
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Customized Hardware for Long-Short
Term Memory Networks in Embedded

Systems

Pedro Manuel Afonso Costa

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: João Canas Ferreira

February 20, 2020

Resumo

Redes neurais do tipo Long Short-Term Memory (LSTM) têm sido aplamente usadas nos últimos
anos, cuja implementação se tem dado em diversos campos, tais como reconhecimento de fala
ou descodificação de gestos em teclado. Adicionalmente, tem-se verificado uma necessidade cres-
cente de implementar LSTMs em ambientes de baixa potência, nos quais ASICs e FPGAs revelam
ser as melhores soluções.

Paralelamente, tem-se assistido a notáveis desenvolvimentos no que toca às plataformas de de-
senvolvimento em Síntese de Alto Nível (HLS), conduzindo a melhores resultados no que toca às
descrições de Register Transfer Level (RTL). Por este motivo, as plataformas de HLS são cada vez
mais consideradas uma alternativa viável a descrições em Linguagens de Descrição de Hardware
(HDL), visto ter-se tornado possível a obtenção de circuitos de qualidade, ao mesmo tempo que
são aproveitadas as vantagens resultantes da utilização de linguagens de alto nível, nomeadamente
o menor esforço de implementação.

Considerando os aspectos acima, este trabalho propõe o desenvolvimento de uma rede LSTM
para uma plataforma FPGA, com recurso a ferramentas HLS. Devido à dimensão elevada das redes
LSTM comparativamente com a memória interna de uma FPGA, é proposto o armazenamento
dos pares de entrada e dos pesos da rede em memória externa. Para evitar as elevadas latências
associadas à utilização exclusiva de memória externa, é proposta uma técnica do tipo “block-
batching”, a qual permite efectuar operações sobre um conjunto de pares de entrada e um bloco
de matrizes de pesos, os quais são transferidos de memória externa para memória interna através
de “double-buffering”. Por forma a obter um maior nível de paralelismo, bem como a reutilização
dos elementos instanciados na FPGA, a implementação dos blocos com maiores necessidades
computacionais recorre à utilização de pipelines. É também possível variar a topologia da rede
instanciada através de um conjunto de parâmetros. A dimensão em bits de cada word pode ser
ajustada de acordo com as necessidades do sistema.

Aquando da utilização do dataset MNIST, a arquitectura proposta utiliza uma menor dimensão
de word para as suas variáveis, a qual resulta numa redução dos requisitos de memória interna até
1.14x comparativamente a trabalhos anteriores, incorrendo num aumento do erro de até 2.2%.
Após implementação do acelerador proposto numa placa física, melhorias de 1.99x e 10.53x na
velocidade de execução são registadas comparativamente a processadores desktop e embedded,
respectivamente.

Palavras-chave: FPGA, HLS, LSTM, Redes Neuronais

i

ii

Abstract

Long Short-Term Memory (LSTM) neural networks have been widely used in recent years, being
deployed in a range of scenarios such as speech recognition or keyboard gesture decoding. In
addition to this, there is an increasing necessity of implementing LSTMs in environments with
low power budgets, for which ASICs and FPGAs are the most sensible solutions.

Parallel to this, High-Level Synthesis (HLS) development platforms have markedly improved
in recent years, resulting in better Register Transfer Level (RTL) descriptions. HLS is then increas-
ingly seen as a feasible alternative to Hardware Description Language (HDL) descriptions, as it
is now possible to obtain quality circuits with the advantages that derive from using higher-level
programming languages, namely its lower implementation effort.

Considering this, the present work proposes the development of an LSTM network for an
FPGA platform using HLS tools. Because of the large size of LSTM networks in comparison with
the on-chip memory available in an FPGA, off-chip memory storage of the input pairs and the
weight matrices is proposed. To avoid dealing with large latencies derived from exclusively using
off-chip memory, a block-batching technique is presented, which performs computations over a
batch of input pairs, and a block of weight matrices, which are buffered from off-chip into the on-
chip memory using double-buffers. For obtaining a higher level of parallelism and the reuse of the
elements instantiated on fabric, the implementation of the most computationally-intensive blocks
is performed using pipelines. Furthermore, it is possible to vary the topology of the network by
using a number of parameters for that purpose. The word bit-widths can also be adjusted according
to the needs of the system.

When using the MNIST dataset, the proposed architecture uses a smaller word bit-width, re-
sulting in a reduction of up to 1.14x of on-chip memory requirements in comparison with previous
works, while incurring a maximum error of up to 2.2%. After implementing the proposed acceler-
ator on a board model, speed-ups of 1.99x and 10.53x are registered, respectively, in comparison
with a desktop and an embedded CPU.

Keywords: FPGA, HLS, LSTM, Neural Networks

iii

iv

Agradecimentos

Gostaria de agradecer a todos os professores com quem me cruzei durante o meu percurso
académico, sem os quais não seria possível a minha formação, nomeadamente os desta Facul-
dade de Engenharia. Agradeço também ao Prof. João Canas Ferreira pela proposta que realizou,
e por ter colocado, através da sua orientação, a sua experiência ao meu serviço.

Agradeço também o apoio dos meus amigos durante as várias fases da minha vida, e das
inúmeras pessoas com que me cruzei e que me ajudaram durante o curso. Agradeço também aos
meus colegas de quarto durante o meu intercâmbio em Delft, Holanda, pelo que me ensinaram
sobre tolerância e sobre manter a vida em perspectiva.

Os meus agradecimentos não estariam completos sem mencionar a minha família mais próx-
ima. Aos meus pais, e à minha avó, agradeço-lhes o seu amor incondicional e o apoio incansável,
com o qual pude contar quando mais necessitei. Ao meu irmão, agradeço-lhe a sua boa-vontade
em ajudar-me durante o meu percurso, e a sua orientação inestimável.

Pedro Manuel Afonso Costa

v

vi

“Stay hungry, stay foolish.”

Steve Jobs

vii

viii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Objective . 2
1.4 Overview . 2

2 Problem Characterisation 3
2.1 Machine Learning: Overview . 3
2.2 Artificial Neural Networks . 4

2.2.1 Perceptron . 4
2.2.2 Activation Functions . 5
2.2.3 Forming ANNs . 6
2.2.4 Training . 7

2.3 Recurrent Neural Networks . 8
2.3.1 Overview . 8
2.3.2 Long Short-Term Memory Networks 10

2.4 High Level Synthesis . 11
2.4.1 Overview . 11
2.4.2 Pragmas . 12
2.4.3 Data Types . 15

2.5 Summary . 16

3 State of the Art 17
3.1 LSTM Applications: Overview . 17
3.2 LSTM Implementations on FPGA . 18
3.3 Summary . 21

4 Proposed Architecture 23
4.1 Overview . 23

4.1.1 Description . 23
4.1.2 Matrix computations . 25
4.1.3 Fixed-Point Design . 27
4.1.4 Coding Structure . 27

4.2 Constituent Modules . 28
4.2.1 Initialisation . 28
4.2.2 Buffering Blocks . 28
4.2.3 Computation Blocks . 29
4.2.4 Auxiliary Blocks . 32

ix

x CONTENTS

4.3 Summary . 34

5 Results 35
5.1 Simulation Validation . 35
5.2 Synthesis Results . 36
5.3 Accuracy Measurements . 38

5.3.1 Overview . 38
5.3.2 Training . 38
5.3.3 Results . 38

5.4 Board Implementation . 40
5.4.1 Overview . 40
5.4.2 Results . 42
5.4.3 Comparison . 43

6 Conclusions 47

A Network Training in PyTorch 49

B Resource Utilisation Results 55

C C/RTL Cosimulation Waveforms 57

List of Figures

2.1 A perceptron . 5
2.2 Examples of activation functions . 6
2.3 An ANN with three connected layers . 7
2.4 An RNN and its unrolled equivalent . 8
2.5 An LSTM cell . 10
2.6 Array transformations . 13
2.7 Loop pipelining . 15

4.1 High-level architecture of the LSTM accelerator 24
4.2 Matrix traversal used in the block-batching technique 26
4.3 Architecture of the 4-LFSR GPRNG . 33
4.4 Architecture of the PLAN algorithm . 33
4.5 Comparison of the original functions with PLAN 34

5.1 Impact of Sbatch and Sblock for the simulated accelerator 37
5.2 Network accuracy for the MNIST training set with respect to the number of train-

ing epochs and the <W,I> pairs . 39
5.3 Network accuracy for the MNIST training set with respect to the word bit-width

<W> of the input pairs . 40
5.4 Block design for implementing the proposed accelerator on the VC707 board . . 41
5.5 Impact of Sbatch and Sblock on the board implementation 43

C.1 C/RTL Cosimulation output waveforms . 57

xi

xii LIST OF FIGURES

List of Tables

3.1 Summary of the described LSTM implementations on FPGA 21

5.1 Network parameters used for studying the effects of block-batching 36
5.2 Resource utilisation results for the simulated accelerator 37
5.3 Network accuracy for the MNIST training set 39
5.4 Resource utilisation results for the board implementation 43
5.5 Performance comparison against CPU implementations 44
5.6 Comparison against previous works . 44

B.1 Latency and resource utilisation results for the simulated accelerator 55
B.2 Latency and resource utilisation results for the board implementation 56

xiii

xiv LIST OF TABLES

Abbreviations

ANN Artificial Neural Network
ASIC Application-Specific Integrated Circuit
AXI Advanced eXtensible Interface
BRAM Block RAM
CORDIC COordinate Rotation DIgital Computer
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DSP Digital Signal Processor
FF Flip-Flop
FPGA Field-Programmable Gate Array
GOP/S Giga Operations per Second
GPRNG Gaussian PRNG
GPU Graphics Processing Unit
HDL Hardware Description Language
HLS High Level Synthesis
IC Integrated Circuit
II Initiation Interval
I/O Input/Output
IP Intellectual Property
JTAG Joint Test Action Group
LFSR Linear Feedback Shift Register
LSTM Long-Short Term Memory
LUT Look-Up Table
ML Machine Learning
PLAN Piecewise Linear Approximation
PRNG Pseudo-Random Number Generator
RAM Random Access Memory
RNN Recurrent Neural Network
RTL Register Transfer Level
SIMD Single Instruction, Multiple Data
SoC System-on-a-Chip
VHDL Very High Speed Integrated Circuit HDL

xv

Chapter 1

Introduction

In this work, a hardware implementation of an LSTM network is presented. This accelerator

is implemented on an FPGA and designed for manipulating large networks. For the purpose, a

block-batching technique and off-chip memory storage are used. This accelerator also allows the

manipulation of the internal bit-widths which, for the MNIST dataset, results in a reduction in

memory requirements of up to 1.14x in comparison with previous works. After implementation

on a board model, speed-ups of 1.99x and 10.53x are registered upon comparison with a desktop

and an embedded CPU, respectively.

1.1 Background

Long Short-Term Networks are a popular type of Recurrent Neural Networks. Introduced by

Hochreiter and Schmidhüber in 1997, LSTMs are a state-of-the-art algorithm for capturing se-

quences and time-series, using for that purpose a memory controller that retains long-term depen-

dencies. As a result, LSTMs are now used in a wide range of applications on different types of

hardware, from speech recognition algorithms to keyboard gesture decoders.

LSTM networks have been implemented in various computation environments. Notably, sev-

eral CPU and GPU implementations are available, which are suitable for computing huge amounts

of data with good performance. However, other approaches are needed when facing power con-

straints. In this regard, solutions using ASICs or FPGAs can be helpful for implementing LSTMs

due to their good power-performance balance. Specifically, FPGAs can be reprogrammed, thus

opening up the possibility of altering the system on-the-fly.

Parallel to this, HLS software has registered notable improvements in recent years, to the

extent that it is now a feasible platform to produce fast, efficient circuits. With it, the use of

C/C++, along many of its useful features, is supported for describing hardware. One example is

the ability of using templates, that enable rapid generation of different functions on hardware by

altering some parameters. Additionally, using the included pragmas, the programmer can perform

1

2 Introduction

fine-tuning over some characteristics of the hardware, which would not be possible using high-

level programming languages alone.

1.2 Motivation

Presently, a number of LSTM implementations on FPGA exist. Usually, the proposals focus on

inference, and perform either data compression techniques or architectural improvements. Com-

pression techniques have the advantage of reducing the size of the network (which translates to

lower memory and computational requirements), and usually consist of some sort of pruning tech-

nique performed to the weight matrices of the LSTM, while in other cases quantisation techniques

are mentioned. Architectural improvements may consist of buffering or batching techniques, and

in some cases of alternative algorithms to compute the outputs of the LSTM.

However, most implementations do not enable rapid, effortless synthesis of different LSTM

networks depending on the needs of the system. To enable this, the architecture needs to be able to

accept a number of inputs that can be used to vary the topology of the network. Furthermore, and

to the best of our knowledge, the only existing parametrisable implementation makes exclusive use

of on-chip memory for storing all variables, which severely limits the dimension of the networks

that can be processed.

1.3 Objective

In this work, the implementation of an LSTM network on an FPGA is proposed. For this purpose,

a parametrisable accelerator is presented, which is implemented in Vivado HLS. The proposed

accelerator uses a block-batching technique that buffers values from off-chip memory, and enables

both effortless network topology changes and tuning of the word bit-widths of the variables. The

proposed accelerator is implemented and tested on a board model.

1.4 Overview

The document is organised as follows. Chapter 2 introduces the concept of Machine Learning and

the theoretical considerations behind ANNs, with special focus on LSTMs, and the topic of High

Level Synthesis. Chapter 3 provides an overview of previous LSTM implementations in different

research fields, and presents the state of the art in regard to implementations on FPGA. Chapter 4

presents the architecture of the accelerator proposed in this work, and describes its constituent

blocks. Chapter 5 presents the obtained results.

Chapter 2

Problem Characterisation

This section introduces and characterises the main topics to be covered in this work. Section 2.1

provides a general overview of Machine Learning and its concepts. Section 2.2 briefly describes

Artificial Neural Networks, from their basic building blocks to the necessary training procedures.

Section 2.3 delves into Recurrent Neural Networks, a specific type of ANN, and introduces the

Long Short-Term Networks that are used in this work. Section 2.4 finishes by providing an

overview of High Level Synthesis hardware description, which will be used to specify the RTL

implementation to be synthesised on FPGA.

2.1 Machine Learning: Overview

Machine Learning (ML) is a research field of Computer Science that uses statistics and artificial

intelligence to enable computer systems to learn and improve from experience without being ex-

plicitly programmed [1]. This allows ML to extract latent features from the data, and enabling its

classification into a particular class by using an adaptive model that adjusts its parameters accord-

ing to the input data received.

Adopting ML solutions is useful in situations where hard-coded, rule-based algorithms may

fail or be too cumbersome, such as in situations where small changes in a task require significant

modifications to the code, or where defining rules would require a deep understanding of the

subject. As a result, several ML algorithms have been developed, and most can be split into the

categories below.

Supervised Learning

Supervised learning algorithms are able to automate decision-making processes by generalising

from known samples. To achieve this, the algorithm is trained with pairs of inputs, or targets,

and desired outputs, or labels, which constitute the training set and are used by the algorithm

so that it finds a way to reproduce the input and output pairs. After the aforementioned training,

3

4 Problem Characterisation

the algorithm is able to produce an output, given a new input, without human intervention. These

algorithms are usually the easiest to understand and evaluate.

A typical supervised learning task is classification, which provides an output corresponding

to a discrete number of solutions, of which spam e-mail classification (i.e. spam or not spam) is

an example [2]. Another typical task is regression, where a target value in a continuous range is

inferred by using predictors, of which house pricing prediction (i.e. the value of a house according

to a set of features) is an example.

