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Abstract

Achieving safe autonomous driving is far from a vision at present days, with many

examples like Uber, Google and the most famous of all Tesla, as they successfully

deployed self driving cars around the world. Researchers and engineers have been

putting tremendous efforts and will continue to do so in the following years into

developing safe and precise control algorithms and technologies that will be included

in future self driving cars.

Besides these well known autonomous car deployments, some focus has also been

put into autonomous racing competitions, for example the Roborace. The fact is

that although significant progress that has been made, testing on real size cars in

real environments requires immense financial support, making it impossible for many

research groups to enter the game.

Consequently, interesting alternatives appeared, such as the F1 Tenth, which

challenges students, researchers and engineers to embrace in a low cost autonomous

racing competition while developing control algorithms, that rely on sensors and

strategies used in real life applications.

This thesis focus on the comparison of different control algorithms and their

effectiveness, that are present in a racing aspect of the F1 Tenth competition. In

this thesis, efforts were put into developing a robotic autonomous car, relying on

Robot Operative System, ROS, that not only meet the specifications from the F1

Tenth rules, but also allowed to establish a testbed for different future autonomous

driving research.

Keywords: Autonomous Driving, Control Algorithms, F1 Tenth, Robotic Test-

bed, ROS.
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Resumo

Obter uma condução autónoma segura está longe de uma visão dos dias de hoje, com

exemplos como a Uber, Google e o mais famoso deles todos, a Tesla, que já foram

globalmente introduzidos com sucesso. Investigadores e engenheiros têm colocado

um empenho tremendo e vão continuar a fazê-lo nos próximos anos, a desenvolver

algoritmos de controlo precisos e seguros, bem como tecnologias que serão colocados

nos carros autónomos do futuro.

Para além destes casos de sucesso bem conhecidos, algum foco tem sido colocado

em competições de corridas de carros autónomos, como por exemplo o Roborace.

O facto é que apesar do progresso significante que tem sido feito, fazer testes em

carros reais em cenários verdadeiros, requer grande investimento financeiro, tornando

imposśıvel para muitos grupos de invetigação investir na área.

Consequentemente, apareceram alternativas relevantes, tal como o F1 Tenth,

que desafia estudantes, investigadores e engenheiros a aderir a uma competição de

baixos custos de corridas autónomas, enquanto desenvolvem algoritmos de controlo,

que dependem de sensores e estratégias usadas em applicações reais.

Esta tese foca-se na comparação de diferentes algoritmos de controlo e na eficácia

dos mesmos, que estão presentes num cenário de corrida da competição do F1 Tenth.

Nesta tese, foram colocados muitos esforços para o desenvolvimento de um carro

autónomo robótico, baseado em Robot Operative System, ROS, que não só vai de

encontro às especificações do F1 Tenth, mas que também permita estabelecer uma

plataforma para futuras investigações de condução autónoma.

Palavras-Chave: Condução Autónoma, Algoritmos de controlo, F1 Tenth,

Plataforma Robótica, ROS.
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1
Introduction

During the course of these last decades, the automotive industry has improved tre-

mendously in various aspects, with the discovery of new and improved technologies,

whether it is in fuel consumption efficiency, design, driving assistance and safety

improvement. This last point has been a major target of interest, throughout the

years, in the scientific community, since ensuring the drivers, as well as pedestrians

safety, is still a great challenge. As most accidents happen due to human negligence,

fatigue or deprecated safety systems, developing technologies that aid the driver and

ensure road safety are a demand in current days. Although many efforts have been

made, according to the World Health Organization [14], approximately 1.35 million

people die each year as a result of road traffic accidents.

To address this issue, many have envisioned systems that would automatically

drive a car, in the safest way possible, ensuring the protection of every being involved.

Thus the creation of the self driving car, also denominated as autonomous cars.

Autonomous cars have been idealized as the future of navigation in cities, where

the passengers will be taken to their destination, without even a press of a pedal

or a steering of a wheel. In the present days, autonomous driving is not a vision

nor fictional idea, as many autonomous car have been deployed in cities around the

world, with great success. However, these systems are of an enormous complexity,

with much work still to be done, until fully autonomous cars driving around, with

full awareness of the environment surrounding them is achieved.

As a result, the development of technologies has been rising immensely among sci-
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CHAPTER 1. INTRODUCTION

entist and engineers. Many different research topics regarding autonomous vehicles

have been explored in the latest years, whether about safety conditions, obstacle

avoidance, communication between vehicles, control algorithms, among many oth-

ers. Although this statement is true, it is still hard for many research groups to enter

this game, as it requires immense financial support. To overpass such drawback, at-

tentions were put into small, low-cost platforms, that support the implementation

of the same approaches applied in full size autonomous cars

As a major target of interest in the scientific community, this accelerates the

pursuit to achieve better and more efficient results, awakening the competitive

aspect among researchers, engineers and students. From that competitive spirit

the F1 Tenth competition arose, challenging participants to develop algorithms for

autonomous driving, while adopting their robotic platform.

1.1 Context

In the context of robotic applications for autonomous driving, this thesis was de-

veloped at Research Center in Real-Time Embedded Computing Systems, CISTER,

in connection with the SafeCop European project and the ICARUS interest group

(Interest group on Cooperative Autonomous Reliable Systems).

This testbed provides an autonomous vehicle that allows the development, test-

ing and validation of different technologies, from vision and control algorithms to

embedded systems that guarantee safety for Advanced Driver Assistance Systems,

ADAS. In addition, the platform follows the architecture of the F1 Tenth competi-

tion, aiming at future participation in such competitions.

1.2 Research Objectives

The pivotal objective of this thesis is to build and develop a robotic testbed to

compare different control algorithms in a racing environment. The main focus, is to

develop a testbed, to serve as a baseline platform, to implement, test and validate

different tools, regarding ADAS and other autonomous driving components.

To attain it, a robotic platform, respecting the F1 Tenth competition rules, needs

to be developed. An additional objective and motivation is the development of an

autonomous racecar that aims to qualify and compete in the upcoming F1 Tenth

competition.

2 Daniel Almeida



1.3. RESEARCH CONTRIBUTIONS

1.3 Research contributions

The main research contributions of this thesis are:

• Implementation of a low-cost robotic testbed based on ROS, that will allow

to test and validate different technologies for increased safety in autonomous

vehicles.

• Implementation, evaluation and improvement of different control algorithms

in terms of trajectory, time and degrees of correction.

1.4 Thesis Structure

The remainder of this thesis is organized as follows. On Chapter 2, the state of the

art will be outlined, encompassing an overview of the autonomous driving panorama

history and an outlook of some existing robotic platforms and their approaches to

autonomous driving.

The following two chapters describe all the technologies and tools used in this

thesis, as well as the system architecture, providing an overview of the components,

in terms of the Hardware and Software.

The fifth chapter concerns the algorithms and strategies implemented in this

thesis, while the sixth demonstrates the results achieved, of each of the methods

applied.

The thesis will finish with Chapter 7 that will present the major conclusions and

projections to future work related to this project.

Daniel Almeida 3





2
State Of The Art

In the latest years tremendous work and study has been put into the development

of autonomous vehicles. Having the perception of its surroundings, planning a path

and controlling its movements are key factors when creating an autonomous vehicle.

Depending on the type of sensors adopted, it is possible to obtain different types of

perception, that can affect the complexity of the control algorithm.

In this section, the state of the art of scale autonomous vehicles platforms is

presented, overviewing different testbeds developed and the implementation of their

control algorithms.

2.1 Autonomous Driving

In the current state of society, we have reached a point where having a car is almost

inherent in a family. With the continuous rise of the population, the number of cars

per city has also risen. As consequence, the number of causalities in car accidents

increased. Although modern cars provide several features that assist the driver and

provide better safety conditions, compared to previous decades, most of the accidents

happen due to human error. It is estimated, by the World Health Organization, that

1.35 million fatalities result from traffic accidents [14]. Therefore, to address such

significant numbers, huge investments have been made over the last century to the

development of autonomous vehicles.

With the introduction of autonomous vehicles, or also described as self-driving, or

5



CHAPTER 2. STATE OF THE ART

driver-less cars, it is believed that 10 million lives could be saved per decade around

the world, as mentioned by the author in [15]. Achieving automotive autonomy not

only will bring immense improvements to the quality of life of people, but specially

to road safety. However, this process is still in development, until fully automated

vehicles are present in mass scale in our society.

The dream of achieving an intelligent system, capable of driving a car on its

own, without human intervention, has increased greatly throughout the last decades.

Many experiments were carried out, trying to implement an effective solution.

In [16], Keshav Bimbraw presents a survey of the development of autonomous

vehicles from the past and current century and future approaches on this topic. A

brief resume from it is exposed below, to provide the advancements of this technology

throughout the years.

As mentioned in [16], the first appearance of a semi-autonomous car, dates back

to the 1920’s, with the appearance of the radio controlled car. The Linriccan Wonder

consisted in a car with an antenna, on its back and was operated by a follower

car, by sending radio impulses. Upon receiving the radio commands, the on board

electronics actuated on the car electric motors and the cars direction was controlled.

Fast forward in time, it was presented in 1953 a small scale car, controlled

by wires disposed in a certain pattern in a laboratory and in 1958, the idea was

reproduced in a larger scale, into a highway and were able to detect the presence

and velocity of a metallic vehicle and guide it [16].

After years of experiments in highways with guided systems, [16] in the 1980s,

it was designed in the Bundeswehr University, Munich, Germany, a vision guided

car that achieved 63 km/h on the streets. The Defense Advanced Research Projects

Agency of the U.S. Department of Defense, DARPA, contributed with the ALV,

Autonomous Land Vehicle, which made use of computer vision, LIDAR to achieve

the first road following robotic vehicle. Alternatively, an off-road map and sensor

based navigation on the ALV was implemented by the HRL Laboratories.

Although, semi-autonomously [16], in 1991 it was presented 2 robot vehicles that

drove more than a thousand kilometers, with traffic addition and reaching up to 130

km/h. Also, it was demonstrated other features such as lane changing and convoy

driving. In 1995, an autonomous S-Class Mercedes Benz reached 95% autonomous

driving, on almost 1600 Km, with resource to computer vision and microprocessors

that could react in real time.

An approach with neural networks was undertook in 1995, called the Navlab

project. Although it reach 98% autonomous driving, on a 5000 km route, the car was

semi-autonomous. The neural networks were only applied on the steering control,
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while the acceleration and braking were done manually. By 1996, it was launched

the Argo Project that applied an algorithm, with resource to camera vision, to follow

lane marks on a normal highway. This car, ended up being fully autonomous 94%

of the test it carried out [16].

By the arrival of the millennium, projects with military purpose surged from

the US government. These Demo projects, were capable of roaming autonomously

through aggressive terrain, while avoiding obstacles and also demonstrate real time

control system [16].

In more recent years, with the improvement of technology and the fast grow-

ing interest on driver-less cars, more investment was made and thus, more projects

related to autonomous car surged. Developments in this area, revealed successful

implementations like the VisLab Intercontinental Autonomous Challenge, in 2010,

which consisted in a autonomous trip form Italy to China. The 3 month journey,

with a level of autonomy, proved to be possible in future years to safely transport

goods, neglecting human intervention. During the same year and further on, another

project was carried out, with an Audi TTS, focusing on safety functions in autonom-

ous driving. Resourcing to laser scanners and other sensors, the project aimed to

prevent accidents from distracted drivers. Other projects were also conducted, with

the intention of integrating safety systems, in a urban and highway environments,

while relying in image processing and state of the art sensors. By 2014, it was

showcased by Toyota and Nissan their proposals of autonomous vehicles and presen-

ted effective navigation and solid reference for future cars, as they set a base to

test numerous scenarios. Being the LIDAR one of the most important sensors in

autonomous navigation, Navya introduced to an electric shuttle that uses 4 of them,

in conjunction with optical cameras to generate real-time map of its surroundings

and navigate at slow speeds.

Although tremendous improvements have been achieved in regards to autonom-

ous driving during all these years, much work still needs to be done, to attain the

best and safest autonomous cars. Emphasising on the safety aspect, as humans lives

are and will be held by robotic cars, that think on their own and constant flaws are

detected. In 2016, this was proved, as the first fatal accident with an autonomous

car occurred, due to sensors not distinguishing a white truck. Although it is proven

that self driving cars will prevail in comparison to human driving, since they react

faster and can sense and adapt to situations a human driver can not, this accident

has proven that machines are not a perfect system and have flaws.

Nowadays, with much investments from big automotive companies, more envir-

onmental friendly cars are put into the market, that provide the drivers with highly
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autonomous functions that aid the driver or give the possibility of fully autonom-

ous driving. Aspects such as, self-parking, lane keeping, collision avoidance, cruise

control and various other driver assist functions are now part of these generation of

cars. It is only by 2035, that it is expected that most of the cars driving around our

cities will not require any human action, as they will be fully autonomous.

To understand the concept of autonomous vehicles the international automotive

organization SAE International (Society of Automotive Engineers) specified 6 levels

of driving automation [1]. This levels determine how autonomous a vehicle is and

the requirements and precautions of the human driver.

