
 
 
 
 
 
 
 
 
 
 

Object-Oriented PLC Programming 
 
 

Eduardo Miranda Moreira da Silva 

 

 
Master’s Dissertation 

 
 

Supervisor: Prof. António José Pessoa de Magalhães 

 

 

 

 

 
 
 
 

Master’s Degree in Mechanical Engineering 
Automation Branch 

 
 
 
 
 
 

January 27, 2020 
 
 
 
 

  



ii 
 

 
 
 
 
 
 
 
 
 



Object-Oriented PLC Programming 

iii 

Abstract  
 

This document aims to investigate how Object-Oriented Programming (OOP) can improve 

Programmable Logic Controllers (PLC) programming. To achieve this, a PLC project was built 

using the OOP approaches suggested by the International Electrotechnical Commission (IEC) 

61131-3 Standard. This project was tested on a simple but realistic simulated scenario for 

evaluation purposes. 

 

The text starts by exposing the history of PLC programming, it’s recent enhancements and the 

rise of object-oriented programming in the industry and how it compares to regular software 

programming, before briefly presenting the resources that support object-oriented PLC 

programming. Four case studies and their controlling applications are then introduced, along 

with examples of OOP usage. The dissertation ends with a comparison between applications 

designed with and without using OOP. 

 

OOP allows the creation of a standard framework for similar groups of components, reduction 

of code complexity and easier and safer data management. Therefore, the result of the project 

was an easily customizable case scenario with “plug & play” components. 

 

In the future, the idea is to build an HMI that can take care of the changes applied in the physical 

system (e.g., switching a component) without accessing the code. 

 

Keywords: Industrial Software Development, PLC Programming, IEC 61131-3 Standard, 

Object-Oriented Programming. 

 

 

 

  



 

iv 
 

 

 

 

 

 



 

v 

Resumo 
 
Este documento tem como objetivo investigar até que ponto a Programação Orientada a Objetos 

pode melhorar a Programação de PLCs. Para atingir esse objetivo, foi desenvolvido um projeto 

de PLC utilizando as abordagens de programação orientada a objetos sugeridas pela norma 

61131-3 da International Electrotechnical Commission. Este projeto foi testado num ambiente 

simulado mas realista para fins de validação. 

 

O texto começa por expor o histórico da programação de PLC, as suas recentes melhorias e o 

aparecimento da programação orientada a objetos na indústria, juntamente com uma 

comparação com a programação de software comum, antes de apresentar os recursos que 

suportam a programação de PLC orientada a objetos. Quatro casos de estudo e a aplicação que 

os controla são, depois, apresentados, juntamente com exemplos de uso da programação 

orientada a objetos. A dissertação termina com uma comparação entre aplicações realizadas 

com e sem o uso da programação orientada a objetos. 

 

A programação orientada a objetos permite a criação de uma estrutura padrão para grupos de 

componentes semelhantes, a redução da complexidade do código e a gestão de dados torna-se 

mais fácil e segura. Portanto, o resultado do projeto foi uma aplicação facilmente personalizável 

com componentes "plug & play". 

 

No futuro, a ideia é construir uma HMI que possa suportar alterações no sistema físico (por 

exemplo, alternar um componente) sem necessidade de alterações no código. 

 

Palavras-chave: Desenvolvimento de Software Industrial, Programação de PLCs, Norma IEC 

61131-3, Programação Orientada a Objetos. 

 

 

 

 

 

  



 

vi 
 

 

 

 

 

 



 

vii 

Acknowledgements 
 
I’d like to thank Professor António José Pessoa de Magalhães for his guidence and support 

throughout the execution of this document, especially for provinding most of the resources that 

I used. 

 

I’d also like to thank my mother for helping me, even if not directly, as her support was 

definitely really important for me to be able to complete this dissertation. 

 

 

  



 

viii 
 

 

 

 

 



 

ix 

Table of Contents 
Abstract ...................................................................................................................................... iii 
Resumo ....................................................................................................................................... v 
Acknowledgements ................................................................................................................... vii 
Table of Contents ....................................................................................................................... ix 
Acronyms .................................................................................................................................... xi 
Table of Figures......................................................................................................................... xiii 
Table of Tables .......................................................................................................................... xv 
1 Introduction ............................................................................................................................. 1 

1.1 Aims 1 
1.2 Research Methodology and Project Execution ....................................................................... 1 
1.3 Dissertation’s organization ..................................................................................................... 2 

2 PLC Programming Engineering ............................................................................................. 3 
2.1 PLCs: Emergence and Early Software Development ............................................................. 3 
2.2 Design Approaches for PLC Applications............................................................................... 5 

2.2.1 Procedural Programming 5 
2.2.2 Object-Oriented Programming 6 
2.2.3 Object-Oriented Programming: advantages over Procedural Programming 7 
2.2.4 Object-Oriented PLC Programming vs Computer Programming 8 

2.3 Complementing Traditional PLC Programming Practices with Object-Oriented Approaches . 9 
2.4 Concluding Remarks ............................................................................................................ 10 

3 Standards and Tools for Object-Oriented PLC Programming.............................................. 11 
3.1 The IEC 61131-3 Standard .................................................................................................. 11 

3.1.1 Classes and Function Blocks 12 
3.1.2 Methods 12 
3.1.3 Properties 14 
3.1.4 Access Specifiers 14 
3.1.5 Inheritance 14 
3.1.6 Interfaces 16 
3.1.7 Polymorphism 16 

3.2 PLC Object-Oriented Programming Tools ............................................................................ 16 
3.2.1 The CODESYS framework 17 
3.2.2 Tools from Siemens 17 

3.3 Concluding Remarks ............................................................................................................ 18 
4 Practical Evaluation of Object-Oriented PLC Programming ................................................ 19 

4.1 Training Environment ........................................................................................................... 19 
4.2 Case Studies ........................................................................................................................ 20 

4.2.1 A Generic Conveyor 20 
4.2.2 Conveyor with FIFO 26 
4.2.3 Conveyor Scale 30 
4.2.4 Sorting Station: Conveyor with an Item Removing Actuator 32 

4.3 Personal overall analysis...................................................................................................... 37 
4.4 Concluding Remarks ............................................................................................................ 37 

5 Improving Industrial Scenarios Using the Third Edition of the IEC 61131-3 ........................ 39 
5.1 Previous work on IEC 61131-3 PLC programming ............................................................... 39 
5.2 Previously Designed Scenario ............................................................................................. 39 

5.2.1 Introducing the Components and the Previously Designed POUs of the System 39 
5.2.2 Scenario’s Description 45 

5.3 Improving the Studied Scenario using OOP ......................................................................... 46 
5.3.1 Introduction of New Components 46 
5.3.2 POUs that Control the New Scenario 47 
5.3.3 New Scenario’s Description 58 

5.4 Personal overall analysis...................................................................................................... 59 
5.5 Concluding remarks ............................................................................................................. 59 

6 Conclusions and Future Work .............................................................................................. 61 
References ................................................................................................................................ 63 
 

 

 

 

 



 

x 
 

 

 

 

 

 

 



 

xi 

Acronyms 
 
FB – Function Block; 

GRAFCET – GRAphe Fonctionnel de Commande, Étapes Transitions; 

IEC – International Electrotechnical Commission; 

I/O – Inputs/Outputs; 

OOP – Object Oriented Programming; 

PLC – Programmable Logic Controller; 

POU – Program Organization Unit; 

UDT – User-Defined Types; 

UML – Unified Modeling Language. 

 

 

 

  



 

xii 
 

 

 

 



 

xiii 

Table of Figures 
 
Figure 1.1 - Research Methodology and Project Execution .................................................................... 2 
Figure 2.1 - Left: relay logic; right: ladder logic [3] .................................................................................. 3 
Figure 2.2 - A subtraction function block in a ladder diagram [6] ............................................................ 4 
Figure 2.3 - "Cell Phone" class and some examples of objects .............................................................. 6 
Figure 2.4 - Swiss Army Knife ................................................................................................................. 8 
Figure 3.1 - “Door” FB calling its methods ............................................................................................ 13 
Figure 3.2 - Memory usage by classes/FBs and methods .................................................................... 13 
Figure 3.3 - How inheritance can be used to extend classes and function blocks [13] ........................ 15 
Figure 3.4 - Inheritance: how to use ...................................................................................................... 15 
Figure 3.5 - CODESYS compliance tables: doesn't support classes but supports object-oriented 
function blocks ....................................................................................................................................... 17 
Figure 3.6 - Example of a "Counter" Class [18] .................................................................................... 18 
Figure 3.7 - Example of a “FBValve43” function block with methods [18] ............................................ 18 
Figure 4.1 - Example of a Factory IO custom scenario ......................................................................... 19 
Figure 4.2 - Left: System is stopped; Right: System is running ............................................................ 20 
Figure 4.3 - Unidirectional digital belt conveyor .................................................................................... 21 
Figure 4.4 - Example of an Emitter: box with green arrow .................................................................... 21 
Figure 4.5 - Diffuse sensor detecting a box .......................................................................................... 21 
Figure 4.6 - Chute Conveyor dispatching an item ................................................................................. 22 
Figure 4.7 - Example of a simple unidirectional belt conveyor .............................................................. 22 
Figure 4.8 - Conveyor’s functional GRAFCET ...................................................................................... 23 
Figure 4.9 - Second scenario of the case study: transferring parts between conveyors ...................... 24 
Figure 4.10 - "Simple Conveyor" functional GRAFCET ........................................................................ 25 
Figure 4.11 - Box Identification System attached to an emitter and a conveyor ................................... 26 
Figure 4.12 - Medium box being dispatched ......................................................................................... 27 
Figure 4.13 - "Conveyor with FIFO" functional GRAFCET.................................................................... 28 
Figure 4.14 - UML representation of the "Conveyor with FIFO" extension ........................................... 28 
Figure 4.15 - "Conveyor with FIFO" function block instantiation ........................................................... 29 
Figure 4.16 - "Conveyor with FIFO" function block body code implementation .................................... 29 
Figure 4.17 - Example of a Conveyor Scale ......................................................................................... 30 
Figure 4.18 - "Conveyor Scale" functional GRAFCET .......................................................................... 31 
Figure 4.19 - UML representation of the "Conveyor Scale" extension .................................................. 32 
Figure 4.20 - UML representation of function blocks implementing the “itfItemRemover” interface ..... 34 
Figure 4.21 - Sorting Station: a conveyor with an actuator that removes parts from it (Pusher: left; Pivot 
Arm Sorter: right) ................................................................................................................................... 34 
Figure 4.22 - "Sorting Station" functional GRAFCET ............................................................................ 35 
Figure 4.23 - UML representation of the "Sorting Station" extension ................................................... 36 
Figure 5.1 - Emitter available in the previous Factory IO edition .......................................................... 40 
Figure 5.2 - Remover available in the previous Factory IO edition ....................................................... 40 
Figure 5.3 - Roller Conveyor available in the previous Factory IO edition ............................................ 40 
Figure 5.4 - Chain Transfer Table's Outputs (and directions) ............................................................... 41 
Figure 5.5 - Chain Transfer Table's behavioral GRAFCET ................................................................... 42 
Figure 5.6 - Turntable's Outputs ............................................................................................................ 42 
Figure 5.7 - Turntable's behavioral GRAFCET ..................................................................................... 43 
Figure 5.8 - Watchdog signaling a malfunction on an Actuator (taken from previous work) ................ 44 
Figure 5.9 - “Timeout monitor” function block created in the previous work ......................................... 44 
Figure 5.10 - Complex automated system designed by the author of the previous work using Factory 
IO ........................................................................................................................................................... 45 
Figure 5.11 - Turntable detail: button .................................................................................................... 45 
Figure 5.12 - System's possible trajectories.......................................................................................... 46 
Figure 5.13 - Box Identification System attached to an Emitter ............................................................ 46 
Figure 5.14 - Low Chute Conveyor ....................................................................................................... 47 
Figure 5.15 - Chain Transfer Table's four new sensors ........................................................................ 47 
Figure 5.16 - Designation of each table ................................................................................................ 49 
Figure 5.17 - “Table” Array in the main program ................................................................................... 49 
Figure 5.18 - Roller Conveyor communicating with the tables it connects in the main program .......... 49 
Figure 5.19 - Instantiation of the "Timeout Monitor" FB in the "Conveyor" FB...................................... 50 
Figure 5.20 - Instantiation of a pointer to the actuator abstract class in the "Timeout Monitor" FB ...... 50 
Figure 5.21 - Implementation in the body of the "Timeout Monitor" FB ................................................ 50 
Figure 5.22 - "FB_Init()" method of the "Timeout Monitor" FB .............................................................. 50 



 

xiv 
 

Figure 5.23 - Chain Transfer Table's behavioral GRAFCET ................................................................. 51 
Figure 5.24 - UML representation of the Chain Transfer Table’s state function blocks and their 
dependencies ........................................................................................................................................ 52 
Figure 5.25 - Instantiation of the "a_state" interface array in the Chain Transfer Table FB .................. 53 
Figure 5.26 - Main function block's body: execution of the interface's method ..................................... 53 
Figure 5.27 - Part of the implementation of Load’s “execute()” method ................................................ 53 
Figure 5.28 - Turntable's behavioral GRAFCET .................................................................................... 54 
Figure 5.29 - UML representation of the Turntable’s state function blocks and their dependencies .... 55 
Figure 5.30 - How the system sorts the boxes ...................................................................................... 58 
 

 

 

 

 



 

xv 

Table of Tables 
 
Table 3.1 - Differences between a class and a function block .............................................................. 12 
Table 3.2 - Access Specifiers: who can access methods ..................................................................... 14 
Table 4.1 - Description of the "Conveyor" function block ...................................................................... 23 
Table 4.2 - Where code should be implemented .................................................................................. 24 
Table 4.3 - Description of the "Conveyor" function block's additional variables ................................... 25 
Table 4.4 - How the Box Identification System works ........................................................................... 26 
Table 4.5 - Description of the “FIFO INT” function block ...................................................................... 26 
Table 4.6 - Description of the “Conveyor with FIFO” function block ..................................................... 28 
Table 4.7 - Description of the “Conveyor Scale” function block ............................................................ 31 
Table 4.8 - Description of the “itfItemRemover” Interface ..................................................................... 33 
Table 4.9 - Description of the “Pusher” function block .......................................................................... 33 
Table 4.10 - Description of the “Pivot Arm Sorter” function block ......................................................... 33 
Table 4.11 - Description of the “Sorting Station” function block ............................................................ 35 
Table 5.1 - Emitter's Inputs and Outputs ............................................................................................... 40 
Table 5.2 - Remover's Inputs and Outputs............................................................................................ 40 
Table 5.3 - Chain Transfer Table: Description and I/O ......................................................................... 41 
Table 5.4 - Chain Transfer Table's additional control variables ............................................................ 41 
Table 5.5 - Turntable: Description and I/O ............................................................................................ 42 
Table 5.6 - Tables' common variables .................................................................................................. 43 
Table 5.7 - Timeout Monitor’s variables ................................................................................................ 44 
Table 5.8 - Description of the complex automated system scenario .................................................... 45 
Table 5.9 - How the Box Identification System works ........................................................................... 47 
Table 5.10 - Description of the new "Tables" function block ................................................................. 48 
Table 5.11 - Function block that is selected to perform a task depending on the step ......................... 52 
Table 5.12 - Description of the new "Chain Transfer Table" function block .......................................... 53 
Table 5.13 - Function block that is selected to perform a task depending on the step ......................... 55 
Table 5.14 - Description of the new "Turntable" function block ............................................................ 56 
Table 5.15 - UML representation of the system’s state function blocks and their dependencies ......... 57 
Table 5.16 - Description of the new scenario ........................................................................................ 58 
 

 

 

  



 

xvi 
 

 

 

 



Object-Oriented PLC Programming 

 

1 

 

1 Introduction 

As the PLC industry evolves and requirements become increasingly sophisticated, the use of 

more powerful PLC programming approaches naturally turns into a need. What once was 

treated as powerful but very specific and hard to learn resource is slowly gaining importance in 

the world of industrial control. 

