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Abstract

In airlines, flight delay is a problem that profoundly impacts the airline industry revenue every
year. Flight delays are often a consequence of unexpected disruptions that consequently affects
the regular operations on the airlines. Studies at several airlines have indicated that irregular
services can cost as much as 3% of annual revenue and that a better recovery process could result
in cost reductions of at least 20% of its irregular operations.

The impact assessment of these irregular operations is not straightforward. From detection
to mitigation of a delay, several flight legs may be at risk. Some decision support systems can
already attenuate the impact of delays in subsequent flights. However, there is still a substantial
gap between the techniques employed in the Airline’s Operational Control Center (OCC) and the
ones available as industry standards in other areas. Moreover, these decision support systems work
with scheduled or OCC-estimated times that are unreliable sources of information.

This thesis comprises the prediction of the aircraft movement times, namely, taxi-in, taxi-out,
air time and block time. These predicted times are expected to produce more accurate data and are
to be used in an OCC decision support system to replace the use of scheduled or OCC-estimated
times.

The models were trained on data from TAP Air Portugal’s air traffic activity from 2013 to
2018, along with scraped weather data retrieved from Iowa Environmental Mesonet. The data
was analysed and refactored, along with some feature engineering. After extensive experiments,
the most successful models were built, making use of a stack of linear estimators with gradient
boosting as meta-estimator. This algorithm is one of the better performers in Kaggle competitions.
Also, the modelling for air time and block time was split based on aircraft’s fuselage size, which
granted better performance.

For air time prediction, an accuracy of 90.1/64.9% within 15 minutes of deviation can be
expected (respective scores for narrow-body and wide-body aircraft). Similar values were acquired
for block time prediction, which outperformed the results from the currently available work in the
literature addressing the prediction of block time. The prediction of taxi-in and air time seems to
have never been addressed before in literature.
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Resumo

Nas companhias aéreas, o atraso de voos é um problema que afeta fortemente a receita do setor da
aviacdo todos os anos. Atrasos nos voos sdo frequentemente consequéncia de disrupgdes inesper-
adas que, consequentemente, t&€m impacto sobre as operagdes regulares nas companhias aéreas.
Estudos de vérias companhias aéreas indicam que operacdes irregulares podem custar até 3 % da
receita anual e que um melhor processo de recuperacio poderia resultar em redugdes de custos de
pelo menos 20 % das operacdes irregulares.

A avaliacdo de impacto dessas operagdes irregulares ndo € simples. Da detecc¢do a atenuagdo
de um atraso, virios voos podem estar em risco. Alguns sistemas de suporte a decisdo ja podem
atenuar o impacto de atrasos nos voos subsequentes, no entanto, ainda existem lacunas substanciais
entre as técnicas empregues no Centro de Controle Operacional da Companhia Aérea (OCC) e as
disponiveis como padrdo da inddstria noutras dreas. Além disso, esses sistemas de suporte a
decisdes funcionam com hordrios programados ou estimados pelo OCC que ndo sio fontes de
informacdo fidveis.

Esta tese compreende a previsao dos tempos de movimento das aeronaves, nomeadamente,
"taxi-in" e "taxi-out", tempo de voo e tempo total de viagem. Espera-se que a previsdo desses
tempos produza dados mais precisos e s@o para ser usados em sistemas de suporte a decisdo do
OCC, para substituir o uso de hordrios programados ou estimados.

Os modelos foram treinados com dados da atividade de trafego aéreo da TAP Air Portugal de
2013 a 2018, juntamente com dados meteorolégicos extraidos do Iowa Environmental Mesonet.
Os dados foram analisados e reformulados, juntamente com alguma "feature engineering". Ap6s
extensas experiéncias, os modelos mais bem-sucedidos foram construidos, utilizando uma pilha
de estimadores lineares com "Gradient Boosting" como meta-estimador. Esse algoritmo é um dos
algoritmos com melhores desempenhos nas competi¢des do Kaggle. Além disso, a modelagem
do tempo de voo e do tempo total de viagem foi dividida com base no tamanho da fuselagem da
aeronave, o que proporcionou melhor desempenho.

Para a previsido do tempo de voo, pode-se esperar uma precisdo de 90.1 / 64.9 % dentro de
15 minutos (avaliagdes para aeronaves NB e WB, respetivamente). Valores semelhantes foram
adquiridos para a previsdo do total de viagem, que superaram os resultados do trabalho atualmente
disponivel na literatura sobre previsao do tempo total de viagem. A previsao do "taxi-in" e tempo
de voo parece nunca ter sido abordada na literatura.

il
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Chapter 1

Introduction

Introductory chapter to explain the motivation behind the proposal and its scope, what problem

will it address and how, and a brief explanation of the document structure.

1.1 Context

In airlines, flight delay is a problem that greatly impacts the airline industry revenue every year,
either by conceding millions on compensations and reschedules, or only by a loss of confidence of
the passengers regarding the airlines. Several EUROCONTROL reports [EUR17, EUR1S8, CT15]
from the past few years show an ever-increasing presence of those delays in airline’s daily opera-
tions, mainly due to unaccounted or unpredictable external factors.

A survey to assess the impact of airlines’ service recovery on passenger satisfaction ((ESB17]),
points out that flight delay is the primary factor for passenger dissatisfaction and loss of loyalty

with up to 37% of the inquired people answering that they had problems because of flight delays.

Table 1.1: Statistical reports about delay impact for 2016, 2017 and 2018 made available by the
European airspace managing entity [EUR17, EUR18].

2016 2017 2018

Arrival Punctuality (%) 81 79.7 75.8

Average Delay per
Flight - Reactionary (min) 32 33 6.7

Departure Delay (min) 1.1 124 147

* The values in the table are average annual values.

As shown in table 1.1, flight delay is a relevant problem in airlines and does not seem to be
slowing down.
Despite the increasing capabilities of today’s hardware and promising results in decision sup-

port systems, there is still a considerable gap between the available technology and the techniques
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employed in the airlines’ operations control [CLLR10, dC13]. A large number of airlines have
determined that irregular operations can have a cost of up to 3% of their annual revenue and that
a better recovery process could lead to a cost reduction of at least 20% of the current cost with
disruptions [as cited in dC13].

According to IATA [IAT18], the global net profit of commercial airlines was of 32.3 billion
dollars, meaning almost 200 million dollars could be saved annually if a proper recovery process
was applied worldwide. Moreover, a study conducted by Westminster University for EUROCON-
TROL [CT15] attributes a cost of 81€ per minute of delay. For a departure delay value of 14.7
minutes (table 1.1), flights in 2018 had an average delay cost of almost 1200€.

1.2 Motivation and Objectives

Before the departure of an aircraft, a sequential approach for operational plan-making is applied
complying to numerous restrictions and rules: rules on aircraft maintenance, regulations on max-
imum flying times for the crew members, airline-specific regulation, among others. According to
[CLLR10], this plan is given to the Operational Control Center (OCC) a few days before the day
of the operation.

At TAP, the operational flight plan can be accessible up to 6 hours before the scheduled depar-
ture time of two aisle planes (wide-body [WB]), and up to 2 hours before the scheduled departure
time of one aisle planes (narrow-body [NB]). As the departure approaches, new versions of the
operational flight plan are issued.

Because the information on the flight plan is compliant with all restrictions and rules required
by the entities that control the airspace, this is deemed as the most accurate information and, when
available, may be used by a decision support system and useful suggestions are expected.

The problem that arises is that any decision support systems introduced in the OCC will be fed
with inaccurate information if the disruption assessment is made just a few hours earlier than the
flight’s departure because of lack of proper information - flight plan’s information.

This problem motivates the prediction of the partitioned aircraft movement.

Flight Time
Gate Out Wheels Off Wheels On Gate In Gate Out Next Leg
 —» - > >
Taxi Qut Taxiln Rotation Time

Figure 1.1: Partitioned aircraft movement (simplified).

In figure 1.1, a comprehensive diagram of the actual aircraft movement times is illustrated.
The accuracy of these times is central for a correct disruption impact assessment. Meaning, to

overcome the lack of proper information to feed to decision support systems in the OCC, models
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capable of predicting the flight movements may be able to help decision support systems and,
consequently, OCC operators to assess in advance, with a high degree of certainty, the impact of a
disruption.

The object of this work is to develop four predictive models whose targets are raxi-in, taxi-out,
air time and actual block time. Depending on the available information on the flight plan, one or
more predictive models could be used by the decision support systems. The task assumes a period

between delay detection and flight departure of up to 24 hours.

1.3 Dissertation Structure

This document is organised as follows. The current chapter, Introduction, outlines the under-
standing of the topic and its importance in the aviation scope. Chapter 2, Bibliography Review
analyses similar works and presents a brief introduction to the general concepts underlying data
mining problems. Chapter 3, Problem Description, describes the addressed problem and anal-
yses the initial dataset, discussing its content and cleanup procedures, as well as encompassing
the data analysis. Chapter 4, Feature Engineering, presents the data refactoring to expose the
relationships between data for model performance improvement explicitly. Chapter 5, Modelling,
shows algorithm parameter tuning and result scrutiny. Finally, Chapter 6, Conclusions and Fu-

ture Work summarises the developed work and enumerates future directions of work.
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Chapter 2

Bibliographical Review

This chapter shows the concepts and techniques employed in similar problems, along with an
overview of the commonly used methodologies for these kinds of tasks. This chapter serves as a

foundation to base assumptions for the work described in the following sections.

2.1 Background

This work will be developed by borrowing techniques and approaches present in the literature on

data mining tasks.

Data Mining Data mining is a subfield of computer science, statistics and artificial intelligence,
which goal is to extract information of complex structures in the data (with intelligent methods),

transform it and serve it for further use [HTFO1].

2.1.1 Supervised Learning

In Data Mining, the primary learning mechanisms are supervised learning, unsupervised learning,
and reinforcement learning. The work reported in this dissertation can be classified as a supervised
learning task.

Supervised learning is a predictive mechanism that consists in learning a function that, using
input-output pairs, maps inputs to outputs. It is named after the requirement for the data to be
clearly labelled, and thus the result of the output can be supervised and assessed whether it is
correct or incorrect.

Essential to the process of supervised learning is the concept of training (iterative improvement
in learning). In this training task, the data to feed the model with (dataset) is split into training
and testing sets, and possibly a validation set. A learning algorithm is fitted in the training data
to learn the core aspects of the data while keeping the ability to generalise to unseen data. The

validation set is used alongside the training set as a method to validate the effectiveness of the fit
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to that training set, which result would be used to tune the learning parameters of the algorithms
(hyperparameters). The test set serves as a previously unobserved set of data to assess the general-
isation capabilities of the model. After training a model, a new data item can be inputted into that

model to return an inferred output.

Regression vs Classification

Regression and classification are the two primary learning tasks in supervised learning problems.
Fundamentally, classification is about predicting a discrete class label and regression is about

predicting a continuous value.

In classification, the output variables are often called labels or categories and the mapping
function that infers outputs given inputs predicts the class or category for a given observation. A
typical example of classification comes with detecting spam emails, classifying whether an email

is spam or not.

In regression, the output of a learning task is a real-value where the mapping function predicts

an integer or floating-point value for an observation.

These problems can be extended to include the prediction of more than one output. This work

will only focus on single-output regression problems.

2.1.2 Assessing Regression Quality
Regression Evaluation Metrics

In a regression problem, a model’s performance assessment is generally made using residuals -

difference between observed and predicted values.

