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Abstract: Text information extraction is an important natural language processing (NLP) task, which
aims to automatically identify, extract, and represent information from text. In this context, event
extraction plays a relevant role, allowing actions, agents, objects, places, and time periods to be
identified and represented. The extracted information can be represented by specialized ontologies,
supporting knowledge-based reasoning and inference processes. In this work, we will describe,
in detail, our proposal for event extraction from Portuguese documents. The proposed approach is
based on a pipeline of specialized natural language processing tools; namely, a part-of-speech tagger,
a named entities recognizer, a dependency parser, semantic role labeling, and a knowledge extraction
module. The architecture is language-independent, but its modules are language-dependent and
can be built using adequate AI (i.e., rule-based or machine learning) methodologies. The developed
system was evaluated with a corpus of Portuguese texts and the obtained results are presented and
analysed. The current limitations and future work are discussed in detail.

Keywords: natural language processing; information extraction; text mining; events; ontologies
population

1. Introduction

Text information extraction is an important natural language processing (NLP) task, aimed at
automatically identifying, extracting, and representing information from text. Event extraction is
an important and relevant sub-task in the NLP domain [1]. The conventional view of events is
that, given a sentence, events denote an activity or a state of action. In the context of this work,
the general assumption made is that the event structure is associated with the sentence predicates and
their arguments. The argument structure is given by a set of arguments of the verb; namely, actors,
objects, places, and time. The extracted information can be represented by specialized ontologies [2],
supporting knowledge-based reasoning and inference processes. This topic has gained relevance with
the exponential growth of social networks and the need to automatically identify and extract referred
events [3,4]. In this paper, we will focus on the research about events, focusing on two questions: What
are the primitive elements of events and how can they be automatically extracted?

On the other hand, for the Portuguese language, which is the sixth largest language in terms
of number of native speakers and the fifth largest language in terms of number of internet users
(Ethnologue: Languages of the World, 2019.), a set of computational processing tools have already been
developed (see, for instance, the proceedings of the Computational Processing of the Portuguese
Language (PROPOR) [5] however, the Portuguese language lacks an integrated architecture
which allows the complete processing of Portuguese documents from text to the knowledge base
population [6].
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In this work, we will present and describe a proposal for event extraction from Portuguese
texts, based on a pipeline of specialized natural language processing tools; namely, a part-of-speech
tagger, a named entities recognizer, a dependency parser, semantic role labeling, and a knowledge
extraction module. This architecture was designed to be language-independent but its modules are
language-dependent, in the sense that they depend on specialized rules or that their models need to be
created using machine learning approaches, requiring previously annotated Portuguese corpora.

The proposed system was evaluated with two Portuguese corpora, one being the publicly available
corpus of PropBank [7], and the obtained results are presented and discussed. Due to the complexity
of the task, there still exist many limitations and problems that need to be solved, but we believe
this architecture can play an important tool in this domain and, in particular, in the context of the
computational processing of the Portuguese Language. Moreover, this work is strongly related to the
participation of the authors in the Portugal2020 Agatha project [8]. Basically, the aim of this project is to
intelligently analyze open-source information for surveillance/crime control, following in the footsteps
of similar open source information analysis, where author profiling [9], aggression identification [10]
and hate-speech detection [11] over social media, as well as statute law retrieval and entailment for
Japanese statutes [12] have already been done.

The remainder of this paper is organized as follows: In Section 2, we present an overview of the
related work. Section 3 describes our proposed architecture and Section 4 presents the Portuguese
modules for its computational processing. Finally, Section 5 evaluates the proposal, Section 6 discusses
different design options, and, in Section 7, we provide our conclusions, together with some pointers
for future work.

2. Related Work

Event detection from unstructured data, such as those obtained from the news wire, discussion
forums, or social networks, is a challenging task. This statement can be supported, for instance,
by inspecting the results of international contests like the Event Detection (Co-reference and
Sequencing) track of the Text Analysis Conference [13].