 

Programming is the bedrock of the age of information technologies. It is so powerful that it 

feels like a computer is capable of doing almost anything, a tool that provides endless 

possibilities, only limited by hardware resources and the skill of the programmer. So, PLC 

programmers started to think about ways of bringing proved powerful software tools and 

approaches into the industrial world. 

 

The introduction of high-level programming approaches to the PLC industry has not only 

allowed programmers to come up with more powerful solutions but also get rid of some of the 

industry’s biggest problems. 

 

Therefore, the aim of this document is to analyze how Object-Oriented Programming can 

improve the industry, using it to create PLC applications and testing them on simulated 

scenarios. 

1.1 Aims 

The goal of this dissertation is to show how object-oriented programming can improve PLC 

programming. In order to reach that goal, the creation of PLC applications using OOP to control 

individual components is going to be analyzed in four case studies. 

 

In order to analyze the impact of OOP’s features, an existent system will be changed using this 

programming approach. Both systems will be compared in order to understand the how object-

oriented programming is able to improve systems. 

1.2 Research Methodology and Project Execution 

Before addressing any case scenario, it is necessary to understand why object-oriented 

programming has been gaining importance in the PLC industry. Figure 1.1 shows the order of 

execution of the tasks that were performed in order to achieve the objectives exposed in the 

previous section. 

 



Object-Oriented PLC Programming 

 

2 
 

 
Figure 1.1 - Research Methodology and Project Execution 

 

The first step is studying the current state of the industry’s programming approaches and their 

limitations as well as how an approach that is normally used to design regular software such as 

object-oriented programming can deal with such limitations. 

 

The second step is understanding how to program using object-oriented approaches, and which 

standards and tools can be used to design PLC applications using this type of approach. 

Understanding OOP’s features and how they can be used to create powerful applications is 

essential to understand the development of the case studies. 

 

The third step is the development of four simple case studies to demonstrate OOP’s features 

can be used to control some individual components. 

 

The fourth step is the recreation of a previously created major scenario using object-oriented 

programming. Both scenarios are compared in order to evaluate how OOP can improve a major 

automated system. 

1.3 Dissertation’s organization 

In chapter 2, classical and current PLC programming approaches are introduced, as well as their 

limitations. Object-oriented programming is then introduced as an alternative to the most 

common programming approaches used in the PLC industry. It is also compared to regular 

object-oriented programming. The chapter ends explaining OOP’s role in the PLC industry and 

how it can be used alongside the industry’s common practices. 

 

In chapter 3, the standards and tools that allow the creation of object-oriented PLC applications 

are introduced. In particular, the 3rd part of the IEC 61131 standard is introduced since it defines 

the programming languages for programmable controllers. Its most important features are 

thoroughly explained. 

 

In chapter 4, four simple case studies are introduced in order to explain how OOP’s features 

can be implemented to create powerful applications to control individual components. 

 

In chapter 5, a previously designed major scenario was recreated using object-oriented 

programming. Both final results were compared in order to evaluate the improvements provided 

by OOP. 

 

In chapter 6, the work that was carried out throughout the dissertation is presented while 

justifying the main conclusions and benefits of this project to the industry and to the author, as 

well as some instances of future work. 

 

 

 

Studying the 
current state of the 

industry's 
programming 

approaches and 
introducing OOP

Understanding 
Object-Oriented 
PLC Programing, 

following the 
standards and tools 

that allow its 
implementation

Development of 
four simple case 
studies to show 

how to implement 
OOP's features

Recreation of an 
existent major case 

scenario and 
evaluation of the 

improvements 
provided by OOP



Object-Oriented PLC Programming 

 

3 

 

2 PLC Programming Engineering 

PLCs and their associated programming practices have experienced great transformations since 

the 1960s. Understanding the evolution and history of PLCs and their programming 

methodologies, as well as how these compare to general software programming is essential for 

PLC based projects organization, execution and maintenance. Traditional programming 

methodologies are easy to learn and apply, but they are also inefficient and error prone. Yet, 

recent approaches brought a set of features to enhance PLC’s controlling capabilities. 

 

This chapter surveys the evolution of PLC programming over time and how classical 

programming compares to the most recent programming approaches, namely object-oriented 

programming which will be the research subject of this document. 

2.1 PLCs: Emergence and Early Software Development 

A PLC (Programmable Logic Controller) is an industrial computer adapted for the control of 

manufacturing processes [1]. PLCs have emerged as a replacement for hard-wired relay 

systems, because of their flexibility and ease of programming. Thus, they must be able to work 

in harsh usage environments such as strong vibrations or severe temperatures. 

 

In the beginning, PLCs were programmed using Ladder Logic [2] which strongly resembles 

schematic diagrams of relay logic (Figure 2.1). A scanning engine and a memory management 

stack are always associated with ladder logic: at first, physical inputs are read and stored in an 

input memory table; then, the ladder logic is run, computing the output memory table; at the 

end of the logic cycle, the physical outputs are updated according to the output memory table. 

 

 
Figure 2.1 - Left: relay logic; right: ladder logic [3] 

 

As a major benefit, this programming notation is easy to understand, learn, troubleshoot and 

debug, even by non-graduate automation technicians. Moreover, it does an excellent job at 

representing discrete logic: each line of code must be true to turn something on. Ladder logic 

is thus natural for machine and process control and allows for writing programs with a certain 

level of complexity. Moreover, the source code and descriptions of the programs are often 

stored in the controller, which allows maintenance personnel to easily access it in order to 

troubleshoot it [4]. 



Object-Oriented PLC Programming 

 

4 
 

 

However, ladder logic has some limitations, namely regarding data structures and protection. 

Ladder diagrams traditionally address memory in single bits or 16 bits registers and are allowed 

to read and write data to variables anywhere in the program. Data protection or the creation of 

a data structure is thus difficult in ladder, as accessing can be done freely and directly, making 

it easy to accidentally access or change the wrong data, thus causing unexpected behaviors that 

can lead to catastrophic failures. Finding a way to protect internal information is also a difficult 

job, as data can be corrupted by faulty code anywhere in the program. The use of named 

variables could be a solution, but even in this case, variables could allocate their values in 

overlapping memory locations. Modern editors minimize this kind of errors as they include 

tools that show which memory locations are being used for each variable, checking and warning 

about possible conflicts [5]. 

 

Ladder logic used to deal only with boolean algebra, counters/timers and simple integer 

arithmetic but nowadays it supports mathematical operations through the use of more advanced 

function blocks. However, the inputs and outputs of the function blocks that perform such 

operations are not casted together in a data structure but, instead, referenced to individual 

memory locations. As a result, simple math operations are still easily performed – e.g., a 

subtraction like the one shown in Figure 2.2 –, but complex algorithms involving lots of 

variables and intermediate results can be difficult to program, debug, edit and document. 

 

 
Figure 2.2 - A subtraction function block in a ladder diagram [6]  

 

There are also some issues with limited execution control. Ladder diagram programs are 

executed in a left-to-right, top-to-bottom basis, and response time is defined by the speed at 

which the PLC can scan and execute. This works very well for many applications but not as 

much when the program execution needs to be flexible enough to adapt to operational mode 

changes of the controlled object. Jump commands can be used to transfer program execution to 

different parts of the diagram, but because overall response time depends on the length and 

complexity of a ladder program, it can become a problem when designing real-time systems – 

e.g., systems that need to respond within a limited time interval. Rearranging the structure of a 

program during runtime requires time and resources, and might be unacceptable for some cases 

like analog control (such as PID), which depends on properly managed memory values and on 

predictable and bounded execution timing. 

 

Additionally, ladder programs that don’t rely on a proper modular functional organization don’t 

allow code to be reused. Unstructured programs can become very long and difficult to 

understand and manage. Even though simple programs are very easy to edit and debug, this 

task can become difficult if the program reaches larger sizes. Even though almost every major 

ladder diagram package includes functions and function blocks that can be called from the 

ladder rungs, many of them support limited numbers of subroutines or function blocks, making 

it still hard to break large programs into manageable parts [5]. 

 



Object-Oriented PLC Programming 

 

5 

 

As industrial control requirements became more and more challenging and sophisticated, new 

programming approaches started appearing. At first, PLCs could only read a very limited set of 

elementary data types (bits, bytes, etc.). Then came the introduction of analog inputs and 

outputs, and more recently PLCs started including a wider set of mathematical and 

programming functions that tend to be very difficult or even impossible to implement in 

traditional “ladder logic” or “function block” diagrams. On the other hand, PLC applications 

became strongly distributed and, consequently, modular programming and code replication 

techniques started playing a major role in PLC software engineering.  

 

In short, PLC programmers and PLC manufacturers are constantly looking for ways to 

efficiently implement answers to the always emerging needs coming from the industrial world. 

Adopting object-oriented programming approaches in industrial programming is the most 

recent innovation [7]. 

2.2 Design Approaches for PLC Applications 

As stated, programming concepts normally applied to regular computer programming recently 

started to be applied to PLCs in order to fulfil some of the needs that traditional ladder logic 

couldn’t deal with. This section surveys this evolution. 

2.2.1 Procedural Programming 

At first, procedural programming was the way PLC programs were based on. This approach 

directly follows the Top Down Design method [8]. It takes on applications by solving problems 

(procedures) from the top to the bottom of the code. The program starts with a major procedure, 

breaking it down into properly ordered and detailed sub-procedures until it is simple enough to 

be solved [9]. 

 

A scan cycle of a PLC has 3 main steps: 1) input reading; 2) program execution; 3) output 

writing (as stated in section 2.1). One could say that this input to output data processing order 

closely implements a Top Down approach. As such, PLC’s operating systems seem to naturally 

enforce procedural programming. 

 

Whilst this is somewhat true, ad-hoc procedural programming tends to be hard to edit and 

manage; so, even though procedural programming introduced lots of new functionalities, some 

of the biggest advantages that defined PLC programming were lost – i.e. the ease of 

programming and troubleshooting. Also, some other software problems, such as multitasking 

support and openness to high level programming started to become an issue when designing 

PLC applications. 

 

Procedural programming was made very useful at first because of the introduction of custom 

functions; custom blocks could be used to perform self-contained or complex jobs on volatile 

data that were difficult to program using conventional PLC programming languages. Yet, 

functions – later evolved to static data functions of function blocks – made it possible to use 

persistent data blocks in ladder diagrams and other emerging PLC programming languages. 

This solution, often described as “almost object-oriented” was very successful and is widely 

used nowadays. 

 

Since this solution fit PLC programming so well, programmers kept on exploring how other 

object-oriented concepts could be applied onto PLC programming in order to deal with 

procedural programming’s disadvantages. 



Object-Oriented PLC Programming 

 

6 
 

2.2.2 Object-Oriented Programming 

Object-Oriented Programming (OOP) is a programming model based on the concept of objects 

[9]. Using this approach, programs are built by objects that interact with each other. Objects 

can contain data in the form of properties (also known as fields or attributes) and code in the 

form of methods (or procedures). It focuses on the data to be manipulated rather than the 

logic to manipulate it. 

 

In software engineering, just like in real life, an object can be anything we see - like a pen or a 

computer; Yet, in the second context, an object can also be an imaterial entity - like a bank 

account. Objects have different but typical properties and behaviors that differentiate from each 

other. For example, a pen has a set of properties (such as body color, writing color, brand) and 

can perform certain tasks (like cap, uncap and write) called behaviors or operations. Different 

objects have different sets of properties and behaviors, while similar objects (i.e., objects from 

the same class) exhibit the same sets of properties and behaviors. 

 

In software engineering, an object is a closed group of data and code, whose execution may 

require external input data or make internal data available for external use, but it can only access 

the data that it needs to run. This means that an object will only use the data that it is supposed 

to manipulate, none of the redundant data to a certain action will be solicitated. This improves 

system security and avoids data corruption. The data inside a certain object can also be hidden 

from other objects, which means that external access to this data is denied. 

 

Object-Oriented Programming languages can be very different from each other, as they may 

have different purposes. So, it is worth noting that, in this document, class-based object-oriented 

programming concepts will be studied in the context of their applicability in PLC controlled 

systems. 

 

An object is thus an instance of a class. To explain the concept of a class, Figure 2.3 introduces 

another real-life example: different cell phones can belong to different brands, and can have 

different colors, shapes and hardware specifications. A white iPhone and a black Samsung 

Galaxy are different objects, but both of them can be classified as cell phones. 

 

 
Figure 2.3 - "Cell Phone" class and some examples of objects 

 

The class is just a conceptual framework that defines the type of properties and behaviors that 

a group of objects must have, whilst the object possesses said properties and behaviours.  

 

An object-oriented program features multiple classes to create a standardized framework. The 

creation of a new object is, thus, easier and their interactions with other objects is easier to 

implement and can be easily managed. 



Object-Oriented PLC Programming 

 

7 

 

2.2.3 Object-Oriented Programming: advantages over Procedural Programming 

Object-oriented programming promotes code reusability and ease of maintenance. If a 

“phone” class was created at some point in an application, then it can just be called again in the 

same application. Code maintenance is also very easy to carry, as it is possible to change the 

class’s code therefore changing all the objects that implement it. 

 

It is also very easy to create new similar objects by extending the existing ones. That extension 

could add new features or override existing functionalities. Changes in the base classes are 

applied to every class that extends it, thus eliminating the need for copying and pasting. 

 

It’s important to point out that, even though OOP enhances simplicity and the capacity to 

implement future changes, it doesn’t necessarily make coding faster. Object-Oriented 

Programming’s major benefits come from the following concepts: 

 

• Encapsulation 

Encapsulation is used to bundle data with the methods that operate on it and to hide data inside 

a class, preventing unauthorized parties to directly access it. It reduces code complexity and 

increases reusability. The separation the code allows the creation of routines that can be reused 

instead of copying and pasting code, reducing the complexity of the main program. 

 

• Abstraction 

Abstraction is the process of hiding important information, showing only the most essential 

information. It reduces code complexity and isolates the impact of changes.  

 

Abstraction can be understood from a real-life example: turning on a television must only 

require clicking on a button, as people don’t need to know or the process that it goes through. 