Let y; be the truth value and §; the model output (or predicted value), for a sample i. The
residual would be:

e =yi— i

A naive approach to assess a model’s performance would be to compute the mean error ) ; &;, but it
turns out that positive and negative errors cancel each other out, giving no true knowledge of how
well the model performs. Therefore, more sophisticated metrics were developed. The following

are the commonly used in regression problems:

¢ Mean Absolute Error (MAE):
- Z |ei (2.1)
n

* Mean Squared Error (MSE):
! Y (e:)? (2.2)
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¢ Root Mean Squared Error (RMSE):

1 n
=Y (e)? (2.3)
i=1

n

* Mean Absolute Percentage Error (MAPE):

1 " e
00% x~ | (2.4)
i
« Coefficient of determination (R?):
n 2
—1(e7)
L i ¢

MAE, MSE and RMSE express average prediction error in variable units. MAPE expresses aver-
age prediction error in percentage, normalised by observation, meaning the outcome value is based
upon true observation. These metrics can range from 0 to e (even MAPE, which is expressed as a
percentage), are indifferent to the direction of errors and negatively-oriented, which means lower
values are better than greater ones. R expresses the proportion of the variance in the dependent
variable that is predictable from the independent variables. It ranges from 0 to 1 (0 to 100%), and
it is positively-oriented (higher values are better).

MAE measures the error magnitude in a set of predictions, assuming equal weights. Being in
the same target units of the real values gives the metric a very intuitive meaning. MSE and RMSE
square errors before they are averaged, which gives higher weights to more significant errors. This
property makes these metrics more useful when significant errors are particularly undesirable. In
general, RMSE is more popular than MSE because it is more interpretable in the target units.

MAPE puts a more substantial penalty on negative errors than on positive ones and is prob-
lematic if the target variable has zero-valued observations. Nevertheless, MAPE is helpful for
positive target value sets because of its very intuitive interpretation in terms of relative error. R? is
interesting because the value denotes the variability of the dependent variable that was accounted

for, although a residual plot should support its analysis because high R? values can be misleading.

Residual plots

These plots show the predicted value on the x — axis, and the residuals on the y — axis. When
looking at these plots, ideal solutions would have their points scattered in a "random" cloud pattern
- preferably clustered close to the zero lines (i.e. smaller residuals). Non-ideal solutions would
show patterns where the residuals either change in proportion with the predicted values (i.e. higher
absolute value, higher residual) or any non-linear patterns, commonly, either a U or upside-down
U shapes. Also, when points are not evenly scattered, whether along the y — axis (i.e. outliers) or

along the x — axis, can be a sign of existing outliers or clusters.
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2.1.3 Data Preprocessing

Some popular techniques are often used to prepare the data for the modelling process. Almost all
of them address the over-fitting problem or are required for the proper implementation of certain

algorithms. The following sections describe some of these techniques.

Feature scaling

Feature scaling is a technique to standardise the importance of predictors across datasets of vary-
ing scales of features. A popular approach is normalisation or MinMax scaling, where the data is
scaled to a fixed range - usually O to 1 - which can lead to small standard deviations and conse-
quently, the suppression of outliers. An alternative to normalisation that is generally preferable is
Z-score normalisation (or standardisation) or Standard scaling, which makes the dataset have a
mean of 0 and a standard deviation of 1. A more robust scaler to non-normally distributed predic-
tors is Robust scaling, in which, rather than scaling to unit variance from mean value (which can
be negatively influenced by outliers or distribution skewness), the scaling is made in the interquar-

tile range from the median value.

Categorical encoding

Some machine learning algorithms can learn directly from categorical data with no data transfor-
mation required, but many cannot operate on categorical data directly. They require all input and
output variables to be numeric.

If the target variable is categorical, it may be required to convert model predictions back into
nominal form in order to present them, use them in some application or even assess the predictive

capabilities of model training.

Label Encoding Label encoding assigns, to each category, a value from O through n — 1, where
n is the number of distinct labels for each property. This type of encoding makes models misun-

derstand the data to be in some kind of order and infer relationships between variables incorrectly.

One-Hot encoding The drawback of Label encoding can be overcome using one-hot encoding,
which maps each category to a binary vector with its truth value set by the presence or absence
of the feature. Meaning, it splits each categorical variable column into multiple binary columns,
one for each unique label. For each new column, the values are replaced by 1s or Os whether the
observations have the column-represented value or not. This method may produce many columns
if the number of unique labels is very high for each feature and consequently slow down the

learning process significantly.

Target Encoding In target encoding, for each category, the new label is dependent on the target’s
mean value. Similarly to label encoding, target encoding does not increase data’s volume, which

is particularly helpful for faster learning. Because this encoding method brings out the relation
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between similar categories, it can lead to over-fitting, and the use of this encoder is advised to be

under cross-validation.

Leave One Out Encoding It uses a similar approach to target encoding but is more robust to
outliers, achieving this by excluding the current row’s target when calculating the mean target.

This algorithm is particularly useful for high cardinality categorical features.

Cross-Validation

Cross-validation (CV) is one of the most widely used methods for estimating the predictive capa-
bilities of a learning model in new data. It uses part of the available data to fit the model, and the
rest to testing. It consists in splitting the training set into K number of similar-sized subsets, called
folds, and iteratively fitting the model, training it on K — 1 folds of data and evaluating on the k-th
fold (called the validation data) [HTFO1].

Cross-Validation helps mitigate the over-fitting problem and more accurately assess the gen-
eralisation capabilities of a model. The final performance metrics are computed using the average

of the performance on each fold.

2.1.4 Regression Algorithms
Linear algorithms

In statistics, linear regression is an approach to modelling the relationship between a scalar value
(dependent variable) and one or more predictors (independent variables). For an input vector

X" = (X1,Xa,...,X,), the linear regression model has the form:

f(X)=PBo+ ixjﬁj (2.6)
=

For a real-valued output Y, the regression model assumes E (Y |X) is linear or a reasonable
approximation.

Some algorithms try to improve on the linear regression model like Ridge, Lasso or Elastic
Net.

Ridge Ridge Regression is a method of regularisation of a linear least squares estimator. It
shrinks the regression coefficients by imposing a penalty on their size [HTFO1]. This penalty can
alleviate the problem of multicollinearity in linear regression, commonly present in models trained
on large numbers of features. It does so by adding the squared magnitude of the coefficients as
penalty term to the loss function (also known as L2 regularisation, or weight decay on neural net-
works). This penalty introduces a tolerable amount of bias that significantly decreases variance. In
general, this method provides improved efficiency in parameter estimation problems by avoiding

the over-fitting issue.
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Lasso Works similarly to Ridge Regression but instead of applying L2 regularisation, applies
L1 regularisation that consists on adding the absolute value of the magnitude of the coefficients as
penalty term to the loss function, resulting in a shrinkage of the less important feature’s coefficient
to zero and thus, removing some features altogether. Lasso works well for feature selection in case

of problems with vast numbers of features.

Elastic Net Elastic Net is a regularised regression method that linearly combines the L1 and L2
penalties of the Lasso and Ridge methods. Elastic Net selects variables like Lasso and shrinks the
coefficients of correlated predictors like Ridge [HTFO1].

Ensemble learning algorithms

Ensemble methods use multiple estimators to obtain better predictive performance than any of
those estimators alone. An ensemble of models is a set of models that combined their predictive

capabilities in some way to improve the evaluation of new examples [Die00].

Random Forest Random forests are a combination of tree predictors formed by sampling from
the training data, training the same tree many times and averaging the result [BreO1, HTFO1].
Trees can capture complex structures in data but are notoriously noisy so benefit significantly
from averaging, which reduces the variance. Also, if big enough, trees can have a relatively low

bias.

Gradient Boosting Gradient Boosting constructs a prediction model in the form of an ensemble
of weak prediction models (decision trees). The goal is to minimise a cost function that is con-
strained to be a sum of trees [HTFO1]. It randomly samples trees where each is constructed and

trained to reduce the residuals generated by the previous one [DYC™20].

XGBoost XGBoost follows the principle of gradient boosting but uses a more regularised model
formalisation to control over-fitting, which generally gives it better performance. Is one of the

algorithms often present in winning solutions at the machine learning site, Kaggle ! [CG16].

Stacking Stacking is an ensemble technique to combine multiple regression models to give im-
proved prediction accuracy [Bre96]. The model is composed of two levels, the first level of weak
learners that are fit in a cross-validation fashion, and a second level estimator that used the resulting

predictions of the first level of estimators as input data for improved accuracy.

Thttps://www.kaggle.com/
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2.1.5 Neural Networks

Other algorithms that can be adapted for regression problems are the now popular Neural Networks
(NN). These are the backbone of Deep Learning and consist of multi-layer networks of neurons
that are used to make predictions.

The resurgence of NN in these past few years is due to three factors:

* Big Data - the data is now much more easily obtained and in much larger quantities. Also,
storage has become more accessible and cheap, as well as the development of data indexing
tools that aid in this task.

 Hardware - neural networks are massively parallelizable [HZL " 13] and can benefit tremen-

dously from modern Graphics Processing Units (GPU) architectures.

» Software - due to newly risen powerful and open-source tools, building and deploying DL

algorithms is streamlined and accessible for everyone.

input layer hidden layer 1 hidden layer 2 output layer

Figure 2.1: Neural network with two hidden layers

Figure 2.1 shows the structure of a neural network with two hidden layers. The nodes from
one layer are fully connected with the nodes of the next layer. The network learns by propagating

data from the input layer to the output layer, and back again to learn from its "mistakes".

Forward Pass Figure 2.2 illustrates the forward pass process. This behaviour works for each
layer of the network. The next neuron’s activation is computed as the product sum of the node
values with the edges’ weights. The obtained value is passed through an activation function that
introduces non-linearities into the network, meaning, that activation function allows the network

to approximate to arbitrarily complex functions.

Backward Pass The backward pass is the reverse of the forward pass. However, instead of

calculating and propagating the node activations to the next layer, it calculates the errors. It tweaks
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Figure 2.2: Single output neuron forward propagation

the weights in the direction of error minimisation (gradient descent), from the output layer up until
the input layer. These tweaks are done computing the gradient of the cost function (e.g. Root Mean

Square Error), which tells how the cost function changes for each weight.

Batching Typically, the gradient is computed using mini-batches which are subsets of the whole
dataset. Computing the average gradient across the data points from a mini-batch and using that

as an estimate of the true gradient is much more inexpensive than using the whole dataset at once.

Regularization Regularisation techniques are meant for constraining a model in such a way that
it is discouraged from becoming too complex and just memorising the training data, also known

as overfitting. Some popular approaches are Dropout and Early Stopping.

2.2 Related Work

Predictive approaches for delay minimisation in airlines are an important ongoing research area
due to plane travel being increasingly sought after. Also, the unpredictable nature of delays that
are caused due to unanticipated circumstances motivated researchers to address this problem using

data analytics.

2.2.1 Aircraft movement data prediction

By 2005, the propagated consequences of late-arriving flights on the following segments [as cited
in Coy06] were already noticed.

This motivated the work of Steve Coy that, in 2006, developed a statistical approach using
linear regression to predict block times [Coy06]. The experience was made using 2 million US
domestic flights by six airlines in 2004 and comprises the construction of a model for each airline.
This work achieved a high level of significance with a R? of over 95% for every built model.

Models were built for each airline using information about frozen precipitation and the estimated
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impact of various meteorological events on the air traffic. Coy concluded that these were great
block time predictors.

