verifies if the message was already consumed, and

ignores it if it was already processed successfully. The process is illustrated in Figure 50.

Figure 50 - Sapher idempotency

Finally, UC6 requires the possibility of defining timeout intervals for asynchronous request and

reply executions. The timeout policy is configured in the setup of Sapher, as described in Figure

46. When a timeout policy is defined, Sapher will wait the specified amount for a response to a

SapherStep execution. If a response takes longer than the defined period to reach Sapher, the

state of the transaction will be marked as failed. The feature is detailed in Figure 51.

Figure 51 - Sapher timeout policy execution

107

7.2.4 Implementation process

To implement Sapher, Git was used as a version control system, hosting a C# repository on

Github (https://github.com/joaodiasneves/sapher/) as it is the most common platform for

open-source projects, with a large community which may be interested in supporting and

contributing to Sapher in the future.

Also, Sapher was released in Nuget packages repository, the central package repository for .NET

technologies. Continuous Integration and Continuous Delivery practices were used, using

Travis-CI (https://travis-ci.com/joaodiasneves/sapher) as an integration and delivery pipeline,

and semantic versioning (Preston-Werner, 2019) for project versioning.

During the development stage, the Test-Driven-Development was used. The first code to be

written were unit tests, using the FluentAssertions third-party library. Then, Sapher started to

be built around those tests until all the defined requirements passed.

The core features like message delivery through mediation and state management were the

first to be implemented. After that, resiliency through idempotency, retries and timeouts were

added using Polly open-source library (App-vNext/Polly, 2019). Then, extension points were

defined for logging and persistence. Finally, a simple service was implemented using Sapher in

order to have a proof of concept and usage sample of the developed library.

108

109

8 Evaluation

This chapter has the objective of evaluating the solutions implemented. It defines the metrics

to be used, the hypotheses to be tested, the test methodology and the results of the tests. It

also describes the approach used to evaluate the solutions.

In addition to the hypotheses tests, the results were also analysed using exploratory data

analysis with mean, mode and median and using graphics to illustrate the data analysis.

8.1 Work validation by experts of the field

To evaluate this work, its results were introduced to experts of the microservices field who then

provided their evaluation based on a questionnaire. The opinion of these professionals is of

high importance as they have extensive experience in microservices migrations and

implementations. The group of experts selected consists of Principal Engineers, Software

Architects, among other roles that require extensive technical knowledge. The complete

questionnaire can be found in appendix B.

The results introduced to the experts are divided into two sections:

1. Regarding the microservices migration research, the experts had access to section 6.5,

which contains a summary of the results.

2. To evaluate the distributed transactions solution, the experts had access to the public

repository of the project and its documentation.

The questionnaire provided contained three question groups:

1. Questions regarding the challenges identified.

2. Questions regarding solutions and best practices for each one of those challenges.

3. Questions regarding the distributed transactions solution.

All the questions are closed-ended, and the answers can be provided using values of the Likert

scale (Likert, 1932).

110

Table 25 - Likert scale

Strongly
Disapprove

Disapprove Undecided Approve Strongly
Approve

1 2 3 4 5

In order to analyse the results of the questionnaire regarding the groups of questions 1 and 2,

each one will have specified intervals which will be described to the professionals before they

answer the survey.

The intervals defined for the answers to group 1 are presented in Table 26 below.

Table 26 - Mean intervals for the evaluation of the problems identified

Interval Description

[1-2] The identified issues have no relation to microservices architecture or migration
processes. The study does not bring value to the field.

[2-3] Some of the issues are related to the microservices architecture or migration
processes, but there are essential issues missing. The study does not bring value
to the field.

[3-4] The list of problems is complete and clear. The issues are related to the
microservices architecture or migration processes, but some are not currently
relevant. The study brings value to the field.

[4-5] The study identified the most common challenges of microservices architecture
and migration. The study brings value to the area.

The intervals defined for the answers to group 2 are presented in Table 27 below.