 

Even though that process can be complex and important, there is no need for the user to know 

how it is implemented. The important information that isn’t required is hidden from the user, 

reducing code complexity, enhancing data hiding and reusability, thus making function 

blocks easier to implement and modify. 

 

• Inheritance 

Inheritance allows the user to create classes based on other classes. The inherited classes can 

use the base class’s functionalities as well as some additional functionalities that the user may 

define. It eliminates redundant code, prevents copying and pasting and makes expansion easier.  

 

This is very useful because it allows classes to be extended of modified (overridden) without 

changing the base class’s code implementation. 

 

What do an old landline phone and a smartphone have in common? Both of them can be 

classified as phones. Should they be classified as objects? No, as they also define the properties 

and behaviors of a group of objects. A smartphone works just like a regular phone, but it is also 

able to take pictures, navigate the internet, and do many other things. So, old landline phone 

and smartphone are child classes that extend the parent phone class. 

 

• Polymorphism 

The concept of polymorphism is derived by the combination of two words: Poly (Many) and 

Morphism (Form). It refactors ugly and complex switch cases/case statements. 

 



Object-Oriented PLC Programming 

 

8 
 

Polymorphism allows an object to change its appearance and performance depending on the 

practical situation in order to be able to carry out a particular task [10]. It can be either static or 

dynamic: static polymorphism occurs when the object’s type is defined by the compiler; 

dynamic polymorphism occurs when the type is determined during run-time, making it possible 

for a same variable to access different objects while the program is running. 

 

A good example to explain polymorphism is a Swiss Army Knife (Figure 2.4): 

 

 
Figure 2.4 - Swiss Army Knife 

 

A Swiss Army Knife is a single tool that includes a bunch of resources that can be used to solve 

different issues. Selecting the proper tool, a Swiss Army Knife can be used to efficiently 

perform a certain set of valuable tasks. In the dual way, a simple adder block that adapts itself 

to cope with, for instance, int, float, string, and time data types is an example of a polymorphic 

programming resource. 

2.2.4 Object-Oriented PLC Programming vs Computer Programming 

The creator of the “object-oriented” concept didn’t, originally, mean to create C++ or any of 

the class based Object-Oriented Programming languages. However, Object-Oriented PLC 

Programming is highly based in C++ and Java’s principles. 

 

According to Alan Kay [11], the most essential concepts for OOP are encapsulation, message 

passing and dynamic binding (the ability for the program to evolve/adapt during runtime). 

Concepts like Classes, inheritance, special treatment for functions or data, polymorphism, 

etc. aren’t necessary because his goal is to “get rid of data”, “[…] to not have to worry about 

what’s inside of an object. Objects made on different machines and with different languages 

should be able to talk to each other […]”. 

 

However, data types are very important in PLC programming, as they need to be clearly 

defined, mainly when dealing with the input and output signals of the PLC. If the variable type 

isn’t clearly or correctly defined, the external signals won’t be converted accurately.  

 

For an application to be programmed and downloaded to a PLC, special software must be used. 

The code of the application must be compiled before being downloaded to the PLC so that it 

works efficiently and in real-time. 

 

Apart from variables, there isn’t much in a common PLC controlled system that could be 

described as “dynamic” in the computing sense. Object-oriented PLC programming software 

doesn’t usually allow the creation and elimination of objects during run-time, simply because 

it has no applicability in PLC controlled systems. For example, if a PLC controls a system that 

incorporates 3 conveyors, then there should only be 3 conveyor objects. The creation and 

elimination of extra conveyor objects or the elimination of existing ones isn’t allowed (or 



Object-Oriented PLC Programming 

 

9 

 

required) during run-time. If a conveyor is to be added to/removed from the physical system, 

then a cold change must be performed (a change that is made while the system is offline – 

requires a redownload onto the PLC). 

 

On the other hand, if an object stops being used, then it is only occupying space in the memory 

of the program. If the program allows memory allocation (the creation and elimination of 

objects during runtime), memory exhaustion might be an issue. The use of an automatic 

garbage collector like the one that exists in Java, which frees unused memory spaces, is not 

recommended for PLC application design software as it uses additional resources and impacts 

performance, as it takes time to be performed, and can possibly stall program execution. Since 

PLCs control real-time environments and demand tasks to be completed within limited time, 

a garbage collector is highly inappropriate as it could lead to unexpected and prejudicial results. 

Therefore, traditional OOP issues related to dynamic object creation and elimination are not 

present in Object-Oriented PLC Programming. 

 

Yet, PLC programs often require lots of changes. However, most changes must be made while 

the system is online, as every second counts in common PLC controlled environments. 

Performing new downloads and having to re-compile the code every time a change is done 

takes precious time that cannot be spared by working systems, especially in largest ones. PLC 

application design software must allow UDTs (User-defined types) to be used/changed during 

run-time in order for OOP to reach its full potential in the PLC industry. 

2.3 Complementing Traditional PLC Programming Practices with Object-
Oriented Approaches 

Object-Oriented Programming is clearly more adapted to program complex PLC applications 

than procedural programming. It also brings a very powerful set of features and advantages for 

the system. 

 

OOP’s major advantages over common PLC programming approaches are: 

• Code encapsulation, resulting in portable and reusable code 

Object-oriented programmed applications are extremely portable and reusable. Since classes 

are created separately, a programmer can create custom libraries with classes that he wishes to 

reuse in other projects without having to implement the rest of the program or without changing 

the program where it was created in the first place. 

 

• Better data management 

Data management is no longer done directly, which greatly decreases error proneness. Each 

data piece has to be declared, typified and initialized. It also becomes much easier to implement 

complex mathematical or programming functions: mathematical operations and programming 

functions like loops become much easier to implement, edit and document. This type of task 

was difficult to program using ladder logic. 

 

• Creation of standardized frameworks, which makes implementation and 

modification easier 

Having standardized frameworks for the constituents of a system is very important, as it 

standardizes how its components interact with each other, thus easing their implementation. 

 

• Taught in nearly every computer programming 

Even though OOP isn’t as intuitive or as easy to learn as “ladder logic”, chances are that 

younger engineers or scientists will have some knowledge in this subject. OOP isn’t a recent 

concept, it was introduced in the 1960s or even before, but only recently was it applied to PLCs 



Object-Oriented PLC Programming 

 

10 
 

in general. There is a lot of documentation available online about OOP, if one is interested in 

learning how to use it. 

 

• Runs in various hardware platforms 

Software applications programmed using OOP can run in different hardware platforms, while 

“ladder logic” programmed software must be run using a specific hardware. 

 

However, it still needs to be implemented using specific software. The source code must be 

compiled before it is downloaded to the controller and most times it isn’t present in the 

processor memory, meaning that it should be backed up carefully because the compiled code is 

usually not editable. It can be difficult to perform monitoring in real time. Libraries need to be 

connected to other resources used during compilation. If these connections and resources aren’t 

understood, it will be difficult to get the program to run. 

 

Industrial Automation has relied on other common PLC programming languages (mainly ladder 

logic) for nearly 50 years, and senior PLC programmers take it as an interesting and easy to 

cope language.  

 

Although not as powerful as OOP, its advantages regarding simplicity are a very solid reason 

for a programmer not wanting to change. OOP is, thus, a very powerful high-level programming 

language that can be used as a (complementary) alternative to other PLC programming 

approaches. 

 

Common PLC programming languages (such as Ladder Logic or Function Block Diagram) 

keep some functional advantages over OOP: 

• Lower overhead, since they tend to need less memory and processing power; 

• Easier to troubleshoot for maintenance personnel; 

• Predictable behavior and worst-case execution time; 

• Must be compiled so source code can be uploaded to the processor. 

 

All programming approaches will coexist in the industry for the decades to come, as OOP is 

slowly, but surely, gaining importance in the automation field.  

2.4 Concluding Remarks 

In this chapter, the most significant PLC programming approaches were reviewed to better 

understand their capabilities and limitations. Ladder diagram’s evolution has been able to cope 

with most of the needs that emerged over time. Its simplicity and ease of programming and 

maintenance have kept it as the most reliable programming approach over the years. 

 

As data management became more and more important and programming needs became more 

sophisticated, other programming approaches started to be explored. However, the advantages 

that regarded simplicity, ease of programming and troubleshooting were lost. 

 

Object-Oriented Programming doesn’t bring back every advantage that made ladder logic and 

other traditional PLC programming languages great, as it is still requires high-level 

programming knowledge, but its advantages regarding data management, code reusability and 

overall programming capabilities make it a very important tool for the present and future of 

PLC programming. 

 

The next chapter addresses the current tools and standards that support the implementation of 

OOP in PLC programming. 



Object-Oriented PLC Programming 

 

11 

 

3 Standards and Tools for Object-Oriented PLC Programming 

The existence of standards and tools that support Object-Oriented PLC Programming is 

essential to disseminate related concepts and practices. The standardization of PLC 

programming approaches and their implementation in practical resources has contributed to a 

more widespread use and approximation between different manufacturers’ software. 

 

This chapter addresses the standard that currently deals with PLC programming methodologies 

and some of the tools that implement the concepts it suggests. 

3.1 The IEC 61131-3 Standard 

The first edition of the third part (out of ten) of the IEC 61131 international standard was 

published in December 1993 by the International Electrotechnical Commission (IEC). It 

became known as the IEC 1131-3 standard before a later major change in IEC standards’ 

numbering system and as IEC 61131-3 thereafter [12]. This part of the standard deals with PLC 

programming languages and software and PLC program execution models. 

 

The first edition’s basic principle is that a programmer can develop a control algorithm using 

any combination of the following five – three graphical and two textual – programming 

languages: 

• Ladder Diagram (LD) – Graphical; 

• Function Block Diagram (FBD) – Graphical; 

• Structured Text (ST) – Textual; 

• Instruction List (IL) – Textual; 

• Sequential Function Chart (SFC) – Graphical. 

 

Regardless of the used programming language, a control algorithm includes entities referred to 

as Program Organization Units (POUs). These can be reused within an application and can also 

be organized in user-defined libraries for importation into other control programs.  

 

When creating a POU, the user can choose one of the following options: 

• Function - this type of POU typically includes some code and some volatile data; it 

isn’t instantiated in the main program. The user can call a function whenever needed. It 

only returns one output. A function can either perform a standard set of instructions or 

a user defined one; 

• Function Block or Class - this type of POU includes some code and some non-volatile 

data; function blocks are instantiated and can return multiple outputs. A function block 

can also perform standard sets of instructions or user defined ones; 

• Programs, such as the main program, are POUs that can be put to run or to stop. They 

are created in any of the above-mentioned standard languages, and can incorporate 

unique code and functions or function blocks previously created within a project or 



Object-Oriented PLC Programming 

 

12 
 

referenced to external libraries. A program is the only POU type that can be inserted 

into a task.  

 

All variables within a program must be declared, either locally to a POU or globally to the 

project, regardless of the POU or language used. 

 

The goal of the standard is to be a guide for PLC programming and not a strict set of rules, 

it is expected that the controllers are only partially compliant due to the high amount of detail. 

The implementation of the standard’s concepts allows more powerful communications between 

controllers produced by different manufacturers. 

 

Meanwhile, two major revisions were conducted on the original IEC 61131-3 standard. The 

third and current edition of the standard was published in February 2013 [13].  

 

The IEC 61131-3 standard deals with basic software architecture and programming languages 

of the control program within PLC since its first edition, but it now explicitly includes 

references to Object-Oriented Programming. 

 

The latest edition of the IEC 61131-3 introduces the following Object-Oriented Programming 

features: 

• Classes; 

• Methods; 

• Properties; 

• Inheritance (along with access specifiers and polymorphism); 

• Interfaces and Abstraction (polymorphism is also included here). 

3.1.1 Classes and Function Blocks 

According to IEC 61131-3, a class is a POU designed for object-oriented programming. It 

contains essentially variables and methods. A class shall be instantiated before its methods can 

be called or its variables can be accessed. 

 

A class differs from a function block in the aspects described in Table 3.1: 

 
Table 3.1 - Differences between a class and a function block 

 Function Block Class 

Keywords 

(to create the POU) 

FUNCTION_BLOCK 

END_FUNCTION_BLOCK 

CLASS 

END_CLASS 

Variable declaration Only in the VAR section VAR_INPUT, VAR_OUTPUT, etc. 

Has body? Yes No. It may define only methods 

Can an instance of it 

be called? 
Yes 

No. Only the methods of a class may 

be called 

 

The standard also defines classical function blocks and introduces object-oriented FBs. 

3.1.2 Methods 

Methods divide the class or function block into smaller functions that can be executed upon 

call. They will only work with the data they need, and they will ignore any redundant data that 

may exist in a certain function block. 

 



Object-Oriented PLC Programming 

 

13 

 

Methods can access and manipulate the main class’s internal variables, but they can also use 

variables of their own that cannot be accessed by the main class (unless they’re output 

variables). 

 

Also, methods are a much more efficient way of running a program because, by dividing a 

function into various methods, the user avoids running the whole POU every single time, 

running only small portions of code whenever there is a need for them to be called. This is a 

very good way of avoiding errors and data corruption.  

 

Methods also have a name, which means that these portions of code can be identified by their 

purposes instead of the variables they manipulate, thus enhancing code reading and 

troubleshooting. 

 

Figure 3.1 shows a simple example of a “Door” function block with two methods “openDoor” 

and “closeDoor”. As it is possible to understand, the code is easy to read and understand: if 

there is a knock on the door, the door opens, otherwise, it closes.  

 

 
Figure 3.1 - “Door” FB calling its methods 

 

Abstraction plays an important role here – if programmers wish to implement the code to open 

the door multiple times, they only need to call the method. Troubleshooting also becomes 

simpler – if the door is having problems while closing, then the programmer doesn’t need to 

hunt for every instance of the code, they just need to check the “closeDoor” method. 

 

Unlike the base class, methods use the controller’s temporary memory – data is volatile, as their 

variables will only keep their values while the method is being executed. If values are supposed 

to be kept between execution cycles, then the variable should be stored in the base class or in 

some other place that will retain values from one cycle to the other (such as the global variable 

list).  

 

Figure 3.2 shows a method incrementing a variable instantiated in its main class and an internal 

variable of its own every time it is run. Both variables are incremented 3 times, yet, their final 

result is different: 

 

 
Figure 3.2 - Memory usage by classes/FBs and methods 



Object-Oriented PLC Programming 

 

14 
 

3.1.3 Properties 

Properties are major variables of a class. They can be used as an alternative to regular class or 

function block I/O [14].  

 

Properties have “Get” and “Set” methods that allow variables to be accessed and/or changed: 

• Get - Method that returns the value of a variable; 

• Set - Method that sets the value of a variable. 

  

By deleting the “Get” or “Set” method, a programmer can make properties “write-only” or 

“read-only”, respectively.  

 

Since these are methods, it means that properties can: 

• Have their own internal variables; 

• Perform operations before returning its value; 

• The returned variable doesn’t need to be attached to a particular input or output (or 

internal variable) of the POU, it can return a value based on a certain combination of its 

variables; 

• Be accessed upon event instead of being checked in every execution cycle. 

3.1.4 Access Specifiers 

Access specifiers give programmers more control over who can access which data. 