Unsupervised Learning

Unsupervised learning algorithms are characterised by receiving unlabelled data (i.e. only the

input pairs are given, thus the outputs are unknown). Such algorithms are usually harder to un-

derstand and evaluate. An example of this is customer segmentation according to similar product

preferences [1].

Other categories

Besides supervised and unsupervised learning, there are a number of other noteworthy ML algo-

rithm categories.

Semi-supervised learning algorithms use a mixture of a small amount of labelled data and a

large amount of unlabelled data in order to improve learning accuracy.

Reinforcement learning uses a learning system to observe the environment, select and perform

tasks, so that it gets positive or negative rewards that make the algorithm learn by itself the best

strategy to get the most rewards over time. This strategy, or policy, defines what action to choose

in a given situation [2].

Recommender systems seek to predict the preferences of users, and can be built using a number

of approaches, such as content-based recommendations or collaborative filtering. Such systems

are often used in commercial applications, such as Amazon’s product recommendations based on

previous purchases, or Spotify’s music suggestions based on prior listening.

2.2 Artificial Neural Networks

Artificial Neural Networks are mathematical structures that loosely resemble the neural networks

found in the brain. They make up a collection of simple computational units interlinked by a

system with a variable number of connections [3].

2.2.1 Perceptron

Following this line of thought, the basic element of an ANN is represented by a logistic unit, the

perceptron [2]. It is fed with inputs [x1,x2, ...,xn] and produces an output, or activation value,

2.2 Artificial Neural Networks 5

hW accordingly. This is achieved by using [w1,w2, ...,wn] as multiplication weights, and a bias
value b, as in Equation 2.1.

hW = b+
n

∑
i=1

wi · xi (2.1)

The computations above, comprising the weighted sum of inputs, correspond to the inference,

which is illustrated in Figure 2.1, with the circle representing a computational unit. Before it can

occur, however, the perceptron needs to adjust the appropriate weight and bias values that will lead

to a correct solution. Such procedure is called training.

hW

w1

wn

w2
x2

xn

x1 b

...

Figure 2.1: A perceptron

Besides this, the computational unit may apply an activation function to the right-hand side

of Equation 2.1 before producing hW . This serves as a decision threshold.

2.2.2 Activation Functions

It is desirable for an activation function, in the context of LSTMs, to produce an output that is both

bounded and limited for all cases. This means that the function must have a predictable behaviour,

and will not output values with large magnitudes independently of the input. Furthermore, it is

desirable that the chosen function is fully differentiable. Some possibilities for activation functions

follow below.

The Heaviside step function performs as a simple, binary-valued function with a threshold,

and a discontinuity at x = 0 (Equation 2.2).

f (x) = H (x)

{
0 x < 0

1 x≥ 0
(2.2)

The sigmoid function, Figure 2.2a, allows for a more complex behaviour, as it is a real-valued

function, with its output moving slowly in the interval [0,1] (Equation 2.3).

f (x) = σ(x) =
1

1+ e−x (2.3)

6 Problem Characterisation

The hyperbolic tangent function, Figure 2.2b, is very similar to the sigmoid, with its output

moving slowly in the interval [−1,1] (Equation 2.4).

f (x) = tanh(x) =
ex− e−x

ex + e−x (2.4)

The rectified linear unit function, Figure 2.2c, introduces a non-linearity at x = 0, which can

be used for decision making (Equation 2.5).

f (x) = ReLU(x) =

{
0 x < 0

x x≥ 0
(2.5)

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

sigmoid

(a) sigmoid function

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

tanh

(b) hyperbolic tangent function

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y

ReLU

(c) rectified linear unit function

Figure 2.2: Examples of activation functions

Concerning the criteria introduced for choosing an activation function, it is concluded that

both the sigmoid and the hyperbolic tangent are good candidates for activation functions. This is

supported by current work in the literature on LSTMs, which often uses both the sigmoid and the

hyperbolic tangent functions. As for the Heaviside function, it is not differentiable, thus it was not

chosen. The rectified linear unit function, despite being widely used in other ANNs, has little used

in LSTMs, as its output is neither bounded nor differentiable [4].

2.2.3 Forming ANNs

As mentioned earlier, the perceptron can be used as a basic building block to form increasingly

complex models, resulting in an ANN, as depicted in Figure 2.3. The main advantage of doing this

is the ability of mixing results from different inputs, thus obtaining a model that performs complex

computations while using simple linear operations.

Specifically, this is performed by chaining perceptrons to one another, usually in a directed

acyclic graph. The perceptrons are organised in groups of nodes occupying identical hierarchical

positions called layers, in which the output from each neuron is used as an input to all the neurons

in the following layer.

Neurons in ANN implementations are usually organised into the following layers:

• Input layer: accepts all the inputs and performs the first round of computations;

2.2 Artificial Neural Networks 7

Figure 2.3: An ANN with three connected layers. Its input layer accepts 6 inputs, its hidden layer
contains 4 perceptrons, and its output layer generates 3 different values.

• Hidden layers: perform intermediate computations; there is no restriction to the number of

hidden layers, nor to the number of perceptrons in each layer;

• Output layer: performs final computations and outputs an intelligible value.

Each layer, similarly to a perceptron, contains its set of weights, which are used during infer-

ence mode to predict an output based in the input pairs given to it.

2.2.4 Training

As mentioned in subsection 2.2.1, the ANN needs to be trained before being able to accurately

perform inference. In line with the scope of this work, the training procedure explained below

focuses on a supervised learning algorithm using labelled samples.

During training, all the elements of the training set are traversed, and each of these passes is

called a training epoch. The duration of each epoch varies depending on the input length of the

training set and on the type of network.

Before any training epoch occurs, the network weights are initialised, preferably to a set of

small random values. Afterwards, each training epoch is composed by a two-step process. First,

forward propagation is performed, and then backward propagation occurs.

Forward propagation begins by computing all the activation values of the network. The activa-

tion values for the output layer are then compared against the existing labels using a cost function
for measuring the accuracy of the network. A common choice is the mean-squares error function

in Equation 2.6, which averages the error for all m training samples and for each K output class,

with (hW (x(i)))k representing the predicted value for each sample.

J(W) =− 1
m

m

∑
i=1

K

∑
k=1

[
y(i)k log((hW (x(i)))k)+(1− y(i)k) log(1− (hW (x(i)))k)

]
(2.6)

8 Problem Characterisation

Backward propagation then uses these values to minimise the cost function by optimising the

weight parameters. At this stage, the gradients, which give the direction of maximum change

of the cost function for each weight, are computed for each node, and determine the influence

of each weight in the total error. The weights are then adjusted from outputs to inputs, and the

magnitude of this adjustment tuned by changing the learning rate. The learning rate consists of a

tuning parameter that determines the step size in each iteration, with the goal of moving towards a

minimum of the cost function. The choice of this parameter is relevant since, if it is too large, the

function may never converge, whereas if it is too small, convergence might take many iterations

and needlessly increase computation times.

A commonly used algorithm for backward propagation is the gradient descent. This algorithm,

which is exemplified in Algorithm 1, updates the weights iteratively after starting from a random

position. Backward propagation can be performed over each sample separately, or in a batch of

samples (that is, a number of samples bundled together), which can simplify computations.

2.3 Recurrent Neural Networks

2.3.1 Overview

A Recurrent Neural Network (RNN) can be seen as a directed cyclic graph, meaning that the

output from one RNN cell is given as an input to another cell (that is essentially a copy of itself),

as depicted in Figure 2.4, This structure, which is suitable to manipulate sequences and lists,

enables RNNs to deal with information that contains a sequence (i.e. that depends of previous

inputs), such as speech recognition or natural language processing.

x

y

x1

y1

x2

y2

x3

y3

xt

yt

=
...

Figure 2.4: An RNN and its unrolled equivalent [5]

RNNs can be trained using a number of algorithms, backward propagation through time being

a common solution. This is similar to backward propagation in subsection 2.2.4, but now taking

into account the unrolling of the network through time.

The output data obtained at time t, yt , is mainly influenced by data obtained immediately prior

to it, as earlier values cannot exert much influence. This happens because of the difficulty, during

training, for the error at yt to backpropagate to the initial values of the sequence. This represents

the vanishing gradients problem, which also occurs with ANNs. Specifically, in the context of

2.3 Recurrent Neural Networks 9

RNNs, this problem results in an increasing difficulty of an RNN to relate long dependencies

between present and past information.

Algorithm 1 Backward propagation using gradient descent for the network in Figure 2.3

Training set: {x(i),y(i)}
Activation value: a(l)j

Output value: z(l)j

Weight matrix value: W (l)
j

Gradient: δ
(l)
i

Gradient accumulator: ∆
(l)
i j

Learning rate: λ

for all pair i, node j, layer l do
∆
(l)
i j ← 0

end for

for all i of m in training set do
function FORWARD PROPAGATION

for all j nodes in layer do . Computed from input to output
a(1)j ← x(i)j

z(2)j ←W (1)
j a(1)j

a(2)j ← hW (z(2)j) (add a(2)0)

z(3)j ←W (2)
j a(2)j

a(3)j ← hW (z(3)j)
end for

end function

function BACKWARD PROPAGATION

for all j nodes in layer do . Computed from output to input
δ
(3)
i ← a(3)j − y(i)j

∆
(2)
i j ← ∆

(2)
i j +δ

(3)
i (a(2)j)T

δ
(2)
i ← (W (2)

j)T δ
(3)
j ◦ (a

(2)
j ◦ (1−a(2)j))

∆
(1)
i j ← ∆

(1)
i j +δ

(2)
i (a(1)j)T

end for
end function

end for

for all l layers do
D(l)

i j ←
1
m(∆

(l)
i j +λW (l)

i j), j 6= 0

D(l)
i j ←

1
m(∆

(l)
i j), j = 0

end for

10 Problem Characterisation

2.3.2 Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTMs) are a variation of RNNs that use a memory con-

troller to be able to retain long-term dependencies [6].

The architecture of an LSTM cell is depicted in Figure 2.5. The core idea behind these net-

works is the cell state Ct , which serves as a memory element [5]. This state is controlled by four

network gates that have the ability to let information through:

• Forget gate, ft: decides whether to keep or discard information in the cell state Ct−1,

thereby controlling the cell state;

• Input gate, it: decides which values to be updated;

• Update gate, zt: decides the candidate values (i.e. the flow of information) to be added to

the cell state Ct ;

• Output gate, ot: decides which values (i.e. the flow of information) to output to ht .

Ct-1 × ＋

ft

σ

ot

σ

it

σ

zt

tanh

×

ht

×

ht

Ct

ht-1

xt

tanh

Figure 2.5: An LSTM cell [5]. Rectangles show neural network layers and their corresponding
activation functions, and circles denote a pointwise (�) operation. Arrays are represented by lines,
with array concatenation and copying shown by line merging and forking, respectively.

The hidden state ht serves as the output of the cell. It can be passed through a softmax fil-

ter, which returns the output probabilities. By retrieving the index of the maximum probability

value out of the softmax layer (or by simply returning the maximum value of ht), it is possible to

determine the predicted value.

The update gate zt also shields the LSTM from the vanishing gradients problem. Because the

cell state Ct can acquire values very close to 0 or 1, the existing information in it is able to persist

in the system for many iterations.

2.4 High Level Synthesis 11

There is a number of possibilities to formulate the equations for inference with an LSTM. In

Equation 2.7, a solution that maximises parallel computations at time t is shown.

ft = σ([Wi f xt +bi f]+ [Wh f ht−1 +bh f])

it = σ([Wiixt +bii]+ [Whiht−1 +bhi])

zt = tanh([Wizxt +biz]+ [Whzht−1 +bhz])

ot = σ([Wioxt +bio]+ [Whoht−1 +bho])

ct = ft � ct−1 + it � zt

ht = ot � tanh(ct)

(2.7)

All weights and biases are highlighted in bold. Defining N as the input dimension, M as the

output dimension, and H as the dimension of the hidden layer, its description follows:

• Wi matrices represent weights associated to the input pairs xt , and contain H×N elements

• Wh matrices represent weights associated to the hidden state ht−1, and contain H×H ele-

ments

• bi vectors represent bias values associated to the input pairs xt , and contain H elements

• bh vectors represent bias values associated to the hidden state ht−1, and contain H elements

The usage of the hidden state can vary depending on the requirements of the network. It is

possible to randomly generate a hidden and cell state vector for every input pair prediction, which

constitutes a stateless network. Another option consists of using the hidden and cell state vectors

to compute the new predicted values, which constitutes a stateful network.

A number of modifications have been suggested throughout the years. Namely, the introduc-

tion of a forget gate [7] and peepholes have been suggested. Upon considering their usefulness,

the former will be used in this work, whereas the latter will be discarded, as it has been proved to

have a minimal impact on performance [8] while requiring greater resources.

2.4 High Level Synthesis

2.4.1 Overview

Traditionally, programming on FPGAs requires the use of a Hardware Description Language

(HDL) such as Verilog or VHDL, which is then translated to Register Transfer Level (RTL) that

specifies the design using parallel processes that operate on vectors of binary or simple data type

signals. With the rapid increase of complexity in System-on-a-Chip (SoC) designs, the need arose

for using design abstractions that were faster and more effective to implement than RTL.

This motivated the development of High Level Synthesis (HLS) tools that could use a higher-

level programming language (such as C/C++) to specify a synthesisable RTL implementation [9]

12 Problem Characterisation

for ASICs and FPGAs while hiding several implementation details. A HLS tool thus provides a

programming development environment more similar to that of standard processors.

In recent years, Xilinx developed a tool for this purpose, named Vivado HLS. This tool accepts

C, C++ or SystemC (which is a subset of C++), however C++ code interpretation is optimised. The

code is then translated to HDL and described at RTL level. The source code can be compiled and

verified using tools written for C/C++ for interpreting, analysing, and optimising the code.

When it comes to writing C/C++ code, Vivado HLS tools are similar to those of processor

compilers for interpretation, analysis and optimisation of programmes, while targeting FPGA sys-

tems. Because of this, application code for Vivado HLS is similar to standard C/C++ code (with

the exception of dynamic memory allocation, which is not supported because of the memory ar-

chitecture of the FPGAs), so it can normally analyse operations, conditional statements, loops,

and functions [10]. Variables, classes and structs can be assigned to registers, whereas arrays are

mapped to BRAM structures. Besides this, code in C/C++ can be synthesised without explicitly

declaring any clock signal. These characteristics abstract the programmer from several low-level

details and make HLS easier to use in comparison with HDL tools.

Despite this, programming in Vivado HLS is a more challenging task than C/C++ program-

ming for software, while providing less control over the generated hardware than traditional HDL

implementations. Although a large subset of C/C++ code that is not optimised for hardware is

often synthesisable and functional, it usually results in slow, cumbersome RTL code, due to the in-

herent differences between general-processing and parallel programming. Thus, in order to obtain

efficient, synthesisable code, the programmer needs to take into account the hardware structure of

the FPGA and programme accordingly. In some instances, optimisations are highly dependent on

the coding style, as the HDL output can only be optimised (or at all used) by Vivado HLS if it

obeys to some canonical form described by Xilinx. Besides this, there are a number of code op-

timisations that can only be performed by programmer-defined pragmas. Pragmas are directives

used by Vivado HLS to perform local code optimisations. These are instantiated in the code or by

a directives script. This means that, in order to obtain good results under HLS, the programmer

needs to have a grasp not only of the underlying hardware, but also of the specific structures and

optimisations that can be performed by the HLS software that is being used.

2.4.2 Pragmas

With the goal of directing further performance and area optimisations, Vivado included a set of

optimisation directives, called pragmas [9]. The relevant options to be used or related with this

work are explained below.

