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Abstract
CD8+ T cells are key players in immunity against intracellular infections and tumors. The main cytokine associated with these
protective responses is interferon-γ (IFN-γ), whose production is known to be regulated at the transcriptional level during CD8+

Tcell differentiation. Here we found that microRNAs constitute a posttranscriptional brake to IFN-γ expression by CD8+ Tcells,
since the genetic interference with the Dicer processing machinery resulted in the overproduction of IFN-γ by both thymic and
peripheral CD8+ T cells. Using a gene reporter mouse for IFN-γ locus activity, we compared the microRNA repertoires
associated with the presence or absence of IFN-γ expression. This allowed us to identify a set of candidates, including miR-
181a and miR-451, which were functionally tested in overexpression experiments using synthetic mimics in peripheral CD8+ T
cell cultures. We found that miR-181a limits IFN-γ production by suppressing the expression of the transcription factor Id2,
which in turn promotes the Ifng expression program. Importantly, upon MuHV-4 challenge, miR-181a-deficient mice showed a
more vigorous IFN-γ+ CD8+ T cell response and were able to control viral infection significantly more efficiently than control
mice. These data collectively establish a novel role for miR-181a in regulating IFN-γ–mediated effector CD8+ T cell responses
in vitro and in vivo.
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Introduction

Interferon-γ (IFN-γ) is a critical cytokine in immunity against
viral and intracellular bacterial infections as well as for tumor
control. Studies with genetically modifiedmice lacking IFN-γ
responses (with either Ifng or Ifng gene receptor 1 disruptions)

have clearly shown a high susceptibility to bacteria, proto-
zoans and viral infections [1]. Moreover, when challenged
with chemical carcinogens, IFN-γ-deficient mice develop
more tumors, and more rapidly than wild-type animals [2, 3].

CD8+ (herein simplified to CD8) Tcells are a key source of
IFN-γ within the adaptive immune response and play crucial

Nina Schmolka, Bruno Silva-Santos and Anita Q. Gomes contributed
equally to this work.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00109-019-01865-y) contains supplementary
material, which is available to authorized users.

* Nina Schmolka
nina.schmolka@dmmd.uzh.ch

* Bruno Silva-Santos
bssantos@medicina.ulisboa.pt

* Anita Q. Gomes
anitagomes@medicina.ulisboa.pt

1 Instituto de Medicina Molecular João Lobo Antunes, Faculdade de
Medicina, Universidade de Lisboa, Lisbon, Portugal

2 Present address: Institute of experimental Immunology, University of
Zurich, Zurich, Switzerland

3 Institute for Molecular Medicine, Goethe University Frankfurt,
Frankfurt, Germany

4 Present address: Department of Molecular Mechanisms of Disease,
University of Zurich, Zurich, Switzerland

5 H&TRC Health & Technology Research Center, ESTeSL - Escola
Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa,
Lisbon, Portugal

Journal of Molecular Medicine
https://doi.org/10.1007/s00109-019-01865-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico de Lisboa

https://core.ac.uk/display/288865778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00109-019-01865-y&domain=pdf
http://orcid.org/0000-0002-3348-0448
https://doi.org/10.1007/s00109-019-01865-y
mailto:nina.schmolka@dmmd.uzh.ch
mailto:bssantos@medicina.ulisboa.pt
mailto:anitagomes@medicina.ulisboa.pt


roles in the control of intracellular infections and tumorigene-
sis [4, 5]. Consistent with this, studies enhancing the produc-
tion of IFN-γ by CD8 Tcells have shown improved antitumor
responses in vivo in several mouse models of cancer [6, 7],
and the robust activation of human CD8 T cells, including an
IFN-γ molecular signature, are thought to underlie the recent
successes of checkpoint inhibitors in cancer treatment [8].

After antigen recognition, activated CD8 T cells undergo
proliferative expansion and differentiate into cytotoxic T lym-
phocytes (CTLs) that are able to produce effector molecules,
among which IFN-γ and the cytotoxicity mediators perforin
and granzyme B [4]. IFN-γ is the key orchestrator of the CTL
response, since it not only boosts cytotoxicity but also
upregulates the expression of MHC class I that is critical for
antigen recognition and activation of CD8 T cells [1].

The induction of IFN-γ expression is a tightly regulated
process in effector CD8 T cell differentiation. At steady state,
naïve CD8 T cells produce little IFN-γ, but there is a marked
upregulation upon TCR activation, with synergistic inputs
from CD27 and CD28 coreceptors and interleukin- (IL-)12
and IL-18 signals [9, 10].