In 2010, Balakrishna et al. developed a reinforcement learning approach for predicting aircraft
taxi-out times [BGS10]. The problem was modelled building an objective function that minimises
the absolute value of taxi-out residuals. The predictions were made 15 minutes before departure.
The rationale for setting this threshold was that the prediction of flights too much in advance of
gate pushback time (i.e. off-gate time) is likely to be less accurate. This research got great results
in predicting the mean taxi-out time as well as the taxi-out for specific flights, with respectively,
94% accuracy within 1.5 min deviation and 81% accuracy within 2 min deviation. This work only
used OOOI times ((gate) Out, (wheels) Off, (wheels) On and (gate) In).

These two works mentioned above predict with a high degree of certainty two of the four tar-
gets of this work. As is a supervised learning approach, it should be more reliant on the "goodness"
of data.

2.2.2 Delay prediction

The prevalent flight delay in airline’s operations led the research field to focus mainly towards
developing approaches that address flight delay prediction. Several studies have been conducted
to predict aircraft delays, from departure and arrival.

In 2014, Rebollo and Balakrishnan developed models using a Random Forest algorithm to pre-
dict the existence of departure delays and their values, 2 to 24 h advance [RB14]. The regression
approach of this work got an average median test error from 20 min to 27.4min, depending on the
forecast horizon.

in 2016, Choi ef al. [CKBM16] implemented a Random Forest for predicting existence of
arrival delay. This implementation got an accuracy of 80.4%. The authors proposed for future
work a cost-sensitive approach because of a decline in the accuracy when sampling was applied.
The models hardly predict the minor class. The author also noted that some algorithms were not
able to make predictions when trained without weather data. In the next year, following this work,
the same authors develop the cost-sensitive approach they previously proposed [CKBM17], using
the same algorithms, data and techniques. The idea is to weigh more severely misclassifications of
on-time as delay, and more forgivingly misclassifications of delay as on-time. However, applying
this technique degraded the models’ performance.

In 2017, Manna et al. developed an approach for predicting arrival and departure delays in
flights using Gradient Boosting [MBK™17]. In this work, the model was built using historical
flight data from 70 United States airports. That data was retrieved from the US Department of
Transport. This model showed good results with coefficients of determination for arrival and
departure delays over 92%. Interesting to note a 94% Pearson correlation coefficient between
arrival and departure delays, showing no mitigation in the delay propagation.

In the same year, Thiagarajan er al. [TSS™17] used multiple machine learning algorithms

and a Deep Neural Network to predict the occurrence of a delay in a specific flight (through a
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classification problem) and to predict its numerical value (through a regression problem). Gradi-
ent Boosting Classifier and Extra Trees Regressor performed the best from the set of supervised

learning algorithms.

2.2.3 Deep learning approaches

With the tremendous increase on the size of the available data in all kinds of industry segments
and latest studies showing neural networks and deep architectures yielding outstanding results in
various data mining problems, these techniques became popular and are now being tested in the
aviation field as well.

In 2015, Hugo Alonso and Anténio Loureiro used a 5-layer NN to predict departure delays
in Porto airport [AL15]. Chakrabarty et al. [CKD"19]. Variable importance is referenced in this
work, and the solution with the NN only required two variables to explain +99% of the variance
in data.

In 2016, Khanmohammadi et al. [KTK16] had used multi-level artificial neural networks for
predicting arrival delay time in JFK airport. This study was conducted with a small dataset and
only with flight information. It achieved an RMSE of 13.7%.

In the same year, Kim et al. [KCBM16] applied deep LSTM RNN architecture to build model
for departure delay prediction. The developed model achieved an accuracy of 87.42% in predicting
individual flight delays. The employed architecture used a 5-layer NN with stacks of LSTM
cells modelling data as 9-day sequences of day-to-day activity. Weather conditions at origin and
destination airports were presumed to be important factors for the prediction task.

In 2019, Yu et al. [YGA™19] made another attempt on Deep Learning usage for flight delay
prediction. A DBN-SVR prediction model was employed, where the Deep Belief Nets extract the
hidden factors that impact flight delays while reducing dimensionality and eliminating redundant
information. The output of DBN is then used as the input of the Support Vector Machine (SVM)
to capture the key influential factors and generate the delay predictions. 99.3% of the predicted

values were within 25 min deviation from the actual ones.

2.3 Key Findings

In the existing literature, researchers worked extensively on flight delay problems of classification
and regression, but not so much on the prediction of any of the aircraft movement times.

Table 2.1 shows an aggregated visualisation of the explored works. Information on developed
classifiers was trimming when their regressor counterpart was also developed.

Weather conditions are significant air traffic data predictors. In Steve Coy’s statistical approach
to predicting block times [Coy06], it was concluded that weather conditions are good block-time
predictors. Later, in Choi et al. work on weather-induced airline delay [CKBM16], it was stated
that some algorithms had no predictive capabilities when trained with datasets without information
on weather data. Further, several literature approaches seem to have used some kind of weather

data to achieve good results.
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Table 2.1: Overview of literature studies and main remarks.
Best .
Authors Year Targets . Dataset Evaluation Remarks
Algorithm
linear models can be
Steve Coy 2006 block time Linear Regression historical flight R?=95% stron‘g‘leamers; 'we?Fher
and weather data conditions are significant
block time predictors
Balakrishna e al. 2010 taxi-out  <OMHOTCCment 601 ot acc=937% UstOOOldacantrain
Learning a strong learner
deterioration of performance
Rebollo & delay at historical flight avg. median is dependent on forecast horizon;
Balakrishnan 2014 departure Random Forest data =[20,27.4]lmin  ensemble techniques had
superior performance over others
N . the variable
Hugf) AIOHSO & 2015 delay at NN historical light importance is really high for a
Anténio Loureiro departure and weather data R
couple of predictors
. L . multi-level NN can minimise
Khanmohammadi ) ¢ delay at —yp oy historical flight o iqp 0137 multicollinearity of
etal. arrival data .
one-hot encoding
weather conditions are
Choi et al. 2016 del'ay at Random Forest historical flight ace = 80.4% significant delay predictors; ‘
arrival and weather data ensemble techniques had superior
performance over others
Kim et al. 2016 del.ay at LSTM Recurrent  historical flight ace = 86% successful a?pproach with
arrival Neural Network and weather data a deep architecture
L . cost-sensitive approach for
Choi et al. 2017 YA ndom Forest  Mistorical fight 0 gyg weighted classification not
arrival and weather data
good for unbalanced data
delay at historical flicht ensemble techniques had
Thiagarajan et al. 2017 departure  Extra Trees £ R? =94.4/98.5% superior performance
. and weather data
and arrival over others
delay at . . . .
Manna et al. 2017 departure  Gradient Boosting historical flight R? =94.8/92.3% boosted techniques deliver
. data good performances
and arrival
1 . . historical fligh hniques deli
Chakrabarty et al. 2018 de &y a Gradient Boosting istorical flight acc =79.7% boosted techniques deliver
arrival data good performances
Yu ef al. 2019 del.ay at DBN-SVR historical flight R = 93% air route §1tuatlon can bt? }Jsed
arrival and weather data instead of weather conditions

Ensemble learning approaches seem to be the best for air traffic data. In Rebollo and Balakr-

ishnan work, it was said that "Random Forests were chosen due to their superior performance"
[as cited in RB14]. In both Choi et al. works [CKBM16, CKBM17], from various algorithms,

Random Forest was the best one. In Manna et al. work [MBK™17], the Random Forest was

not used because it only reduces variance, and a Gradient Boosting was used instead because it

addresses bias and variance simultaneously. Thiagarajan et al. also used a Gradient Boosting

classifier [TSS™17] to achieve great results. In a regression task in this same work, an Extra Trees

regressor got the best performance. Lately, it seems that ensemble with boosting is getting popular

in this field of research as is for other research segments.
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Chapter 3

Problem Description

This section contains information about the problem to be addressed, the prediction of flight times,
showing its relevance and how does it fit in the scope of airline operations. It also discusses the
dataset used, comprising historical flight and weather data. Then, it describes the data analysis

and the cleanup procedure performed in this dataset.

3.1 Problem

3.1.1 MASDIMA

Reactionary delay is the major type of delay in airlines and is caused by the late arrival of an
aircraft or crew from previous flights. This delay may spread to several subsequent flights. The
event that triggers the delay can be identified and its propagated effects assessed. One software
that does this is MASDIMA.

MASDIMA (Multi-Agent System for Disruption Management) is a multi-agent system that
monitors unexpected events, assesses the impact of disruptions and provides a timely solution to
solve them.

The software assigns different agents with optimisation tasks to mitigate the impact of the
detected event. Each agent solves for a dimension of the airline’s environment - aircraft, crew or
passenger [CRO14]. The agents deliberate on their own on how to optimise the given task and
finally cooperate to come up with a timely solution. This integrated solution is achieved through
Q-Negotiation [dC13, CRO14].

This system is intended to be used by the Operations Control Center (OCC) to help them in
their decision-making.

The problem that arises is that MASDIMA, typically, only has the scheduled times to work
with when a delay is detected. More accurate predictions, from the operational flight plan, for

example, are available only a few hours before the flight schedule time of departure.
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3.1.2 Scheduled time problem

Typically, airline set scheduled block times (SBT), for a certain flight, as much as six months
in advance [Coy06, DA12]. Accounting for the always-prevailing uncontrollable events in the
airlines’ operations, these render the scheduled times’ usage unreliable.

Moreover, the setting of SBT is prominently set to achieve marketing advantages. A shorter
SBT enables more competitive scheduling and lowering of resource expenditure - airline resources
are always being used, which enables a more significant number of flights to be made in the same
period. A longer SBT means better on-time performance (keep up to the schedule) and a lesser
propagated delay.

According to Hao [HH14], airlines are willing to experience occasional severe delays in ex-
change for a shorter SBT, although this may lead to other inconveniences. In a study conducted
in 2010 sponsored by the American Federal Aviation Administration [BBD " 10] it was noted that,
since airline fleet and crew schedules are mainly based on the scheduled times, excessive or even
moderate amounts of flight delays can be highly disruptive causing extra crew costs, various costs
associated with accommodating disrupted passengers and even aircraft repositioning.

On the other hand, airlines, generally large ones, can lengthen their SBTs as padding for heavy
traffic. Further, airlines create their fleet plans based on the scheduled flight arrival and departure
times so that increasing the scheduled buffer leads to changes in schedules and eventually to poor
aircraft utilisation [HH14, BBD10].

This misleading schedule generates annual misleading statistics that do not adequately trans-
late the efficiency of the service. As airlines try to seize a competitive edge over the rest of
the market, the SBTs are unreliable to provide information about the actual aircraft movements,
which renders the scheduled times useless as a reliable source of information. As the departure
date comes near, this problem is, to some degree, mitigated - using the flight plan.

Depending on how early the document is made available, key information might be missing.
When this data is nonexistent, estimated times are used instead. Generally, they are not computer-
generated, but built by the OCC operators based on experience and rules of thumb [dC13]. The

most critical information to assess flight delays is the various partitions of aircraft movement.

3.1.3 Flight Time Decomposition

Along with the SBT, the partitioned times in figure 1.1 take part in the full flight time decompo-
sition. These are all the segments of travelling that an aircraft may perform in its activity for an
airline. Figure 3.1 illustrates all the relevant times in a flight.

Taxi-out is the time between an aircraft exit from the gate until it takes off. Analogously, the
taxi-in is the time from landing to park. The time between scheduled and actual departure time is
defined as departure delay or gate delay. Arrival times work analogously. Effective flight time is
the total time of resource availability.

SBT is the time duration between the scheduled departure and scheduled arrival times. The

actual block time (flight time) is the time between actual departure and arrival time.
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Figure 3.1: Full flight times decomposition [DA12].