Array Partitioning

#pragma HLS ARRAY_PARTITION variable=<name> type <factor=N> dim=<N>1 and

1factor specifies in how many blocks the array is split into; dim specifies the dimension in which the transformation
is performed, thereby allowing the programmer to optimise the access of the array for a specific dimension.

2.4 High Level Synthesis 13

#pragma HLS ARRAY_RESHAPE variable=<name> type <factor=N> dim=<N>

These directives can modify the arrangement of arrays mapped into memory. Vivado HLS

defaults array implementation to BRAM, which has a maximum of two data ports. This often

constitutes a bottleneck by limiting the number of read and write instructions possible per clock

cycle. With these directives, Vivado provides three types of array partitioning, as depicted in

Figure 2.6:

• Block: division into equally sized blocks of consecutive elements of the original array

• Cyclic: division into equally sized blocks by interleaving the elements of the original array

• Complete: fully splits the array into its individual elements by placing them in individual

registers

0 1 2 … N-3 N-2 N-1 cyclic

block

complete

0 1 … (N/2-1)

N/2 … N-2 N-1

0 2 … N-2

1 … N-3 N-1

0

1

…

N-2

N-1

2

(a) array partitioning

0 1 2 … N-3 N-2 N-1 cyclic

block

complete

N/2 … N-2 N-1

0 1 … (N/2-1)

…

1

N-1

0

LS
B

M
SB

1 … N-3 N-1

0 2 … N-2LS
B

M
SBarray[N]

array[N/2]

array[N/2]

array[1]

M
SB

LS
B

(b) array reshaping

Figure 2.6: Array transformations provided by Vivado HLS [9]

ARRAY_PARTITION and ARRAY_RESHAPE differ solely on the method used for this parti-

tioning. Whereas the former opts for physically splitting the arrays into multiple physical arrays

in order to obtain more read/write ports, the latter allows parallel access of data via vertical map-

ping of the words, which bundles several elements of the array into a single element with a larger

bit-width.

Interfaces

#pragma HLS INTERFACE mode port=<name> <bundle=string> register <register_mode>

<depth=N> <offset>

It provides the ability to specify how the RTL ports from the function description are created.

By default, Vivado HLS defaults mode to ap_ctrl_hs, which is used for block-level I/O and

implements a handshake protocol (i.e. it indicates when to start design operation, and when the

design is idle, done, and ready for new input data). On the top-level, it also supports AXI interface

modes [11]:

• AXI4-Stream (axis): defines a single channel for transmission of streaming data that can

be used to burst an unlimited amount of data, and is ideal for transferring streams of data

(e.g. audio, video file);

14 Problem Characterisation

• AXI4-Lite (s_axilite): similar to AXI4-Master (but without burst support), it can be

used to transfer small amounts of data (e.g. a parameter in a variable);

• AXI4-Master (m_axi): used for transferring small amounts of data, and preferred for trans-

ferring bursts of data with high transfer speeds (e.g. a parcel of a wide array of data). The

usage of m_axi requires specifying the depth of the FIFO used in simulation, which corre-

sponds to the amount of data accesses to the array, otherwise RTL Co-Simulation will not

work properly.

Using the AXI4 protocol can simplify the connection of an IP block with other elements in

the architecture due to its wide support. Moreover, Vivado HLS automatically generates device

drivers for managing IP blocks with AXI4-Lite ports. By using the offset option, this can be used

to specify the starting pointer of an array, which can then be used by the accelerator to access DDR

memory according to its needs.

Data and Control Flow

#pragma HLS LOOP_FLATTEN <off>

It enables nested loops to be collapsed into a single loop with improved latency, thereby saving

clock cycles (entering and exiting a loop in RTL requires 1 clock cycle). It can only be used with

loops where only the innermost loop has body content, and where all loop bounds are constants

(however, the outermost loop can be a variable).

#pragma HLS UNROLL <factor=N> <region> <skip_exit_check>

It enables loop unrolling, either completely or partially by a factor of N. This enables all loops

to execute in parallel, however this is only possible if no data dependencies exist between different

iterations.

#pragma HLS PIPELINE <II=N> <enable_flush> <rewind>

It enables function and loop pipelining, however, only loop pipelining will be described due to

the scope of this work. It tries to implement a design with an Initiation Interval (II), which consists

of the number of clock cycles between the start times of consecutive loop iterations, specified by

the programmer. It defaults to 1, and if the value cannot be achieved, Vivado HLS tries to imple-

ment a design with the minimum II possible. Loop pipelining allows the operations in the loop

to overlap, thus leading to significant reductions in the number of clock cycles during sequential

operation. The scenario depicted in Figure 2.7 illustrates the results achieved with pipelining:

whereas the sequential version has an II of 3, and requires 8 cycles until the last output is written,

the pipelined version has an II of 1, and requires only 4 cycles to write the last output. One caveat

of this directive is that, despite only pipelining the specified region, it forces loop unrolling over

all nested loops below the pipeline. Furthermore, using pipelines in Vivado HLS requires the use

of constants for all loop bounds.

2.4 High Level Synthesis 15

void func(m, n, o)
{
 for (i = 2; i >= 0; i--)
 {
 op_Read;
 op_Compute;
 op_Write;
 }
}

3 cycles 1 cycle

RD CMP WR RD CMP WR RD CMP WR RD CMP WR

RD CMP WR

RD CMP WR
8 cycles

Without Loop Pipelining With Loop Pipelining

4 cycles

Figure 2.7: Loop pipelining with Vivado HLS [9]

#pragma HLS INLINE <option>

It removes a function as a separate entity in the hierarchy and inserts (i.e. inlines) it in whatever

code block it is called, which in some cases enables operations within the function to be shared

and optimised more effectively (e.g. by reducing function call overhead). This is often performed

automatically for small functions by Vivado HLS. An off option is provided, which is convenient

for large functions. With it, block interfaces are clearly defined, which allows for an easier tracking

of data dependencies, thereby enabling greater block-level parallelism.

2.4.3 Data Types

Vivado HLS provides a number of libraries to help during design implementation. Namely, it

provides a set of libraries that enable the creation of customised datatypes.

The most important of these is ap_fixed.h. It enables the definition of fixed-point data types

according to the needs of the design, using the form ap_[u]fixed<W,I,Q,O,N>. The explanation

for each parameter, as per [9], follows below.

• W: number of bits for the word length

• I: number of bits for the integer part

• Q: quantisation mode for when greater precision is generated than can be defined by the

decimal component of the variable

• O: overflow mode for when a value that exceeds the possible representation is achieved

• N: number of saturation bits in overflow wrap modes

A library for integers, ap_int.h, is also defined. It allows the definition of signed and un-

signed integers with variable bit length, using the form ap_[u]int<W>, with W defining the num-

ber of bits of the word length.

16 Problem Characterisation

2.5 Summary

In this chapter, a number of key concepts concerning the present work have been discussed. The

brief introduction to Machine Learning in Section 2.1 allowed to understand the motivation behind

its widespread usage, not least its ability to learn and solve problems without explicit program-

ming. Afterwards, the explanation on ANNs in Section 2.2, and afterwards of RNNs and LSTMs

in Section 2.3, enabled the comprehension of their utility in different scenarios (namely, the ade-

quacy of ANNs for a number of problems, and the capability of RNNs, and concretely LSTMs, to

overcome the issues of ANNs when dealing with time dependencies). In Section 2.4, the concept

of High Level Synthesis, which has the potential of significantly simplifying hardware synthesis

by using a high-level language for creating RTL descriptions, was introduced.

Chapter 3

State of the Art

This section provides an overview of the state of the art for LSTM networks. Section 3.1 provides

an overview of the potential of LSTMs, and shows some examples of work performed with this

type of networks. Section 3.2 describes some notable, state-of-the-art LSTM implementations on

FPGA. Section 3.3 provides a summary on the topic.

3.1 LSTM Applications: Overview

LSTM networks are currently, due to their superior performance, a state-of-the-art algorithm for a

wide range of applications, namely for prediction and time-series classification of data. Therefore,

significant work has been performed with this type of RNN.

To illustrate, some examples in the academia include a prize-winner handwriting algorithm

specialised in unsegmented cursive writing [12], a speech recognition algorithm focused on key-

word spotting [13], and a music composition algorithm using a text-based network [14]. The

application of LSTM networks is also common in the industry, examples of this being a probabil-

ity forecasting algorithm produced by Amazon [15], and a keyboard gesture decoding algorithm

developed by Google [16].

The wide adoption of LSTM solutions, and their varying performance and resource require-

ments, led to their implementation in several hardware platforms.

A number of frameworks is available for use with CPUs and GPUs, such as Keras1, PyTorch2,

and TensorFlow3. These implementations are usually optimised for high performance by using

Single Instruction, Multiple Data (SIMD) and multi-threaded instructions on CPUs, and CUDA or

OpenCL kernels on GPUs.

1https://keras.io
2https://pytorch.org
3https://tensorflow.org

17

https://keras.io
https://pytorch.org
https://tensorflow.org

18 State of the Art

Hardware-level solutions have also been implemented, with ASICs being used for specialised

applications with a fixed network topology. Furthermore, a number of solutions on FPGA have

been explored.

3.2 LSTM Implementations on FPGA

Over the last few years, a number of LSTM implementations on FPGA have been developed.

Some proposals focus on optimising the LSTM network to be used by applying pruning and quan-

tisation techniques. Briefly, the former technique consists of setting some weights of the LSTM

to zero, so that they can be discarded during computations. Generally, the resulting pruned weight

matrices are sparse, which is problematic for hardware as it requires non-optimal, random data

accesses. Other proposals put a greater emphasis on optimisations performed at the architectural

level, namely by increasing computation parallelism. With this in mind, some relevant FPGA im-

plementations are described below.

Fonseca et al. [17] developed one of the first FPGA implementations of an LSTM. It stores

the LSTM network and input pairs in on-chip memory for faster access, and uses a 18-bit fixed-

point system for data representation, chosen to make full usage of the DSP slices on the FPGA. A

network with a maximum hidden dimension of 256, for an input dimension of 2, was achieved on

a Xilinx Zynq XC7Z045 SoC. The implementation was tested with an 8-bit adder.

Wang et al. [18] introduced a pruning solution to tackle the uneven memory accesses that arise

from unstructured pruning. Moreover, a framework for implementing various LSTM variations on

FPGA, C-LSTM, is presented.

The authors propose to compress the LSTM model by using block-circulant matrices, where

each row vector is the circulant transformation of the row vectors. By dividing the original matrix

into blocks, it is possible to greatly compress the matrix by reducing the number of parameters.

However, this comes at the cost of accuracy, specially because there is no prior selection of the

weights to be pruned, which might be important for the network to operate appropriately. Using

circulant matrices enables the use of a Fast-Fourier Transform, thus reducing the complexity of

the computations. It is important to note that this requires pre-processing the data, which will add

up to the overall system latency. A double-buffering mechanism is used to improve the parallelism

of computation in the system.

The C-LSTM framework presented, in turn, consists of two distinct parts, one concerning

system training on TensorFlow, and another focused on implementation in FPGA that uses a

scheduling graph and a code generator to produce synthesisable code, constituting a structured-

compression technique.

The solution is tested on the TIMIT [19] dataset, where the authors claim to use weight ma-

trices up to 14.6x smaller and 3.7x less computationally-intensive in comparison with the original

3.2 LSTM Implementations on FPGA 19

matrices, while incurring in a performance degradation in comparison with an uncompressed ma-

trix of up to 1.23%.

Cao et al. [20] proposed a pruning solution with bank-balanced sparsity. In this paper, the

method split each matrix row in multiple equally-sized subrows, applying weight pruning inde-

pendently and obtaining the same number of non-zero values. With this, the authors use a more

structured sparsity pattern, and obtain better results on hardware, and load balancing between

BRAMs is achieved. The input pairs are stored in an array buffer, and partitioned in blocks to

enable parallel access. This is possible thanks to the bank-balanced architecture used, which guar-

antees that every array has the same number of elements, and that at most one element from each

block is accessed every clock cycle. Additionally, double-buffers are used to overlap data transfer

and computation operations.

The authors claim that this bank-balanced sparsity method obtains higher model accuracy than

block sparsity by preserving the unstructured distribution of non-zero weights for each bank, while

at the same time achieving similar performance in comparison with unstructured block sparsity.

The bank-balanced sparsity solution, with a 16-bit fixed-point representation, is compared

against a 32-bit floating-point representation baseline. For PTB [21] and TIMIT, prediction accu-

racy is maintained for up to 80% and 90% sparsity, respectively.

Wang et al. [22] dealt with network compression techniques, which make use of an algorithm

previously developed by the authors, HOCA [23], and perform memory access pattern optimisa-

tions.

The HOCA algorithm consists of two steps: initialisation and training with clipped gating and

quantisation, and top-k pruning. First, a technique called clipped gating is used, which sets the

activation function to 0 if its value falls below a pre-determined threshold. For quantisation, a

fixed-point quantisation scheme is introduced, which uses a rounding mechanism to the nearest

decimal place achievable in fixed-point, and a logarithmic scheme that quantises each weight to

the nearest power of two. The algorithm finishes by performing top-k pruning, which generates

structured sparse matrices by concatenating all weight matrices, grouping them in sets, and then

pruning until at most k non-zero elements remain in each group. The aforementioned procedures

are performed on software.

A number of architectural improvements are also performed. Double-buffers are used to over-

lap data transfer and computation operations. Computation of the input pair and hidden state com-

ponents for each gate is performed sequentially. During computation, weight values are fetched

from a row at a time. While this promotes input pair value re-utilisation, as these values only need

to be cached once, it results in little weight reuse, as this requires the batch size chosen to be small

and dependent on the input dimension. The network is architected so that an arbitrary number of

LSTM layers can be loaded.

The solution is tested on the TIMIT dataset, where the authors claim to use weight matrices

up to 32x smaller and with a computation complexity up to 22.61x lower in comparison with the

20 State of the Art

original matrices, without incurring any performance degradation.

Rybalkin et al. [24] released an open-source library extension for HLS which implements

a parallelisable architecture of LSTM layers on FPGA. With this library, the authors claim to

enable parametrised performance scaling that offers different levels of parallelism. It uses on-chip

memory with a variable-width fixed-point system. The architecture is based on a previous solution

produced by the authors [25].

An LSTM with two layers is used. This approach results in increased computation parallelism,

as a forward layer (i.e. reads input pairs from left to right) and a backward layer (i.e. reads input

pairs from right to left) perform computations in parallel. The layers are concatenated at their

outputs. Memory access patterns are rearranged to make use of this architecture. Afterwards,

further processing is performed using a linear layer, whose output is passed to a max layer that

determines the maximum (i.e. predicted) value. Its parametrisable architecture allows, on the one

hand, to provide concurrent execution of multiple LSTM cells and, on the other hand, to divide

the execution of a single LSTM cell over multiple cycles.

The HLS library extension enables usage of a fixed-point, variable-width data type for the

weight matrices, input and output activations, and recurrent activations4. The bit-width of the

input pairs is not described, although it is set at 5 bits in [25].

The solution is tested on a custom OCR dataset, with a reported test accuracy above 90% for

any combination of bit width between 1-8 bits for each data type, and a throughput increase of up

to 5.7x when comparing a 1-bit (i.e. binarised) to an 8-bit implementation.

Que et al. [26] presented an implementation in which the operations of the LSTM are reor-

ganised to eliminate data dependencies. Additionally, a block-batching solution is used, which

fetches partial square blocks for each weight matrix and for a batch of input pairs. A double-

buffering mechanism is used to improve the parallelism of computation in the system. The system

uses a 16-bit fixed-point system for data representation.

