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Abstract

Ensemble learning refers to the procedures used to train various machine learning systems and to
combine their results by treating them as if they belonged to a committee of decision-makers. The
final decision is done by combining the decisions of each element. And this can bring the power to
minimize the errors if, eventually, the decision was made by just one element. So, the committee
can, for example, minimize the selection of a bad product, a worker with no skills to make the job,
a general task taken unsuccessful.

We recognize that in real-world situations, all models have limitations and there will be errors.
Thus, the aim of ensemble learning is to find the strengths and weaknesses of the models, lead-
ing to better decision making in general. Several theoretical and empirical results show that the
accuracy of a set can significantly exceed the one of a single model. The principle of combining
forecasts has been of interest to several areas of study over many years.

A cross-cutting issue in this thematic is the existence of a trade-off between the bias and
variance of the data set. While bias refers to precision, the variance tells us how sensitive the
data are to small changes. The problem arises because, when trying to increase the variance,
bias decreases and vice versa. It is fundamental to find a balance between these two components
in order to find a predictive model of quality that fits the one we want to estimate. We will
establish comparisons between bias reduction methods and those of variance reduction. This
trade-off works like a benchmark of how robust is our model.

In ensemble learning what interests us is the diversity of predictions and not only the variance
of a model in the face of different data. It is obvious that the two concepts are related because
unstable algorithms generate models with high variance and simultaneously generate ensembles
with high diversity because such variance exists.

One important idea here is that, although we recognize the importance and the motivations
behind the trade-off already mentioned, we will focus on try to evaluate different techniques, com-
bine some of them, across several datasets and look to their characteristics in order to contribute
for a good ensemble, i.e., try to do even better predictions with ensemble learning.

Categories: Computing methodologies → Machine learning → Machine learning algorithms
→ Ensemble methods

Keywords: Ensemble learning, regression, multiple models
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Resumo

Ensemble learning refere-se aos procedimentos usados para treinar várias máquinas de aprendiza-
gem, machine learning, e combinar os seus resultados, tratando-os como se pertencessem a uma
comissão de decisores. A decisão final é realizada através da combinação das decisões de cada
elemento presente no comité. E assim pode trazer o poder de minimizar os erros, se, eventuale-
mente, a decisão fosse tomada apenas por um elemento. O comité está apto, por exemplo, para
minimizar a seleção infeliz de um mau produto, um funcionários não qualificado ou de uma tarefa
genérica levada a cabo com insucesso.

Reconhecemos que, em situações do mundo real, todos os modelos têm limitações e haverá
erros. Assim, o objetivo do ensemble learning é encontrar os pontos fortes e fracos dos modelos,
levando à melhor tomada de decisão em geral. Vários resultados teóricos e empíricos mostram que
a precisão de um conjunto pode exceder significativamente a de um único modelo. O princípio de
combinar previsões tem sido de interesse para várias áreas de estudo ao longo de muitos anos.

Uma questão transversal nesta temática é a existência de um dilema entre o enviesamento
e a variância dos dados dos conjuntos. Enquanto o enviesamento(bias) diz respeito à precisão, a
variância diz-nos o quanto os dados são sensíveis a pequenas alterações. O problema surge porque,
quando se tenta aumentar a variância, o bias diminui e vice-versa. Torna-se fundamental encontrar
um equilíbrio entre estes dois componentes por forma a encontrarmos um modelo preditivo de
qualidade e que se ajuste ao que pretendemos estimar. Iremos estabelecer comparações entre os
métodos de redução de bias com os de redução de variância. Esse trade-off funciona como uma
referência de quão robusto é o nosso modelo.

Em ensemble learning, o que nos interessa é a diversidade de previsões e não apenas a variação
de um modelo diante de diferentes dados. É óbvio que os dois conceitos estão relacionados porque
algoritmos instáveis geram modelos com alta variação e simultaneamente geram conjuntos com
alta diversidade, porque essa variação existe.

Uma ideia importante aqui é que, embora reconheçamos a importância e as motivações por
detrás do trade-off já mencionado, nos concentraremos em tentar avaliar diferentes técnicas, com-
binar algumas delas, em vários conjuntos de dados e analisar as suas características para contribuir
para um bom ensemble, ou seja, tentar efetuar ainda melhores previsões com ensemble learning.

Categorias: Metodologias Computacionais→Machine learning→ Algoritmos Machine learn-
ing→ Métodos de Ensemble

Palavras chave: Ensemble learning, regressão, modelos
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Chapter 1

Introduction

In this first chapter of the dissertation, we introduce the frame behind the work and the motivation

to pursue this essay. At the same time, we identify and define the problems that this dissertation

addresses. We summarise the methodologies used in work and present a brief summary of each

subsequent chapters in document structure section.

1.1 Context

During the last decades, ensemble learning has revealed to be a very interesting topic. Many and

many papers were written by some scientists from a varying number of fields, like Statistics and

Machine learning, for example.

In recent years, much attention has been given to Machine Learning related technologies.

Machine Learning, is one of the impetus behind ongoing growth. Instead of having to program

and adjust the code to deal with all scenarios, ML, could do some calculations and make some

assumptions based on initial information in order to achieve new and adjustable results.

ML is increasingly used in products and services across companies. There are some notewor-

thy contemplations regarding the users that believe in the Web. Some issues could be identified

when trying to use AI but this is out of the scope of this work.

Pierre Simon de Laplace, a recognised mathematician, illustrate, in 1818 [Bro09], that two

probabilistic methods perform better than each method alone.

Since then, a large number of issues arisen and many research groups have started to work

behind this idea.

Ensemble Learning is a predictive method that combines the predictions done by several base

learners in order to obtain a better prediction. Some researchers had the idea of combine these

learners in some manner and, in fact, there exist multiple ways of combine those predictions.

We found that this kind of family methods is being very successful in many real world problems

including predictive contests.
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Ensemble methods help some knowledge areas to evolve and arises under the hood because

those give an engaging answer to multiple machine learning algorithms.

1.2 Motivation and Objectives

A quotidian task we always need to do is decide about something. But to do that we feel the

necessity of having more than one opinion when we want to decide about anything. A simple

example will be making further ahead on this document, but for now we think if we can group

different opinions in such way that they have different weights associated, because the knowledge

about some subject we want to decide can be very distinct, we’ll be able to make a more complex

decision with much more information. So, the key point here is, grouping different individual

opinions, will bring us more information and maybe a better decision.

In an attempt to get increasingly reliable predictive results, scientists have been doing more

research in the area and it has undergone a lot of development.