From a broad point of view, we consider three main approaches for event extraction:

• Data-driven techniques which convert data into knowledge by means of statistics, machine
learning, and so on;

• expert knowledge-driven methods which derive knowledge by resorting to experts, using,
for instance, pattern-based approaches; and

• hybrid approaches, which combine the aforementioned approaches.

For an in-depth comparison between these approaches, see, for instance, [1] and, for an overview
more focused on the Portuguese language, please refer to [6].

Collovini et al. [14] described a proposal for relation extraction in the Portuguese language using
Conditional Random Fields (CRF), where they were able to obtain an f-measure of 0.45 for complete
relation matching. In another work, Bonamigo et. al [15] proposed the use of pattern rules to identify
relations between entities, but their approach is not easy to generalize and it was not able to deal well
with the complexity and diversity of the language.

On the other hand, previous work done in the area of event extraction is mainly application-
specific. For instance, Automatic Content Extraction (ACE) is a tool that extracts entities, relations, and
events, but it is noteworthy that ACE takes input in the sgml format, which restricts user input [16].

Yuan et al. [17] proposed an event-based approach to visualize documents as a graph on
different conceptual granularities. In [18], the authors treated events as undeniably temporal entities.
In comparison to ACE, the event extraction task was done in modules, each of which was handled by
a machine-learned classifier. The results of this approach [18] were better than those obtained by ACE,
but the methodology was still domain-specific.
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Halpin et al. [19] proposed the extraction of events for story-rewriting. In [20], domain ontology
was used as a method for extracting events. However, updating the domain ontology with new terms
is crucial when dealing with contemporary dynamic data.

Recently, several works have been published on information extraction from social media;
in particular, using tweets from the Twitter network. Sakaki et al. [21] described a method to detect
earthquake-related tweets. This method used features specific to earthquakes. Benson et al. [22]
trained a relation extractor to identify artists and venues from tweets. This method was designed
to develop a graphical model by learning records and record-message alignments. Ritter et al. [23]
described a method, based on latent variable modeling, to extract the event types described in tweets,
where features, such as tweet popularity and the times of events referred to in the tweets, were used.
Zhao et al. [24] described a method to extract only the most “topical” keywords from tweets. In [25],
the authors resorted to un-supervised methods to extract real-world events from Twitter data streams.
Amato et al. [3,4] proposed the use of a hypergraph-based approach to exploit influence analysis
methodologies and to identify the most important entities in social media networks.

Similar approaches have also been applied to mining relevant information from non-text sources.
For instance, Zong et al. [26] described approximation algorithms to identify critical alerts from a large
set of alert sequences.

Our approach differs from the above-mentioned methods, as it is a complete pipeline of specialized
modules for the Portuguese language which receives general-purpose sentences, where the output
populates an event ontology.

3. Proposed Architecture

The proposed system is described in Figure 1, which illustrates how relevant pieces of information
are extracted from the text. Input files (Portuguese texts) pass through a series of modules: Language
detection, part-of-speech tagging, named entity recognition, dependency parsing, semantic role
labeling, subject–verb–object triple extraction, and lexicon matching.

The main goal of all the modules (except for lexicon matching) is to identify the events in the text.
These events are, then, used to populate an ontology. The lexicon matching module, on the other hand,
was created to generate a soft alignment between the words that are found in the text and words that
are found in Eurovoc [27].

Where available, we used the Freeling framework [28] for the pipeline of event extraction. It was
necessary, however, to create specific modules or to train existing ones for dependency parsing,
semantic role labeling, and subject–verb–object extraction. Table 1 shows an example of the output
of each module for the following sample sentence ’Thiago roubou o Banco Espirito Santo ontem em
Lisboa.’ (i.e., ’Thiago robbed the Bank of the Holy Spirit yesterday in Lisbon.’) We will be referring to
this table later, when we discuss each module.

