
Low Power Compressive Sensing for Hyperspectral
Imagery

José M. P. Nascimento
Instituto de Telecomunicações, and

Instituto Superior de Engenharia de Lisboa, IPL
Lisbon, Portugal

zen@isel.pt

Mário Véstias
Instituto Superior de Engenharia de Lisboa, IPL, and

INESC-ID, Lisbon, Portugal
Lisbon, Portugal

mvestias@deetc.isel.pt

Abstract—Hyperspectral imaging instruments allow remote
Earth exploration by measuring hundreds of spectral bands at
very narrow channels of a given spatial area. The resulting
hyperspectral data cube typically comprises several gigabytes.
Such extremely large volumes of data introduces problems in its
transmission to Earth due to limited communication bandwidth.
As a result, the applicability of data compression techniques to
hyperspectral images have received increasing attention.

This paper, presents a study of the power and time consump-
tion of a parallel implementation for a spectral compressive
acquisition method on a Jetson TX2 platform. The conducted
experiments have been performed to demonstrate the applicabil-
ity of these methods for onboard processing. The results show
that by using this low energy consumption GPU and integer
data type is it possible to obtain real-time performance with a
very limited power requirement while maintaining the methods
accuracy.

Index Terms—Hyperspectral imagery, Compressive Sensing,
Embedded Systems

I. INTRODUCTION

Hyperspectral remote sensing extracts information from
objects or scenes lying on the Earth surface, based on their
radiance acquired by airborne or spaceborne sensors. This
information is collected in hundreds of images representing the
radiance collected in each spectral band. These bands offers
very significant potential in the identification of materials
and their properties [1]. This high spectral resolution has
enabled the use of hyperspectral imagery in the fields of
urban and regional planning, water resource management,
environmental monitoring, oil spill and other types of chemical
contamination, and target detection for military and security
purposes [1].

Due to the significantly improved spectral resolution pro-
vided by the latest generation of hyperspectral sensors, hy-
perspectral images are extremely large, introducing the need
for compression methods that can operate on-board [2], [3].
Additionally, for certain applications that demand a real-time
response this compression is of paramount importance since
it reduces the volume of data to be transmitted to the Earth,
optimizing the limited bandwidth available for downlink. Con-
ventional compression schemes are not suited for this purpose

This work was supported in part by the Instituto de Telecomunicações and
in part by the Portuguese Science and Technology Foundation under Project
UID/EEA/50008/2019.

since it first acquire the full data set and then implement some
compressing technique [4].

Recently, hyperspectral compressive sensing (CS) has re-
ceived considerable interest, both in terms of hardware and
signal processing algorithms [5]–[8]. These algorithms are
able to reconstruct the original hyperspectral image from a
low number of random projections in the spectral domain.
This is only possible if the spectral vectors live in a low
dimensional subspace, which is a very good approximation in
most hyperspectral images (HSIs) of the real world, namely
when the observed spectral vectors are well approximated
by linear mixing model (LMM) [1], [9]. In this way, CS
algorithms are able to reconstruct the original hyperspectral
image with a number of measurements per pixel in the order
of the size of this subspace, which typically is much lower
than the number of bands of the sensor [10].

The possibility of real-time, onboard data compression
is a highly desirable feature to overcome the problem of
transmitting a sheer volume of high-dimensional data to Earth
control stations via downlink connections [11]. Usually com-
pression algorithms comes with higher computational com-
plexity. Moreover, these algorithms are usually implemented
in standard PCs which cannot be easily employed for onboard
processing due to its weight, heat dissipation and energy
consumption issues. To alleviate the computational burden it
is desirable to implement such methods in parallel. Recently,
graphics computing units (GPUs) has become a topic of
considerable interest due to their extremely high floating-point
processing performance, huge memory bandwidth and their
comparatively low cost. There are a few methods that have
been implemented on this platforms [12], [13]. In particular,
GPUs may be suitable in the future for real-time onboard
processing due to their portability, although the current energy
consumption of these devices still makes them not totally
appealing for spacebased Earth observation missions from
satellites (the high energy consumption affects mission pay-
load) [11].