The main idea behind forecasting is what we call accuracy. Instead of making just a simple

prediction we need to make a good one, i.e., with a high probability of getting the correct value

or category for some study. It is important to get a high value of accuracy and ensemble learning

is proven to help on this as we saw, for instance, in one major competition that uses ensemble

learning to solve the prediction problem like in Kaggle competition [Kag14].

It is known that ensembles are applied to a large number of fields and areas of interest. As a

consequence, the impact of ensemble learning evolves will be substantial and will continue to be

an object of research, probably, at least, in the next years. In the event that we can see decisively

how, why, and when a specific group of techniques can be connected effectively, we will have

faced toward an amazing new tool for Machine Learning because we’ll have an impact on the

quality and shortcomings of various learning frameworks.

A system that is able to teach itself to solve a given task is a system with auto learn capacity

and able to solve every task that appears in. Building this kind of system is a mental idea that is

turning very popular among the IT community and if done with accuracy will be even better.

The motivation to do this work are some: if for one hand we see a large utilisation of ensemble

techniques in many problems which makes us willing to learn more and search for new materials,

for the other hand most work focuses on classification problems and we’ll focus on regression,

where are a large area of investigation and possible experiments to do. One other thing we want

highlight is the fact that some techniques are successful for classification are often not directly

applicable for regression, there aren’t even adapted and tested some algorithms in regression. So

this was the original guidance to pursue this work and we defined three core objectives:

• Study and understand the bias/variance trade-off;

• Identification of which algorithms have a positive impact on the reduction of bias/variance;

• Try to obtain better predictive results working with some techniques, doing some experi-

mentations.

2
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This document describes and uses some techniques as Decision Tree, Bagging, Wagging, Ran-

dom Forest, Gradient Boosting, XGBoost and three other appearing from the experiments which

we name as MB1, MG2 and MBB. The effects of these N algorithms on the error, bias and variance

of weak learners are explored in a number of experiments.

1.3 Document Structure

In addition to the introduction, this dissertation contains five more chapters.

In chapter 2, the state of the art is described and presented the work already done in the field.

Chapter 3 of this dissertation, we address the main topic, definitions of some concepts such

as error model, what is ensemble learning and the pros/cons of ensemble models. We use 4 to

explore the trade-off between bias and variance.

This chapter 5 outlines research strategies and techniques employed in the work and show the

experiments been taken and the corresponding results.

Lastly, in 6 we show a summary of the work done and appreciated by the satisfaction objec-

tives of the work, a list of contributions and directions for future work.

3
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Chapter 2

State of the art

In this chapter we describe the state of the art and related work to this dissertation and show what

exists in the same domain and which issues are open.

2.1 Introduction

We found very interesting the next 2.1 graphic that show us how this particular area of knowledge

have been evolved in the last years through the increasing number of published related papers

per year is getting, when we look together to the terms “ensemble” and “machine learning”, in a

well-known database transversal to several disciplines - “Web of Science”. Looking for the 90’s

and over we see a clear emerge around that decade and a continuously growth. We can look into

the web of science database, described as the largest accessible citation database [Ana17].

If we try to find papers by looking only for the word "ensemble" per se, we won’t find only

relevant papers matching this topic. We need to search together with machine learning - maybe

the most important field where ensemble learning is being applied.

2.2 Research already done

Historically, maybe one of the soonest appearances of the composition term ensemble learning was

with Dasarathy and Sheela’s 1979 paper [DS79], which previously proposed utilizing ensemble

with a divide and conquer style.

Eleven years after, on the beginning of 1990, with Hansen and Salamon [KS90], these two

showed the importance, in first time ever, of using ensembles in neural networks. They came

to a result that proves using ensembles could reduce the error of neural networks. At the same

epoch, appears a work made by Schapire which led to the later appearance of AdaBoost - adaptive

boosting algorithm. In his work he showed that is possible combine several weak learners to build

one more powerful learner.

5



State of the art

Figure 2.1: Number of published papers per year [SR18]

Since that time, more authors showed once and again that using ensemble models is possible

to improve the predictive result of individual models in supervised machine learning.

In 1995, Krogh and Vedelsby [KV95] demonstrated that ambiguity and cross-validation gives a

reliable estimate of the ensemble generalisation error. Eight years after, Brown and Wyatt [BW03]

came to a result where negative correlation is an advancement of the previous work done by

Krogh and Vedelsby and is defined as being a derived technique of the decomposition of those last

authors.

In 1996, Ueda and Nakano went further and decomposed the generalisation error into three

components, a calculation between bias, variance and covariance [UN96].

In 1998 Zheng and Webb appeared with what was at that time a new learning algorithm

called MB, multiple boosting for classification [ZW98]. They combined bagging and boosting

and demonstrated that, in average, performs better than bagging or boosting acting alone. Two

years later, Webb [Web00], used with some success a new combined technique where instead of

use bagging, he proposed wagging, where he bag with weighted averaging, following a Poisson

distribution.

In 2009, at KDD cup, Xie, Rojkova, Pal and Coggeshall combined boosting and bagging but

again, (all binary) classification problems. It was only in 2010, Pavlov, Gorodilov and Brunk,

appeared with BagBoo, where bagged the boosting model, for a regression problem [PGB10].

The scientist Geoffrey Hinton (2006) rebranded neural net research as “deep learning” [Bea17]

and was in that year the modern machine learning appeared. After that, many other works came up

and presented more details about where ensemble learning can be applied, Oza and Tumer (2008)

in remote sensing, medicine and recognition in general. In the past few years, other researches

were performed. We know EL was successfully applied with great results in object detection

[PSV], education [BSH+17] and malware detection [IRC+17].

6
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Nowadays, ensembles are proved to be the state-of-the-art approach when trying to solve nu-

merous machine learning challenges, as problems we can find in real life [FDCB+14]. Not all

literature give us a perfect overview of what ensemble is, because in many cases we find ensem-

ble covered in a very restrict way with a specific problem. But some works like (Polikar, 2006),

provided a more generic view.

2.3 Other complement ideas

As we can see further in next chapters, will use a specific type of model validation, cross validation,

in our experiments and we also will make hyperparameter tuning to our models.

Besides that we think it is good to highlight two other techniques, Negative Correlation Learn-

ing and Stacking as they demonstrated to be very effective predictive analysis.

2.3.1 Negative correlation learning

Negative Correlation learning, NC, endeavours to prepare singular networks to train individual

systems in an ensemble, and group them in within the learning process. In NC, all the individual

systems in the ensemble are trained at the same time and interactively through the punishment

terms in their error functions [LY99]. It is flexible once it can works well either in classification

or regression approaches. Differently from the mse error described in equation 3.1, this type of

learning uses a penalty factor in its own formula which is related to the diversity of the ensemble.