Level 0, No automation. This level affirms that no automation is present, where

driving only relies in human actions in every situation and the system only provides

warnings or momentary assist. An example of it is lane departing warnings and is

mostly present in a old generation of cars.

Level 1, Driver assistance. This level is responsible for assisting the driver with

a specific task. Examples of it are lane centering or cruise control, since the system

is capable of taking control of an action, like steering or braking.

Level 2, Partial automation. The system can accomplish two or more automatic

task, working along side to assist driver, however it is not yet considered an autonom-

ous car and the driver is required to maintain the car under control and take the

necessary actions if necessary. The car performs functions such as accelerating or

decelerating and steering at the same time. Examples of are same of level 1, however

they work along side and the driver is responsible to supervise.

Level 3, Conditional automation. Up from this level, the one driving is the car.

The system is responsible for the normal actions in driving and only requires the

person in the driver seat to take measures, if the system requires assistance or an

emergency circumstance appears. That being said, although the car is mostly driven

automatically, the driver must at all time analyze traffic and road conditions and

be alert and ready to take control when the system demands. For instance, these

features can be found in autonomous highway driving or in traffic congestion.

Level 4, High automation. The vehicle is able to monitor the environment and

can operate fully autonomously in many different driving scenarios. Besides, con-

trary to the previous level, the system is capable of protecting its passengers from

accidents, even if it required and the driver does not properly intervenes on time.

If the system finds that not all conditions are met, then the driver must assume

control, until autonomy can be defined again.

Level 5, Full automation. Equal to level 4, however the system car drive the

car in all driving scenarios and conditions. It can replicate human actions and may
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exceed at it. All emergency situations are dealt autonomously and never requires

the human to take actions or to supervise. No pedals and steering are necessary to

be installed.

Figure 2.1: Graphical summary of SAE 6 levels of driving automation[1].

To summarize, as it can be seen in Figure 2.1, one can affirm that from level 0 to

2, the driver is the one who is in full control of the car, it needs to be completely aware

of every situation on the road and is responsible for the safety of its passengers and

other drivers on the road. From level 3 to level 5, the system is the one responsible

from almost to all controls of the car. The driver in the passenger seat must analyze

all conditions and take control of the car if necessary, however it needs to be prepared

to take action in emergency situations.

Given these points, it is also required to understand the foundations of an

autonomous vehicle system. To safely navigate and reach every destination, it is

required by the car to perceive the environment, apply the necessary control and be

always alert to unexpected situations. Figure 2.2 represents the conceptual struc-

ture of an autonomous vehicle system. In [17] and [2] this architecture is studied

and clarified along the descriptions of each part below.
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Figure 2.2: Conceptual diagram of an autonomous vehicle system[2].

The perception refers to all the information derived from sensor input, that are

present in the car. This sensors can vary and each is responsible to understand the

environment surrounding the car in a different way. In [18] an overview of recent

technologies applied in current and future autonomous vehicles. This sensor range

from ultrasound sensors to long and short range finders, that are responsible for

detecting obstacles and assist in small tasks such as parking assist. Image processing,

is responsible to a large extent of perception. Through stereo cameras, the system is

capable of detecting and perceive other cars, people, obstacles and the road layout

to provide enough information for a correct path planning. The Lidar, is a faster

spinning approach to range finders, that permit to acquire a cloud of points from

reflected light on objects, in a surrounding area. Although at present time, Lidars

are still very costly, with such sensor at disposal, it is possible to map a static

environment and detect different moving or stationary obstacles, such as pedestrians

and cars.

Data sensor shall then be transferred and processed by mapping and localization

algorithms. Significant work has been done over the last decades to develop and

improve such algorithms, in order to precisely monitor and track car movement

and positioning. [19] examines different probabilistic methods used in numerous

robotic applications, such as Gaussian filters, like the Extended Kalman Filter, EKF,

Nonparametric filters, like the Particle Filter, occupancy grid and mapping, as well

10 Daniel Almeida



2.2. SCALE AUTONOMOUS VEHICLES TESTBEDS/PLATFORMS

as Monte Carlo Localization, MCL, the Simultaneous Localization and Mapping,

SLAM, approach and other derivations of it, along with other approaches as well.

In terms of SLAM trends in autonomous driving, [20] reviews variations of it in

different experiments, while [21] explores procedures of localization techniques.

With local information of the surroundings of the car at disposal, from the

sensors, it is possible understand where a vehicle is situated in a known map. While

achieving accurate localization of the car, the possibilities to reach a desired des-

tination are immense, surging the path planning and decision making aspect of the

autonomous driving, that at the same time is directly correlated to the motion con-

trol of the vehicle. These methods proceed to decide the optimal path for the vehicle

to safely reach its target, while at the same applying the correct actions on the car

controllers to actuate upon the steering and engine. Likewise, various algorithms

to achieve motion planning have been implemented over time, always taking into

consideration the vehicle model. In [22] a survey of motion planning and control

techniques is presented exploiting various algorithms to accurately achieve the a de-

sired objective and practical examples, as well as path stabilization, with approaches

like the Pure Pursuit and Model Predictive Controller, MPC.

2.2 Scale Autonomous Vehicles Testbeds/Platforms

2.2.1 F1 Tenth

The F1 Tenth (F1/10) Autonomous Cyber-Physical Platform [23] is an Open-Source

platform that intends to provide Researchers and Students a testbed to simulate

and test various approaches to autonomous driving, by using a 1 to 10 scale of

a real car. Adaptive to different case of studies, this testbed provides a compact

work tool, explaining how to build a car, refereeing the required components, the

software necessary to install that is centered in Robot Operative System, ROS,

different tutorials explaining the distinct approaches to autonomous driving and the

packages necessary to easily implement it, as well as a simulation environment based

on ROS-Gazebo.

By providing an easy to implement testbed, it enables the user to focus on

various approaches of investigation and testing. Using its tools, one can focus on

the improving localization and perception of the car, using sensors like cameras and

Lidars.

Other methods like vehicle to vehicle communication can be explored, studying

scenarios like approaching an ”roundabout” or integration in a platoon, that have

been heavily investigated in the latest years.
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On focusing this thesis objective, the F1 Tenth organizes international compet-

itions to evoke the competitive spirit around students and engineers. This com-

petition challenges the participants on developing their own algorithms in order to

encounter which team can achieve the fastest lap and most number of laps com-

pleted in the fixed time. In recent editions, a head-to-head competition was also

held, challenging the participants to not only autonomously drive around the track,

but to race against another car and dodge obstacles. This competition has great

interest around the community as every participant has to use the same type testbed

and thus making every team focus solely on the algorithms. This exalts the pursue

in developing in efficient algorithms that can be applied autonomous driving.

Up until the submission of this thesis, the latest competition being held was

in April 2019, in Montreal. The winners of both challenges presented a simple,

but different approach in autonomous driving, which they called the ”Disparity

Extender” algorithm [13]. In further chapters this algorithm developed by the UNC-

Chapel Hill team will be explored and explained into detail.

To conclude, as a result of the F1 Tenth testbed, it will be possible to explore

this thesis purpose on comparing and validating different racing algorithms.

2.2.2 Formula PI Testbed

A different approach to an autonomous racing competition is the Formula Pi com-

petition [4]. Created by Timothy Freeburn [24] this competition aims to attract

people to the development of self-driving robots with little experience regarding

hardware and software. The competition, as the name suggests it, is based around

a Raspberry Pi where the model for the robot is ”Monsterborg”, a robotic model

developed by PiBorg [3]. This model, like the one in Figure 2.3, is a small scale

robot that features:

• 4x high-torque 300 RPM metal geared 37mm motors;

• 105mm / 4 inch diameter off road wheels;

• ThunderBorg - A Dual Motor controller designed to attach to a Raspberry Pi

and to handle up to 5A per motor connection. It can be stackable and controls

motors via Pulse Width Modulation (PWM) signals. It uses Inter-Integrated

Circuit, I2C, SDK/SDA for communication;

• Can come with a Pi camera: A 8 Megapixel Camera ideal for beginners for

image detection and processing.
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• A 10x AA battery pack that gives a 3 hour autonomy for powering the plat-

form.

Figure 2.3: Monsterborg - The robotic platform used in the Formula Pi competition [3]

The particularity of this competition is centered on the fact that the participants

are not required to buy and assemble the robot, as the organizers have the all the

robotic platforms, leading the software to be the main source of focus. Competitors

send in their codes to the organizers, that will be put to test against other opponents

during their summer and winter series. The race consists of 5 robots at a time to

make a total of 23 laps around the track that can be seen in Figure 2.4.

Figure 2.4: Formula Pi race track [4].

As mentioned before, the robot is based around a Raspberry Pi that is responsible

for processing its surroundings and act upon the motor controllers. For the percep-

tion aspect, it uses only the camera as a source of information. The algorithm [25] is

written in Python and uses the OpenCV libraries for image processing. Depending

on the Camera processed information, the code applies the motors the necessary

power, via PWM, to drive around the track.
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An example code for racing, uses the track distinct colors to detect a lane de-

pending on the colour chosen to follow. Then it detects two points in the track, the

closest and farthest points and it will plot a line linking those points, indicating the

target direction. In terms of steering the example relies on two Proportional Integral

Derivative, PID, controllers to apply a steering control to the car. One based on the

offset from the center of the track, and the other based on how far the track position

changes between the two points. The speed is set by a direct PWM signal.

In conclusion, the Formula Pi is a noble competition to attract newcomers to the

fields of robotics, that have appreciate a challenge, using very low-cost hardware.

It also introduces to image processing with OpenCV, giving a learning aspect on

how to use a camera to analyse the robot surroundings. However, the fact the its

a compact and low cost platform, it utilizes inferior components compared to other

autonomous racecar robots, never achieving the processing power and performance

as other platforms.

2.2.3 Autorally

The Autorally project [26] is a 1:5 scale open source platform developed at Georgia

Institute of Technology, in Atlanta, dedicated to aggressive autonomous driving.

Focusing on autonomous driving, this compact and robust platform implements a

variation of a model predictive controller, MPC, that relies on accurate dynamics

models for motion prediction.

In terms of its architecture, the Autorally robot uses a 1:5 scale Radio-Controlled,

RC, Truck, like the one shown in Figure 2.5, that had modifications to enclosure

all the hardware component, as a protective measure. To achieve accurate measure-

ments of the positioning of the robot, it uses a combination of 3 sensors. Hall-effect

sensors and magnets in a circular pattern were used to measure the wheel speeds,

and by calculating timing information between magnets, that is later translated to

rotation rates. Likewise, a high precision Global Positioning System, GPS, and a

Inertial Measurement Unit, IMU, are used. The GPS provides absolute precision

at 20 Hz, accurate to approximately 2 cm under ideal conditions with real-time

kinematic corrections from a GPS base station. For the IMU, it was used a Lord

Microstrain 3DM-GX4-25 IMU provides raw acceleration and angular rate data at

200 Hz (maximum 1 kHz) and fused orientation estimates at 200 Hz (maximum 500

Hz).

To compute all information, the setup uses: Asus Z170i pro Gaming, Mini-it X;

CPU: Intel i7-6700, 3.4 Ghz quad-core 65 W; RAM: 32 GB ddR4, 2133 Mhz; GPU:

Nvidia GtX-750ti sc, 640 cores, 2 GB, 1176 Mhz; Memory: SSD 512 GB M.2 and 1
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tB sAtA3; Wireless: 802.11ac Wi-Fi, 900 Mhz XBee, and 2.4 Ghz Rc; Power supply:

Mini-Box M4-AtX, 250 W; Battery: 22.2 V, 11-Ah lithium-polymer, 244 Wh. The

system runs on Ubuntu 16.04 and all the software used developed in ROS Kinetic.

Figure 2.5: Autorally robotic platform [5].

In conjunction with the physical platform, a simulation environment is also ex-

plored, developed in Gazebo, that allows to carefully control environmental para-

meters for gathering statistical data, which requires performing repetitive or time-

consuming experiments.

Covering the control aspect of this platform, a variation of MPC was adopted,

the MPPI, which stands for Model Predictive Path Integral control. MPPI [27] is a

sample-based, derivation free approach to model predictive control (MPC) method

that can drive AutoRally up to, and beyond, the friction limits of the track. The

MPC intersperses optimization and execution, firstly optimising an open-loop con-

trol sequence in a defined finite time. Then, it executes the first control sequence,

sending the feedback state and the optimization process is repeated.

The Path integral optimal control framework grants a mathematical methodo-

logy to develop optimal control algorithms given on stochastic sampling trajectories.

Thousands of trajectories are sampled from a importance sampling distribution are

used to estimate the optimal control.

The MPPI assumes that are given the system dynamics, initial control sequence

and a cost function for the given task. This algorithm, in each iteration, uses op-

timal control sequence from previous ones and receives the sampled trajectories and

generates new sequences of control inputs. These control sequences are then propag-

ated forward in the state space using the system dynamics, and each trajectory is

evaluated according to a cost function. The estimation of the optimal control se-
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quence is then updated with a cost-weighted average over the sampled trajectories.