To optimise the operations, a technique is used that first performs partial computations over

the input pair values, (with its data re-usage dependent on the chosen block size) without using the

corresponding hidden states. The purpose of this is to allow the next inference to occur without

stalling the system pipeline. In this solution, the weight matrices are not split into their input pair

and hidden state components. The weight matrices are partially cached along the columns, and

fully cached along the rows. The values output by the system are obtained directly from the LSTM

(i.e. no fully connected layer is used).

The proposed block-batching technique, for computational purposes, combines the input pair

and hidden state weight matrices (for each gate) into a single matrix, resulting in the sequential

computation of each of these components. To do this, the input pair values and the previous hidden

state are concatenated into a single input array. The blocking mechanism consists of splitting

the weight matrices in column blocks, and then fully fetch them along the rows. In turn, the

4The LSTM variant used in this work implements peepholes.

3.3 Summary 21

concatenated input array is likewise partially fetched, and the computations for each component

are performed. The batching mechanism consists of fetching several concatenated input arrays in

a single memory access. The goal is to have a computation time equal or greater to the transfer

time, so that memory caching is transparent (i.e. it does not impact system performance).

The solution is tested with output data from the average pooling layer of the Inception-v3

network, which was pre-trained in the ImageNet dataset. When compared with CPU and GPU

solutions making use of TensorFlow5, it is reported to provide speed-ups of up to 23.7x and 1.3x

respectively, with a corresponding 208x and 19.2x reduction on power consumption. A compari-

son between the accuracy achieved in each of these platforms is not explicitly stated.

3.3 Summary

A summary of the characteristics of each solution is presented in Table 3.1.

Paper Wang [18] Cao [20] Wang [22] Rybalkin
[24]

Que [26]

Device Xilinx
Virtex-7
XC7VX690T

Intel Arria 10
GX1150

Intel Arria 10
SX660

Xilinx Zynq
XCZU7EV

Xilinx Zynq
XC7Z045

Frequency 200 MHz 200 MHz 200 MHz 266 MHz 142 MHz

Description HLS, C/C++ HDL,
SystemVerilog

HDL HLS HDL

Storage On-chip Off-chip Off-chip On-chip Off-chip

Data
representation

16-bit
fixed-point

16-bit
fixed-point

8-bit
fixed-point

1-to-8-bit
fixed-point

16-bit
fixed-point

Weight
pruning

Block-
circulant

Bank-
balanced
sparsity

HOCA
architecture
[23]

No No

Architecture FFT, double-
buffer*,
operation
scheduler

Array
partitioning,
double-buffer†

Batching,
double-buffer†

Variable-
width data
types

Block-
batching,
dobule-buffer†

Dataset TIMIT PTB, TIMIT TIMIT OCR‡ ImageNet
* Used to improve computation parallelism
† Used as a ping-pong buffer, i.e. for simultaneous computations and data transfer
‡ Custom dataset

Table 3.1: Summary of the described LSTM implementations on FPGA

In conclusion, when implementing LSTM networks on FPGA, memory storage of the weights

and the input pairs is one of the limiting factors for the achieved performance. To overcome this,

some proposals opt for pre-processing the weight values, by performing pruning or quantisation

to reduce the size of the input pairs and weight matrices in memory. As for the storage itself,

some papers opt to store the values on-chip, while others opt to store all values off-chip, and

5The authors used a Intel Xeon E5-2665 CPU and a TITAN X Pascal GPU.

22 State of the Art

then transferring them to the memory in the fabric on-the-go. In several instances, double-buffer

techniques are used to overlap data transfer with computation operations to avoid large latencies.

Regarding weight pruning, it is a commonly-used technique both for FPGAs and for other

platforms to achieve good predictions with less memory and fewer computations. Additionally,

these techniques may be used on top of other architectural optimisations. Nevertheless, it com-

monly happens that pruning techniques do not take into consideration the influence of each weight

in the final result, which may lead to removal of important values, and as a result to performance

degradation of the network. Thus, pruning should be tailored depending on the network to be im-

plemented. Besides this, it is necessary to consider the implications of using pruning on hardware

due to its greater implementation complexity. For instance, in many cases weight pruning leads

to random memory accesses, which are slower, and may require additional memory to store the

positions corresponding to the valid weights after pruning. Because the scope of this work focuses

on a general LSTM implementation, pruning techniques will not be considered.

With respect to architectural improvements, many solutions use double-buffer techniques to

speed up network performance. Because of their usefulness, double-buffers will be used through-

out this work.

Batching (i.e. forming a bundle of input pairs) is also commonly used, because it enables

greater weight reuse, thus leading to fewer accesses to memory. Nevertheless, most techniques can

only use batching to a limited extent, because weight matrices are usually fully fetched alongside

one of its dimensions. This approach has two issues. First, it uses a significant amount of memory,

which immediately limits the number of input pair values that can be batched to memory. Second,

fully fetching a matrix in any of its dimensions requires keeping more temporary accumulators

used for storing the results of the matrix-vector multiplications between the weight matrices and

the input pairs without increasing system parallelism.

As for data representation, the fixed-point proposals mentioned in this chapter do not specify

the position of decimal place, or the behaviour of the network when overflow occurs. Changing

any of these parameters might have severe implications on the accuracy of the network.

Another important aspect consists of the limitations of the networks that can be used in these

accelerators. For the accelerators in Table 3.1 that solely use on-chip storage, restrictions in terms

of network size and input pair values will always be high because of the limited memory available

inside an FPGA, even if reconfigurability is allowed. As for the off-chip variants, little is said

about the scalability of the network except for Que et. al [26], who mention as further work the

automatisation of the architecture to enable rapid development of new designs.

Additionally, most LSTM network implementations on FPGA only focus on inference. This

happens for two reasons. First, the process of inference is composed mostly of matrix multipli-

cations, which can be highly parallelised, and are ideal for implementing on an FPGA. Second,

previous training implementations generally show poor performance. This happens because, when

using fixed-point operators, the computed deltas contain small errors that accumulate during train-

ing. While implementing a floating-point design could be a solution, it would, at the present

moment, require a large amount of resources in the fabric.

Chapter 4

Proposed Architecture

This section describes the architecture of the accelerator proposed in this work. Section 4.1 offers

a high-level overview of the most relevant components of the system. Section 4.2 introduces with

more detail the building blocks of the accelerator, namely initialisation, buffering, computation,

and auxiliary blocks.

4.1 Overview

4.1.1 Description

The proposed FPGA accelerator consists of a hardware implementation of a single LSTM cell,

followed by a fully connected layer for dimensionality reduction. Figure 4.1 depicts the complete

architecture of the LSTM accelerator.

The accelerator was developed for usage with a network with arbitrary size. This means that

using a set of input pairs with larger size than that available in on-chip memory is possible, since

main memory storage is provided outside the reconfigurable fabric. To optimise data access,

the accelerator performs buffering and computation operations in parallel. For this purpose, the

accelerator uses a double-buffering technique that stores the input pairs and weight matrices of

the current state on-chip, which enable fast access during computations, while simultaneously

buffering the values from off-chip memory to be used in the next computation iteration.

The accelerator uses fixed-point arithmetic in its architecture. While still providing good re-

sults, this approach results in less computational resources and provides lower latency on FPGAs.

Additionally, the bit-width of the variables can be tuned for input pairs, weight matrices, hidden

and cell states, and output values. This can be further used to reduce computational power (i.e.

by using a maximum of 18 bits, only a single DSP is needed), and memory resources, with the

potential of enabling faster manipulation of large networks.

23

24 Proposed Architecture
ls

tm fo
r e

ac
h

ba
tc

h:

fo
r e

ac
h

hi
dd

en
 la

ye
r b

lo
ck

:

fo
r e

ac
h

fu
lly

 c
on

ne
ct

ed
 la

ye
r o

ut
pu

t a
rr

ay
 in

 fu
lly

 c
on

ne
ct

ed
 la

ye
r o

ut
pu

t b
lo

ck
:

bu
ffe

r n
ex

t b
lo

ck
 o

f c
ur

re
nt

 in
pu

t p
ai

r b
at

ch

bu
ffe

r n
ex

t w
ei

gh
t m

at
ric

es
 b

lo
ck

s f
or

 in
pu

t
an

d
hi

dd
en

 st
at

e

bu
ffe

r n
ex

t f
ul

ly
 c

on
ne

ct
ed

 la
ye

r w
ei

gh
ts

m
at

rix
 b

lo
ck

st
ar

t a
cc

um
ul

at
or

 b
lo

ck
s w

ith
 b

ia
s v

al
ue

s

fo
r e

ac
h

ac
cu

m
ul

at
ed

 F
IZ

O
 v

al
ue

s b
lo

ck
 in

 a
cc

um
ul

at
or

 b
lo

ck
:

fo
r e

ac
h

in
pu

t p
ai

r b
lo

ck
:

fo
r e

ac
h

in
pu

t p
ai

r i
n

ba
tc

h:

re
pe

at
 (I

np
ut

D
im

 /
B

lo
ck

D
im

) t
im

es

re
pe

at
 (H

id
de

nD
im

 /
B

lo
ck

D
im

) t
im

es

re
pe

at
 (n

Sa
m

pl
es

 /
B

at
ch

Si
ze

) t
im

es

bu
ffe

r f
irs

t b
lo

ck
 o

f f
irs

t i
np

ut
pa

ir
ba

tc
h

bu
ffe

r f
irs

t w
ei

gh
t m

at
ric

es
bl

oc
ks

 fo
r i

np
ut

 a
nd

 h
id

de
n

st
at

e
bu

ffe
r f

irs
t f

ul
ly

 c
on

ne
ct

ed
 la

ye
r

w
ei

gh
ts

 m
at

rix
 b

lo
ck

st
ar

t a
cc

um
ul

at
or

 b
lo

ck
s w

ith
bi

as
 v

al
ue

s
st

ar
t f

ul
ly

 c
on

ne
ct

ed
 la

ye
r

ou
tp

ut
s w

ith
 b

ia
s v

al
ue

s
st

ar
t h

id
de

n
an

d
ce

ll
st

at
es

 w
ith

G
au

ss
ia

n
ps

eu
do

-r
an

do
m

 v
al

ue
s

da
ta

 tr
an

sf
er

 fr
om

 o
ff-

ch
ip

 m
em

or
y

fo
r e

ac
h

va
lu

e
in

 in
pu

t p
ai

r b
lo

ck
:

co
m

pu
te

 p
ar

tia
l v

al
ue

s o
f F

IZ
O

 g
at

es
 fo

r a
 m

at
ric

es
bl

oc
k

an
d

st
or

e
in

 in
pu

t p
ai

r a
cc

um
ul

at
or

 b
lo

ck
s

fo
r e

ac
h

va
lu

e
in

 h
id

de
n

st
at

e
ar

ra
y:

co
m

pu
te

 p
ar

tia
l v

al
ue

s o
f F

IZ
O

 g
at

es
 fo

r a
m

at
ric

es
 b

lo
ck

 a
nd

 st
or

e
in

 h
id

de
n

st
at

e
ac

cu
m

ul
at

or
 b

lo
ck

s

bu
ffe

r n
ex

t b
lo

ck
 o

f c
ur

re
nt

 in
pu

t
pa

ir
ba

tc
h

bu
ffe

r n
ex

t w
ei

gh
t m

at
ric

es
 b

lo
ck

s
fo

r i
np

ut
 a

nd
 h

id
de

n
st

at
e

su
m

 in
pu

t p
ai

r a
nd

 h
id

de
n

st
at

e
ac

cu
m

ul
at

or
s a

nd
 o

bt
ai

n
FI

ZO
 g

at
e

va
lu

es

co
m

pu
te

 h
id

de
n

an
d

ce
ll

st
at

es
 c

or
re

sp
on

di
ng

 to
 th

e
FI

ZO
 g

at
e

va
lu

es
 ju

st
 c

om
pu

te
d

co
m

pu
te

 p
ar

tia
l L

ST
M

 o
ut

pu
t c

om
po

ne
nt

 fr
om

 th
e

co
m

pu
te

d
hi

dd
en

 st
at

e
an

d
st

or
e

in
 fu

lly
 c

on
ne

ct
ed

 la
ye

r o
ut

pu
t

re
pe

at
 fo

r a
ll

FI
ZO

 a
cc

um
ul

at
or

s i
n

ba
tc

h

re
pe

at
 fo

r a
ll

ou
tp

ut
 a

cc
um

ul
at

or
s i

n
ba

tc
h

co
m

pu
te

 in
de

x
of

 m
ax

im
um

 v
al

ue

bu
ffe

r f
irs

t b
lo

ck
 o

f n
ex

t i
np

ut
 p

ai
r b

at
ch

bu
ffe

r f
irs

t w
ei

gh
t m

at
ric

es
 b

lo
ck

s f
or

 in
pu

t a
nd

 h
id

de
n

st
at

e

bu
ffe

r f
irs

t f
ul

ly
 c

on
ne

ct
ed

 la
ye

r w
ei

gh
ts

 m
at

rix
 b

lo
ck

st
ar

t a
cc

um
ul

at
or

 b
lo

ck
s w

ith
 b

ia
s v

al
ue

s
st

ar
t f

ul
ly

 c
on

ne
ct

ed
 la

ye
r o

ut
pu

ts
 w

ith
 b

ia
s v

al
ue

s

da
ta

 tr
an

sf
er

 fr
om

 o
ff-

ch
ip

 m
em

or
y

da
ta

 tr
an

sf
er

 fr
om

 o
ff-

ch
ip

 m
em

or
y

da
ta

 tr
an

sf
er

 fr
om

 o
ff-

ch
ip

 m
em

or
y

da
ta

 tr
an

sf
er

 fr
om

 o
ff-

ch
ip

 m
em

or
y

pipelined

pipelined

Figure 4.1: High-level architecture of the LSTM accelerator

4.1 Overview 25

Consistent with the reconfigurable capability of FPGAs, this accelerator makes use of C++

templates to allow effortless specification of its main parameters, with an example presented in

Listing 4.1.

The parameters can be divided into the following categories:

• Network dimensions: refers to the input, hidden, and output dimensions of the network.

This allows effortless generation of different networks;

• Batch and block sizes: refers, respectively, to the number of input pairs to be simulta-

neously processed by the accelerator, and the number of values from each input pair in a

batch to be processed in one iteration. These parameters define the core functionality of the

architecture, because they enable weight and input pair reuse;

• Data types: refers to the bit-width and integer-part width of input pairs, weight matrices,

hidden and cell states, and output values.

// Defines network dimensions

#define nSamples 500

#define InputDim 784

#define HiddenDim 128

#define OutputDim 10

// Defines batch and block sizes

#define BatchSize 500

#define BlockSize 64

// Defines length for data types

#define WidthInput 18

#define IntInput 2

#define WidthHidden 14

#define IntHidden 6

#define WidthMem 14

#define IntMem 6

#define WidthCalc 14

#define IntCalc 6

#define WidthOut 4

Listing 4.1: Architecture parameters with example values

4.1.2 Matrix computations

The core of the architecture consists of the strategy used to perform matrix computations. In an

effort to perform data re-use when possible, a block-batching strategy with similarities to the one

described in [26] was used.