 

Methods and properties can be public, protected or private. If the user doesn’t specify the 

access type, then the method will be public by default: 

• Public methods can be accessed from within the class, from the inherited classes and 

from the main program. 

• Private methods can only be accessed from within the class, they can’t be accessed from 

inherited classes or the main program. 

• Protected classes can be accessed from within the class and from inherited classes, but 

they can’t be accessed from the main program. 

 

Variables can also be internal, accessible only from the inside of a certain namespace (i.e., 

any POU, method or property). 

 
Table 3.2 - Access Specifiers: who can access methods 

Access Specifier Namespace Defining POU Derived POU Main Program 

Public (Default) A A A A 

Protected A A A NA 

Private A A NA NA 

Internal A NA NA NA 

A – Accessible; NA – Not Accessible. 

3.1.5 Inheritance 

Inheritance is a mechanism that allows POUs to be extended. Extended or inherited classes 

acquire some or all the properties and methods of the parent class and implement additional 

properties and methods. Inherited function blocks may also inherit its parent’s body code 

implementation. 

 



Object-Oriented PLC Programming 

 

15 

 

Figure 3.3 shows how inheritance works – classes and function blocks may extend classes, but 

only function blocks can extend other function blocks. Classes have no body code 

implementation, hence why they can’t extend function blocks. 

 

 
Figure 3.3 - How inheritance can be used to extend classes and function blocks [13] 

 

Inheritance is very useful for the creation of classes which share the same basis of operation. 

Without it, POUs with small differences had to be created separately, demanding common code 

to be copied and pasted between POUs. 

 

OOP allows programmers to create general base classes that can be applied to a large set of 

components with small differences. Inherited classes can then be created to account for those 

differences without influencing the main class.  

 

Deep inheritance is possible: a class can be inherited from a class that is inherited from other 

class. However, deep inheritance with multiple levels of extension is not recommended, as it 

can generate lots of problems (i.e., the same class shouldn’t be extended more than twice). 

 

Multiple inheritance is not supported, the same class can have multiple extensions, but it can’t 

be inherited from two parent classes. Figure 3.4 shows correct (left) and incorrect (right) uses 

of inheritance: 

 

 
Figure 3.4 - Inheritance: how to use 

 

Inherited POUs can override parent classes’ methods and body code, which means that they 

may change the properties and methods they inherited without influencing the parent class. 

 

Sometimes, the programmer may want to relate classes that do not have any type of relationship 

or dependency, which renders inheritance inadequate for the case – classes may have methods 

with the same name but with different implementations. In this case, the implementation of an 

interface - a class with methods and properties without implementation – is the solution. 



Object-Oriented PLC Programming 

 

16 
 

3.1.6 Interfaces 

An interface is a class that contains methods and properties without implementation. This 

interface can then be implemented in any class, but that class must implement all its methods 

and properties.  

 

While inheritance is a “is a” relationship, interfaces can be described as a “behaves as” or a 

“has a” relationship [15]. 

 

Interfaces are objects that allow multiple different classes to have something in common with 

less dependencies. Classes and function blocks can implement several different interfaces. 

One can think of interface’s methods and properties as actions that mean different things 

depending on who is executing them. For instance, the word “Run” means “move at a speed 

faster than a walk” for a human being, but it means “execute” for computers. 

 

Classes or function blocks that share no similarities may implement the same interface. In this 

case, the implementation of the methods in each class can be totally different. This opens up 

lots of powerful programming approaches: 

• POUs can call an interface to execute a method or access a property, not knowing which 

class or FB it is dealing with or how it is going to execute the operation. The interface 

then points to a class or function block that implements the interface and the operation 

is executed; 

• Programmers can create easily customizable switch cases using polymorphism. 

3.1.7 Polymorphism 

Polymorphism is used to change the object type at runtime. It can either be used with a base 

class and its inherited classes or with interfaces and the classes that implement them. 

 

The way that polymorphism works with inheritance is very simple: there is a variable (pointer 

or reference) that points to a certain base class. During runtime, that pointer can alternate 

between classes if their type is either the base class or one of its inherited classes. 

 

Working with interfaces, the variable type will be the interface itself. This is very powerful 

because the user can alternate between classes that are completely different as long as they 

implement the same interface. Interface’s methods perform different tasks depending on the 

class the interface is pointing to. Note that the same variable cannot alternate between 

different interfaces. 

3.2 PLC Object-Oriented Programming Tools 

As stated earlier in this document, special software development tools need to be used in order 

to implement the programming concepts introduced so far. The IEC 61131-3 Standard allows 

two basic concepts for the implementation of object-oriented programming: 

• The use of OOP with object-oriented function blocks; 

• OOP implementation based on classes. 

 

The following section surveys two programming frameworks based on these approaches. 



Object-Oriented PLC Programming 

 

17 

 

3.2.1 The CODESYS framework 

CODESYS [16] is a development system for programming controller applications according to 

the international industrial standard IEC 61131-3. It is developed and marketed by the German 

software company 3S-Smart Software Solutions located in Kempten, Germany. The most 

recent version allows the user to program controllers using OOP concepts while providing the 

support that is needed to implement them. 

 

CODESYS supports the use of function blocks, methods and interfaces defined by the IEC 

61131-3 International Standard. However, CODESYS doesn’t support the class concept and all 

the concepts related to it. It does support object-oriented function blocks. It offers extensive 

debugging functionalities such as variable monitoring and breakpoint setting.  

 

Figure 3.5 shows the CODESYS’ IEC 61131-3 Compliance Table [17]: 

 

 
Figure 3.5 - CODESYS compliance tables: doesn't support classes but supports object-oriented function blocks 

 

Many PLC manufacturers (e.g., Schneider Electric or Beckhoff) use the CODESYS framework 

in their application design software. 

3.2.2 Tools from Siemens 

Siemens provides three software platforms that conform to IEC 61131-3: 

• TIA Portal (Totally Integrated Automation Portal)/STEP 7 – doesn’t support OOP; 

• SIMOTION – supports object-oriented programming from V4.5 onwards. 

 

TIA Portal’s function blocks aren’t object-oriented, but some of the functionalities that 

characterize OOP can still be emulated. However, its use of UDTs (user-defined types) is very 

limited when compared to environments that support object-oriented programming - e.g., arrays 

and structured data types cannot have UDTs as elements. 

 

SIMOTION is a motion control system developed by Siemens. It has been marketed since 2002 

and used in many kinds of machines. It is used for applications in which motion control plays 

a central role. Starting from version 4.5, SIMOTION fully supports all the concepts introduced 

by the IEC 61131-3 Standard regarding object-oriented programming.  

 



Object-Oriented PLC Programming 

 

18 
 

However, Braun and Horn [18] state that SIMOTION chose not to implement the use of the 

object-oriented function blocks defined by the IEC. SIMOTION uses classes in order to 

implement OOP. Figure 3.6 shows an example of a “Counter” Class created in SIMOTION: 

 

 
Figure 3.6 - Example of a "Counter" Class [18] 

 

SIMOTION [18] also defines function blocks with methods without inheritance or overriding 

of methods. Figure 3.7 shows an example of a function block with a method. 

 

 
Figure 3.7 - Example of a “FBValve43” function block with methods [18] 

3.3 Concluding Remarks 

This chapter addressed the standards and resources that allow PLCs to be programmed using 

object-oriented programming approaches. The concepts that were introduced by the latest 

edition of the IEC 61131-3 international standard were briefly introduced to better understand 

the capabilities of this new programming approach. 

 

In the next chapter, these concepts and technology will be put into practice in order to evaluate 

how useful they can become. 



Object-Oriented PLC Programming 

 

19 

 

4 Practical Evaluation of Object-Oriented PLC Programming 

The creation of applications to solve practical automation problems is very important to better 

understand the capabilities of this new programming approach. To validate the developed 

applications, simulated scenarios were created using Factory IO’s [19] virtual environments. 

 

Access to real systems is often very difficult. Simulated scenarios allow programmers to test 

their applications without having to entail the costs and risks associated with the creation of 

real systems. 

 

CODESYS 3.5 SP10 Patch 1 was the software development environment used to create the 

control applications. 

4.1 Training Environment 

Factory IO is an increasingly popular 3D factory simulation software that allows for original 

user-defined or common industrial scenarios to be created in a simulation environment. It is 

compatible with any PLC, making a great tool for PLC training [19]. 

 

 
Figure 4.1 - Example of a Factory IO custom scenario 

 

Factory IO provides a great set of industrial parts, including sensors, conveyors, elevators, 

stations and many others. Most parts include analog and digital I/O. So, it is the perfect 

environment to safely and inexpressibly develop and test PLC controlled industrial 

applications. 

 



Object-Oriented PLC Programming 

 

20 
 

Factory IO has two modes of simulation: 

• Edit – to create and edit the scenario; 

• Run – to test the created scenario.  

 

To hop between these modes, Factory IO provides the buttons shown in Figure 4.2, which can 

be found on the top right corner of the software’s user interface: 

 

 
Figure 4.2 - Left: System is stopped; Right: System is running 

 

The first button, the “play” button, starts the simulation. It is a toggle button which changes the 

its appearance depending on the simulation mode – in edit mode, the button looks like a “play” 

button and when the system is running, the button is subbed by a stop” button. 

 

The second button, the “pause” button, pauses the running simulation. Pausing the simulation 

in run mode blocks all movement, even if users want to manually move components from their 

places, it won’t be allowed. It is also a toggle button that can be activated in edit mode, so that 

the system can be started in pause mode. 

 

The third button, the “reset” button, resets the simulation to its original state. Every item that 

may have been inserted is removed and every component that was moved in the simulation 

returns to its original position. It is a momentary button, as it isn’t required to stay activated for 

long periods of time. It may only be activated during the simulation. 

 

All buttons may be used as Inputs and Outputs of the PLC application. 

 

Additional info on Factory IO can be found on their website [19]. 

4.2 Case Studies 

This section features four simple case studies to explain how OOPs features can be applied to 

Factory IO’s components: 

• A generic conveyor, such as the one that was exposed in Figure 4.1; 

• A conveyor that incorporates a data buffer capable of registering the ID of the items 

it carries; 

• A conveyor scale, which is a specific conveyor that can measure the weight it is 

carrying; 

• A sorting station, which is a generic conveyor that has an attached actuator that 

removes items from it. 

4.2.1 A Generic Conveyor 

This case study features a simple unidirectional belt conveyor that is meant to transfer parts 

from one side to the other. A function block called “Conveyor” was developed to control this 



Object-Oriented PLC Programming 

 

21 

 

component. The function block divides its tasks between its body code implementation and its 

methods. 

 

The developed scenario includes four components: 

• Belt Conveyor: a unidirectional digital belt conveyor that can transport items (or parts). 

Figure 4.3 shows a conveyor that is able to transport parts from point A to point B. The 

arrow indicates the direction of the movement: 

 

 
Figure 4.3 - Unidirectional digital belt conveyor 

 

• Emitter: an emitter is a virtual component that simulates the insertion of items into a 

system. Figure 4.4 show an example of an Emitter: 

 

 
Figure 4.4 - Example of an Emitter: box with green arrow 

 

• Diffuse Sensors: These diffuse photoelectric sensors can detect any solid object. Figure 

4.5 shows a diffuse sensor detecting a box: 

 

 
Figure 4.5 - Diffuse sensor detecting a box 

 



Object-Oriented PLC Programming 

 

22 
 

• Chute Conveyor: Straight chute conveyor, mostly used to dispatch items from belt 

conveyors. Figure 4.6 shows a chute conveyor dispatching a large box: 

 

 
Figure 4.6 - Chute Conveyor dispatching an item 

4.2.1.1 Description of the First Scenario 

The first scenario that was developed in this case study features a belt conveyor that transports 

items from the side where they are inserted to a chute conveyor that dispatches them. Figure 

4.7 shows the assembly of this scenario in Factory IO: 

 

 
Figure 4.7 - Example of a simple unidirectional belt conveyor 

 

• Components: 

o 1 Belt Conveyor; 

o 1 Emitter; 

o 2 Diffuse sensors; 

o 1 Chute Conveyor. 

• Scenario:  

o The emitter inserts items on the conveyor;  

o The entry sensor detects the arrival of a new item; 

o The conveyor moves if it is carrying at least one item, otherwise it remains still; 

o As soon as an item leaves the emitter, the emitter inserts another one; 

o The exit sensor detects items’ departures. 

• Aim: Automatic control of a conveyor. 

• Initial State: Conveyor with no items. 

• Manual Procedures: Press the start button to turn the system on. 

• Used OOP features: Methods. 

 



Object-Oriented PLC Programming 

 

23 

 

4.2.1.2 Proposed Solution for the First Scenario 

Table 4.1 describes the “Conveyor” function block’s variables and methods. 

 
Table 4.1 - Description of the "Conveyor" function block 

Conveyor 

Variables 

Variable Name Type Description 

Input 
bEntrySensor BOOL Sensor at the beginning of the conveyor. 

bExitSensor BOOL Sensor at the end of the conveyor. 

Output bRoll BOOL Signals the conveyor to roll. 

Internal 
iMaxParts INT Capacity of the conveyor. 

Counter CTUD Counter the number of parts on the conveyor 

Methods 

Run() Allows the conveyor to work. 

Stop() Keeps the conveyor from working. 

Reset() Resets the conveyor’s default parameters. 

 

Figure 4.8 shows a GRAFCET [20] that explains how the conveyor works in this specific 

scenario. 

 

 
Figure 4.8 - Conveyor’s functional GRAFCET 

 

By analyzing the GRAFCET shown in Figure 4.8, it is possible to identify two types of actions: 

• Event triggered actions – e.g., the counter is incremented when “bEntrySensor” exhibits 

a rising trigger; 

• Continuous actions – e.g., turning “bRoll” on.  

 

It is important to understand which actions should be assigned to the body and methods of the 

function block.  

 

As stated in section 3.1.2, methods use temporary memory, whereas function blocks use static 

memory. This means that methods are more suitable for performing event triggered actions 

whereas the body of the FB is more suitable for performing continuous actions. However, this 

isn’t always true. 

 



Object-Oriented PLC Programming 

 

24 
 

Table 4.2 describes where code should be implemented: 

 
Table 4.2 - Where code should be implemented 

Conveyor 

Type of Action Description Namespace 

Continuous Setting the “bRoll” Output. 
Body of the FB 

Event Triggered 

Incrementing/Decrementing the counter. 

Starting/Stopping the system allows the conveyor to 

work or keeps it from working. 
Methods 

Resetting the system’s default parameters such as 

resetting the counter’s current value to 0. 

 

Counters increments and decrements are event triggered actions that are directly included in the 

counter function block that CODESYS provides. For that reason, adding a method to increment 

and another method to decrement the counter only adds unwanted complexity to the system. 

4.2.1.3 Description of the Second Scenario 

Before moving on to the next case study, a new functionality is going to be added to this general 

conveyor: the ability of transferring items to other components and checking if they’re full. 

Figure 4.9 shows a scenario that features two conveyors: parts are inserted onto the first 

conveyor, which transfers them to a second conveyor that is responsible for carrying them to 

the chute conveyor. 