2.3.2 Stacking

Stacking predominantly vary from bagging and boosting on two principles:

Table 2.1: Stacking Vs Bagging/Boosting

Stacking Bagging/Boosting
Heterogeneous power learners Homogeneous weak learners
knows how to aggregate base learners

(with meta learner)
Follows deterministic calculations

The patent idea is train some base learners with other ensemble techniques and after, an aggre-

gation algorithm, the super learner, is also trained to achieve a new prediction using the already

known predictions of each base learners.

2.3.3 Cross validation

Cross validation is a measurable technique for assessing and looking at learning calculations by

isolating information into two portions: one used to learn or prepare a model and the other used to

approve the model. The main goal is that every datum point gets an opportunity of being approved

against second portion. Different types of cross validation exists and we’ll use a specific one.

7
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2.3.4 Hyperparameter optimization

Recent methodologies are appearing in contrast with grid search using cross validation. This grid

search has some disadvantages and other alternatives appeared and showed to be better for non-

trivial search spaces, like sequential model-based parameter optimization (Hutter et al., 2011),

random search (Bergstraand Bengio, 2012), and Bayesian optimization (Snoek etal., 2012), in

addition to other researchers [LGS].

Hyperparameters optimization, or tuning as sometimes referred in the literature, are every

input parameter we can set up before beginning the training process. Possible example is the

number of estimators in Bagging Regressor.

As a comparison, the other parameters, the ones that aren’t hyperparameters are used by the

model to make predictions. We can have here as an example the weight coefficients in a linear

regression model. So, for the sake of distinguish hyperparameters help within the learning process

and parameters help us make predictions.

2.4 Technological Review

The main programming language, ordered by number of active developers and where each one is

most popular or least popular can be shown in the next figure 2.2.

Figure 2.2: Number of active developers by programming language1
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As we can see, the most popular programming language to deal with machine learning chal-

lenges was until the end of 2018, Python. It was the programming language elected to develop the

practical part of this work. Python has some well known libraries widely used across the machine

learning community, like the following ones:

• Numpy;

• Pandas;

• Matplotlib;

• SciKit-Learn;

• TensorFlow;

• Scipy;

• Seaborn

Other than that, it has a very large and active community, it is one of the programming lan-

guages growing up, has very nice support for machine learning, is very popular and easy to begin,

with a relative small learning curve, if familiar with other programming languages, and use pip, a

package installer, where we can find several important and useful libraries to install.

2.5 Conclusion

Besides the fact of ensemble learning is getting more and more recognition, several papers only

use ensemble in a restricted manner and don’t talk about all the transverse area where this kind of

learning could be adopted and how could be done, making the most of the research already done.

For what we understood, EL is intrinsically related with the evolution of machine learning.

So, in this case we find very productive use EL to help ML evolve and get predictive results with

more accuracy.

There are open areas and lack of knowledge in EL where we can search and learn. One of

them will be carried out along this dissertation and is related with multiboosting for regression

to try to reduce at the same time, bias and variance, and more important than that, perceive what

characteristics models need to have to generate better ensembles.

Let’s move on to the next chapter to begin exploring some key concepts.

1Retrieved from https://www.developintelligence.com/full-developer-report/
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Chapter 3

Ensemble Learning

In this chapter we present some of the fundamentals related with the topic of Ensemble Learning.

This way we build a context and an origin where all the works started.

3.1 Machine Learning

The three main topics in machine learning are the supervised machine learning, unsupervised

machine learning and reinforcement learning. Supervised Machine Learning, SML is a model

building process where given a data set with a target variable and input variables, a modelling

algorithm automatically generates a model (a formula or a rule set) which establishes a relationship

between the target and some or all of the input variables. We can say SML works for two purposes:

1. Regression;

2. Classification.

The two type of issues have as objective the development of a concise model that can foresee

the value of the dependent attribute from the attribute factors. The distinction between the two

is, for the first one the dependent attribute needs to be a numerical value because we are trying to

predict a value and for the second one a belonging category.

Unsupervised Machine Learning, UML, is related with a search for homogeneous subsets of

the data that produce one or more possible segmentations.

Reinforcement learning, RL, is a portion of ML worried about how software agents should

take activities in a situation so as to amplify reward.

Ensemble almost always are associated with SML. The reason is that with ensembles we are

trying to increase the accuracy of our predictions.
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Table 3.1: Ensemble Techniques

Approach Example Inspiration
Sequential AdaBoost Exploit reliance between learners
Parallel Bagging Exploit autonomy between learners

3.2 Ensemble

[MMSMS12] "Ensemble learning is a process that uses a set of models, each of

them obtained by applying a learning process to a given problem. This set of mod-

els(ensemble) is integrated in some way to obtain the final prediction."

Ensemble learning is the procedure by which various models, for example, classifiers or learn-

ers, are deliberately created and consolidated to take care of a specific computational insight issue.

Ensemble learning is principally used to improve the (order, forecast, work estimation, and so on)

execution of a model, or lessen the probability of an appalling choice of a poor one. Different uses

of ensemble learning incorporate doling out a certainty to the choice made by the model, choos-

ing ideal (or close ideal) features, information combination, incremental learning, non-stationary

learning and mistake correcting [Pol09].

3.3 Types of Ensembles

Regarding the types of ensembles, we can categorise them into two categories. Heterogeneous

type is related within the use of different kind of models. But for the other hand, we have another

type, homogeneous type, and many famous algorithms works on top of this. We can find also

different variants using the same algorithm.

We can highlight here the notion that most ensemble strategies utilise a unique type of base

learner, creating a homogeneous ensemble.

3.4 Ensemble Methods

Some authors refers to ensemble methods as meta-algorithms who consolidate a few AI procedures

into just one final model, the predictive one. It is known we could use bagging to diminish variance

or use boosting to reduce bias. These methods can be separated into two ensemble techniques

(table 3.1).

3.5 Decision Tree

Decision Trees, DT, are a non-parametric directed learning strategy utilised either for regression

either for classification. The objective is to make a model that predicts the value of an objective

variable after learning from a training data set.
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3.5.1 Advantages and disadvantages of DT’s

In the advantages we can talk about how DT’s are easy to fit, use, understand and interpret; they

also requires little data preparation in comparison with other techniques that may need data nor-

malisation, dummy variables and remove blank values, for instance; but they also have some dis-

advantages like suffering from overfitting phenomenon and it is common observed if data changed

a little it can affect the result itself and produce trees very different.