Table 27 - Mean intervals for the evaluation of the solutions and patterns identified

Interval Description

[1-2] The solutions and patterns identified have no relation to microservices
architecture or migration processes. The study does not bring value to the field.

[2-3] Some of the solutions and patterns identified are related to the microservices
architecture or migration processes, but there are important techniques missing.
The study does not bring value to the field.

[3-4] The list of solutions and patterns is complete and clear. The methods are related
to the microservices architecture or migration processes, but some are not
currently relevant. The study brings value to the field.

[4-5] The study identified the currently mostly used and proper techniques of
microservices architecture and migration. The study brings value to the field.

Regarding group 3 (distributed transactions solution), the experts had access to the non-

functional requirements and functional requirements. They were then asked to analyse the

solution and provide feedback regarding the achievement of the requirements. To do that, they

used the Likert scale to inform their evaluation from “Not achieved at all” (grade 1) to “achieved

completely” (grade 5), for each group of requirements.

111

8.1.1 Preparation

The mean answer to each one of the groups was calculated and mapped to its specific interval.

The description of the defined intervals gives some insights regarding the results of the group

in particular.

In order to also have an overall evaluation, the mean of all the question groups was also

calculated. This final grade will be used to test the value of this work.

Using the Likert scale, if a value is bigger than 3, then it is on the positive side of the range.

Consequently, it is possible to consider that the work is valuable if the final mean is higher than

3. Therefore, we must understand if the final mean value is on the positive side of the scale, for

which a One-Tailed t-Test was chosen, to test the following hypotheses.

𝐻0: 𝐸𝑥𝑝𝑒𝑟𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑖𝑠 𝑤𝑜𝑟𝑘 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑛𝑜𝑡 𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑

𝐻0: 𝜇 ≤ 3

𝐻1: 𝐸𝑥𝑝𝑒𝑟𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑖𝑠 𝑤𝑜𝑟𝑘 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑

𝐻1: 𝜇 > 3

If the mean is more significant than 3, H0 is refuted and therefore it is valid to say that the work

results are valuable to the field.

8.1.2 Evaluation

The questionnaire was not publicly delivered. It was directly provided to specific professionals

with recognized extensive knowledge in the microservices field. The main objective of this was

to obtain feedback directly from experts and not from a wide group of professionals. It was

possible to get 10 participants.

8.1.2.1 Experts background

Figure 52 illustrates the job titles of the participants. All of them require extensive technical

knowledge and software architecture experience.

112

Figure 52 - Research validation - Participants job titles

Also, the participants answered how many years of experience they have, which can be

analysed in Table 28.

Table 28 - Research validation - Participants years of experience

Participant Years of experience

1 6

2 6

3 8

4 9

5 10

6 11

7 12

8 16

9 19

10 20

Average 11.7

All of the participants have at least 6 years of experience. The most experienced participant has

20 years of experience. Also, the average experience of the 10 participants is 11.7. Therefore,

the participants are highly experienced and are able to provide value by evaluating this work

results.

113

8.1.2.2 Main challenges study evaluation

After gathering some information regarding the participant's profiles, they were asked to

provide feedback regarding the main challenges identified (questions group 1).

Figure 53 - Research validation - Main challenges grade

Figure 53 describes the grades provided by experts regarding the main challenges identified in

the study. Half of the experts provided the maximum grade of 5, while the lowest grade was

3.5. Therefore, all of the experts provided a positive evaluation (more than 3 in the Likert scale).

The mean grade of all participants was 4.45, positioning the main challenges evaluation in the

following descriptive grade interval:

 [4-5] - “The study identified the most common challenges of microservices architecture

and migration. The study brings value to the area.”

Two of the experts provided additional comments:

1. “There are some technical challenges like the local developer experience and

resiliency that are uncovered during this research.”

2. “I would consider resiliency aspects of such architecture as the main challenge.”

While the local developer experience was not given a close attention in this work because it is

not a technical challenge, resiliency is identified as an improvement point for future work.