Another important time is the rotation time or ground time, which is the time between actual

arrival and the next leg’s departure time.

3.2 Data Source

For this work, a dataset with historical flight data was provided by TAP Air Portugal. This dataset
did not include weather data which had to be extracted from a different source. Following is the
raw data pre-processing and compilation made to form a first stage dataset, encompassing web

data extraction and data refactoring.

3.2.1 Flight Historical Data

The data available was provided by TAP Air Portugal !. This dataset is made up of historical flight
data of TAP aircrafts’ activities from 2013 to 2018. The raw data consists of 822264 records with
35 attributes.

It was prior knowledge (from the flight data provider) that some observations of the data were
incorrect. Records were containing older data from already existing flight records, meaning, du-
plicate records with outdated information and also instances reporting land vehicles’ activities.
Both the former and the latter were removed.

After preliminary refactor, the dataset ended up containing 591152 records and 35 attributes.
The features of this dataset are contemplated in table 3.1.

Trying to minimise the strain of iterating over almost 600000 records and 35 attributes, the
redundant information that stood out was removed. From the attributes that were initially made

available, the following were considered irrelevant:
* carriage code: It was the same for all observations.

¢ taxi times: Can be extracted from actual times and be more accurate.

Thttps://www.flytap.com/
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Table 3.1: Flight historical data features by data type. Data granted by TAP Portugal.

name data type
Flight Date date
Carriage Code string
Flight Number int
Tail Number string
Aircraft Type Code int
Aircraft Description string
Aircraft Family Code string
Departure Airport string
Estimated Flight Time time
Taxi out time
Taxi in time

Scheduled Time of Departure  datetime
Estimated Off-Block Time datetime

Actual Off-Block Time datetime
Estimated Take-Off Time datetime
Actual Take-Off Time datetime
Arrival Airport string
Estimated Landing Time datetime
Actual Landing Time datetime
Estimated On-Block Time datetime
Actual On-Block Time datetime
Scheduled Time of Arrival datetime
Business Seats int
Economy Seats int
Business Sale Seats int
Economy Sale Seats int
Flight Leg Status char
Service Type char
Aircraft Owner Code string
Time of Delay Registration datetime
Minutes of Delay int
Delay Remarks string
Delay Code int
Scheduled Time of Arrival char
Delay Description string

* estimated date times: There is no background knowledge about how were the estimated

times calculated - may introduce bias in the data.

 seat info: No important inferences can be made using the flight occupancy because the

economy seats feature is zero-filled and the rest serve no purpose as standalone features.

* leg status: It was the same for all observations.
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* delay descriptions: The delay remarks and description were inconsistent and redundant

since the delay code contains their information.

The number of attributes are now: 35 -> 20.

3.2.2 Weather Data Extraction

As concluded in section 2.3, the weather has a great impact on aircraft operations and weather
data is a major predictor of the various flight times. Therefore, weather data must be obtained to
complement the already existing flight historical data.

The weather information was retrieved from Iowa State University’s website [Uni]. This uni-
versity maintains an archive of airport weather observations from around the world which is ex-
tracted using a mesonet - a network of automated monitoring stations built to observe weather and

environmental phenomena.

Weather Attributes

The website’s available data contains several attributes from which the ones deemed as most im-

portant for the airline domain were selected. Table 3.2 briefly describes each one.

Table 3.2: Web-retrieved weather features [Uni].

name units description

air temperature Celsius  Air Temperature in Celsius, typically at 2 meters
wind direction degrees Wind Direction in degrees from north

wind speed knots Wind Speed in knots

visibility miles Visibility in miles

wind gust knots Wind Gust in knots

cloud coverage level 1 - Sky Level 1 Coverage

cloud coverage level 2 - Sky Level 2 Coverage

cloud coverage level 3 - Sky Level 3 Coverage

cloud height level 1 feet Sky Level 1 Altitude in feet

cloud height level 2 feet Sky Level 2 Altitude in feet

cloud height level 3 feet Sky Level 3 Altitude in feet

ice accretion 1h inches  Ice Accretion over 1 hour in inches

ice accretion 3h inches  Ice Accretion over 3 hours in inches

ice accretion 6h inches  Ice Accretion over 6 hours in inches

peak wind gust knots Peak Wind Gust in knots

peak wind direction degrees Peak Wind Gust Direction in degrees from north

The attributes from table 3.2 where selected with the help of a domain expert that narrowed
down the list of attributes to the fundamental ones for the task.

The available data on the website was extracted from METAR (Meteorological Aerodrome
Report) data, which is a format for reporting weather information. This format is compliant to
some rules that help understand and define boundaries for the data. The reporting standards for

the METAR format on the retrieved features are as follows:
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* The wind direction and wind speed values are calculated as means from the 10 minutes

immediately preceding the observation.

* Wind gust is registered if wind speed exceeds 10 knots and is registered as the maximum
wind speed for the 10-minute window. Peak gust and direction work analogously but for 24

hours.

* The visibility has a lower bound of 50, meaning 50 or fewer meters of visibility and an
upper bound of 10000, meaning visibility of 10 kilometres or more (noting this value is in

miles).

* The cloud levels correspond to the prominent layers of clouds being the level 1 the lowest
and level 3 the highest.

Cloud coverage is reported in oktas and estimates how many eighths of the sky are covered in
clouds. Intuitively, this unit ranges from 0 oktas (clear sky) through to 8 oktas (completely over-

cast). Complete coverage reporting abbreviations are in table 3.3.

Table 3.3: Cloud coverage reporting abbreviations.

abbreviation meaning

SKC No cloud/Sky clear
Nil Cloud detected - automated METAR station has not detected

NCD any cloud, either due to a lack of it, or due to an error in the sensors
CLR No clouds below 12,000 ft (3,700 m)
NSC No (nil) significant cloud - none below 5,000 ft (1,500 m)
FEW Few - 1-2 oktas
SCT Scattered - 3—4 oktas
BKN Broken - 5-7 oktas
OovC Overcast - 8 oktas, i.e., full cloud coverage
vV Clouds cannot be seen because of fog or heavy precipitation,
so vertical visibility is given instead
Web Scraper

The data was available in tabular format and accessible through query strings from the university’s
website [Uni]. The information was collected automatically using a web scraper. This web scraper
was developed in Python, making use of already existing packages, namely, urllib. This package
is a standard python library that provides several modules for working with Uniform Resource
Locator (URLs). Those modules define functions and classes which help in opening URLs and
enable easy extraction of content.

The task of retrieving weather data was performed twice for each observation in the flight data
— one time for the origin airport’s weather and another for the destination airport’s weather.

The website’s API (Application Programming Interface) minimum extraction size is a day’s

worth of observations which required trimming on the extracted data. The only weather records
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kept were the ones with the closest registered time to the respective threshold. For the origin
airport’s weather, the record kept was the one with the closest registered time to the off-block date
of the observation. For the destination airport’s weather, the record kept was the one with the
closest registered time to the on-block date of the observation.

The data was clean and tabular formatted from the source, so little to no parsing was required.
Both the origin and destination weather information retrieved for each observation of the flight
on-time performance dataset was concatenated with the respective record.

The number of attributes is now: 20 -> 52.

Optimisation and Parallel Programming

The process described in the previous section was computationally intensive and time-consuming.
Each iteration required two API calls and data processing. The download speed is also a huge
setback when making over 1 million calls.

Parallel programming was used to try to accelerate the task. In Python, parallel programming
is limited because of the existence of GIL. GIL or Python Global Interpreter Lock is a mutex
that allows only one thread to hold the control of the Python interpreter. Meaning, multithreading
was not an option and multi-processing was used instead (in a quad-core machine). The task was
divided in chunks of 5000 records that were individually executed, parsed and locally stored. After

the execution of every chunk, the stored files were concatenated.

3.3 Data Visualisation and Cleanup

Data visualisation gives insight about the data: discover patterns, spot anomalies or test assump-
tions. Ultimately, the purpose is to expose the underlying features of the data and acquire knowl-
edge to serve as a foundation for the modelling task.

Joining Exploratory Data Analysis (EDA) with data cleaning presents change iteratively and
can more closely represent the programmatic approach used.

In some instances where there are many data points to plot, a sample of September is used
because it has characteristics that represent the annual average behaviour of operations, as noted
in [dC13].

Table 3.4 shows the first step on data analysis with a per-attribute overview, that identifies
the name of the attributes, their type, example values, number of existing distinct values and the

missing ratio.
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Table 3.4: Overview of dataset features.

attribute name type example distinct nn.ssmg
ratio (%)
flight date datetime [[2018-08-04 00:00:00, ...]] 1826 0.00
flight number float [[1958.0, 202.0, 286.0, ...]] 2036 0.00
tail number string [[CSTNP, CSTOP, CSTOD, ...1] 196 0.00
aircraft type code string [[320, 332, 343, 319, ...]] 26 0.00
aircraft model string [[AIRBUS A320-211, ...]] 26 0.00
fleet string [[NB, WB, PGA, WI, nan]] 5 13.01
origin airport string [[LIS, EWR, LAD, OPO, ...]] 198 0.00
scheduled departure date  datetime [[2018-08-04 21:30:00, ...]] 313121 0.00
oft-block date datetime [[2018-08-04 22:40:00, ...]] 501350 0.00
take-off date datetime [[2018-08-04 22:55:00, ...]] 532187 0.19
destination airport string [[OPO, LIS, FAO, OUD, ...]] 199 0.00
landing date datetime [[2018-08-04 23:27:00, ...]] 529215 0.19
on-block date datetime [[2018-08-04 23:36:00, ...]] 516717 0.00
scheduled arrival date datetime [[2018-08-04 22:25:00, ...]] 313551 0.00
service type string [[J,C, PG, T,K,F ..]] 11 0.00
aircraft owner code string [[TP, 5K, NI, WI, YU, ...]] 31 0.00
registered delay date datetime [[2018-08-04 23:13:59, ...]] 357220 34.64
delay minutes float [[42.0,7.0, 11.0, nan, ...]] 497 34.64
delay code float [[16.0, 89.0, 19.0, ...]] 82 34.68
delay sub code string [[G, 0, A, nan, C, B, ...]] 20 34.68
ori. air temperature float [[34.0, nan, 21.0, ...]] 207 0.84
ori. wind direction float [[nan, 290.0, 220.0, ...]] 46 8.73
ori. wind speed float [[3.0, 8.0, 5.0, 6.0, ...]] 65 0.59
ori. visibility float [[6.21, 10.0,4.97, ...]] 87 0.25
ori. wind gust float [[nan, 23.0, 22.0, ...]] 56 96.26
ori. cloud coverage 1vll string [[M, SCT, FEW, BKN, ...]] 11 0.22
ori. cloud coverage 1vI2 string [[M, BKN, SCT, FEW, ...]] 7 0.22
ori. cloud coverage 1vI3 string [[M, BKN, SCT, OVC(, ...]] 8 0.22
ori. cloud height 1vl1 float [[nan, 5500.0, 1800.0, ...]] 126 35.94
ori. cloud height 1vI2 float [[nan, 2700.0, 8000.0, ...]] 140 72.46
ori. cloud height 1vI3 float [[nan, 10000.0, 3000.0, ...]] 128 93.93
ori. ice accretion 1h float [[nan]] 1 100.00
ori. ice accretion 3h float [[nan]] 1 100.00
ori. ice accretion 6h float [[nan]] 1 100.00

Continued on next page
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Table 3.4 — continued from previous page

attribute name type example distinct rm.ssmg
ratio (%)
ori. peak wind gust float [[nan, 31.0, 30.0, ...]] 15 99.98
ori. peak wind direction float [[nan, 230.0, 310.0, ...]] 22 99.98
dest. air temperature float [[21.0, 28.0, 31.0, ...]] 219 0.82
dest. wind direction float [[0.0, nan, 340.0, ...]] 45 8.72
dest. wind speed float [[0.0,1.0,9.0,5.0, ...1] 63 0.60
dest. visibility float [[6.21,4.97,3.11, ...]] 85 0.24
dest. wind gust float [[nan, 22.0, 18.0, ...]] 55 96.26
dest. cloud coverage 1vl1l string [[FEW, M, BKN, SCT, ...]] 11 0.22
dest. cloud coverage lvl2 string [[M, SCT, BKN, FEW, ...]] 7 0.22
dest. cloud coverage 1vl3 string [[M, SCT, BKN, OVC(C, ...]] 7 0.22
dest. cloud height lvll float [[4200.0, nan, 1600.0, ...]] 123 36.70
dest. cloud height 1vl2 float [[nan, 5000.0, 12000.0, ...]] 138 72.84
dest. cloud height 1vl3 float [[nan, 10000.0, 3500.0, ...1] 127 93.95
dest. ice accretion 1h float [[nan]] 1 100.00
dest. ice accretion 3h float [[nan]] 1 100.00
dest. ice accretion 6h float [[nan]] 1 100.00
dest. peak wind gust float [[nan, 29.0, 28.0, ...]] 16 99.98
dest. peak wind direction float [[nan, 270.0, 290.0, ...]] 32 99.98

At first glance, the table shows several attributes with very low filling factors.