State feed-back is then introduced to begin the next iteration.

All the real time computation involved in this implementation for sampling-based

MPC is to produce a large number of samples in real time and it is done in parallel,

using the sampling step on a Nvidia GPU, using Nvidia CUDA architecture.

In [28] this implementation was tested in a aggressive driving scenario, proving

to be successful when vehicle maneuvered around the track. In [29] the MPPI was

improved to solve model-based reinforcement learning tasks using multi-layer neural

networks as dynamics models.

This type of approach takes in consideration perturbations that affect the dy-

namics of the car model when driving around a track, providing the best control

actuation’s to tackle the track. Taking that into account, this methodology makes

it ideal for a time-trial type of race, as results show that the robot is able perform

at high speeds while achieving the best results in trajectory in time in a lap. How-

ever, this testbed could not perform in a head-to-head competition, as it lacks in

the ability to avoid collision, since the pivotal point is to drive the robot around a

known and static map, but never taking in consideration a dynamic obstacle that

leads to a great change of direction.

2.2.4 The BARC Project

In autonomous driving and racing, researchers approach different cases of study. A

specific case of study involves maneuvering a car when drifting and thus a robotic

platform called the Berkeley Autonomous Race Car, BARC [30], was developed.

Equivalent to the F1/10 platform, this project is based on a 1:10 RC car and

aims to create a platform that can achieve complex maneuvers in autonomous car

such as drifting and obstacle avoidance. In terms of physical hardware, the car uses

a brushless motor, a servo motor , an Electronic Speed Controller, ESC, and a LiPo

battery to supply power to the on-board electronics. Regarding the sensors used in

BARC, measurement sensors such as an IMU, camera, range finders and encoders

were applied to the platform. Distinct to the F1/10, this platform does not rely on

a Lidar, however resourcing on the encoders on the wheels, it can provide precise in-

formation of velocity and positing, in conjunction with the IMU. For computational

processing, the platform uses an ODROID-XU4, an on-board ARM based computer

and an Arduino Nano to interface with the actuators. Figure 2.6 shows the fully

assembled BARC platform.
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Figure 2.6: Berkeley Autonomous Race Car platform [6]

This project aimed to tackle the difficulty of challenging maneuvers, even for ex-

pert drivers, like drifting in corners. The authors in [31] proposed an algorithm for

an autonomous corner drifting, while mixing open and closed-loop control strategy.

To achieve it the system model is outlined as a six-state bicycle model with linear

front and rear-wheel tire forces. Next, an explanation for the optimal path plan-

ning is presented and the control law to applied laid out, mixing the open-loop and

closed-loop controller, following a rule based algorithm. In the end, the results are

demonstrated both in simulation environment and experimentally on the platform.

Although, no demonstration of this platform in a racing environment, this test-

bed possesses the necessary components to deliver a good performance, since it has

good odometry for pose estimation, being possible to implement complex algorithms

such as a Model Predictive Control, MPC, or a conjunction of waypoints in a known

track with a local planner, or more classic approaches like Lane detection or PIDs.

In addition, the implemented corner drifting algorithm would aid in a racing scen-

ario, however acquisition of the car position would need to altered, as the authors

use a indoor GPS kit which uses ultrasonic beacons to localize the vehicle.
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Technologies and Tools

This sections present the major technologies and tools that were adopted in order

to implement the desired testbed.

3.1 Robotic development frameworks

3.1.1 ROS

The Robot Operating System (ROS) [32] framework, maintained by Willow Garage

and Open Source Robotics Foundation (OSRF) since 2007, is a open-source mid-

dleware that has undergone rapid development and has been widely used to design

robotics applications. With its many software frameworks it provides a variety of

tools, libraries and conventions that facilitates the creation of robotic applications

and further encourages the sharing and reusing codes and problem solving through

the robotic community. Although ROS is not a real-time framework, it is possible

to integrate it with real-time code.

ROS way of working is based on a distributed framework of processes called Nodes

that enables executables to be individually designed and loosely coupled at runtime

[33]. Each node is responsible with one task and the communication between them

follows the publish/subscriber model, thus providing a very simple and clean way of

connecting different software and hardware components. For example, the following

diagram in Figure 3.1 represents a simple demonstration system. The ellipses rep-
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resent ROS nodes, where Publisher publishes to the Chatter topic, represented by

a square and the Subscriber node subscribes to the referred topic.

Figure 3.1: rqt graph example of a publisher and subscriber.

This kind of diagrams are generated by using rqt graph tool, which automatically

generates a diagram representing the current running ROS system. On further

sections, when relevant, similar diagrams will appear in order to present the running

nodes and explain their relation.

As explained in [34], ROS has 3 levels of concepts, divided as it follows: The

Filesystem level, The Computation Graph level, and the Community level.

The Filesystem level covers the overall resources of ROS and includes the Pack-

ages, Messages and Services. The Packages are the main unit for organizing software

in ROS. A package may contain ROS runtime processes (nodes), a ROS-dependent

library, datasets, configuration files, or anything else that is usefully organized to-

gether. Packages are the most atomic build item and release item in ROS. Meaning

that the most granular thing you can build and release is a package. The Messages

description store the messages used in each package. Service description define the

request and response data structures for services in ROS

The Computation Graph level is what establishes the communication between

ROS processes that are processing data together. The fundamental concepts of this

level are:

• Master [35] - The ROS Master provides naming and registration services to

the rest of the nodes in the ROS system. It tracks publishers and subscribers

to topics as well as services. The role of the Master is to enable individual

ROS nodes to locate one another. Once these nodes have located each other

they communicate with each other peer-to-peer.

• Nodes [36] - Nodes are processes that perform computation. A robot control

system will usually comprise many nodes, that one can be inn charge of con-

trolling a laser range finder, another reading wheel odometry, other preforming

localization and so on.

• Messages [37] - A message is a data structure, comprising typed fields and is

used by nodes to pass information between each other. For example a message
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can carry the values of a node that reads the scan of a LiDAR and needs to

share to another node to use that distance in order to generate a local map.

• Topics [38] - Messages need to be transported trough a defined route. To do

that Topics are in charge of guiding the messages via a system with publish

and subscribe semantics. A node sends out a message by publishing it to a

given topic. The topic is a name that is used to identify the content of the

message. A node that is interested in a certain kind of data will subscribe

to the appropriate topic. There may be multiple concurrent publishers and

subscribers for a single topic, and a single node may publish and/or subscribe

to multiple topics. In general, publishers and subscribers are not aware of each

others’ existence. The idea is to decouple the production of information from

its consumption.

• Bags [39] - When developing ans testing the necessity of reproducing the same

environment is crucial. Bags, created from the tool ROS Bags, are a format

that store serialized message data, generally from sensors as its received. This

data is then saved in the bag and can be played back the same way as any

other node.

The ROS Master is the central node in the ROS Computation Graph. It stores

topics and services registration information for ROS nodes. Nodes communicate

with the Master to report their registration information and to receive information

about other registered nodes. The Master will also make callbacks to these nodes

when this registration information changes, which allows nodes to dynamically create

connections as new nodes are run.

Nodes connect to other nodes directly, being the master only responsible to store

and associate information. Nodes that subscribe to a topic will request connections

from nodes that publish that topic, and will establish that connection over an agreed

upon connection protocol. The most common protocol used in a ROS is called

TCPROS, which uses standard TCP/IP sockets.

The third and last level of ROS, the Community level is responsible for sharing

and providing resources, knowledge and software with distinct communities. This

level provides distributions, repositories, a wiki, Q&A site for answering dedicated

ROS Questions. In this project the distribution used was ROS Kinetic Kame.

Included in the extensive list of tools ROS provides two crucial tools in the

development of robotic applications, being ROS Gazebo and ROS visualization,

Rviz.
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3.1.2 Gazebo

Gazebo [40] is an open-source 3D robotic simulator, that allows to design robots

and test them using realistic scenarios, either in indoor or outdoor environments.

This simulator allows the user to simulate sensors used in real applications, for

example a sonar range finder, or a stereo camera, or even inertial or kinetic style

sensors, always using a realistic physics engine or optionally with noise appliance. It

also allows the creation of worlds with objects with different textures and realistic

rendering with lighting and shadows. Since ROS can be integrated with Gazebo, it

allows the development of a ROS system in a simulated scenario, compatible with

nodes, messages and its remaining properties. This way with a well implemented

simulation, a developer can test and validate a robotic application before testing in

a real life situation, preventing damages on the robot. Different types of robots can

be simulated, starting from wheeled robots, drones, Humanoids or costume designed

robots. Figure 3.2 displays a Gazebo simulation from one of the F1 Tenth tutorials.

Figure 3.2: Example Gazebo Simulation

3.1.3 Rviz

ROS Visualization, Rviz, is a powerful 2D/3D visualization tool from ROS. Rviz

provides various features for the user to visualize a robot model while tracking its

movement, observed sensor information and many other aspects that are found to be

relevant for the project in development. By providing this data that can be displayed

from actual moment or through logged information, using ROS Bags, Rviz asserts

as powerful instrument for debugging a robot application, since it allows the user to

display only the information that the user requires.
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Regarding sensor visualization, Rviz allows to display 3D sensor data from stereo

cameras, lasers, kinetics and other 3D devices data from point clouds or depth

images. In the same way, 2D sensors data can be attain from webcams or RGB

cameras and laser range finders.

With ROS working and communicating with a machine running Rviz, this one

will display the robots current configuration on the virtual robot model. This model

interacts with sensors, through TF transforms that will receive the data from the

sensors and applying to the virtual model.

Figure 3.3 shows an example of an Rviz window from one of the F1 Tenth

tutorials. In this figure it can be observed the sensors, a static map and a particle

filter from the estimated position.

Figure 3.3: Example Rviz window.

3.2 Embedded computing platforms

3.2.1 NVIDIA Jetson TX2

As well as based on the F1 Tenth competition, the on-board computer that was used

in this test bed was the Nvidia Jetson TX2 Developer Kit carrier board, like the one

displayed in Figure 3.4. The reason for the use of it was due to its computational

power, that properly meets this project needs, but also its compact format that fits in

the robot. Ideal for the development of software using Linux Operative System (OS),

it possesses standard connectors that provide a flexible and expandable interfaces

with other modules.
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Figure 3.4: NVIDIA Jetson TX2 Developer Kit [7].

As documented from its datasheet [41], this low-powered embedded module fea-

tures an integrated 256-core NVIDIA Pascal GPU, a hex-core ARMv8 64-bit CPU

complex, and 8GB of LPDDR4 memory with a 128-bit interface. It connects to

802.11 a/b/g/n/ac WLAN/Bluetooth enabled devices. This board also provides an

advanced power management.

The development board offers a variety of peripherals that include:

• Gigabit Ethernet RJ45 connector;

• USB: 1x USB 2.0 Micro AB and 1x USB 3.0 Type A;

• Storage extension for a full size SD card and a SATA connector;

• Display expansion and a HDMI Type A slot;

• Expansion header that include 40-pin headers with I2C, SPI, UART, I2S,

Audio clock/control and digital mic;

• GPIO Expansion header with 30-pin headers, I2S, GPIOs and digital speakers;

• Debug with JTAG connector and Serial port signals;

• User interfaces and indicators, including Leds and buttons and power supply

DC jack 5.5 V - 19.6 V.

The main objective of this board is to process all the necessary information of the

environment, that come from sensors connected to its peripherals and control upon

the car. In addiction, although the TX2 developer kit comes with all the peripherals

required, however an USB hub was necessary to add, to extend the Universal Serial

Bus, USB, ports to interface with all sensors, as it only had one USB port.
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3.2.2 Teensy 3.2 Micro-controller

The Teensy 3.2 [8] is a complete USB-based micro-controller development system

and it features the following specifications:

• 32 bit ARM MK20DX256VLH7 Cortex-M4 (72 MHz)

• 256 kbytes RAM

• 2048 bytes EEPROM

• 34 Digital I/O

• 21 Analog Input and 1 Output with 12 bit resolution

• 12 Timers in total

• Communication: USB, I2C, SPI, Serial, CAN Bus and Digital Audio

Figure 3.5: Teensy 3.2 Micro-Controller [8].

With a micro-controller at disposal like the Teensy, one can easily implement

programs, using its compatibility with the Arduino IDE, Integrated development

environment, and Teensyduino, a library for Arduino to allows to upload programs

to the Teensy in use. This programs can go from reading sensors, to interfacing

with other controllers and boards and thus the versatility of this board, proves to

be helpful in the implementation of robotic applications.
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3.3 Sensors

To obtain information about the environment and the localization of the platform,

it was necessary to use sensors that gave us that information with the most accurate

precision possible. The ones used and recommended were the Hokuyo LIDAR UST

10-LX [9] and the SparkFun Razor IMU [10].

3.3.1 LIDAR

The Lidar, which means Light detection and ranging, not only gives the possibility to

scan the surrounding environment in a specific range, depending on the type of sensor

used, but also to obtain the distance to a certain object. This device is ideal for

robotic applications that required obstacle detection and localization. Its function

principle is the same as a simple range finder, a light is emitted and whenever it

reflects on a surface and is received by the sensor, it calculates the distance taking

in consideration the time it has passed since it was emitted. Figure 3.6 displays the

Hokuyo Lidar used in this testbed.

