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Resumo

Este projeto surge da necessidade de atualizar o compilador MatIEC tornando-o compatível
com a terceira edição da norma IEC 61131-3. Durante o estudo da norma, várias inconsistências
entre o texto principal e a especificação formal dos elementos de linguagem foram encontradas o
que resultou na publicação de um artigo na conferência internacional ETFA’16. Dois diferentes
geradores de analisadores léxicos e sintáticos foram comparados: ANTLR e COCO/R tendo este
último sido utilizado para produzir os analisadores para as linguagens textuais definidas na norma
IEC 61131-3. O parser utiliza a AST do MatIEC com as adaptações necessárias para incluir as
novas características. O resultado foi, por fim, utilizado em conjunto com funções do MatIEC que
partem da AST gerada para produzir o código original para validação.
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Abstract

The purpose of this project was to update the MatIEC compiler thus making it compliant
with the third edition of the IEC 61131-3 standard. During the study of the standard several
inconsistencies between the main body and the formal specification of language elements were
uncovered which resulted in a publication in ETFA’16 international conference. Two different
Lexer and Parser generators were compared: ANTLR and COCO/R and the latter was used to
produce the Lexical and Syntactical analysers for the textual languages defined in IEC 61131-
3. The parser uses MatIEC’s AST with the necessary adaptations to include the new features.
Then, the result was linked with MatIEC’s functions that produce the original input code from the
generated AST for validation purposes.
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Chapter 1

Introduction

1.1 Context and Motivation

The development of Programmable Logic Controllers (PLC) by many different entities origi-

nated a large variety of architectures, operating systems and even software development environ-

ments to this equipments. This abundance made the code re-utilization very difficult, the learning

and complete usage of a new machine very slow and the utilization of controllers from different

makers very complex. In an Industrial Environment this can be prejudicial. This problem causes

a necessity to abstract the hardware architecture and the operating system to the software devel-

oper. The 61131 series of standards from IEC (International Electrotechnical Commission) arises

to mitigate this challenge.

The series of standards is divided in eight different parts. The third of these, which is the

focus of this dissertation, normalizes the programming languages to use when programming PLCs

as well as the files formats where the information is saved[1]. The tree editions of the 61131-3

standard were approved in 1993, 2003 and 2013 and define four programming languages for PLCs:

Structured Text and Instruction List (textual) and Function Block Diagram and Ladder Diagram

(graphical) and yet one language for state machine specification: Sequential Function Chart. It is

important to notice that the last (third) edition includes, apart from its predecessors, a definition of

the programming languages so that they allow the code to be object oriented. This improvement

is particularly important because it will permit PLC’s code to be better structured as a whole.

The definition of programming languages is of utmost importance for a software engineer to

be able to develop his code. However, without a program that translates the high-level code into a

format that the computer/PLC may comprehend it, all that work is in vain. That program is called

a Compiler. This Dissertation will be about the implementation of a compiler front-end to the third

edition of the IEC 61131-3 standard. This topic is really interesting to the PLC market given that

the standard has global acceptance proportions.

This project emerges from the need to update the MatIEC compiler so that it accepts the new

syntax described in the third edition of the standard. The MatIEC is an open source IEC 61131-3 -

second edition compiler developed primly by professor Mário de Sousa. Its relevance to the world
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2 Introduction

of Industrial Automation is the disconnection to proprietary licensed PLCs and contributing this

way to the spread of the standard in its essence thus allowing the users to make portable code and

not needing to introduce each manufacturer specificities[2].

1.2 Objectives

The main objective of this Dissertation is to develop a compiler front-end to the textual pro-

gramming languages (Structured Text and Instruction List) as well as the textual description of the

Sequential Function Chart language as they are described in the third edition of the IEC 61131-

3 standard.

1.3 Document Organization

Apart from this Chapter, this dissertation includes 6 more chapters.

In Chapter 2 an extensive explanation of a Compiler Structure will take place.

Chapter 3 will include a brief overview of the IEC 61131-3 standard.

Chapter 4 is an analysis of the compiler design tools used in this project.

Chapter 5 shows the inconsistencies that were found in the third edition of the standard.

Chapter 6 consists of an explanation of the designed Lexer and Parser.

Chapter 7 concludes this dissertation and proposes future work.



Chapter 2

Compilers

This chapter first describes the typical Structure of a Compiler, after which a detailed expla-

nation of the several phases involved in the compilation process. Following this discussion some

compiler design tools are compared.

2.1 Introduction to Compilers

John Von Neumann introduced two important concepts in 1945: shared-program technique

means that computer hardware should be simple and reprogrammable by complex instructions and

conditional control transfer which suggested that a program should be able to be interrupted and

reinitialized at will (notion of subroutine). These concepts were the beginning of a faster, more

efficient and more adaptable computation era [3]. The first programming language appeared in

1949. It was called Short Code and was based in arithmetic expressions. This language, however,

had to be converted to binary code by hand but it was an important initial step. Two years later

Betty Holberton proposed the Sort-Merge Generator. This was the first way to create a program

automatically. These two events inspired Grace Murray Hopper to develop the first compiler as

she states in her keynote in [4, Grace Hopper].

Shortly after IBM (International Business Machines Corporation) released the FORTRAN I

(developed from 1954 to 1957). made its appearance and by 1958 50% of all written code was in

FORTRAN[4, John Backus]. FORTRAN introduced the IF, DO and GOTO statements, boolean,

integer and real data types[3]. The next big steps in compiler’s history were ALGOL (1958)

and COBOL (1959) which had a better handle of input/output. From this moment on, the basis for

the modern programming languages were set up.

A compiler is a software application that, above everything else and in the most simple way,

translates a program written in a programming language to one equivalent program written in a

target language [5, Chap. 1]. In order to do this, a compiler must know every single detail of the

source programming language therefore it is able to detect the lexical, syntactical and semantic

errors in the source program. The difference between these types of errors will be demonstrated

later in this Chapter.

3
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2.2 Compiler’s Structure

A typical compiler is divided in two main parts:

• Analysis — also called front end, this part deconstructs the source program into its most

basic pieces (tokens), checks if they are syntactically and semantically correct (according to

the source language specifications) and produces a grammatically structured representation

of the tokens that will be used to generate an intermediate representation of the final code;

• Synthesis — also called back end, this is where the target program will be generated and

optionally optimized.

Each of this parts is subdivided in several others that can be seen in Figure 2.1. This phases

will be detailedly explained on the following sections of this Chapter.

Figure 2.1: Structure of a Compiler (adapted from [5])
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2.3 Lexical Analysis

input: stream of characters from the source program

output: sequence of tokens

This is the first phase of the compilation process. In this phase, the characters from the source

program are grouped so that each of these groups (lexemes) has a meaning in the context of the

programming language. For example for the following input (written in Structured Text):

variable_a:=variable_b+5;

the lexical analyser (also refereed to as lexer) should recognise the following lexemes: <vari-

able_a>, <:=>, <variable_b>, <+> and <5>.

Typically, this phase is divided in two processes: Scanning and Tokenizing. The Scanner reads

the input and finds the lexemes. This process includes the elimination of comments and excessive

white space. After this, the Tokenizer determines the class of each lexeme and generates a token.

A token (or terminal symbol) is a structure that represents a lexeme and it includes the class of

the lexeme (token name) and the attribute. Examples of token names are: identifier, keyword

("if", "for", "while", ...), assign operator(":=") comparison operator ("<", ">=", "!="), number...

It’s important to note that for identifiers (names of variables) there is a need to store its name and

value, therefore the attribute is always a pointer to the symbol table. The Symbol Table is the data

structure that stores information (names, value, type, scope...) on the symbols of the program such

as variables, functions, classes, objects. These tables will not be focused in this Section.

For the previous example, the Lexical Analyser should create the following tokens:

<identifier; pointer to variable_a in Symbol Table>, <assign_operator; :=>, <identifier; pointer

to variable_b in Symbol Table>, <operator; +> and <number; integer 5>. For simplicity, tokens

will be represented inside <> by its lexeme. For instance <variable_a>.

2.3.1 Lexical Errors

A Lexical error is one that can be detected in the Lexical Analysis phase. These errors may

be unacceptable characters of the language (example: @) or lexeme that don’t belong to any class

(for example if an identifier is defined as a sequence of letters or digits beginning with a letter, the

following example is a lexical error: 0a).

There are several possible error-recovering actions [5, Chapter 3]:

• Delete one character from the remaining input;

• Insert a missing character into the remaining input;

• Replace a character by another character;

• Transpose two adjacent characters.

(This document won’t focus on these actions. The references [5, Section 3.1.4] and [6, Section

3.7.6] have useful information on this and may be of help.)
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2.3.2 Regular Expressions

Regular Expressions are a simple way of specifying the set of tokens of a given language. In

order to understand how, it’s important to distinguish the concepts of alphabet[5]/vocabulary[6],

string and language.

1. Alphabet/Vocabulary (Σ) is the set of characters allowed. Examples of this are the binary

alphabet: {0, 1}, the ASCII alphabet (which includes 128 characters) or the English alphabet

(which includes all the letters from a to z and A to Z and punctuation).

2. String is a sequence of characters from an alphabet. This concept also includes the empty

string (usually represented as ε but also as λ ) which is the string of length 0.

3. Language is the set of strings of a given alphabet. This definition includes the {ε} language

and the empty language ( /0).

The operations on languages defined formally in Table 2.1 must also be considered, to under-

stand how regular expressions are created.

Table 2.1: Operations on Languages (adapted from [5] and [7])

Operation Definition
Union[5]/Alternation[7]: L ∪M1 {s : s ∈ L ∧ s ∈M}
Concatenation: L ·M {st : s ∈ L ∨ t ∈M}
Kleene closure: L∗ ∪∞

i=0 Li

Note 1: L and M symbolize two different languages.
Note 2: s and t symbolize two strings.
Note 3: Li represents the concatenation of L with L i times.

If i = 0 then Li = ε , else if i = 2 then Li = L ·L and so on.
Another operation may be defined and added to the previous table that is a particular case of

the Kleene closure where the ε string is removed. This is a useful and worth mention operation:

Positive closure: L+ ∪∞
i=1 Li = L ·L∗

For a better understanding of this: Let L be a language defined by the set of strings {a, b, c}
and D another language defined by {0, 1, 2}. Using the previous operations new languages may

be defined:
L | D = {a, b, c, 0, 1, 2};
L ·D = {a0, b0, c0, a1, b1, c1, a2, b2, c2}
L2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc}
L∗ = {ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, ...}
L+ = {a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, ...}

1The Union operation may also be represented with the symbol | (as in L | M) instead of ∪. And it’s read as or.
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Finally, regular expressions are defined recursively using smaller regular expressions as it can

be seen below as an example:
letter = {a, b, c, ..., z, A, B, C, ..., Z}

digit = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

signal = {+, -}

underscore = {_}

numbers = (ε|signal) ·digit+

identifier = (letter|underscore) · (letter|digit|underscore)∗

Formally, regular expressions over a given alphabet Σ may be defined ([5] and [7]):

1. ε is a regular expression and L(ε) is the language whose set of strings is {ε}.

2. If a is a symbol in Σ, then a is a regular expression and L(a) = {a}.

3. r and s are regular expressions denoting L(r) and L(s) respectively, then:

(a) (r | s) is a regular expression denoting L(r) ∪ L(s).

(b) (r · s) is a regular expression denoting L(r) · L(s).

(c) r∗ is a regular expression denoting L(r)∗

Simplifying:
A regular expression is an expression that represents a search pattern for the acceptance of a

valid set of strings for a determined purpose in the context of a given Language.

2.3.3 Finite Automata

Finite Automata (plural for Finite Automaton) is an algorithm used to accept or reject certain

input. They are essentially transition diagrams where each node represents a state of the algorithm

and each transition represents the acquisition of a certain symbol. It is widely used in Scanners to

recognize tokens described by regular expressions. Finite Automata must always include ([5]):

1. A finite set of states.

2. An input alphabet Σ. (ε is never a member of Σ).

3. A transition function that gives, for each state and for each symbol in Σ∪{ε}, a set of next

states.

4. A start state.

5. A set of final states (accepting states).
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Two different types of Finite Automata can be distinguished ([5]):

1. Nondeterministic (NFA)

• A state may have transitions to different states triggered by the same input symbol

• A transition may be triggered by ε .

2. Deterministic (DFA)

• A state must have one and only one transition per symbol of the input alphabet.

• There are no moves on input ε .

Consider a Language defined by {a, b}. There is a need to accept any string that ends in "abb".

This can be achieved with the regular expression: (a|b)∗ ·a ·b ·b (find any number of a’s or b’s then

an a then a b and finally a b). The NFA that describes this expression is the one in Figure 2.2.

Figure 2.2: NFA that accepts (a|b)∗ ·a ·b ·b (example from [5])

The NFA accepts the input if there is at least one path that takes it to the accept state (s3). For

the input string "ababb" a possible sequence of states is: s0
a
→ s0

b
→ s0

a
→ s1

b
→ s2

b
→ s3 so this is a

valid string.

All NFAs can be converted to a DFA however, they may become bigger and more complex

than the original. Figure 2.3 shows the DFA equivalent to the previous example.

Figure 2.3: DFA corresponding to the NFA on Figure 2.2 ([5])
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2.3.4 Types of Lexer generators

A Lexer generator receives as input the regular expressions that define the syntax of the input

language, generates an NFA, then transforms it into the equivalent DFA and then generates the

executing code for that DFA ([7]). There are three kinds of Lexer Generators worth noticing:

• Table-Driven
This type of Lexer Generator uses a transition table and a "skeleton scanner" ([7]) to create

the Lexical Analyser.

• Direct-Coded
The Direct-Coded is a better option because it has the same functionalities of the table-

driven but without the overhead of looking to the table. The states are coded directly.

• Hand-Coded
The Hand-Coded Lexer Generators are only useful for small and not complex languages.

2.3.5 Summary of Lexical Analysis

In Language Theory one must say the Lexical Analysis identifies words by grouping charac-

ters.

Objectives:

• Scan input;

• Remove white space;

• Remove comments;

• Create Token;

• Detect lexical errors.

In this Section:

1. The concepts of Token, Lexeme and symbol table were introduced;

2. There was a brief overview of the lexical errors and how the lexer may recover from them;

3. Regular expressions were explained;

4. The differences between NFA and DFA were clarified;

5. Lastly the different types of lexer generators (table-driven, direct-coded and hand-coded)

were instructed.
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2.4 Syntax Analysis

input: token stream

output: syntax tree

The Syntax Analysis or Parsing is the next compilation phase. The parser must check if the

token stream received from the Lexical Analyser is possible considering the syntax rules (gram-

mar) of the input language and fit them in a data structure that will be used by the next steps of

compilation (Syntax Tree).

A grammar is a formal description of a language. It defines what possible structures the code

must follow in order to be accepted. There is a widely used formalism for grammar description,

the Backus–Naur form (BNF). This notation was created by John Backus in the late 50’s and

popularized by Peter Naur (hence its name) right after[8][9]. Later the language suffered several

extensions and originated variants such as the Extended Backus-Naur Form (EBNF) or the Aug-

mented Backus-Naur Form. These are similar to the way regular expressions are defined so won’t

be deeply focused here. A BNF expression would look like shown in Grammar 2.1:

Grammar 2.1: BNF example rules

<Program> ::= <statement> <Program>
<Statement> ::= <Identifier> ’:=’ <Expression> ’;’

This notation is too simple for some operations, for example in the Grammar 2.1 a program is

defined as a list of statements, however it must be described with recursion wich makes it harder to

read. For this reason the EBNF notation was developed. There are lots of slightly different versions

of the EBNF. Pete Jinks’ table at [10] may help the reader understand all of these variations.