Over the last years, the advances in semiconductor industry
and the huge interest on developing mobile devices have
allowed companies such as Nvidia to develop low power GPUs
like the Jetson TX2, which is a low energy consumption
GPUs, that nevertheless, can achieve high throughput in image



processing applications at the same time.
This paper explores the possibility to use these low power

GPUs to perform the Hyperspectral CS process as an alterna-
tive to traditional compression and dimensionality reduction
algorithms performed on common GPU boards. In section II,
a CS method called Hyperspectral Coded Aperture method
(HYCA) is summarized, which have been chosen in this
work as CS algorithm to demonstrate the performance of
such methods on low power hardware. In section III, a brief
description of the GPU architecture and the main features
of the Jetson TX2 hardware used on the experiments is
provided. In section IV, a set of experiments are conducted
to demonstrate the effectiveness of this hardware, performing
the random projections in real-time. Finally, section V presents
some conclusions and future lines of work.

II. COMPRESSIVE SENSING METHOD

In this section a CS method named Hyperspectral Coded
Aperture (HYCA) [5] is briefly described. This approach
compresses the data on the acquisition process, then the
compressed signal is sent to Earth and stored in compressed
form. Later the original signal can be recovered by taking
advantage of the fact that the hyperspectral data can be
explained using a reduced set of spectral endmembers due
to the mixing phenomenon [10] and also exploits the high
spatial correlation of the fractional abundances associated to
the spectral endmembers. This method for its characteristics
is well suited to be developed in a parallel fashion [12].

Let x ∈ Rnb×np represent, in vector format, a hyperspectral
image with nb spectral bands and np := nr × nc pixels
where nr and nc denote, respectively, the number of rows
and columns of the hyperspectral image in the spatial domain.
The ordering of x correspond to all image pixels for each
spectral band. In order to perform the compression of the
original signal x, and as in [5], for each pixel i ∈ {1, . . . , np},
a set of q inner products between xi and samples of i.i.d.
Gaussian random vectors is performed. The total number of
measurements is therefore qnp yielding an undersampling
factor of q/nb. This measurement operation can be represented
as a matrix multiplication y = Ax, where A is a block
diagonal matrix containing the matrices Ai ∈ Rq×nb acting on
the pixel xi, for i ∈ {1, . . . , np}. Since the image can be very
large, measurement strategy splits the dataset into different
windows of size m = ws × ws and then repeat the matrices
Ai used in each window, thus requiring to store in memory
just m different Ai matrices.

Let us now define the linear operator x = (I ⊗ E)z,
where the matrix E represents the basis of the subspace
where the data lives [10], I is the identity matrix, and the
vector z contains the coefficients. In this work, the E matrix
contains the p endmembers of the data set by columns obtained
in a very fast way through the vertex component analysis
(VCA) algorithm [9], thus z contains the fractional abundances
associated to each pixel.

Let us now assume that K = H(I⊗E). If matrices E
and H are available, one can formulate the estimation of z

with from q-dimensional vector of measurements. Since the
fractional abundances in hyperspectral images exhibit a high
spatial correlation, we exploit this feature for estimating z
using the following optimization problem:

min
z≥0

(1/2)‖y −Kz‖2 + λTV TV(z). (1)

Therefore, the minimization (1) aims at finding a solution
which is a compromise between the fidelity to the measured
data, enforced by the quadratic term (1/2)‖y−Kz‖2, and the
properties enforced by the TV regularizer, that is piecewise
smooth image of abundances. The relative weight between
the two characteristics of the solution is set the regularization
paremeter λTV > 0.

To solve the convex optimization problem in Eq. (1), a set of
new variables per term of the objective function were used and
the ADMM methodology [14] has been adopted to decompose
very hard problems into a cyclic sequence of simpler problems
(see work [5] for more details).

III. GPU ARQUITECTURE

In recent years, graphics processing units (GPUs) have
evolved into highly parallel and programmable systems [12].
Specifically, several hyperspectral imaging algorithms have
shown to be able to benefit from this hardware taking advan-
tage of the extremely high floating-point processing perfor-
mance, compact size, huge memory bandwidth, and relatively
low cost of these units, which make them appealing for
onboard data processing, specially for CS applications, due to
the fact that the random projection process typically involves
Matrix-Vector products which are a perfect match for the GPU
architecture [12]. However, one of the main problems for
the use of this hardware onboard is the high power and en-
ergy consumption that they require. Remote sensing missions
frequently perform the bulk of data processing and storage
onboard of airborne devices and satellites, which may impose
severe constraints on the power and energy consumption (e.g.,
due to battery life time or electricity being produced by the
attached solar panels). The combination of the high dimen-
sionality of hyperspectral images, very demanding processing
methods and energy restrictions justifies the exploration of
high-performance yet low-power technologies together with
energy-aware novel computational algorithms that can produce
a response in real time or near real time while minimizing the
energy usage.