Table 1. Sample output for the different modules.

ID Form Lemma Postag Cpostag Ner Head Dprel Srl

1 Thiago thiago NP00000 NP B-PER 2 nsubj A0
2 roubou roubar VMIS3S0 VMI - 0 root -
3 o o DA0MS0 DA - 4 det -

4
Banco

_Espirito_Santo banco_espirito_santo NP00000 NP B-ORG 2 dobj A1

5 ontem ontem RG RG - 2 advmod AM-TMP
6 em em SP SP - 7 case -
7 Lisboa lisboa NP00000 NP00000 B-LOC 2 nmod AM-LOC
8 . . Fp Fp - 2 punct -
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Figure 1. System Overview.

4. Computational Processing of Portuguese Modules

As in the previous section, suppose we have the sample sentence ’Thiago roubou o Banco
Espirito Santo ontem em Lisboa.’ (i.e., ’Thiago robbed the Bank of the Holy Spirit yesterday in
Lisbon.’). This sentence will pass through the seven main modules of the proposed system: language
detection, part-of-speech tagging, named entity recognition, dependency parsing, semantic role
labeling, subject–verb–object triple extraction, and lexicon matching. Some of these modules involve
others, these are detailed in the subsequent sub-sections.

4.1. Language Detection

Language detection is the first text-processing module. We used the Polyglot [29] library to detect
the text language, which depends on the Compact Language Detector 2 (CLD2 [30]) which uses a
Naïve Bayesian classifier. This step serves, mainly, as an initial check, so that the text that is further
processed will only be Portuguese and not belong to another language.

4.2. Part-of-Speech Tagging

Part-of-speech (POS) tagging happens after the language detection. Basically, it marks the words
in the sentence to their corresponding parts of speech, be it noun, verb, adjective, or otherwise. We used
the Freeling [28] library to do the POS tagging. We (currently) use the default setting, which uses a
Hidden Markov Model, as described by Brants in [31].

The sample sentence ’Thiago roubou o Banco Espirito Santo ontem em Lisboa.’ (i.e., ’Thiago
robbed the Bank of the Holy Spirit yesterday in Lisbon.’) has the parts-of-speech shown in Table 1,
indicated in the fourth and fifth column. The fifth column is more coarse-grained, while the fourth
column also encodes language-specific properties. For instance, the verb roubou is associated with
VMIS3S0, which indicates that it is a main verb in the past tense for the third person singular and the
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indicative mood. The coarse-grained tag (i.e., VMI) simply indicates that it is the main verb for the
indicative mood.

4.3. Named Entity Recognition

After part-of-speech tagging, the named entity recognition module is executed. This module
is used to identify which words in the sentence are named entities. Examples of these are names of
people, organizations, and locations. We also used Freeling to extract these three named entity types.
We extracted date, time, and currency, as well. Details of the algorithm are shown by Carreras et al.
in [32]. Looking at the example shown in Table 1, the column with “ner” indicates if the word is part
of a named entity. In this case, Thiago is indicated as “B-PER” (for person), Lisboa is indicated as
“B-LOC” (for location), and Banco Espirito Santo is indicated as “B-ORG” (for organization).

4.4. Dependency Parsing

Dependency parsing involves tagging a word, based on different features, to indicate if it is
dependent on another word. We had to train a different Portuguese dependency parsing model for
Freeling, even though the software already had an available model. The new model was needed
because we wanted to build a semantic role-labeling module on top of the dependency parser and as
the available annotated corpus had different tags. Moreover, the present version of Freeling does not
have an SRL (Semantic Role Labeling) module for Portuguese.