 

 
Figure 4.9 - Second scenario of the case study: transferring parts between conveyors 

 

• Components: 

o 2 Belt Conveyors; 

o 1 Emitter; 

o 3 Diffuse sensors; 

o 1 Chute Conveyor. 

• Scenario:  

o As items from the first conveyor reach its end, the second conveyor detects the 

arrival of a new item; 

o If the second conveyor is already carrying two items, it signals that it is full; 

o If the second conveyor is full and one item reaches the end of the first conveyor, 

then it will stop and wait for the next conveyor to free up space. 

• Aim: Automatic control of a line of conveyors. 

• Initial State: Conveyors with no items. 

• Manual Procedures: Press the start button to turn the system on. 

• Used OOP features: None. 



Object-Oriented PLC Programming 

 

25 

 

4.2.1.4 Proposed Solution for the Second Scenario 

Table 4.3 describes the “Conveyor” function block’s new variables. 

 
Table 4.3 - Description of the "Conveyor" function block's additional variables 

Conveyor 

Variables 

Variable Name Type Description 

Input bNextCompFull BOOL Signals if the next component is full 

Output bFull BOOL Signals if the conveyor is full. 

 

Figure 4.10 shows the changes and additions that were made to the functional GRAFCET 

shown in Figure 4.8: 

 

 
Figure 4.10 - "Simple Conveyor" functional GRAFCET 

 

In this case, the management of the “bFull” variable is done in the body of the function block 

despite being set/reset by events. Since its conditions are clearly defined, the management of 

this variable can easily be done with a latching relay. 

 

The next case study will use this conveyor and extend its functionalities by adding a data buffer 

that records the items it carries. 



Object-Oriented PLC Programming 

 

26 
 

4.2.2 Conveyor with FIFO 

This case study features a conveyor that incorporates a data buffer which records every part it 

carries at a certain moment. The “Conveyor” function block was extended in order to 

encapsulate a “FIFO” function block. 

 

Before explaining how the scenario works, the identification system and the “FIFO_INT” 

function blocks are going to be introduced. Figure 4.11 shows a box identification system 

attached to an emitter and a conveyor: 

 

 
Figure 4.11 - Box Identification System attached to an emitter and a conveyor 

 

The Box Identification System features 3 sensors. Table 4.4 shows the different combinations 

of their signals that identify different boxes: 

 
Table 4.4 - How the Box Identification System works 

Box Identification System 

Box Sensor 1 Sensor 2 Sensor 3 

Small TRUE FALSE FALSE 

Medium TRUE FALSE TRUE 

Large TRUE TRUE TRUE 

 

 

The conveyors encapsulate a “FIFO INT” function block. FIFO (First In, First Out) organizes 

and manipulates a data buffer, where the oldest entry (or “head”) of the queue is processed first. 

Table 4.5 describes the “FIFO INT” function block that was used in the case study: 

 
Table 4.5 - Description of the “FIFO INT” function block 

FIFO INT 

Methods Description I/O Type Type Description 

Write() 
Writes data on the 

buffer. 
Input DataIn INT 

Data to be inserted in the 

buffer. 

Read() 
Reads data from the 

buffer 
Output DataOut INT 

Data to be removed from 

the buffer. 

Reset() Resets the buffer’s default settings. 



Object-Oriented PLC Programming 

 

27 

 

4.2.2.1 Description of the Scenario 

Figure 4.12 shows the second scenario of the previous section with some additional 

components. An identification system identifies boxes by their size at the beginning of the first 

conveyor. As a box is being dispatched, a light is turned on depending on their size. In this case, 

a medium box is being dispatched: 

 

 
Figure 4.12 - Medium box being dispatched 

 

• Components: 

o 2 Belt Conveyors; 

o 1 Emitter; 

o 5 Diffuse sensors; 

o 1 Chute Conveyor; 

o 1 Bracket; 

o 1 Stack Light with 3 Light indicators (Red, Yellow and Green). 

• Scenario: The identification system identifies boxes by their size as they enter the first 

conveyor. The conveyors store the IDs of the parts they carry. The first conveyor 

transfers a part to the second conveyor along with its ID. As the box is being dispatched 

to the chute conveyor, the light that corresponds to its size is turned on: 

o Small: Green; 

o Medium: Yellow; 

o Large: Red. 

• Aim: Incorporation of a monitoring system in a Conveyor. 

• Initial State: Conveyor with no items. 

• Manual Procedures: Press the start button to turn the system on. 

• Used OOP features: Inheritance, Encapsulation, Methods, Delegation. 



Object-Oriented PLC Programming 

 

28 
 

4.2.2.2 Proposed Solution for the Scenario 

Table 4.6 describes the additional variables and methods that the “Conveyor with FIFO” FB 

implements when related to the “Conveyor” FB described in the previous case study: 

 
Table 4.6 - Description of the “Conveyor with FIFO” function block 

Conveyor with FIFO 

Variables 

Variable Name Type Description 

Input iPartTypeIn INT ID of the part that is entering the conveyor. 

Output iPartTypeOut INT ID of the part that is exiting the conveyor. 

Internal Buffer FIFO_INT 
Array where the parts that the system is carrying are 

recorded. 

Methods 

Reset() 
Does exactly what the “Conveyor” FB’s Reset() method does, but it also resets the 

buffer. 

 

Figure 4.13 introduces the additional features that the “Conveyor with FIFO” has in relation to 

the previous case study: 

 

 
Figure 4.13 - "Conveyor with FIFO" functional GRAFCET 

 

The following OOP features were used: 

• Inheritance – extending the “Conveyor” FB to create the “Conveyor with FIFO” FB. 

Figure 4.14 shows a UML representation of the extension: 

 

 
Figure 4.14 - UML representation of the "Conveyor with FIFO" extension 

 

• Encapsulation – a user-defined function block, “FIFO_INT” was encapsulated in the 

extension; 

• Methods – the “FIFO_INT” function block has methods of its own, which are 

responsible for managing the array; 



Object-Oriented PLC Programming 

 

29 

 

• Delegation – A function block can use the (public) methods of the blocks that it 

incorporates. FIFO_INT’s methods – Write(), Read() and Reset() – are called delegates. 

From the outside, it might seem like the Conveyor is storing IDs in the array, but it is, 

in fact, the “FIFO_INT” FB that is performing that task. Delegation is what 

differentiates encapsulation in the latest edition of the IEC 61131-3 standard, since 

previous editions didn’t support the implementation of methods.  

 

Using Inheritance to extend the “Conveyor” FB and encapsulating the “FIFO_INT” FB is a 

much simpler, easier and quicker way to merge both POUs than using only encapsulation: 

• The new function block would require the definition of all the I/O of the “Conveyor” 

and the “FIFO_INT” FBs, which would require a lot of copying and pasting; 

• It is possible to say that the “Conveyor with FIFO” is a “Conveyor”. In this case, 

inheritance can be applied to extend the “Conveyor” function block, requiring only the 

additional features, therefore reducing copying and pasting; 

• Take into account that a conveyor with a buffer is not a buffer. Extending the “FIFO” 

FB and adding the “Conveyor” FB would make no sense. 

• Pure encapsulation should be limited to cases where the new function block doesn’t 

classify as any of its constituents (e.g., a machine is not a motor or a temperature 

sensor). 

 

Figure 4.15 shows how clean and simple the variable instantiation of the new function block 

becomes, as it doesn’t require the redefinition of the Conveyor’s I/O. However, when the 

“Conveyor with FIFO” FB is called on by another POU, it may access all the I/O of the 

“Conveyor” FB: 

 

 
Figure 4.15 - "Conveyor with FIFO" function block instantiation 

 

Figure 4.16 shows how simple it is to implement the additional code and how easy it is to read. 

In line 3, it is also possible to see the definition of a rising edge. It is, in fact, the extension 

overriding its parent since that rising edge has a different definition in the parent function block. 

 

 
Figure 4.16 - "Conveyor with FIFO" function block body code implementation 

 

Inheritance can be used to extend a function block that defines a default set of behaviors for a 

set of components. Factory IO provides other types of unidirectional digital conveyors that can 



Object-Oriented PLC Programming 

 

30 
 

perform additional tasks. The next section will show how OOP allows programmers to deal 

with small differences between similar systems. 

4.2.3 Conveyor Scale 

This case study features a Conveyor Scale that is able to measure the weight of the item it is 

carrying. The “Conveyor with FIFO” function block was extended in order to deal with the 

system’s differences. 

4.2.3.1 Description of the Scenario 

Figure 4.17 shows a conveyor scale which features 3 diffuse sensors: 

 

 
Figure 4.17 - Example of a Conveyor Scale 

 

• Components: 

o 1 Conveyor Scale; 

o 3 Diffuse sensors. 

• Scenario:  

o The conveyor scale receives an item from another conveyor; 

o As soon the 2nd sensor (the sensor in the middle of the Conveyor Scale) detects 

a part, the conveyor stops moving, since the measurement is inaccurate while 

the conveyor is moving; 

o After stopping for 1 second, the POU acquires the item’s weight and resumes 

the movement. 

• Aim: Measurement of an item’s weight. 

• Initial State: Conveyor with no items. 

• Manual Procedures: Press the start button to turn the system on. 

• Used OOP features: Inheritance, Methods. 



Object-Oriented PLC Programming 

 

31 

 

4.2.3.2 Proposed Solution for the Scenario 

Table 4.7 describes the additional variables and methods that the “Conveyor with FIFO” FB 

implements when related to the “Conveyor” FB described in the previous case study: 

 
Table 4.7 - Description of the “Conveyor Scale” function block 

Conveyor Scale 

Variables 

Variable Name Type Description 

Input 

mSensor BOOL Sensor in the middle of the conveyor. 

iWeightLimitInKg INT Conveyor scale’s weight limit (Kg). 

iVoltLimit INT Conveyor scale limit in Volts. 

wWeightInVolts WORD Analog signal acquired from the scale. 

Output wWeightInKg WORD Scaled/Converted weight value. 

Internal onDelay TON On Delay timer  

Methods 

Reset() 
Does exactly what the “Conveyor with FIFO” FB’s Reset() method does, but it 

also resets additional variables. 

Pause() Pauses the conveyor in order to wait for an accurate measurement. 

Convert() Scales/converts the weight value from volts to kilograms. 

 

The conveyor scale works just like a regular Conveyor, or a Conveyor with FIFO in this case, 

but it incorporates additional I/O and code to cope with the additional physical features. Figure 

4.18 introduces the additional features that the “Conveyor Scale” FB has in relation to the 

“Conveyor with FIFO” FB: 

 

 
Figure 4.18 - "Conveyor Scale" functional GRAFCET 

 



Object-Oriented PLC Programming 

 

32 
 

The following OOP features were used: 

• Inheritance – extending the “Conveyor with FIFO” FB in order to create the “Conveyor 

Scale” FB. Figure 4.19 shows a UML representation of the extension: 

 

 
Figure 4.19 - UML representation of the "Conveyor Scale" extension 

 

• Methods – the “Conveyor Scale” FB uses a new private method called “Convert()” to 

scale the value from volts to kilograms. The term “convert” was used instead of “scale” 

to avoid confusion. It also uses a method called “Pause()” in order to pause the 

movement for one second to get an accurate weight measurement. 

 

Having a framework that defines the core properties and behaviors of a system can prove to be 

very important. As stated earlier, Factory IO provides other types of digital conveyors that have 

other functionalities, but the only thing that all conveyors have in common is the fact that they 

are conveyors.  

 

Not having to reimplement the code over and over, or not having to encapsulate the “Conveyor” 

FB which requires having to redefine the I/O can prove to be a great advantage in the long run. 

Even if components have differences in relation to the parent function block, they can always 

override it, and if changes are applicable to every component, then they only need to be applied 

in the parent class. 

 

The only problem that comes with inheritance is related with deep inheritance, which can bring 

up problems due to excessive overriding. 

 

Inheritance is, thus, a very powerful resource when dealing with similar components. However, 

it is not the best answer when it comes to dealing with different components which may 

apparently have nothing in common. The next section addresses how programmers can link 

components with no dependencies. 

4.2.4 Sorting Station: Conveyor with an Item Removing Actuator 

This case study features two Sorting Stations: two conveyors with an actuator (a pusher or a 

pivot arm sorter) that removes parts from it. The “Conveyor with FIFO” FB was extended in 

order to create the “Sorting Station” FB which encapsulates the “itfItemRemover” Interface. 

 

Using an interface, the sorting station can point to different actuators and order them to do the 

same task, even if they have no similarities. Components are only required to implement that 



Object-Oriented PLC Programming 

 

33 

 

interface, which is an empty class. The implementation of the properties and methods they 

acquire can be completely different. 

 

Before explaining the case study, the Interface and the actuators that implement it are going to 

be introduced. Table 4.8 describes the “itfItemRemoverInterface”:  

 
Table 4.8 - Description of the “itfItemRemover” Interface 

itfItemRemover 

Property Type Description 

p_bBusy BOOL Signals if the actuator is eliminating an item. 

Methods Description 

RemoveItem() Removes Item from the sorting station. 

 

The pneumatic Pusher sorter is equipped with a rod to push items and two reed sensors 

indicating the front and back limits. Table 4.9 describes the “Pusher” function block: 

 
Table 4.9 - Description of the “Pusher” function block 

Pusher 

Variables 

Variable Name Type Description 

Input 
bBackLimit BOOL Signals if the Pusher is at its back limit. 

bFrontLimit BOOL Signals if the Pusher is at its front limit. 

Output bPush BOOL Pushes the rod. 

In/Out Conv Conveyor Points to the sorting station it is attached to. 

Property p_bBusy BOOL Signals if the actuator is eliminating an item. 

Methods 

RemoveItem() Removes Item from the sorting station. 

 

A Pivot Arm Sorter is a 45º power face arm diverter, powered by a gearmotor, equipped with a 

belt that helps to deviate the conveyed items onto the next part. The arm can rotate left or right 

according to the selected configuration. In this case, the arm only turns right. Table 4.10 

describes the Pivot Arm Sorter function block: 

 
Table 4.10 - Description of the “Pivot Arm Sorter” function block 

Pivot Arm Sorter 

Variables 

Variable Name Type Description 

Output 
bTurn BOOL Turns the Arm. 

bRoll BOOL Rolls the belt. 

Internal onDelay TON Points to the sorting station it is attached to. 

Property p_bBusy BOOL Signals if the actuator is eliminating an item. 

Methods 

RemoveItem() Removes Item from the sorting station. 

 



Object-Oriented PLC Programming 

 

34 
 

Figure 4.20 shows the “Pusher” FB and the “Pivot Arm Sorter” FB implementing the 

“itfItemRemover” interface: 

 

 
Figure 4.20 - UML representation of function blocks implementing the “itfItemRemover” interface 

 

A Pusher and a Pivot Arm Sorter are two components that share no similarities but perform the 

same task. Yet, because of the implementation of the interface, the Sorting Station is able to 

order them to remove items as if they were the same actuator. 