Figure 3.6: Hokuyo LiDAR UST 10-LX [9].

As mentioned before, the LIDAR used in this project was the Hokuyo LIDAR

UST 10-LX that has the following properties: (i) measures in a wide field of view of

270 degrees; (ii) distances reach up to 30 meters; (iii) Scan speed reaches 25 m/s; (iv)

Angular resolution of 0.25 degrees; (v) Accuracy is more or less 40 mm. Figure 3.7

shows its Laser scanning view. This sensor communicates through Ethernet, which
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is ideal since the Ethernet port in the Nvidia Jetson is available and requires 12/24

V DC for supply voltage.

Figure 3.7: Hokuyo LIDAR scanning view [9].

3.3.2 IMU

Localizing the car in a known map is one the of requirements when navigating an

autonomous vehicle. An inertial measurement unit, IMU, is a device that includes

sensors like gyroscopes, accelerometer and sometimes magnetometer and can returns

information like acceleration, angular velocity and orientation.

In this testbed the used IMU was the Sparkfun Razor IMU, represented in Fig-

ure 3.8, which comes with 3 sensors mentioned above and thus providing 9 degrees

of freedom.

Figure 3.8: Sparkfun 9d0f Razor IMU [10].
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This compact IMU sensor board features a MPU-9250 three 3-axis sensors prov-

ing acceleration, velocity, angular rotation and magnetic field vectors, along with

a on-board microprocessor, Atmel’s SAMD21, a 32-bit ARM Cortex-Mo+ micro-

controller, that is compatible with Arduino.

3.4 Vehicle platform

In order to develop a physical test bed, a car model was necessary to be altered and

adapted to have all the components placed and organized. As mentioned before,

this test bed is based on the Massachusetts Institute of Technology, MIT Racecar

[42], also used in the F1 Tenth competition . The car model is a Traxxas Fiesta ST

Rally [11], a 1/10 scale of a real car, like the one in Figure 3.9. The versatility of the

RC model, allows it to be adjusted and be built upon it, creating a well structured

platform to test different scenarios.

This RC car comes with a Titan 12T Waterproof DC Motor, up to 8.4 V, a XL-5

Electronic Speed Controller (ESC), a Steering Servo, a RC Receiver and its remote

controller. Besides the components that come mounted on the car, a Lipo battery

is necessary to power up the car, in this build case a 2-cell 5800 maH 7.4V Traxxas

Lipo battery was used.

Figure 3.9: Traxxas RC car model used for this testbed [11].

To support every component in the vehicle, modifications were necessary to

made to the structure. That being said, some acrylic sheets were precisely cut,

with reference to the CAD files from [43]. All the mounting and wiring followed an

approximation of the ”Build Manual” from [23]. In this build, contrary to the F1

Tenth, the Orbity Carrier board, the Power board, the Energizer power bank and
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the VESC were not used. Due to it, a few adaptations were made, like changing the

height of the NVIDIA Development support board to fit a different power bank, as

well as drilling new holes in it, to attach it to the new base created. In addition the

wiring for the power supply was redone to fit the needs of this build.
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4
System Architecture

The following section will describes the system architecture, explaining how every

component is connected with each other and the benefit of implementing this robotic

system.

4.1 Hardware

This robotic testbed is based on the Racecar model from the F1/10 competition and

it follows the architecture represented in the block diagram in Figure 4.1. Every

component is connected to the on board computer, the Nvidia Jetson TX2, which

will process all computation necessary. The components are either connected to it

via USB, in regard to the Teensy micro-controller and the IMU, or via Ethernet, in

the case of the LiDAR. Since the developer kit only has one USB an extender was

required. In the LiDAR case the connection is established through Ethernet.

To power every electrical component of the robotic testbed, a source of DC power

supply was necessary and for that a power bank was used. The power bank connects

directly to the Nvidia Jetson developer kit and the Hokuyo Lidar, outputting 12 V

DC. However this power bank does not supply energy to the cars motor, as for that

a specific Lipo battery was used.

31



CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.1: System Architecture: Nvidia Jetson is the main computer and processes every
sensor input that come from the Lidar and IMU and computes into actions in the robot
platform.

4.2 Software

In the same manner as the Hardware architecture, a software architecture will be

also described. and follows the scheme presented in Figure 4.2.

Figure 4.2: System software architecture.

Being the NVIDIA Jetson TX2 our on-board computer it requires a running

operative system. As commonly used in robotic applications, the operative sys-

tem running on the TX2 is Linux Ubuntu 16.04. Within this computer, the Robot
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Operative System is installed and provides a series of packages and it includes the

workspace, Catkin ws, to develop and build our system. ROS provides various pack-

ages that enable a ready to use software, mostly relying on parameter configuration.

In this implementation, the packages that were used are the Razor IMU 9dof, which

allows to acquire data from the Sharp Razor IMU, the Hector SLAM that enables

a static map generation. Also, the packages Robot Localization, that will provide

sensor data fusion to then be applied in the Adaptive Monte-Carlo Localization

(AMCL) package, where it makes possible to localize the robot in a static map.

In the Catkin ws consist in the 3 directories, Build, Devel, Source and in this last

one, is where the designed scripts will be saved, as it can be seen in Figure 4.3. It also

includes the message folder, where it saves the messages types passed through topics

and a launch folder, which allows to create custom files to launch different nodes

and configuration files all in simultaneously. The scripts folder holds the algorithms

created in python, that were implemented in the robot, for example the Talker.py

script, that converts data arrival of angle and speed to Pulse Width Modulation,

PWM, signals. In addition, in the source directory, it is found other packages that

were locally installed. These packages were the rosserial python, Urg node and the

rf2o laser odometry. The first acts as a bridge from the Jetson TX2 to the Teensy, to

enable message passing. The Urg node is responsible for reading information from

the Lidar sensor and publish. To acquire odometry data from the Lidar to use in

sensor fusion, it is used the rf2o laser odometry package.

Figure 4.3: Close up to the source directory of the workspace, catkin ws.
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4.3 Lidar Scanning

The Lidar will provide data to the Nvidia Jetson with 2D scanning of the envir-

onment, covering a range of 270 degrees. This data will arrive to the Jetson at a

frequency of 40 Hz, through Ethernet communication. Since this sensor is vastly

used in robotic applications, ROS already possesses a package that supports this

LIDAR model.

The setup is straight forward since another program, UrgBenri, can be used to

configure the IP address of the LIDAR and very if it is working as intended. Then

in our ROS work package and with the specific package installed the LIDAR was

ready to use. With a Master running, it was only necessary to run the node with its

IP address and the topic /scan was being published, returning measurements from

the LIDAR. Using Rviz and subscribing to /scan topic, an identical visualization

from UrgBenri could be seen and confirming the Lidar was working like intended.

Figure 4.4 displays the scan from the the LIDAR in both UrgBenri and Rviz.

With everything functioning as expected, the values could now be used in the

control algorithms that will be discussed in the next chapter.

(a) UrgBenri (b) Rviz

Figure 4.4: Verification of the correct configuration of the Hokuyo Lidar using UrgBenri
in (a) and operation in a ROS environment using Rviz in (b) .

4.4 IMU interface

In [44], provides a tutorial on how to set-up this board in order to fulfill the project

needs, additionally in [45] it is presented a tutorial that enables this board to publish

messages in a format that ROS is capable of reading. This messages require that the

data from the IMU come in a Attitude and Heading Reference System (AHRS) and

to enable it a new firmware was uploaded to the Razor board. During the process of

setting up the car, it is required to calibrate the sensor, since every sensor is different

from each other and suffers from magnetic interferences.
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With the ROS package ”Razor 9dof IMU” installed, the configuration file was

updated with the calibration parameters. This package, apart from providing a node

to read the IMU data publishing it in a topic, offers a visualization tool, helpful for

debugging as we can observe its parameters altering. Figure 4.5 showcases the IMU

working along with its visual tool, where it shows parameters like yaw, pitch, roll,

linear acceleration and angular velocity.

In addition, in Figure 4.6 it can be seen the IMU topic that shows the different

values being passed in a ROS sensor type of message. In further chapters, this in-

formation will prove to useful when trying to provide the robotic platform odometry

information for localization.

Figure 4.5: IMU visual tool

Figure 4.6: IMU Messages
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4.5 Teensy Micro-Controller

Since the on-board computer, the NVIDIA Jetson TX2, and the RC car lack in a

direct connection, an interface was required to be established. For that, a micro-

controller was used, that could receive steering and speed controls from the Jetson

TX2 and treat the values to insert in the servo and speed controller from the Traxxas

car. Thus, the requirement of the Teensy 3.2 micro-controller.

With this micro-controller a bridge between the Nvidia Jetson and the electronic

speed controller (ESC) can be established. In this build, the Teensy will be sending

Pulse Width Modulation, PWM, signals to the motor and the servo, depending on

the information received from the Jetson TX2. This implementation is possible since

the Arduino software, which the Teensy is based on, has libraries compatible with

ROS.

In addiction, this device will be connected with two switches to the car so we

can decide whether we want control the car manually or autonomously. For that

a custom Printed Circuit Board (PCB) was developed, like the one in Figure 4.7,

which allowed to connect all the components. The board is composed by the Teensy

micro-controller, two switches and pins that are associated to the DC motor, servo

and the radio controller for the manual control.

Figure 4.7: This figure presents the custom PCB developed. The switches are respectively
connected to the DC Motor and Servo.

In order to send the information from the Jetson TX2 to the Teensy using ROS, it

was used the rosserial python package [46]. This python implementation automat-

36 Daniel Almeida



4.5. TEENSY MICRO-CONTROLLER

ically handles the setup, publishing and subscribing for a connected rosserial-enabled

device. As an example of this build, a Python script, talker.py, converts the received

messages of steering and speed, from a control script, into valid PWM signals and

publishes the topic /drive pwm. The conversion, relies on receiving speed values

ranging from -25 to 25, where value 0 the car is stopped, and steering values with an

extent from -30 to 30 degrees, which are respectively the minimum and maximum

steering angle that the car possesses.

The rosserial python will bridge this topic to the Teensy program, that will

subscribe to it, through serial communication. The Teensy will then proceed to

apply the PWM signals to the ESC.

In addition as a safety feature, an emergency script is also running, kill.py,

that upon pressing the delete key, completely stops the car, ignoring other messages

information. In Figure 4.8 it is displayed a flowchart of the 3 algorithms described.

Figure 4.8: Flowcharts of the pyhton algorithms: left - ”talker.py”, centre - ”ros-
serial pyhton node”, right - ”kill.py”.
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5
Implementation

As previously presented in Chapter 2, an autonomous vehicle system is represented

by 3 main core components, perception, planning and control. In this chapter we

will present the methods used on this project to complete these 3 characteristics.

We will start by demonstrating the implementations made in terms of mapping and

localization, explaining their functionality. Afterwards, path and control phase are

connected, explaining the different algorithms applied for the car to drive autonom-

ously.

5.1 Mapping and Localization

One of the key aspects of autonomous vehicles is their ability to localize themselves

with precision in a known environment. To accomplish it, sensor data must be

acquired to perceive the car surroundings. Many approaches can be made depending

on the system and sensors used. The following topics present the methods used to

generate a map of a track and to localize the robot in the generated map.

5.1.1 SLAM

The Simultaneous Localization and Mapping (SLAM) algorithm provides, as the

name suggests, a method for localizing the robot while generating a map of the

environment. From the input perspective, it is required that they are given some
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source of data, that generally come from sensors, such as LiDARs or cameras and

can be complemented with other sensors, such as an IMU. SLAM derives from the

problem of a robot not having a map of the environment and the necessity to obtain

one. In other words, it is considered a ”chicken and egg” problem, where it is

necessary a map of the environment to determine the robot location, however at the

same time the initial position of the robot is required to build the map. SLAM map

generation is based on occupancy grids and scan matching.

Occupancy grids [19] can be defined as 2D maps or 3D worlds and in this project

case, since we are working on a planar environment, the final product will be 2D map.

This method is characterized for estimating the static objects in a given situation.

Based on open spaces or blocked or obstacles, the occupancy grip problem turns to

a binary problem. If an obstacle is found the it will be set to 1, otherwise 0 in free

spaces. With this we can represent a map of an environment as an evenly spaced

field of binary variables. Scan matching allow the system to adjust pose estimation

between two consecutive time stamps, as it aligns the second scan with the previous

one. With this, it is possible to maintain the robot pose and it updates the map

simultaneously. Being the scan from the Lidar point clouds, scan matching uses the

iterative closest point method, to find the transformation between the consecutive

point clouds.