8.1.2.3 Solutions and best practices evaluation

For each one of the challenges, some solutions and best practices were identified. Therefore,

the experts were asked to evaluate them following the Likert scale. The results can be observed

in Figure 54.

114

Figure 54 - Research validation – Solutions and best practices grade

Most of the participants classified the solutions and best practices in grade 4. The lowest grade

was 3 and the highest grade was 5. These values have a mean of 4.2, which is lower than the

grade of the main challenges but is still on the positive side of the Likert scale. Also, 4.2 is in the

interval between 4 and 5 providing the following descriptive grade:

 [4-5] – “The study identified the currently mostly used and proper techniques of

microservices architecture and migration. The study brings value to the field.”

The expert that classified the solutions at grade 3 justified it stating the following comment:

 “In order to have better visibility of a distributed system besides logging and tracing,

other practices are important on that context as metrics aggregators and alerting”.

In fact, the solutions to the distributed monitoring challenge do not mention metrics or alerting,

constituting, therefore, a gap to be pursued in future work.

8.1.2.4 Distributed transactions solution evaluation

After evaluation of the microservices migration research, participants were asked to evaluate

the distributed transaction solution by accessing the code in the public repository along with its

documentation. The experts evaluated the requirements of the project by providing a grade

from 1 to 5, where 1 means that the requirements were not met and 5 that the requirements

were all achieved.

Figure 55 provides the answers regarding non-functional requirements.

115

Figure 55 - Distributed transactions solution evaluation – non-functional requirements

While only one expert provided grade 3, all the others provided higher grades, positioning the

solution with a mean of 4.3, which is on the positive side of Likert scale.

Regarding the functional requirements, the same approach was used, and the results can be

found in Figure 56.

Figure 56 - Distributed transactions solution evaluation - functional requirements evaluation

While half of the participants evaluated the non-functional requirements in grade 4, in the case

of functional requirements 50% of the experts rated the solution at grade 5. However, one of

the participants evaluated the solution with value 3. This provides a mean grade of 4.4 for

functional requirements, only 0.1 points of difference from the non-functional.

Finally, two of the participants provided some comments regarding the solution:

 “Amazing work and analyses with real-life use cases and experience.”

 “Excellent work, thanks for sharing it.”

116

To test the hypotheses of this evaluation, the total mean of question group 3 (distributed

transactions solution) must be calculated. The results can be found in Table 29.

Table 29 – Distributed transactions solution evaluation – Means

Description Mean grade

Non-functional requirements 4.3

Functional requirements 4.4

Total mean 4.35

8.1.2.5 Hypotheses test

To conclude this evaluation, the hypotheses stated in section 8.1.1 must be tested. As

previously mentioned, this will be obtained by calculating the total mean of the answers and

positioning it on the Likert scale. The calculations are present in Table 30.

Table 30 - Work evaluation - total means

Question group Mean grade

1 – Main challenges 4.45

2 – Solutions and best practices 4.2

3 – Distributed transactions solution 4.35

Total mean 4.3

The total mean of this evaluation is 4.3, which is more significant than 3, positioning the

evaluation in the positive side of the Likert scale.

𝜇 = 4.3

4.3 ≥ 3

With this value, H0 is refuted and therefore it is valid to say that the work results are valuable

to the field.

117

9 Conclusions

This chapter concludes this document by analysing and comparing the initially defined

objectives with the work outputs and outcomes. The difficulties identified during this work are

described here, along with possible future work.

9.1 Achieved objectives

In Section 5.2 the main objectives of this work were defined. In this section, the achievements

of these objectives are evaluated and justified with corresponding evidence. Table 31 presents

the different objectives and their completeness.

Table 31 - Objectives achievement

Number Objective Completeness

1 Identify the most common technical challenges that teams
currently face while migrating to the microservices
architecture and possible solutions.

Achieved

2 Address the distributed transactions challenge specifically,
proposing a solution to ease the management of
distributed transactions in a microservices architecture,
using choreographed sagas.