4.2.4.1 Description of the Scenario 

Figure 4.21 shows two sorting stations: one with a Pusher (left) and one with a Pivot Arm Sorter 

(right): 

 

 
Figure 4.21 - Sorting Station: a conveyor with an actuator that removes parts from it (Pusher: left; Pivot Arm 

Sorter: right) 

• Components: 

o 2 Belt Conveyors; 

o 1 Pusher; 

o 1 Pivot Arm Sorter; 

o 6 Diffuse sensors (3 in each Conveyor); 

o 2 Chute Conveyors. 

• Scenario: 

o The sorting station receives an item from another conveyor; 

o As soon as it reaches the sensor of the actuator, it reads the part’s ID and if it 

matches any of the IDs that the operator wishes to eliminate, then it orders the 

actuator to eliminate the part. 



Object-Oriented PLC Programming 

 

35 

 

• Aim: Incorporation of a communication framework between different components. 

• Initial State: Conveyor with no items. 

• Manual Procedures: Press the start button to turn the system on. 

• Used OOP features: Inheritance, Encapsulation, Interfaces, Methods, Delegation. 

4.2.4.2 Proposed Solution for the Scenario 

Table 4.11 describes the additional variables and methods that the “Sorting Station” FB 

implements when related to the “Conveyor with FIFO” FB described in the previous case study: 

 
Table 4.11 - Description of the “Sorting Station” function block 

Sorting Station 

Variables 

Variable Name Type Description 

Input 
aPartsToEliminate 

ARRAY OF 

INT 

Array that provides the ID of the parts to 

be eliminate. 

bActuatorSensor BOOL Detects parts passing by the actuator. 

In/Out Actuator itfItemRemover 
Interface that communicates with the 

actuator. 

Methods 

Reset() 
Does exactly what the “Conveyor with FIFO” FB’s Reset() method does, but it 

also resets additional parameters. 

 

Figure 4.22 introduces the additional features that the “Sorting Station” FB has in relation to 

the “Conveyor with FIFO” FB: 

 

 
Figure 4.22 - "Sorting Station" functional GRAFCET 



Object-Oriented PLC Programming 

 

36 
 

The following OOP features were used: 

• Inheritance – extending the “Conveyor with FIFO” FB in order to create the “Sorting 

Station” FB. Figure 4.23 shows a UML representation of the extension: 

 

 
Figure 4.23 - UML representation of the "Sorting Station" extension 

 

• Encapsulation – used to encapsulate the “itfItemRemover” interface in the new 

function block; 

• Interfaces – the “itfItemRemover” interface is used by the FB to communicate with the 

function blocks that implement it (in this case, the Pusher and the Pivot Arm Sorter 

Function blocks); 

• Methods – the interface forces the definition of a method called “RemoveItem()” on 

the function blocks that implement it; 

• Delegation – the function block delegates the item removal task to the interface’s  

“RemoveItem()” method. The interface then proceeds to pass that order to the function 

block it is pointing to. 

 

This standardized communication framework makes writing the code implementation easier, as 

the user only needs to attach the actuator to the sorting station. This is very powerful, as this: 

• Makes linking function blocks much easier; 

• Facilitates changing the actuator that is being used in a sorting station; 

• Other types of actuators can be introduced as long as they implement the interface that 

was implemented by previous systems. 

 

These advantages mean that if there are changes in the physical system that may render the 

actuators unsuitable for the task, then the programmer just needs to: 

• Make sure that the new component implements the “itfItemRemover” interface; 

• Instantiate it in the main program; 

• Directly attach it to the Input of the “Sorting Station” FB. 

 

This brings lots of advantages regarding future changes and data accessing, as well as it keeps 

the code clean and easy to read, which makes troubleshooting easier. 

 

 

 

 

 

 



Object-Oriented PLC Programming 

 

37 

 

4.3 Personal overall analysis 

Object-oriented programming is very adequate to create applications for PLC controlled 

industrial environments as it brings a lot of advantages regarding modularity, simplicity, ease 

of implementation, application of changes, data management, communication between 

components, along with various other advantages.  

 

OOP provides extremely powerful features, but most importantly, it also aims to enhance the 

application’s simplicity and modularity. The powerful features that OOP provides may not be 

applicable to every component or system, as it could just bring unwanted complexity. 

Programmers must aim for the lowest possible amount of complexity and dependencies when 

designing their applications.  

 

Well-written object-oriented PLC applications can be very simple, easy to understand and 

powerful, but it requires lots of studying, knowledge and experience.  

 

Programmers must fully master object-oriented programming before developing applications 

for real systems. There isn’t much information about object-oriented PLC programming 

available online for free, however, there is a lot of information on other object-oriented 

programming languages such as C++, Java or Python, which proved to be a very helpful 

resource in order to grasp the concepts that were difficult to understand.  

 

Poorly-written PLC applications can get confusing really quickly as the amount of 

dependencies increases or as code segregation and/or overriding is overdone. Troubleshooting 

can become a real “treasure hunt”, as debuggers may need to search between different function 

blocks for the actual code implementation besides having to find the bug. 

 

All in all, object-oriented programming isn’t very easy to understand, especially for people with 

little to no programming knowledge. However, once one fully masters its concepts, OOP 

becomes a very programming approach tool to develop powerful and simple applications to 

control intelligent and versatile systems. 

4.4 Concluding Remarks 

This chapter addressed multiple small case studies that featured the creation of function blocks 

using object-oriented programming. It showed that the impact of OOP’s features can be felt 

even in the simplest case studies. 

 

The next section will address the improvement of a larger case study. A large industrial scenario 

will be analyzed and improved using object-oriented programming. 

 

  



Object-Oriented PLC Programming 

 

38 
 

 

 

 



Object-Oriented PLC Programming 

 

39 

 

5 Improving Industrial Scenarios Using the Third Edition of the IEC 
61131-3 

Object-Oriented Programming as described in the IEC 61131-3 standard has brought a lot of 

changes to the PLC industry. This chapter aims to analyze if these changes bring clear 

advantages in relation to previous editions of the standard. 

5.1 Previous work on IEC 61131-3 PLC programming 

In order to analyze the impact of the features that were brought by the latest edition of the IEC 

61131-3 standard, the “Controlo Modular e Confiável de Sistemas Flexíveis de Automação” 

(Modular and Reliable Control of Flexible Automation Systems) [21] dissertation was read. 

 

Its core aim was to create standard solutions for general and complex automated production 

systems, as well as the creation of a function block library for ease of implementation in various 

simulated industrial scenarios, ensuring its correct behavior. 

 

Custom function blocks were created for some parts provided by Factory IO V1.0, for direct 

implementation in case studies. 

 

Applications were designed using CODESYS V3.5 SP5 Patch 2 and simulated scenarios were 

created using Factory IO. When the previous work was developed, CODESYS did not support 

object-oriented programming. 

5.2 Previously Designed Scenario 

The previous work featured the creation of non-object-oriented standard function blocks 

applied to some simulated industrial scenarios. 

 

The choice of the scenario was based on the applicability of object-oriented programming on 

the control application in order for the changes to be clearly seen. 

 

Before exposing the scenario that was studied, the components and their controlling function 

blocks are going to be explained in detail. 

5.2.1 Introducing the Components and the Previously Designed POUs of the 
System 

The previous work uses 5 POUs to control 5 types of components: Emitters, Removers, Roller 

Conveyors, Turntables and Chain Transfer Tables. This section will introduce these 

components and their POUs as they were described in the previous work. All images and tables 

in this section were taken from the previous work. 



Object-Oriented PLC Programming 

 

40 
 

5.2.1.1 Emitter and Remover 

The Emitter and Remover are POUs with just one output to order them to emit or remove, 

respectively. Figure 5.1 and Figure 5.2 show the emitter and remover available in Factory IO’s 

previous edition. Table 5.1 and Table 5.2 describe both function blocks: 

 

 
Figure 5.1 - Emitter available in the previous Factory IO edition 

 
Table 5.1 - Emitter's Inputs and Outputs 

Emitter 

Inputs Outputs 

Name Type Name Type 

  Emit BOOL 

 

 
Figure 5.2 - Remover available in the previous Factory IO edition 

 
Table 5.2 - Remover's Inputs and Outputs 

Remover 

Inputs Outputs 

Name Type Name Type 

  Remove BOOL 

5.2.1.2 Belt Conveyor Analog 

The Belt Conveyor Analog is a POU that controls a conveyor’s speed. Despite being called 

“Belt” Analog Conveyor, it can also control Roller Conveyors. This POU works like the 

“General Conveyor” FB designed in section 4.2.1, but it features an additional input variable, 

a WORD that sets the speed of the conveyor. 

 

Figure 5.3 shows the type of Conveyor controlled in this scenario: 

 

 
Figure 5.3 - Roller Conveyor available in the previous Factory IO edition 



Object-Oriented PLC Programming 

 

41 

 

5.2.1.3 Chain Transfer Table and Turntable 

The Chain Transfer Table and Turntable are the two pallet transferring mechanisms used in 

the scenario. Since these components haven’t been introduced yet, the solution that was exposed 

in the previous work will be explained in depth. 

 

Table 5.3 describes how a Chain Transfer Table works and introduces its inputs and outputs: 

 
Table 5.3 - Chain Transfer Table: Description and I/O 

Chain Transfer Table 

Description 

The Chain Transfer Table is a mechanism that can transfer parts between a 

maximum of 4 directions.  

The mechanism has a set of rollers and chain belts that perform the transfer of 

an item – the rollers can send the item to the front or to the back and the chain 

belt can transfer them to the left or to the right.  

Figure 5.4 shows a Chain Transfer Table connected to 3 roller conveyors and 

its outputs (which share the name of the direction of the movement). 

Inputs Outputs 

Name Type Name Type 

Sensor_north BOOL Roll_pos BOOL 

Sensor_south BOOL Roll_neg BOOL 

Sensor_east BOOL Right BOOL 

Sensor_west BOOL Left BOOL 

 

 
Figure 5.4 - Chain Transfer Table's Outputs (and directions) 

 

The previous work stated that the Chain Transfer Table required two additional variables in 

order to be controlled. Table 5.4 defines those variables: 

 
Table 5.4 - Chain Transfer Table's additional control variables 

Chain Transfer Table 

Additional control variables 

Name Type I/O Description 

Loaded BOOL 
Input 

Signals if the pallet is loaded. 

Unloaded BOOL Signals if the pallet was unloaded. 

 



Object-Oriented PLC Programming 

 

42 
 

Figure 5.5 shows the Chain Transfer Table’s behavioral GRAFCET: 

 

 
Figure 5.5 - Chain Transfer Table's behavioral GRAFCET 

 

Table 5.5 describes how a Turntable works and introduces its inputs and outputs: 

 
Table 5.5 - Turntable: Description and I/O 

Turntable 

Description 

The turntable is a mechanism that can transfer items between a maximum of 

four directions. It has a set of rollers on a tray that can turn 90 degrees. The 

rollers are bidirectional, which allows the system to transport parts from/to 

any of the four directions.  

This mechanism features 4 embedded sensors – 2 that detect the item’s 

position and 2 that detect the position of the turntable. 

Figure 5.6 shows the position of the new I/O. 

Inputs Outputs 

Name Type Name Type 

Sensor_north BOOL Roll_pos BOOL 

Sensor_south BOOL Roll_neg BOOL 

Sensor_east BOOL Turn BOOL 

Sensor_west BOOL   

Sensor_0º BOOL   

Sensor_90º BOOL   

Front_limit BOOL   

Back_limit BOOL   

 

 
Figure 5.6 - Turntable's Outputs 

 



Object-Oriented PLC Programming 

 

43 

 

Figure 5.7 shows the Turntable’s behavioral GRAFCET: 

 

 
Figure 5.7 - Turntable's behavioral GRAFCET 

 

Both tables receive a pallet that is then sent to the desired destination. As they can only transfer 

one part at a time, they must send busy signals to the adjacent components. They must also 

know if the components they’re attached to are available to receive a part, so that an item isn’t 

pushed onto a full conveyor. Table 5.6 describes the tables’ common variables: 

 
Table 5.6 - Tables' common variables 

Tables 

Description 
Both tables share some common variables, such as the destination of a part 

and busy signals (inputs and outputs). 

Control variables 

Name Type I/O Description 

Busy_in_north BOOL 

Input 

Component’s availability in each direction: 

TRUE – Component is busy; 

FALSE – Component is available. 

Busy_in_south BOOL 

Busy_in_east BOOL 

Busy_in_west BOOL 

Destination INT 

Pallet’s destination: 

1: Back; 

2: Left; 

3: Front; 

4: Right. 

Busy_in_north BOOL 

Output 

Table’s availability in each direction: 

TRUE – Table is busy; 

FALSE – Table is available. 

Busy_in_south BOOL 

Busy_in_east BOOL 

Busy_in_west BOOL 

 



Object-Oriented PLC Programming 

 

44 
 

5.2.1.4 Timeout Monitor 

Even though it wasn’t featured (at least directly) in the scenario, the author of the previous work 

created a function block to detect malfunctions in sensors and actuators. 

 

A sensor may be malfunctioning when it doesn’t detect an item that’s in front of it or when it 

detects an item when, in reality, there’s nothing close to it. Something similar can happen with 

an actuator, that is, remain in action when it is no longer required or not acting when required. 

A possible way of detecting this type of problems is through the implementation of a timeout 

monitoring function block: they emit a warning signal when a predetermined time (PT) limit 

for actuation of a sensor or actuator is exhausted. 

 

Figure 5.8 shows temporal diagram that exemplifies the detection of a malfunction on an 

Actuator: 

 

 
Figure 5.8 - Watchdog signaling a malfunction on an Actuator (taken from previous work) 

 

Table 5.7 shows Timeout Monitor’s variables: 

 
Table 5.7 - Timeout Monitor’s variables 

Timeout Monitor 

Name Type I/O Description 

IN BOOL 

Input 

Actuator output signal 

Ref_time_off INT Off time limit (milliseconds) 

Ref_time_on INT On time limit (milliseconds) 

Alarm BOOL Output Alarm signal 

 

Figure 5.9 shows a representation of the “Timeout monitor” function block created in the 

previous work. 

 

 
Figure 5.9 - “Timeout monitor” function block created in the previous work 

 



Object-Oriented PLC Programming 

 

45 

 

5.2.2 Scenario’s Description 

This section will study a scenario which featured a complex automated system meant to 

transport items on pallets. Figure 5.10 shows the scenario designed by the author of the previous 

work: 

 

 
Figure 5.10 - Complex automated system designed by the author of the previous work using Factory IO 

 

Table 5.8 describes the scenario shown in Figure 5.10: 

 
Table 5.8 - Description of the complex automated system scenario 

Pallet Transport 

Scenario 

System with two Turntables and two Chain Transfer Tables connected by 

Roller Conveyors. The two closest tables to the removers have a button 

responsible for the definition of their paths. Figure 5.11 shows the position 

of the button on one of the tables. 

If the button is triggered, parts are sent to the right of the table, otherwise 

parts are sent forward. These trajectories are demonstrated in Figure 5.12, 

where green arrows indicate the path when the button is triggered and 

black arrows indicate the path when the button is not triggered. 

Aims 
Complex system automatization. 

Verify its ease of implementation. 