The EBNF added several symbols to its predecessor. The most common ones are: the optional

symbol ( [] or ? ), the repetition symbol ( {} or * ), the grouping symbol ( () ), the end of rule (

; or . ), some versions even include a symbol for comments ( (**) ). Grammar 2.2 is a simple

grammar written in ISO Extended Pascal EBNF (see [10]) that will be used throughout this:

Grammar 2.2: EBNF example Grammar

Program = Statement {Statement};
Statement = Identifier ’:=’ Expression ’;’;
Expression = Sum | Sub;
Sum = number ’+’ number;
Sub = number ’-’ number;
Identifier = letter {letter | digit};
number = [’-’] digit {digit};
digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’;
letter = ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ... | ’Z’;
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2.4.1 Types of Grammars

According to [11], there are four types of grammars: Types 0 (Unrestricted grammar), 1

(Context-sensitive grammar), 2 (Context-free grammar) and 3 (Regular grammar). Each of these

types of grammars are subsets of the previous one.

Unrestricted grammars (also known as Recursively Enumerable or Type 0 grammars) are

the most general type and include every grammar that can be generated with a Turing machine.

There is only one restriction in this type of grammar: the left side of a rule must not be empty. An

example can be seen in Grammar 2.3.

Context-sensitive grammars (also known as Turing-decidable or Type 1 grammars) are a set

of grammars that can be generated using a linear bounded automaton. They have an additional

restriction which states that all rules must be of the form:

αAβ = αγβ ;α ∧β ∈ {ε, teminals,nonterminals}∧ γ ∈ {teminals,nonterminals}

This restriction doesn’t allow rules like AB = BA;. Grammar 2.4 is a simple example of this type

of grammars.

Context-free grammars (also known as Type 2 grammars) are defined by adding another

restriction to the previous type:

The left side of every rule must have exactly one nonterminal and no context.

This means that whenever that nonterminal appears in the right side of a rule you can replace

it with on of that nonterminal’s right side. An example of a context-free grammar is shown in

Grammar 2.5.

Lastly, the regular grammars (also known as Type 3 grammars) are a particular set of gram-

mars whose rules right side just have a single terminal (A = ’a’;) or a single terminal and a

single nonterminal (A = ’a’B;). See example in Grammar 2.6.

Grammar 2.3: Example of Type 0 Grammar

S = AB’a”b’;
AB’a’ = BA;

B = ’b”b’;
B = ’b”b”b’;

Grammar 2.4: Example of Type 1 Grammar

S = AB’a”b’;
AB = A’c’;

’c’B = ’c”b”b’;
B = ’b”b”b’;

Grammar 2.5: Example of Type 2 Grammar

S = AB’a”b’;
A = ’a’;
A = ’a”a’;
B = ’b”b”b’;

Grammar 2.6: Example of Type 3 Grammar

S = ’b’A;
A = ’a’B;
B = ’b”b’;

For a formal, extensive but not "reader friendly" definition of these types of grammars please

see [11]. For a simplified version please see [12, Section 8.6].
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2.4.2 Syntax Trees

The output of the parser is the Syntax Tree. The syntax tree is a data structure that describes

the syntactic structure of the source code. Syntax trees may be Abstract or Concrete. The dif-

ference between these two is the fact that the Concrete Syntax Tree (CST) represent all of the

input (including whitespace, keywords, ...) while the Abstract Syntax Tree (AST) uses the tree

structure to imply some of the input. Consider Grammar 2.2. The CST and AST for the input

"A:=1+1;B:=1-2;" would look like Figure 2.4 and Figure 2.4 respectively.

Figure 2.4: CST generated for "A:=1+1;B:=1-2;" with respect to Grammar 2.2

Figure 2.5: Possible AST generated for "A:=1+1;B:=1-2;" with respect to Grammar 2.2

In this example, the tokens <;> and <:=> are not needed because if they were missing the

parser would produce an error and would not output the syntax tree. In this particular example the

node statement as just two leaves: the identifier (left) and the expression (right). Generating an

AST instead of a CST results, potentially, in smaller syntax trees (as shown in Figures 2.4 and 2.4)

and may reduce compilation time as the next steps won’t have to deal with so much information.
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2.4.3 Syntactic Errors

A Syntactic error is one that can be detected in the Syntax Analysis phase. These errors may

be missing or extra tokens (<+> for example), unbalanced parenthesis or braces... These are errors

in nonterminal symbols of the grammar. Using Grammar 2.2 as an example, the input A : 1+1;

would be a Lexical error (as the lexer wouldn’t be able to form a token from :) and A := 1++1;

would be a Syntactic error because the rule Sum has an extra <+> which is unexpected.

There are two main error-recovering strategies:

• Panic-Mode Recovery[5] / Error Recovery[6];

• Phrase Recovery[5] / Error Repair[6].

The first consists in skipping input tokens until a unambiguous delimiter appears, for example

a <;> or a <}> and then continuing the analysis. The choice of delimiter is in the hands of the

compiler designer. [5] calls these delimiters synchronizing tokens.

The second strategy uses input correction by replacing, removing or adding a character in

order to allow the parser to proceed beyond the point of error detection. Examples of usage are

the insertion of a missing <;> or scope corrections (by inserting or removing unbalanced braces).

This technique is more difficult than the previous one and may lead the parser to an infinite loop

in certain situations[6].

Instead of correcting errors, predicting some of the most common errors and creating specific

rules for those in the Grammar itself is extremely helpful (Error Productions[5]). This usually

leads to better reports and even suggestions of correction.

In the literature there are some references to Global Correction algorithms which can find the

minimum number of alterations to the source code that lead the parser to an acceptable syntax tree.

These algorithms require, however, too much space and time to be implemented in a compiler. See

[5], [6], [7] and [12].

2.4.4 Types of Parsers

Parsers may be one of three kinds: Universal, top-down and bottom-up [5].

Universal parsers can parse every grammar no matter its complexity. They can find every

parse tree for a given input sequence by trying every subtree for the partial input sequences derived

from that same input. These are, however powerful, too inefficient to be used and will not be

covered by this document. Examples of Universal parsing algorithms are the Cocke-Younger-

Kasami algorithm (commonly known as CYK-algorithm) and the Earley parsing algorithm.

If the reader wants to know more on the CYK-algorithm, please see [13], [14], [15], [16].

If the reader wants to know more on the Earley algorithm, please see [17] and [16].



14 Compilers

Top-down parsing is a parsing method that creates the parse tree for some input starting in

the root node and continuing to the leaves. It takes one token at a time and decides where it fits

in the tree before continuing to the next. This approach is almost always not enough because the

same token may fit several alternatives at a time.

For a simple explanation of the top-down parsing method consider once again Grammar 2.2.

Consider, yet, that the source code to be parsed is A:=1-2;. This input would be tokenized by the

scanner as: <A>, <:=>, <1>, <->, <2> and <;>. The parser will try to get a Program so this is

the start rule. It will expect a Statement and then an Identifier. The first Token will match

this rule so the evolution of the syntax tree will look like Figure 2.6.

Figure 2.6: Top-down parse tree evolution after token <A> of of the token stream <A> <:=>, <1>
<-> <2> <;> with respect to Grammar 2.2

The next token to appear is <:=> which is expected in the Statement rule.

Figure 2.7: Top-down parse tree after token <:=> of of the token stream <A> <:=>, <1> <-> <2>
<;> with respect to Grammar 2.2

The next token is a number and it fits both in Sum as in Sub so the parser will try the first to
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appear in the Statement rule. In this example it will try the Sum rule. Figure 2.8 shows exactly

this.

Figure 2.8: Top-down parse tree after token <1> of of the token stream <A> <:=>, <1> <-> <2>
<;> with respect to Grammar 2.2

The next token (<->) will not be expected by the parser at this time. So the parser has to

go back and try the second alternative (which, in this case, will fit). This technique is called

backtrack and is used in Recursive descent parsers. Alternatively the parser could predict which

of the alternatives would fit before generating the next node by using a lookahead token. This

type of parsers are called Predictive parsers and are defined by the number of lookahead tokens

they can use. For this example an LL(1) parser would suffice because it just needs to lookahead

one token in order to decide which rule is the right one. If it sees a <+> it would decide to go for

the Sum. If it sees a <-> then it knows to expect a Sub. LL stands for Left to right performing

Leftmost derivation which means the parser will read the input from left to right and will always

find the Leftmost symbol (token or non-terminal) to be part of a lower level symbol (token or

non-terminal).

Figure 2.9 shows the syntax tree after the parser decides the correct alternative is the Sub rule.

In a predictive parser the Sum rule would never had been selected and the step shown by Figure

2.8 would not actually happen.
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Figure 2.9: Top-down parse tree after token <-> of of the token stream <A> <:=>, <1> <-> <2>
<;> with respect to Grammar 2.2

The last two tokens follow the same principles and just complete the Sub rule and the

Statement rule which ends the Program correctly:

Figure 2.10: Top-down parse trees after tokens <2> (left) and <;> (right) of the token stream <A>
<:=>, <1> <-> <2> <;> with respect to Grammar 2.2

A big problem with this type of parsers is Left Recursion. Grammars that have a nonterminal

rule such as the next symbol to consume is the same as the rule (for example: S = S a;) will

become trapped in an infinite loop while trying to see what tokens are expected for the S rule.

This also happens indirectly for example if both S = B a; and B = S b; are part of the same

grammar. For more information on this problem please refer to [6], [7] or the online lectures [18,

Chapter 8].
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As the name suggests, Bottom-up parsers are the opposite of the top-down parsers. They

start with the leaves and build their way up to the root. The most general algorithm for this type

of parser is called Shift/Reduce. This concept is linked with a type of parser called LR(k) parsers

which stands for Left to right performing the Rightmost derivation and the k is the number of

lookahead tokens it supports. This means the tokens are red from left to right and the parser

decides at each state whether the rightmost symbol (token or non-terminal rule) can be reduced

to a higher symbol or a new token should be shifted. There are several advantages of this type of

parser for example[5]: They may be used for almost all context-free grammars and no other left

to right parser can detect a syntactic error sooner than the LR parser. On the other hand it is much

harder to implement an LR parser than an LL parser and the code is inevitably more difficult to

analyse. More advanced types of LR parser are the canonical-LR and the LALR but these will not

be covered here.

Parallelly to the top-down parsing methodology consider Grammar 2.2 and the input A:=1-2;

which is "fed" to the parser as the tokens <A>, <:=>, <1>, <->, <2> and <;>. The parser will

now look at the first token and try to reduce it as much as it can. It will in this case produce a

syntax tree like the one shown in Figure 2.11.

Figure 2.11: Syntax tree created by bottom-up parser after the token <A> of of the token stream
<A> <:=>, <1> <-> <2> <;> with respect to Grammar 2.2

The next token (<:=>) will not lead to a reducible state, so the parser will shift the following

(<1>) which can be reduced to number. This is shown in Figure 2.12.

Figure 2.12: Syntax trees created by bottom-up parser after the tokens <:=> (left) and <1> (right)
of the token stream <A> <:=>, <1> <-> <2> <;> with respect to Grammar 2.2

At this moment the parser has to shift twice before being able to reduce again (see Figures

2.13 and 2.14).
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Figure 2.13: Syntax tree created by bottom-up parser after the token <-> of the token stream <A>
<:=>, <1> <-> <2> <;> with respect to Grammar 2.2

Figure 2.14: Syntax tree created by bottom-up parser after the token <2> of the token stream <A>
<:=>, <1> <-> <2> <;> with respect to Grammar 2.2

After reducing <2> to number the rightmost tokens in the tree form a Sub which is an

Expression, so the parser will reduce twice (see Figures 2.15 and 2.16). As it can be seen,

this type of parser won’t need to backtrack as the its top-down equivalent.

Figure 2.15: Syntax tree of Figure 2.14 after the reduction of number <-> number to Sub

Figure 2.16: Syntax tree of Figure 2.15 after the reduction of Sub to Expression
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The last token (<;>) will correctly end the Statement (Figure 2.17) and the Program (2.18)

rules.

Figure 2.17: Syntax tree created by bottom-up parser after the token <;> of the token stream <A>
<:=>, <1> <-> <2> <;> with respect to Grammar 2.2

Figure 2.18: Syntax tree of Figure 2.17 after the reduction of Statement to Program

Despite not needing to backtrack, this methodology has a disadvantages when compared to

top-down parsing: shift-reduce conflicts and reduce-reduce conflicts. The particulars of these

problems and their solutions will not be presented in this document. For more information on this

topic please refer to [6], [5], [18] which has a great tutorial like explanation of how SLR parsers

deal with this by using handles.
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2.4.5 Summary of Syntax Analysis

In Language Theory one must say the Syntactical Analysis identifies sentences by grouping

words.

Objectives:

• Analyse the token stream

• Generate the Syntax Tree

• Detect Syntactical Errors

In this Section:

1. The Grammar writing formalism BNF and its extension EBNF were introduced;

2. The various types of Grammars (Unrestricted grammars, Context-sensitive grammars,

Context-free grammars and Regular grammars) were explained;

3. The differences between CST and AST were clarified;

4. There was a brief overview of the syntactic errors and how the parser may recover from

them;

5. Lastly the different types of parser (Universal, Top-Down and Bottom-Up) were instructed.

2.5 Compiler Design Tools

There are a large set of tools available for Compiler’s Designers that help in the development

of a compiler for a given language. In this section several types of these tools will be presented

and some examples of each one will be compared.

2.5.1 Lexical Analyser generators

There are a great number of options when speaking of Lexer generators ([6, Chapter 3]):

• Lex - table-driven - outputs to C - distributed under proprietary license

• Flex - table-driven - outputs to C, C++ - distributed under BSD license

• JLex - table-driven - outputs to Java - distributed under GPL license

• ALex - table-driven - outputs to Haskell - distributed under BSD license

• GLA - direct-coded - outputs to C

• re2c - direct-coded - outputs to C - in the public domain
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• COCO/R - direct-coded/hand-coded - outputs to C, C++, Java and others (is also a Parser

Generator) - distributed under GPL license

• ANTLR 3 - outputs to C, C++, Java and others (is also a Parser Generator) - distributed

under BSD license

• ANTLR 4 - outputs to C#, Java, Python and JavaScript (is also a Parser Generator) - dis-

tributed under BSD license

2.5.2 Parser generators

• YACC - LALR(1) - outputs to C

• YACC++ - LR(1), LALR(1) - outputs to C++ and C# - distributed under proprietary license

• bison - LALR(1) - outputs to C and C++ - distributed under GPL license

• Bison++ - LALR(1) - outputs to C++ - distributed under GPL license

• COCO/R - LL(k) - outputs to C, C++, Java and others (is also a Lexer Generator) - dis-

tributed under GPL license

• ANTLR 3 - LL(*) - outputs to C, C++, Java and others (is also a Lexer Generator) - dis-

tributed under BSD license

• ANTLR 4 - LL(*) - outputs to C#, Java, Python and JavaScript (is also a Parser Generator)

- distributed under BSD license
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Chapter 3

The IEC 61131-3 standard

The main assignment of this chapter is to review the IEC 61131-3 standard, starting with a

brief introduction to the IEC 61131 series of standards. Afterwords the three versions of the IEC

61131-3 standard will be compared.

3.1 Introduction to the IEC 61131 standards

The International Electrotechnical Commission is an organization that intends to produce In-

ternational Standards related to all Electrical and Electronic technologies in order to promote in-

ternational co-operation in this field (from [1] and [19] on the 7th of February of 2016).