3.3.1 Drop attributes without minimum filling factor

As a rule of thumb, when an attribute does not reach a filling factor of 30-40%, dropping it should

be considered. A missing factor threshold of 70% was settled, meaning attributes with less repre-

sentation than 30% were completely removed. This translated in dropping the ice accretions, peak

winds, wind gust and cloud heights levels 2 and 3.

The number of attributes is now: 52 -> 36.

3.3.2 Drop instances without delay

The prevalence of missing values in the delay code shows that the dataset contains information

about flights that met the schedule - observations with flights on schedule, not delayed. This can

be seen in the delay distribution in figure 3.2. For this problem, these are not significant and were

deleted.
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Figure 3.2: Distribution of delayed and not delayed flights in the dataset.

After deletion, the number of observations is now: 591152 ->386153.

3.3.3 Visualisation by location

Figure 3.3: Density of flights worldwide per airport. This map was built with data from Septem-
ber of 2017 (94 airports), making use of third-party libraries to extract coordinates from IATA
(International Air Transport Association) codes. The dimension of the circles plotted in the map
is proportional to the volume of departures and arrivals to the respective airport.

Predictably, since the data regards TAP’s activity, the data has a heavy load of flights leaving
or entering Lisbon and Porto airports (figure 3.3).

This number is inflated due to 7.5% of the observations being flights between Lisbon and
Porto, and 11.5% of all observations being Portuguese domestic flights (flights where departure
and arrival take place in the same country [to or from LIS - Lisbon, OPO - Porto, or FNC -
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Figure 3.4: Top 16 most frequent connections in percentage from total number of observations.

Madeira]). The majority of the international activity is made in European soil, namely flights be-
tween a Portuguese airport and Paris (ORY), London (LHR), Madrid (MAD), Barcelona (BCN),
or Rome (FCO). Together, these enumerated European connections factor for 21% of all observa-
tions.

In total, there are 188 different airports and 539 unique connections.

The influx of flights is roughly the same for arrivals and departures (figure 3.5) with almost

two-thirds of all observations being from or to the airport of Lisbon.

3.3.4 Visualisation by time

From the analysis of the temporal distribution of observations (figure 3.6) it can be seen that the
observations in this dataset go from 2013 to 2018, noting that the records from 2013 are only from
December’s activity and the records from 2018 are from January to November. The distribution
per month denotes a slight increase in flights on the holiday season. Unexpectedly, there is no

relevant difference between the airline’s activity on weekends compared to workdays.

3.3.5 Visualisation by aircraft

As seen in figure 3.7, there are four types of fleets in the dataset (WI, PGA, NB, WB). "WI" is
the IATA code for White Airways which mainly operates charter flights. These instances relate to
flights hired by TAP for occasional operations. "PGA" is the ICAO (International Civil Aviation
Organization) code for Portugdlia Airlines which is now branded as TAP. Hence, these observa-

tions are considered as TAP activity. Also, these airlines only operate with single-aisle aircraft
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Figure 3.5: Total number of observations of departures and arrivals for the 8 airports with the most

observations in the dataset.
SUN

Figure 3.6: Temporal distribution of observations. The first bar plot shows the distribution of
observations per year of departure. The second bar plot shows the distribution of observations
per month of departure. The third bar plot shows the distribution of observations per weekday of
departure.
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and, as such, should be considered as part of the TAP’s narrow-body fleet. This further contributes
to the substantial imbalance shown in figure 3.7.

Fleet adjustments The fleet feature has some missing values, as seen in table 3.4. Since the
fleet refers mainly to the aircraft’s fuselage size, this can be fixed with the help of a domain expert,
using the aircraft’s model as a reference.

There is also a strong relationship between the fleet type and the expected duration of the flight.
In aviation, short-haul flights go from 30 minutes to 3 hours, medium-haul flights go from 3 to 6

hours, and long-haul flights take longer than 6 hours. Almost all short and medium-haul flights are
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Figure 3.7: Percentage of observations for each fleet category.
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made with narrow-body aircraft while long-haul flights are made with wide-body aircraft (figure

3.8).
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Figure 3.8: Percentage of observations of short-haul, medium-haul and long-haul flights and the
predominant fleet category for each one.

The fleet imbalance of observation is further analysed through figure 3.9, showing that most
of the observations are made by two types of aircraft only.

Figure 3.10 displays the percentage of flights each unique aircraft made (unique tail number)
and the respective aircraft fuselage category. The wide-body aircraft with a higher number of
flights made is the 68th aircraft with most flights made.

This imbalance can lead the models to develop a bias towards the majority class (in this case,
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narrow-body flights) and acquire no predictive capabilities for the minority class (long-distance
flights). The latter having much larger absolute values in the target variables may as well drasti-

cally raise the overall error metrics.

3.3.6 Visualisation by delay

Figure 3.11 shows a reduction in delay at the last hours of the day but an increase in the average

delay minutes for the same period. This can be further explained in figure 3.12. For that same
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after-hour period there is a thinning in the number of flights. Consequently, the reduction in the

absolute value of delayed minutes per hour is due to the decrease in activity in those hours.

% of delayed minutes per hour Average minutes of delay per hour

7% 7% 14 14 35
6%

20 19

Figure 3.11: Correlation between the hour of the day and departure delay. The first pie chart
shows, for each hour, the percentage of delayed minutes from the total amount of minutes flown.
The second pie chart shows, for each hour, the absolute value of the average minutes of delay.

Also, there are several significant delays throughout one single day.

In aviation, an airline departure or arrival, which is considered to be on time has a departure or
arrival that occurs within 15 minutes of the scheduled time [WZHC19]. As can be seen in figure
3.12, the more prevalent delay times are within [30, 60] minutes, that is further supported by the
work in [AL15], which was developed for the air traffic in one of the most represented airports in
this dataset (i.e. OPO airport).

Delay codes from 81 to 84 regard restrictions on the management of air traffic flow, from 85 to
89 are airport and governmental authorities, and from 91 to 96 are reactionary. The most promi-
nent delays (from figure 3.13) are "restrictions at airport of departure" (89), "aircraft rotation, late
arrival of aircraft from another flight or previous sector” (93), "ATFM (Air Traffic Flow Manage-
ment) due to restriction at destination airport" (83), "ATFM due to ATC en-route demand" (81) and
"ATFM due to weather at destination" (84) [EUR17, EUR18]. Interesting to note a great number
of reactionary delay, especially in Madeira’s airport. Also, no considerable impact of weather on
Lisbon’s airport activities (important because of the huge representation of Lisbon’s airport in the
dataset).

The delay sub code represents a more detailed description of the originating problem. Despite
being represented the same way for different delay codes, delay sub codes do not have a standalone

representation and should always be preceded by a delay code.
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Figure 3.12: Correlation between scheduled and actual times for data from September of 2017.
The first plot shows the actual off-block times against the respective scheduled departures. The
second plot shows the actual on-block times against the respective scheduled arrivals (for the same
observations as the first plot).

Build new delay code Having no value on its own, it is wise to concatenate the delay sub codes
to the respective delay codes. This concatenation generates alphanumeric values with a leading
number (delay code) and a trailing character (delay sub code). After this process, the delay sub
codes were removed.

The number of attributes is now: 36 -> 35.

3.3.7 Drop badly formed instances

In the second plot of figure 3.12, an outlier is clearly showing. That outlier has null landing and
take-off values because it is a training flight instance. There are also instances of flights that were
cancelled prior to the aircraft taking off (e.g. due to bad weather) or had values that did not respect
the sequencing between the flight times (e.g. take-off date after on-block date) due to measurement
errors. There were 1277 instances with the same origin and destination airport and one instance
where the landing date was greater than the on-block date.

After deletion, the number of observations is now: 386153 ->384875.

32



Problem Description

2.0
origin_airport

us
OPO
ORY
BCN
FNC

15 LHR
MAD

1.0

proportion delayed flights

0.5

0.0

= m m — =
=] (=1 [-=] o [-=]

Figure 3.13: Proportion of observations of the seven most represented airports for the 5 most
represented delay codes.

3.3.8 Visualisation by weather

Weather data on origin and destination is quite similar, as the graphs can be seen to overlap in figure
3.14. The distribution of temperature does not show temperatures that could lead to severe ice
accumulation. There is a prevalence of winds coming from the northwest. Wind speed, visibility
and cloud height have outliers that may require removal.

According to weather data provider’s documentation [Uni], missing values on categorical data
take the return value "M’, also seen in figure 3.15, making levels 2 and 3 not reach the filling
threshold of 30% and should, therefore, be removed.

The number of attributes is now: 35 -> 31.

There does not seem to be any discernible pattern in the distribution of cloud height during a
whole month with an even scatter of points (figure 3.16). Most instances have cloud coverage of
"FEW". This behaviour can be assumed to extend throughout data since the dataset is filled with

activity in Lisbon’s airport and the plotted info is from the representative month.
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Figure 3.14: Value distribution of numerical weather features. The forth histogram regard visibility
but has a single huge outlier which makes the plot indiscernible.
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Figure 3.15: Percentage of observations for each cloud coverage label and level. The first bar plot
using data from the origin airport, and the second bar plot using data from the destination airport.
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Figure 3.16: Cloud height and density at Lisbon’s airport in September of 2017.
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Chapter 4

Feature Engineering

Feature engineering consists in using domain knowledge, feature extraction and visualisation tech-
niques to enhance data in order to make complex structures in data more perceivable by learning
algorithms. This section describes the application of these procedures to the dataset used in this

work.

4.1 Data Enhancement

Enhancing features can make the information more easily modelled and avoid overfitting models.

4.1.1 Outlier Removal

Figure 3.14, that presents the value distribution of numerical weather features, shows big distribu-
tion tails which means the existence of extreme deviations (or outliers). Because these observa-
tions deviate markedly from the distribution, it is safe to assume these are erroneous and should
be deleted.

* origin wind speed has a maximum value of 721 and 142 values greater than 30 for a mean
value of 8.11.