We used the data set from System-T [33], which has SRL (Semantic Role Labeling) tags, as well
as the other preceding tags. It was necessary to do some pre-processing and tag mapping, so that it
was viable to use for training a Portuguese model. Table 2 shows the conversion of the tags of one
word. The coarse-grained POS tags (cpos) were the same as the POS tags obtained by the previous
module. We converted each POS tags to its EAGLES [34] tag set form. We did this by inferring from the
morphological features column. We also converted the contracted form to an explicit form. In this case,
“Ind” was turned to “indicative”, “Sing” to “singular”, and so on. These conversions are presented in
Table 2.

Table 2. Sample of tag mapping.

Form Cpos Pos Morphological Features

before ficou VERB VERB Mood=Ind|Number=Sing|Person=3|
Tense=Past|VerbForm=Fin

after ficou VMI VMIS3S0 pos=verb|type=main|mood=indicative|
tense=past|person=3|num=singular

In total, we had to make 589 tag conversions over 14 different categories. The breakdown of
tag conversions per category is given by Table 3. These rules can be further seen on this specific
Github page [35]. The modified training and development data sets are also available on the Github
repository [36], for further research and comparison purposes.

Going back to our example in Table 1, the outputs of the dependency parser are indicated with
columns “head” and “dprel”. Head indicates the dependency of each word. For example, the 2nd
word ’roubou’ has a dependency of 0, since it is regarded as the main verb and, hence, the root. Other
words like ’Thiago’, ’Banco Espirito Santo’, ’ontem’, and ’Lisboa’ all had a dependency of 2, which
indicate that they are dependent on ’roubou’. The column dprel indicates the relations. For instance
’Thiago’ is the subject, as indicated by “nsubj”; ’o’ is the determiner “the” indicated by “det”; and
’Banco Espirito Santo’ is the object “Bank of the Holy Spirit” to the determiner “the”.
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Table 3. Training and development: Tag set details.

Category Number of Tags

NOUN 20
VERB 101

PROPN 39
PRON 121

ADJ 70
DET 62
AUX 149
ADP 3
NUM 1

PUNCT 18
CCONJ 1
SCONJ 1

INTJ 1
ADV 2

4.5. Semantic Role Labeling

After inferring the dependencies, we execute the SRL (Semantic Role Labeling) module. This
module, essentially, tags words with A0, A1, AM-TMP, or AM-LOC which indicates if the word is an
actor, an object, a time, or a location, respectively. They also indicate which verbs are associated with
which event and the corresponding actors, objects, and so on. We trained a model for this module on
top of the dependency parser described earlier using the modified data set from System-T. The module
also needed co-reference resolution to work and, in order to achieve this, we adapted the Spanish
co-reference modules for Portuguese, changing words that were equivalent, such as fazer, ser, estar,
and haver. In total, there were 253 different words that were changed. The performance of the semantic
role labeling module over the development set is shown in the results, in Section 5.

In our example, the output for semantic role labeling are given in the column “srl” in Table 1.
We can see that Thiago is indicated by A0 (for actor), Banco Espirito Santo is indicated by A1 (for object),
ontem is indicated by AM-TMP (for time), and, finally, Lisboa is indicated by AM-LOC (for location).

4.6. Subject–Verb–Object Extraction

From the output of the SRL (Semantic Role Labeling) module, our system was able to identify
actors, actions, places, times, and other objects in the processed sentences. Using this information,
we identified subject–verb–object (SVO) triples, which constitute the basis of events. The SVO
extraction process [37] is described in Algorithm 1. In the algorithm, Predicate stands for the verb of
the sentence and the associated arguments are actor, object, time, and place, and Argument.role() is
the function which returns the “srl” tags (discussed in Section 4.5) for the sentence. After the extraction
of SVOs from the text, they are inserted into a specific event ontology (see Section 4.7) for the creation
of a knowledge base.
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Algorithm 1 SVO Extraction Algorithm

1: procedure SVO(sentence)
2: SVO← []
3: for each Predicate in sentence do
4: Event← Predicate
5: for each Argument associated with Event do
6: switch Argument.role() do . Argument.role() returns SRL tagging
7: case A0
8: Actor← Argument