In this work, the parallel development of the coder side
of HYCA method on a low consumption GPU such as the
Jetson TX2 is explored. The TX2 employs an SOC (system-
on-chip) design that incorporates a quad-core 2.0-GHz 64-
bit ARMv8 A57 processor, a dual-core 2.0-GHz superscalar
ARMv8 Denver processor, and an integrated Pascal GPU.
There are two 2-MB L2 caches, one shared by the four A57
cores and one shared by the two Denver cores. The GPU has
two streaming multiprocessors (SMs), each providing 128 1.3-
GHz cores that share a 512-KB L2 cache. The six CPU cores
and integrated GPU share 8 GB of 1.866-GHz DRAM memory



Fig. 1. Processing times in seconds for the Jetson TX2 hardware for different
measurement ratios using different data types: float64, float32, and int16.

[15]. The Jetson TX2 typically draws between 7.5 and 15 watts
with a voltage input of 5.5V-19.6V DC and requires minimal
cooling and additional space.

CUDA architecture has been used for implementing the
parallel HYCA (P-HYCA) measurement process. The CUDA
programming model is designed to develop applications which
scales the parallelism in a transparently way, independently
from the number of processors or multiprocessors of the
hardware. In order to do that, CUDA defines the so called
kernels, which are functions to be processed in parallel. For
each kernel, the user structures the parallelism into a grid
of blocks, each one processed by a GPU multiprocessor.
Each block is divided into threads, which are the smallest
processing units in the architecture. The different threads
may synchronize with the other threads of the same block
and communicate with them through the shared memory of
the multiprocessor. However the different blocks of the grid
are executed in parallel with any sort of synchronization.
Specifically in the implementation of P-HYCA each thread
perform the measurement process of one pixel, thus, each
thread performs the operation yi = Ajxi with i ∈ 1 . . . np and
j ∈ 1 . . .m. The number of threads per block is the maximum
allowed by the architecture, which in the case of the Jetson
TX2 is 1024. Due to the fact that many threads in the block
uses the same Aj matrices, these matrices are loaded into
shared memory before processing the dot products, in this way
we reduce the memory accessed required to global memory.

IV. EXPERIMENTAL RESULTS

In this section a series of experiments are conducted in order
to evaluate the performance and power requirements of the
Jetson TX2 on performing the measurement process of the
CS method. Herein, we focus on the coder-side of the method
since it is the one to be performed onboard, while the decoder
side may be performed on the Earth station where plenty of
hardware may be available. Power is measured with a power
meter connected between the energy socket and the board.

The simulated data set used in this experiments was gen-
erated from spectral signatures randomly selected from the

Fig. 2. Average power in Watts (W) for different measurement ratios using
different data types: float64, float32, and int16.

United States Geological Survey (USGS)1. The dataset size is
set to 614 samples times 512 lines and 224 bands, which is
the same size as an AVIRIS sensor image. In order to evaluate
the performance of the hardware with different data types,
three different versions of the same image were generated with
different data types: 64 bits double precision floating point
(float64), 32 bits single precision floating point (float32) and
16 bits short integer (int16), respectively. The int16 version of
the image was generated multiplying the original reflectance
values by 5000 and rounding to the nearest integer. The
matrices Aj were generated following random Gaussian i.i.d.,
three different versions of the matrices with different data
types float32, float16, and int16 were generated. The resulting
measurements generated yi were stored in float32, float16 and
int32 data types, respectively. In the case of the integer data
type it was necessary to store the resulting measurements using
int32 data type in order to avoid overflows in the dot products.

On all the experimental tests of P-HYCA implementation
with different data types, the accuracy is maintained with
negligible deviations, when compared with the image recon-
structed with the same method in a desktop computer with a
GPU GTX 980. Fig. 1 show the execution times in seconds
corresponding to the compression process performed in the
Jetson TX2 for the three different data types considered.
The figure shows that, as expected, the compression process
performs much better when int16 and float32 data types
are used than when using double precision floating point
operations. As a result we may conclude that by using int16
operations it is possible to achieve very similar reconstruction
accuracy while at the same time reducing considerably the
computational cost. Furthermore this figure also shows that
for a measurement ratio of one third the Jetson TX2 performs
compression process in about 1 second in the case of the
integer and single precision floating point and about 2 seconds
in the case of the double precision floating point. Fig. 2 shows
the average power for different measurement rate q/nb and for
the three types of data used in experiments. One can notice that

1http://speclab.cr.usgs.gov



Fig. 3. Processing times in seconds for the Jetson TX2 hardware for different
measurement ratios using different window sizes from 8× 8 to 64× 64.

int16 data type is the one that consume less power, however
for a measurement ratio of one third the power is very similar
among the considered data types.