26 Proposed Architecture

This block-batching technique consists of using a partial number of input pairs, which are

bundled in a batch. With this, access to off-chip memory is optimised. In turn, each buffered input

pair is only partially fetched from memory, and the partial array is multiplied by the partial forget,

input, update, and output weight matrix blocks. These multiplications are performed along the

row of both the input pair matrix, which contains all input pair values, and the weight matrices, as

depicted in Figure 4.2.

nS
am

pl
es

B
at

ch
Si

ze

InputDim

BlockDim

(multiple times)

(a) input pair batch matrix traversal

H
id
de
nD

imB
lo
ck
D
im

InputDim

BlockDim

(b) weight matrices traversal

Figure 4.2: Matrix traversal used in the block-batching technique

The computation results are stored in accumulators storing the temporary values for the input

pair components of the forget, input, update, and output gates, which, after a full pass through the

weight matrices rows, are used in the sigmoid and hyperbolic tangent functions to determine their

value for each input pair. The computations are performed in a pipeline. Upon finishing the gate

computations, the partial hidden and cell state arrays that were just computed for the input pair are

ready to be used by the next input pair.

Unlike other solutions, the hidden state component is not computed for each input pair. In-

stead, a single hidden state array is maintained, which is used by all input pairs to compute the

hidden state component of the forget, input, update, and output gates. For this reason, this can be

considered a batch-stateful network1, as it only stores the previous state of a whole batch. This

enables the system to perform parallel computations for both the input pairs and the hidden state.

In order to save BRAM memory, only a single hidden and cell state array are maintained for

the whole system. However, before being overwritten by the hidden and cell states of a new input

pair, all hidden state values are used by the fully connected layer to compute their corresponding

component on the output values, which are then, similarly to the computation results of the LSTM

layer, stored in accumulators. Moreover, parallelisation is achieved, as each set of partial gate,

hidden and cell state values of each input pair are computed in a pipeline.

It is also worth mentioning with more detail how the buffering and computation operations are

performed at a higher level. First, both a batch of input pairs and a block of the weight matrices

are traversed along their columns. Then, the next block of rows of the weight matrices is buffered,

whereas the input pair batch is buffered again from the beginning. This means that the input

1Distinction between stateful and stateless networks is made in subsection 2.3.2.

4.1 Overview 27

pairs in a batch need to be rebuffered as many times as the number of individual block weight

matrices, and it is not possible to reuse this data. Nevertheless, this appears to be the most sensible

option. It not only enables the reuse of weights, but also the proper functioning of the system while

storing only a fraction of the temporary accumulators (and, as a consequence, only a fraction of

the BRAM) needed to compute the gates of the network (when the matrix is fully traversed along

its columns, some components for computing the gates are fully calculated, and can immediately

be used to compute the hidden state and the fully connected layer output).

4.1.3 Fixed-Point Design

The accelerator uses a fixed-point design for its internal computations. To perform this, the

ap_fixed.h library provided by Vivado HLS was used.

The parameters W and I described in subsection 2.4.3 should be defined in accordance with

the needs of the values to be fed into the accelerator. For this work, the parameter O is also used

so that the values saturate when its maximum representation is exceeded. Despite the resulting

increase in logic, this enables the circuit to avoid value overflow, which could completely alter the

results in the circuit and eliminate their validity, making it possible to achieve good performance

with smaller world bit-widths W.

Because the accelerator outputs the final value as an integer, the ap_int.h library provided

by Vivado HLS was also used. Thus, it is possible to define only the bit length that is strictly

needed to provide a valid output.

4.1.4 Coding Structure

The synthesised code contains the following types of modules:

• Initialisation: corresponds to the instantiation of all local variables (e.g. temporary vari-

ables, accumulators, buffers) that will be mapped to registers or BRAMs;

• Buffering blocks: correspond to all blocks that fetch data from DDR into the BRAM mem-

ory of the FPGA;

• Computation blocks: correspond to all blocks that perform computations (i.e. calculations

related with the inputs xt and the hidden state ht , as well as the final computations for the

output layer).

The blocks mentioned above are implemented in HLS as C++ functions, which work as a

building block, and allow for a clear separation between the different modules. This separation

also enables HLS to more easily check for data dependencies, and parallelise the execution of the

different modules on the FPGA.

28 Proposed Architecture

4.2 Constituent Modules

4.2.1 Initialisation

In Vivado HLS, BRAM is automatically used by explicitly declaring arrays in C++, so this mecha-

nism was used to instantiate all arrays. Furthermore, single variables are stored in registers. Below

follow the instantiated variables:

• Hidden and cell state arrays, h and C;

• Accumulator for the outputs of the fully connected layer, L: stores the output of the fully

accumulated layer for all input pairs in a batch. It uses the ARRAY_PARTITION directive;

• Buffer for input pairs, X: stores a block of a batch of input pairs. Double-buffers2 are

used, and the ARRAY_RESHAPE directive is applied along the rows;

• Buffers for the gate weight matrices corresponding to the input pairs, Wi f , Wii, Wiz

and Wio: store a block of weight matrices used to compute the components of the input

pairs. Double-buffers are used, and the ARRAY_RESHAPE directive is applied along the

rows;

• Buffers for the gate weight matrices corresponding to the hidden state, Wh f , Whi, Whz,
and Who: store a block of weight matrices used to compute the components of the input

pairs. Double-buffers are used;

• Accumulator matrices tmp_f_i, tmp_i_i, tmp_z_i, and tmp_o_i: accumulate the input

pair component of the values used to compute the gates. The ARRAY_PARTITION directive

is applied along the columns;

• Accumulator arrays tmp_f_h, tmp_i_h, tmp_z_h, and tmp_o_h: accumulate the hidden

state component of the values used to compute the gates.

As can be seen, array partition and reshaping occurs in a number of these variables. This

was done to speed up the execution of the algorithm by taking full advantage of loop pipelining.

Specifically, all variables needed for the computation of the partial results corresponding to the

input pairs are either partitioned or reshaped, in a cyclic manner, with a factor of 16. This value

was kept relatively low so as not to result in overall performance degradation (reshaping requires

a greater output bit-width, which is achieved at the expense of a lower frequency of operation for

the BRAMs). Furthermore, the dimension in which the pragmas are used was chosen considering

the way the memory is accessed in the computational blocks in subsection 4.2.3.

4.2.2 Buffering Blocks

The following buffering blocks are instantiated by the accelerator:

2In Vivado HLS terminology, this is often called a ping-pong buffer.

4.2 Constituent Modules 29

• Buffer_X_Batch: inserts a batch of input pairs xt into the buffer

• Buffer_Wi_Blocks: inserts a block of the Wi f , Wii, Wiz, and Wio matrices into the buffer,

which are used for computing the input pair component of the forget, input, update, and

output gates

• Buffer_Wh_Blocks: inserts a block of the Wi f , Wii, Wiz, and Wio matrices into the buffer,

which are used for computing the hidden state component of the forget, input, update, and

output gates

• Init_tmp_Block: starts the accumulators for both the input pair and hidden state compo-

nents with the corresponding bias values

• Init_L_Block: starts the output value accumulator with the corresponding bias values

The aforementioned blocks are optimised for usage with an AXI Master interface. This proto-

col possesses the desired characteristics for buffering large amounts of data from external memory,

as it is capable of performing sequential access bursts. According to [9], this requires any buffer-

ing block to use a for loop, and to use the pragma PIPELINE to allow for sequential bursts. Both

optimisations have been implemented in all buffering blocks.

The INLINE off pragma was also used in all blocks. This enables Vivado HLS to synthesise

each function as a single IP block, allowing for code optimisation and, most importantly, paral-

lelising the execution of the blocks.

4.2.3 Computation Blocks

Below follows a description of all the building blocks used for computation. For simplification,

the computation of the values for the forget ft , input it , update zt , and output ot gates will be

abbreviated to FIZO.

Similar to the buffering blocks, the INLINE off pragma was also used to enable parallelisation.

LSTM_Calc_Batch_X

Its execution is described by Algorithm 2. It computes the partial values of the FIZO gates cor-

responding to the input pairs xt , and mainly consists of a module that fetches the buffered input

pair values and weights associated with the input pairs. Summarily, it computes the multiplication

between each input pair xt and the weight matrices Wi for all gates in parallel.

Two HLS pragmas are used. PIPELINE enables pipelining for the second-level loop in order

to speed up its execution, while also taking advantage of the reshaped and partitioned variables

described in subsection 4.2.1. Using the PIPELINE directive implies, as discussed in subsec-

tion 2.4.2, that the loops below the pipeline are fully unrolled, which enables further parallelism,

and eliminates the need of invoking the UNROLL pragma. LOOP_FLATTEN flattens the second-

level loop for further scheduling optimisations.

30 Proposed Architecture

Algorithm 2 LSTM_Calc_Batch_X
Variables: Input pairs matrix x

Weight matrices W f , Wi, Wz, Wo

Accumulators tmp_f, tmp_i, tmp_z, tmp_o

for i← 1 to BatchSize do
for j← 1 to BlockSize do

#pragma HLS PIPELINE
#pragma HLS LOOP_FLATTEN

x_val← xi j

for k← 1 to BlockSize do
tmp_fik += x_val ·W fk j

tmp_iik += x_val ·Wik j

tmp_zik += x_val ·Wzk j

tmp_oik += x_val ·Wok j

end for
end for

end for

LSTM_Calc_Batch_h

Its execution is described by Algorithm 3. It computes the partial values of the FIZO gates cor-

responding to the hidden state ht , and mainly consists of a module that accesses the hidden state

values and weights associated it. Summarily, it computes the multiplication between the hidden

state ht and the weight matrices Wx for all gates in parallel.

Algorithm 3 LSTM_Calc_Batch_h
Variables: Hidden state hi

Weight matrices W fk j , Wik j , Wzk j , Wok j

Accumulators tmp_fik, tmp_iik, tmp_zik, tmp_oik

for i← 1 to BlockSize do
h_val← hi

for j← 1 to BlockSize do
tmp_fik += h_val ·W fk j

tmp_iik += h_val ·Wik j

tmp_zik += h_val ·Wzk j

tmp_oik += h_val ·Wok j

end for
end for

In this case, no pragma is used. Although the PIPELINE pragma could be used for loop

pipelining, it would require more resources with no increase in overall system performance, as

this block does not create a bottleneck in the system.

4.2 Constituent Modules 31

LSTM_FIZO_Logistic_Batch

Its execution is described by Algorithm 4. It computes the final values of a block of FIZO gates,

for each input pair xt in the batch, and the new hidden ht and cell Ct states. It first sums the input

and hidden components for each component of the FIZO gates in parallel, and then uses these

values to compute the corresponding hidden and cell states. Afterwards, a partial computation is

performed for the output values of each input pair in the batch.

Algorithm 4 LSTM_FIZO_Logistic_Batch
Variables: Hidden state h j

Cell state C j

Accumulators tmp_f_iik, tmp_i_iik, tmp_z_iik, tmp_o_iik
Accumulators tmp_f_hik, tmp_i_hik, tmp_z_hik, tmp_o_hik
Weight matrix Wlk j

Outputs Lik

#pragma HLS ARRAY_PARTITION variable=h complete dim=1
#pragma HLS ARRAY_PARTITION variable=C complete dim=1
for i← 1 to BatchSize do

for j← 1 to BlockSize do
#pragma HLS PIPELINE

tmp_h← h j

tmp_c←C j

tmp_f← σ(tmp_f_ii j + tmp_f_h j)
tmp_i← σ(tmp_i_ii j + tmp_i_h j)
tmp_z← tanh(tmp_z_ii j + tmp_z_h j)
tmp_o← σ(tmp_o_ii j + tmp_o_h j)

tmp_c← tmp_f · tmp_c+ tmp_i · tmp_z
tmp_h← tmp_o · tanh(tmp_c)

for k← 1 to OutputSize do
Lik += tmp_h ·Wlk j

end for

h j← tmp_h
C j← tmp_c

end for
end for

With this architecture, it was possible to minimise the amount of registers and BRAM blocks

required by this block. This can be justified as the final values for every FIZO gate are calculated

on-the-fly and then used to output the new values for the hidden and cell states. Moreover, the

partial computations for the fully connected layer at the output are performed, which uses the

values just computed for the hidden state, thus eliminating the need of storing them.

32 Proposed Architecture

Moreover, a number of pragmas are used. PIPELINE enables pipelining for the second-level

loop, with the purpose of performing multiple operations over different hidden state values for the

same input pair. Furthermore, just as in LSTM_Calc_Batch_X, this implies that the loops below

the pipelined loop are fully unrolled. ARRAY_PARTITION is then used to partition the hidden and

cell state arrays3 completely, so that each array value is instead stored in a register for increased

performance.

LSTM_Logistic_Calc

Serves as a wrapper for the max function, which computes, for each input pair xt , the index of

the maximum value of the output array. It returns the index of the output value with maximum

probability.

4.2.4 Auxiliary Blocks

4.2.4.1 Gaussian Pseudo-Random Number Generator

Because both the hidden state ht and the cell state Ct arrays need to be randomly generated when

the LSTM is initialised, it was necessary to implement a module that generated random values.

Specifically, networks should preferably be initialised using Gaussian random values.

One immediate solution consists of generating two random numbers following a uniform dis-

tribution and then perform a Box-Müller transformation [27]. However, this would require a large

amount of resources on fabric, and was thus discarded.

As a solution, a Gaussian pseudo-random number generator (GPRNG) using linear feedback

shift registers (LFSRs) was instantiated. The chosen solution consists of the 4-LFSR GPRNG

presented in [28], as it guarantees adequate statistical properties. Its operation principle rests on

the central limit theorem, according to which a Gaussian distribution can be obtained through the

addition of a sufficiently large number of uniformly distributed random values.

The 4-LFSR GPRNG is depicted in Figure 4.3. It uses four Fibonacci LFSR instances to

implement the PRNGs, which generate new values each clock cycle. For feeding the LFSRs, a

maximum-length polynomial of order 16 was chosen: x15+x14+x12+x3. Each LFSR is initialised

by a unique seed that is sent as an input to the module. The values generated by the LFSRs are

then put into a two-level tree in order to transform the uniformly-distributed numbers, by means

of sums and bit shifts, into a single number with a Gaussian distribution.

3The hidden and cell state arrays used by this function correspond to a partial, buffered copy of the hidden and
cell state arrays in the global system. The buffering and writing operations for those global arrays were omitted for
simplicity.

4.2 Constituent Modules 33

PRNG

PRNG

PRNG

PRNG

>>

>>

>>

>>

+

+

>>

>>

+ output>>

Figure 4.3: Architecture of the 4-LFSR GPRNG [29]

4.2.4.2 Activation functions

In compliance with the aforementioned LSTM formulas in Equation 2.7, the sigmoid and hyper-

bolic tangent functions were implemented. Their implementation on hardware can be somehow

convoluted due to the use of exponentiation and division4.

There are a number of possible solutions for this. Vivado HLS provides a CORDIC library

which implements the hyperbolic tangent function, but this is an inefficient solution because it was

designed to perform well for sequential calculations (where each computed value differs from the

previous one by a small delta), whereas in this case the values differ arbitrarily from each other.

It is possible to use a look-up table, however, because a large number of input and output value

pairs is required, it would be expensive in terms of memory. Polynomial approximation is also an

option, but it may not be well translated to fixed-point notation.

With both performance and resource utilisation in mind, the adopted solution consists of a

piecewise linear approximation (PLAN) implementation [30], which has been recognised to be an

efficient solution for FPGAs [31]. Its architecture is depicted in Figure 4.4. This algorithm first

checks the absolute value of the input, and then performs a bit-wise shift operation followed by

a bias term. The final result is then computed depending on the sign of the input, thereby taking

advantage of the symmetry of the function.

sign

magnitude
comparator

>> + outputoutput
calculatormodinput

Figure 4.4: Architecture of the PLAN algorithm

Although PLAN was originally conceived for the sigmoid function, a similar procedure can

be used to implement the hyperbolic tangent, as it can be viewed as a rescaled sigmoid, as shown

4See Equation 2.3-2.4.