ROS provides different packages that facilitates the implementation of SLAM

algorithms, where 3 of the most commonly used are Google Cartographer, Gmap-

ping and Hector SLAM. Under the scope of this project, the package used was the

HectorSLAM . The decision to adopt this package was due to the fact that it almost

solely localizes the robot using its scan matching and in some situations an IMU

when taking in consideration pitch and roll motions. In the remaining two, it is

required a precise odometry, for example odometry provided from wheel encoders,

something not implemented in this testbed, as the only source of odometry come

from the IMU and Laser scan matching algorithms. Due to those restrains, Hector

SLAM was chosen to build the map of the race track.

Hector SLAM [47], aims to deliver a fast online learning of occupancy grids,

while requiring low computational resources, and sensor input, only relying on Lidar

scans and optionally it can be combined with attitude motion from an IMU. In this

SLAM approach, the authors apply a scan matching that optimizes with beam

points, with the map learnt so far, thus not eliminating exhaustive pose searching or

data association between endpoints. In addition, it is referred that an interpolation

scheme is used, to exclude the limit in the precision of the occupancy grid map and

as consequence, allow a sub-grid cell accuracy, that can be view as samples and with
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that provide a continuous probability distribution.

The usage of the open source Hector SLAM package in ROS comes with other

features that are described in [48]. It requires the user to provide data from the

Lidar, the transformations, tf , between coordinate frames and alter the parameters

values that fulfill its requirements. Figure 5.1 illustrates the transformation frame

(5.1b), along with its running nodes and topics (5.1a). Figure 5.2 demonstrates the

visualization of a map creation using the Rviz tool. In conjunction it is possible to

observe the movement of the car, showing a correct behaviour of the localization.

(a)

(b)

Figure 5.1: Display of running transform frames (a) and nodes and topics (b) of Hector
SLAM, using the rqt tool.

Figure 5.2: Process of Map generation using Hector SLAM.
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5.1.2 Odometry Fusion

In many unmanned vehicles the necessity to obtain information about its position,

heading, attitude, velocity and other parameters is crucial in any kind of navigation.

To acquire this type of information, robotic applications require sensors, such as

IMU, Wheel Encoders, GPS, Scan matching. A change in this sensors values, can

provide an update of the pose of a vehicle, thus providing odometry data.

Even though these sensors can provide information about their relative position,

it is frequent to observe oscillations and errors due to their precision, which gradually

increases when dealt with low-cost sensors. To counter this measurements, sensor

fusion was introduced and is present in numerous robotic applications, to reduce

errors from various inputs. In [49], the authors expose several implementations of

different types of odometry and their virtues and flaws. Generally, this fusion are

based on discrete implementations of the Kalman Filter, such as the Extended Kal-

man Filter, EKF, the Unscented Kalman Filter, UKF, and many other as described

in [49] an in [50], that although applied in vision applications can be used with other

inputs.

Kalman filter is an algorithm, that upon receiving measurements, produces an

optimal estimation for linear discrete-time state-space models. However, a real sys-

tem will never produce a linear system, thus the necessity to implement solutions

that could estimate non-linear models. With that said, solutions rely on filters like

the EKF and UKF. EKF is the non-linear version of the Kalman filter and executes

a linearization at each time step, while the UKF applies, what’s entitled as unscen-

ted transform, to pick a minimal set of sample points around the mean, so that

the filters can avoid poor performance, when the state transition and observation

models are highly nonlinear [50].

Depending on the application, some parameters from the sensors might need to

be discarded, tanking in consideration the more important. With the purpose of

achieving that, methods were developed to fuse sensor information, outputting the

odometry data.

In this testbed only 2 sensors were used that could provide useful data to be

fused, so that odometry information could be acquired, being them the IMU and the

LiDAR. With the intention of fusing sensor data, ROS provides a variety of options

to accomplish it. The ”Robot Localization” package [51] offers approaches to fuse

multiple sensor sources using Kalman filters, remarkably, the Extended Kalman

filter, EKF, and the Unscented Kalman Filter, UKF. In this project, it was only

focused the use of the Extended Kalman Filter.

Since the robot developed in this project does not have highly precise odo-
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metry sensor, it was necessary to rely on the Lidar to offer a pose estimation with

enough precision. For this purpose, the odometry arrived from the Lidar, was ob-

tained through a laser scanning algorithm to convert its values to valuable data

to be used on the EKF. To fulfil this objective, the ROS package used was the

”RF2O laser odometry” [52], which provides an estimation of planar motion from

consecutive range scans, while performing dense scan alignment based on the scan

gradients.

To enable the EKF, it was necessary to configure its parameter file, in order to

receive the odometry data from the RF2O and the IMU. Since this state estimation

node expects data from multiple sources and given the lack of sensors used, it was

extracted all the information from the sensors. The parameter file, accepts the data

from each input in a vector, in a Boolean format, where each position represents the

following variables: X,Y,Z,roll,pitch,yaw,Ẋ,Ẏ,Ż,rȯll,piṫch,yȧw,Ẍ,Ÿ,Z̈.

In other words, if one decides to only use the x,y position variables from a sensor

to feed the EKF node, then the first two positions of the vector are set as true, while

the remaining others are set as false. Taking into consideration the amount of data

that the laser scan odometry and the IMU provide, their correspondent vector in

the EKF configuration file can be seen below.

In addition, since this testbed only operates in a planar environment, this package

provides an option,”two d mode”,(2D mode), that ignores 3D variables, improving

the odometry estimation. The ”odom0 config” represents the matrix for the RF2O

odometry data and the ”imu0 config” the matrix from the Razor IMU. The first

will accept the x and y position and the yaw rotation values, along with the linear

velocity in the X-axis and angular velocity around the Z-axis. The second one,

although giving more information, we only required the data from yaw rotational

values, the velocity and acceleration around it, since the 2D mode is activated.

odom0_config:[true, true, false,

false, false, true,

true, false, false,

false, false, true,

false, false, false]

imu0_config: [false, false, false,

false, false, true,

false, false, false,

false, false, true,

false, false, true]
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Provided all the configurations necessary, in both laser scan odometry, IMU and

EKF, it was possible to achieve filtered odometry message to subsequently be used to

feed the odometry data in a localization system, that will be presented immediately.

5.1.3 Adaptive Monte-Carlo Localization

Many pose estimation algorithms, can be applied in order to localize a robot in

a known environment/map. In this project, it was applied the same method as

in the F1 Tenth build. The Adaptive Monte-Carlo Localization, AMCL, [53] is a

probabilistic localization system for robots moving in 2D. The system is part of ROS

navigation stack and it functions by tracking position of the robot in a known map,

using a particle filter, while following implementations from [19].

This method is an improved version of the Monte Carlo Localization, MCL [54].

The original format relies on fast sampling technique to represent the belief of the

position. After movement, re-sampling is done to acquire new position. Being the

goal to recursively compute at each time step the set of samples from a density

probability, this method relies on particle filters.

Particle filters [19], are based on Bayes filters, and use a number of finite samples

to approximate a posterior distribution of given parameters, called particles. Taking

into consideration a large number of particles, the general idea is to approximate

a belief, by a set of particles. Depending on the density of a region populated by

samples, the likely it is for a true statement to be correct.

The MCL algorithm proceeds in two phases the prediction phase and update

phase, as described in [54]. The first starts with a uniform random distribution

of particles and at this given point the robot does not have any input on where

it is located. In the second phase, the robot has already moved, implying a shift

of the particles pose prediction, giving a new state. If something new is sensed by

the robot, the particles are re-sampled. Throughout each step, the particles will

converge to the respective position of the robot.

Following the same base line, the AMCL applies the same methodology [55],

as it ancestor, however adjustments to the sampling are made. Though the MCL

presented efficient results, it suffered from a large computational processing as the

same number of samples were always taken into consideration. Such large values

are required in the first phase, as the estimation is still being gathered and the

convergence made to the actual position of the car. Once the particles converged,

having as consequence a much smaller cluster, the number of samples is maintained,

introducing unnecessary error the pose estimation.
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AMCL applies a method to cover this issue, adapting the number of samples

required. Its chooses a small number of samples, if the density is focused on a small

subspace of the cluster and chooses a large number of samples, if the samples have

to cover a major part of it. This way both the implementation and computational

overhead of this approach were reduced, improving overall results [55].

As of other mechanisms for robot localization in a known map, [19] presents other

methods such as Markov localization, while [56] demonstrates a fast particle filter

approach. Although, different implementations towards robot localization could

be made, it was decided to follow the AMCL algorithm, since all the resources

to implement this solution were ready to use, enabling fast and efficient set up to

acquire localization for future results.

As stated, AMCL requires a map to compute its localization, which in this case

it will use the map generated with resource to Hector Slam. Coupled with the map,

the system requires input from laser scans that will try to match with it, which

arrive from the Lidar, as well as odometry and transform messages, with aim to

output an estimation of the robot position and orientation. This implementation is

important in this project, since the odometry acquired is not sufficient to localize

the robot in a map.

Regarding frame transformations, the localization system follows the required

conventions [57] that, consequently, upon its implementation produces a tree of

coordinate frames in a similar aspect to Figure 5.3. The map and odom frames are

world-fixed frames, which diverse from each other on their continuity. Whereas the

first one produce a long-term global reference, which presupposes a discrete jumps

overtime it eliminates drift, the other one, proceeds to offer accurate short-term

local reference. The base link frame describes the rigid robot base, that supports

the all hardware, like the Lidar and IMU, and provides a point of reference to the

robots base.
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Figure 5.3: AMCL Tree Frame, acquired using the ROS rqt tool.

With all the configurations completed, the results of the Adaptive Monte-Carlo

Localization will be presented in Chapter 6.

5.2 Control Methods

Provided data from the sensors, different algorithms can be implemented with the

objective to control the car autonomously. The following introduce the robust con-

trol methods put into practice in this testbed, in order to later be compared between

each other. These algorithms rely mostly on Proportional Integral Derivative, PID,

controllers to, except for the last two explained, to attain a steering control.

In terms of speed control, it was decided to implement the same process in all

algorithms. This was due to the difficulty to arrange a robust yet effective technique

to adjust the speed along its path. Henceforth, this method below in Equation 5.1,

was employed to manage the speed that is passed through PWM to the Teensy.

speed = min speed +
dist

max dist−min dist
× (max speed−min speed) (5.1)

As it can be seen, the equation above requires constant parameters, that are
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given, respectively, by the maximum and minimum distance and speed. This para-

meters can be altered, in order to restrict the speed to be delivered as a PWM signal,

in particular the maximum speed to be applied. The remaining parameter, dist, is

the current distance being read by the Lidar at 90 degrees, i.e., the distance right

in front of the car.

With this approach, it was possible to smoothly adjust the speed that the car was

reaching, allowing to understand the limitations, in terms of speed, of each algorithm

that will be implemented and thus achieving a control with steadier stability.

5.2.1 Wall Follow

This algorithm describes a simple method as a first approach to autonomous driving

in a robotic testbed. Figure 5.4 demonstrates the flowcharts of this method.

Figure 5.4: Flowchart of the wall follow algorithm implemented. On the left is displayed
the data processing algorithm and on the right the control algorithm.

By subscribing to the scan topic, published by the node referent to the Lidar,

urg node, it is possible to obtain the distances at specific angle.

Taking it that in consideration, the distances at 40 and 140 degrees are acquired,

which are both a distance to the right and left side. These angles can be adjusted,

however these were the ones which gave best results.

With these distances, an error was obtained by the difference between the left

and the right measure. This error, that is published to another topic, will indicate

how far from the center of the track the car is and will be used as weight to control

the steering angle of the servo motor.
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Upon receiving the error variable, it was possible to implement a Proportional,

Integral and Derivative, PID, controller, since it will automatically apply the neces-

sary corrections to the steering angle. The PID controller runs in a separate node

and subscribes to the topic that receives the error value. The applied control action

is given by a PID presented as

Control error(t) = Kp ∗ e(t) + KI ∗
∫

e(t) + KD ∗ ∆e(t)

dt
(5.2)

where Kp, KI and KD denote respectively the Proportional, Integrator and

Derivative gain constants, error(t) is the measured error and Control error(t) is

the output control of the system. The output is then added to the previous angle

applied, thus resulting in the angle to be applied in the steering, that will publish

to a new topic to be subscribed by the talker node, referenced in the prior chapter.

5.2.2 F1/10 PID

Considering the scan data from the LiDAR, the F1 Tenth crew developed an al-

gorithm [12] that enables the car to move parallel to walls at a fixed distance while

taking in consideration the orientation of the robot obtained from the distances at

specific angles.

Firstly, the algorithm starts by assuming the LiDAR reads the angles from 0 to

180 degrees, being 90◦ the front of the car. Since the Hokuyo Lidar used in this

project covers 270 degrees, it was sufficient to meet the needs of this algorithm.

Secondly, two distances are read at 0 degrees and theta degrees, where theta is

an angle in between [0-70]◦.

Thirdly, defining an angle alpha as the orientation of the car, it can be obtained

following the geometric problem in Figure 5.5a and subsequently the distance of the

car to the wall at that orientation.

Fourthly, since the robot will be performing at high speeds, at the moment of

the data acquisition until actuating upon the car, the control values applied would

not represent the actual controls necessary to apply due to that delay. To overcome

this problem, it is added a distance to forward the car from its actual position and

from that the final distance to the wall is achieved.