* destination wind speed has a maximum value of 409 and 131 values greater than 30 for a

mean value of 8.06.

* origin cloud height has a maximum value of 41700 and 411 values greater than 10000 for a

mean value of 2128.33. Also, 722 observations with clouds at O feet.

* destination cloud height has a maximum value of 30000 and 492 values greater than 10000
for a mean value of 2192.18. Also, 530 observations with clouds at O feet.
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* destination visibility has a maximum value of 11190.9 and 1 value greater than 100 for
a mean value of 6.02. Also, three observations with visibility 0 and mismatching cloud

density.

The outlier thresholds, or the values that distinguish whether an observation is an outlier or not,
were set by visual reference through plot analysis.
After deletion, the number of observations is now: 384875 ->382444.

4.1.2 Wind Direction Binning

Wind direction is measured in degrees and, as such, it should be assumed that it is a continuous
variable, but the distribution makes it seem discrete. Binning may throw away unwanted gran-
ularity and makes it more interpretable. Thus, the variable was discretised up to a secondary
intercardinal direction. Meaning, it now has 16 unique labels - the cardinal, the intercardinal and

the secondary intercardinal directions.

4.2 Create new features

Data features directly influence predictive performance and achieving results. Unlike deep learn-
ing architectures, most machine learning algorithms are heavily dependent on the quality of those
features. The goal is to create features that describe the complex structures in data and make

patterns more visible to the learning algorithms.

4.2.1 Target creation

The data does not contain the target attributes, although they can be inferred using the current in-

formation from the flight time decomposition 3.1. The target attributes were calculated as follows:

* air time = landing date - take-off date
* taxi out = take-off date - off-block date
* taxi in = on-block date - landing date

* actual block time = on-block date - off-block date

The number of attributes is now: 31 -> 35.

4.2.2 Create scheduled block time

The scheduled block time is the total amount of time the airline was expecting the flight to take.
This variable is more verbose than the decomposition of scheduled departure and arrival dates. The
targets will probably have a high correlation with this variable since they increase and decrease in
a similar proportion. The value is computed as the difference between the scheduled arrival and
departure dates.

The number of attributes is now: 35 -> 36.
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4.2.3 Create night departure attribute

As seen in figure 3.11, the flights behave differently in the after-hours period. Through plot analy-
sis, this interval was approximated to the interval between 21 and 3 o’clock. It might be interesting
to compile a boolean value that distinguishes high from the low activity period. This variable takes
the truth value of the condition where the scheduled departure date is within the interval from 21
to 3 inclusive.

The number of attributes is now: 36 -> 37.

4.2.4 Create scheduled rotation time

Scheduled rotation time is the elapsed time between scheduled departure date and previous leg/flight
scheduled arrival date. It may be able to map the time needed for maintenance, cargo loading,
refuelling, boarding, and any other ground action.

In some scenarios, these features could be calculated using on-block time, but this would set
strict constraints on the developed model’s usage. The prediction may be made within 24 hours
but having scheduled rotation time data computed with on-block time instead of scheduled arrival
date would imply that the aircraft subject to evaluation could not be airborne. Meaning, even if a
reactionary delay were detected a few legs prior, the on-block time from the previous leg would

not be known until that flight had been concluded.

The number of attributes is now: 37 -> 38.

4.2.5 Create previous delay code

While the delay code is not known until the flight arrives, the delay of the previous leg may be
a good predictor of the following one. In reactionary delays, the same delay code is propagated
forward several legs which might even create a high correlation between delay code and previous
delay code.

The assessment of the previous flight is made grouping observations by fail number and sorting
them chronologically (using scheduled departure date).

With the creation of previous delay code and removal of delay code, the number of attributes

remains the same: 38 -> 38.

4.2.6 Date unfolding

Dates are not a suitable format for most modelling algorithms. So, the scheduled departure date
and scheduled arrival date were split into five new features each - year, month, day, hour, and
minute. It would be possible to have a sixth, weekdays, but seems unnecessary since data analysis
did not capture any trend based on the weekdays.

The number of attributes is now: 38 -> 46.
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Figure 4.1: Service type and aircraft owner distributions.

4.3 Drop unnecessary features

Finding and removing redundant attributes can significantly minimise the training time and con-
tribute to avoiding the curse of dimensionality. Fewer attributes are generally better, as long as
those few attributes contain relevant information for the model do properly generalise the data and
not underfit. However, knowing if the data collected is necessary for the task at hand is an intrinsic
uncertainty of every data mining problem. Whether it is because of lack of representation for the
minority classes or because it does not conform the scope of the project, yet more attributes and
observations were selected for removal.

Figure 4.1a shows that service type has a minimal representation of all classes but one, so only
flights that are of type "J" (Scheduled Passenger Service) should be considered. 4.1b represents a
feature that brings no value to the predictive task. In this case, all instances from this dataset are
from TAP’s activity, so whether or not TAP owns the aircraft, these are scheduled as others are.

After deleting the "non-J" records, the number of observations is now: 382444 ->379599.

The dropped attributes were:

¢ redundant features:

— flight date - contains a subset of the information provided by scheduled departure date

— aircraft type code - is a coded version of the aircraft model
* do not bring useful information:

— aircraft owner - as seen in figure 4.1b, aircraft ownership would bias the information

— service type - only one unique value now
* unfit for project

— registered delay date
— delay minutes

— off-block date
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— take-off date
— landing date

— on-block date

After feature dropping, the number of attributes is now: 46 -> 36.

4.4 Feature Selection

Often, real-world data is noisy and may contain features that do not promote an increase in the
model’s performance. The idea behind feature selection is to study this relation and select only the
variables that show a strong correlation. Doing so may have several benefits such as faster training

time, decrease in complexity, improved performance or reduction of over-fit.

4.4.1 Correlation Matrix

Correlation matrices are especially useful to assess the correlation between numerical variables.

The rank correlation measure used is Spearman’s rank correlation coefficient because it as-
sesses monotonic relationships which can express non-linear relationships. Also, as previously
seen by analysing the distributions of the numerical variables, they are neither homoscedastic nor
normally distributed, which would otherwise be assumed by Pearson’s correlation. Correlation
heatmaps are useful to assess multicollinearity which is an issue that might make difficult for the
learning algorithms to estimate the relationships between predictors and target. If multiple pre-
dictors change in unison (multicollinearity), estimated coefficients become very sensible to small
changes. This behaviour is particularly prominent in linear models.

Figure 4.2a shows that the year, month, and day of departure are often the same as those of
arrival. From figure 4.2b, it can be perceived that that tail number and aircraft model are highly
correlated. Analysing figure 4.2c, flight number is highly correlated with scheduled block time.

All these relationships express multicollinearity and may lead to modelling issues.

4.4.2 Data Compression

Data compression may be useful to lower data dimensionality and avoid multicollinearity. One of
the most used tools for this purpose in machine learning is Principal Components Analysis (PCA).
PCA is a statistical procedure that converts a set of observations of possibly correlated variables
into a set of values of linearly uncorrelated variables, called principal components. Each of these
components explains part of the data’s variance.

PCA is a lossy compression algorithm, so compressed data will not be the same as the original
data. Nevertheless, principal components can help models reach similar results quicker than using

the original data.
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(a) Spearman’s correlation between numerical features.
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(b) Spearman’s correlation between categorical features (LeaveOneOut en-
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Figure 4.2: Heatmaps of spearman’s correlation between features.
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PCA is sensitive to the relative scaling of the original variables and works only for numerical
variables. Meaning, it requires categorical encoding and feature scaling (standardisation because

it assumes zero-centric data).
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Figure 4.3: Plot of the cumulative summation of the explained variance.

Figure 4.3 shows that 27 principal components explain almost 100% of the data.

4.5 Imputation

Missing values are common in any machine learning task. Several reasons may lead to missing
values, and these affect the performance of learning algorithms. Most ML algorithms do not accept

datasets with missing values. So the dilemma is whether to impute or remove the data.

4.5.1 Types of Missing Data

There are different types of missing data, depending on why it went missing. Each type has

different constraints on how it should be handled.

* Missing Completely at Random (MCAR): There is no relationship between the missing-
ness of the data and any values, observed or missing. When data is missing completely at
random, it means that the records with missing data can be safely removed and undertake

the analyses using only observations that have complete data.

* Missing at Random (MAR): The propensity for a data point to be missing is not related to
the missing data, but it is related to some of the observed data. It is assumed a probabilistic
relationship between the missing data and observed data, which means other features can
predict data MAR in the dataset.

* Missing not at Random (MNAR): There is a relationship between the propensity of a
value to be missing and its hypothetical value. The missingness is related to factors that
were not accounted for (e.g. people with high salaries generally do not reveal their incomes
in surveys). MNAR is called "non-ignorable" because the missing data mechanism itself
has to be modelled.
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In the first case, it is safe to remove the data with missing values. In the second case, it can
be removed or imputed (imputation does not necessarily give better results). In the third case,

removing observations with missing values can produce a bias in the model, so it is unadvised.

4.5.2 Dataset Missing Data

Currently, the distribution of missing values stands as illustrated in figure 4.4. Previously, the
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Figure 4.4: Percentage of missing data by missing feature.

most prominent missing attributes were deleted, but some variables still have substantial missing
values. Since these remaining variables do not go over 40% missing values, it seems feasible to
use imputation. The missing data is primarily found in the weather data. There is no apparent
reason for this, so the data is regarded as MAR.

4.5.3 Dataset features

As seen in figure 4.4, the features with missing data are weather features, so it seems appropriate
to drop aircraft and flight specific features since there is intuitively no correlation between these
values and meteorological behaviour. Meaning, the following features were dropped for the impu-
tation task: flight number, tail number, aircraft model, fleet, taxi out, air time, taxi in, actual block
time, scheduled block time, scheduled rotation time, previous delay code. The remaining data is

composed of weather data and location-based attributes.

The number of attributes for imputation is now: 36 -> 25.
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4.5.4 Input-output creation

To train a predictive model to generalise for unobserved data its required a testing environment
capable of mimicking the real conditions. In this scenario, it is required an input set with missing
values and its counterpart with the actual values.

To build to input data, firstly, only observations with no missing values are kept. Then, a
fraction of the data (50% [arbitrarily set]) is subject to missing value imputation (just weather
features). This imputation is done for a ratio of 40% of missing values (matching the highest
missing factor in 4.4). This process creates an input set with missing values (roughly 40% in the
weather features), similar to the actual ratio of missing values. The complementary output set is

that same fraction of the data without the missing value imputation.

4.5.5 Imputation data preprocessing

The use of predictive models generally requires data preprocessing, such as categorical encoding,

train-test split and feature scaling.

Categorical encoding

For the imputation problem, the encoding needs to be reversible to assess the performance of the
models and use the newly imputed data. Both label and one-hot encoders have trivial decoding but,
through testing, one-hot encoding achieves better performance than label encoding. The drawback
of one-hot is a drastic increase in the dataset’s dimensionality.

After encoding, the number of attributes is now: 25 -> 294.

One-hot encoding this data required extra work to suit the problem. The imputed missing
values need to be propagated to every other subcolumn of the particular feature in an observation.
Also, the existence of missing values in the training data results in less unique labels and, conse-
quently, will generate fewer subcolumns than on the test data. Train and test sets need to have the

same shape, so the missing subcolumns should be added as well (zero-filled).

Feature scaling

Bringing values to the same magnitude is important to avoid features with greater absolute values
having more significance than features with lower absolute values.