The goal of the 61131 standards is to define a global interface to PLCs and their associated

peripherals without defining, however, the PLC internal architecture ([20] and [21]). There are

eight parts to this series of standards ([21]):

Part 1: Establishes the definitions and identifies the principal characteristics relevant to the

selection and application of programmable controllers and their associated peripherals;

Part 2: Specifies equipment requirements and related tests for programmable controllers and

their associated peripherals;

Part 3: Defines, for each of the most commonly used programming languages, major fields

of application, syntactic and semantic rules, simple but complete basic sets of programming

elements, applicable tests and means by which manufacturers may expand or adapt those

basic sets to their own programmable controller implementations;

Part 4: Gives general overview information and application guidelines of the standard for the

PLC end-user;

Part 5: Defines the communication between programmable controllers and other electronic

systems;

Part 6: Is reserved;

23
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Part 7: Defines the programming language for fuzzy control;

Part 8: Gives guidelines for the application and implementation of the programming lan-

guages defined in Part 3.

3.1.1 Structure of the standard

Figure 3.1: Software architectural model of the standard (from [1])

Figure 3.1 is a representation of the hierarchical programming structure defined in [1].

The highest hierarchical element in the structure is the Configuration. This language element

corresponds to the programmable controller system defined in IEC 61131-1[22]. Here, the global

variables for the configuration and the access paths between configurations are defined and directly

represented variables are declared. A Configuration must contain at least one Resource.

A Resource is as stated in IEC 61131-3, a signal-processing-function, its man-machine inter-

face and its sensor and actuator interface. An example of this would be a CPU in a PLC. Inside

a Resource global variables (for that Resource) may be defined and directly represented variables

may also be declared. A Resource always includes one ore more Programs controlled by zero

or more Tasks[1]. This may seem counterintuitive but a Program may be declared in a Resource
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without a Task association (a Program declared this way will have the lowest priority and will be

executed cyclically[23]). Note that using the keyword PROGRAM in a Resource is not defining a

POU (Program Organization Unit) of type Program but rather assigning a Task to trigger a POU

of type program.

A Task is where run-time properties are defined. A Task may be executed periodically or on

the rising edge of a specified boolean variable and may trigger the execution of a POU of types

Program or Function Block. The properties of a Task may be changed using the parameters SIN-

GLE (a boolean value that triggers the invocation of this Task associated Programs on its Rising

Edge), INTERVAL (a time literal value which represents the time between two invocations of the

Programs associated with the Task) and PRIORITY (an unsigned integer that is self explanatory).

A POU is either a Function, a Function Block, a Class or a Program (the next four paragraphs

will succinctly describe each one of these). The purpose of a POU is to be a structural and modular

part of the system that may be compiled independently from other parts of the program (although

it needs the prototypes of the other POUs that are called in the being compiled one)23. It has a

well defined input/output interface and may be called and executed multiple times [1].

A Function is a POU with no memory of its state (has no static variables) which means that

for the same input, its output will always be the same.

A Function Block is a POU that defines a data structure and a set of methods to operate that

data structure. This concept is called in the standard Function Block Type which is different from

Function Block Instance. A Function Block Instance corresponds to the usage of a Function Block

Type. Each instance has memory of its state. Each call to a Function Block Instance means an

execution of that instance (with its previously state).

The concept of Program as POU is defined in IEC 61131-1 as: "logical assembly of all

the programming language elements and constructs necessary for the intended signal processing

required for the control of a machine or process by a PLC-system" [21]. It behaves much like a

Function Block apart from a few differences[1]:

Programs must be instantiated in a Resource (Function Blocks must be instantiated in a Program

or another Function Block).

A Program may have an access path to any input, output or internal variables of its own.

A directly represented variable may only be declared in a Program, a Resource or a Configuration.

A Class is a POU designed for OOP (object oriented programming). This POU type concept

is much like the Class concept for C++, C#, Java... It differs from a Function Block because an

instance of a Class does not mean an execution of that Classes methods.

3.1.2 IEC 61131-3 Languages

The standard defines two graphical programming languages (Ladder Diagram (LD) and

Function Block Diagram (FBD)), two textual programming languages (Instruction List (IL)

and Structured Text (ST)) and one structural language (Sequential Function Chart (SFC)) that

may be used both in textual and graphical formats although the former is rarely seen.
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The Ladder Diagram programming language was developed to look like a relay system in

order to ease its usage to electricians without programming experience, thus a program written in

LD contains contacts and/or coils connected in series or parallel in horizontal lines (LD networks)

connecting two vertical lines (Power rails).

Contacts are elements that impose a state to their right link in the LD network. This state is

determined by the state of their right link and the boolean variable (may be an input, an output

or even a memory variable) associated with them. Standard contacts are Normally open contact,

Normally closed contact, Positive transition-sensing contact, Negative transition-sensing contact,

Compare contact (typed) and Compare contact (overloaded). For an explanation of each one of

these please see [1].

On the other hand, Coils transmit the state from their right link to their left without modifying it

(as in electric circuits) and store a given function of that state in their associated boolean variable.

Standard coils are Coil, Negated coil, Set (latch) coil, Reset (unlatch) coil Positive transition-

sensing coil and Negative transition-sensing coil. For an explanation of each one of these please

see [1].

An example of a LD program may be found in Figure 3.2.

Figure 3.2: Example of LD program

An FBD program is a high level graphical programming language that uses boxes and connec-

tions between these boxes to represent Function Blocks/Functions and data connections between

these entities. The inputs and outputs of a Function Block/Function are represented respectively

on the left and on the right side of the corresponding box. This language resembles a signal

processing system.

There are important rules to take into account when programming in FBD[1]: No element of a

network shall be evaluated until the states of all of its inputs have been evaluated. The evaluation of

a network element shall not be complete until the states of all of its outputs have been evaluated.

The evaluation of a network is not complete until the outputs of all of its elements have been

evaluated, even if the network contains one of the execution control elements.
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Also, in case of a feedback loop there mus exist an implementer specific way to determine the

order of execution. In Figure 3.3 the same example as in Figure 3.2 may be seen, this time as an

FBD program.

Figure 3.3: Example of Figure 3.2 as an FBD program

The IL language is an Assembler like language that is deprecated and will not appear in sub-

sequent versions of the IEC 61131-3 standard [1]. As its name suggests, aprogram written in

this language is a list of instructions. Each new instruction must start in a new line. Instructions

are formed with an Operator (with optional modifiers) and one or more Operands separated by

<,>. The result of the operation replaces the previous result (result := result OPERATOR

OPERAND)[1]. The accepted Modifiers N (which negates the result), C (which means the instruc-

tion shall only be performed if the previous result is Boolean 1 (or 0 if the N modifier is also being

used)) and ( which gives priority to the operation inside it. For a list of the standard instructions

and which modifiers they may use please refer to [1, Section 7.2]. It is important to notice that an

IL program may call a Function Block with the Operator CAL and the name of the Function Block

Instance (with the appropriate parameters).

The same example of Figures 3.3 and 3.2 is now expressed in IL in Code Section 3.1.

Code Section 3.1: Example of Figure 3.2 as an IL program

1 LD va r_1 (∗ l oad var_1 : r e s u l t e q u a l t o var_1 ∗ )

OR va r_2 (∗ r e s u l t e q u a l t o var_1 OR var_2 ∗ )

3 ANDN va r_3 (∗ r e s u l t e q u a l t o r e s u l t AND NOT var_3 ∗ )

ST c o i l (∗ c o i l e q u a l t o c u r r e n t r e s u l t ∗ )

The last programming language defined in IEC 61131-3 is the Structured Text language. It is

an imperative and procedural programming language derived from PASCAL. Simply stating the

ST language is a sequence of statements terminated with ;. It supports assignment statements (A

:= 1;), call statements (to Functions, Function Blocks Instances or methods (Class methods or

Function Block methods)), selection statements (such as IF/ELSIF/ELSE and CASE), iteration

statements (such as FOR, WHILE, REPEAT, CONTINUE and EXIT) and even empty statements (;).
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The example of Figures 3.3 and 3.2 and Code Section 3.1 may be found in ST in code Section

3.2.

Code Section 3.2: Example of Figure 3.2 as an ST program

c o i l : = ( va r_1 OR var_2 ) AND NOT var_3 ;

The structural language defined in the standard, SFC, may appear, as previously stated, both

in its textual version as in its graphical version. It was developed to turn complex projects into

smaller and less complex bits. It is based in a previous IEC standard, the IEC 848 which derived

from the Grafcet language.

The main elements of this language are Steps and Transitions which are used alternately. Steps

are blocks associated with executable code (written in one of the referenced programming lan-

guages) that is executed while the step is in its active state. A transition is simply a boolean

expression. A Step transits to an Inactive state when it is Active and the immediately succeeding

transition is true. This event also activates the step immediately after this transition.

The flow of the program is generally from top to bottom. The only exception to this rule is in

the case of a loop where an arrow may appear from the bottom of the last step of the loop to the

top of the first.

There is a special Step to mark the beginning of the SFC network. This is called an Initial step

and is represented by a double line square instead of a normal square as the other Steps.

Alternative ways are represented by a single horizontal line with the several alternative transi-

tions vertically below it.

Two steps may be active simultaneously. This is represented by a double horizontal line (link-

ing the several steps) below the respective transition.

An example of a graphical SFC network may be found in Figure 3.4. Notice that step_2

and step_3 are simultaneously activated if step_1 is active and transition_2 is true. Also

step_4 and step_5 are alternatives to each other (in the particular case of both transition_3

and transition_4 are true while step_3 is active, which step is chosen is implementer spe-

cific, therefore it is highly recommended that this type of transitions be mutually exclusive). Fi-

nally step_7 becomes active if both step_2 and step_6 are active and transition_7 is

true.

The textual version of the program may be seen in Code Section 3.3.
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Figure 3.4: Example of a graphical SFC network

Code Section 3.3: Example of Figure 3.4 using SFC textual syntax

1 INITIAL_STEP s t e p _ 0 :
(∗ code f o r s t e p _ 0 ∗ )

3 END_STEP
STEP s t e p _ 1 :

5 (∗ code f o r s t e p _ 1 ∗ )

END_STEP
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7 (∗ d e c l a r a t i o n o f t h e o t h e r s t e p s ∗ )

9 TRANSITION FROM s t e p _ 0 TO s t e p _ 1 : =
(∗ c o n d i t i o n f o r t r a n s i t i o n _ 1 ∗ ) ; END_TRANSITION

11 TRANSITION FROM s t e p _ 1 TO ( s t ep_2 , s t e p _ 3 ) : =
(∗ c o n d i t i o n f o r t r a n s i t i o n _ 2 ∗ ) ; END_TRANSITION

13 TRANSITION FROM ( s t ep_2 , s t e p _ 6 ) TO s t e p _ 7 : =
(∗ c o n d i t i o n f o r t r a n s i t i o n _ 7 ∗ ) ; END_TRANSITION

15 TRANSITION FROM s t e p _ 7 TO s t e p _ 0 : =
(∗ c o n d i t i o n f o r t r a n s i t i o n _ 8 ∗ ) ; END_TRANSITION

17 (∗ d e c l a r a t i o n o f o t h e r t r a n s i t i o n s ∗ )

3.2 The 3 versions of the IEC 61131-3 standard

3.2.1 The First Version - 1993

The first version of the standard was released on the 22nd of March of 1993.

3.2.2 The Second Version - 2003

The second version of the standard was released on the 21st of January of 2003. Besides small

corrections in figures, tables and even descriptions there were amendments to the following items

([24] and [25, Annex A]):

• Numeric Literals - typed literals;

• Elementary data types – double-byte strings;

• Derived data types – enumerated data types;

• Single element variables – “wild-card” direct addresses;

• Declaration – Temporary variables;

• RETAIN and NON_RETAIN Variable attributes;

• Invocations and argument lists of functions;

• Type conversion functions;

• Functions of time data types;

• Function blocks – Extended initialization facilities;

• Pulse action qualifiers;
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• Action control;

• Configuration initialization.

3.2.3 The Third Version - 2013

The third version of the standard was released on the 20th of February of 2013. This version

is considerably different from its predecessor but it’s fully compatible ([1]).

The major features that were introduced can be found in [1, Annex B] and are as follows:

• Data types with explicit layout;

• Type with named values;

• Elementary data types;

• Reference, functions and operations with reference;

• Validate partial access to ANY_BIT;

• Variable-length ARRAY;

• Initial value assignment;

• Type conversion rules: Implicit – explicit;

• Function – call rules, without function result;

• Type conversion functions of numerical, bitwise Data, etc.;

• Functions of concatenate and split of time and date;

• Functions for endianess conversion;

• Class, including method, interface, etc.;

• Object-oriented FB, including method, interface, etc.;

• Namespaces;

• Structured Text: CONTINUE, etc.;

• Ladder Diagram: Contacts for compare (typed and overloaded);

• ANNEX A - Formal specification of language elements.

The next paragraphs will briefly explain these added features.

Regarding the Elementary data types, a number of new additions took place: LTIME, LDATE,

LTIME_OF_DAY (or LTOD), LDATE_AND_TIME (or LDT), CHAR and WCHAR.
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References were introduced to allow access to a single variable or function block instance that

is part of a structure. This is similar to C pointers, however, when an operation is performed on a

reference then it happens directly to the referenced variable.

Partial access to ANY_BIT allows the user to access a single bit of a BYTE, WORD, DWORD

and LWORD. Its usefulness is obvious. BOOLEAN_VAR := BYTE_VAR.%X7 means that the

seventh bit of the byte variable BYTE_VAR is assigned to the boolean variable BOOLEAN_VAR.

Note that the %X symbol indicates the size of the access (%X or none represents single bit size, %B

represents byte(8 bits) size, %W represents word(16 bits) size, %D represents double word(32 bits)

size and %L represents long word(64 bits) size).

The introduced variable-length ARRAY variables are arrays with no specified length. These

may only be used as input, output or in-out variables of a function/method or in-out variables of a

function block. The standard also provides a way to handle these ARRAYs: the LOWER_BOUND

and UPPER_BOUND functions. They are useful for creating functions that manipulate ARRAYs

of different sizes.

The third edition of the standard defines which data type conversions must be explicit and

which may be implicit (new). Figures 11 and 12 of the standard (in Section 6.6.1.6) have a really

straightforward and graphical way of showing this information.

The TRUNC function for conversion from REAL to INT is deprecated and to replace it typed

truncation *_TRUNC_** where the * is the type of the input variable and the ** is the type of

the output variable (ex: REAL_TRUNC_INT(1.4) returns the INT 1) and overloaded truncation

TRUNC_** (ex: TRUNC_SINT(1.6) returns the SINT 1).

Data type conversion functions of bit data types and bit and numeric data types was added to

the standard (ex: LWORD_TO_DWORD, BOOL_TO_ULINT and SINT_TO_BYTE).

It is now possible to create a DATE_AND_TIME variable by concatenating a DATE and a

TIME_OF_DAY variables or from the required integers (YEAR, MONTH, DAY, HOUR, ...). It

is also possible to split a DATE variable, a TOD variable or a DT variable in their constituents

integers (YEAR, MONTH, DAY, HOUR, ...).

An interesting addition to the standard are the functions for endianess conversion.

TO_BIG_ENDIAN, TO_LITTLE_ENDIAN, BIG_ENDIAN_TO and LITTLE_ENDIAN_TO may be

used to convert ANY_INT and ANY_BIT with 16 or more bits, ANY_REAL, WCHAR and TIME

variables.