Downstream of cell surface signals, the process is con-
trolled at the transcriptional level, where the transcription fac-
tors T-bet and Eomesodermin (Eomes) play the central roles
[11, 12]. These seemingly play complementary roles in CD8 T
cell differentiation, since T-bet expression associates with ef-
fector phenotype whereas Eomes levels increase in memory
CD8 T cells [12].

Concomitant with major transcriptional changes, CD8 T
cell differentiation has been recently associated with
microRNA (miRNA)-mediated posttranscriptional regulation.
Thus, while they are globally required for thymic CD8 T cell
development [13, 14], miRNAs seemingly restrain cytotoxic
effector CD8 T cell differentiation, as indicated by the in-
creased perforin and granzyme B levels in mouse CD8 T cells
genetically depleted of the miRNA processing enzyme, Dicer,
and in human CD8 Tcells where Dicer was knocked down by
RNA interference [15]. Furthermore, various individual
miRNAs have been identified either as positive or as negative
regulators of CD8 T cell differentiation in vivo. For example,
the downregulation of Let-7 (that targets Eomes and Myc
mRNAs) promoted antiviral and antitumoral CD8 T cell re-
sponses [16]; and miR-23 blockade enhanced granzyme B
expression in human CD8 Tcells and inhibited tumor progres-
sion in a mouse model of cancer [17]. By contrast, miR-150-
deficient mice showed poor cytotoxic effector functions and
failed to respond to Listeria or viral infections [18]; and miR-
155-deficient CD8 T cells were ineffective at controlling tu-
mor growth and viral replication and clearance [19].
Conversely, miRNA-155 overexpression augmented the anti-
tumor response in vivo [20], as well as the numbers of antivi-
ral effector CTL, seemingly as consequence of enhanced T-bet
expression, which is negatively regulated by a miR-155

target, SHIP-1 [21]. Moreover, miR-155 was shown to be
essential to sustain exhausted CD8 T cell (Tex) responses dur-
ing chronic viral infection by promoting the accumulation and
persistence of Tex cells via Fosl2, an AP-1 transcription factor
family member [22]. Contrarily, miR-31 promotes CD8 T cell
dysfunction in chronic viral infection by increasing the sensi-
tivity of T cells to type I interferons [23]. Some miRNAs also
impact effector CD8 T cell proliferation and memory cell dif-
ferentiation, as shown for the miR-17-92 cluster in the context
of viral infection [24], whereas others bias CD8 T cell re-
sponses away from memory and toward effector CD8 T cell
functions, as it is the case of miR-21, whose levels are asso-
ciated with increased numbers of inflammatory effector Tcells
[25].

While these previous studies established the importance of
various miRNAs in CD8 T cell (cytotoxic) responses in vivo,
here we aimed at a focused dissection of miRNAs that may
specifically regulate IFN-γ expression in CD8 T cells. Of
note, other posttranscriptional mechanisms, including transla-
tional repression by RNA-binding proteins, have been shown
to regulate IFN-γ expression by CD8 T cells [26]. As for
miRNAs, while strongly implicated in the regulation of
IFN-γ expression in CD4 T cells, most notably through
miR-29 [27] and miR-125b [28], they remain poorly charac-
terized in IFN-γ-producing CD8 T cells.

To address this issue, we screened miRNAs that segregated
with IFN-γ expression ex vivo, in CD8 T cell subpopulations
isolated from an IFN-γ reporter mouse model, and manipu-
lated their activity in parallel in vitro and in vivo assays. This
led us to identify miR-181a as a novel negative regulator of
IFN-γ expression in CD8 T cells, whose absence enhanced
CD8 T cells ability to respond and control viral infection
in vivo.

Methods

Mice

All mice used were adults 6 to 12 weeks of age.
C57BL/6J mice were purchased from the Jackson
Laboratory. IFNγ-IRES-YFP-BGHpolyA knock-in mice
(YETI) were purchased from Biocytogen. lckCre
DicerΔ/Δ and Dicerlox/lox mice were kindly provided
by Matthias Merkenschlager, Imperial College, London
[14]. miR-181a/b-1 ko mice (B6.Mirc14tm1.1Ankr) were
described previously [29]. miR-451a ko mice were kind-
ly provided by Lily Huang (UT Southwestern Medical
Center, US).

Mice were bred and maintained in the specific pathogen–
free animal facilities of Instituto de Medicina Molecular
(Lisbon, Portugal). All experiments involving animals were
done in compliance with the relevant laws and institutional
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guidelines and were approved by the ethics committee of
Instituto de Medicina Molecular.