3.6 Model Evaluation Metrics

Well, focusing in regression will have in list 3.1 some metrics to evaluate the model. The main idea

is comparing the actual values against predicted values to determine the accuracy of the regression

model. This analysis provides an important evaluation of the model developed as it offers insights

at the areas we need to tackle, once we want improvements. Error brings us one measure able to

detect how far the data is from the regression value.

Examples are given below:

• MAE (Mean Absolute Error)

• MSE (Mean Square Error)

• RMSE (Root Mean Square Error)

• R2 (R Squared)

• Adjusted R2

List 3.1: Model Evaluation Metrics

Our data type and domain of knowledge will have impact on choosing the metric.

3.7 Model Error for Regression Problems

A model error will equip us with one important information and answer the question of why is this

significant to us. It has particular interest to know what can be the source of errors, or simply, know

why they appears. So, a question: what contributes to generate error and how can we manage that?

The blunder rising up out of any model can be separated into three parts numerically. Fol-

lowing are those parts. Each factor in the sum represents one component, like the following, as

presented by Geman et al. [Stu92]:

MeanSquaredError = Bias2 +Variance+ IrreducibleError (3.1)

Related with noise, we can define noise like the irreducible error and there isn’t so much we

can do to modify its value.
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Thinking more in the previous equation we can work with that on a more mathematical way.

Taking in account these three parameters, variance, bias and irreducible error we can bring here a

simple equation that defines the value of model error for the regression problems.

Doing some kind of breakdown error we can split the total factor into a mathematically equa-

tion where each parcel of the sum is one component [Stu92]:

Err(x) =
(
E[ f̂ (x)]− f (x)

)
+E

[
f̂ (x)−E

[
f̂ (x)

]]2
+σ

2
e (3.2)

As usual, E means the expected value, i.e., the mean value, f̂ (x) is the predicted value and

f (x) represents the real observed value.

Later, N. Ueda and R. Nakano., [UN96] presented the generalization error decomposition in

three components: variance, covariance and bias, as showed in equation 3.3.

E
[(

f̂ − f
)2
]
= bias2 +

1
K

var+
(

1− 1
K

)
covar (3.3)

The goal is to minimize the value of equation 3.3. We can make some conclusions regarding

the objective of the last equation, because it’s trivial to see we should have the average of all the

subcomponents with lowest possible value. For bias the learners should be as accurate as possible

and for the covar the learners should present negative correlation.

In the equation 3.2, we’ve defined how we can obtain the generalization error, but we don’t

have yet a clear vision of how this is closed to an existent trade-off, explained and explored the

section 4.2.

We need a simple and target approach to look at our worth estimation models so as to decide

whether the outfit that we built speaks well with progress. We could use mean squared error, MSE,

for example. More metrics can be found at section 3.6.

After knowing some of the metrics 3.1, we are able to get the ensemble error within a function

that works with the errors of learners.

3.8 Advantages of Ensemble Models

There are two noteworthy advantages of ensemble models. They are:

• The result, normally, produces a better forecast;

• Helps on increase a steady model.

The total expression of a different set of models is less loud than just one type of model. In

account, we can call this diversity[PMSR14], a blended arrangement of numerous stocks will be

substantially less than only one of the stocks alone. And this is additionally the reason why our

models will have better performance with ensemble instead of using just one model.
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The key point here to make better ensembles is what we call above - model diversity. It could

work like a car purchase. Before we buy a car, we may want listen to some bits of advice, as the

dealer, family, colleagues, see some reviews in magazines or websites and after all, take a more

informed decision. This metaphor works like an ensemble because if we have many different

opinions by different peoples, specialized or not, we will, maybe, do an effective final decision,

like an ensemble.

3.9 Disadvantages of ensemble methods

Not all are flowers and we want to show that ensemble methods bring some disadvantages. They

are:

• Some decrease in interpretability because when we add some complexity it’s possible to

turn it hard to draw back any essential business bits of knowledge;

• Calculation time is high;

• Models select is a craftsmanship which is extremely difficult to ace.

3.10 Phases of Ensemble Learning

The techniques for ensemble learning have, normally, three stages: generation, pruning and inte-

gration. The first stage expects to generate an ensemble of models. The pruning phase, not always

applied, expects to select a model from a set of other models, in the way of downward computa-

tional complexity, and if conceivable, improve accuracy. The third phase, ensemble integration uti-

lize the forecasts made by the models in the ensemble to acquire the last prediction [MMSMS12].

3.10.1 Ensemble Generation

In this first scenario, we can tackle why this, among others, is an important initial phase. It would

be great if we can understand what are the conditions that affects the performance of models.

This has a trivial implication because if we will be able to identify the most suitable model for

a given problem, we will be ready to recognize which characteristics of each method should be

improved [MMSMS12].

Besides the fact of many authors dedicate themselves on one specific theme or idea to generate

the ensemble, we have many techniques in doing so. One methodology, called meta learning, al-

lows systems to gain effectiveness through experience (Brazdil et al, 2009). Many other techniques

exist but we will not focus on that phase.
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3.11 Focus on Regression

Regression is a type of ensemble problems where the goal is find out a model to accurately predict

an unknown quantitative value. We need to perform regression evaluation after building the model.

Further, we discuss two approaches that can be used to achieve this goal. They are:

• Train and test on the same dataset;

• Train/Test split.

One of the solutions, first in the previous list, is to choose a bit of our dataset for testing. In

this case, we utilize the whole dataset for training and we construct a model utilizing this training

set. Then, we select a little segment of the dataset, known as a test set. Finally, we analyze the

predicted values by our model with the values in the test set.

Training the model on whole dataset, at that point we test it utilizing a segment of the same

dataset. In a general sense, when we test with a dataset in which we already know the target value

for every data point, we are ready to acquire a level of precise expectations for the model. This

kind of approach would lead us to a high training precision and low out-of-sample precision since

the model knows the majority of the testing data from the training stage.

A key point here is understand now what is, in fact, training accuracy and out-of-sample

precision. Training accuracy is the level of right forecasts that the model makes when utilizing

the test dataset. In any case, a high training precision isn’t really something to be thankful for.

Imagining if we are having a high training accuracy it could take us to an over-fit situation. This

implies the model is excessively prepared to the dataset, which may catch noise and produce a non

generalized model. By other side, out-of-sample accuracy is the level of right expectations that

the model makes on data for which has not been prepared on. Completing a train and test on the

same dataset will low out-of-sample precision because of the likelihood of being over-fit. It’s very

important that our models have high out-of-sample precision in light of the fact that the motivation

behind our model is, obviously, to make right forecasts on unknown data.