As in some high-level languages, the IEC 61131-3’s languages now allow the user to use fea-

tures of OOP. The concepts of Class, Object (instance), Interface, Method, Namespace were added

to the standard for a better software structure on the field of Industrial Automation. Although Func-

tion Blocks were a basic block structure that mimic some of the OOP features, the new version

of the standard specifically states the differences between a Function Block and the new Class

concept (acquired from such languages as C++, Java or C#)[1]: VAR_INPUT, VAR_OUTPUT,

VAR_IN_OUT and VAR_TEMP are not allowed inside Classes (they may be used in methods, how-

ever). A Class has no body. It is not possible to call an instance of a Class, only methods of that

instance. An example of an IEC 61131-3 Class is represented in Code Section 3.4.
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Code Section 3.4: Example of a Class (taken from [1])

1 CLASS COUNTER

VAR
3 CV: UINT; / / C u r r e n t v a l u e o f c o u n t e r

Max : UINT: = 1000 ;
5 END_VAR

7 METHOD PUBLIC UP : UINT / / Method f o r c o u n t up by i n c

VAR_INPUT INC : UINT; END_VAR / / I n c r e m e n t

9 VAR_OUTPUT QU: BOOL; END_VAR / / Upper l i m i t d e t e c t i o n

11 IF CV <= Max − INC THEN / / Count up o f c u r r e n t v a l u e

CV: = CV + INC ;
13 QU: = FALSE ;

ELSE / / Upper l i m i t r eached

15 QU: = TRUE;
END_IF

17

UP : = CV; / / R e s u l t o f method

19 END_METHOD

21 METHOD PUBLIC UP5 : UINT / / Count up by 5

VAR_OUTPUT QU: BOOL; END_VAR / / Upper l i m i t r eached

23 UP5 : = THIS . UP( INC : = 5 , QU => QU) ; / / I n t e r n a l method c a l l

END_METHOD
25 END_CLASS
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Chapter 4

ANTLR vs. COCO/R

This Chapter will focus on explaining the internal structures of the two Lexer and Parser Gen-

erators, their strengths, weaknesses and their usage.

4.1 ANTLR

The ANother Tool for Language Recognition (ANTLR) is a powerful parser generator created

and maintained by Terrence Parr since 1989 [26]. Since its third version (ANTLR v3) it generates

LL(*) parsers (contrary to the previous versions which only generated LL(k) parsers). This is one

of the most important features in ANTLR.

This tool generates, for a given grammar four files:

• lexer grammar:

The lexer grammar is just an intermediate file and won’t be focused in here.

• tokens file:

For a given grammar, a token may be defined explicitly (rules with capital letters) or implic-

itly (for example in the rule: add_expr: term ’+’ term; + is an implicitly defined

token). The tokens file is a text file that assigns an integer value for each token in the input

grammar.

• recursive-descent lexer:

The recursive-descent lexer is written in the output language and contains a method for each

token. These methods consume the largest possible amount of input characters that fit that

token.

• recursive-descent parser:

The recursive-descent parser is also written in the output language and contains a method

for each rule in the input grammar. A reference to a rule translates to that rule’s method call

and a reference to a token translates to a call to the method match with the current token

and the expected one as parameters.

35



36 ANTLR vs. COCO/R

4.1.1 ANTLR prediction algorithms

For solving alternatives in rules, ANTLR first predicts which one is right and only then pro-

ceeds. In simple cases it only needs to check a few tokens ahead. This is the LL(k) approach. This

is used in many other parser generators and it is simple to understand, consider the following rule

[26]:
decl : ’int’ ID ’=’ INT ’;’

| ’int’ ID ’;’

;

in order to predict which alternative is the correct one, the parser must look three symbols

ahead. The generated parser must be at least LL(3). LL(k) parser generators would generate, for

the given rule code such as the one in Code Section 4.1. (Assume that the method LA_t returns

the lookahead token in the specified depth and the method match returns true if the first argument

is of the type specified in the second argument and false otherwise.)

Code Section 4.1: LL(3) example code

1 if (LA_t(1) == ’int’ && match(LA_t(2), ID) && LA_t(3) == ’=’)

{ return alternative1; }

3 else if (LA_t(1) == ’int’ && match(LA_t(2), ID) && LA_t(3) == ’;’)

{ return alternative2; }

5 else

{ error(); }

There are, although, situations in which LL(k) is not enough. For example, in the following

rule ([26]), it doesn’t matter how large k is it may not be large enough.
decl : modifier* ’int’ ID ’=’ INT ’;’

| modifier* ’int’ ID ’;’

;

As we added a sequence of zero or more modifiers to each alternative it is impossible to say

how large the k has to be in order to correctly parse the rule. ANTLR also has a way of dealing

with these non-LL(k) grammars: the LL(*). For the previous example ANTLR would generate

something like the code in Code Section 4.2.

Code Section 4.2: LL(*) example code

while(match(LA_t(k), modifier)) k++;

2 if (LA_t(k)==’int’ && match(LA_t(k+1), ID) && LA_t(k+2)==’=’)

{ return alternative1; }

4 else if (LA_t(k)==’int’ && match(LA_t(k+1), ID) && LA_t(k+2)==’;’)

{ return alternative2; }

6 else

{ error(); }
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In this situation, to correctly predict which alternative is the correct one, ANTLR uses a com-

bination of while and if statements such that it arrives at the first token that can distinguish the

alternatives. This technique is what makes ANTLR such an appealing tool for the compiler de-

signer.

Despite this, ANTLR can’t handle recursive rules because it uses a DFA to scan ahead. This

means that it tries to find the sequence of tokens that would get it to an acceptance state. For the

following rule it would get stuck as shown in the Figure 4.1:

decl : ’int’ declarator ’=’ INT ’;’

| ’int’ declarator ’;’

;

declarator : ID

| ’*’ declarator

;

Figure 4.1: DFA for the declarator rule in the previous example

For these situations that can’t be predicted with any of the previous algorithms, ANTLR has

another solution which is backtracking: It chooses the first alternative and if it fails the parser

restores to the starting state and tries the next one. This solution is more time consuming. Back-

tracking is not, although being described in this subsection, a prediction algorithm but rather a way

to go back to a previous state and try again. This technique takes longer and is less elegant than

the prediction methods and may difficult the error generation process because if all the alternatives

lead to an error then the parser as to figure out which of those the user intended by choosing the

"most correct" one, but even this may not be the real error.
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4.1.2 AST generation

This tool also offers two straightforward ways for AST generation. One consists on telling

what is to be considered root by appending a ˆ. The other way consists in rewriting the rule to fill

the needs of the user by using the -> operator. Consider the simple example of Code Section 4.3.

Code Section 4.3: Example of ANTLR grammar for AST generation

1 grammar ANTLR_AST_example;

3 options {

output=AST; language=Java;

5 }

program : (ID ’:=’^ expr) | if_expr;

7 if_expr : (’IF’ (a=expr) ’THEN’ (b=expr) (’ELSIF’ (c+=expr) ’THEN’ (d+=

expr))* (’ELSE’ (e=expr))? ’END_IF’) -> ^(’IF’ $a $b ^(’ELSIF’ $c $d)

* ^(’ELSE’ $e)?);

expr : term ((’+’ | ’-’)^ term)*;

9 term : factor ((’*’ | ’/’)^ factor)*;

factor : Integer

11 | ’(’ expr ’)’ -> expr;

Integer : (’0’..’9’)(’0’..’9’)*;

13 ID : (’A’..’Z’|’_’) (’A’..’Z’|’0’..’9’|’_’)*;

If the input for such example would be VARIABLE := 1 the AST would simply be the token

<:=> as the root node and the leaf nodes would be <VARIABLE> and expr which would have a

sub-tree of term - factor - <1> as leaf. A more complex example would be:
IF (1+5*8) THEN 1+2

ELSIF 1 THEN 0

ELSE 2 END_IF

The AST for this example may be seen in Figure 4.2.

Figure 4.2: AST for the input and ANTLR Grammar described in Code Section 4.3
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4.2 COCO/R

The COmpiler COmpiler generating Recursive descent parsers (COCO/R) is a scanner and

parser generator created in 1990 by Hanspeter Mössenböck [27]. It is distributed under the GNU

General Public Licence and generates, for an input LL(k) grammar, a scanner which works as a

DFA and a recursive descent parser.

COCO/R is structured in five data structures [28]: The symbol table, the syntax graph, the

scanner automaton, the character classes and the literals table.

The symbol table is the table that keeps the information of all the symbols (terminals and

nonterminals) and pragmas in linear sequence.

The syntax graph is the graph that maps a rule (production in COCO/R’s notation). Every

nonterminal symbol in the symbol table has a pointer for one of these structures. Consider the

following example taken from [28]:

Rule: A = (a b* c | d e* f | ) g;

Note that the empty string is one of the alternatives inside the parentheses. This would generate

the following syntax graph:

Figure 4.3: Sintax Graph for the rule A (taken from [28])

The scanner automaton is a DFA for Token recognition. The process for the generation of this

structure starts by the creation of a syntax graph for Tokens as sequence of characters (similarly

to the syntax graph for Productions/Rules as sequences of tokens) then a NFA that translates this

graph is produced and latter reduced to a DFA. COCO/R’s Data Structures document ([28, Section

2]) has a step by step explanation of how this process is made, however the figures for the syntax

graph, the NFA, the DFA and the intermediate states are not correct considering the proposed

grammar. The figures do not include the ’a’..’f’ in the the hex rule. Despite this error it

is fairly simple to understand the process and there is no need to show the right figures in this

document.
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The character classes are the valid characters declared in the grammar. These are stored as a

linear list (not to be confused with an array or a linked list).

The literals table is just an helper structure to map the token names with their literal repre-

sentation.

In spite of the claim that it accepts LL(k) grammars, COCO/R in fact generates LL(1) parsers

and provides a function to lookahead that the compiler designer may use to look further. For the

LL(3) example in Section 4.1 a possible COCO/R grammar would be as shown in Code Section

4.4:

Code Section 4.4: COCO/R grammar for the LL(3) example rule in Section 4.1

1 COMPILER TestLL3

3 CHARACTERS

letter = "abcdefghijklmnopqrstuvwxyz".

5 underscore = ’_’.

digit = "0123456789".

7 TOKENS

Identifier = (letter | (underscore (letter|digit))) {[underscore] (

letter | digit)}.

9 PRODUCTIONS

TestLL3 = decl {decl}.

11 decl = "int" Identifier ’=’ Identifier ’;’

| "int" Identifier ’;’.

13 END TestLL3.

COCO/R also has a prediction approach to this problem, however if no code from the compiler

designer is provided, the result is just an LL(1) parser. The function for the decl rule is shown in

Code Section 4.5.

Code Section 4.5: COCO/R generated function for decl rule using grammar in Code Section 4.4

1 void Parser::decl() {

if (la->kind == 2 /* "int" */) {

3 Get();

Expect(_Identifier);

5 Expect(3 /* "=" */);

Expect(_Identifier);

7 Expect(4 /* ";" */);

} else if (la->kind == 2 /* "int" */) {

9 Get();

Expect(_Identifier);

11 Expect(4 /* ";" */);

} else SynErr(6);

13 }
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To correct these situations COCO/R suggests the use of the scanner.Peek() method. This

consists in changing the if condition to a call to a boolean function. This function must also

be written by the compiler designer. In this case, the if condition was changed to a call to the

FollowedByEqual function (See Code Section 4.6).

Code Section 4.6: COCO/R grammar of Code Section 4.4 using the scanner.Peek() method

1 COMPILER TestLL3_peek

bool FollowedByEqual() {

3 Token x = la;

while (x.kind == _Identifier || x.kind == _int) x = scanner.Peek();

5 return x.kind == _equal;

}

7 CHARACTERS

letter = "abcdefghijklmnopqrstuvwxyz".

9 underscore = ’_’.

digit = "0123456789".

11 TOKENS

Identifier = (letter | (underscore (letter|digit))) {[underscore] (

letter | digit)}.

13 PRODUCTIONS

TestLL3_peek = decl {decl}.

15 decl = IF(FollowedByEqual())

"int" Identifier ’=’ Identifier ’;’

17 | "int" Identifier ’;’.

END TestLL3_peek.

The resulting code is, as expected, the same with the if condition changed (Code Section 4.7).

Code Section 4.7: COCO/R generated function for decl rule using grammar in Code Section 4.6

void Parser::decl() {

2 if (FollowedByEqual()) {

Expect(2 /* "int" */);

4 Expect(_Identifier);

Expect(3 /* "=" */);

6 Expect(_Identifier);

Expect(4 /* ";" */);

8 } else if (la->kind == 2 /* "int" */) {

Get();

10 Expect(_Identifier);

Expect(4 /* ";" */);

12 } else SynErr(6);

}
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As for AST generation, COCO/R doesn’t provide any help except a way for manual code

writing. The delimiters of these code writing areas are (. and .). In order to compare the two

tools, the first two rules of the ANTLR grammar specified in Code Section 4.3 may be seen in

COCO/R syntax in Code Section 4.8 with the same AST structure. Consider the class constructor

for ast receives as first parameter the root and then a variable number of leaf nodes (which may be

sub trees themselves). Each function generated for a rule is void thus it must return by reference.

The arguments that these functions receive are specified between < and >.

Code Section 4.8: COCO/R syntax similar to program and if_expr rules of Code Section 4.3

1 COCO_AST_example (. ast sub_tree1, sub_tree2, id; .)

= (

3 Identifier (. id = new ast(t->val); .)

":="

5 expr<&sub_tree2> (. this->root = new ast(":=", id, sub_tree2);

.)

)

7 | if_expr<&sub_tree1> (. this->root = sub_tree1; .)

.

9 if_expr<ast *root> (. ast sub_tree1, sub_tree2, else_subtree; ast_list

elseif_list; .)

= "IF" expr<&sub_tree1> "THEN" expr<&sub_tree2>

11 { (. ast sub_tree3, sub_tree4; .)

(

13 "ELSIF" (expr<&sub_tree3>) "THEN" (expr<&sub_tree4>)

) (. elseif_list->add(new ast("ELSIF",

sub_tree3, sub_tree4)); .)

15 }

[ (. ast sub_tree5; .)

17 (

"ELSE" (expr<&sub_tree5>) (. else_subtree = new ast("ELSE",

sub_tree5; .)

19 )

]

21 "END_IF" (. root = new ast("IF", sub_tree1, sub_tree2, elseif_list,

else_subtree); .)

.

Considering the described features, COCO/R requires much more work from the compiler

designer than the previously explained tool. This is also prone to the occurrence of small typos in

the code leading to errors in the generated scanner and parser.



Chapter 5

The IEC 61131-3 standard
inconsistencies

5.1 The inconsistencies

During the study of the standard’s languages and the exploration of the ANTLR tool the author

came across a non-negligible number of inconsistencies between the main body of the standard

and the formal definition of the grammar. The identified problematic sections were:

• Variable Declarations

• Constant Function Blocks

• Language Structured Text

• Character String Literals

• Duration Literals

• Comments

• Numeric Literals

• Identifiers

These inconsistencies appeared probably due to the introduced changes in the standard and

the conversion of its formal syntax from BNF (Backus Naur Format) to EBNF (Extended Backus

Naur Format).

In the next sections of this document those inconsistencies will be addressed and possible

corrections to the formal definition of the language elements will be exposed. It is necessary

to say that some minor typos were also found in the standard formal syntax (for example the

IL_Return_Operator rule has ’RT’ as a valid return operator instead of ’RET’). These were

so obvious that the author decided they were not worth mention.

43
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5.1.1 Variable Declarations

Starting with the inconsistency regarding Variable Declarations, the formal syntax of the third

version of the IEC 61131-3standard doesn’t accept a variables declaration structure (VAR ...

END_VAR) which includes directly represented variables and standard variables simultaneously

despite the numerous examples throughout the informal part of the standard that use this syntax

(for example table 13 no. 1, table 13 no. 3, table 14 no.1, table 14 no.3, example in Section 6.5.6.2,

etc.).

Directly represented variables are variables which have their physical or logical location spec-

ified by the implementer. Some examples of their syntax are:

INP_0 AT %I0.0: BOOL;, AT %MW12: REAL; or C2 AT %Q*: BYTE;.