34 Proposed Architecture

in Equation 4.1.

tanh(x) = 2 ·σ(2x)−1 (4.1)

Figure 4.5 shows the simulated results in Matlab.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x

0.5

0.6

0.7

0.8

0.9

1

si
g
m

o
id

Sigmoid functions

sigmoid

approximated sigmoid

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x

0

0.005

0.01

0.015

0.02

er
ro

r

Approximated sigmoid error

(a) sigmoid function

0 0.5 1 1.5 2 2.5

x

0

0.2

0.4

0.6

0.8

1

ta
n
h

Tanh functions

tanh

approximated tanh

0 0.5 1 1.5 2 2.5

x

0

0.01

0.02

0.03

0.04

er
ro

r

Approximated tanh error

(b) hyperbolic tangent function

Figure 4.5: Comparison of the original functions with PLAN, considering a decimal precision of
16 bits, and its corresponding error (due to symmetry, only positive values are shown)

From the results, it can be concluded that the waveforms and the corresponding error are

identical for both functions, with the error in the hyperbolic tangent being exactly twice as large

in magnitude due to the rescaling factor in Equation 4.1. Both functions report a tracking error

below 2% in comparison with the signal excursion, while showing an overall smooth behaviour

with few discontinuities, thus proving PLAN to be a good choice for implementation.

4.3 Summary

In this chapter, the proposed accelerator architecture was described. The overview in Section 4.1

presented the most important aspects of the accelerator, namely its description, the block-batching

architecture used for matrix multiplication, the fixed-point design used for internal computations,

and the coding structure used. The constituent modules were explored in Section 4.2, where it was

possible to further explore both the arrangement of the variables in memory and the optimisations

performed during the computation of the output values of the LSTM.

Chapter 5

Results

The design presented in Chapter 4 was synthesised using Vivado HLS 2019.1, and implemented

on a board model using Vivado 2019.1. Section 5.1 starts by explaining how the architecture

was validated during simulation. Section 5.2 explores the synthesis procedures and performs a

design-space exploration for a combination of batch and block sizes. Section 5.3 presents the

accuracy results that can be obtained with the system using the MNIST dataset, with a focus on its

variation for different word bit-widths for its data types. Section 5.4 describes the implementation

performed on the board model.

5.1 Simulation Validation

The simulation validation of the accelerator was performed in two separate steps: C Simulation

and C/RTL Cosimulation.

First, the C Simulation was performed in Vivado HLS, which involved the creation of a C++

testbench file. This file loaded the input pair values and the weight matrices from binary files into

local arrays, which were then accessed (and buffered) by the accelerator. This file also compared

the inferred results against the expected results stored in main memory. Because of its ability of

obtaining results identical to those of C/RTL Co-simulation in a fraction of the time, it was used

for obtaining the results observed in Section 5.3.

After this, C/RTL Cosimulation was performed. This simulation also uses the C++ testbench

to load the necessary values. However, the simulation now uses a circuit that was previously

translated from C++ to HDL, which is then used to generate a RTL circuit. Thus, this simulation

is cycle-accurate and provides a close representation of the final behaviour of the accelerator on the

board model. This means that the function that was previously simulated in C++ is now simulated

using RTL. A screenshot depicting some of the registered waveforms is presented in Appendix C.

35

36 Results

5.2 Synthesis Results

The proposed network was synthesised for a Xilinx Virtex-7 XC7VX485T FPGA. For assessing

the impact of parameter tuning on the performance of the block-batching technique, which was

discussed in subsection 4.1.2, a network was successively synthesised for different batch, Sbatch,

and block, Sblock, sizes.

The network parameters used for this network are presented in Table 5.1. The hidden dimen-

sion was chosen to enable comparison between a wider range of Sblock values, whereas the number

of samples and the input dimension were chosen to suit the needs of the MNIST dataset [32] that

will be used in Section 5.3.

nSamples InputDim HiddenDim OutputDim
10000 784 128 10

(a) Network dimensions

Input Hidden Mem Calc Out
<18,2> <14,6> <14,6> <14,6> <4>

(b) Word and integer-part <W,I> bit-widths used (Out only uses <W>)

Table 5.1: Network parameters used for studying the effects of block-batching

To better understand the impact of varying Sbatch and Sblock in performance, latency per in-

ference was calculated for a number of {Sbatch, Sblock} pairs, with larger latency values meaning

worse performance. It is shown in Equation 5.1, and is obtained by dividing the latency (in clock

cycles) of the accelerator by the product of the number of processed samples with the frequency.

latency per inference =
latency

nSamples · f
(5.1)

The results were obtained from the estimates provided after synthesis in Vivado HLS. For

the circuits tested, it was verified that the synthesis estimates were similar to the results obtained

after C/RTL Cosimulation. The values obtained are presented in Figure 5.1. The correspond-

ing resource utilisation and frequency values for all synthesised architectures are reported in Ap-

pendix B.

It is concluded that increasing both Sbatch and Sblock will result in performance improvements.

In addition, resource utilisation, apart from BRAM usage, is virtually independent from Sbatch.

It was also verified that the estimated frequency (f = 114.29MHz) was equal for all synthesised

architectures. Resource utilisation for different Sblock values is presented in Table 5.2.

Significant improvements occur when increasing Sblock from 16 to 32. This happens because

of the arrays storing the temporary accumulators during input pair multiplications. These are

partitioned with a factor of 16 (see subsection 4.2.1) to dual-port BRAM memories. Because

of this, for Sblock = 16, only one of the ports of each partitioned array is used for reading data,

whereas for Sblock = 32 (and for any value above that) both ports are used. This explains the

5.2 Synthesis Results 37

0 20 40 60 80 100 120 140

S
block

150

200

250

300

350
L

at
en

cy
 p

er
 i

n
fe

re
n

ce
 (

µ
s)

125

250

500

1000

2000

S
batch

(a) variation in latency per inference

0 20 40 60 80 100 120 140

S
block

0

200

400

600

800

1000

1200

1400

1600

1800

N
u

m
b

e
r

o
f

B
R

A
M

s

125

250

500

1000

2000

S
batch

(b) variation in number of BRAMs

Figure 5.1: Impact of Sbatch and Sblock variation in latency and BRAM usage on the simulated
accelerator

Sblock DSP48E FF LUT
16 83 (2.96%) 15048 (2.48%) 78037 (25.70%)
32 147 (5.25%) 18663 (3.07%) 88405 (29.12%)
64 275 (9.82%) 23860 (3.93%) 104608 (34.46%)

128 531 (18.96%) 42638 (7.02%) 135145 (44.51%)
Table 5.2: Resource utilisation results for different Sblock values (Sbatch = 500) for the simulated
accelerator

diminishing performance improvements for larger Sblock values, which occur due to to the addition

of more levels of pipeline on the LSTM_Calc_Batch_X module. The minimum IIs of the pipelines

achieved by Vivado HLS for Sblock = {16,32,64,128} are {3,3,6,12}, respectively.

A number of improvements also occur when changing Sbatch from 125 to 250, while using the

same BRAM resources. This likely happens because the amount of data buffered by the system is

insufficient to fill the BRAMs (thus not fully using those resources), while increasing the number

of accesses to off-chip memory. Notable improvements still occur for Sbatch = 500.

If the need of choosing a balanced solution arises (e.g. the accelerator needs to be syn-

thesised alongside other IP blocks in the fabric), for all values studied, the architecture with

{Sbatch,Sblock}= {500,64} appears to be best option.

Additional Considerations

Tests were also performed using a hidden dimension of 256 while keeping the remaining param-

eters of Table 5.1 equal. It was observed that further increasing Sblock from 128 to 256 actually

resulted in performance degradation, likely due to the additional intermediate computations.

During experimentation, it was also observed that unrolling either the pipeline-level loop or

the top-level loop of the LSTM_Calc_Batch_X module, unlike expected, would result in a perfor-

mance decrease. The lack of performance improvements occurs due to the bottleneck on memory

38 Results

access (with Sblock = 32, all memory ports are busy), whereas the increase in latency is likely due

to more complex routing.

5.3 Accuracy Measurements

5.3.1 Overview

Accuracy measurements were performed over the MNIST dataset. It consists of a database of

images of individual handwritten digits with resolution of 28× 28. The values of each pixel

consist of a value in the interval [0,1]. To process the data using an LSTM network, the digits

were reshaped from a 28×28 matrix to an array of size 784. The arrays were then fed as inputs.

The hidden state of the network can be set to an arbitrary number, however it’s important to

note that a larger dimension will result in more components of the forget, input, update, and

output layers, which retain more information (thus requiring more off-chip memory for storage)

for correct prediction. The output dimension of the fully connected layer is then set to 10, which

corresponds to the number of digits to be recognised. After passing through a max function, which

captures the index of the output array for each input pair with the largest value, the network outputs

the predicted number.

The LSTM network was trained using an existing software implementation. This led to the

choice of PyTorch, as it provides flexibility for creating the networks using a front-end interface in

Python, a high-level programming language easy to understand, with a back-end implementation

optimised for high performance (C++ with SIMD instructions).

5.3.2 Training

Training of the network for MNIST was performed using PyTorch, with the code used for training

in Appendix A. With this procedure, it is possible to generate a network with an arbitrary hidden

dimension, which defines the granularity (i.e. the number of weights) of the network. The number

of epochs used for training can also be defined, and determines how many passes are performed

through the training set. For accuracy purposes, it is relevant to choose an appropriate number of

epochs: using a small value may result in a network with not enough training (which will provide

poor inference results), whereas a large value will result in a network that is overfitting the training

set (which results in a less robust network that performs worse during real-world usage).

5.3.3 Results

Accuracy measurements were performed for the 10000 elements of the test set of the MNIST

dataset. The network parameters of the LSTM used for this purpose are identical to those of

Table 5.1a, but with the hidden dimension set to 32.

The purpose of these measurements is to understand the impact of changing the word and

integer-part bit-width <W,I> pairs of the variables (except for the input pairs, which are kept

5.3 Accuracy Measurements 39

constant at <18,2>) on the accuracy for different training epochs. The results are presented in

Figure 5.2 and Table 5.3, with PyTorch being used for benchmarking.

0 5 10 15 20 25 30

Number of training epochs

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

PyTorch

<32,16>

<16,7>

<14,6>

<12,5>

<W,I> pairs

Figure 5.2: Network accuracy for the MNIST training set with respect to the number of training
epochs and the <W,I> pairs

Epochs 1 2 3 5 10 15 20 25 30
PyTorch 49.52% 76.52% 71.93% 78.59% 85.69% 93.39% 95.83% 95.05% 96.31%
<32,16> 44.29% 83.03% 74.68% 82.46% 92.22% 92.41% 96.04% 96.42% 96.42%
<16,7> 44.65% 83.28% 75.13% 82.57% 92.26% 92.27% 96.06% 96.4% 96.41%
<14,6> 44.97% 83.46% 75.48% 82.71% 92.18% 90.88% 95.45% 94.2% 94.93%
<12,5> 44.3% 82.32% 75.19% 79.83% 78.4% 76.82% 77.5% 72.16% 76.52%

Table 5.3: Network accuracy for the MNIST training set with respect to the number of training
epochs and the <W,I> pairs

It can be concluded that, for the majority of training epochs, the results on the accelerator

surpass those of PyTorch. The pairs <32,16> and <16,7> show the best performance, whereas

the pair <14,6> registers a maximum degradation of accuracy of 2.2% with 1.14x less memory

resources. Thus, it can be used to obtain reliable results where low latency is required, or where

memory resources are limited. The pair <12,5> shows a marked performance drop and is not a

viable option.

Further testing was performed with the pairs <16,7> and <14,6> while varying the word and

integer-part bit-widths for input, in an effort to further reduce on-chip memory requirements. For

the purpose, a network with a hidden dimension of 32 and 30 training epochs was used. The

results are presented in Figure 5.3.

It is observed that it is also possible to further reduce on-chip memory requirements by 1.29x

in relation to the original bit-width (or by 1.14x in comparison with [18, 20, 26]) by reducing

40 Results

11 12 13 14 15 16 17 18 19

Input pair bit-width <W>

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

A
cc

u
ra

cy
 (

%
)

<16,7>

<14,6>

S
batch

Figure 5.3: Network accuracy for the MNIST training set with respect to the word bit-width <W>
of the input pairs (I = 2)

the bit-width to 14 bits without incurring performance reduction. When tested with a word bit-

width of 12 bits, it was no longer possible to obtain adequate results, resulting in the abrupt drop

observed in Figure 5.3.

Additionally, thanks to its flexibility, this architecture enables increasing the word bit-width W,

which helps to improve performance in networks where larger bit-widths are necessary to obtain

good performance results. This feature is not present in the solutions presented in Table 3.1,

which are limited to a (usually fixed) maximum word bit-width of 16 bits and that, to our best

understanding, do not allow to tune the integer-part bit-width.

5.4 Board Implementation

5.4.1 Overview

The proposed accelerator was implemented on a board model. The implementation was performed

on a Xilinx Virtex-7 VC707 Evaluation Board, which contains the Xilinx Virtex-7 XC7VX485T

FPGA that was used as simulation target in Section 5.2.

Vivado 2019.1 was used for creating the block design that implemented the circuit on fabric,

and its diagram is depicted in Figure 5.4. The most relevant components of the design are described

as follows:

• Microblaze: consists of a soft microprocessor core, implemented on reconfigurable fabric,

that is used to start the accelerator by loading the necessary drivers and the base memory

addresses for accessing the the input pair values, weight matrices, and output values;

• Memory Interface Generator (MIG): provides the memory interface from the Microblaze

and the accelerator to DDR memory;

5.4 Board Implementation 41

ax
i_

tim
er

_0

A
X

I T
im

er

S
_A

X
I

ca
pt

ur
et

rig
0

ca
pt

ur
et

rig
1

ge
ne

ra
te

ou
t0

ge
ne

ra
te

ou
t1

pw
m

0

in
te

rr
up

t

fr
ee

ze

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

dd
r3

_s
dr

am

ls
tm

_t
op

_0

Ls
tm

_t
op

 (
P

re
-P

ro
du

ct
io

n)

s_
ax

i_
C

T
R

L_
B

U
S

m
_a

xi
_L

S
T

M
_P

O
R

T
S

ap
_c

lk

ap
_r

st
_n

in
te

rr
up

t

m
dm

_1

M
ic

ro
B

la
ze

 D
eb

ug
 M

od
ul

e
(M

D
M

)

S
_A

X
I

M
B

D
E

B
U

G
_0

S
_A

X
I_

A
C

LK

S
_A

X
I_

A
R

E
S

E
T

N

In
te

rr
up

t

D
eb

ug
_S

Y
S

_R
st

m
ic

ro
bl

az
e_

0

M
ic

ro
B

la
ze

IN
T

E
R

R
U

P
T

D
LM

B

IL
M

B

M
_A

X
I_

D
P

D
E

B
U

G

C
lk

R
es

et

m
ic

ro
bl

az
e_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

S
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N

S
01

_A
C

LK

S
01

_A
R

E
S

E
T

N

M
02

_A
C

LK

M
02

_A
R

E
S

E
T

N

M
03

_A
C

LK

M
03

_A
R

E
S

E
T

N

m
ic

ro
bl

az
e_

0_
lo

ca
l_

m
em

or
y

D
LM

B

IL
M

B

LM
B

_C
lk

S
Y

S
_R

st

m
ig

_7
se

rie
s_

0

M
em

or
y

In
te

rf
ac

e
G

en
er

at
or

 (
M

IG
 7

 S
er

ie
s)

D
D

R
3

S
_A

X
I

S
Y

S
_C

LK

sy
s_

rs
t

ui
_c

lk
_s

yn
c_

rs
t

ui
_c

lk

ui
_a

dd
n_

cl
k_

0

m
m

cm
_l

oc
ke

d

in
it_

ca
lib

_c
om

pl
et

e

ar
es

et
n

re
se

t

rs
t_

m
ig

_7
se

rie
s_

0_
10

0M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

rs
t_

m
ig

_7
se

rie
s_

0_
20

0M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

sy
s_

di
ff_

cl
oc

k

Figure 5.4: Block design for implementing the proposed accelerator on the VC707 board

42 Results

• Lstm_top: consists of the accelerator module, which interacts with the Microblaze for ini-

tialisation, and with the MIG for performing memory requests directly to DDR (i.e. without

processor intervention);

• AXI Timer: a built-in timer used for performance monitoring;

• AXI Interconnect: an interconnect that performs all the connections between the different

components in the circuit.