Components 

13 Roller Conveyors – 10 large ones and 3 small ones for the emitters; 

3 Emitters and 3 Removers; 

2 Chain Transfer Tables; 

2 Turntables; 

2 Buttons – one in each of the closest tables to the removers; 

13 Sensors – one at the end of each conveyor. 

POUs 

Emitter; 

Remover; 

Belt Conveyor Analog (also applicable to Roller Conveyors); 

Chain Transfer Table; 

Turntable. 

 

 
Figure 5.11 - Turntable detail: button 



Object-Oriented PLC Programming 

 

46 
 

 

 
Figure 5.12 - System's possible trajectories 

5.3 Improving the Studied Scenario using OOP 

In order to improve the scenario, some components were added and some changes were applied 

to the function blocks defined in the previous work. The next section will thoroughly explain 

those changes. 

 

The scenario suffered some physical changes in order to remove some unnecessary components 

that were increasing the simulation’s duration. Some other components were introduced in 

order to implement some additional requirements. 

5.3.1 Introduction of New Components 

In order to implement some additional features to show the full potential of Object-Oriented 

Programming, some changes were made in the scenario: 

• Three conveyors were removed; 

• Every emitter has a Box Identification System attached to it, which is the same system 

that was used in section 4.2.2. Figure 5.13 recalls that system: 

 

 
Figure 5.13 - Box Identification System attached to an Emitter 

 



Object-Oriented PLC Programming 

 

47 

 

The Box Identification System features 3 sensors. Table 5.9 shows the different combinations 

of their signals that identify different boxes: 

 
Table 5.9 - How the Box Identification System works 

Box Identification System 

Box Sensor 1 Sensor 2 Sensor 3 

Small TRUE FALSE FALSE 

Medium TRUE FALSE TRUE 

Large TRUE TRUE TRUE 

 

• The Removers were subbed by Low Chute Conveyors. Figure 5.14 shows a Low Chute 

Conveyor: 

 

 
Figure 5.14 - Low Chute Conveyor 

 

• The Chain Transfer Table now features four additional sensors to assure the correct 

positioning of the pallets. Figure 5.15 shows the sensors’ positions: 

 

 
Figure 5.15 - Chain Transfer Table's four new sensors 

 

• The System now sorts parts based on their size instead of buttons. 

5.3.2 POUs that Control the New Scenario 

The POUs that control each component of the scenario have also been subjected to some 

changes. 

5.3.2.1 Conveyor with FIFO 

Roller Conveyors are now controlled by the Conveyor with FIFO function block that was 

described in section 4.2.2. It was designed to control a belt conveyor but it also works for roller 

conveyors. 



Object-Oriented PLC Programming 

 

48 
 

5.3.2.2 Tables 

The “Tables” function block is a new function block that was created to deal with the common 

variables and implementation of the Chain Transfer Table and Turntable.  

 

In section 5.2.1.3, Table 5.6 defined the variables that both tables had in common. The Chain 

Transfer Table and the Turntable are Tables. If both tables have common code implementation, 

Inputs, Outputs and Internal variables, then it means that inheritance is applicable.  

 

Table 5.10 describes the new “Tables” function block that will be extended by the “Chain 

Transfer Table” and “Turntable” function blocks. 

 
Table 5.10 - Description of the new "Tables" function block 

Tables 

Description 
Both tables share some common variables and implementation. This function 

block takes care of everything they have in common 

Control variables 

I/O Type Name Description 

Input 

ARRAY 

OF 

BOOL 

a_bBusy_in 

Component’s availability in each direction: 

TRUE – Component is busy; 

FALSE – Component is available. 

loadSide Signals if the conveyor is supposed to load parts. 

unloadSide Signals if the conveyor is supposed to unload parts. 

INT iDestination 

Pallet’s destination: 

1: Back; 

2: Left; 

3: Front; 

4: Right. 

ARRAY 

OF INT 
a_iPartTypeIn ID of the part that is entering the table. 

BOOL 

bSensorBack 

bSensorLeft 

bSensorFront 

bSensorRight 

Sensors attached to each side of the table. 

Output 

ARRAY 

OF 

BOOL 

a_bBusy_out 

Table’s availability in each direction: 

TRUE – Table is busy; 

FALSE – Table is available. 

INT iPartTypeOut ID of the part that is leaving the table. 

 

The extensions – the Chain Transfer Table and Turntable – only need to implement the code 

that takes care of their functional differences. For instance, the turntable FB only requires the 

addition of the variables and implementation defined in Table 5.5. 

 

The “Tables” function block opens up a great possibility: The Chain Transfer Table and the 

Turntable can simply be treated as Tables. Both components perform the same task, which is 

to transfer a part between 4 possible destinations. The data that might be important for other 

components is available in the “Tables” FB. 

 

So, an array of pointers to the “Tables” function block was created in order to identify all the 

tables of the system as the same type of component. The roller conveyors are connected to 

Table 1 and Table 2 instead of being connected to a specific type of table. This is very important 

for the application of future changes. 



Object-Oriented PLC Programming 

 

49 

 

Figure 5.16 shows how a conveyor sees each table – not as a Chain Transfer Table or as a 

Turntable, but as a simple instance of a Table: 

 

 
Figure 5.16 - Designation of each table 

 

Figure 5.17 shows an array of pointers to tables in the main program. The pointers select the 

address of a specific table. Figure 5.18 shows a Roller conveyor communicating with the tables 

it connects: 

 

 
Figure 5.17 - “Table” Array in the main program 

 

 
Figure 5.18 - Roller Conveyor communicating with the tables it connects in the main program 

 

If a Turntable is malfunctioning and the only the only available replacement is a Chain Transfer 

Table, then the programmer only has to add a new instantiation of the “Chain Transfer Table” 

FB to the main program and attach it to the correct position of the array, and it will automatically 

be connected to the corresponding conveyors. 

 

Not only does this reduce the time required to apply changes as well as it reduces error 

proneness. 

5.3.2.3 Timeout Monitor 

Using Object-Oriented Programming, the “Timeout Monitor” FB that was described in section 

5.2.1.4 can be used to perform tasks on the function blocks that call it. 

 

Before explaining how this works, the concept of Abstract Class (or Abstract function block) 

must be introduced: it is a POU which may have standard empty methods, properties and 

variables. It works almost like an interface, but it may also have standard variables. 

 

If all actuators of a system extend the same abstract class, then all of them may have something 

in common, which could be a “stop()” method. 

 



Object-Oriented PLC Programming 

 

50 
 

The “Timeout Monitor” function block could be used to not only detect a malfunction in an 

actuator, but also directly switch it off without requiring additional implementation in the 

actuator’s function block, by running the “stop()” method of the function that is calling it. This 

can be done without requiring multiple attachments, the “Timeout” function block only needs 

to be called by the actuator’s function block. 

 

This feature is possible using inheritance and pointers, but it requires 3 steps: 

1. The instantiation of the “Timeout Monitor” function block in each of the actuators’ 

function blocks must be followed by the THIS keyword. Figure 5.19 shows that is done: 

 

 
Figure 5.19 - Instantiation of the "Timeout Monitor" FB in the "Conveyor" FB 

 

2. The “Timeout Monitor” function block must have a pointer capable of pointing to 

whoever is calling it. Figure 5.20 shows how to do it: 

 

 
Figure 5.20 - Instantiation of a pointer to the actuator abstract class in the "Timeout Monitor" FB 

 

 Figure 5.21 shows the pointer executing some actuator’s “stop()” method: 

 
Figure 5.21 - Implementation in the body of the "Timeout Monitor" FB 

 

3. That pointer must be initialized in the “FB_Init()” method of the “Timeout Monitor” 

FB. Figure 5.22 shows how to create that method. The method is always implicitly 

available, which means that it must include the “bInitRetains” and “bInCopyCode” 

boolean variables in order to avoid errors. 

 

 
Figure 5.22 - "FB_Init()" method of the "Timeout Monitor" FB 

 

So, the “Timeout Monitor” FB turns off an actuator upon the detection of a malfunction in the 

following way: 

• An actuator calls the “Timeout Monitor” FB to supervise a variable; 

• The “Timeout Monitor” FB detects an anomaly and executes the “stop()” method of the 

pointer; 

• The pointer hasn’t been manually assigned to any address; 

• The pointer is able to point to whichever FB is calling it due to the THIS keyword. 

 

This unleashes a very powerful feature: it is possible to have generic function blocks applicable 

to every actuator. Programmers do not need to manually attach the function blocks as it is done 

automatically, greatly reducing error proneness. 

 



Object-Oriented PLC Programming 

 

51 

 

It also unleashes another very powerful feature, related with the use of function blocks as states. 

The next section explores addresses this subject. 

5.3.2.4 Chain Transfer Table and Turntable 

Using the approach that was exposed in the last section, it is possible to use function blocks to 

define the state of a component. 

 

Figure 5.23 recalls the Chain Transfer Table’s behavioral GRAFCET: 

 

 
Figure 5.23 - Chain Transfer Table's behavioral GRAFCET 

 

Different tasks are executed in each step of the GRAFCET, which means that separating the 

code could be a great advantage. 

 

Using the approach that was exposed in the last section along with interfaces and arrays, the 

table can call a different function block to perform changes on itself depending on the step it is 

at. After finishing its task, the function block increments the step of the system so that another 

function block can perform another task. 

 

Four state function blocks can be created for the Chain Transfer Table: 

• “Idle” FB, which corresponds to the initial step, which is supposed to wait for a pallet 

to arrive; 

• “Load” FB, which corresponds to the second step, which loads a part to the table; 

• “Unload” FB, which corresponds to the third step, which unloads a part from the table. 

• “Reset Step” FB, which is required to return to the initial step since the previous FB’s 

only increment the step. 

 

These four function blocks fit the GRAFCET defined in Figure 5.23 almost perfectly, the only 

difference is the “Reset Step” FB. 

 



Object-Oriented PLC Programming 

 

52 
 

Figure 5.24 shows a UML representation of the state function blocks and their dependencies. 

 

 
Figure 5.24 - UML representation of the Chain Transfer Table’s state function blocks and their dependencies 

 

The “CT_FB_Init” FB implements the pointer to the “Chain Transfer Table” function block 

and the “FB_Init()” method. The other function blocks extend it to avoid having to copy and 

paste. Since it’s body and “execute()” method remains empty, it was used for the “Do nothing” 

instantiation. 

 

The code was, thus, separated in 4 function blocks. The “itfChainTransferTableDelegates” 

which defines an “execute()” method: 

• All function blocks implement the same interface; 

• The main function block defines an array of that interface; 

• The array organizes the function blocks; 

• The body code implementation of the main function block orders the execution of the 

“execute” method depending on the step. Table 5.11 shows which FB is selected 

depending on the task: 

 
Table 5.11 - Function block that is selected to perform a task depending on the step 

iStep Function block that the interface selects to run the “execute()” method 

10 Idle 

11 Load 

12 Unload 

13 Reset Step 

 



Object-Oriented PLC Programming 

 

53 

 

Table 5.12 describes the additional functionalities that were added in relation to the function 

block described in Table 5.3: 

 
Table 5.12 - Description of the new "Chain Transfer Table" function block 

Chain Transfer Table 

Description 
The Chain Transfer Table’s behavioral GRAFCET has only 3 steps. It is, thus, 

easy to divide the code. 

Control variables 

Variable Type Name Description 

Property BOOL 

p_bRollBack The state function blocks cannot directly 

access the outputs of the system, only its 

inputs and internal variables, properties and 

methods, hence the need for these 

properties. 

p_bRollLeft 

p_bRollFront 

p_bRollRight 

Internal 

INT iStep Step of the GRAFCET 

CT_FB_Init Idle 

During the initial step, the table “does 

nothing” it just waits until it has to transfer a 

part. 

loadPart_CT Load 

As soon as a part arrives at one of the 

entrances of the table, it starts loading the 

part. 

Figure 5.27 shows part of its implementation 

code and how it applies changes to the main 

function block. 

unloadPart_CT Unload 
As soon as the part is loaded, the table 

unloads it to the desired destination. 

reset_iStep Reset Step Returns to the initial step.  

ARRAY OF 

Interface* 
a_state 

Array that organizes the function blocks that 

are going to perform tasks depending on the 

step. 

Figure 5.25 shows the instantiation of the 

“a_state” array of the Chain Transfer Table 

function block. Figure 5.26 shows the 

array’s method being run depending on the 

which step the table is at. 

*the interface is “itfChainTransferTableDelegates”. 

 

 
Figure 5.25 - Instantiation of the "a_state" interface array in the Chain Transfer Table FB 

 

 
Figure 5.26 - Main function block's body: execution of the interface's method 

 

 
Figure 5.27 - Part of the implementation of Load’s “execute()” method 

 



Object-Oriented PLC Programming 

 

54 
 

The same approach was applied to the “Turntable” FB. Figure 5.28 recalls the Turntable’s 

behavioral GRAFCET: 

 

 
Figure 5.28 - Turntable's behavioral GRAFCET 

 

Six state function blocks can be created for the Chain Transfer Table: 

• “Do Nothing” FB, which corresponds to the initial step, which is supposed to wait for a 

pallet to arrive; 

• “Turn to Load”, which corresponds to the second step, which turns to the side where a 

part is waiting to be loaded; 

• “Load” FB, which corresponds to the third step, which loads a part to the table; 

• “Unload” FB, which corresponds to the fourth step, which unloads a part from the table. 

• “Turn to Unload”, which corresponds to the fifth step, which turns to the side where the 

part is supposed to be unloaded; 

•  “Reset Step” FB, which is required to return to the initial step since the previous FB’s 

only increment the step. 

 

These four function blocks fit the GRAFCET defined in Figure 5.28 almost perfectly, the only 

difference is the “Reset Step” FB. 

 



Object-Oriented PLC Programming 

 

55 

 

Figure 5.29 shows a UML representation of the state function blocks and their dependencies: 

 

 
Figure 5.29 - UML representation of the Turntable’s state function blocks and their dependencies 

 

The “TT_FB_Init” FB implements the pointer to the “Turntable” function block and the 

“FB_Init()” method. The other function blocks extend it to avoid having to copy and paste. 

Since it’s body and “execute()” method remains empty, it was used for the “Do nothing” 

instantiation. 

 

Table 5.13 shows which function block is selected depending on the step: 

 
Table 5.13 - Function block that is selected to perform a task depending on the step 

iStep Function block that the interface selects to run the “execute()” method 

10 Idle 

11 TurnToLoad 

12 Load 

13 TurnToUnload 

14 Unload 

15 Reset Step 

 



Object-Oriented PLC Programming 

 

56 
 

Table 5.14 describes the new “Turntable” function block: 

 
Table 5.14 - Description of the new "Turntable" function block 

Turntable 

Description 
The Turntable’s behavioral GRAFCET has 5 steps. The code was separated in 

5 function blocks. 

Control variables 

Variable Type Name Description 

Property BOOL 

p_bRollBack The state function blocks cannot 

directly access the outputs of the 

system, only its inputs and internal 

variables, properties and methods, 

hence the need for these properties. 

p_bRollFront 

p_bTurn 

Internal 

INT iStep Step of the GRAFCET 

TT_FB_Init Idle 

During the initial step, the table “does 

nothing” it just waits until it has to 

transfer a part. 