Searching for all occurrences of the keyword AT the following rules emerge:

Formal Specification:
. Located_At: ’AT’ Direct_Variable;
. Loc_Partly_Var: Variable_Name ’AT’ ’%’ ( ’I’ | ’Q’ | ’M’ ) ’*’ ’:’ Var_Spec ’;’ ;

Leaving the Partly Declared Variables aside for now and continuing to look for the occur-

rences of the Located_At rule, four rules are obtained: Declaration of Struct Elements, Declara-

tion of Local Variables, Global Variables Specification and Instance Specific Initialization. For

this verification the local variables declaration rule is the only one that matters:

Formal Specification:
. Loc_Var_Decl: Variable_Name ? Located_At ’:’ Loc_Var_Spec_Init;
which only appears in:
. Loc_Var_Decls: ’VAR’ (’CONSTANT’ | ’RETAIN’ | ’NON_RETAIN’)? (Loc_Var_Decl) ’;’)*
’END_VAR’;

It is clear that it is impossible to declare located variables and non located variables within the

same variables declaration structure. This is why the following example taken from table 13 [11,

example no.1, table 13, Section 6.5.1.3] will never be considered a valid input:

VAR

MYBIT: BOOL;

OKAY: STRING[10];

VALVE_POS AT %QW28: INT;

END_VAR

To correct the exposed problem it is only needed an additional alternative for non located

variables in the rule:

Formal Specification:
. Loc_Var_Decls: ’VAR’ (’CONSTANT’ | ’RETAIN’ | ’NON_RETAIN’)? ((Loc_Var_Decl
| Var_Decl_Init) ’;’)* ’END_VAR’;

Although this solution eliminates the error, this entire section of the formal syntax definition

needs to be restructured. Its poor hierarchical construction favours the occurrence of inconsisten-

cies.
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5.1.2 Constant Function Blocks

In section 6.5.2.1, the standard states that "Function Block instances shall not be declared in

variable sections with a CONSTANT qualifier." [1, Figure 7, Section 6.5.2.1]. However, the formal

syntax definition allows function block instances to be declared with this modifier, as can be seen

from the following 2 rules:

Formal Specification:
. Var_Decls: ’VAR’ ’CONSTANT’? Access_Spec? ( Var_Decl_Init ’;’ )* ’END_VAR’;
. Var_Decl_Init: Variable_List ’:’ ( Simple_Spec_Init | Str_Var_Decl | Ref_Spec_Init )
| Array_Var_Decl_Init | Struct_Var_Decl_Init | FB_Decl_Init | Interface_Spec_Init;

To solve this inconsistency two different rules should replace the Var_Decls rule:

Formal Specification:
. Var_Decls_non_Constant: ’VAR’ Access_Spec? ( Var_Decl_Init ’;’ )* ’END_VAR’;
. Var_Decls_Constant: ’VAR’ ’CONSTANT’Access_Spec? ( Var_Decl_Init_no_FB ’;’ )* ’END_VAR’;
. Var_Decl_Init_no_FB: Variable_List ’:’ ( Simple_Spec_Init | Str_Var_Decl | Ref_Spec_Init )
| Array_Var_Decl_Init | Struct_Var_Decl_Init | Interface_Spec_Init;

For this solution a new helper rule (Var_Decl_Init_no_FB)was created to simplify the code of

the Var_Decls_Constant rule. This rule is equivalent to the Var_Decl_Init one when the Function

Block initialization is not considered.

5.1.3 Language Structured Text

This issue may not be called an inconsistency as nothing is said in the main text about this

particular case, however, it seems that there is an undesired behaviour in the standard when there

is an occurrence of the Stmt_List rule.

Formal Specification:
. Stmt_List: (Stmt? ’;’)*;

A Stmt_List is formally defined, as it can be seen in the excerpt above ([1, Annex A]), as a

sequence of zero or more statements. This fact has a huge influence in the IF_Stmt, For_Stmt,

Case_Stmt, While_Stmt and Repeat_Stmt that include the Stmt_List rule. When the Stmt_List

is taken as an empty list, then the program extract "IF TRUE THEN ELSE END_IF" may be

considered as a valid IF_Stmt.

Formal Specification:
. IF_Stmt: ’IF’ Expression ’THEN’ Stmt_List (’ELSIF’ Expression ’THEN’ Stmt_List)* (’ELSE’
Stmt_List)?;
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The Stmt_List rule is also used in the declaration of the body of functions and function blocks

(which in turn are used for the body of methods, actions and programs). This means that functions,

function blocks, methods, actions and programs with an empty body are allowed. The main body

of the standard, however, declares in section 6.6.3.2 that function block declarations must include

a body. Although this text does not preclude an empty function block body, usual interpretation

of this English construct leads one to conclude that the body must be non-empty. The standard

does not however mandate that a function include a function body. Interestingly, version 2 of

IEC 61131-3 explicitly stated that both functions and function blocks must include a body in their

declaration.

Some tests were made using CODESYS V3.5 SP7 (IEC 61131-3 3rd edition compliant) soft-

ware in order to check how these cases were handled (see Table 5.1). All of the previously men-

tioned statements generated an error when the Stmt_List rule was used as a sequence of zero

statements apart from the case statement. (For the complete code used please see Table I). What is

interesting is that the compiler no longer generated an error if the empty statements were replaced

by a single comment, with no code whatsoever.

To fix this the Stmt_List rule should be reverted to what is used in version 2 of IEC61131-3,

namely that it be defined as a sequence of one or more statements:

Formal Specification:
. Stmt_List: (Stmt? ’;’)+;

Table 5.1: Tests on CODESYS

IF_Stmt

IF a=0 THEN
ELSIF a=1 THEN
ELSE
END_IF

ERROR
ERROR
ERROR

For_Stmt
FOR a:=0 TO 20 BY 1 DO
END_FOR

ERROR

While_Stmt
WHILE TRUE DO
END_WHILE

ERROR

Repeat_Stmt
REPEAT
UNTIL TRUE
END_REPEAT

ERROR

Case_Stmt
CASE a OF 1:
ELSE
END_CASE

NO ERROR
ERROR

It is noteworthy that the current definition also overlooks the "overflow rule":

""Overflow" of the most significant unit of a duration literal is permitted."

(from [1, Section 6.3.4]).

However, this rule is much easier corrected in the Semantic Analysis phase of the compiler

and it is not necessary to specifically write it in the grammar.
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5.1.4 Character String Literals

Tables 6 and 7 respectively define the rules of Character String Literals and Two-Character

combination in character string. There are 20 rules in this table distributed by 4 groups: Single-

Byte characters or characters strings with ’ ’ (7 rules), Double-Byte characters or characters strings

with " " (7 rules), Single-Byte typed characters or string literals with # (2 rules), Double-Byte typed

string literals with # (4 rules). Only 15 of these are met by the Formal specification:

Formal Specification:
. Char_Literal: (’STRING#’)? Char_Str;
. Char_Str: S_Byte_Char_Str | D_Byte_Char_Str;
. S_Byte_Char_Str: ’\” S_Byte_Char_Value+ ”\’;
. D_Byte_Char_Str: ’"’ D_Byte_Char_Value+ ’"’;
. S_Byte_Char_Value: Common_Char_Value | ’$\” | ’"’ | ’$’ Hex_Digit Hex_Digit;
. Common_Char_Value: // any printable character except $, " and ’

It can be clearly seen that the Char_Literal doesn’t support rules 3b (CHAR#’X’) nor any of

the rules of the 4th group (WSTRING#"OK", WCHAR#"X", WSTRING#’OK’, WCHAR#’X’).

Section 6.3.3 (Character String Literals) also states that a single-byte character string literal is

a sequence of zero or more characters prefixed and terminated by ’ and that a double-byte character

string literal is a sequence of zero or more characters prefixed and terminated by ".

Solving this inconsistency is a matter of adding the missing pieces to the rule:

Formal Specification:
. Char_Literal: (’STRING#’ | ’CHAR#’ | ’WCHAR#’ | ’WSTRING#’)? Char_Str;

Besides these, in section 6.3.3, a single-byte character string literal is defined as "a sequence

of zero or more characters prefixed and terminated by the single quote character (’)" [1, Section

6.3.3] and a double-byte character string literal is defined as "a sequence of zero or more characters

prefixed and terminated by the double quote character (")" [1, Section 6.3.3]. As it can be seen in

the Formal Specification of S_Byte_Char_Str and D_Byte_Char_Str they are a sequence of one

and more characters prefixed and terminated as stated. They should be defined as:

Formal Specification:
. S_Byte_Char_Str: ’\” S_Byte_Char_Value* ”\’;
. D_Byte_Char_Str: ’"’ D_Byte_Char_Value* ’"’;

5.1.5 Duration Literals

The Duration Literals, specified in section 6.3.4 and in table 8, are another source of error in the

standard. This section explains that these literals have the format that allows the following literal:

TIME#4d_22h_53m_25ms_95us_43.5ns. Each unit is optional, for example TIME#6h_43m is
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correct syntax. The most significant unit may overflow (TIME#4d_25h is incorrect), and only

least significant unit is allowed to include a decimal point (TIME#6.5h_3m is incorrect).

The formal specification of duration literals in annex A specifies that the non-terminal elements

Days, Hours, Minutes, Seconds, Milliseconds and Microseconds follow the same structure:

Formal Specification:
. Days: (Fix_Point ’d’) | (Unsigned_Int ’d’ ’_’?)? Hours?;
. Hours:(Fix_Point ’h’) | (Unsigned_Int ’h’ ’_’?)? Minutes?;
...
Description: Fix_point followed by a character indicating the unit OR an

optional sequence of an Unsigned_Int, a character indicating the unit and

an optional underscore followed by an optional literal of lower rate.

By this definition, and as the second alternative in every one of these elements is made only

of optional parts, the empty input can be considered an Interval (Interval: Days | Hours | Minutes

| ... | Nanoseconds;) which is part of Duration (Duration: (Time_Type_Name | ’T’ | ’LT’) ’#’ (’+’

| ’-’)? Interval;) which is itself a Time_Literal (Time_Literal: Duration | ...;). This means that

TIME# is considered a valid time literal.

This cannot be declared an inconsistency as both the informal textual description of the syntax,

as well as the formal definition, both seem to allow the empty value TIME# to be considered

a duration literal. The standard, however, fails to declare the semantic of this value; does this

represent a value of 0ns duration, or some other value?

Comparing to version 2 of the standard, it once again can be seen that the informal text is

essentially identical, having only been changed to take into account the new LTIME datatype, and

to allow the us and ns time units. Nevertheless, the formal definition in version 2 is substantially

different in that the empty TIME# sequence is not allowed as a duration literal, and it correctly

matches the informal description.

A slightly different formal specification to that used in version 2 is also possible and perhaps

simpler:

Formal Specification:
. Days: (Fix_Point ’d’) | (Unsigned_Int ’d’ ’_’?) Hours?;
. Hours:(Fix_Point ’h’) | (Unsigned_Int ’h’ ’_’?) Minutes?;
...
Description: Fix_point followed by a character indicating the unit OR a

sequence of an Unsigned_Int, a character indicating the unit and an

optional underscore followed by an optional literal of lower rate.

Note that none of the above mentioned alternatives to the formal description take into account

the rule that only the most significant unit can overflow. Although it is possible to create a formal

definition that takes this into account (the syntax definition used in the MatIEC compiler [2] is

such an example), it is probably best to leave this rule to be checked by the semantic analyser.
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5.1.6 Comments

Table 3 in section 6.1.5 specifies the acceptable syntax for writing comments. In this same

section, the informal text clearly states that multi-line comments may be nested. In spite of this

the formal specification shown below does not support this feature:

Formal Specification:
. Comment: ’//’ ∼(’\n’ | ’\r’)* ’\r’? ’\n’ {$channel=HIDDEN;}
| ’(*’ (options{greedy=false;}: . )* ’*)’ {$channel=HIDDEN;}
| ’/*’ (options{greedy=false;}: . )* ’*/’ {$channel=HIDDEN;};
Description: A sequence of two / followed by any number of characters until

the first newline (\n) OR the sequence of characters (* followed by any

number of characters until the first occurence of the sequence *) OR the

sequence of characters /* followed by any number of characters until the

first occurence of the sequence */.

It is interesting to note that this definition includes the text options{greedy=false;}. This does

not belong to EBNF, and unlike all the other rules of the EBNF that were used in the formal

grammar definition, its semantics is not defined in the beggining of the annex A containing the

formal specification.

Having had access to a working version of the IEC 61131-3 v3 standard, it is straightforward

for us to guess that this option follows the syntax allowed by the ANTLR [26] tool for generating

syntax parsers, as in the working versions of IEC 61131-3 v3 it was noted that the formal syntax

of annex A had been tested using this tool.

It is this option that makes the above definition support nested comments. However, since it

does not use the EBNF rules for defining syntax, we propose the following alternative definition.

The approach distinguishes one line comments from multi-line comments, and these from multi-

line comments. Two rules are therefore added to the formal syntax specification:

Formal Specification:
. One_Line_Comment: ’//’ ∼(’\n’ | ’\r’)* ’\r’? ’\n’;
Description: A sequence of two / followed by any number of characters until

the first \n or \r\n.

Formal Specification:
. Nested_par: (’(*’ (Nested_par | . )*) ’*)’);
Description: The sequence of characters (* followed by any number of

characters until the first occurence of the sequence *) or until another

Nested_par occurence.

Formal Specification:
. Nested_bar: (’/*’ (Nested_bar | . )*) ’*/’);
Description: The sequence of characters /* followed by any number of

characters until the first occurence of the sequence */ or until another

Nested_bar occurence.
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5.1.7 Numeric Literals

The allowed syntax for numeric literals is defined in table 5 of section section 6.3.2. This

section further clarifies that "single underscore characters "_" inserted between the digits of a

numeric literal shall not be significant. No other use of underscore characters in numeric literals

is allowed." [1, Section 6.3.2]

This sentence is overlooked when the formal specifications of Binary_Int, Octal_Int and

Hex_Int appear in annex A:

Formal Specification:
. Binary_Int: ’2#’ (’_’? Bit)+;
. Octal_Int: ’8#’ (’_’? Octal_Digit)+;
. Hex_Int: ’16#’ (’_’? Hex_Digit)+;
Description: The sequence of characters 2# folowed by at least one occurence

of the structure: optional _ and Bit (Similar to the Octal_Int and

Hex_Int).

Assuming this formal specification is correct then the input "2#_1110_1000" is a valid in-

put and should be considered a Binary_Int, which is an Int_Literal, and which in turn is a Nu-

meric_Literal. This goes against the written description of a Numeric Literal because it allows an

underscore without it being inserted between the numeric literal’s digits.

It is once again interesting to note that, besides two extra sentences that clarify the situations

when numeric literals may be used as bit string literals, the informal text defining numeric literals

is unchanged from versions 2 and 3 of the stdandard. However, the formal specification was

changed, and as a consequence an inconsistency was introduced in the standard.

In order to eliminate this inconsistency, we propose reverting to the formal definition used in

version 2:

Formal Specification:
. Binary_Int: ’2#’ Bit (’_’? Bit)*;
. Octal_Int: ’8#’ Octal_Digit (’_’? Octal_Digit)*;
. Hex_Int: ’16#’ Hex_Digit (’_’? Hex_Digit)*;
Description: The sequence of characters 2# folowed by a Bit followed by zero

or more structures as: optional _ and Bit (Similar to the Octal_Int and

Hex_Int).