Monoclonal antibodies

The following anti-mouse monoclonal antibodies (mAbs)
were used (antigens and clones): fluorescently labeled anti-
CD3 (145.2C11), anti-CD4 (GK1.5), anti-CD8 (53–6.7),
anti-IFN-γ (XMG1.2), anti-IL-17A (TC11.18H10.1) purified
anti-CD3 (145-2c11) and anti-CD28 (37.51).

Antibodies were purchased from BD Biosciences,
eBiosciences, or BioLegend.

Cell culture

Lymphocytes were cultured in RPMI medium supple-
mented with 10% FBS, 1% HEPES, 1% nonessential
amino acids (NEAA), 1% sodium pyruvate (NaPu),
1% penicillin and streptomycin (Pen/Strep), 0.1% genta-
micin, and 0.1% β-mercaptoethanol. Human embrionic
kidney 293 T cells (CRL-3216, ATCC) were cultured in
DMEM (high glucose, pyruvate) supplemented with
10% FBS. Baby hamster kidney fibroblast cells (BHK-
21, ATCC) were cultured in Glasgow’s modified Eagle’s
medium (GMEM) supplemented with 10% FBS, 2-mM
glutamine, 100 U/ml penicillin, 100 g/ml streptomycin
and 10% tryptose phosphate broth. All cells were incu-
bated at 37 °C and 5% CO2.

Cell preparation, flow cytometry, and cell sorting

Cell suspensions were obtained from spleens, lymph
nodes, or thymus. Erythrocytes were osmotically lysed
in red blood cell lysis buffer (BioLegend). Cells were
filtered through 70-μm cell strainers (BD Biosciences).
For cell surface staining, single-cell suspensions were
incubated for 30 min with saturating concentrations of
mAbs (see above). For intracellular cytokine staining,
cells were stimulated with phorbol 12-myristate 13-ace-
tate (PMA) (50 ng/ml), and ionomycin (1 μg/ml) in the
presence of brefeldin A (10 μg/ml) (all from Sigma-
Aldrich) for 3–4 h at 37 °C. Cells were stained for
the above identified cell surface markers, fixed 30 min
at 4 °C, permeabilized with the Foxp3 Transcription
Factor Staining Buffer set (eBioscience) in the presence
of anti-CD16/CD32 (eBioscience) for 15 min at 4 °C,
and lastly incubated for 30 min–1 h at 4 °C with the
above identified antibodies in permeabilization buffer.
Samples were analyzed using LSRFortessa (BD
Biosciences) and FlowJo software (Tree Star). For
sorting, cells were prepared and stained for cell surface
markers as mentioned above and sorted on a FACSAria
(BD Biosciences).

Redirect cytotoxic assay

YFP+ and YFP− CD8+ T cells were sorted and were either
cultured in complete RPMI for 72 h in a TPP 96well U bottom
plate, with plate-bound anti-CD3 mAb (1 μg/ml; 145.2C11;
eBiosciences) and anti-CD28 mAb (1 μg/ml; 37.51;
eBiosciences) or incubated directly after sorting in a 96 well
U bottom plate for 4 h at 37 °C with P815 (ATCC® TIB-
64™) mouse mastocytoma cell line, labeled with DDAOse
(1 μM), with soluble anti-CD3 mAb (1 μg/ml; 145.2C11;
eBiosciences). The ratio of T cell:P815 cell line ranged from
1:1, 1:5, or 1:10 as indicated in the respective figures. After
4 h of co-incubation, the cells were transferred to a 96 well V
bottom plate and washed. Apoptosis was measured by stain-
ing with Alexa Fluor® 488 Annexin V/Dead Cell Apoptosis
Kit (V13241; Life Technologies). Cells were resuspended and
analyzed by flow cytometry on BDLSRFortessa cell analyzer.

microRNA qPCR profiling

All experiments were conducted at Exiqon Services. The
submitted RNA was reverse transcribed in 40 μl reactions
using the miRCURY LNA Universal RT miRNA PCR,
polyadenylation, and cDNA synthesis kit (Exiqon).
cDNA was diluted 50 times and assayed in 10 μl PCR
reactions according to the protocol for miRCURY LNA
Universal RT miRNA PCR; each miRNA was assayed
once by qPCR on the miRNA Ready-to-Use PCR,
Rodent panel I. Negative controls, excluding template
from the reverse transcription reaction, were performed
and profiled like the samples. The amplification was per-
formed in a LightCycler 480 real-time PCR system
(Roche) in 384 well plates. The amplification curves were
analyzed using the Roche LC software, both for determi-
nation of Cp (by the second derivative method) and for
melting curve analysis. The amplification efficiency was
calculated using algorithms similar to the LinReg soft-
ware. All assays were inspected for distinct melting
curves, and the Tm was checked to be within known
specifications for the assay. Furthermore assays must be
detected with five Cp’s less than the negative control and
with Cp < 37 to be included in the data analysis. Data that
did not pass these criteria were omitted from any further
analysis. Using NormFinder the best normalizer was
found to be the average of assays detected in all samples.
All data was normalized to the average of assays detected
in all samples (average – assay Cp).