Lastly, an error is obtained from the difference of the desired distance to wall and

the actual distance calculated. Figure 5.5b demonstrates the equations to achieve

the distance from the wall.

48 Daniel Almeida



5.2. CONTROL METHODS

(a) Equations to calculate the orientation, al-
pha, where ’a’ represents the distance read
by Lidar at theta degrees, ’b’ the distance at
angle 0, ’AB’ the current distance of the car
to the wall.

(b) Addition of a distance compensation due
to a delay in processing, AC, and recalcula-
tion of the new distance to the wall.

Figure 5.5: Achieving an error from a desired distance and the actual distance of the car
[12].

This procedure is applied when following the right wall of a track, however by

inverting the angles to the opposite side, it is possible to obtain the error referenced

to the left wall.

By obtaining an error from the previous equations, this parameter can be used in

a standard Proportional, Integral, Derivative (PID) controller, in the same manner

as previously described. However, in this algorithm only a Proportional Derivative,

PD, controller is used, as the integral variable does not contribute to the systems

stability. To deliver a better perspective of the algorithm, in Figure 5.6 it is demon-

strated a flowchart of this algorithm. Regarding the control algorithm, it follows the

same principle as previously shown.
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Figure 5.6: Flowchart of an example algorithm from F1/10 implemented.

5.3 Curve or Straight line detection

When the car faces a curve, depending on the direction of it, for instance we will

use a right curve situation, the distances readings from the Lidar, in clockwise, will

gradually increase, since the more to the left points will be closer. Same applies in

the opposite direction. In a straight and cleared line in a track, the center readings,

around 90 degrees, will return much greater distances, that the ones from more

lateral readings, around the 45 degrees.

Under these circumstances, founded on the PID implementation from the F1/10,

a different approach was made, where a straight line or a curve in both directions

could be detected, relying on the Lidar readings. To enable a change of situation

encountered, specific intervals from the Lidar range were taken in consideration.

After tuning these intervals, the following set of ranges proved to be ones that gave

the best results.

• Angle range for straight line detection: 70◦ - 110◦

• Angle range for Right curve detection: 60◦ - 80◦

• Angle range for Left curve detection: 100◦ - 120◦
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As it can be seen below, both situations where the car encounters a right curve,

Figure 5.7a, and a straight line, Figure 5.7b, are illustrated. It is clear that in 5.7a,

the 20 points read, from 100◦ to 120◦, are at closer distance that the ones from 60◦

to 80◦. In 5.7b the points from 70◦ to 110◦, that cover most of the center readings

of the Lidar are at much greater distance, comparing to more lateral values. With

these assumptions, we will be able to qualify when the car is present in one of the 3

possible situations.

(a) Right curve.

(b) Straight Line.

Figure 5.7: Illustration of two different encounters in a race track. The red box represents
the robotic racecar and the orange circle the Lidar, along with an exemplification of the laser
beams at various angles reaching the walls of the track.

Upon subscribing to the Lidar scan topic, the distances for each angle, in the

defined interval, was compared to a fixed distance and if minor, a counter would

increment, giving the number of points acquired in that range.

Subsequently, the number of points from each counter would be compared to

a strict set of rules defined. In the straight line detection case, it is required for

the number of points read in the front centered range, [70;110]◦, to be less or equal

to 5 and the number of points in both left and right ranges to be less than 15. If

confirmed, this would mean the car could have an appropriate control to follow a

straight line. Regarding the curve detection, depending on the direction, a number

of ranges is obligatory to be greater than the other, while the number of points in the

center readings, is required to be less than a large amount of values. Following the
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example of the right curve previously illustrated, we confirm the number of points

on the left is greater than the ones on the right, as well as the number of points on

the left are greater than a certain value, while the center ranges are mostly covered.

If none of the 3 situations is detected, then the previous state is kept.

When the algorithm received the value that would correspond to the encountered

situation, it applies the same procedure of the following the right or left wall or both,

but contrary to the side found. In other words, when a right curve was detected, it

would follow the left curve, when a left curve was detected, it would follow right wall.

When a straight line was detected, a simple WallFollow approach was applied, with

the angles for left and right being, respectively, 140◦ and 40◦.

The process to clearly detect each situation is represented in follow chart below,

Figure 5.8.

Figure 5.8: Flowchart of the curve and line detection algorithm implemented.

Following the same principles, the errors obtained are applied to the PID control-

ler for the steering angle, however in this particular implementation, two different

sets of constants were used. When detecting a straight line, it was only applied a

Proportional controller, as the adjustments when tackling it should be as minimal as

possible, in order to make the car go as straight as possible. In a curvature situation,

a PID controller was applied as a more careful handling was necessary, to quickly
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respond to variations. Figure 5.9 represents the flowchart of the control algorithm.

Figure 5.9: Flowchart of the control algorithm for the curve and line detection implement-
ation.

5.4 Disparity Extender algorithm

As mentioned before in Chapter 2, the winning algorithm of the latest F1/10 com-

petition was the developed by the UNC-Chapel Hill team, which introduced the

”Disparity Extender” Algorithm. Since this was the winning team by a large mar-

gin and the authors provided an explanation on how the algorithm works, it was

decided to replicate it as closely to the information given in [13] and put it to test.

As the Authors mentioned, this algorithm gives a more simpler and robust ap-

proach to autonomous racing, comparing to what the rest of the participants com-

peted with. The foundation of this control is to find the longest distance that the car

can safely reach while driving in a straight line, by checking the disparities provided

from the Lidar readings. A disparity is defined by two subsequent points that differ

from a large amount predefined. Figure 5.10 exemplifies a visual representation of

a disparity.
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Figure 5.10: Example of a disparity from Lidar readings [13].

While continuously reading the distances from the Lidar, the point with the closer

distance is picked and calculated the number of Lidar samples needed to cover half

the width of the car and some tolerance. Next, starting from the furthest distance

of the 2 points at a disparity, the number of samples in the array is overwritten

with the closer distance. Continuing in the same direction, the process is repeated

for every disparity until it reaches the end of the array or the number of samples

calculated before is covered.

At this point, the new array only contains safely-reachable distances, like in

Figure 5.11. Consequently, the sample with furthest distance from the array is used

as the target for the car to drive to it and the angle necessary to apply is calculated.

With this repeated process, the car can aim at the best goal possible while avoiding

obstacles that may appear along the track, since they can be detectable by the

disparities.
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Figure 5.11: Filtered array of distances [13].

Concerning the speed to be applied, the team decided to only rely on the distance

in front of the car. Depending on the distance read, if greater than the value

established, then it applies the maximum speed and the reverse when it reaches

the minimum safety distance. Between these range, the speed scales based on the

distance read.

The algorithm also covers a possible problem when tackling corners. Figure 5.12

demonstrates that if no correction is applied, when facing that situation, the car

would crash into the corner. To contour this error and since the Lidar readings

cover the sides of the car to the back, due to the 270◦ field of view, a safe distance

is included on the side of the car, to stop it from turning and keep going straight

until it completes the curve with safety.
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Figure 5.12: Exemplification of a possible problem when tackling a corner [13].

Up to this point the algorithm is assumed to never crashed even when facing

obstacles along the track. However, the authors also raised an issue that would still

occur under some situations. If it is assumed that the track does not uniform width,

when approaching a corner in a wide portion of a track that will translate to a

narrower portion, the car might reach a point where it will do an U-turn. Since the

opposite corner will give a longer distance than the ones in the curve. The car will

move towards it and depending on how fast it is driving, by the time it processes a

new array of distances, the car might have moved far enough, never assuming the

correct path to take and thus making an U-turn. In [13], this problem is explained

in more detail. To produce a clear perspective of this implementation, in Figure 5.13

it is displayed an overview of the disparity algorithm in a flowchart pattern.
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Figure 5.13: Flowchart of the Disparity Extender algorithm implemented.

To sum up, this algorithm addresses the control method in a simpler way, yet

effective, comparing to the F1/10 approach. Without having the complex math-

ematical calculations it preforms well when racing in a time-trial or a head-to-head

challenge. Nevertheless, as it will be seen in Chapter 6, the results could still be

improved and adjusted in some aspects and thus the necessity reevaluate the dis-

parity control. Due to it, the following is an upgraded version of this algorithm that

emphasises on correcting the problems of it successor.

5.5 Upgraded Disparity

In the first place, upon testing the previous algorithm, it was evident that some

corrections were required. One problem that was clear, was that the car made some

steep adjustments when driving in a straight line, targeting the furthest point, until

it found a disparity from the next curve or an obstacle. When it happened the car

ended up applying to much steering.

Another issue encountered, was the number of angles that were being taken into

consideration when collecting data for the disparities. If the robot stands in the

beginning of a long hallway, the beams propagated from the Lidar will be more

spread out, in comparison to the car being in the middle or at the end of it. In
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other words, something that is closer to the Lidar will comprise more angles. That

being said, the need cover the same number of angles along the track should deviate

depending on far the disparities are situated.

The junction of this two matters, resulted in a slight oscillation in the path and

as consequence a loss of time per lap. Under those circumstances, to improve the

algorithm, we propose the following changes to be applied in order to overcome

the issues mentioned above, while keeping the authors aim on the simplicity and

robustness of the algorithm. In Figure 5.14 it is demonstrated the flowchart of this

algorithm, highlighting the changes applied in comparison to previous one.

Figure 5.14: Flowchart of the Disparity Upgraded algorithm implemented.

Firstly, to regulate how many angles should be taken into account, it was used

a linear regression, using the furthest distance of the disparity. Through trial and

error, measuring the distances and checking the number of angles the Lidar would

include, the optimal values reached were 0.75m and 5.25m and the angle count for

both respectively were 28 and 10. As a result, Equation 5.3 was obtained through a

linear regression and used to calculate how many angles would be necessary between

these range of values. Anything above 28 or below 10, would be fixed at those values.

Angle Count = −4 × distance + 31 (5.3)
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Secondly, pursuing the same approach as the previous one, a small compensation

was added to prevent abrupt transitions in the steering applied. That being said, the

linear regression in Equation 5.4 was achieved, based on the distance of the nearest

disparity, equally through trial and error. The values were also restricted in the

same manner, between 20 and 23.5 degrees. If no disparity found and the car aims

at the furthest distance, then a small constant in the steering is multiplied. This

constant has the objective to smooth out the values for the steering calculation, to

move closer to zero.

Compensation = −2.8 × distance + 26.2 (5.4)

Granted the additional implementations, it will be possible to see in Chapter 6

the impact these have made, not only in terms of trajectory, but also in a timing

performance.
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6
Results

This chapter demonstrates the results achieved throughout the development of this

work. First, it will be shown the results of the mapping and localization implement-

ations in different scenarios. Next, to prove the effectiveness of the algorithms used,

a comparison of the trajectories taken by each one will be demonstrated. Time will

also be taken into measurement, comparing which algorithm proves to the fastest.

Lastly, a summary of the results will be lifted.

6.1 Mapping and Localization Results

For the following results we will demonstrate the precision through a series of tests.

For each localization algorithm, we will measure the deviation at the initial position

and at 1 and 3 meters in front it. The measurements were acquired in the start the

start of the algorithm, after completing 1 Lap and after 5 Laps and were repeated

two times for each.

6.1.1 Mapping

As mentioned before, for the generation of the map for localizing the robot, it was

used the hector mapping. To obtain the map, it was fixed in the track, what it was

considered for all tests that will be realized the initial point, like it can be seen in

Figure 6.1.
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Figure 6.1: Real initial starting point of the car on the track.

The procedure to generate the map, consisted in manually driving the robot at

a small speed around the track. The reason for acquiring the map this way, lies

in the guaranteeing a correct map generation, since doing it at higher speeds or

autonomously, would increase the possibilities of a bad generation, as the car would

”get lost” and start giving a shifted map. Additionally, Rviz was used to debug and

observe the map being created.

Different maps of the same track were generated, while changing the resolution

of it, in their configuration file. The results from Figure 6.2 represent the maps gen-

erated in the oval track. As it can be seen distinct resolutions can greatly affect the

map quality, as small details start to be more noticeable. However, this brought out

a negative aspect, which can be noticed, being a small shift that would accumulate

and mess up the borders for to be used in localization.
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(a) Resolution: 0.03 (b) Resolution: 0.06

(c) Resolution: 0.1

Figure 6.2: Different map generations with Hector Slam while varying their resolution.

Apart from the Oval track, another map was created to guarantee the correct

behaviour of Hector Slam, more specifically in a wider and open space. Figure 6.3

demonstrates the map generated of the Undergrad Lab Area at CISTER. Overall

the map was generated successfully, although few cells were badly generated, as it

can be seen on the top of the map, since those locations are all windows. Due to

it, the Lidar couldn’t properly detect it as solid material, as the laser beams were

reflected and thus such errors occur.