5.1.8 Identifiers

Tables 1 (in section 6.1.1 - Character Set) and 2 (in section 6.1.2 Identifiers) of [1, Annex A]

respectively specify the character sets and the acceptable sequence of characters that may compose

the identifier lexical element. Here, an Identifier is defined as a sequence of letters, digits and

underscores that match the following the rules:

• An Identifier must not start with a Digit



5.1 The inconsistencies 51

• Multiple consecutive leading underscores are not allowed

• Multiple consecutive embedded underscores are not allowed

• Trailing underscores are not allowed

For example, ABC, _ABC, A_BC, A_B_C, A123, _123, and _1_2_3 are all legal and distinct

identifiers, whereas 1ABC, __ABC, A__BC, and ABC_ are not considered identifiers. Reading this

informal text, it is not absolutely clear whether the single underscore _ should be considered a

legal identifier. The only rule that may potentially invalidate it as an identifier is rule 4, as it may

itself be considered a trailing underscore.

The formal specification of the Letter and Identifier lexical elements, however, only enforces

the first rule to met:

Formal Specification: . Letter: ’A’..’Z’ | ’_’;
Description: Any character between A and Z or the _ character.

Formal Specification: . Identifier: Letter (Letter | Digit)*;
Description: A character from Letter followed by a sequence of 0 or more

characters from Letter or Digit.

According to this specification, the following sequence of characters are all considered legal

and distinct Identifiers: __, ___, __abc, a__bc, abc_ and abc__, even though they all fail one of

the 4 above listed rules. This specification also allows the single underscore _ to be considered an

identifier, even though it may be argued that it fails rule 4.

Comparing v2 and v3 of the standard, it is interesting to note that, other than changing the

word underline to underscore, the informal definition of the Identifier lexical element has not

suffered any changes. However, the formal definition is different in the fact that it does not allow

consecutive or trailing underscores. Taking into account that it seems that there was no intention

of introducing changes to the definition of Identifier in version 3, the obvious solution is to adopt

the formal definition from version 2.

Formal Specification: . Letter: ’A’..’Z’;
Description: Any character between A and Z.

Formal Specification:
. Identifier: (Letter | (’_’ (Letter | Digit))) (’_’? (Letter | Digit))*;
Description: A Letter or, the _ character followed by a Letter or a Digit.

Followed by a sequence of 0 or more characters from Letter or Digit, with

an optional leading _ character for each one.

It is interesting to note that according to this definition the single underscore is not considered

a legal identifier.
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5.2 Written Article for the IEEE ETFA’2016 conference

The 21st IEEE international conference on Emerging Technologies and Factory Automation is

an international conference that took place in Berlin from the 6th to the 9th of September of 2016.

It was organized by the Fraunhofer IOSB-INA and inIT- Institute Industrial IT. This conference

goes back to 1992 and, apart from a few years, it is held annually. It usually has over 200 attendees

(even in its first editions).

The paper focuses on the previously described inconsistencies, was presented in session Infor-

mation Technology in Automation and can be found in the following url:

http://ieeexplore.ieee.org/document/7733649/.

http://ieeexplore.ieee.org/document/7733649/


Chapter 6

The Lexical and Syntactical Analysis

This is the chapter where the development of the Compiler will be detailedly explained. In a

first phase the description of development method of the project, secondly it is important to report

the ANTLR approach. Finally the COCO/R modifications will be stated and the results will be

commented.

6.1 Development Method

The complexity of the desired results ruled out immediately the Hand-Coded option for the

Lexer/Parser generators and, instead of using one tool for each of the generators, it was decided

that a Lexer and Parser generator would be used in order to reduce the amount of time needed to

learn those tools.

The first option was the ANTLR tool. Some of the reasons behind this choice were the fact that

the standard was tested with this tool (this is stated in the document 65B/807/CDV of 2011-05-03

which is a draft version of the standard)[29], some productions included configuration options for

this tool (comments) and it generates LL(*) parsers. Several Lexical and Syntactic analysers were

generated to test the tool’s capabilities. The same analysers were later generated including AST.

The Syntax Diagram and the Debug tools in ANTLRWorks were used throughout this phase to

validate the results as they offer respectively a graphical DFA for each of the selected productions

and a good AST display for the desired tests.

The COCO/R generator was secondly chosen due to the fact that the ANTLR’s C++ target

didn’t support the TreeParser feature (for AST generation) that the Java target did. This tool is,

unfortunately, unable to generate LL(*) parsers as stated in Chapter 4. The same test analysers

were generator for learning purposes. COCO/R doesn’t offer a debugger so the development

methodology suffered some alterations: each new version introduced just one small feature to its

predecessor in order to facilitate the detection of errors. These new versions were compared with

the older ones side-by-side with the aid of Kdiff3 software. This method allowed the detection of

situations beyond the capabilities of the tool. The GPL licensed software was modified to generate

parsers able to surpass these otherwise impossible situations.

53
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6.2 ANTLR approach

As previously stated the ANTLR tool was the first choice for parser generator. In order to test

the limits of this tool the author first generated a test grammar that accepted input as a calculator

(addition, subtraction, multiplication and division operators, parenthesised expressions and inte-

gers (both positive and negative)). This first step was fairly easy and the author promptly began

building the Abstract Syntax Tree for the calculator.

Code Section 6.1: ANTLR grammar for AST generation for the calculator test

grammar calculator;

2 options {

language=Java;

4 output=AST;

backtrack=true;

6 }

8 program : expr (EOL expr)*;

expr : term ((’+’ | ’-’)^ term)*;

10 term : factor ((’*’ | ’/’)^ factor)*;

factor : integer

12 | ’(’ expr ’)’ -> expr

;

14 integer : ’-’? Digit;

16 Digit : (’0’..’9’)+;

EOL : ’\n’ | ’\r\n’;

After this, several tests were made on the generated lexer and parser using the built-in debugger

in the ANTLRWorks tool. This tool has a good graphical display of the output AST. The test file

had the following test expressions:

Table 6.1: Tests on the generated lexer and parser for the Calculator grammar

Test Reason

1+2*-3
validate multiplication priority over addition and
negative numbers.

(1+2)*-3 validate parenthesis priority over multiplication.
1+(1+2*-2)--1 validate priority inside parenthesis.
21*(1+5)*3*(2+2)/(2*3) validate multiple parenthesis in an expression.
(1+(2+3))+2 validate parenthesis inside parenthesis
((2+5*3+-1)-(1*(2+3)-6)+8)/91 validate complex expression with every feature
((1+1) validate syntax error
1---2 validate another syntax error

All of the results for the tests in Table 6.1 were as expected. A graphical representation of the

resulting AST for each test can be seen in Appendix A.
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This grammar grew to accept if statements, for statements, comments and assignment expres-

sions. The reason for this improvement was to test different and slightly more complex abstract

syntax trees. The resulting grammar is presented in Code Section 6.2.

Code Section 6.2: ANTLR grammar for AST generation for the calculator with extras test

1 grammar calculator_with_extras;

options {

3 language=Java;

output=AST;

5 backtrack=true;

}

7

tokens {

9 NEGATIVE;

}

11

program : valid_expr (EOS valid_expr)* EOS EOF -> valid_expr+;

13 valid_expr : (Identifier ’:=’^ expr) | if_expr | for_expr;

15 if_expr : (’IF’ (a=expr) ’THEN’ (b=valid_expr) (’ELSIF’ (c+=expr) ’THEN’

(d+=valid_expr))* (’ELSE’ (e=valid_expr))? ’END_IF’) -> ^(’IF’ $a $b

^(’ELSIF’ $c $d)* ^(’ELSE’ $e)?);

17 for_expr : (’FOR’ Identifier ’:=’ a=expr ’TO’ b=expr (’BY’ c=expr)? ’DO’

(d+=valid_expr)+ ’END_FOR’) -> ^(’FOR’ ^(’:=’ Identifier $a $b $c?)

^(’DO’ $d*));

19 expr : term ((’+’ | ’-’)^ term)*;

term : factor ((’*’ | ’/’)^ factor)*;

21 factor : integer

| ’(’ expr ’)’ -> expr;

23 integer : ’-’ Digit -> ^(NEGATIVE Digit)

| Digit;

25

Digit : (’0’..’9’)+;

27 Identifier : ’A’..’Z’ (’_’? (’A’..’Z’|’0’..’9’))*;

29 EOS : ’;’;

WS : (’ ’ | ’\t’ | ’\n’ | ’\r\n’) {$channel=HIDDEN;};

31

OneLineCOMMENT : (’//’ ~(’\n’|’\r’)* (’\n’ | ’\r\n’)){$channel=HIDDEN;};

33 MultiLineNESTED : (’/*’ (options{greedy=false;}:(MultiLineNESTED | .))*

’*/’){$channel=HIDDEN;};



56 The Lexical and Syntactical Analysis

The tests on this new grammar included the previous ones (assigned to an identifier such as:

A_B) as well as the ones on Table 6.2

Table 6.2: Tests on the generated lexer and parser for the calculator with extras grammar

Test Reason
IF(21+(2-3)*5) THEN

IF(1+2) THEN
A:=00

END_IF
END_IF;

Validate Nested If Statements

IF(01) THEN
A:=01

ELSIF(02) THEN
A:=02

ELSE
A:=03

END_IF;

Validate If / Elsif / Else Statement

IF(11) THEN
A:=11

ELSIF(12) THEN
A:=12

ELSIF 13 THEN
A:=13

END_IF;

Check the AST for several Elsif in an If / Elsif Statement

FOR I:=0 TO (5-3*1) DO
A:=0
B:=5

END_FOR;

Validate For Statement

In parallel with these experiments there was an effort to import the formal syntax as written in

Annex A of the IEC 61131-3 standard to an ANTLR grammar as well as the study of ANTLR in

order to make it produce c++ lexers and parsers instead of Java ones as in the previous examples.
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6.3 COCO/R approach

The second choice for parser generator was the COCO/R. Similarly to the previous approach,

the limitations of the program were tested with a Calculator grammar (Code Section 6.3).

Code Section 6.3: COCO/R grammar for AST generation for the calculator test

1 COMPILER calculator_AST

CHARACTERS

3 letter = "abcdefghijklmnopqrstuvwxyz".

underscore = ’_’. digit = "0123456789".

5 operators = "+-*/". cr = ’\r’.

lf = ’\n’. tab = ’\t’.

7 TOKENS

Identifier = (letter | (underscore (letter | digit))) {[underscore] (

letter | digit)}.

9 number = ([’-’] digit{digit}). eol = cr lf | lf.

COMMENTS FROM "/*" TO "*/" NESTED

11 COMMENTS FROM "//" TO cr lf

PRODUCTIONS

13 calculator =

Identifier ":=" (. Expr e; .)

15 Expression<e>

{ eol (Identifier ":=" Expression<e>) }.

17 op_add_sub <Operator &op> =

’+’ (. op = new addOperator(); .)

19 | ’-’ (. op = new subOperator(); .)

.

21 op_mult_div <Operator &op> =

’*’ (. op = new mulOperator(); .)

23 | ’/’ (. op = new divOperator(); .)

.

25 Expression <Expr &e> = (. Expr e1; Operator op; Expr e2; .)

Term <e1>

27 { op_add_sub <op>

Term <e2> (. e = new Expr(e1, op, e2); .)

29 }.

Term <Expr &e> = (. Expr e1; Operator op; Expr e2; .)

31 Factor <e1>

{ op_mult_div <op>

33 Factor <e2> (. e = new Expr(e1, op, e2); .)

}.

35 Factor <Expr &e> =

number (. e = new Expr(t.val); .)

37 | ’(’ Expression<e> ’)’.

END calculator_AST.
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This code, successfully generated the desired C++ code without any errors or warnings and

the author promptly began working in the IEC 61131-3 grammar.

6.3.1 COCO/R modifications

After the manual translation of the 323 rules defined in the Formal Specification of languages

elements of the standard (a transcription of these rules is available in Annex A of the standard)

to the equivalent COCO/R syntax as explained in Chapter 4, the first results produced several

warnings. When studying these warnings, errors were encountered in the code that appeared

due to the limitations of the chosen tool. For the other_var_decls rule specified below, COCO/R

generates the function in Code Section 6.4.

Formal Specification:
. other_var_decls: retain_var_decls | no_retain_var_decls | loc_partly_var_decl;
. retain_var_decls: ’VAR’ ’RETAIN’ Access_Spec? (var_decl_init ’;’)* ’END_VAR’;
. no_retain_var_decls: ’VAR’ ’NON_RETAIN’ Access_Spec? (var_decl_init ’;’)* ’END_VAR’;
. loc_partly_var_decl: ’VAR’ (’RETAIN’ | ’NON_RETAIN’)? loc_partly_var* ’END_VAR’;

Code Section 6.4: function before COCO/R modifications (generated by COCO/R)

void Parser::other_var_decls() {

2 if (la->kind == 141 /* "VAR" */) {

retain_var_decls();

4 } else if (la->kind == 141 /* "VAR" */) {

no_retain_var_decls();

6 } else if (la->kind == 141 /* "VAR" */) {

loc_partly_var_decl();

8 } else SynErr(399);

}

As COCO/R just looks to the next token to determine the alternative paths for a given pro-

duction, errors such as the one in Code Section 6.4 are prone to appear. When the Parser decides

that the current token fits in the production other_var_decls it cannot continue to the next token as

its three possible paths all start with VAR and will eventually produce an error if the input should

be interpreted as no_retain_var_decls or loc_partly_var_decl. To overcome this limitation, the

program needed a way of testing the several alternatives. This was achieved with some alterations

to COCO/R’s source code.

6.3.1.1 COCO/R structure

COCO/R source code is composed by 49 files that had to be studied in order to understand

where the program needed alterations that would produce a parser powerful enough to the standard

syntax.
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The Parser class (defined in files Parser.h and Parser.cpp) has three singletons that are used to

interpret the source code and generate the desired parser: A singleton of the class Tab, another

of the class DFA and another of the class ParserGen. The Tab class (defined in files Tab.h and

Tab.cpp) has three ArrayList (defined in files ArrayList.h and ArrayList.cpp): one stores the ter-

minal symbols (tokens), another one stores the pragmas and the last one stores the non-terminal

symbols defined in the source code. While parsing the source code, COCO/R uses a singleton of

the class Tab to store each new symbol in the proper ArrayList. At the same time it generates a

Syntax Graph that describes the syntax for that symbol according to the specification. The Syntax

Graph is composed by objects of the Class Node (defined in files Node.h and Node.cpp). There

are 14 types of Nodes:

Node::t - a terminal symbol Node::pr - a pragma

Node::nt - a non-terminal symbol Node::clas - a character class

Node::chr - a character Node::wt - a weak terminal symbol

Node::any - any symbol Node::eps - the empty string

Node::sync - a synchronization symbol Node::sem - a semantic action

Node::alt - an alternative Node::iter - an iteration

Node::opt - an option Node::rslv - a resolver

Each Node has a pointer to its successor (Node *next). Nodes of type Node::alt also use

a pointer (Node *down) to the next alternative. Finally Nodes of type Node::alt, Node::iter and

Node::opt use the pointer Node *sub to access the substructure that defines that alternative/iter-

ation/option. A typical graph may be seen in Figure 4.3.

The singleton of ParserGen (defined in files ParserGen.h and ParserGen.cpp) is responsible for

the parser generation. After the parsing of the entire source code, this object takes the singleton of

Tab and generates the parser. It takes a skeleton of the Parser (defined in Parser.frame) to generate

the static code and, for every non-terminal in the non-terminals ArrayList of the Tab object, the

ParserGen checks its type and generates the appropriate code.

To better understand the simple example of the other_var_decls (see Code Section 6.4) the

excerpt of COCO/R’s source code that generates the code for a Node::alt type Node is presented

in Code Section 6.5. This code is part of the GenCode method of the ParseGen class (ParseGen.cpp

file). Note that this excerpt is inside a cycle that goes through every Node of a substructure. p

represents the currently being analysed Node. The UseSwitch method returns true if there are 5

or more alternatives and none of those start with a resolver (in this example it returns false).