Achieved

This work contributed to the microservices field with a catalogue of the most common

challenges faced by teams when adopting the microservices architecture. Also, for each one of

these challenges, some solutions were identified. The results were obtained by conducting a

systematic mapping study analysing 54 different articles published since 2018. Also, an industry

survey was completed by 30 industry professionals with experience in microservices

architectures. Furthermore, a participant observation study of a real microservices migration

was conducted. Therefore, it is possible to conclude that objective 1 was achieved successful,

and the evidence can be found in Chapter 6.

118

Regarding objective 2, different strategies to solve the distributed transactions challenge were

analysed. After, a solution was implemented using the choreographed saga pattern. The project

was publicly published as open-source, and all the details can be found in Chapter 7, containing

the evidence necessary to consider objective 2 as achieved.

In Chapter 8, 10 experts in microservices with an average of 11.7 years of experience in the field

provided a positive grade (4.3) in the Likert Scale (1 to 5) and feedback regarding both the

microservices research study and the distributed transactions challenge, considering the work

valuable to the field, and providing further evidence of their achievement.

9.2 Difficulties along the way

During the development of this work, different difficulties were faced influencing the final

results of this work:

 Industry survey too long – one of the difficulties found was to find enough participants

in the industry survey. Some participants mentioned that they took a long time to

answer the questionnaire even though the questions were close-ended, due to the

number of questions. This limitation may have reduced the number of participants, but

obtained more information from each participant.

 Confidentiality issues – due to confidentiality issues it was not possible to provide all

the obtained information from the participant observation study.

 Experts availability – another difficulty found during this work was to find availability

from industry experts to validate the results of this work as it required them to read the

results and analyse the distributed transactions solution implemented in detail, which

demands some time.

 Companies interest – it was challenging to find companies available to test the

developed distributed transactions solution in a production environment. The initially

agreed company changed its priorities and refused to implement the solution in the

timeframe required by this work.

 Initial idea concretization – initially this work objective was to define a guide for

migration of monoliths to the microservices architecture. However, during the context

and state of the art analysis, a different path for this work was chosen in order to

provide more tangible value, which also caused some changes in the initial project

structure.

119

9.3 Future work

Even though this work achieved its objectives, there are always improvement points. Also, this

work’s contributions identify essential challenges for further research in the microservices field.

One of the areas mentioned by professional experts in Section 8.1.2 that should be pursued in

future work is resiliency, specifically alerting and metrics aggregation.

Also, this work focuses on technical challenges, however, multiple organizational and cultural

challenges were found in the process of migrating to the microservices architecture, and are

therefore areas left open for future work – namely organization and team structure to

implement microservices, team members experience, deliveries planning and the software

development lifecycle, specifically the possible testing stages.

Regarding the distributed transactions solution, future work constitutes the implementation of

the solution in a production environment in order to validate its viability in a real usage scenario.

The preparation of this experiment is detailed in appendix C and can be executed in the future,

as the projected is published as open-source.

Furthermore, logging and persistence implementations can be developed using the extensibility

points provided by Sapher in order to facilitate the usage of the solution by interested teams or

individuals. Other features, such as alert and caching can be implemented in the future.

Additionally, Sapher was designed in line with the choreographed saga pattern to provide an

implementation for this approach as in Section 4.3.2 the analysed solutions-focused only in the

orchestration style. However, even though choreography and orchestration were compared

describing the multiple advantages and disadvantages of each, the use cases for using one or

the other were not researched, leaving a gap for future research, which would also provide

more guidance for the right use cases for Sapher usage.

Finally, this work was written in English so that it can reach a higher number of readers. Also, it

was structured with the possibility of publishing an article on a recognised platform or

conference, further increasing the work reach. Even though it was not possible to achieve this

in the timeframe available for this work, this task will be completed in the future, so that a

different perspective of reviews can be gathered, and future research influenced positively.

120

121

References

Amazon, 2019. AWS Step Functions [WWW Document]. URL

https://aws.amazon.com/step-functions/ (accessed 8.10.19).

Aoyama, M., 1998, April. New age of software development: How component-based

software engineering changes the way of software development. In 1998

International Workshop on CBSE (pp. 1-5).