The identification of potentially differentially expressed
genes was performed by Exiqon based on a subtractive anal-
ysis. Briefly, for each miRNA, it calculated the average nor-
malized expression value per group and the difference in ex-
pression between groups. It was then asked whether the
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inter-group difference was greater than 2 times the standard
deviation of the YFP group for each particular miRNA.

RNA isolation, complementary DNA production,
and RT-qPCR

Total RNA (including mRNA and small RNA) was isolated
using miRNeasy Mini Kit (Qiagen). mRNAwas subsequently
reverse transcribed with random oligonucleotides (Invitrogen)
using Moloney murine leukemia virus reverse transcriptase
(Promega). Extracted miRNAwas subject to reverse transcrip-
tion with miRCURY LNA Universal RT miRNA system
(Exiqon). Both types of molecules were amplified by quanti-
tative PCR on ViiA 7 real-time PCR system (Applied
Biosystems; Life Technologies). mRNA primers were de-
signed with Primer Blast or via the Universal Probe Library
Assay Design Center (Roche) being their sequences included
in Supplementary Table 1. miRNA LNA PCR primer sets
were purchased from Exiqon. Analysis of quantitative PCR
results was performed using the ViiA 7 software v1.2
(Applied Biosystems; Life Technologies). Results were nor-
malized to the following reference genes: mir-423-3p or RNA
RNU5G for miRNA quantification and Actb for mRNA
quantification.

CD8+ T cell electroporation

CD3+ CD8+ Tcells were sorted from lymph nodes and spleens
of C57BL/6 J mice and stimulated on a 24 well plate (300,000
cells per well) with plate-bound anti-CD3 and anti-CD28
(both at 2.5 μg/ml) for 48 h. Cells were then resuspended in
T buffer and used (200,000 cells per condition) for transfec-
tion of mimics with the Neon electroporation transfection sys-
tem (Invitrogen) using the 10 μl tip and applying the follow-
ing parameters: 3 pulses of 10 ms and 1550 V. After electro-
poration, cells were cultured in 24 well plates with complete
media without antibiotic supplemented with IL-2 (1 ng/ml)
and 48 h later stimulated for intracellular cytokine staining.
The mimics were used at 500 nM per electroporation. Mimics
of miR-132-3p, miR-139-5p, miR-181a-5p, miR-200a-3p,
miR-322-5p, and miR-451a, and negative control are all
miRCURY LNA miRNA mimics from Exiqon. The siRNA
against Id2, together with a nontargeting negative control, was
obtained from Dharmacon and used at a concentration of 20–
500 nM.

Target gene prediction analysis

Predicted targets for mmu-miR-181a and mmu-miR-451a
were determined by the DIANA micro-T [30], miRWalk 2.0
[31], miRanda [32], Targetscan [33], and RNA22 [34] algo-
rithms. Validated targets for the same miRNAs were retrieved
from miRTarBase [35].

Luciferase assays

Plasmid vectors pMig-miR-181a and pMig-miR-451a that al-
low for the overexpression of miR-181a or mir-451a, respec-
tively, were generated in the following manner: the respective
native pre-miRNA sequences flanked by about 200 bp were
amplified by PCR from genomic DNA (C57BL/6 J) and
inserted into a modified pMig-IRES-GFP vector (Addgene
#9044) [36]. The 3′UTR of Id2, Map2k1, and Akt was ampli-
fied by PCR from genomic DNA (C57 BL/6 J) and cloned
into pmirGLO vector (Promega). Primers are available upon
request. Mutations in the predicted target sequences of the 3′
UTR of Id2 were introduced by gene synthesis (GeneCust
Europe). Each luciferase reporter vector carrying one of the
3’ UTR sequences described above was co-transfected with
either the pMig-miR-181a or pMig-miR-451a expression vec-
tors or a control empty pMig vector into HEK293 T cells
(ATCC CRL-3216) using Lipofectamine 2000 (Thermo
Fisher Scientific). After 48 h, firefly and Renilla luciferase
activity were measured by using the Dual-Glo Luciferase
Assay System (Promega). Renilla luciferase activity served
as the internal control, and relative luciferase activity was
normalized to empty pMirGlo and to empty pMig-IRES-GFP.