The scaling technique used was min-max normalisation, which consists of rescaling the range
of features to be within the range of [0, 1]. Scaling is required because models cannot interpret
missing values, so these have to be encoded in some way. In this case, as -1. Because air temper-
ature reaches negative values, rescaling data between 0 and 1 emphasises the missing values and
makes the model converge faster.

The scaler is fit in the observations without missing values from the training set, and all train-

ing, validation and test inputs and outputs are normalised with that scaler.
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4.5.6 Autoencoder solution

Autoencoders may be able to handle the missing value problem. The following approach was
motivated by the implementations of autoencoders for image denoising, as in [VLBMO08], where

the input contains noise (in this case, missing values), and the output does not.

Brief introduction

Autoencoders are a specific type of feedforward neural networks where the input is the same as
the output. They are comprised of two networks: an encoder and a decoder. They compress the
input into a lower-dimensional representation (encoding) and then reconstruct the output from this

representation (figure 4.5).
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Figure 4.5: High level illustration of a regular autoencoder.

Both the encoder and decoder are fully-connected feedforward neural networks. Typically, the
entire network is trained as a whole, optimised via back-propagation.

The loss function, known in this context as the reconstruction loss, penalises the network for
creating outputs different from the respective inputs.

As the latent vector (the output of the hidden layer in the middle, the bottleneck of the net-
work or latent space) has far fewer units than the input, the encoder must choose to discard some
information. The encoder learns to preserve as much of the relevant information as possible in
its output, discarding unnecessary parts. The decoder learns to take the encoding and accurately

reconstruct it into a full input-like sample. Together, they form an autoencoder.

Setup

The used architecture has three hidden layers. The outer ones with size 250 and the inner one with
size 100. Every hidden layer has a dropout regularisation (avoid over-fitting) [SHK " 14] of 0.2 and
is initialised with Xavier initialisation (more robust to exploding gradients) [GB10]. Every layer
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is activated with a ReLu function besides the output one, activated with the sigmoid function. The
loss function used was MSE, and the optimiser was Adam.

This setup is the best from a few experiments.

In training, early stopping was used with patience of 5 and min delta of 5e4, meaning, it
imposes a stopping rule were the error must be lower in a given iteration than its five previous

ones, for a difference of at least 5e4.

Masked Autoencoder

After testing the standard autoencoder, a slight improvement was tested using a mask alongside
the input data to address only the missing cells when computing the loss function. This network’s
input is the concatenation of a mini-batch matrix from the dataset with missing data (X) and
the corresponding missing value boolean mask (M = {(i, ) | zi,j # @}). This is given by the
augmented matrix [X(iX HMix j)] where i is the batch size and j the number of attributes. This
approach is made for the mask to be accessible, at run-time, to the custom loss function. The loss
function computes the MSE just for the fields with empty values.

Figure 4.6 illustrates the employed architecture. The best network setup was achieved five
hidden layers, the outer ones with four times the input shape, the inner ones with two times the
input shape, and the centre one (the latent space) with input shape. All layers have ReLU as their
activation function besides the output one that uses sigmoid. Also, all layers have their weights

initialised with Xavier distribution and have a dropout of 20%.
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Figure 4.6: Illustration of the masked Autoencoder architecture

4.5.7 Variational Autoencoder

Another approach that could address the problem would be to generate synthetic values from a
generative model, namely, a Variational Autoencoder (VAE) [KW19]. If a good reconstruction

error is achieved, the missing values can be sampled from the autoencoder.
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Brief introduction to VAE

The fundamental problem with autoencoders, for generation, is that the latent space they convert
their inputs to and where their encoded vectors lie, may not be continuous, or allow easy interpola-
tion. If the latent space has discontinuities, the decoder will not be able to properly reconstruct data

because, during training, it never saw encoded vectors coming from that region of latent space.

Variational Autoencoders, on the other hand, have a unique property that their latent spaces
are, by design, continuous, allowing easy random sampling and interpolation. It achieves this
by making its encoder output two vectors: a vector of means, 1, and another vector of standard

deviations, 6. These vectors are then used to sample from a Gaussian distribution and pass the
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Figure 4.7: Illustration of a Variational Autoencoder architecture.

sampled output onwards to the decoder.

This stochastic generation means, that even for the same input, while the mean and standard

deviations remain the same, the actual encoding will somewhat vary on every single pass.

The decoder learns to match, not only a single point in latent space but all nearby points (region
centred at the mean with the radius as standard deviation) to a point in the output. This property
allows the decoder not just to decode single, specific encodings in the latent space (leaving the
decodable latent space discontinuous), but ones that slightly vary too, as the decoder is exposed to

arange of variations of the encoding of the same input during training.
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To force encodings to be as close as possible to each other while still being distinct, allow-
ing smooth interpolation, and enabling the construction of new samples, VAEs use the Kull-
back-Leibler divergence (KL divergence) into the loss function. The KL divergence measures
how much two probability distributions differ from each other. Minimising the KL divergence
means optimising the probability distribution parameters (1 and o) to resemble that of the target

distribution.

Setup

The approach used was the same as in [MKA18]. The results in tables 4.3, 4.1 and 4.2 were
achieved with a 5 hidden layer architecture. The outer layers with size 64, the inner layers with
size 32 and the "code" with size 16. The weights were initialised with Xavier initialisation and
gradient clipping used to address an exploding gradient problem in training. Also, early-stop was

used to avoid overfitting.

4.5.8 Result Comparison

A baseline model was created to assess the viability of applying the resulting outputs. The base-
line’s results were computed using the mean values for each numerical feature and the most com-
mon values for each categorical feature.

The results are assessed by computing the residuals between the predicted and actual values

just for the missing valued cells.

Table 4.1: Comparison of imputation performance for each numerical feature using different au-
toencoders.

. Autoencoder Variational Autoencoder Baseline
Attributes
MAE MSE MAPE* MAE MSE MAPE MAE MSE MAPE
origin air temperature 3.878  26.158 - 6.511  69.089 - 4.819 37.979 -
origin wind speed 3396 18.196 - 4.685 36.362 - 3.591  20.835 -
origin visibility 0.641 1.274 49.531 0.727 2452 53340 0.671 1360 45.840
origin cloud height 9.17e2  1.40e6 1.07¢2 1.31e3 2.94e6 1.42e2 9.93e2 1.68e6 1.18e2
destination air temperature 5.335  43.733 - 6.707 72.822 - 4978 40.068 -
destination wind speed ~ 3.415  18.492 - 4717 36.386 - 3.597  20.989 -
destination visibility 0.592 1.170 32.659 0.635 2.109 31976 0.589 1.204  35.099

destination cloud height 9.15¢2 1.45¢6 90.331 1.33e3 3.08¢6 1.26e2 1.01e3 1.74e6 1.03e2

* MAPE does not work for attributes with observed values of zero

Analysing table 4.1 it can be seen that the autoencoder have particular trouble predicting cloud
heights. With an error of almost double the actual value (MAPE of 100%). Also, these are the fea-
tures with the highest absolute value that consequently massively inflate the overall performance
of the models.

The superior predictive capacity of the model to accurately assess cloud coverage values when
compared to wind direction values is probably due to the lower number of distinct labels of the

former when compared to the latter.
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Table 4.2: Comparison of imputation performance for each categorical feature using different
autoencoders.

Variational

Autoencoder Baseline
Autoencoder
origin wind direction 0.124 0.083 0.122
origin cloud coverage 0.670 0.532 0.666
destination wind direction 0.149 0.081 0.116
destination cloud coverage 0.662 0.526 0.659

Table 4.3: Overall performance of the different autoencoders on the imputation task.

Aut d Masked Variational Basel;
utoencodet Autoencoder Autoencoder aseline
MAE 2.35¢e2 2.31e2 3.32¢e2 2.51e2
MSE 3.54e5 3.46e5 7.50e5 4.14e5
Accuracy 0.402 0.356 0.304 0.384

MAE and MSE were computed for the numerical attributes and accuracy for the
categorical attributes

There is no significant difference of single feature predictive capabilities between models, with
the overall error proportion being the same throughout the features (tables 4.1 and 4.2).

Lastly, analysing the overall performance of the autoencoders (table 4.3), it can be concluded
that the imputed values are hardly any better than the simple baseline solution. Meaning, the
autoencoders did not achieve enough reconstruction capacity and, therefore, the observations with
missing values should be addressed by removal.

After deletion, the number of observations is now: 379587 ->138794.
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Chapter 5

Modelling

This chapter revolves around the experimental stage: the testing and building of predictive models
with the most fitting parameters, the assessment of performance on unseen data and the finishing

results of the experiments.

5.1 Data Preprocessing

Each predictive task has its own set of predictors. For every target, the remaining targets are
dropped (e.g. for target air time - taxi in, taxi out and actual block time are removed). For taxi out,
the destination weather data is also dropped while for taxi in the origin weather data is dropped.

Finally, the number of predictors for each predictive task are as follows:
* air time: 36 -> 32
* taxi out: 36 -> 26
* taxiin: 36 -> 26
* actual block time: 36 -> 32
The data was split into a 80-20 train-test set for roughly 100000 instances to train with and 20000
observations of unseen data.
5.1.1 Training pipeline

The training pipeline was comprised of:

* a categorical encoder, namely, Leave-One-Out because it does not bring ordinal-based
derived correlation between features (such as Label encoding) and does not increase the

dimensionality of the training set.
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* an algorithm for dimensionality reduction: PCA for data compression while keeping a
fairly accurate representation of the original data; ¥ (chi-squared) for feature selection to

remove features independent of the target.

* a scaler, dependant on the feature selection algorithm. For PCA using standard or robust

scaling, for 2 using normalisation - requires non-negative features.

* a predictive algorithm to test.

5.2 Hyperparameter tuning

Hyperparameters are model parameters whose values are set before the learning process begins.
They cannot be implicitly learnt by the machine learning algorithms and are used to control and
tweak the learning process.

For this task, a grid search algorithm was used. This technique consists of an exhaustive search
through a manually specified subset of hyperparameters for a learning algorithm. The grid search
algorithm assesses the performance of each fit of the selected algorithm using MSE, measured

using a 5-fold CV on the training set.

5.2.1 Hyperparameter space

For prediction purposes, linear models can sometimes outperform more complex models, espe-
cially in situations with small numbers of training cases. Also, these algorithms can be useful to
the ensemble of strong predictors. The tuning of Ridge, Lasso and Elastic Net is mainly done

tweaking the penalty values. The following sets were tested inside the grid search algorithm:

 For Ridge regression, the L2 regularisation value was chosen from the set [0.01, 0.05, 0.1,
0.2,0.5,1, 2].

* For Lasso, the L1 regularisation value was chosen from the set [le—6, 5Se—6, le—5, Se—35,
le—4, 5e—4].

* For Elastic Net, the alpha (constant that multiplies the penalty values) was chosen from
[le—6, 1e—5, le—4] and the L1 ratio (mixing parameter, L1 ratio = 0 is an L2 penalty, and
L1 ratio = 1 is an L1 penalty) was chosen from the set [0.7, 0.8, 0.9, 0.99].

Gradient Boosting, XGBoost and Random Forest are the most popular ensemble algorithms
for regression problems, and the most effective at it, as well. Their performance is substantially

based on the number of estimators and learning rate.

* For XGBoost, the L2 regularisation value chosen from the set [Se—1, le—4, le—3, le—2,
0.1], the L1 regularisation value was chosen from the set [1e—3, 1e—2, 0.1, 1] and the

learning rate value was chosen from the set [0.01, 0.05, 0.1, 0.3].
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e For Gradient Boosting, the learning rate was chosen from the set [le—2, 5e—2, le—2,
0.1].