The second approach is called train/test split. Like the term says, this splits the dataset into

training and testing sets individually, which are fundamentally unrelated. After which, we use

training set to train and testing set to test. This will give a progressively precise assessment on

out-of-sample exactness in light of the fact that the testing dataset isn’t a piece of the dataset that

has been utilized to train the data, as the first example. Since this information has not been utilized

to train the model, the model has no knowledge of the result. In this way, basically, it’s genuinely

out-of-sample testing. The issue with train/test split is that it’s very reliant on the datasets on

which the information was trained and tested. Train/test split normally have a superior out-of-

sample prediction than training and testing on the same dataset, but it has some problems related

with this dependency [Gup17].

In short, the first uses all the data to train while the second have a clearly defined set to that

purpose. Even more, the first use a test set that was used for training and the train/test split used
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one set test not used in its training process. Is in the scope of this two approaches and their issues

we want to refer another evaluation model called cross-validation.

3.11.1 Cross Validation

In this area of model validation we can find several works done out there but one has partic-

ular interest, the one that analysed variance of cross validation estimators of the generalization

error[Koh95]. We can go with two of the most known techniques:

3.11.1.1 KFold

Cross-validation is a resampling strategy used to assess evaluate models in machine learning

[Pap20]. This strategy only uses one parameter, k, that alludes to the quantity of gatherings that

a given information test is to be part into. Each set of data in k is called fold. Imagine we have

k = 5, in this case we say we are using 5− f old cross validation.

This strategy was already used in statistics and was applied to machine learning. It is famous

because of its simplicity and generally gets models with less bias in comparison with simple

technique of splitting the data into train and test. As we can see in the image 3.1, we use k− 1

parcels to train and just one parcel to test, in the figure we use k = 10.

Simple methodology of the process of running k− f old cross validation can be resumed in the

next steps:

• Mix the elements of dataset haphazardly.

• Split the dataset into k equal sized folds and for every fold:

– Select k−1 folds for training set and other for test set

– Fit a model on the training set and evaluate it on the test set

– Store the score for each iteration k and dispose the model

• Condense the information of the model using the sample of model evaluation scores

The main idea is that at each iteration we never repeat the test fold across all the iterations, so

each sample has the opportunity to be in the test set one time and, of course, used in training set

k−1 times.
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Figure 3.1: Diagram1 k− f old cross validation with k = 10

3.11.1.2 Leave One Out Cross Validation

This type of cross validation is a special case of k− f old cross validation previously presented.

Now instead of using a specific value for parameter k, in this case k has the same value as the

dataset length. A very representative image can be seen in figure 3.2.

Figure 3.2: Diagram2 leave one out cross validation with k = n

3.12 Conclusion

We present in the chapter 3 some important definitions and concepts, some general important con-

cepts around regression, the dilemma between bias and variance and the advantages/disadvantages

of using ensemble models.

1Adapted from Karl Rosaen Log http://karlrosaen.com/ml/learning-log/2016-06-20/
2Retrieved from https://campus.datacamp.com/courses/model-validation-in-python/cross-validation?ex=10
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Our focus will be in evaluating the reduction of a given technique around bias or variance, try

to understand what characteristics the models need to have great accuracy and try to find a better

predictive result when mixing some techniques.

In the next chapter we will deal with some starting aspects of the implementation and how can

we lead some experiments.
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Chapter 4

Bias Variance Trade-off

In this chapter we intend to clarify the most recognizable trade-off between two core concepts -

bias and variance.

4.1 Fragment Phenomenon

Suppose we have built three models, a linear regression model, a neural network and a regression

tree for a specific problem, the order is not important.

Figure 4.1: Three models

The inner-circle in each of the models refers to the error we have. If we put all the three models

one on top of the others, we will get what is in the image 4.2.
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Figure 4.2: Ensemble with three models together

So, it’s obvious that we have a non-empty intersection of the inner circles. This takes us

to the fragment phenomenon. This situation is ineffective because we find the same errors in

different models. One goal here is trying to find models that find different errors, i.e., with no

overlapping errors when making the ensemble to have a more effective result. That is an important

characteristic of the models to work on. Some topics related with which characteristics should the

models have to be considered a good model will be explored with more detail later.

4.2 The bias-variance trade-off explained

One potential issue that arises is related with a dilemma between bias and variance, better known

as trade-off. In the previous section, we take an overview of a mathematical equation, 3.2, but

now, we define better the two main plots on that and how they are related.

Variance

"... refers to the amount by which (our model) would change if we estimated it using

a different training data set." [GDT+13]

Bias

"... refers to the error that is introduced by approximating a real-life problem, which

may be extremely complicated, by a much simpler model." [GDT+13]

4.2.1 The trade-off

The bias could assume, generally, a low value if the methods are more flexible. This led us to a

trade-off because it is described that low bias, normally implies high variance and vice versa. So,

it is a core issue think how could we have a balance either with bias or with variance.

It is presented in figure 4.3 of page 23 an illustrative image of how the bias and variance are

related. Assuming that red spot at the circle centre is the real value and blue dots are predictions.
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Figure 4.3: Bias/Variance [GDT+13]

Typically, as we increment the unpredictability of our model, we will see a decrease in error

because model has lower bias. In any case, this just occurs until a specific point. As we keep on

making our model increasing complexity, we end up over-fitting, i.e., the predictor is too complex

and flexible making fewer mistakes on unseen future data, and consequently, our model will begin

experiencing high variance as we can see in figure 4.4, often a consequence of a model that is

very simple. But the opposite can also happen, under-fitting, if the predictor is too simplistic and

rigid which led to a model that does not fit well the test data.

Figure 4.4: Model Complexity (Fortmann-Roe, 2012)

The previous figure present us a graphical view of the trade-off. We could say that ensemble
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learning mune us with a powerful tool to examine this. A winning model ought to keep up a

harmony between these two sorts of components, trying to balance the final value of total error.

Next section will guide us through all the implementation plan, experiments carried out and

the achieved results.
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Implementation

In this chapter, we start our plan of execution and will start doing some experiments. We will start

by presenting some of ensemble learning methods, models and one experiment done in Python

language which allowed to have the first approach to this programming language.

5.1 Data sets

Many different data sets can be used and acquired to test our experiments. Some of them can be

found on Kaggle [Kag14] or UCI Repository, for example. Either one or the other are originated

from true issues and were respected useful by past researchers.