Viral assays and infections

To prepare MuHV-4 (murid gammaherpesvirus-4) viral
stocks, BHK-21 cells were infected at low multiplicity
of infection (0.001 PFU per cell). Virions were recovered
from debri-free supernatants by ultracentrifugation [37].
The titer of infectious virus was determined by plaque
assay on BHK-21 cells. For in vivo infections, 6- to 8-
week-old miR-181a/b-1−/− and miR-451a−/− mice and re-
spective miR-181a/b-1+/+ and miR-451a+/+ C57BL/6 lit-
termate controls were inoculated intranasally with 104

PFU of MuHV-4 under isofluorane anesthesia. Lungs or
spleens were harvested at the indicated time points. Titers
of infectious virus were determined by plaque assay of
freeze-thawed tissue homogenates on BHK-21 cells.
Latent virus loads were quantified by explant co-culture
of freshly isolated splenocytes with BHK-21 cells. Plates
were incubated for 4 (plaque assays) or 5 (explant co-
culture assays) days and then fixed with 4% formal saline
and counterstained with toluidine blue for plaque
counting.

Statistical analysis

The statistical significance of differences between two popu-
lations was assessed using either the two-tailed nonparametric
Mann-Whitney test or the t-test when applicable. ANOVA,
followed bymultiple comparisons, was performed when com-
paring the mean of more than one population. P values ≤ 0.05
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were considered significant and are indicated in the figures. In
bar graphs, data is presented as mean ± SD. In dot plots, hor-
izontal lines indicate the mean.

Results

MicroRNA-deficient CD8 T cells overexpress IFN-γ

To investigate the role of miRNAs in the regulation of
IFN-γ expression in CD8 T cell differentiation, we consid-
ered that miRNAs could potentially inhibit this process. To
test this hypothesis, we compared miRNA-deficient versus
miRNA-sufficient CD8 thymocytes, since the latter should
show very limited IFN-γ expression. Indeed, in stark con-
trast with minimal IFN-γ expression in Dicer-sufficient
CD8 thymocytes, we found substantial IFN-γ-producing
CD8 T cells in the thymus of a conditional Dicer-
deficient mouse strain, controlled by the proximal Lck pro-
moter, which therefore deleted Dicer at early stages of thy-
mic T cell development [14] (Figs. 1a–b). More specifical-
ly, CD8 thymocytes from Dicer-deficient (lckCre DicerΔ/

Δ) mice contained almost 40% of IFN-γ-producing cells
(upon short-term PMA plus ionomycin restimulation),
compared to ~3% of IFN-γ+ CD8 thymocytes in Dicer-
sufficient mice (Dicerlox/lox) (Figs. 1a–b). A less striking
accumulation (< 10%) of IFN-γ+ cells was also observed in
thymic CD4 T cells from Dicer-deficient mice when com-
pared to controls (data not shown). Dicer-deficient CD8 T
cells showed upregulated (when compared to Dicer-
sufficient controls) mRNA levels of Ifng and its two main
transcriptional regulators, Tbx21 (encoding T-bet), and
Eomes (Fig. 1c). These data revealed an unexpected and
striking impact of the Dicer-dependent miRNA machinery
on IFN-γ expression in thymic CD8 T cells and

beckoned the identification of specific miRNAs underlying
this phenomenon.

Differential microRNA expression analysis identifies
candidates segregating with IFN-γ expression in CD8
T cells

To identify individual miRNAs that might regulate IFN-γ
expression in CD8 T cells, we compared the miRNome of
cells either positive or negative for Ifng locus activity in the
reporter mouse strain IFN-γ-IRES-YFP-BGHpolyA knock-
in, also known as YETI (from Biocytogen). This model
proved to be a suitable tool to study IFN-γ-producing CD8
T cells, given the association between YFP expression and
intracellular IFN-γ staining (Supplementary Fig. 1a). Of note,
we also observed enhanced cytotoxic potential of YFP+

(IFN-γ+) CD8 T cells when compared to their YFP−

(IFN-γ−) counterparts (Supplementary Fig. 1b), demonstrat-
ing the co-segregation of IFN-γ production with enhanced
cytotoxic functions. This functional association, together with
the expression pattern of the transcription factors, Tbx21 and
Eomes (Fig. 1c), demonstrate the global effector cell differen-
tiation of IFN-γ+ CD8 T cells.