App-vNext/Polly, 2019. . App vNext.

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A. and Lynn, T., 2018.

Microservices migration patterns. Software: Practice and Experience, 48(11),

pp.2019-2042.

Baškarada, S., Nguyen, V. and Koronios, A., 2018. Architecting Microservices: Practical

Opportunities and Challenges. Journal of Computer Information Systems, pp.1-

9.

Bonham, A., 2019. Microservices — When to React Vs. Orchestrate [WWW Document].

Medium. URL https://medium.com/capital-one-tech/microservices-when-to-

react-vs-orchestrate-c6b18308a14c (accessed 8.10.19).

Camunda, 2019. Workflow and Decision Automation Platform [WWW Document].

Camunda BPM. URL https://camunda.com/ (accessed 8.10.19).

Carrasco, A., Bladel, B.V. and Demeyer, S., 2018, September. Migrating towards

microservices: migration and architecture smells. In Proceedings of the 2nd

International Workshop on Refactoring (pp. 1-6). ACM.

Cerny, T., Donahoo, M.J. and Trnka, M., 2018. Contextual understanding of

microservice architecture: current and future directions. ACM SIGAPP Applied

Computing Review, 17(4), pp.29-45.

Chen, L., 2018, April. Microservices: architecting for continuous delivery and DevOps.

In 2018 IEEE International Conference on Software Architecture (ICSA) (pp. 39-

397). IEEE.

Ciavotta, M., Alge, M., Menato, S., Rovere, D. and Pedrazzoli, P., 2017. A microservice-

based middleware for the digital factory. Procedia Manufacturing, 11, pp.931-

938.

Di Francesco, P., Lago, P. and Malavolta, I., 2018, April. Migrating towards

microservice architectures: an industrial survey. In 2018 IEEE International

Conference on Software Architecture (ICSA) (pp. 29-2909). IEEE.

Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R. and

Safina, L., 2017. Microservices: yesterday, today, and tomorrow. In Present and

ulterior software engineering (pp. 195-216). Springer, Cham.

Fowler, M., 2018. How to break a Monolith into Microservices [WWW Document].

martinfowler.com. URL https://martinfowler.com/articles/break-monolith-into-

microservices.html (accessed 10.13.18).

Fowler, M., 2015a. Monolith First [WWW Document]. martinfowler.com. URL

https://martinfowler.com/bliki/MonolithFirst.html (accessed 4.15.19).

Fowler, M., 2015b. MicroservicePremium [WWW Document]. martinfowler.com. URL

https://martinfowler.com/bliki/MicroservicePremium.html (accessed 6.30.19).

Fowler, M., 2015c. bliki: MonolithFirst [WWW Document]. martinfowler.com. URL

https://martinfowler.com/bliki/MonolithFirst.html (accessed 6.30.19).

122

Fowler, M., Lewis, J., 2014. Microservices [WWW Document]. martinfowler.com. URL

https://martinfowler.com/articles/microservices.html (accessed 10.28.18).

Fox, A. and Brewer, E.A., 1999, March. Harvest, yield, and scalable tolerant systems.

In Proceedings of the Seventh Workshop on Hot Topics in Operating

Systems (pp. 174-178). IEEE.

Fritzsch, J., Bogner, J., Zimmermann, A. and Wagner, S., 2018, March. From monolith

to microservices: a classification of refactoring approaches. In International

Workshop on Software Engineering Aspects of Continuous Development and

New Paradigms of Software Production and Deployment (pp. 128-141). Springer,

Cham.

Furda, A., Fidge, C., Zimmermann, O., Kelly, W. and Barros, A., 2017. Migrating

enterprise legacy source code to microservices: on multitenancy, statefulness, and

data consistency. IEEE Software, 35(3), pp.63-72.

Garcia-Molina, H. and Salem, K., 1987. Sagas (Vol. 16, No. 3, pp. 249-259). ACM.