9: case A1
10: Object← Argument

11: case AM-LOC
12: Location← Argument

13: case AM-TMP
14: Time← Argument

15: end for
16: SVO.append(Event, Actor, Object, Location, Time)
17: end for
18: return SVO
19: end procedure

4.7. Ontology: Knowledge Base

According to [38], an ontology can be understood as an intentional semantic structure which
encodes the implicit rules constraining the structure of a piece of reality. Ontologies are, thus, aimed at
answering the question “What kind of objects exist in one domain of the real world and how are they
inter-related?”. An ontology, thus, describes the logical structure of a domain, its concepts, and the
relations between them.

To design an ontology adequate for our goals, the Simple Event Model (SEM) [39] ontology was
referred to as a baseline model. Taking into account the goals of our work and in order to simplify it,
we made some changes to the SEM ontology; the entities of the model are listed below.

1. Actor: Person involved with the event.
2. Place: Location of the event.
3. Time: Time of the event.
4. Object: That which the actor acts upon.
5. Organization: Organization involved with the event.
6. Currency: Money involved with the event.

The proposed ontology was designed in such a manner that it can incorporate information
extracted from multiple documents.

In order to better evaluate our approach, we decided to implement a case study for the legal
domain. In this context, suppose the the source of documents is a police department, where each
document is part of a particular case/crime. Furthermore, a single case can have documents from
multiple languages. Now, if Case 1 has 100 documents and Case 2 has 100 documents, then there is
not only a connection among the documents of a single case but, rather, among all the cases within
the combined 200 documents. In this way, the proposed method is able to produce a detailed and
well-connected knowledge base. Furthermore, we are also working on the extension of the ontology to
connect the extracted terms with Eurovoc criminal law (discussed in Section 4.8) and IATE (Interactive
Terminology for Europe) terms. Here, IATE [40] is the general terminology database of the EU. The aim
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of IATE is to provide a web-based infrastructure for all EU terminology resources, enhancing the
availability and standardization of information.

Figure 2 shows the proposed ontology, which, in our evaluation procedure, was populated with
3121 event entries from 51 documents (from Data set 2, which is further explained in Section 5).
The Protege [41] tool was used for the ontology creation and GraphDB [42] was used for populating
and querying the data.

Figure 2. Ontology Diagram.

4.8. Lexicon Matching

The goal of this module is to find words in the input files that may be linked to important terms
and/or concepts. The terms we used are part of Eurovoc: [27], a multilingual thesaurus developed
for and by the European Union. This thesaurus has 21 fields and each field is further divided into a
variable number of micro-thesauri. Due to application of this work in the Agatha project (mentioned
in Section 1), we narrowed the terms to the one of micro-thesauri for criminal law [43], part of the law
field. Finally, one interesting feature of Eurovoc is that its terms are also tagged for inter-relation to
other terms, if there is some connection.

The 204 terms of criminal law micro-thesauri were manually annotated with actor, event, place,
and object tags, whenever that could be the case. Table 4 shows the distribution of terms between
events, actors, places, and objects. With the help of this annotation, we can find possible relations
between the extracted actors, events, places, and objects and Eurovoc criminal law terms.

Table 4. Eurovoc criminal law term classification.

Classification Number of Terms

Actor 9
Event 133
Place 22

Object 3

We implemented two ways to find matches between the words in the input and the terms and
concepts in Eurovoc. The first was an exact string match, wherein lower-case equivalents of the words
of the input sentences were matched exactly with lower-case equivalents of the pre-defined terms.
The second matches by using Levenshtein distance [44]. This allowed some near-matches that were
close enough to the target term.
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Going back to the example ’Thiago roubou o Banco Espirito Santo ontem em Lisboa.’, each word
will be compared to a list. An exact match would be banco, which can also be found in Eurovoc. It is
also associated with terminologies related to fraud. Due to the manual annotations, the term can also
be associated with a place.