Figure 6.3: Generated Map from Hector SLAM of the Undergrad Lab Area at CISTER
with a 0.03 resolution.
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To demonstrate the precision of the localization aspect of Hector SLAM, we pro-

ceeded to calculate the absolute error, in meters, by comparing the values obtained

from the SLAM and the actual distance measured. We started by registering the

values provided from SLAM, at the initial point of the car. Then, we moved 1 meter

forward from the starting point, in a straight line, an registered the values once

again. Afterwards, the values were acquired, but 3 meters from the initial point.

Finally, the procedure was repeated after making 1 lap around the track and 5 laps,

in order to understand if error was accumulated. From our experiments, we achieved

the following results.

Table 6.1: Obtained errors with Hector SLAM, in the initial lap (Init) and after 1 and 5
laps. The errors were measured in the initial position, after 1 meter and 3 meters.

Observing the obtained results, we can conclude that the hector slam was success-

fully implemented, providing precise pose estimation, with very accurate precision.

However, important to notice, this values were only possible to attain while driving

the robot manually, at a very slow speed. When tried to run at higher speeds, the

map generation failed tremendously, leading to the algorithm to lose track of its

position.

6.1.2 Odometry

Based on Chapter 5, the results of fusing odometry are represented below. In Fig-

ure 6.4, it can be observed, resorting on the Rviz tool, the update pose of the car

using the fused odometry from the Lidar and IMU. The origin of the pink arrow in

the image, signalizes the position of the car and the direction its pointing the head-

ing of it. The four images in the figure below, were obtained by manually controlling

the car, and represents the updates of the odometry while driving around the oval

track.
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Figure 6.4: Visualization of the pose update of the odometry, provided from the Extended
Kalman Filter.

Regarding the precision of the odometry achieved, Table 6.2 presents the absolute

errors obtained, in the same scenarios used in the Hector SLAM tests. We could

concluded that the odometry in the beginning provides a precise position of the car,

however after 1 lap it can observed that this precision drops heavily and continues

throughout it. This results are due to the fact that the sensors and methodology

used in this approach, lack in stability, thus drifting apart along the course.

Table 6.2: Obtained errors with the Extended Kalman Filter, in the initial lap (Init) and
after 1 and 5 laps. The errors were measured in the initial position, after 1 meter and 3
meters.

With this results, we could conclude that the odometry from the EKF provided

a good approximation to the actual position, in the beginning of the course, as the

trajectory from Rviz resembles the same of the car. However, upon completing

more laps, the approach proves to be unreliable to use it alone, as significant error

accumulation is noticed.
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6.1.3 AMCL Results

Resulting from the acquisition of a static map from hector mapping and the updated

odometry, it was possible using the Adaptive Monte-Carlo Localization, AMCL, to

localize the robot in a given map. Provided all the necessary information, it can

be observed in Figure 6.5 using Rviz, the particle filter generated by AMCL, that

represent all the possible positions the car believes it is. As the car moves around

the track, the particles can be seen agglomerating following the precise movement

of the car.

Reading the values from the topic published by AMCL, /amcl pose, which

provides the coordinates in X and Y, it could be concluded that the values ob-

tained from the position were stable. In Table 6.3 the values of the deviation are

presented, using the same methods as before for the other cases. From the values

attained, we can conclude that AMCL proved to be working with expected preci-

sion, as the error values, even after 5 laps, only present, as a worst case analysed, a

deviation of 7cm, in 3 meters apart from the starting point.

Figure 6.5: Visualization, in Rviz, of AMCL’s particle filter of the position estimation.
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Table 6.3: Obtained errors with the Adaptive Monte-Carlo Localization, in the initial lap
(Init) and after 1 and 5 laps. The errors were measured in the initial position, after 1 meter
and 3 meters.

When driving in a more aggressive manner at higher speeds, it was possible to

observe that the localization gave satisfactory results, even though at certain in-

stances the position would give erroneous values. Despite this flaw, the algorithm

was capable of getting track of its actual position after some time and it was pos-

sible to achieve good performance, as it will be observed in the following findings,

regarding the paths obtained by the car when driving autonomously.

6.2 Control Algorithms

The following results show the trajectories obtained from the car when driving

autonomously around a track, using different algorithms. In addition, time to

complete a lap and various laps are taken into consideration as measurements of

performance.

The algorithms used are the ones described in Chapter 5. To obtain the results

for this experiences, it was used the combination of the Lidar and IMU odometry,

EKF, alongside with AMCL to obtain a precise positioning of the car in a known

map, that was acquired via Hector Slam. The position of the car is passed through

the topic /amcl pose, which a node that we called, waypoint logger, will read and

save the coordinates of X and Y position, to a .csv file. With the saved coordinates in

the .csv file, it was used another algorithm that proceeded to connect all consequent

coordinates, until full trajectory was obtained and displayed in Rviz.

Furthermore, the procedures were all commenced in the same spot of the track,

same as Figure 6.1, that is considered the initial point from the map generated, and

all the laps and respective time were counted manually. For the acquisition of the

path and time for multiple laps, it was stipulated a maximum number of 30 laps.

Since the car could not be running indefinitely, it was necessary for it to stop at a

certain number of laps, but at the same time give enough data and thus the 30 laps

were the number stipulated for it. In the light of this experiments, 3 tests for each
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algorithm were made and the number total of laps completed saved.

In this observations, the car was started and stopped, until it completed a full

lap around the track. This experiment allows to examine the behaviour of the car,

when preforming a single lap, when using different algorithms.

The results of this experiments for each algorithm are exhibited below

6.2.1 Wall Follow

The following demonstrate the results obtained using the first algorithm described

earlier, the WallFollow. This method, uses a simplistic approach to control the

steering of the car, along with a PID controller. By continuous manual adjust, the

best constant values of the PID achieved were:

• Kp : 10

• Ki : 0.05

• Kd : 0.1

Additionally, the speed parameters were adjusted to obtain the fastest speed

possible, without heavily compromising the stability of the control. This way the

following are the values applied:

• Maximum speed = 6

• Minimum speed = 4.3

• Maximum distance = 5

• Minimum distance = 0.75

6.2.1.1 1 Lap

As it can be seen in Figure 6.6 the car took a very oscillating path like it was

predicted. Since the algorithm only relies on the acquisition of the distance in two

points, to be applied in a PID, it was expected to have volatile response. Henceforth

the pattern of an ’S’ shape the car makes when driving around the track. In terms of

time, the path in the figure bellow took 11,58 seconds to preform one lap around the

track. Consequently, after preforming 10 experiments, the average time was 11,67

seconds.
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Figure 6.6: Trajectory of one Lap using the ”Wall Follow PID” algorithm.

6.2.1.2 Multiple Laps

When put to test, this algorithm failed to complete the sixth lap as it can be seen

in Figure 6.7, taking 00:58,73 (mm:ss,ms). Identical to the previous figure, the

instability of this algorithm can detected, never succeeding to travel a correct and

most of all safe path. The remaining test remained at 3 and 4 laps, lasting 00:38.37

and 00:48.69 (mm:ss,ms) respectively.

Figure 6.7: Continuous trajectory of 5 Laps using the ”F1/10 PID” algorithm.
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6.2.2 F1/10 PID

The following method, demonstrates the results of F1/10 PD algorithm. In the

same manner, the constant parameters of the PD controller were manually adjusted

and the ones achieved were:

• Kp : 3

• Kd : 25

Equally, the speed parameters were adjusted to obtain the fastest speed possible,

without heavily compromising the stability of the control. This way the following

are the values applied:

• Maximum speed = 8

• Minimum speed = 4.5

• Maximum distance = 5

• Minimum distance = 0.9

6.2.2.1 1 Lap

The implementation of the PID algorithm from F1 Tenth transpired a better result

from the previous algorithm demonstrated, as more variables are taken into account

for the control. However, tuning the PID parameters was challenging as a much

higher Kp than a Kd resulted in a good response for straight lines and dreadful

for curves, but when a higher Kd than a Kp was applied, the response was the

opposite. In this manner, the path obtained from this algorithm can be seen in

Figure 6.8, showing slightly less oscillations, although aggressive responses can be

detected, much due to a bad tackle of the curve and adjustment of the PID control.

Regarding time measurements, it took 9,91 seconds to complete the path and having

an average of 9,85 seconds after 10 repetitions.
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Figure 6.8: Trajectory of one Lap using the ”F1/10 PID” algorithm.

6.2.2.2 Multiple Laps

Observing the results of the F1 Tenth PID approach, Figure 6.9, it can be concluded

that this algorithm, when running more continuous laps, preforms much worse when

compared to the path obtained for one lap. Through the 3 experiments, the car

completed 6 laps twice in 1:09,58 and 1:03,43 respectively and 2 laps in 23,73 seconds,

until it crashed.

Figure 6.9: Continuous trajectory of 6 Laps using the ”F1/10 PID” algorithm.
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6.2.3 Curve and Line detection

Regarding this last PID implementation, there were 2 sets constants to be adjusted,

as it was mentioned in Chapter 5. Following the same principles the values achieved

were:

Straight Line:

• Kp : 1.2

Curve:

• Kp : 8

• Ki : 0.00007

• kd : 0.9

The speed parameters were adjusted to obtain the fastest speed possible, without

heavily compromising the stability of the control. This way the following are the

values applied:

• Maximum speed = 10

• Minimum speed = 4.5

• Maximum distance = 5

• Minimum distance = 0.9

6.2.3.1 1 Lap

As mentioned before, this algorithm is an approach to improve the PID implementa-

tion from F1 Tenth. As it identifies when the car is dealing with a curve or a straight

line, this method not only proved to stabilize the cars sudden jumps, but also the

general trajectory around the track. This results are demonstrated in Figure 6.10,

where it is possible to notice a smother path along the straight lines of the track as

well as in the curves. Following this path, the algorithm was able to complete the

track in 8,08 seconds. The average of 10 experiments in the same conditions was

8,22 seconds.
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Figure 6.10: Trajectory of one Lap using the ”Curve and Line Detection PID” algorithm.

Putting this algorithm through continuous driving, the car was able to produce

the path in Figure 6.11, making 9 laps, almost reaching 10 laps, in under 1:16,85

(mm:ss,ms). This algorithm already demonstrates an improvement in all aspects

comparing to the previous analysed. Not only the path is smother, but the time per

lap decreased more than 1.5 seconds. However this method is still flawed, since it still

crashes after some laps. Under the same conditions, 3 tests were made, resulting

in 12 and 13 laps completed in a total time of 1:28,60 and 1:40,55 (mm:ss,ms)

respectively.

Figure 6.11: Continuous trajectory of 9 completed Laps using the ”Curve and Line Detec-
tion PID” algorithm.
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6.2.4 Disparity

The following are the results obtained for the Disparity algorithm. Contrary to

the previous algorithms, this one does not require adjustments with PID constants.

However, some variables were fine tuned to properly meet our requirements.

With respect to the distance necessary to accept a disparity between two points,

it was set as 1.5 meters and the minimum of angles necessary to cover a disparity

was set to 10.

• Distance for Disparity = 1.5

• Number of points to accept a disparity = 10

• Compensation given to the steering = 20

• Lateral distanc

In terms of the speed parameters, the adjustments are as follows:

• Maximum speed = 13

• Minimum speed = 1

• Maximum distance = 5

• Minimum distance = 0.3

6.2.4.1 1 Lap

In Figure 6.12 it can be examined the route of the car when using the Disparity

algorithm. As it was described in Chapter 5, the car will target a disparity in

distances and plan the trajectory with accordance to it. With that granted, it is

clear that car tackles the curves through the inside more aggressively, however a hard

transition when coming out of the curve is detected. This is due to the algorithm not

having a smooth transition when detecting a disparity. This transition breaks the

straight line of the car should have, diminishing the optimization of the trajectory.

As a result, it was possible to observe an improvement of the time for one lap, lasting

7,11 seconds and consequently, the average time for one lap rounds the 7,07 seconds.
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Figure 6.12: Trajectory of one Lap using the ”Disparity” algorithm.

6.2.4.2 Multiple Laps

When facing continuous driving this algorithm reached the limit stipulated, the 30

laps. Under those circumstances, it could be assumed that the racecar would not

crash and therefore proved to be the best approach so far. Figure 6.13 demonstrates

the path of 30 laps which resulted in a total of 3:06,84. The outcome of the two

remaining tests was 3:07,67 and 3:06,79.

Figure 6.13: Continuous trajectory of 30 Laps using the ”Disparity” algorithm.
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6.2.5 Disparity Upgraded

The following are the results obtain for the Disparity Upgraded algorithm. Likewise

to the proceeding algorithm, some parameters were manually tuned. With respect

to the distance to accept a disparity it was set to 0.6 meters. As explained in

the previous chapter, the number of angles to cover an existing object was set to

be adaptable in this algorithm, so unlike the Disparity algorithm, no value was

stipulated in this one.

In terms of the speed parameters, the adjustments are as follows. Although,

in this algorithm, due to the high speed that was noticeable while doing curves, a

restriction to the speed of 12 was added, when the steering angle was superior to 20

degrees.