Gerlag, D., 2019. Lightweight workflow engine for .NET Standard. Contribute to

danielgerlag/workflow-core development by creating an account on GitHub.

Gilbert, S. and Lynch, N., 2002. Brewer's conjecture and the feasibility of consistent,

available, partition-tolerant web services. Acm Sigact News, 33(2), pp.51-59.

Google, 2019. Google Forms About Section.

Gray, J. and Lamport, L., 2006. Consensus on transaction commit. ACM Transactions

on Database Systems (TODS), 31(1), pp.133-160.

Gray, J. and Reuter, A., 1992. Transaction processing: concepts and techniques. Elsevier.

Greenfield, P., Fekete, A., Jang, J. and Kuo, D., 2003, September. Compensation is not

enough [fault-handling and compensation mechanism]. In Seventh IEEE

International Enterprise Distributed Object Computing Conference, 2003.

Proceedings. (pp. 232-239). IEEE.

Hasselbring, W. and Steinacker, G., 2017, April. Microservice architectures for

scalability, agility and reliability in e-commerce. In 2017 IEEE International

Conference on Software Architecture Workshops (ICSAW) (pp. 243-246). IEEE.

Heidari, F., Loucopoulos, P., 2014. Quality evaluation framework (QEF): Modeling and

evaluating quality of business processes. Int. J. Account. Inf. Syst. 15, 193–223.

https://doi.org/10.1016/j.accinf.2013.09.002

Hohpe, G., Woolf, B., 2004. Enterprise Integration Patterns: Deisgning, Building, and

Deploying Messaging Solutions. Addison-Wesley.

Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J. and Tilkov, S., 2018. Microservices:

The journey so far and challenges ahead. IEEE Software, 35(3), pp.24-35.

Knoche, H. and Hasselbring, W., 2018. Using microservices for legacy software

modernization. IEEE Software, 35(3), pp.44-49.

Koen, P.A., Ajamian, G.M., Boyce, S., Clamen, A., Fisher, E., Fountoulakis, S., Johnson,

A., Puri, P. and Seibert, R., 2002. Fuzzy front end: effective methods, tools, and

techniques. The PDMA toolbook 1 for new product development.

Kopp, O., Wieland, M., Leymann, F., 2009. Towards Choreography Transactions 7.

Kosaraju, M., 2007. XA transactions using Spring [WWW Document]. JavaWorld. URL

https://www.javaworld.com/article/2077714/xa-transactions-using-spring.html

(accessed 4.23.19).

Lake, B., 2012. An empirical evaluation of an agile modular software development

approach: A case study with Ericsson.

123

Larrucea, X., Santamaria, I., Colomo-Palacios, R. and Ebert, C., 2018.

Microservices. IEEE Software, 35(3), pp.96-100.

Lethbridge, T.C., Sim, S.E. and Singer, J., 2005. Studying software engineers: Data

collection techniques for software field studies. Empirical software

engineering, 10(3), pp.311-341.

Levcovitz, A., Terra, R., Valente, M.T., 2016. Towards a Technique for Extracting

Microservices from Monolithic Enterprise Systems. ArXiv160503175 Cs.

Likert, R., 1932. A technique for the measurement of attitudes. Archives of psychology.

MuleSoft, Inc, 2018. Best Practices for Microservices [WWW Document]. URL

https://www.mulesoft.com/lp/whitepaper/api/microservices-bestpractices

Murphy-Hill, E. and Black, A.P., 2008. Refactoring tools: Fitness for purpose. IEEE

software, 25(5), pp.38-44.

Narumoto, M., Wilson, M., Buck, A., Wasson, M., 2017. Strangler pattern - Cloud

Design Patterns [WWW Document]. URL https://docs.microsoft.com/en-

us/azure/architecture/patterns/strangler (accessed 6.23.19).

Netflix, 2019. Introduction - Conductor [WWW Document]. URL

https://netflix.github.io/conductor/ (accessed 8.10.19).

Newman, S., 2015. Building microservices: designing fine-grained systems. " O'Reilly

Media, Inc.”.