Finally the performance of the compression process with
regards different window sizes ranging from 8× 8 to 64× 64
was evaluated. For this experiment the int16 data type was
used. In the cases in which the window size is grater than 8×8,
the matrices Aj do not fit in the shared memory, therefore in
those cases the shared memory is not used. Fig. 3 shows the
execution times for different measurement ratios for different
window sizes in different colors. As expected, the execution
time scales with the window size. This is because the higher
the number of matrices Aj the higher the amount of data to
be loaded from the global memory. Furthermore, with higher
window size is less likely that two pixels processed in the
same block use the same Aj matrix, resulting in more cache
memory faults and increasing the execution time due to the
increase of memory accesses. Regarding the average power,
one can see, on Fig. 4, that it is higher for larger window
size, as expected.

V. CONCLUSIONS AND FUTURE LINES

In this paper the use of compressive sensing techniques
for onboard compression using a low energy consumption
GPU Jetson TX2 have been proposed. Conducted experiments
using different data types reveal that the use of integer data
types does not affect the accuracy in the reconstruction of the
compressed data, while at the same time, reduces significantly
the processing time onboard and the power. The presented
times also reveals that real-time processing in the task of
compressing hyperspectral images can be achieved. In future
further research may be done using real hyperspectral data and
comparing the results of the proposed methodology with other
traditional compression schemes.

Fig. 4. Average power in Watts (W) for the Jetson TX2 hardware for different
measurement ratios using different window sizes from 8× 8 to 64× 64.

REFERENCES

[1] J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 99, no. 1-16, 2012.

[2] G. Motta, F. Rizzo, and J. A. Storer, Hyperspectral data compression.
Berlin: Springer, 2006.

[3] B. Huang, Satellite data compression. Berlin: Springer, 2011.
[4] Q. Du and J. E. Fowler, “Hyperspectral image compression using

jpeg2000 and principal component analysis,” IEEE Geoscience and
Remote Sensing Letters, vol. 4, no. 2, pp. 201–205, 2007.

[5] G. Martin, J. M. Bioucas-Dias, and A. Plaza, “Hyca: A new technique for
hyperspectral compressive sensing,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 53, no. 5, pp. 2819–2831, 2014.

[6] J. E. Fowler and Q. Du, “Reconstructions from compressive random pro-
jections of hyperspectral imagery,” in Optical Remote Sensing. Springer,
2011, pp. 31–48.

[7] G. Martı́n and J. M. Bioucas-Dias, “Hyperspectral blind reconstruction
from random spectral projections,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2390–
2399, 2016.

[8] P. V. M. Golbabaee, S. Arberet, “Compressive source separation: Theory
and methods for hyperspectral imaging,” IEEE Transactions on Image
Processing, vol. 22, no. 12, pp. 5096–5110, 2013.

[9] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex Component
Analysis: A Fast Algorithm to Unmix Hyperspectral Data,” IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, 2005.

[10] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace
identification,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp.
2435–2445, 2008.

[11] S. Lopez, T. Vladimirova, C. Gonzalez, J. Resano, D. Mozos, and
A. Plaza, “The promise of reconfigurable computing for hyperspectral
imaging onboard systems: A review and trends,” Proceedings of the
IEEE, vol. 101, no. 3, pp. 698–722, March 2013.

[12] S. Bernabe, G. Martin, J. Nascimento, J. Bioucas-Dias, A. Plaza,
and V. Silva, “Parallel hyperspectral coded aperture for compressive
sensing on gpus,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing,, vol. PP, no. 99, pp. 1–14, 2015.

[13] J. Sevilla, G. Martı́n, J. Nascimento, and J. Bioucas-Dias, “Hyperspectral
image reconstruction from random projections on gpu,” in Geoscience
and Remote Sensing Symposium (IGARSS), 2016 IEEE International.
IEEE, 2016, pp. 280–283.

[14] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone op-
erators,” Mathematical Programming, vol. 5, pp. 293–318, 1992.

[15] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “Gpu
scheduling on the nvidia tx2: Hidden details revealed,” in 2017 IEEE
Real-Time Systems Symposium (RTSS), Dec 2017, pp. 104–115.