It is clear from the code below that the if statements are generated inside the cycle that explores

the several alternatives by using the auxiliary Node p2 and the Node *down pointer (explained

above).
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Code Section 6.5: excerpt of the GenCode function from ParserGen.cpp before the modifications

1 if (p->typ == Node::alt) {

s1 = tab->First(p);

3 bool equal = Sets::Equals(s1, isChecked);

bool useSwitch = UseSwitch(p);

5 if (useSwitch) { Indent(indent); fwprintf(gen, L"switch (la->kind)

{\n"); }

p2 = p;

7 while (p2 != NULL) {

s1 = tab->Expected(p2->sub, curSy);

9 Indent(indent);

if (useSwitch) { PutCaseLabels(s1); fwprintf(gen, L"{\n");

11 } else if (p2 == p) { fwprintf(gen, L"if ("); GenCond(s1, p2->

sub); fwprintf(gen, L") {\n");

} else if (p2->down == NULL && equal) { fwprintf(gen, L"} else

{\n");

13 } else { fwprintf(gen, L"} else if ("); GenCond(s1, p2->sub);

fwprintf(gen, L") {\n");

}

15 GenCode(p2->sub, indent + 1, s1);

if (useSwitch) {

17 Indent(indent); fwprintf(gen, L"\tbreak;\n");

Indent(indent); fwprintf(gen, L"}\n");

19 }

p2 = p2->down;

21 }

Indent(indent);

23 if (equal) { fwprintf(gen, L"}\n");

} else {

25 GenErrorMsg(altErr, curSy);

if (useSwitch) {

27 fwprintf(gen, L"default: SynErr(%d); break;\n", errorNr);

Indent(indent); fwprintf(gen, L"}\n");

29 } else { fwprintf(gen, L"} "); fwprintf(gen, L"else SynErr(%d);\

n", errorNr); }

}

31 }
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6.3.1.2 Modifications

The first modification was to change the else if statements (as seen in Code Section 6.4) to

if statements. This alone could not solve the problem as it could enter in all of the and produce

errors for all the wrong ones even if one of them is the expected one. This was dealt with the

creation of a singleton to temporarily store the generated error while testing the next alternative. If

there’s one way that doesn’t produce an error then the error is discarded. If the previous is not true

then the last error is the one that is shown to the user. This must be modified in order to provide

the programmer a better bug detection interface. The error that should be shown must be the one

produced in the alternative which progressed further.

It was also necessary to create a way for the Scanner to go back to the original state. For this

to be achieved three functions were added to the original COCO/R code and another one had to be

slightly modified. The modifications allow the scanner to provide the current token and lookahead

variables to the main sequence of the program and restore them to a previous state by returning

those variables to the scanner. These variables were also worked in order to become elements of a

linked list and therefore the tokens already scanned don’t need to be scanned again (this would be

harder to implement as the scanner had to go back in the source code and not only to a previous

state).

The other_var_decls function became, after these modifications, like the one shown in Code

Section B.1 in Appendix B.

To link this section with the previous one the cycle that explores the several alternatives by

using the auxiliary Node p2 and the Node *down pointer is shown in Appendix B in its final

form (see Code Section B.2).

The second modification concerns the optional blocks of the grammar. When one of these

structures begins with the same token as what follows the optional block the parser will try the op-

tional block and will not try the possibility of that block being unused. To exemplify this consider

the Enum_Value rule which expects an optional Enum_Type_Name which is an Identifier:

Formal Specification:
. Enum_Value: (Enum_Type_Name ’#’)? Identifier;
. Enum_Type_Name: Identifier;

in this particular case, the COCO/R tool generated the code provided in Code Section 6.6.

Code Section 6.6: function before COCO/R modifications (generated by COCO/R)

1 void Parser::enum_Value() {

if (la->kind == _Identifier) {

3 enum_Type_Name();

Expect(50 /* "#" */);

5 }

Expect(_Identifier);

7 }
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It is clear that the parser would generate an error if it doesn’t find a # after the Identifier.

These cases were overcome as previously. The parser will try the optional block and in case of

error it will restore the previous state and continue the main sequence of the program allowing this

portion of the code to not interfere with the rest. the resulting code for the Enum_value rule may

be found in Code Section B.3 in Appendix B, as well as the excerpt of the GenCode method of

the ParserGen class for the Nodes of the type Node::opt (see Code Section B.4).

The last modification is similar to the previously explained one for sequences of zero or more

tokens that match the following one. Consider for example the Enum_Type_Access rule.

Formal Specification:
. Enum_Type_Access: (Namespace_Name ’.’)* Enum_Type_Name;
. Enum_Type_Name: Identifier;

The modified excerpt of the GenCode method of the ParserGen class for the Nodes of the

type Node::iter (see Code Section B.5 in Appendix B).

To validate these alterations the following test files were created to be the input of the parser:

Code Section 6.7: ST test file provided as input to the parser

1 PROGRAM CDE

VAR RETAIN

3 ABC AT %I* : INT;

END_VAR

5 ABC := 1;

END_PROGRAM

For debugging purposes the code was modified so that each entry in a function increments the

indentation and writes the function name and each exit of a function reduces the indentation. This

produces a visual sequence of the program that was really helpful. The output before and after the

modifications to COCO/R may be seen in Code sections 6.8 and 6.9 respectively.

Code Section 6.8: Parser output before COCO/R modifications

IEC61131---

2 prog_Decl---

prog_Type_Name---

4 func_Var_Decls---

var_Decls---

6 -- line 3 col 1: "VAR_IN_OUT" expected

fB_Body---

8 Errors Detected: 1
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Code Section 6.9: Parser output after COCO/R modifications

IEC61131---

2 prog_Decl---

prog_Type_Name---

4 func_Var_Decls---

var_Decls---

6 other_Var_Decls---

retain_Var_Decls---

8 var_Decl_Init---

variable_List---

10 variable_Name---

no_Retain_Var_Decls---

12 loc_Partly_Var_Decl---

loc_Partly_Var---

14 variable_Name---

var_Spec---

16 simple_Spec---

elem_Type_Name---

18 numeric_Type_Name---

int_Type_Name---

20 Sign_Int_Type_Name---

fB_Body---

22 instruction_List---

iL_Instruction---

24 iL_Label---

iL_Simple_Operation---

26 func_Access---

namespace_Name---

28 func_Name---

derived_Func_Name---

30 stmt_List---

stmt---

32 assign_Stmt---

variable---

34 symbolic_Variable---

namespace_Name---

36 var_Access---

variable_Name---

38 expression---

xor_Expr---
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40 and_Expr---

compare_Expr---

42 equ_Expr---

add_Expr---

44 term---

power_Expr---

46 unary_Expr---

primary_Expr---

48 constant---

Bool_Literal---

50 Errors Detected: 0

6.3.2 AST generation

The idea behind this project was to update the MatIEC - IEC 61131-3 compiler[2] in order to

include the new IEC 61131-3 - third edition syntax. With this goal in mind, it was of the utmost

interest to maximize the quantity of code from the already existing compiler. Thus is obvious that

the AST for the unchanged rules should remain exactly as it was developed by De Sousa. Despite

this, the amount of necessary changes and the fact that COCO/R was being used instead of the

flex/bison utilities which were chosen for the MatIEC - IEC 61131-3 compiler[2] proved that the

creation of the required AST was no trivial task.

The idea behind MatIEC’s AST is that each node of the tree is represented by an instance

of the an automatically generated class with the node type name which inherits from the major

class symbol_c. This is accomplished by using the #define directive to create a macro for the

declaration of generic classes (file: absyntax.hh). There are macros for classes with 0, 1, 2, 3, 4,

5, 6, 7 and 8 leaves.

The number of leaves of a node type class is defined by the complexity of the rule. For a rule

that only includes fixed tokens, for this example:

Formal Specification:
.Sign_Int_Type_Name: "SINT" | "INT" | "DINT" | "LINT";

the macro for the 0 leaves class is called (in this case: SYM_REF0(sint_type_name_c)1, ...).

For a rule that includes several other non-terminals, for example:

Formal Specification:
.repeat_stmt: "REPEAT" stmt_List "UNTIL" expression "END_REPEAT";

the macro for that rules number of non-terminals in its composition is called (in this case:

SYM_REF2(repeat_statement_c, statement_list, expression)2).

1the argument for the #define directive is the class name.
2the first argument for the define directive is the class name and the next are the names of the leaves.
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MatIEC uses a really interesting way to call these macros. All these calls are written in a single

file (absyntax.def) that is included after the #define directives in file absyntax.hh. These macros

are then undefined and redefined with the definition (file: absyntax.cc) of the general classes and

the absyntax.def file is included once again! The modifications to the AST were, therefore, only

made in the absyntax.def file.

It was always privileged to preserve the paths for existing classes and create new classes for

the ones that were added than to modify existing classes. For example the rule:

Formal Specification:
.enum_type_decl: enum_type_name ’:’ (([elem_type_name]named_spec_init) |

enum_spec_init);

previously existed as:

Formal Specification:
.enumerated_type_declaration: enumerated_type_name ’:’ named_spec_init;

the new one was subdivided in two rules: the one that is equal to the previous version and the new

one. In terms of COCO/R code, this rule looks like Code Section 6.10.

Code Section 6.10: enum_type_decl rule

enum_type_decl <symbol_c **sym> (. symbol_c *enum_tn, *elem, *nsi, *

esi; int type_flag = 0; .)

2 =

enum_Type_Name<&enum_tn>

4 ’:’

(

6 (

[

8 elem_Type_Name<&elem> (. type_flag = 1; .)

]

10 named_Spec_Init<&nsi> (. *sym = new

enumerated_type_declaration2_c(enum_tn, ((!type_flag)?

NULL : elem), nsi, fl, fc, ffile, first_order, ll, lc,

lfile, last_order); .) // Added to matiec -

enumerated_type_declaration2_c

)

12 | enum_Spec_Init<&esi> (. *sym = new

enumerated_type_declaration_c(enum_tn, esi, fl, fc, ffile,

first_order, ll, lc, lfile, last_order); .) // Equal to

matiec’s enumerated_type_declaration_c

)

14 .

This means that the enum_type_decl function passes by reference a symbol_c pointer that is ei-

ther pointing to an object of enumerated_type_declaration_c (inherits from symbol_c)
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if it’s parsing code compliant with the second version of the standard or it is pointing to an ob-

ject of enumerated_type_declaration2_c (inherits from symbol_c) if the code meets the

new specification.

Another important class is the list_c. It also inherits from symbol_c and it’s really useful

for sequences. This class implements a dynamic array of objects of symbol_c. An example of

its usage in COCO/R syntax is the IL_simple_inst_list rule:

Formal Specification:
.IL_Simple_Inst_List: IL_Simple_Instruction IL_Simple_Instruction;

The code for this rule is simpler and may be seen in Code Section 6.11.

The function passes by reference a symbol_c pointer that is pointing to a an object of

simple_inst_list_c (inherits from list_c which inherits from symbol_c). The number

of elements in the list is incremented each time the parser finds an IL_Simple_Instruction.

Code Section 6.11: IL_simple_inst_list rule

IL_simple_inst_list <symbol_c **sym> (. symbol_c *isi; .)

2 =

iL_Simple_Instruction<&isi> (. simple_instr_list_c *list = new

simple_instr_list_c(); list->add_element(isi); .)

4 {

iL_Simple_Instruction<&isi> (. list->add_element(isi); .)

6 } (. *sym = list; .)

.

The last major class that also inherits from symbol_c is the token_c and it’s used to store to-

kens such as identifiers, integers/reals, chars or strings. An example of its usage is the Signed_Int

rule:

Formal Specification:
.Signed_Int: [’+’ | ’-’]Unsigned_Int;

.Unsigned_Int: Digit [’_’] Digit ;

The Signed_Int rule passes by reference a symbol_c pointer that is pointing to a an ob-

ject of integer_c (inherits from token_c which inherits from symbol_c) or an object of

neg_integer_c in case the parser finds a -. When a Unsigned_Int is found in this context a

new integer_c is created with the value from the COCO/R current token (t->val).
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Code Section 6.12: Signed_Int rule

1 Signed_Int <symbol_c **sym> (. symbol_c* value; int neg_flag = 0; .)

=

3 [

’+’

5 | ’-’ (. neg_flag = 1; .)

]

7 Unsigned_Int (. value = new integer_c((const char*) t->val, fl,

fc, ffile, first_order, ll, lc, lfile, last_order); .)

(. (neg_flag == 1)? *sym = new neg_integer_c(

value, fl, fc, ffile, first_order, ll, lc,

lfile, last_order) : *sym = value; .)

9 .

For a better understanding of the previously explained structure please see the UML (Unified

Modeling Language) class diagram in Figure 6.1. Note that the diagram is incomplete due to the

quantity of classes that had to be represented to complete it (these missing classes are represented

in gray).

Figure 6.1: MatIEC’s UML Class Diagram

A list of all the added classes as well as the modified ones may be found in Appendix C.
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6.3.3 MatIEC integration and Tests

After this exhaustive process the stage4 and generate_iec files from MatIEC were used

to validate the AST. These functions get the AST as input and work backwards to generate code

that must be similar to the Input code. A diagram of this integration may be seen in Figure 6.2.

Figure 6.2: Diagram of the integration with MatIEC’s stage4

The program used to test the project was the one shown in Code Section 6.13. The output of

the parser is shown in Code Section 6.14.

Code Section 6.13: Test file used to validate the

AST

1 PROGRAM TEST_NAME

VAR RETAIN

3 ABC AT % I* : INT;

//ABC: SINT;

5 END_VAR

7 ABC := 10+(2-3)+2;

END_PROGRAM

Code Section 6.14: output of the parser for the

test file of Code Section 6.13

PROGRAM T

2 VAR RETAIN

A AT I : INT;

4 END_VAR

6 A := ((1 + (2 - 3)) + 2);

END_PROGRAM

There is a clear problem with this result and that is the tokens do not totally appear in the

result. A little digging in the code showed that the problem is the conversion of wide char (used

by COCO/R) to char (used in matiec). Further tests were not conducted due to lack of time.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Considering the numerous inconsistencies found in the IEC 61131-3 standard it is clear that

the formal specification of the languages elements deserves a major review and a restructuring.

Comparing the two tools for Lexer/Parser generation ANTLR is much more powerful than

COCO/R. It also required less time to learn. In spite of this the fact that the C++ target for ANTLR

was not as developed as the Java one and the need for this project to be compatible with MatIEC

made COCO/R the tool of choice. This tool requires a lot more work but as it allows insertion of

C++ code in a simple way there was a door for generation of an AST compatible with MatIEC.

The modifications made to COCO/R for this tool to allow backtracking are functional but the

added code could be better organized.

Despite the little testing the AST results were the expected ones which means the main goal

of this dissertation was achieved.

7.2 Future Work

The foremost task yet to do is to complete the generate_iec_c class in order to be able to

test the generated parser intensively. It is also of the utmost importance to correct the minor bugs

that were found while testing with the generate_iec_c class (the conversion from wide char

(COCO/R) to char(matiec) and others that may appear when the proper tests conducted). The next

step would be to generate better error messages as the ones being displayed at the moment are

the COCO/R generated ones which may not be correct due to the modifications to this tool. An

interesting work that the author would like to see done is the update of the COCO/R modifications

to more elegant code. Lastly this project should be linked with the C++ code generation classes

from matiec to make it compliant with the third edition of the IEC 61131-3 standard.
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Appendix A

Results of the ANTLR approach

This appendix will show the graphical results for the AST tests done with ANTLRWorks and

described in Chapter 6.