With the increasingly more powerful machines and data availability, neural networks are also
very popular now. For the Feed-Forward Neural Network, the tested hyperparameters were: the
depth of the network, from 1 to 3 hidden layers with multiple layer dimensions; dropout from
the set [0, 0.2, 0.5]; batch size from the set [128, 256, 512].

The dimensionality reduction techniques require a predefined number of features to use. This
number is also tested inside the grid search algorithm, ranging from 27 (previously explored best
number of principal components (figure 4.3)) to 32 (total number of features), for air time. This

testing proportion is maintained for the other targets’ sets of features.

5.3 Results

5.3.1 Best hyperparameters

The following were retrieved from grid search testing with cross-validation on the air time feature
set and were the hyperparameters that led to better performance. The testing sets were chosen

from experience or existing good performing setups from the machine learning community:
* Ridge: L2 -0.5
* Lasso: L1 - 1e—6
* Elastic Net: alpha - le—4; 11 ratio - 0.9
* XGBoost: L2 - 0.1, L1 - 1e—3; learning rate - 0.1
* Gradient Boosting: learning rate - 0.05
* Neural Network: 64 — 128 — 256 — 128 — 64, dropout - 0.2; batch size - 256

Ridge performed better with the whole set of features while the other models improved with
the use of PCA, the best solutions ranging from 27 to 31 principal components. All the estimators
got better performance with robust scaling rather than standard scaling.

The tree-based algorithms were trained with 500 estimators.

5.3.2 Training results for best parameters

A naive baseline model using the mean air time value results in an MAE of 85, which is far exceed
by the evaluations obtained in table 5.1.

The best performer was a stacking of the linear regressors tested, achieving a slightly better
result than the models on their own. Unexpectedly, more sophisticated algorithms as the ensemble
ones or NN performed significantly worse than the linear models. Worth noting that the best L1
ratio for Elastic Net was of 0.9, converging for a similar algorithm to Lasso, which explains their

similar evaluation.
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Table 5.1: Comparison of cross-validated performances per algorithm using best performing hy-
perparameters (using the air time target).

i MAE R? RMSE

algorithms

mean std mean std mean std
Ridge 7795  0.043 99267 0028 11.010 5283
Lasso 7791 0.043 99267 0.029 11011 5327
Elastic Net 7791 0.043 99267 0029 11.011 5.326
XGBoost 41676 1461 81713 1.797 55.010 17.549
Gradient 24445 1.154 94299 0517 30708 9317
Boosting
Random 48741 0.124 72558 0510 67350 76.357
Forest
Model Stacking® 7.610  0.0352 99.293 0.031 10.817 2.368
Feed-Forward o) )1 564 50088 9.628 89.174 10.197

Neural Network

* first level built from Ridge, Lasso and Elastic Net and meta-estimator as a Gradient
Boosting (using best tuned parameters)

5.3.3 Predictions on unobserved data

The assessment of algorithm performance above was done using air time as the target, and the
best setup served as the basis for the remaining target predictions. The dimensionality reduction
was tuned individually for each target. As seen in table 5.2, the tuned setup predicts block time
as well as air time while not so well for the raxis. After this assessment, some tuning was done
(not so thorough as for air time) and yet stacking was still the best performer among the various

algorithms tested.

Table 5.2: Performance of model stacking in test set for every predictive task. Added row with
mean values per target for metric scale comparison.

air time taxi-in taxi-out block time
mean 162.88 5.59 12.95 181.42
MAE 7.657 1.467 3.002 8.349
RMSE 10.758 2.290 4.100 11.481
MAPE 5996 29.090 25.272 5.665
R? 99.309 35.816 25.797 99.232

Through the analysis of figure 5.1, for the air time, roughly 25% of prediction can be expected
to have a relative error of about 2%, which accounts for an MAE of 2.6 minutes. Further, about
73.% of predictions are expected to have an MAE of under 10 minutes. Roughly the same applies
to the block time prediction.

For the faxi times, while low MAE and RMSE may suggest good performance, the metrics

of relative error suggest otherwise. For a mean values of 5.59 for faxi-in and of 12.95 for taxi-
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Figure 5.1: MAPE discretisation for each predictive task on stacking’s prediction of test set.

out, the MAE and RMSE are actually high. Furthermore, in figure 5.1, the errors are almost all
within the [20-50] bin. This problem should be addressed with further testing of algorithms and
hyperparameter tuning.

From the analysis of figure 5.2, some significant outliers can be seen. These instances are
generally coming from long-haul flights (e.g. the two most significant residuals from plot 5.2a
are from WB instances), which are a minority class in this dataset and significantly skew the error
and target distribution. This issue can be addressed by developing different models for wide and

narrow-body flights.

Fleet split results

Splitting the dataset into NB and WB subsets results in shapes of 99089 and 11520 respectively.
This approach was made just for air time and block time predictions since it does not make much
sense for the size class of an aircraft to affect its taxi times.

As seen in table 5.3, there is a substantial improvement in modelling the WB instances alone.
For WB instances, that have a mean value of 500 minutes of travel, there is an MAE of around
13 that results in a MAPE of 2.7% when compared to a MAPE of 6% for the whole dataset.
The modelling of NB alone did not bring significant improvement, mainly because this subset

comprises almost 90% of the whole dataset (as seen in figure 3.7). These NB results emphasise
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Figure 5.2: Residuals plot for stacking’s prediction on unseen data.

Table 5.3: Comparison of performance dependent on dataset. Added row with mean values per
dataset for metric scale comparison.

air time block time
whole NB WB whole NB WB
mean 162.89 12299 499.64 181.42 141.07 522.11

MAE 7.657 6953 13214 8349 7.694 13.983
RMSE 10.758 9.442 17.027 11.481 10.347 18.062
MAPE 5996 6.397 2.695 5.665 6.012 2717
R? 99.309 97.106 94.708 99.232 96.629 94.149

metrics

the hypothesis of the WB instances being misclassified when joint with NB instances since the
predictive scores on the whole dataset are the same as just on the NB instances.

The following conclusion can be made from the analysis of figure 5.3:

* For the assessment of the air time in a WB flight, it is expected for 64.9% of predictions
to be under 15 minutes of deviation of the actual air time (threshold for flight delay), and
92.8% to be under 30 minutes of deviation. For the assessment of the block time in a WB
flight, it is expected for 62.5% of predictions to be under 15 minutes of deviation of the

actual block time, and 90.9% to be under 30 minutes of deviation.

* For the assessment of the air time in a NB flight, it is expected for 90.1% of predictions

to be under 15 minutes of deviation of the actual air time, and 99.3% to be under 30
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Figure 5.3: MAPE discretisation for stacking’s prediction of test set with dataset’s fleet subsets.

minutes of deviation. For the assessment of the block time in a NB flight, it is expected
for 87.7% of predictions to be under 15 minutes of deviation of the actual block time,
and 98.9% to be under 30 minutes of deviation.

* For the assessment of the taxi in in a flight, it is expected for 77.8% of predictions to be
under 2 minutes of deviation of the actual taxi-in, and 96.9% to be under 5 minutes of

deviation.

* For the assessment of the taxi out in a flight, it is expected for 43% of predictions to be
under 2 minutes of deviation of the actual taxi-out, and 83.7% to be under 5 minutes of
deviation. In this work, the taxi out prediction did not reach the benchmark set in the work
of Balakrishna et al. of 81% of predictions being within 2 minutes of deviation [BGS10].

Feature importance

The following feature importance was computed using Permutation Importance. This algorithm
allows the measurement of feature importance after model fitting by looking at the changes in
evaluation metrics when a feature is not available. The feature importance is computed as the
difference between the firstly fitted model and the performance on the permuted test set (test set

without a previously selected feature).
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The most important features for each predictive task were the following (coefficients expressed

in percentage and values under 1% were dismissed.):
* air time:

— whole/NB: scheduled block time: 0.992
— WB: destination airport: 0.509; origin airport: 0.398; scheduled block time: 0.076

* taxiin: destination airport: 0.879; tail number: 0.046; aircraft model: 0.027

* taxi out: origin airport: 0.61; scheduled departure date month: 0.064; origin visibility:
0.046; scheduled arrival date month: 0.045; tail number: 0.03; fleet: 0.028; origin air
temperature: 0.023; scheduled departure date hour: 0.02; aircraft model: 0.019; prev delay
code: 0.018; destination airport: 0.016; origin cloud coverage: 0.016; is night: 0.012;
scheduled departure date minute: 0.011; scheduled block time: 0.01

e block time:

— whole/NB: scheduled block time: 0.993
— WB: destination airport: 0.501; origin airport: 0.399; scheduled block time: 0.076

5.3.4 Result assessment

Contrarily to remarks made in Coy’s work [Coy06], for this work, weather features were not sig-
nificant predictors. Also noted on the same work, icing accretion significantly impacts predictions
and intuitively other forms of severe weather conditions like strong winds or high precipitation
as well. These conditions were absent, which may be the intuition for the low impact of weather
features in the predictions.

Without en-route weather information, weather data does not retain information from anything
but from take-off and landing. Furthermore, the taxis are times from operations on an airport,
which makes their prediction even more dependent on the weather state of that airport. With-
out instances with extreme weather conditions (which lack in the dataset due to missing-value
trimming and primary instance representation being from domestic operations), the weather data
becomes irrelevant for the predictive tasks. This idea may be the intuition behind the poor fit on
taxis predictions.

Through analysis of the feature importance, it is noticeable that the faxis predictions are very
correlated with the airport in question. This relationship is due to the model’s mapping of the
implicit structures that the airport feature translates (like, airports crowdedness or capacity). The
presence of these features would positively impact the reliability of the predictions.

The lack of data in the original dataset and consequently severe trim in its size due to missing
weather data might have led to the lack of enough data for those more sophisticated algorithms to
perform well, such as the ensemble algorithms or neural networks. Neither was Random Forest

nor Gradient Boosting techniques [RB14] the best estimators for this dataset.
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The prediction of air time and taxi-in seems to be new work on the literature. The prediction
of block time seems to have exceeded the other literature work addressing the same issue [Coy06].

The prediction of faxi-out was not better than work already developed, namely [BGS10].
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Chapter 6

Conclusions and Future Work

This final chapter presents a brief overview of all the developed work, what was achieved, and

points out possible directions for future work.

6.1 Conclusions

With the volume of air transport demand increasing more and more, there is also growth in aviation
traffic and overcrowded airports. More investment is required in management in the aviation
industry, namely in delay assessment. Accurate movement predictions can indirectly contribute
to a better disruption recovery process and overall airline management. In turn, reduce the costs
significantly in flight delays which may also cover other operational areas, like reducing airport
congestion and improving customer satisfaction.

In this work, the flight movement is predicted using flight on-time performance and weather
data. Several missing values were present in the dataset, and an attempt on imputation using
autoencoders was developed, but unsuccessfully. The final dataset shape was of roughly 200
thousand records.

The built models for the flight time and block time achieved high performance. The taxi-out
and taxi-in models need improvement but still achieved satisfactory results. When embedded in
a decision support system (namely MASDIMA), should end up contributing for an overall better

assessment of disruption impact and inherent mitigation of delay propagation.

6.2 Future Work

This work focuses on predictions made up to 24 hours in advance and never after the scheduled
departure, which could be expanded to accommodate use-cases where the aircraft is already air-

borne.
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A cost-sensitive approach would also be interesting to test, since, in these kinds of problem:s,
under-predicting can lead to significant disruptions while over-predicting buffers the flight on-time
performance.

A more thorough analysis of the faxis prediction would also be useful.
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