After design validation, synthesis and implementation were executed, and the bitstream (i.e.

the data to be sent to the FPGA to generate the design blocks) was generated.

Xilinx SDK was used to verify the behaviour of the accelerator. For this purpose, a testbench

similar to the one used for C Simulation was created. This code compared all output values against

their references, and measured the execution time using the AXI Timer. The input pairs and weight

matrices were passed from a computer to DDR via the JTAG connection. For the tested networks,

it was verified that the accuracy results acquired on-chip were identical to those registered in

simulation.

5.4.2 Results

Similar to the procedure described in Section 5.2, the proposed network was implemented for

a number of {Sbatch, Sblock} pairs. The network parameters are those presented in Table 5.1 to

enable a comparison with the estimated values from synthesis. The latency results correspond to

values measured on-chip by the AXI Timer, whereas the resource utilisation values are fetched

from Vivado, and correspond exclusively to the IP block containing the LSTM accelerator, as seen

in Figure 5.4.

The results obtained are presented in Figure 5.5, with the resource utilisation and frequency

values for all synthesised {Sbatch, Sblock} pairs reported in Appendix B. Resource utilisation for

different Sblock values is presented in Table 5.4.

For the circuits tested, it was verified that resource utilisation and latency per inference exhibit

similar evolution patterns regarding those of the simulated circuit, namely for the evolution of

latency per inference and BRAM usage, for different Sbatch values, with respect to Sblock. As

expected, resource utilisation, apart from BRAM usage, is again virtually independent from Sbatch.

However, it was verified that the actual resource utilisation and latency per inference values

obtained from simulation in Vivado HLS are noticeably different from those obtained from the

board implementation. The number of BRAMs used is reduced by 50%, and resource utilisation

for the remaining parameters is also heavily reduced (e.g. LUT utilisation is reduced by up to

80%). These optimisations are likely a result of a number of optimisations performed by Vivado

during the synthesis, placement, and routing stages.

Additionally, the implemented solution appears to be between 1.68x to 1.87x slower in com-

parison with the simulated accelerator. This is due to a number of reasons. Namely, the usage of

physical DDR memory results in additional delays, which in turn are dependent on how memory

5.4 Board Implementation 43

0 20 40 60 80 100 120 140

S
block

250

300

350

400

450

500

550

600
L

at
en

cy
 p

er
 i

n
fe

re
n

ce
 (

µ
s)

125

250

500

1000

2000

S
batch

(a) variation in latency per inference

0 20 40 60 80 100 120 140

S
block

50

100

150

200

250

300

350

400

450

N
u

m
b

e
r

o
f

B
R

A
M

s

125

250

500

1000

2000

S
batch

(b) variation in number of BRAMs

Figure 5.5: Impact of Sbatch and Sblock variation in latency and BRAM usage on the board imple-
mentation

Sblock DSP48E FF LUT
16 83 (2.96%) 9654 (1.59%) 16197 (5.33%)
32 147 (5.25%) 10044 (1.65%) 19305 (6.36%)
64 275 (9.82%) 12100 (1.99%) 23834 (7.85%)

128 531 (18.96%) 23857 (3.93%) 31462 (10.36%)
Table 5.4: Resource utilisation results for different Sblock values (Sbatch = 500) for the board im-
plementation

is accessed. To the best of our knowledge, accesses are performed using AXI Master and access-

ing the arrays in burst mode, thereby limiting memory access penalties. Furthermore, the physical

interconnects in the board also result in increased transfer times.

5.4.3 Comparison

5.4.3.1 Other Platforms

The proposed network was compared against other hardware platforms. For this purpose, an

LSTM network with the parameters presented in Table 5.1a was implemented on both a desktop

and an embedded CPU, which should be used for similar applications. For the former, an Intel

Core i7-3770 CPU was used, which executed the code in PyTorch mentioned in Section 5.3 on a

single thread. For the latter, a dual-core ARM Cortex-A9 CPU of the Zynq-7000 SoC was used,

which executed the C++ code used to generate the circuit on the FPGA on one of its cores. With

the purpose of performing a fair comparison on the ARM CPU, all buffering operations were

removed, and the compiler flags were set to full optimisation, with automatic usage of SIMD

NEON vectorisation instructions1. The reported latency times do not consider the initial data

1The compiler flags -O3 and -mcpu=cortex-a9 -mfpu=neon -ftree-vectorize-mvectorize-with-
neon-quad were used for the purpose.

44 Results

transfer to DDR memory. The results are presented in Table 5.5.

Platform Desktop Embedded Proposed
Processor Intel Core

i7-3770
ARM
Cortex-A9

Xilinx
Virtex-7
XC7VX485T

Frequency 3.40 GHz 667 MHz 100 MHz
Technology 22 nm 28 nm 28 nm
Memory 8 GB

DDR3
512 MB
DDR3

1 GB
DDR3

Precision 64-bit
floating-point

32-bit
floating-point

14-bit
fixed-point

Latency per
inference

582.54 µs 3080.96 µs 292.47 µs

Table 5.5: Performance comparison against CPU implementations

Compared with the Intel and ARM processors, the proposed solution provides a speed-up of

1.99x and 10.53x, respectively, while providing similar accuracy results.

5.4.3.2 Other Works

A comparison against previous works is shown in Table 5.6. The latency per inference values were

normalised across the different solutions by taking into consideration variations in frequency and

compression ratios.

Paper Wang [18] Cao [20] Wang [22] Rybalkin
[24]

Que [26] Proposed

Device Xilinx
Virtex-7
XC7VX690T

Intel Arria 10
GX1150

Intel Arria 10
SX660

Xilinx Zynq
XCZU7EV

Xilinx Zynq
XC7Z045

Xilinx
Virtex-7
XC7VX485T

Frequency
(MHz)

200 200 200 266 142 100

Memory storage on-chip off-chip off-chip on-chip off-chip off-chip

Data
representation

16-bit
fixed-point

16-bit
fixed-point

8-bit
fixed-point

1-to-8-bit
fixed-point

16-bit
fixed-point

14-bit
fixed-point

Compression
ratio

7.9 8 8 - - -

Network
dimensions*

39, 512, N/A 153, 1500,
512

153, 1024,
N/A

1024, 128,
82

2048, 256,
N/A

784, 128, 10

Latency per
inference
(normalised)

9.8 µs
(154.84 µs)

2.4 µs
(38.4 µs)

23.9 µs
(382.4 µs)

- 610 µs
(866.2 µs)

292.47 µs
(292.47 µs)

* Indicates the input, hidden, and output dimensions. N/A indicates that no fully-connected layer is implemented

Table 5.6: Comparison against previous works

5.4 Board Implementation 45

Concerning the performance results, it is concluded that the proposed accelerator provides a

performance in line with the aforementioned works, when considering the normalised latency per

inference values. Namely, only the works from Wang [18] and Cao [20] report lower values.

Nevertheless, it is important to point out that any comparison should be performed carefully

due to the several differences between implementations. For example, it is expected that solutions

making exclusive use of on-chip memory perform faster due to lower latency. On the other hand,

network dimensions, which heavily influence latency results, are different for each implementa-

tion. Board frequency and compression ratios will also influence the results (despite this, it was

possible to normalise the values regarding these parameters). Additionally, the results will depend

on the board in which the accelerator is implemented, and on the technology (i.e. HDL or HLS)

that describes the circuit.

46 Results

Chapter 6

Conclusions

This work focused on the implementation of an LSTM network on FPGA using HLS tools. By

making use of these tools, it was possible to produce a parametrisable architecture which enables

the effortless specification of the network to be implemented. This also allows synthesising LSTM

accelerators with different network characteristics by modifying a small number of constants in

the source code.

The accelerator implements a block-batching architecture that, together with double-buffering,

is intended to balance the flexibility of using off-chip memory for storage with the advantage of

on-chip memory for fast access during computations. Furthermore, the hidden state is computed

on a per-batch basis, therefore using a batch-stateful LSTM architecture, which unloads the system

from performing additional operations and enabling the computation of the hidden state in parallel

with computations for the input pair. In order to achieve a higher level of parallelism and the reuse

of the elements instantiated on fabric, the implementation of the most computationally-intensive

blocks is performed using pipelines.

Unlike previous works, where the word bit-width is often limited to 16 bits, the proposed

accelerator enables tuning the word bit-width and the integer part bit-width of its internal vari-

ables. This opens up the possibility of using the accelerator for networks that either require higher

precision, or lower precision (i.e. in scenarios where lower precision does not incur in major per-

formance degradation), while keeping the accelerator optimised for the bit-width required. For the

MNIST dataset, it was possible to reduce on-chip memory requirements for both the input pairs

and the weight matrices of up to 1.14x by using the aforementioned strategy, in comparison with

previous works.

Additionally, the proposed accelerator was implemented on a board model, and further perfor-

mance measurements were performed. Speed-ups of 1.99x and 10.53x was registered in compar-

ison with a desktop and an embedded CPU, respectively. The registered performance was in line

with that of previous works.

47

48 Conclusions

Future Work

Further work can be carried in a number of directions. For one, it is possible to further decrease on-

chip memory requirements by exploring pruning techniques for the weight matrices. Additionally,

it is also possible to improve performance by performing pre-processing on datasets, for instance

by clamping values below a threshold to zero, or by skipping multiplication of null input pair

values altogether. Nevertheless, both of these approaches will likely reduce the flexibility of the

accelerator in question, as well as requiring modifications to its architecture.

Besides this, additional work can be performed on network binarisation, which consists of

using binary values instead of fixed-point weights. This can be highly efficient on hardware, as

it could enable the use of shift-based operations, thereby eliminating the need of more complex

matrix multiplication operations. This strategy is likely dependent on the characteristics of the

dataset to be inferred.

Appendix A

Network Training in PyTorch

1 import argparse

2 import numpy as np

3 import torch

4 import torch.nn as nn

5 import torch.optim as optim

6 from torchvision import datasets, transforms

7

8 # Outputs variables to files with fixed-point precision

9 def export_weights(tensor, name, db, netmode, decimal_bits, mode = ’default’):

10 # Defines exponent for desired precision

11 precision = (2 ** decimal_bits)

12

13 # Performs default treatment

14 if (mode == ’default’):

15 (tensor.detach().numpy() * precision).astype(’<u4’).tofile("../../model/"

+ db + "/" + netmode + "/bin/" + str(num_epochs) + "/" + str(

decimal_bits) + "/" + name + ".bin")

16 with open("../../model/" + db + "/" + netmode + "/csv/" + name + ".csv",

"w") as f:

17 np.savetxt(fname = f, X = tensor.detach().numpy(), delimiter = ’;’)

18

19 # Splits LSTM matrices into their specific weights

20 elif (mode == ’split’):

21 # LSTM matrices use a special splitting treatment

22 if (name.find(’lstm’) == 0):

23

24 # Chunks tensor and attribute appropriate naming

25 num_chunks = 4

26 tensor_chunked = tensor.chunk(num_chunks)

27 name_ih = [’ii’, ’if’, ’iz’, ’io’]

28 name_hh = [’hi’, ’hf’, ’hz’, ’ho’]

29

30 # Prints each chunk in a separate file

49

50 Network Training in PyTorch

31 for i in range(num_chunks):

32 if (name.find(’ih’) != -1):

33 name_weight = name.replace(’ih’, name_ih[i])

34 elif (name.find(’hh’) != -1):

35 name_weight = name.replace(’hh’, name_hh[i])

36 (tensor_chunked[i].detach().numpy() * precision).astype(’<u4’).tofile("

../../model/" + db + "/" + netmode + "/bin/" + str(num_epochs) + "/

" + str(decimal_bits) + "/" + name_weight + ".bin")

37

38 # Other weights are treated as usual

39 else:

40 (tensor.detach().numpy() * precision).astype(’<u4’).tofile("../../model/"

+ db + "/" + netmode + "/bin/" + str(num_epochs) + "/" + str(

decimal_bits) + "/" + name + ".bin")

41

42 # Defines LSTM network as class

43 class LSTMNet(nn.Module):

44

45 def __init__(self, input_size, hidden_size, num_layers, output_size,

batch_size = 1):

46 super(LSTMNet, self).__init__()

47

48 # Initialise LSTM inner variables

49 self.input_size = input_size

50 self.hidden_size = hidden_size

51 self.num_layers = num_layers

52 self.batch_size = batch_size

53 self.output_size = output_size

54

55 # Define the LSTM layer

56 self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers,

batch_first = True)

57

58 # Define the output layer

59 self.linear = nn.Linear(self.hidden_size, self.output_size)

60

61 def init_states(self):

62 # Initialises hidden state (w/ batch_size = 1)

63 self.h0 = torch.randn(self.num_layers, self.batch_size, self.hidden_size).

requires_grad_()

64

65 # Initialises hidden state (w/ batch_size = 1)

66 self.c0 = torch.randn(self.num_layers, self.batch_size, self.hidden_size).

requires_grad_()

67

68 def forward(self, x):

69 # Performs forward pass

70 # shape of out: [input_size, batch_size, hidden_size]

Network Training in PyTorch 51

71 # shape of (hn, cn): (a, b), where a and b both have shape (num_layers,

batch_size, hidden_size).

72 out, (hn, cn) = self.lstm(x, (self.h0.detach(), self.c0.detach()))

73

74 # Fetches the output from the final timestep

75 # Can pass out to the next layer if it is a seq-to-seq prediction # (CHECK

WHAT THIS IS!!)

76 yh = self.linear(out[:, -1, :])

77 return yh

78

79 # Parse inputs

80 # Training settings

81 parser = argparse.ArgumentParser(description=’LSTM application in MNIST

database’)

82 parser.add_argument(’--batch-size’, type=int, default=1, metavar=’N’,

83 help=’input batch size for training (default: 1)’)

84 parser.add_argument(’--decimal-bits’, type=int, default=8, metavar=’N’,

85 help=’number of decimal bits to be exported (default: 8)’)

86 parser.add_argument(’--hidden-size’, type=int, default=32, metavar=’N’,

87 help=’size of hidden layer (default: 32)’)

88 parser.add_argument(’--learning-rate’, type=float, default=0.1, metavar=’LR’,

89 help=’learning rate (default: 0.1)’)

90 parser.add_argument(’--num-epochs’, type=int, default=5, metavar=’N’,

91 help=’number of epochs for training (default: 5)’)

92 parser.add_argument(’--num-layers’, type=int, default=1, metavar=’N’,

93 help=’number of layers in the LSTM (default: 1)’)

94

95 args = parser.parse_args()

96

97 # Initialises LSTM variables

98 input_size = 28 * 28

99 hidden_size = args.hidden_size

100 num_layers = args.num_layers

101 output_size = 10

102

103 # Initialises helper variables

104 learning_rate = args.learning_rate

105 batch_size = args.batch_size

106 decimal_bits = args.decimal_bits

107 num_epochs = args.num_epochs

108

109 # Loads train and test sets

110 train = torch.utils.data.DataLoader(

111 datasets.MNIST(’data’,

112 train=True,

113 download=True,

114 transform=transforms.ToTensor()),

115 batch_size=batch_size,

116 shuffle=True)

52 Network Training in PyTorch

117 test = torch.utils.data.DataLoader(

118 datasets.MNIST(’data’,

119 train=False,

120 download=True,

121 transform=transforms.ToTensor()),

122 batch_size=batch_size,

123 shuffle=True)

124

125 # Defines model properties

126 model = LSTMNet(input_size, hidden_size, num_layers, output_size)

127

128 # Prints model and parameters

129 print("Model overview:")

130 print(model)

131 print("Model state_dict:")

132 for param_tensor in model.state_dict():

133 print(param_tensor, "\t", model.state_dict()[param_tensor].size())

134

135 # Uses mean-squares error as loss criterion

136 criterion = nn.CrossEntropyLoss()

137

138 # Uses stochastic gradient descent as optimisation function

139 optim = optim.SGD(model.parameters(), lr = learning_rate)

140

141 # Initialises value for storing histogram

142 # hist = np.zeros(num_epochs)

143

144 # Prints information message for starting retraining

145 print("Starting training...")