A.1 Syntax Tree resuts for the tests on the generated lexer and parser
for the calculator grammar in Chapter 6

In this section the ASTs obtained for the calculator grammar (Code Section 6.1) are presented.

Each subsection inside this section represents the generated AST when the grammar has one line

of Table 6.1 in Chapter 6 as input.

A.1.1 Test: 1+2*-3

Figure A.1: AST diagram for the first test
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A.1.2 Test: (1+2)*-3

Figure A.2: AST diagram for the second test

A.1.3 Test: 1+(1+2*-2)--1

Figure A.3: AST diagram for the third test
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in Chapter 6 73

A.1.4 Test: 21*(1+5)*3*(2+2)/(2*3)

Figure A.4: AST diagram for the forth test
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A.1.5 Test: (1+(2+3))+2

Figure A.5: AST diagram for the fifth test



A.1 Syntax Tree resuts for the tests on the generated lexer and parser for the calculator grammar
in Chapter 6 75

A.1.6 Test: ((2+5*3+-1)-(1*(2+3)-6)+8)/91

Figure A.6: AST diagram for the sixth test
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A.1.7 Test: ((1+1)

Figure A.7: AST diagram for the seventh test

A.1.8 Test: 1---2

Figure A.8: AST diagram for the eight test



A.2 AST resuts for the tests on the generated lexer and parser for the calculator with extras
grammar in Chapter 6 77

A.2 AST resuts for the tests on the generated lexer and parser for the
calculator with extras grammar in Chapter 6

A.2.1 Test:
IF(21+(2-3)*5) THEN

IF(1+2) THEN A:=00 END_IF

END_IF;

Figure A.9: AST diagram for the first test on the ANTLR Grammar on Code Section 6.2

A.2.2 Test:
IF(01) THEN A:=01

ELSIF(02)THEN A:=02

ELSE A:=03

END_IF;

Figure A.10: AST diagram for the second test on the ANTLR Grammar on Code Section 6.2



78 Results of the ANTLR approach

A.2.3 Test:
IF(11) THEN A:=11

ELSIF(12) THEN A:=12

ELSIF 13 THEN A:=13

END_IF;

Figure A.11: AST diagram for the third test on the ANTLR Grammar on Code Section 6.2

A.2.4 Test:
FOR I:=0 TO (5-3*1) DO

A:=0

B:=5

END_FOR;

Figure A.12: AST diagram for the fourth test on the ANTLR Grammar on Code Section 6.2



Appendix B

Results after COCO/R modifications

Code Section B.1: function after COCO/R modifications (generated by COCO/R)

1 void Parser::other_var_decls() {

int count = 0;

3 bool no_error_flag = false;

bool entry_flag = false;

5

Token *pt = NULL;

7 Token *tokens = NULL;

Token *save_cur_token = NULL;

9 Token *save_cur_la = NULL;

Token *save_error_la = NULL;

11

count = TempErrors::errorsCount;

13

no_error_flag = false;

15 pt = scanner->SavePt();

tokens = scanner->SaveTokens();

17 save_cur_token = t;

save_cur_la = la;

19 save_error_la = la;

21 if ((!no_error_flag) && (la->kind == 142 /* "VAR" */)) {

entry_flag = true;

23

retain_Var_Decls();

25 if(count == TempErrors::errorsCount) {

no_error_flag = true;

27 ListErrors->RemoveAllAfter(count);

}

29 else {

save_error_la = la;
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31 scanner->Restore(pt, tokens);

t = save_cur_token;

33 la = save_cur_la;

}

35 }

37 if ((!no_error_flag) && (la->kind == 142 /* "VAR" */)) {

entry_flag = true;

39 ListErrors->RemoveAllAfter(count);

count = TempErrors::errorsCount;

41

no_Retain_Var_Decls();

43 if(count == TempErrors::errorsCount) {

no_error_flag = true;

45 ListErrors->RemoveAllAfter(count);

}

47 else {

save_error_la = la;

49 scanner->Restore(pt, tokens);

t = save_cur_token;

51 la = save_cur_la;

}

53 }

55 if ((!no_error_flag) && (la->kind == 142 /* "VAR" */)) {

entry_flag = true;

57 ListErrors->RemoveAllAfter(count);

count = TempErrors::errorsCount;

59

loc_Partly_Var_Decl();

61 if(count == TempErrors::errorsCount) {

no_error_flag = true;

63 ListErrors->RemoveAllAfter(count);

}

65 else {

save_error_la = la;

67 scanner->Restore(pt, tokens);

t = save_cur_token;

69 la = save_cur_la;

}

71 }

73 if(!entry_flag) ListErrors->AddError(-1,-1,400);

75 if(!no_error_flag) {
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la = save_error_la;

77 }

}

Code Section B.2: excerpt of the GenCode function from ParserGen.cpp after the first modifica-

tion

while (p2 != NULL) {

2 s1 = tab->Expected(p2->sub, curSy);

4 if (useSwitch) {

PutCaseLabels(s1, indent); fwprintf(gen, L" {\n");

6 } else if (p2 == p) {

/*Initialization Here*/

8 Indent(indent); fwprintf(gen, L"count = TempErrors::errorsCount;\n\n")

;

Indent(indent); fwprintf(gen, L"no_error_flag = false;\n");

10 Indent(indent); fwprintf(gen, L"pt = scanner->SavePt();\n");

Indent(indent); fwprintf(gen, L"tokens = scanner->SaveTokens();\n");

12 Indent(indent); fwprintf(gen, L"save_cur_token = t;\n");

Indent(indent); fwprintf(gen, L"save_cur_la = la;\n");

14 Indent(indent); fwprintf(gen, L"save_error_la = la;\n\n");

16 Indent(indent); fwprintf(gen, L"if ((!no_error_flag) && (");

GenCond(s1, p2->sub);

18 fwprintf(gen, L")) {\n");

Indent(indent+1); fwprintf(gen, L"entry_flag = true;\n\n");

20 } else if (p2->down == NULL && equal) {

Indent(indent);

22 fwprintf(gen, L"}\n\n");

Indent(indent); fwprintf(gen, L"if ((!no_error_flag) && (");

24 GenCond(s1, p2->sub);

fwprintf(gen, L")) {\n");

26 Indent(indent+1); fwprintf(gen, L"entry_flag = true;\n");

Indent(indent+1); fwprintf(gen, L"ListErrors->RemoveAllAfter(count);\n

");

28 Indent(indent+1); fwprintf(gen, L"count = TempErrors::errorsCount;\n\n

");

} else {

30 Indent(indent);

fwprintf(gen, L"}\n\n");

32 Indent(indent); fwprintf(gen, L"if ((!no_error_flag) && (");

GenCond(s1, p2->sub);

34 fwprintf(gen, L")) {\n");

Indent(indent+1); fwprintf(gen, L"entry_flag = true;\n");
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36 Indent(indent+1); fwprintf(gen, L"ListErrors->RemoveAllAfter(count);\n

");

Indent(indent+1); fwprintf(gen, L"count = TempErrors::errorsCount;\n\n

");

38 }

GenCode(p2->sub, indent + 1, s1);

40

if (useSwitch) {

42 Indent(indent); fwprintf(gen, L"\tbreak;\n");

Indent(indent); fwprintf(gen, L"}\n");

44 }

else {

46 Indent(indent+1); fwprintf(gen, L"if(count == TempErrors::errorsCount)

{\n");

Indent(indent+2); fwprintf(gen, L"no_error_flag = true;\n");

48 Indent(indent+2); fwprintf(gen, L"ListErrors->RemoveAllAfter(count);\n

");

Indent(indent+1); fwprintf(gen, L"}\n");

50 Indent(indent+1); fwprintf(gen, L"else {\n");

Indent(indent+2); fwprintf(gen, L"save_error_la = la;\n");

52 Indent(indent+2); fwprintf(gen, L"scanner->Restore(pt, tokens);\n");

Indent(indent+2); fwprintf(gen, L"t = save_cur_token;\n");

54 Indent(indent+2); fwprintf(gen, L"la = save_cur_la;\n");

Indent(indent+1); fwprintf(gen, L"}\n");

56 }

p2 = p2->down;

58 }

Code Section B.3: function after COCO/R modifications (generated by COCO/R)

void Parser::enum_Value(symbol_c **sym) {

2

if (la->kind == _Identifier) {

4 int opt_errors_count = TempErrors::errorsCount;

Token *opt_pt = scanner->SavePt();

6 Token *opt_tokens = scanner->SaveTokens();

Token *opt_save_token = t;

8 Token *opt_save_la = la;

10 enum_Type_Name();

Expect(14 /* "#" */);

12

if(opt_errors_count != TempErrors::errorsCount) {

14 scanner->Restore(opt_pt, opt_tokens);

t = opt_save_token;

16 la = opt_save_la;
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}

18 }

20 Expect(_Identifier);

}

Code Section B.4: excerpt of the GenCode function from ParserGen.cpp after the second modifi-

cation

1 if (p->typ == Node::opt) {

s1 = tab->First(p->sub);

3 Indent(indent);

fwprintf(gen, L"if ("); GenCond(s1, p->sub); fwprintf(gen, L") {\n");

5

Indent(indent+1); fwprintf(gen, L"int opt_errors_count = TempErrors::

errorsCount;\n");

7 Indent(indent+1); fwprintf(gen, L"Token *opt_pt = scanner->

SavePt();\n"); /* B - Inside an optional structure if in the end

there is an error */

Indent(indent+1); fwprintf(gen, L"Token *opt_tokens = scanner->

SaveTokens();\n"); /* then possibly the optional was not used.

*/

9 Indent(indent+1); fwprintf(gen, L"Token *opt_save_token = t;\n");

/* These variables are used to restore the parser to the

initial state. */

Indent(indent+1); fwprintf(gen, L"Token *opt_save_la = la;\n");

11

GenCode(p->sub, indent + 1, s1);

13

Indent(indent+1); fwprintf(gen, L"if(opt_errors_count != TempErrors::

errorsCount) {\n");

15 Indent(indent+2); fwprintf(gen, L"ListErrors->RemoveAllAfter(

opt_errors_count);\n");

Indent(indent+2); fwprintf(gen, L"scanner->Restore(opt_pt, opt_tokens);\

n");

17 Indent(indent+2); fwprintf(gen, L"t = opt_save_token;\n");

Indent(indent+2); fwprintf(gen, L"la = opt_save_la;\n");

19 Indent(indent+1); fwprintf(gen, L"}\n");

21 Indent(indent); fwprintf(gen, L"}\n\n");

}
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Code Section B.5: excerpt of the GenCode function from ParserGen.cpp after the third modifica-

tion

if (p->typ == Node::iter) {

2 Indent(indent);

p2 = p->sub;

4

fwprintf(gen, L"{\n"); /* B - open new scope */

6

/* 1. Initialize variables to backtrack */ /* B */

8 Indent(indent+1); fwprintf(gen, L"int iter_errors_count = TempErrors

::errorsCount;\n");

Indent(indent+1); fwprintf(gen, L"Token *iter_pt = scanner->

SavePt();\n");

10 Indent(indent+1); fwprintf(gen, L"Token *iter_tokens = scanner->

SaveTokens();\n");

Indent(indent+1); fwprintf(gen, L"Token *iter_save_token = t;\n");

12 Indent(indent+1); fwprintf(gen, L"Token *iter_save_la = la;\n\n");

14 p2 = p->sub;

Indent(indent+1); fwprintf(gen, L"while (");

16 if (p2->typ == Node::wt) {

s1 = tab->Expected(p2->next, curSy);

18 s2 = tab->Expected(p->next, curSy);

fwprintf(gen, L"WeakSeparator(");

20 WriteSymbolOrCode(gen, p2->sym);

fwprintf(gen, L",%d,%d) ", NewCondSet(s1), NewCondSet(s2));

22 s1 = new BitArray(tab->terminals->Count); // for inner structure

if (p2->up || p2->next == NULL) p2 = NULL; else p2 = p2->next;

24 } else {

s1 = tab->First(p2);

26 GenCond(s1, p2);

}

28 fwprintf(gen, L") {\n");

/* 2. run code */

30 GenCode(p2, indent + 2, s1);

32 /* 3. Test if generated an error */ /* B */

Indent(indent+2); fwprintf(gen, L"if(iter_errors_count == TempErrors::

errorsCount) {\n");

34

/* 3.NO save variables go to while */ /* B */

36 Indent(indent+3); fwprintf(gen, L"iter_pt = scanner->SavePt()

;\n");

Indent(indent+3); fwprintf(gen, L"iter_tokens = scanner->

SaveTokens();\n");
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38 Indent(indent+3); fwprintf(gen, L"iter_save_token = t;\n");

Indent(indent+3); fwprintf(gen, L"iter_save_la = la;\n\n");

40 Indent(indent+2); fwprintf(gen, L"}\n"); /* end of if of error test

*/

42 /* 3.YES restore last saved variables and break! */ /* B */

Indent(indent+2); fwprintf(gen, L"else {\n");

44 Indent(indent+3); fwprintf(gen, L"ListErrors->RemoveAllAfter(

iter_errors_count);\n");

Indent(indent+3); fwprintf(gen, L"scanner->Restore(iter_pt, iter_tokens)

;\n");

46 Indent(indent+3); fwprintf(gen, L"t = iter_save_token;\n");

Indent(indent+3); fwprintf(gen, L"la = iter_save_la;\n");

48 Indent(indent+3); fwprintf(gen, L"break;\n");

Indent(indent+2); fwprintf(gen, L"}\n"); /* end of else of error test

*/

50

Indent(indent+1); fwprintf(gen, L"}\n\n"); /* end of while */

52 Indent(indent); fwprintf(gen, L"}\n\n"); /* end of scope */

}
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Appendix C

Changes to matiec’s AST

C.1 List of added classes

ltime_type_name_c ldate_type_name_c
ltod_type_name_c ldt_type_name_c
char_type_name_c wchar_type_name_c
namespace_name_list_c type_access_c
enumerated_type_declaration2_c named_spec_init_c
enumerated_value_spec_list_c enum_value_spec_c
structure_declaration_c overlap_option_c
ref_type_access_c ref_address_c
ref_assign_c ref_deref_c
deref_list_c deref_c
ref_var_decl_c interface_var_decl_c
array_conformand_c star_list_c
star_c array_conform_decl_c
fb_instance_name_c func_access_c
std_func_name_c fb_type_access_c
std_fb_name_c method_decl_c
override_modifier_c fb_input_decls_c
fb_input_decl_list_c fb_output_decls_c
fb_output_decl_list_c class_decl_c
final_modifier_c abstract_modifier_c
method_decl_list_c class_instance_name_c
interface_decl_c method_prototype_list_c
method_prototype_c io_var_decls_list_c
interface_spec_init_c interface_name_list_c
public_access_spec_c protected_access_spec_c
private_access_spec_c internal_access_spec_c
prog_access_decls_c prog_access_decl_c
access_decl_list_c access_decl_c
access_path_c access_path2_c
read_write_c read_only_c
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namespace_decl_c using_directive_list_c
internal_option_c namespace_elements_c
namespace_h_name_c pou_decl_c
declarations_list_c il_simple_operation2_c
il_fb_call_super_c this_call_c
no_this_call_c this_instance_method_c
instance_list_c variable_access_c
multibit_part_access2_c partial_access_X_c
partial_access_ommited_c partial_access_B_c
partial_access_W_c partial_access_D_c
partial_access_L_c assignment_attempt_c
continue_statement_c super_statement_c

C.2 List of modified classes

interval_c enumerated_spec_init_c
structure_element_declaration_c symbolic_variable_c
var_declarations_c retentive_var_declarations_c
function_declaration_c function_var_decls_c
function_block_declaration_c non_retentive_var_decls_c
fb_initialization_c
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