Three datasets were selected:

1. Boston house prices

2. Real estate valuation

3. California housing

5.1.1 Boston house prices dataset

This data refers to the epoch of 1978 to some Boston housing. This set contains 506 entries and

represents some characteristics of homes from different rural areas in Boston city, Massachusetts

state. Doesn’t exist missing values and the last attribute is normally the target where others are

predictive features.

Next list resume all the attributes information:

• CRIM per capita crime rate by town

• ZN proportion of residential land zoned for lots over 25,000 sq.ft.

• INDUS proportion of non-retail business acres per town
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• CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

• NOX nitric oxides concentration (parts per 10 million)

• RM average number of rooms per dwelling

• AGE proportion of owner-occupied units built prior to 1940

• DIS weighted distances to five Boston employment centres

• RAD index of accessibility to radial highways

• TAX full-value property-tax rate per $10,000

• PTRATIO pupil-teacher ratio by town

• B 1000(Bk−0.63)2 where Bk is the proportion of blacks by town

• LSTAT % lower status of the population

• MEDV Median value of owner-occupied homes in $1000’s

retrieved from https://www.cs.toronto.edu/ delve/data/boston/bostonDetail.html

This dataset1was taken from the StatLib library which is maintained at Carnegie Mellon Uni-

versity. Looking for some regression problems we found this dataset has been used in many

machine learning papers.

5.1.2 Real estate valuation dataset

Some basic characteristics of this dataset were raised: number of instances is 414, 6 features listed

below, one target, the price of the house per unit area. Doesn’t exist missing values.

This data was collected from Sindian Dist., New Taipei City, Taiwan and dollar as currency

and ping as metric, where ping is approximately 3.3m2.

Next list resume all the features information:

• Transaction date - example, 2013.250 = 2013 March

• House age - in years

• Distance to the nearest MRT station - in meters

• Number of convenience stores in the living circle on foot - integer value

• Latitude - in degrees

• Longitude - in degrees

1Harrison, D. & Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and
Management 5, p.81–102
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Adaptado de https://www.cs.toronto.edu/ delve/data/boston/bostonDetail.html Source https://

archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set2

5.1.3 California Housing dataset

This dataset represents a sample of data from the houses in California districts. Some basic char-

acteristics of this dataset were raised: number of instances is 20640, of predictive features is 8 and

does not exist missing values. Again, the target variable is the median house value.

Next list resume all the features information:

• MedInc median income in block

• HouseAge median house age in block

• AveRooms average number of rooms

• AveBedrms average number of bedrooms

• Population block population

• AveOccup average house occupancy

• Latitude house block latitude

• Longitude house block longitude

This information was retrieved from the well known StatLib repository http://lib.stat.

cmu.edu/datasets/ and derived from the 1990 U.S. census3.

5.1.4 Datasets Aggregated Information

In the table 5.1, we summarize the information about those three datasets.

Table 5.1: Datasets Comparison

Instances Features Features data type Target data type
Boston 506 13 Real positive Real, [5,50]
Real estate 414 6 Integer, real Real
California 20640 8 Real Real, [0.15,5]

As we can see we have two sets with approximate number of instances but with approximately

with half number of features and one set distinguishes from the others due to the large number of

instances. Also, the features data type are all real numbers with slightly different signs and the

target is always a real value.

2Yeh, I. C., & Hsu, T. K. (2018). Building real estate valuation models with comparative approach through case-
based reasoning. Applied Soft Computing, 65, p. 260-271

3Reference: Pace, R. Kelley, and Ronald Barry, "Sparse Spatial Autoregressions," Statistics and Probability Letters,
Volume 33, Number 3, May 5 1997, p. 291-297.
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5.2 Deep on Ensemble Learning Methods

The two most prevalent ensemble methods are bagging and boosting. The first one, bagging, trains

several single models parallelly. Arbitrary, each model is created as a subset. The other method

referred previously, boosting, has its main difference compared with bagging in the way that it

works in a consecutive manner. This allows for one important characteristic: every single model

learn from mistakes made by the precedent model [Roc19].

Another method, stacking, that regularly thinks about heterogeneous weak learners, work with

them in parallel and consolidates them via training a meta-model to yield a forecast based on

several weak models’ predictions [Wol92]

Figure 5.1: Bagging and Boosting methods

5.2.1 Some algorithms based on bagging and boosting

We can enumerate a very extensive list with many and many algorithms base on those two tech-

niques. But, for the sake of information we’ll refer just three of them, judging us to be of the most

used:

• Random Forest is a very well known algorithm that uses bagging as strategy and decision

tree DT as the individual model;

• AdaBoost, Adaptive Boosting, like the name evince, is a boosting ensemble technique and

works particularly well with DT. Boosting models are gaining from the knowledge of the

previous slip-ups and AdaBoost gains from the errors by expanding the heaviness of mis-

classified information;

• Gradient boosting, GB, is another boosting algorithm that uses boosting technique. This

technique gains from the previous errors, residual error directly, instead of updating the

weights of the data.
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5.3 Set up

For the overall experiments we used some concepts already defined in 3. We decided to use cross

validation with k-fold as mentioned in 3.11.1.1 and the model error equation in 3.1. Besides that

all the code was written4 in Python language, version 3.7, within some well known libraries as

mentioned in 2.4, namely scikit-learn, running a Windows 10 Pro version software in a machine

with the following characteristics:

• A Intel(R) CORE(TM) i7-4710HQ CPU @2.50GHz up to 3.50GHz processor

• 16.0GB installed RAM

• Four is the number of cores

All the code was developed recurring to the Visual Studio Code IDE. The possibility to add a

seed value was great because we can guarantee that at each iteration of the script we got always

the exact numbers generated. In that way we can dismiss the uncertainty due to different partitions

of the data, have always the same splits to work on and compare the results with logic.

We also used a seed value in order to have guaranteed that a similar arrangement of arbitrary

numbers are created. Doing that allowed us to have, for example, the same partitions of the train

and test data across all the ensembles and this way we can compare and evaluate the models

execution properly.

5.4 Hyperparameter tuning for machine learning models

We think in use one tuning technique to help us decide, before we run each technique, what are

the best set choice of parameters to start.

Comparing GridSearchCV and RandomizedSearchCV, both from sklearn.model_selection li-

brary, we use RandomizedSearchCV in 3 different techniques: Bagging, Random Forest and Gra-

dient Boosting for each dataset. We just select one fixed parameter, the number of estimators, to

use across all. The range was range(100,5001,150), i.e., starting at 100 until 5000 with steps of

150.

The choose for RandomSearch is related for the velocity we have in running this against Grid-

Search, the first is much faster then the latter.