Upon FACS isolation of YFP+ (IFN-γ+) and YFP−

(IFN-γ−) CD8 T cells from the thymus of YETI mice
(Fig. 2a), we extracted RNA, converted it to cDNA, and sub-
jected it to qPCR profiling with miRCURY LNA™Universal
RT miRNA PCR Rodent panel I (Exiqon). From the 121
miRNAs identified in all samples, 29 were differentially
expressed (at least twofold different) between YFP+ and
YFP− CD8 T cells, as depicted in the heatmap of Fig. 2b.
Upon qPCR profiling validation with an independent sample
(Fig. 2c), we selected top upregulated miRNAs in YFP− CD8
T cells (miR-322, miR-181a, and miR-132) and top
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upregulated miRNAs in YFP+ CD8 T cells (miR-139, miR-
451a, and miR-200) for subsequent functional studies.

miR-181a andmiR-451a limit IFN-γ production by CD8
T cells in vitro

To perform functional assays with candidate miRNAs, we
turned to peripheral CD8 T cells. First, we assessed whether
the IFN-γ phenotype observed in the Dicer-deficient thymus
(Figs. 1a–c) was conserved in secondary lymphoid organs and
could potentially contribute to CD8 T cell responses in the
periphery. That was indeed the case: CD8 Tcells isolated from
pooled spleen and lymph nodes from lckCre DicerΔ/Δ mice
showed markedly enhanced IFN-γ production (Figs. 3a–b)
and Tbx21 and Eomes expression (Fig. 3c), when compared
to control (Dicerlox/lox) CD8 T cells.

We next performed overexpression studies by
electroporating synthetic miRNA mimics in CD8 T cells iso-
lated from pooled spleen and lymph nodes, a strategy success-
fully used in our lab before [36]. These were cultured for
2 days with plate-bound anti-CD28 and anti-CD3 monoclonal
antibodies and subsequently electroporated with either control
or specific mimics (Exiqon) for the six selected miRNAs
(from Fig. 2c). After the electroporation, cells were cultured
for two extra days in the presence of IL-2; and IFN-γ

production was determined by intracellular staining after a
short activation with PMA/ionomycin (Fig. 3d). We found
that miR-181a and miR-451a, unlike the other miRNA candi-
dates, significantly decreased IFN-γ production when com-
pared to control mimics (Fig. 3e, f). These results identify
miR-181a and miR-451a as potential new miRNA regulators
of IFN-γ production by CD8 T cells. Interestingly, when we
investigated what could induce miR-181a and miR-451a ex-
pression in CD8 Tcells, we found signals that promote IFN-γ
responses, such as the cytokines IL-12, IL-15, and IL-18
(Supplementary Fig. 2). This suggests that these miRNAs
may act as an auto-regulatory mechanism during effector
CD8 T cell differentiation, namely, miR-451a, which is
overexpressed in IFN-γ+ (YFP+) CD8 T cells and is signifi-
cantly upregulated by IFN-γ-promoting signals and could be
responsible for fine tuning IFN-γ production in differentiated
effector CD8 T cells. On the other hand, miR-181a
(overexpressed in IFN-γ− (YFP-) CD8 T cells) could be re-
sponsible for restricting CD8 T differentiation into
IFN-γ−producing cells.

miR-181a inhibits IFN-γ production by targeting Id2

To understand how miR-181a and miR-451a could impact
CD8 T cell differentiation and IFN-γ production, we next
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aimed at identifying their relevant mRNA targets in this pro-
cess. We used bioinformatics to assess predicted and validated
target mRNAs, thus containing binding sites for miR-181a-5p
or miR-451a in their 3′ untranslated region (3’ UTR)
(Supplementary Table 2). This analysis selected both canoni-
cal and noncanonical targets based on the evidence that non-
canonical targets are functionally relevant as recently de-
scribed in various seminal papers such as: in the work by
Kim D and collaborators [38]. From these, we selected a set
of genes, namely signaling molecules or transcription factors,
based on their relevance for the IFN-γ expression program

according to the literature (Fig. 4a–b and Supplementary
Fig. 3a–b). To test whether their expression levels were mod-
ulated by miR-181a-5p or miR-451a, we electroporated the
corresponding mimics in CD8 T cells (inducing approximate-
ly a tenfold upregulation of miRNA levels; data not shown)
and subsequently performed RT-qPCR for the putativemRNA
targets. Consistent with the IFN-γ protein data (Fig. 3e and f),
the mRNA expression levels of both Ifng and its master tran-
scription regulator Tbx21 (T-bet) were reduced upon miR-
181a-5p and miR-451a mimics transfection (Fig. 4a).
Importantly, of the 11 potential direct mRNA targets of these
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miRNAs that we investigated (selected from validated and
predicted targets of Supplementary Table 2: Akt2, Akt3,
Mapk1, Id2, Map2k1, Map3k7, NFAT5, and Ptpn11 for
miR-181a; Irf1, Akt3, Ankrd17, and Atf2 for miR-451a), only
3 were significantly downregulated: Id2, Akt2, and Map2k1
(Fig. 4b and Supplementary Fig. 3a–b). These are important
signaling components of the IFN-γ expression program: Akt2
and Map2k1 are signal transducing kinases, and Id2 is a key
transcription factor in this process [39]. Interestingly, these
three mRNAs have predicted binding sites for miR-181a
(Supplementary Table 2) but not for miR-451a. Of note, our
results defined specific signaling mediators of the IFN-γ pro-
gram as being regulated by miR-181a, since, for example,
Akt2 but not Akt3 and Map2k1 but not Mapk1 (encoding
Erk) norMap3k7 were impacted in the overexpression exper-
iments (Fig. 4b and Supplementary Fig. 3a–b).