Ntentos, E., Zdun, U., Plakidas, K., Schall, D., Li, F. and Meixner, S., 2019. Supporting

Architectural Decision Making on Data Management in Microservice

Architectures.

Open Group, 1991. Distributed transaction processing: the XA specification. X/Open,

Reading.

Pahl, C. and Jamshidi, P., 2016, April. Microservices: A Systematic Mapping Study.

In CLOSER (1) (pp. 137-146).

Particular, 2019. Sagas • NServiceBus • Particular Docs [WWW Document]. URL

https://docs.particular.net/nservicebus/sagas/ (accessed 8.7.19).

Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J. and Josuttis, N., 2017.

Microservices in practice, part 1: Reality check and service design. IEEE

Software, 34(1), pp.91-98.

Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.M., 2017b.

Microservices in Practice, Part 2: Service Integration and Sustainability. IEEE

Softw. 34, 97–104.

Preston-Werner, T., 2019. Semantic Versioning 2.0.0 [WWW Document]. Semantic

Versioning. URL https://semver.org/ (accessed 9.22.19).

Ren, Z., Wang, W., Wu, G., Gao, C., Chen, W., Wei, J. and Huang, T., 2018, September.

Migrating Web Applications from Monolithic Structure to Microservices

Architecture. In Proceedings of the Tenth Asia-Pacific Symposium on

Internetware (p. 7). ACM.

Rich, N. and Holweg, M., 2000. Value analysis. Value engineering: Innoregio:

dissemination of innovation and knowledge management techniques, report

produced for the EC funded project. United Kingdom: Lean Enterprise Research

Centre Cardiff.

Richards, M., 2015. Microservices vs. service-oriented architecture.

Richardson, C., 2019. Eventuate [WWW Document]. URL https://eventuate.io/

(accessed 8.10.19).

124

Rosa, D., 2018a. Saga Pattern | How to implement business transactions using

Microservices - Part I [WWW Document]. Couchbase Blog. URL

https://blog.couchbase.com/saga-pattern-implement-business-transactions-

using-microservices-part/ (accessed 2.23.19).

Rosa, D., 2018b. Saga Pattern | How to implement business transactions using

Microservices – Part II [WWW Document]. Couchbase Blog. URL

https://blog.couchbase.com/saga-pattern-implement-business-transactions-

using-microservices-part-2/ (accessed 2.23.19).

Saaya, Z., Mustafa, N. and Devaraju, A., 2007. The Development of Practical Guidelines

for Designing Online Questionnaires.

Sampaio, A., 2015. Improving systematic mapping reviews. ACM SIGSOFT Software

Engineering Notes, 40(6), pp.1-8.

Shier, R., 2004. Statistics: 1.1 Paired t-tests.

Stafford, J., 2018. How to avoid common challenges when migrating to microservices

[WWW Document]. SearchMicroservices. URL

https://searchmicroservices.techtarget.com/news/450427289/How-to-avoid-

common-challenges-when-migrating-to-microservices (accessed 10.13.18).

Stricker, R., Müssig, D. and Lässig, J., 2018. Microservices for Redevelopment of

Enterprise Information Systems and Business Processes Optimization. In ICEIS

(2) (pp. 719-726).

Strîmbei, C., Dospinescu, O., Strainu, R.M. and Nistor, A., 2015. Software architectures–

Present and visions. Informatica Economica, 19(4), p.13.

Taibi, D., Lenarduzzi, V. and Pahl, C., 2018, March. Architectural Patterns for

Microservices: A Systematic Mapping Study. In CLOSER (pp. 221-232).

Torgerson, C., 2003. Systematic reviews. Bloomsbury Publishing.

Trihinas, D., Tryfonos, A., Dikaiakos, M.D. and Pallis, G., 2018. Devops as a service:

Pushing the boundaries of microservice adoption. IEEE Internet

Computing, 22(3), pp.65-71.

Uber Engineering, 2019. Welcome | Cadence [WWW Document]. URL

https://cadenceworkflow.io/ (accessed 8.10.19).