TurnToLoad_TT TurnToLoad 

The tray of the table turns to the 

position where an item is waiting to be 

loaded. 

loadPart_TT Load The table loads the part. 

TurnToUnload_TT 
TurnToUnloa

d 

After a successful loading, the tray of 

the table turns to the desired destination. 

unloadPart_TT Unload The table unloads the part. 

reset_iStep Reset Step Returns to the initial step. 

ARRAY OF 

Interface* 
a_state 

Array that organizes the function blocks 

that are going to perform tasks 

depending on the step. 

 

*the interface is “itfTurntableDelegates”. 

 

Both systems may share the “a_state” variables and some states with the same name. However, 

they have different implementations and apply changes on different systems. The systems 

should use different interfaces to avoid having the Turntable’s states performing activities on 

the Chain Transfer Table and vice-versa. 

 



Object-Oriented PLC Programming 

 

57 

 

Table 5.15 shows the full representation of the system’s state function blocks and their 

dependencies: 

 
Table 5.15 - UML representation of the system’s state function blocks and their dependencies 

 
 

The creation of function blocks as states of a component is very important for the 

implementation of future changes and troubleshooting. If the table is malfunctioning while 

loading a part, then the troubleshooter knows exactly where to search for the bug. 

 

On the other hand, the table could have different functionalities in other systems. Having 

modular state function blocks that may be ordered in various different ways, depending on the 

goal of the system is one of the biggest advantages that OOP brings.  

 

Inserting an additional a step to the component is also very easy, the programmer can just throw 

the new function into the middle of the “a_state” array and if will be automatically added. 

 

The programmer could also have various arrays to define different “modes of operation”: the 

component may work differently depending on the selected array. 



Object-Oriented PLC Programming 

 

58 
 

5.3.3 New Scenario’s Description 

Table 5.16 describes the new scenario: 

 
Table 5.16 - Description of the new scenario 

Pallet Transport 

Scenario 

System that transports boxes on top of pallets using 2 Turntables and 2 

Chain Transfer Tables connected by roller conveyors. Roller Conveyors are 

controlled by the “Conveyor with FIFO” function block defined in section 

4.2.2. 

Boxes are identified by their size (by an identification system) as they’re 

inserted in the system. Each table is connected to a function that defines the 

path that a box must take in order to reach the desired destination, according 

to its type. Tables load whichever part arrives first at one of the entrances. 

Figure 5.30 shows where boxes are supposed to be dropped. 

Communication between roller conveyors and tables is standardized, which 

means that both tables are treated as the same component. 

Aims 
Complex system automatization. 

Verify its ease of implementation. 

Components 

10 Roller Conveyors – 4 large ones and 6 small ones; 

3 Emitters and 3 Low Chute Conveyors; 

2 Chain Transfer Tables; 

2 Turntables; 

34 Sensors – 9 for the identification systems, 14 for the Chain Transfer 

Tables, 8 for the Turntables, and 3 for the exit conveyors. 

POUs 

Conveyor with FIFO; 

Tables; 

Chain Transfer Table; 

Turntable; 

Timeout Monitor. 

Used OOP 

features 

Inheritance; 

Interfaces; 

Methods; 

Delegation; 

Encapsulation. 

 

 
Figure 5.30 - How the system sorts the boxes 



Object-Oriented PLC Programming 

 

59 

 

5.4 Personal overall analysis 

The scenario that was studied in this chapter was greatly improved. The previous work created 

standard function blocks to control each individual component, which would then be directly 

instantiated in a program. However, attaching them to one another can prove to be a difficult 

task. 

 

The creation of standardized interfaces for objects to communicate with one another, therefore 

minimizing the effort required to attach them and the possibility of creating modular function 

blocks that can easily be attached to those standardized interfaces which may already be 

connected to a greater set of components is an incredibly powerful advantage that enhances 

systems’ configurability, eases troubleshooting, reduces error proneness as data management is 

done automatically, resulting in lower system downtimes and, consequently, better 

performances and more money. 

 

Betting on modularity, configurability and customizability, supported by a strong and well-

defined standardization of communication protocols between the components of a large system 

or factory saves lots of time in the long run, as OOP provides easily extendable and 

customizable PLC projects, that can sometimes be changed without directly accessing the code. 

5.5 Concluding remarks 

This chapter compared solutions created with and without using Object-Oriented Programming, 

and how this programming approach could improve the scenarios exposed in the previous work. 

 

The next chapter addresses the final conclusions of this dissertation, and suggestions of future 

work. 

 

  



Object-Oriented PLC Programming 

 

60 
 

 

 

 



Object-Oriented PLC Programming 

 

61 

 

6 Conclusions and Future Work 

In the scope of this work, multiple scenarios were developed and studied in order to evaluate 

how Object-Oriented Programming can influence the PLC industry, which advantages and 

improvements it brings and its future potential in a world that increasingly demands for simple, 

intelligent and modular solutions. 

 

Object-Oriented PLC Programming will certainly play a very important role in the future of the 

automation industry. It may take some time to grasp some of the complex concepts that it 

introduces, but in the end, its advantages are clear. 

 

Object-Oriented PLC Programming sees its biggest advantages come to live when creating 

programming standards in one’s company. Being able to standardize the way a machine works 

and communicates with other machines could save a lot of time in the long run. This means that 

OOP becomes very powerful in companies which projects often use a large portion of the same 

code over and over, and only small portions of custom code for an application. However, it isn’t 

suitable for the creation of multiple, smaller programs which may not have any relation between 

them. OOP’s way of dealing with data accessing is also much more powerful and safer than 

any other PLC programming approach, which is a great advantage. 

 

Even though OOP is a much more powerful programming tool than classical PLC programming 

approaches, it isn’t a “super tool” that can magically solve all the problems that currently exist 

in the industry. Ladder logic is still and will remain the most used PLC programming language 

in the coming years, for lots of reasons. Ladder logic and structured text, and mainly OOP, 

should complement each other, as they’re applicable to different sets of applications due to the 

advantages that each of them provides. 

 

After short conversations with lots of automation technicians and engineers from around the 

world, it was possible to understand a few things about the current state of the industry and why 

OOP won’t overtake ladder logic as the main PLC programming language in the years to come. 

 

1. Most systems are built with poor diagnostic tools: 

As stated in the previous paragraph, OOP is a very powerful tool when used correctly. If 

programmers don’t install proper diagnostic tools, it becomes very hard for technicians to debug 

and troubleshoot. It doesn’t matter if the code is clean, well-written and easy to understand, 

most of the times, the problem is accessing the code. 

 

However, as the industry evolves, and mainly with the arrival of Industry 4.0 and IoT, it is very 

important that systems are built with strong diagnostic and auto-diagnostic tools (and even auto-

repair tools), which can save incredible amounts of time in the long run. OOP allows these 

strong resources through the use of its high-level programming language, which may offer 

possibilities that classical PLC programming approaches cannot. 

 



Object-Oriented PLC Programming 

 

62 
 

2. Some of OOP’s concepts are applicable to PLC programming, others aren’t: 

Some of OOP’s core concepts have been rejected by the industry, such as inheritance, mainly 

because there are alternatives that can be used to achieve the same results. Many engineers 

claim that it excessively spreads the code and that having to hunt for the code implementation 

complicates troubleshooting and debugging. 

 

However, many engineers seem to be dealing with bad implementations of OOP features, which 

was a very important subject that was addressed in chapter 4: these features aim to keep 

programs simple, not to add more complexity. If debuggers have to hunt for code, the program 

is either poorly documented or it has an excess of dependencies between function blocks. 

 

This also corroborates another fact that was stated in chapter 4: OOP is not easy to learn and 

understand, it requires a lot of studying and practicing. Programmers need to know where and 

how to apply OOP’s features, otherwise it can result in code that is faulty, poorly-documented 

and hard to understand. 

 

Concepts like inheritance can only be used in really specific scenarios such as the ones that 

were exposed in this dissertation. Implementing these concepts in situations where they aren’t 

applicable just because they’re powerful concepts is often a bad practice. 

 

3. Resistance to change: 

Custom PLC software is commissioned and paid for by owners of large industrial facilities, 

who don’t take chances against stable industries, such as the PLC industry.  

 

Programming languages in the PLC industry haven’t changed a lot in 30 years. It is possible to 

take code from a 30-year-old PLC onto a new processor and get it running without little effort. 

Machines usually run for long periods of time (10, 20, 30 years) before being updated. Since 

machines have to be maintained during their whole lifespan, the possibility of having new 

machines running the same languages as old machines is very important. 

 

Also, Object-oriented programming isn’t fully supported by a lot of PLCs. Some providers 

don’t allow user defined types to be changed during runtime, which could become a very 

expensive problem: Shutting down a machine because the program needs to be recompiled 

could cost a lot of money and that is a risk that business owners are not willing to take. 

 

4. Object-oriented programming isn’t very suitable for the creation of safety logic: 

Safety logic should be as simple as possible, and additional complexity adds more room for 

error and makes the validation process harder. Classical PLC programming approaches will 

remain the most used approach in this area. 

 

Object-oriented PLC programming is very powerful but it there is still a lot of research to be 

done. A proposal for future work is the creation of highly customizable scenarios that can be 

altered through an HMI instead of having to access the source code to apply changes. 

 

The creation of a system that can be almost intuitively configured by someone who doesn’t 

know how to program PLCs, mainly without having to access someone else’s code (which can 

be hard to understand even if well documented) can be a great demonstration of OOP’s power. 

 

 

 

 

 



Object-Oriented PLC Programming 

 

63 

 

References  

[1] Kaloyan. (2018, 18/07/2019). PLC (Programmable Logic Controller). Available: 

https://cyberx-labs.com/glossary/plc-programmable-logic-controller/ 

[2] B. Lydon. (2015, 18/07/2019). Stimulus for New Automation Architecture. Available: 

https://www.automation.com/automation-news/article/stimulus-for-new-automation-

architecture 

[3] L. L. World. (2019, 29/07/2019). Relay Logic Vs Ladder Logic. Available: 

https://ladderlogicworld.com/relay-logic-vs-ladder-logic/ 

[4] J. Reaves. (2018, 15/09/2019). Comparing ladder logic and object-oriented 

programming. Available: https://www.controleng.com/articles/comparing-ladder-

logic-and-object-oriented-programming/ 

[5] T. Walter. (2007, 13/03/2019). Ladder logic: Strengths, weaknesses. Available: 

https://www.controleng.com/articles/ladder-logic-strengths-weaknesses/ 

[6] T. R. Kuphaldt, "Ladder Logic Arithmetic Instructions," ed: Creative Commons 

Attribution 4.0 License, 2017. 

[7] G. Pratt. (2019, 27/01/2020) Leveraging OOIP, Part 2: Abstraction, nesting, 

interfaces. Control Engineering. 32-35.  

[8] S. Thompson. (1996, 27/01/2019). Haskell: The Craft of Functional Programming 

Available: https://www.cs.kent.ac.uk/people/staff/sjt/Haskell_craft/preface.html 

[9] K. Eliason. (2013, 17/07/2019). Difference Between Object-oriented Programming 

and Procedural Programming Languages. Available: https://neonbrand.com/website-

design/procedural-programming-vs-object-oriented-programming-a-review/ 

[10] T. Janssen. (2017). OOP Concepts for Beginners: What is Polymorphism. Available: 

https://stackify.com/oop-concept-polymorphism/ 

[11] E. Elliott. (2018). The Forgotten History of OOP. Available: 

https://medium.com/javascript-scene/the-forgotten-history-of-oop-88d71b9b2d9f 

[12] B. Babcock. (1999, 17/07/2019). IEC-1131 - The First Universal Process Control 

Language. Available: https://www.automation.com/library/articles-white-

papers/process-control-process-monitoring/iec-1131-the-first-universal-process-

control-language 

[13] International Electrotechnical Comission, IEC 61131 Programmable controllers - 

Part 3: Programming Languages. 2013. 

[14] M. Hamsho, "PLC Object Oriented Programming: Advanced Infrastructure," ed. 

Udemy, 2018. 

[15] S. Henneken. (2014, 19/03/2019). IEC 61131-3: Object composition with the help of 

interfaces. Available: https://stefanhenneken.wordpress.com/2014/02/18/iec-61131-3-

object-composition-with-the-help-of-interfaces/ 

[16] S.-S. S. S. GmbH. (2020, 05/01/2020). CODESYS Development System. Available: 

https://www.codesys.com/ 

[17] S.-S. S. S. GmbH, "CODESYS V3.5 SP 4 Compliance Table,"  vol. 2017, ed: 3S-

Smart Software Solutions GmbH, 2017. 

https://cyberx-labs.com/glossary/plc-programmable-logic-controller/
https://www.automation.com/automation-news/article/stimulus-for-new-automation-architecture
https://www.automation.com/automation-news/article/stimulus-for-new-automation-architecture
https://ladderlogicworld.com/relay-logic-vs-ladder-logic/
https://www.controleng.com/articles/comparing-ladder-logic-and-object-oriented-programming/
https://www.controleng.com/articles/comparing-ladder-logic-and-object-oriented-programming/
https://www.controleng.com/articles/ladder-logic-strengths-weaknesses/
https://www.cs.kent.ac.uk/people/staff/sjt/Haskell_craft/preface.html
https://neonbrand.com/website-design/procedural-programming-vs-object-oriented-programming-a-review/
https://neonbrand.com/website-design/procedural-programming-vs-object-oriented-programming-a-review/
https://stackify.com/oop-concept-polymorphism/
https://medium.com/javascript-scene/the-forgotten-history-of-oop-88d71b9b2d9f
https://www.automation.com/library/articles-white-papers/process-control-process-monitoring/iec-1131-the-first-universal-process-control-language
https://www.automation.com/library/articles-white-papers/process-control-process-monitoring/iec-1131-the-first-universal-process-control-language
https://www.automation.com/library/articles-white-papers/process-control-process-monitoring/iec-1131-the-first-universal-process-control-language
https://stefanhenneken.wordpress.com/2014/02/18/iec-61131-3-object-composition-with-the-help-of-interfaces/
https://stefanhenneken.wordpress.com/2014/02/18/iec-61131-3-object-composition-with-the-help-of-interfaces/
https://www.codesys.com/


Object-Oriented PLC Programming 

 

64 
 

[18] M. Braun, Object-oriented programming in simotion. [Place of publication not 

identified]: Publicis Mcd Verlag, Germa, 2017. 

[19] R. Games. (2020, 05/01/2020). Factory IO - User Manual. Available: 

https://factoryio.com/ 

[20] International Electrotechnical Comission, IEC 60848 GRAFCET specification 

language for sequential function charts. 2013. 

[21] L. E. C. d. Santos, "Controlo Modular e Confiável de Sistemas Flexíveis de 

Automação," Mechanical Engineering Dissertation, Engineering, Universidade do 

Porto, 2015. 

 

All web pages were available at the dissertation’s submission date (27/01/2019). 

 

 

 

https://factoryio.com/