To functionally validate the miRNA-mRNA interaction,
we designed reporter constructs in a pmiRGlo Dual-
luciferase miRNA target expression vector for the 3’ UTRs

of Id2, Map2k1, and Akt2. These constructs were transiently
transfected into human embryonic kidney (HEK) 293 cells
together with an expression plasmid for either miR-181a or
miR-451a. Co-transfection of miR-181a with these targets
showed a significant repression of luciferase activity only for
Id2 (Fig. 4c); and mutations in the Id2 putative binding sites to
miR-181a led to a significant recovery of luciferase levels
(Fig. 4c). These results are consistent with miRTarBase infor-
mation that indicates Id2 as a validated as a target for miR-
181a [35, 40]. AlthoughMap2K1 and Akt2 also had predicted
binding sites for miR-181a, their reporter levels were not
downregulated by ectopic expression of miR-181a, suggest-
ing they may be indirectly regulated by the effects of miR-
181a on other (unknown) targets. On the other hand, in agree-
ment with the lack of predicted binding sites for miR-451a,
none of the three 3’UTR regions interacted with miR-451a
(Fig. 4c), also pointing toward alternative mechanisms of reg-
ulation. We therefore focused on the miRNA-mRNA interac-
tion functionally validated with these assays, miR-181a: Id2.
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Importantly, Id2 has been well established as an important
regulator of CD8 T cell differentiation [41, 42] as well as
IFN-γ expression [39]. We thus used RNA interference
(siRNA) to downregulate (~40% relative to control levels)
Id2 in peripheral CD8 T cells and observed a similar pheno-
type to the miR-181a overexpression (Fig. 4a–b), i.e., the re-
duction in Ifng, Tbx21, and Akt2 levels (Fig. 4c). These data
suggest that the miR-181a: Id2 pathway regulates IFN-γ ex-
pression in CD8 T cells in vitro.

miR-181a limits antiviral CD8 T cell responses in vivo

Finally, to determine if miR-181a plays a nonredundant role in
CD8Tcell function in vivo, we employedmiR-181a−/−mice (and
miR-181a+/+ littermates) and challenged them with murid
gammaherpesvirus 4 (MuHV-4) infection by intranasal inocula-
tion. CD8 T cells harvested from spleens of miR-181a−/− animals
7 days after infection produced higher levels of IFN-γ, compared
to their miR-181a+/+ littermates (Fig. 5a). Consistently, miR-
181a−/−mice were more efficient in controlling the viral infection,
as they presented lower viral loads in the spleen at subsequent time
points (Fig. 5b), as determined by ex vivo reactivation assays in
which latently infected splenocytes were co-cultured with permis-
sive BHK-21 cells (Supplementary Fig. 4a). Of note, unlike miR-
181a, miR-451a did not impact on viral load, nor on IFN-γ pro-
duction by CD8 T cells, since miR-451a −/− mice showed similar
responses to their miR-451a+/+ littermate controls (Supplementary
Fig. 4b–d). These data further supported miR-181a as the most
relevant miRNA, among the candidates retrieved by our study, for
the regulation of effector CD8Tcell responses in vitro and in vivo.

Discussion

Our study revealed that miRNAs constitute a key develop-
mental brake to IFN-γ expression in CD8 Tcells, since a large

fraction (~40%) of Dicer-deficient CD8 thymocytes were able
to produce the cytokine upon short-term restimulation, in stark
contrast (~3%) to control (Dicer-sufficient cells) cells. This
accumulation of IFN-γ-producing CD8 T cells in the thymus
is reminiscent of previous reports on signaling mutant strains,
including Itk-, Klf2-, Cbp-, and Id3-deficient mice, where
CD8 T cells with memory-like phenotype and rapid IFN-γ
responsiveness, in the absence of antigen exposure, have been
termed “innate-like” and shown to participate in the early
response against viral and intracellular bacterial infections
[10, 43–46]. We therefore believe that miRNAs may act as a
major brake to the development of such thymic-derived “in-
nate-like” CD8 T cells, thereby promoting the adaptive mode
of CD8 Tcell response upon activation (and differentiation) in
the periphery.