Ulander, D., 2017. Software Architectural Metrics for the Scania Internet of Things

Platform: From a Microservice Perspectiv.

Ulkhaq, M.M., Wijayanti, W.R., Zain, M.S., Baskara, E. and Leonita, W., 2018, March.

Combining the AHP and TOPSIS to evaluate car selection. In Proceedings of the

2nd International Conference on High Performance Compilation, Computing and

Communications (pp. 112-117). ACM.

Vogels, W., 2009. Eventually consistent. Communications of the ACM, 52(1), pp.40-44.

Vresk, T. and Čavrak, I., 2016, May. Architecture of an interoperable IoT platform based

on microservices. In 2016 39th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO) (pp.

1196-1201). IEEE.

Xiang, K., 2018. Patterns for distributed transactions within a microservices architecture.

Red Hat Dev. Blog. URL

https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-

transactions-within-a-microservices-architecture/ (accessed 2.21.19).

Zimmermann, O., 2015. Architectural refactoring: A task-centric view on software

evolution. IEEE Software, 32(2), pp.26-29.

125

Appendix A

126

127

128

129

130

131

132

133

134

Appendix B

135

136

137

138

Appendix C

Distributed transactions solution implementation

One or more interested companies would use the defined solution in an attempt to mitigate

the issues reported and categorised as data inconsistency or operations that were not entirely

successful due to failed requests in the middle of a distributed transaction. From now on, this

category of issues will be mentioned as sample issues (SI). SI can be raised by the final user’s

requests or by the system monitoring technology.

The mean of reported SI over one month of software usage would be recorded before and after

the experiment, providing two distinct samples that can then be compared to evaluate the

success of the delivered solution.

Preparation

The solution provided has the main objective of reducing the mean of reported SI.

In order to compare the mean of reported SI before and after the implementation of the

solution, a paired t-test would be used. This kind of tests are utilised to compare two population

means with two samples that can be matched with each other, which is usually the case with

before and after measures of the same metric (Shier, 2004).

A paired t-test is a type of student’s t-test which is used to determine the existence of a

significant difference between two means, which is measured by the conventional statistic

called Student’s 𝑡, the larger the 𝑡 the more significant the difference between sample means

(Shier, 2004).

To apply a paired t-test, the following values are necessary:

𝑛 ∶ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.

In this experiment, 𝑛 will be the number of days during which the number of SI was observed

and recorded. This should be at least 30.

Then, the mean difference between the two samples must be calculated. This is given by the

following formula in which 𝑥 is an element of each sample.

�̅� = 𝜇1̅̅ ̅ − 𝜇2̅̅ ̅ =
∑(𝑥1 − 𝑥2)

𝑛

The standard deviation 𝑠 of the sample is also needed and can be obtained from the following

formula.

𝑠 = √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1

139

On a paired t-test, to determine 𝑡, the following formula must be used. This is a composed

formula as the lower part of the division (
𝑠

√𝑛
) is the calculation of the standard error of the

means difference (Shier, 2004).

𝑡 =
�̅�
𝑠

√𝑛

The resulting 𝑡 value is then matched against a 𝑡 table according to the desired significance level

value and if the test is one-tailed or two-tailed (Shier, 2004).

Considering that 𝜇𝑎 is the mean of reported SI during one month after the solution was

implemented, and 𝜇𝑏 the mean of reported SI during one month before the solution was

implemented, the following hypotheses can be reached.

𝐻0: 𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑆𝐼 𝑟𝑒𝑚𝑎𝑖𝑛𝑒𝑑

𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑎𝑠 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑

𝐻0: 𝜇𝑎 − 𝜇𝑏 = 0

𝐻1: 𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑆𝐼 𝑤𝑎𝑠 𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑎𝑠 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑

𝐻1: 𝜇𝑎 − 𝜇𝑏 < 0

If the mean of reported SI is reduced, then 𝐻0is refuted, and therefore it is valid to say that the

solution brings value to the user by reducing the number of reported SI.