146

147 # Trains the model (using a **batch** method)

148 for epoch in range(num_epochs):

149 # Initialises hidden state (initialise before model(x) if LSTM is to be

stateless)

150 model.init_states()

151

152 # Sets model to training mode

153 model.train()

154 # Performs computations using mini-batch (batch_size = 1)

155 for i, (x, y) in enumerate(train):

156 # Changes shape of x and enables gradient accumulation

157 x = x.view(batch_size, 1, input_size).requires_grad_()

158

159 # Zero out gradient, else it will accumulate between epochs

160 optim.zero_grad()

161

162 # Initialises hidden state (initialise after model.train() if LSTM is to be

stateful)

163 #model.init_states()

Network Training in PyTorch 53

164

165 # Perfoms forward pass

166 yh = model(x)

167

168 # Determines loss

169 loss = criterion(yh, y)

170

171 # Performs backward pass

172 loss.backward()

173

174 # Updates parameters

175 optim.step()

176

177 # Saves loss value in histogram

178 # hist[i] = l.item()

179

180 # Tests the model and reports appropriate metrics

181 # Sets model to test mode

182 model.eval()

183

184 # Initialises helper variables for determining accuracy

185 total = 0

186 correct = 0

187

188 # Starts inference w/ test set

189 with torch.no_grad():

190 for x, y in test:

191 # Changes shape of x

192 x = x.view(batch_size, 1, input_size)

193

194 # Performs forward pass

195 out = model(x)

196

197 # Determines predicted value

198 yh = torch.argmax(out, 1)

199

200 # Adds to total no. of samples (in case data is batched)

201 total += y.size(0)

202

203 # Determines no. of correct samples

204 correct += (yh == y).sum()

205

206 # Outputs accuracy for given epoch

207 accuracy = 100 * correct / total

208 print(’Epoch: {}. Loss: {}. Accuracy: {}’.format(epoch, loss.item(), accuracy

))

209

210 # Saves model weights for use in FPGA

211 for param_tensor in model.state_dict():

54 Network Training in PyTorch

212 export_weights(model.state_dict()[param_tensor], param_tensor, "MNIST/lstm"

, "train", decimal_bits, ’split’)

213 print("Weights exported to .bin files with a decimal precision of " + str(

decimal_bits) + " bits")

214

215 # Saves model weights for use in PyTorch

216 torch.save({’state_dict’: model.state_dict()}, ’../../model/MNIST/lstm/train/

checkpoint.pth.tar’)

217

218 # Prints confirmation message before exiting

219 print("Training completed!")

Listing A.1: Network training in PyTorch. Procedure to dump weights into binary files is included

Appendix B

Resource Utilisation Results

Vivado HLS Synthesis Resource Utilisation Results

Sbatch Sblock Latency BRAM_18K DSP48E FF LUT
125 16 392411620 150 (7.28%) 83 (2.96%) 14712 (2.42%) 77918 (25.66%)
125 32 251812808 202 (9.81%) 147 (5.25%) 18226 (3.00%) 88296 (29.08%)
125 64 233490958 222 (10.78%) 275 (9.82%) 23167 (3.82%) 104497 (34.42%)
125 128 198155971 336 (16.31%) 531 (18.96%) 41408 (6.82%) 135008 (44.47%)
250 16 358786911 150 (7.28%) 83 (2.96%) 14884 (2.45%) 77984 (25.69%)
250 32 207240159 202 (9.81%) 147 (5.25%) 18436 (3.04%) 88349 (29.10%)
250 64 185844223 238 (11.55%) 275 (9.82%) 23505 (3.87%) 104550 (34.44%)
250 128 162585382 432 (20.97%) 531 (18.96%) 41423 (6.82%) 135017 (44.47%)
500 16 341994412 151 (7.33%) 83 (2.96%) 15048 (2.48%) 78037 (25.70%)
500 32 189940220 219 (10.63%) 147 (5.25%) 18663 (3.07%) 88405 (29.12%)
500 64 166846764 335 (16.26%) 275 (9.82%) 23860 (3.93%) 104608 (34.46%)
500 128 150930943 625 (30.34%) 531 (18.96%) 42638 (7.02%) 135145 (44.51%)

1000 16 333637903 167 (8.11%) 83 (2.96%) 15220 (2.51%) 78102 (25.73%)
1000 32 181365991 315 (15.29%) 147 (5.25%) 18898 (3.11%) 88473 (29.14%)
1000 64 157495775 527 (25.58%) 275 (9.82%) 24223 (3.99%) 104678 (34.48%)
1000 128 145395464 977 (47.43%) 531 (18.96%) 43257 (7.12%) 135244 (44.55%)
2000 16 329539144 273 (13.25%) 83 (2.96%) 15392 (2.53%) 78167 (25.75%)
2000 32 177230372 517 (25.10%) 147 (5.25%) 19133 (3.15%) 88541 (29.16%)
2000 64 153115776 889 (43.16%) 275 (9.82%) 24586 (4.05%) 104773 (34.51%)
2000 128 143211220 1723 (83.64%) 531 (18.96%) 43876 (7.23%) 135318 (44.57%)

Table B.1: Latency (in clock cycles) and resource utilisation results for different Sbatch, Sblock value
pairs (f = 114.29MHz for all pairs) for the simulated accelerator

55

56 Resource Utilisation Results

Board Implementation Resource Utilisation Results

Sbatch Sblock Latency BRAM_18K DSP48E FF LUT
125 64 392371215 111 (5.39%) 275 (9.82%) 11989 (1.97%) 22947 (7.56%)
250 64 325191268 119 (5.78%) 275 (9.82%) 12059 (1.99%) 23275 (7.67%)
500 16 560495301 76 (3.69%) 83 (2.96%) 9654 (1.59%) 16197 (5.33%)
500 32 341070070 110 (5.34%) 147 (5.25%) 10044 (1.65%) 19305 (6.36%)
500 64 292471607 168 (8.16%) 275 (9.82%) 12100 (1.99%) 23834 (7.85%)
500 128 281197055 312 (15.15%) 531 (18.96%) 23857 (3.93%) 31462 (10.36%)

1000 64 276111224 264 (12.82%) 275 (9.82%) 12145 (2.00%) 23664 (7.79%)
2000 64 267931377 445 (21.60%) 275 (9.82%) 12309 (2.03%) 24239 (7.98%)
Table B.2: Latency (in clock cycles) and resource utilisation results for different Sbatch, Sblock value
pairs (f = 100MHz for all pairs) for the board implementation

Appendix C

C/RTL Cosimulation Waveforms

Figure C.1: C/RTL Cosimulation output waveforms from Vivado 2019.1

57

58 C/RTL Cosimulation Waveforms

Bibliography

[1] A. C. Müller, S. Guido et al., Introduction to machine learning with Python: a guide for data

scientists. " O’Reilly Media, Inc.", 2016.

[2] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools,

and techniques to build intelligent systems. " O’Reilly Media, Inc.", 2017.

[3] B. Cheng and D. M. Titterington, “Neural networks: A review from a statistical perspective,”

Statistical science, pp. 2–30, 1994.

[4] Q. Le, N. Jaitly, and G. Hinton, “A simple way to initialize recurrent networks of rectified

linear units,” 04 2015.

[5] C. Olah. Understanding LSTM networks. (27/08/2015, accessed 02/10/2019). [Online].

Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8,

p. 1735–1780, Nov. 1997. [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735

[7] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: continual prediction with

lstm,” in 1999 Ninth International Conference on Artificial Neural Networks ICANN 99.

(Conf. Publ. No. 470), vol. 2, Sep. 1999, pp. 850–855 vol.2.

[8] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber,

“Lstm: A search space odyssey,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 28, no. 10, p. 2222–2232, Oct 2017. [Online]. Available:

http://dx.doi.org/10.1109/TNNLS.2016.2582924

[9] Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis. (12/07/2019,

accessed 25/10/2019). [Online]. Available: https://www.xilinx.com/support/documentation/

sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf

[10] ——. Introduction to FPGA Design with Vivado High-Level Synthesis. (25/10/2015,

accessed 22/01/2019). [Online]. Available: https://www.xilinx.com/support/documentation/

sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf

59

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TNNLS.2016.2582924
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf

60 BIBLIOGRAPHY

[11] ——. Vivado Design Suite: AXI Reference Guide. (15/07/2017, accessed 17/01/2020).

[Online]. Available: https://www.xilinx.com/support/documentation/ip_documentation/axi_

ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf

[12] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, “A

novel connectionist system for unconstrained handwriting recognition,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 855–868, May 2009.

[13] S. Fernández, A. Graves, and J. Schmidhuber, “Phoneme recognition in timit with blstm-ctc,”

arXiv preprint arXiv:0804.3269, 2008.

[14] K. Choi, G. Fazekas, and M. Sandler, “Text-based lstm networks for automatic music com-

position,” arXiv preprint arXiv:1604.05358, 2016.

[15] V. Flunkert, D. Salinas, and J. Gasthaus, “Deepar: Probabilistic forecasting with autoregres-

sive recurrent networks,” ArXiv, vol. abs/1704.04110, 2017.

[16] O. Alsharif, T. Ouyang, F. Beaufays, S. Zhai, T. Breuel, and J. Schalkwyk, “Long short

term memory neural network for keyboard gesture decoding,” in 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 2076–

2080.

[17] J. C. Ferreira and J. Fonseca, “An fpga implementation of a long short-term memory neu-

ral network,” in 2016 International Conference on ReConFigurable Computing and FPGAs

(ReConFig). IEEE, 2016, pp. 1–8.

[18] S. Wang, Z. Li, C. Ding, B. Yuan, Y. Wang, Q. Qiu, and Y. Liang, “C-lstm: Enabling efficient

lstm using structured compression techniques on fpgas,” March 2018.

[19] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, and V. Zue, “Timit

acoustic-phonetic continuous speech corpus,” Linguistic Data Consortium, November 1992.

[20] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu, and L. Zhang,

“Efficient and effective sparse lstm on fpga with bank-balanced sparsity,” in Proceedings of

the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser.

FPGA ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 63–72.

[Online]. Available: https://doi.org/10.1145/3289602.3293898

[21] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated corpus of

english: The penn treebank,” 1993.

[22] M. Wang, Z. Wang, J. Lu, J. Lin, and Z. Wang, “E-lstm: An efficient hardware architecture

for long short-term memory,” IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, vol. 9, no. 2, pp. 280–291, June 2019.

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://doi.org/10.1145/3289602.3293898

BIBLIOGRAPHY 61

[23] Z. Wang, J. Lin, and Z. Wang, “Hardware-oriented compression of long short-term memory

for efficient inference,” IEEE Signal Processing Letters, vol. 25, no. 7, pp. 984–988, July

2018.

[24] V. Rybalkin, A. Pappalardo, M. M. Ghaffar, G. Gambardella, N. Wehn, and M. Blott, “Finn-l:

Library extensions and design trade-off analysis for variable precision lstm networks on fp-

gas,” in 2018 28th International Conference on Field Programmable Logic and Applications

(FPL). IEEE, 2018, pp. 89–897.

[25] V. Rybalkin, N. Wehn, M. R. Yousefi, and D. Stricker, “Hardware architecture of bidirec-

tional long short-term memory neural network for optical character recognition,” in Design,

Automation Test in Europe Conference Exhibition (DATE), 2017, March 2017, pp. 1390–

1395.

[26] Z. Que, T. Nugent, S. Liu, L. Tian, X. Niu, Y. Zhu, and W. Luk, “Efficient weight reuse for

large lstms,” in 2019 IEEE 30th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), vol. 2160-052X, July 2019, pp. 17–24.

[27] D. Kundu, R. Gupta, and A. Manglick, “A convenient way of generating normal random

variables using generalized exponential distribution,” Journal of Modern Applied Statistical

Methods, vol. 5, 01 2005.

[28] Minsu Kang, “Fpga implementation of gaussian-distributed pseudo-random number gener-

ator,” in 6th International Conference on Digital Content, Multimedia Technology and its

Applications, Aug 2010, pp. 11–13.

[29] C. Condo and W. J. Gross, “Pseudo-random gaussian distribution through optimised lfsr

permutations,” Electronics Letters, vol. 51, no. 25, pp. 2098–2100, 2015.

[30] H. Amin, K. M. Curtis, and B. R. Hayes-Gill, “Piecewise linear approximation applied to

nonlinear function of a neural network,” IEE Proceedings - Circuits, Devices and Systems,

vol. 144, no. 6, pp. 313–317, Dec 1997.

[31] A. Tisan, S. Oniga, D. Mic, and B. Attila, “Digital implementation of the sigmoid function

for fpga circuits,” ACTA TECHNICA NAPOCENSIS Electronics and Telecommunications,

vol. 50, 01 2009.

[32] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten digits, 1998,”

vol. 10, p. 34, 1998. [Online]. Available: http://yann.lecun.com/exdb/mnist

http://yann.lecun.com/exdb/mnist

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Objective
	1.4 Overview

	2 Problem Characterisation
	2.1 Machine Learning: Overview
	2.2 Artificial Neural Networks
	2.2.1 Perceptron
	2.2.2 Activation Functions
	2.2.3 Forming ANNs
	2.2.4 Training

	2.3 Recurrent Neural Networks
	2.3.1 Overview
	2.3.2 Long Short-Term Memory Networks

	2.4 High Level Synthesis
	2.4.1 Overview
	2.4.2 Pragmas
	2.4.3 Data Types

	2.5 Summary

	3 State of the Art
	3.1 LSTM Applications: Overview
	3.2 LSTM Implementations on FPGA
	3.3 Summary

	4 Proposed Architecture
	4.1 Overview
	4.1.1 Description
	4.1.2 Matrix computations
	4.1.3 Fixed-Point Design
	4.1.4 Coding Structure

	4.2 Constituent Modules
	4.2.1 Initialisation
	4.2.2 Buffering Blocks
	4.2.3 Computation Blocks
	4.2.4 Auxiliary Blocks

	4.3 Summary

	5 Results
	5.1 Simulation Validation
	5.2 Synthesis Results
	5.3 Accuracy Measurements
	5.3.1 Overview
	5.3.2 Training
	5.3.3 Results

	5.4 Board Implementation
	5.4.1 Overview
	5.4.2 Results
	5.4.3 Comparison

	6 Conclusions
	A Network Training in PyTorch
	B Resource Utilisation Results
	C C/RTL Cosimulation Waveforms