The configuration passed to each instance of search was:

• n_iter = 60

• scoring = r2

• cv = 5

• n_ jobs = 8

4All the code developed in the scope of this work can be found in https://github.com/nmvalente/diss
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The following tables, 5.2, 5.3 and 5.4 resume all the results obtained in the search, for each

dataset.
Table 5.2: Boston House Prices Results for Randomized Search

Bagging Random Forest Gradient Boosting

Best parameters n_estimators = 550 n_estimators = 2350 n_estimators = 250

Best CV Score 0.84063 0.84061 0.85724

R2 Score on test data 0.86216 0.86695 0.88281

Prediction 22.61007 22.59685 22.59962

Process time 4.8min 5.3min 46.5s

Table 5.3: Real Estate Results for Randomized Search

Bagging Random Forest Gradient Boosting

Best parameters n_estimators = 700 n_estimators = 1150 n_estimators = 100

Best CV Score 0.704869721388346 0.70524 0.70040

R2 Score on test data 0.57842 0.57425 0.53569

Prediction 36.78823 36.85550 37.46666

Process time 3.7min 3.7min 41s

Table 5.4: California Price Results for Randomized Search

Bagging Random Forest Gradient Boosting

Best parameters n_estimators = 550 n_estimators = 2350 n_estimators = 250

Best CV Score 0.84063 0.84061 0.85724

R2 Score on test data 0.86216 0.86695 0.88281

Prediction 22.61007 22.59685 22.59962

Process time 3.7s 3.7s 3.7s

5.5 Experiments

To run all the subsequent experiments, the script developed in python just need to indicate the

filename of the dataset to run each one, which need to be by default in the datasets/ directory

accordingly to the repository structure. To run the script we only need to run it in the root folder

of the project.

Next we can see some of the possible calls to the script:

• python .\script.py –file boston_house_prices.csv
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• python .\script.py –file real_estate_valuation.csv

• python .\script.py –file california.csv

• python .\script.py –help and get information about how we must run it:

1. usage -> python shared\util.py –file (or -f) <filename>

2. usage -> python shared\util.py –path (or -p) <path>

Regarding the techniques we have been working on, we pointed out in the list 5.1 all of them.

∗ DT - Decision Tree

∗ BG - Bagging

∗ WG - Wagging

∗ RF - Random Forest

∗ GB - Gradient Boosting

∗ XGB - XGradient Boosting

∗ MB1 - Multi boosting with Wagging and GB

∗ MG2 - Multi boosting with Wagging and XGB

∗ MBB - Multi boosting with weighted Wagging and XGB

List 5.1: Resume of all techniques used

The technique Decision Tree was putted here just to compare with the others, working as a

starting point. BG, RF, GB, XGB are all techniques already known and used with the values found

after the Randomized Search done in tables 5.2, 5.3 and 5.4, with the respective n_estimators

parameter value. Wagging is a technique that appears with Webb as mentioned in chaper 2.2. The

idea is similar to Bagging but instead of using equally weighted samples, uses weighted averaging,

following a Poisson distribution as we can see in equation 5.1 [Web00].

Poisson() =−log
(

Random(1...999)
1000

)
(5.1)

After obtaining a random value all the values are standardized. This technique proved to have

interesting results and we should consider it.

The last three techniques, MB1, MG2 and MBB were performed and new trials have been

done to achieve better results. MB1 and MG2 are similar. Both use Wagging but instead of have a

Decision Tree as base learner, we have a Gradient Boosting regressor for the MB1 and a XGradient

Boosting regressor for the MG2. So, for both we use equal values for n_estimatorsWG of Wagging

and for GB and XGB the n_estimatorsGB already found. The idea was to mixture techniques that
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reduce bias and variance in order to reduce the generalization error. With that in mind and after

observing the predictive analysis of XGB in the three different datasets, we added this last one last

technique. That one, MBB, uses XGB and Wagging. The idea was to separate the data, one parcel

to WG and other to XGB, by a p percent value. So, for each k− f old instance, we train p for WG

and (1− p) for XGB. We trained and predicted the values independently, taking in account the

weighted.

In all subsequent experiments, with experiment order number greater than zero, we resume all

the information in tables. We can see in MB1 and MG2 we did not put any percentage because we

use one and other sequentially and for the MBB we always refer the percentage of each technique

used.

- How we obtain those values for p?

- We ran multiple times and we used increments of 0.01 from 0.01 to 0.99 in order

to find the best p value for each race.

But let us just begin with the warm up experiment realised right at the beginning of the prob-

lem.

5.5.1 Experiment Zero

In the next few lines of code, listing 5.1, we try to run a first mini program in order to determine

the accuracy score of each one of the algorithms referred above, in the section 5.2.1.

1 # Load Libraries

2 from sklearn.datasets import make_moons

3 from sklearn.metrics import accuracy_score

4 from sklearn.model_selection import train_test_split

5 from sklearn.tree import DecisionTreeClassifier

6 from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier,

GradientBoostingClassifier

7

8 # Create initial data set

9 X, y = make_moons(n_samples=10000, noise=.5, random_state=0)

10

11 # Splitting training test set

12 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

13

14 # Decision Tree model

15 clf = DecisionTreeClassifier()

16 clf.fit(X_train, y_train)

17 y_pred = clf.predict(X_test)

18 print("Decision Tree Model ->", accuracy_score(y_test, y_pred))

19
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20 # Random Forest model

21 clf = RandomForestClassifier(n_estimators=100, max_features="auto",random_state=0)

22 clf.fit(X_train, y_train)

23 y_pred = clf.predict(X_test)

24 print("Random Forest Model ->", accuracy_score(y_test, y_pred))

25

26 # AdaBoost model

27 clf = AdaBoostClassifier(n_estimators=100)

28 clf.fit(X_train, y_train)

29 y_pred = clf.predict(X_test)

30 print("Adaboost Model ->", accuracy_score(y_test, y_pred))

31

32 # Gradient Boosting model

33 clf = GradientBoostingClassifier(n_estimators=100)

34 clf.fit(X_train, y_train)

35 y_pred = clf.predict(X_test)

36 print("Gradient Boosting Model ->", accuracy_score(y_test, y_pred))

Listing 5.1: Compare the values obtained with Random Forest, Adaboost and Gradient Boosting

within a Decision Tree

Figure 5.2: Score output for each model

We can observe in figure 5.2, that the two last models for this experiment zero, the boosting re-

lated, are the best. They can obtain an approximately 10% of improvement related to the Decision

Tree Model. That was our first approach to python language and we used classification instead of

regression. After that first approach the path we defined was to focus only in regression as said in

3.11.