• Maximum speed = 18

• Minimum speed = 1

• Maximum distance = 5

• Minimum distance = 0.3

6.2.5.1 1 Lap

Figure 6.14 demonstrates the path traveled by the car when using the upgraded

version of the disparity algorithm. Similar to its previous version, it can be observed

that the car also cuts the curves by the inside, however, when finishing it, the

car leaves from the outside of it. Additionally, as mentioned in Chapter 5, the

improvements made allowed to extend the limit of the speed applied to the motor.

For this reason and considering the enhancement of the trajectory this algorithm

was able to complete the path from the figure below in under 5,98 seconds. The 10

experiments for one lap lead to a mean time of 5,89 seconds.
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Figure 6.14: Trajectory of one Lap using the upgraded version of the ”Disparity” algorithm.

6.2.5.2 Multiple Laps

Going under the continuous driving around the track, this algorithm preformed

outstandingly. Not only was capable of never crashing, completing this way the

30 laps in every test, but also was able to reduce the time by 44 seconds, were

all the results of the 3 tests were all 2:22, only changing around the milliseconds.

Figure 6.15 displays the total routes of this algorithm.

Figure 6.15: Continuous trajectory of 30 Laps using the upgraded version of the ”Disparity”
algorithm.
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6.2.6 Results overview

Provided the previous results presented above, it can be clear which stood out in

the end. We can conclude that the last 3 algorithms analysed, the curve and line

detection PID, the Disparity Extender and the Upgraded version of it, yield the

most stable paths. When compared to the remaining 3, it can be observed a smooth

route when tackling a straight line, as well as when approaching a curve. On the

other end, when compared into detail between them, the dissimilarities are clear.

As a first base of comparison, in Figure 6.16 we demonstrate a graphic displaying

the average laps completed of each implemented and tested algorithm. From this

perspective we can already assume that both Disparity approaches, provide better

results, as they complete the most number of laps.

Figure 6.16: Average number of Laps completed from each algorithm.

The Curve and Line detection algorithm was not able to complete 30 Laps like

the disparities algorithms. As it could be seen in Figure 6.11, the car ends up

crashing, near the end of the 10th lap, when leaving the curve. This behaviour

was due to the car approaching the curve to much on the outside, meaning a late

transition from line to curve detection. As this late detection processed, the car is

already driving close to the wall and at the same time, the speed control is starting

to increase it, as the distance at 90 degrees is increasing as well. Having this increase

of the speed, the car does not process this steering control effectively at a crucial

time, ending up crashing.

In the Disparity algorithm, despite giving the insurance that it will ”never”
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crash, since it completed the 30 laps, some errors were detected while observing its

trajectory. In both Figure 6.12 and Figure 6.13, it can be seen that the car suffers a

sharp move at the middle of the straight line. Figure 6.17 points out these moments

in a red circle, where this happens in both the 1 lap and 30 laps map.

This unnecessary movement, happened due to the transition in the algorithm

where it had just finished a curve, entering in linear movement. During this period,

a disparity was not found and the car is aiming to the furthest distance read in the

array. When a new disparity is found, the car suffers a harsh steering command,

since it needs to aim at new target, to enable the car to steer safely to that point.

Consequently, this adjustment, makes the car lose valuable time, not only in a time-

trial, but also in a head-to-head race.
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(a)

(b)

Figure 6.17: Indication of a transitional detection in the Disparity algorithm, where (a)
refers to the one lap trajectory and (b) to the 30 laps.
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Thus, from the necessity to improve this last algorithm, surges the upgraded ver-

sion of ”Disparity Extender” algorithm, that corrected the previous error mentioned.

As it could be seen in the previous Figure 6.14 and 6.15, the trajectory demon-

strates an optimized approach to the problem outlined before. Comparatively, this

method evidences similarities to the ”Curve and Line Detection” algorithm, that

also presents a sleeker transition from a curve to a straight line, until reaching the

other curve. On the contrary to its original version, the car shown the ability to

take full advantage of the straight line, since the average distances used for the speed

calculus were much higher, implying a much higher speed to be applied in the motor.

To support the findings that were stated above, the degrees of correction in the

steering, in one lap, were taken into consideration. Gathering each steering angle

applied, we calculated the absolute difference of angles between steering corrections.

With this metric we could observe how steep the corrections being made in each

algorithm were, sustaining the findings on the trajectories.

In Figure 6.18 a graphic of the obtained results for each algorithm is displayed.

The number of corrections are represented in defined intervals, that start in 0 alone

and go up to ]50,60] degrees, where 60 is the maximum correction possible, as it

means the steering angle made a transition from -30◦ to 30◦, or vice-versa.

From this graphic we could prove, besides the total number of iterations done in

each algorithm, that the first two implementations required more steeper corrections,

in comparison to the rest. The curve and line detection algorithm, if in one way

shows smoother transitions, some abrupt corrections can still be detected.

In contrast, both disparity approaches, showed that most of the corrections are

centered in ]0;10] interval, however to prove the improvement from one algorithm to

another, we can observe that the number of corrections from the Disparity Upgraded

algorithm was reduced, comparing to the other. These reductions can be seen in

the ]20;30], from 3 to 1 corrections and a significantly higher reduction in the ]10;20]

interval, from 10 to 2 corrections. Based on these results we can affirm that the

modifications applied to the disparity algorithm proved to be successful, as the

number of sharper transitions applied in the steering improved and resulted in a

smoother trajectory.
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Figure 6.18: Graphical representation of the number of steering corrections of each al-
gorithm.

To finalize the analysis, time was also taken into consideration. The following are

the results for the different times measured. For that, 10 experiments were done,

timing the duration of each algorithm to complete one lap, while one starting in

a static position and another while the car was already in movement, where the

average time was then obtained. These results also serve to demonstrate the time

loss on the startup of the car. In Figure 6.19, it is displayed the performance of

the algorithms in both cases stated. In the same manner, it can be concluded that

the ”Upgraded Disparity” algorithm possesses the best results, achieving an average

time per lap of 4.7 seconds. When compared to the ”Disparity” Algorithm, which

has an average of 6.27 seconds, it showed an improvement of approximately 1.57

seconds. A general observation of the times achieved by each algorithm, proved that

the high oscillations of the trajectories, proved to have high impact on the duration

for each lap and thus a slight decrease of the duration per lap, can be seen along

the algorithms.
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Figure 6.19: Time comparison of each algorithm on startup and when in movement

As a prof of concept, aside from timetrial results, experiments regarding obstacle

avoidance were carried out using the Disparity Upgraded algorithm. For this spe-

cific scenario, boxes were placed in certain positions, that was thought the car would

not able to dodge. In Figure 6.20, it is possible to visualize the map generated with

Hector Slam in the Oval track, with the obstacles placed in it.

Figure 6.20: Generated map with obstacles in Hector Slam.

Consequently, in Figure 6.21 we can observe the path of one lap taken from the

robot when faced with obstructions. As shown, the robot proceeded to adjust its
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trajectory, avoiding effectively the proposed challenges. Although this may be true,

this result was only possible, by reducing the PWM speed applied to a maximum

of 14. When tested out with the maximum speed set to 18, like in the other tests,

the car did not managed to avoid the obstacles, as it achieved such speed, making it

impossible to apply the necessary corrections on time. With the purpose of accom-

plish obstacle avoidance, the maximum speed was reduced until a stable value was

found and thus the 14 as the utmost PWM value in this algorithm. In addition in

Figure 6.22 we can observe a sequence of images that demonstrate the car avoiding

an obstacle.

Figure 6.21: Obstacle avoidance trajectory of one Lap using the Disparity Upgraded al-
gorithm.

Figure 6.22: Demonstration of the racecar avoiding an obstacle in real life.

6.3 Concluding Remarks

In this chapter, we exposed the practical results that were obtained throughout

the development of a robotic testbed for autonomous driving, demonstrating the

outcome of the algorithms implemented.
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A reflection upon the map generation and localization procedures were outlined,

proving the possibility to acquire such data, whilst using a limited number of sensors.

From the obtained results, we could conclude that the sensor fusion failed to provide

useful data, for long periods of time. On the contrary, both SLAM and AMCL show

that their pose estimation provided precise approximations to real life measurements.

Although, the first could not function as a permanent localization for racing scen-

arios, as the car tends to lose its position when driving at high speeds. The AMCL,

given the sensor inputs, proved to have a very successful implementation, only oscil-

lating the values once in a while. Notably, in the acquisition of other sensors, as an

example wheel encoders, we could improve the potential to attain greater and more

accurate results, particularly in a localization aspect.

The performance of each implemented algorithm, previously described in Chapter

5, was obtained, taking into consideration the trajectory, time and steering angle

corrections as evaluation parameters. To demonstrate it, coordinates from the car

in a static map, were acquired using the Adaptive Monte-Carlo Localization, that

when linked together, produced a perceivable path. On the other hand, time was

measured manually, recording the duration of each lap. Observing the results, we

came to the conclusion that a simpler and robust approach, from both Disparity

algorithms, proved to dominate the methods that relied on PID controllers, by a

wide margin. From the correction point of, it was proven that the PID algorithms

applied much sharper transitions, explaining this way the trajectory attained from

the other controls. In the end, the experiments proved to be important, since it

has given the perspective on the difficulties that can be encountered, when apply-

ing control algorithms, in particular on PID approaches, where the probability to

manually reach the optimal values are close to none.

In addition, the Disparity Upgraded algorithm was put to test, in track with

random obstacles. The results showed that by slightly restraining the maximum

speed, the car could avoid collision with obstacles, while achieving significantly good

results in terms of time and trajectory.

To conclude, although one can affirm, and correctly, that a platform just like

this, still has space for improvements, like adding more sensors, we can affirm that

good baseline platform was reached, meaning this testbed is ready to support many

diverse applications. For example, this testbed is already taking part on another

research application, that is a robotic platooning testbed. In Figure 6.23, it is shown

the end result of the robotic platform achieved in this thesis.
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Figure 6.23: Implemented robotic platform.
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7
Conclusions and Future Work

This thesis addressed the comparison of different algorithms for autonomous driving

in a racing environment, as well as developing a robotic testbed for it, based on

the Robot Operative System, ROS. In this context, although exploring different

approaches, we followed the implementation provided by the F1 Tenth developers,

also based on the MIT Racecar. With the robot assembled, we were able to study

different approaches concerning sensing, planning and control when facing a closed

lopped racetrack, while coming in contact with ROS and its various work tools and

packages.

Relying on the Lidar and IMU as the sources of information to be processed, we

were able to produce a perceivable static map, using the Hector Mapping tool, that

later was used to achieve the robot localization in a two dimensional frame. For that

a fusion of the odometry was required, to consequently be used by the Adaptive

Monte-Carlo Localization, that enabled a position estimation of the autonomous

vehicle in the given map. Although we achieved localization with these two sensors,

we do believe it wasn’t enough, as in certain situations, they failed to provide a

precise estimation of position. Like previously stated, by adding more and preciser

sensors, specially a wheel encoders, we expect to attain the precision we desire. That

being said, we could conclude that localization achieved fulfilled our needs, enabling

to acquire the position with enough precision, the demonstrate our results.

With our experimental work, we concluded that Upgraded version of the Dispar-

ity algorithm offered the best solution, by a large margin compared to the remaining
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algorithms. The implementations that relied on a PID controller, on one hand proved

to offer an inadequate and unreliable control, under performing in comparison to

the Disparities algorithms. On the other hand, the endless search for the optimal

PID constants, proved to consume much time, as they had to be manually tuned

and tested, until acceptable parameters were found. Although we failed to reach

such good results with the algorithms that relied on PIDs, we feel that if the track

was wider, the controller would have more time to effectively respond. From this

perspective, by taking extra tune into the constants and adjusting some parameters,

like the speed, we assume that the results would improve, in comparison to the ones

reached up until this point.

Summarizing, we confirmed, out of the algorithms examined, that the modific-

ations applied in the original disparity algorithm, evidenced a major improvement,

being considered the best algorithm to rely on a racing competition, out of the ones

evaluated. To emphasize, this controller besides dominating a time-trial race, it pos-

sesses the capability of going head-to-head against a challenger, since it was proven

it can dodge obstacles while driving at high speeds. To conclude, we can affirm that

we have positively tuned into an autonomous racing competition .

Regarding future works, besides improving the algorithm in both speed and steer-

ing control, we aim on developing and implementing new controllers, for instance a

Model Predictive Controller,MPC, pursuing the optimal algorithm for autonomous

racing. To achieve this results, we believe that upgrading the robots odometry, by

adding more sensors, we could effectively attain more accurate localization and thus

explore alternative navigation approaches.
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[18] J. V. Brummelen, M. OâBrien, D. Gruyer, and H. Najjaran, “Autonomous
vehicle perception: The technology of today and tomorrow,” Transportation
Research Part C: Emerging Technologies 89, 384 – 406 (2018).

[19] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents) (The MIT Press, 2005).

[20] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous Localization and
Mapping: A Survey of Current Trends in Autonomous Driving,” IEEE Trans-
actions on Intelligent Vehicles 2, 194–220 (2017).

[21] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouza-
kitis, “A Survey of the State-of-the-Art Localization Techniques and Their
Potentials for Autonomous Vehicle Applications,” IEEE Internet of Things
Journal 5, 829–846 (2018).
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