5. Results

Regarding the evaluation of our system, we will only present the results obtained with the new
modules and with the overall performance of the system (i.e., we do not evaluate NLP modules which
are already existent and have been previously evaluated).

The dependency parser was trained over a development set [45] and evaluated over a validation
set [46]. The resulting accuracy, for 50 iterations, is given in Figure 3. The peak accuracy is at the 9th
iteration, at about 94.72%.

Semantic Role Labeling was also evaluated on the validation set. This is shown in Figure 4.
The highest F1 measure was observed at the 34th iteration, with a value of 71.06%.

The accuracy of extracting the SVO by the proposed model was evaluated over two different
data sets.

1. Data set 1: The Propbank-Br v.1.1 Corpus [47] is a Brazilian Portuguese corpus, annotated in conll
format, with Verb (event), A0 (subject), A1 (object), Place (location), and Time. Table 5 details the
properties of this data set.

Table 5. Properties of Data set 1.

Properties Details

Sentence 3348
Word 69,234
Verb 5931

Subject (A0) 2829
Object (A1) 5269

2. Data set 2: This was created by the consortium of the project Agatha, using 51 documents
from several online sources, aiming to illustrate and evaluate the performance of the developed
modules. This data set was manually verified by a research team of the Portuguese Department
of the University of Macau, lead by Professor Ana Leal and with the help of three MSc students.
In their work, they focused on the accuracy and precision of the system and did not evaluate
recall. Table 6 details the properties of the extracted system.

Table 6. Properties of Data set 2.

Properties Details

Sentence 941
Word 30,028

Extracted Verb 3773

The results of Data set 1 were compared with the existing tool LinguaKit [48]. LinguaKit is a
Natural Language Processing tool containing several NLP modules, such as a POS Tagger, Named
Entity Recognition, a Dependency Parser, Semantic Role Labeling, and Co-reference Resolution of
Named Entities. Currently, LinguaKit supports four different languages; namely, English, Galician,
Portuguese, and Spanish. The Semantic Role Labeling module is not publicly available, at present,
on the Linguakit toolkit GitHub page. For comparison purposes, the developers of Linguakit sent us a
prototype of the Role Labeling module, based on written rules.
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Figure 3. Accuracy of dependency parsing on the validation set.
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Figure 4. Precision, recall, and F1 measure of semantic role labeling on the validation set.

Table 7 details the proposed system and the Linguakit-extracted properties, respectively, using
Data set 1.

Table 7. Data set 1: Proposed system versus Linguakit-extracted properties.

Extracted Properties Proposed System Linguakit

Verb 7767 6159
Subject (A0) 3605 2259
Object (A1) 5645 6018

Tables 8 and 9, respectively, show the proposed system evaluation and Linguakit evaluation on
Data set 1.
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Table 8. Proposed system evaluation on Data set 1.

System Verb Subject (A0) Object (A1)

Propbank 5931 2829 5269
Match/True Positive 5378 2151 3254

Missing/False Negative 551 678 2015
Extra/False Positive 2389 1454 2391

Table 9. Linguakit evaluation on Data set 1.

System Verb Subject (A0) Object (A1)

Propbank 5931 2829 5269
Match/True Positive 3457 1449 3172

Missing/False Negative 2474 1380 2097
Extra/False Positive 2702 810 2846

Tables 10 and 11, respectively, detail the performance of the proposed system and Linguakit on
Data set 1.

Table 10. Performance of proposed system on Data set 1.

System Verb Subject (A0) Object (A1)

Precision 0.6924 0.5966 0.5764
Recall 0.9070 0.7603 0.6175

F1 Score 0.7853 0.6685 0.5962

Table 11. Performance of Linguakit on Data set 1.