The impact of miRNAs on CD8 T cells clearly extends
beyond IFN-γ expression. On one hand, the deletion of
Dicer using the distal Lck promoter, which drives Cre expres-
sion after the stage of positive selection, resulted in robust
responses to activation in vitro but has the incapacity to sus-
tain survival and accumulation in vivo upon acute infection
[47]. On the other hand, the deletion of Dicer in activated CD8
T cells caused a significant upregulation of the killing media-
tors, perforin and granzymes [15]. In the latter report, the
specific miRNAs linked to the effector CD8 T cell phenotype
were miR-139 and miR-150, which are distinct from the
miRNA identified in our study as a key regulator of IFN-γ
expression, miR-181a. This was identified as significantly
enriched in CD8 T cells lacking IFN-γ expression (compared
to IFN-γ+ counterparts) in YETI reporter mice. Of note, since
YETI has modifications in the 3’ UTR of the Ifng mRNA,
further functional analyses were performed in C57BL/6 WT
mice to avoid artifacts in miRNA-mediated Ifng regulation.

We found miR-181a to be prominently expressed in thymic
IFN-γ− (YFP−) CD8 T cells and could therefore constitute a
brake to IFN-γ induction in undifferentiated CD8 T cells.
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Consistent with this, using luciferase assays, we vali-
dated Id2 as a miR-181a target and demonstrated that
both Id2 downregulation and miR-181a (mimics) trans-
duction reduced IFN-γ mRNA expression in effector
CD8 T cells. Id2 is a key regulator of effector CD8 T
cell differentiation and maintenance in vivo [41, 42]
and has also been shown to promote the differentiation
of IFN-γ-producing CD4+ T (so-called Th1) cells upon
viral infection [39]. There is a clear mechanistic link
between Id2 and IFN-γ, since Id2 directly antagonizes
the suppressive E proteins that bind to regulatory ele-
ments of Tbx21, which encodes the master transcription
factor T-bet [39]. Our results with Id2 knockdown,
which very nicely phenocopied those of miR-181a
mimics, constituted a critical validation of our experi-
mental approach.

Importantly, our in vivo studies demonstrated that
miR-181a is a key nonredundant determinant of antiviral
IFN-γ+ CD8 T cell responses, with miR-181-deficient
mice controlling MuHV-4 herpesvirus load significantly
better than miR-181-sufficient littermate controls.

The new function disclosed here for miR-181a in the
regulation of IFN-γ production and effector CD8 T cell
responses in vivo adds to its established role in thymic
positive selection, where it modulates TCR signaling to-
ward augmenting thymocyte sensitivity to peptide anti-
gens [48]. In vivo, the role of miR-181a is complex and
only partially understood in positive and negative selec-
tion of conventional T cells [49, 50]. In contrast, miR-
181a has turned out to be a critical mediator of agonist
selection of unconventional T cells, including NKT cells,
MAIT cells, and Treg cells [29, 51, 52]. Interestingly,
this known role of miR-181a also involved the modula-
tion of signaling components [48], which supports this
type of mechanism as characteristic of miR-181a func-
tion in T cells. miR-181a induction by signals that pro-
mote IFN-γ responses, namely, TCR stimulation and the
cytokines IL-12, IL-15, and IL-18, suggests that this
miRNA can act as an auto-regulatory mechanism during
effector CD8 T cell differentiation.

The results obtained for miR-451a are also indicative
of a negative feedback loop since this miRNA is
enriched in IFN-γ+ cells, and its ectopic overexpression
reduces the percentage of IFN-γ+ cells. However, we
failed to identify relevant mRNA targets for miR-451a.
Furthermore, the lack of a nonredundant role in vivo
when we compared the antiviral IFN-γ+ CD8 T cell re-
sponse in miR-451a−/− mice with that of miR-451a+/+

littermate controls further highlights the need for addi-
tional studies to dissect the potential role of miR-451a in
CD8 T cell differentiation.

From a therapeutic point of view, the manipulation of
miRNAs may offer the possibility to modulate IFN-γ

responses by human CD8 T cells, consistent with previous
findings using RNA interference-mediated knockdown of
Dicer [15]. Specifically for miR-181a, its therapeutic potential
is further supported by reported successful manipulation in
human cells [53]. We thus believe that this study adds signif-
icantly to our understanding of the posttranscriptional regula-
tion of IFN-γ production by CD8 Tcells, which, in addition to
the clear impact on antiviral responses in mice, may have
implications in other contexts such as antitumor immunity or
the control of IFN-γ–mediated inflammatory conditions.
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