System Verb Subject (A0) Object (A1)

Precision 0.5612 0.6414 0.5270
Recall 0.5828 0.5121 0.6020

F1 Score 0.5717 0.5695 0.5620

A comparison of F1 score performance between the proposed system and Linguakit on Data set 1
is shown in Table 12.

Table 12. Comparison of F1 score between the proposed system and Linguakit on Data set 1.

System Verb Subject (A0) Object (A1)

Proposed System 0.7853 0.6685 0.5962
Linguakit 0.5717 0.5695 0.5620

The proposed system, with an F1 score of 0.7853 for verb/event detection, out-performed the
existing LinguaKit NLP processing tool by quite a good margin (0.2136). Moreover, our stated
approach used deep learning methods and trained over the data set, whereas LinguaKit is a rule-based
“srl labeling” tool. From the results shown in Table 12, we can clearly state that our proposed system
out-performed the existing LinguaKit NLP processing tool.

Finally, Table 13 shows the system evaluation and performance over Data set 2. Note that,
as referred to before, false negative verbs for this data set were not evaluated.
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Table 13. System evaluation and performance over Data set 2.

System Verb

Match/True Positive 3121
Extra/False Positive 553

Precision 0.8494

6. Discussion

During the design of our system, we explored other modules/systems, faced various options,
and made several decisions. One of the key points in the design process was the fact that we wanted
to have a more dynamic approach, one which does not rely on hand-made rules. The main motivation
for this was that it would be easier to apply the same approach to other languages, using different data
sets for training.

Although there are a wide range of NLP systems which include most, or even all, of the steps of
our proposed pipeline, the majority of them lack support for the Portuguese language. Nevertheless,
we carried out some experiments with systems such as Rembrandt [49] or LinguaKit; the former only
had the initial steps of our proposal (i.e., up until NER) and the latter performed worse than our
system, as described in Section 5.

The framework developed within the Agatha project (as described in Section 1) resorts to our
system for all processing that includes textual data. In this context, we tested our system with a data
set specifically developed by this project and proposed three levels of processing: The first performs all
tasks until named entity recognition; the second computes until subject–verb–object triple extraction;
and the last level executes the pipeline until lexicon matching. All levels insert the corresponding
output into the ontology developed. This way, we provide a scale from speedier (although superficial)
to thorough (and, consequently, slower) language processing.

7. Conclusions and Future Work

As concluding remarks, we would like to summarize the main contributions of this work:

1. An end-to-end pipeline process for event extraction and representation for the Portuguese language.
2. Tag set conversion of Universal Dependencies (UD) for a Portuguese tree-bank data set (discussed

in Section 4.4).
3. Development of an integrated dependency parser (with an accuracy of 94.72%) and semantic role

labeling (with an F1 measure of 71.06%) for the Portuguese Language.
4. Creation of an ontology (knowledge base) for the criminal law domain.
5. Association between Eurovoc and IATE terms with the extracted terms.
6. Creation and annotation of a new Portuguese corpus for event analysis (Data set 2, as discussed

in Section 5).
7. Event extraction, with:

• Precisions of 0.6924, 0.5966, and 0.5764; recalls of 0.9070, 0.7603, and 0.6175; and F1 scores
of 0.7853, 0.6685, and 0.5962, for verbs, subjects, and objects, respectively, for PropBank-BR
(Data set 1).

• Precision of 0.8494 for verbs for Data set 2.

The obtained results support our claim that the proposed system can be used as a base tool for
information extraction for the Portuguese language. Being composed of several modules, each of
them with a high level of complexity, it is certain that our approach can be improved and an overall
better performance is achievable. For instance, using Levenshtein distance on a word level is quite a
naïve approach. We plan to explore other methods of checking for similarity, such as those outlined
by Gali et al. [50].
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As future work, we intend to continue to try to improve the individual modules, with a specific
focus on the SRL and event extraction modules. We also plan to extend this work to the automatic
creation of event timelines and to apply the work to open-access texts, such as online news.
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