5.5.2 Experiment 1

In the two next tables, 5.5 and 5.6, we resume all the information regarding the decomposition of

bias and variance, overall metric error evaluation - mse, the weight of bias and variance in mse,

the predictive value of the ensemble, coefficient of determination R2 score and the time taken to

run each technique.

33



Implementation

Table 5.5: Boston House Techniques Part1

DT BG WG RF

base learner DT DT DT DT

n_instances 1 550 550 2350

bias2 0.289 0.197 0.162 0.197

variance 20.785 11.864 11.588 11.710

MSE(error) 21.074 12.061 11.750 11.906

bias weight 1.373 1.637 1.379 0.197

var weight 98.627 98.363 98.621 98.346

prediction 22.853 22.542 22.514 22.549

R2 score 0.749 0.853 0.855 0.855

process time(s) 0.024 33.847 35.520 18.123

Table 5.6: Boston House Techniques Part2

GB XGB MB1 MG2 MBB

base learner DT DT DT - WG/GB DT - WG/XGB
DT - WG/XGB

(3%, 97%)

n_instances 250 250 100/250 100/250 100/250

bias2 0.248 0.261 0.185 0.207 0.809

variance 12.880 11.033 12.604 11.032 9.794

MSE(error) 13.128 11.294 12.789 11.239 10.603

bias weight 1.886 2.309 1.447 1.839 7.632

var weight 98.114 97.691 98.553 98.161 92.368

prediction 22.598 22.508 22.517 22.420 22.415

R2 score 0.842 0.862 0.842 0.862 0.698

process time(s) 0.733 0.349 172.022 149.164 3.396

The image 5.3 show the relationship between true values and the predicted values. This turns

out to have a vision of how they relate to each other.

The best performer technique looking into mse error was the MBB technique. If we look

individually to the bias2 and variance components, we can say WG was the best and MBB is the

best, respectively. Of course, if we compare WG and MBB, the R2 score is much different, where

MBB loses. Notice well that MBB has the worse R2 score among all the others, event DT . So,

looking into all the factors we can chose XGB if time is important or MG2 if time is not a problem.

If we are only searching by mse error we elected the MBB.
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5.5.3 Experiment 2

In the two next tables, 5.7 and 5.8, we resume all the information regarding the decomposition of

bias and variance, overall metric error evaluation - mse, the weight of bias and variance in mse,

the predictive value of the ensemble, coefficient of determination R2 score and the time taken to

run each technique.
Table 5.7: Real Estate Techniques Part1

DT BG WG RF

base learner DT DT DT DT

n_instances 1 700 700 1150

bias2 1.905 1.694 1.681 1.667

variance 88.639 57.523 56.129 57.573

MSE(error) 90.545 59.218 57.810 59.239

bias weight 2.104 2.861 2.908 2.813

var weight 97.896 97.139 97.092 97.187

prediction 38.279 38.289 38.324 38.282

R2 score 0.521 0.684 0.693 0.684

process time(s) 0.010 39.414 45.014 10.709

Table 5.8: Real Estate Techniques Part2

GB XGB MB1 MG2 MBB

base learner DT DT DT - WG/GB DT - WG/XGB
DT - WG/XGB

(13%, 87%)

n_instances 100 100 100/700 100/700 100/700

bias2 1.021 1.228 0.662 1.498 1.502

variance 80.041 58.044 74.759 55.699 55.568

MSE(error) 81.062 59.272 75.421 57.197 57.071

bias weight 1.260 2.072 0.877 2.619 2.933

var weight 98.740 97.928 99.123 97.381 97.067

prediction 37.944 38.072 38.109 38.216 38.430

R2 score 0.569 0.683 0.596 0.694 0.693

process time(s) 0.2050 0.168 95.128 83.766 3.896

The image 5.4 show the relationship between true values and the predicted values. This turns

out to have a vision of how they relate to each other.

The best performer technique looking into mse error was the MBB technique again. If we look

individually to the bias2 and variance components, we can say MB1 was the best and MBB is also
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the best here, respectively. Comparing the values for R2 score we can say MG2 and MBB are the

best but the difference is so minimal, where the process time makes the decision, because MG2 is

approximately 21 times slower. So the winner ensemble in this experiment was the MBB.

5.5.4 Experiment 3

In the two next tables, 5.9 and 5.10, we resume all the information regarding the decomposition

of bias and variance, overall metric error evaluation - mse, the weight of bias and variance in mse,

the predictive value of the ensemble, coefficient of determination R2 score and the time taken to

run each technique.
Table 5.9: California Housing Techniques Part1

DT BG WG RF

base learner DT DT DT DT

n_instances 1 550 550 2350

bias2 0.000 0.000 0.000 0.000

variance 1.278 0.748 0.743 0.747

MSE(error) 1.278 0.748 0.743 0.747

bias weight 0.0030 0.046 0.049 0.049

var weight 99.970 99.954 99.951 99.951

prediction 1.574 1.584 1.585 1.584

R2 score 0.200 0.532 0.535 0.533

process time(s) 0.258 72.474 77.930 118.520

Table 5.10: California Housing Techniques Part2

GB XGB MB1 MG2 MBB

base learner DT DT DT - WG/GB DT - WG/XGB
DT - WG/XGB

(40%, 60%)

n_instances 250 250 100/250 100/250 100/250

bias2 0.000 0.000 0.000 0.000 0.000

variance 0.818 0.686 0.816 0.689 0.629

MSE(error) 0.818 0.686 0.816 0.689 0.629

bias weight 0.047 2.309 0.033 0.064 0.067

var weight 99.953 99.942 99.967 99.936 99.933

prediction 1.572 1.572 1.572 1.576 1.570

R2 score 0.488 0.571 0.490 0.569 0.604

process time(s) 13.368 5.046 1599.769 1849.570 44.618
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The image 5.5 show the relationship between true values and the predicted values. This turns

out to have a vision of how they relate to each other.

In this particular dataset we didn’t find any bias, only variance error. So, the mse is given

by the value of the variance. Again, the best mse error appeared with MBB. This dataset has

a number of instances very superior in comparison to the previous, so that can justify the value

obtained for R2 score. And here, MBB is also the best. So if time is a problem, maybe XGB is the

right technique, otherwise MBB.

5.6 Conclusion

All experiments were summarized in three main packages. Of course the number of experiments

here seems a little reductive because we try so many different configurations, made so many trials

regarding the Randomized Search or searching for the best p percent value to use in MBB, for

example.

We resumed all the information in three sub-chapters to have all relevant data condensed. That

way we can compare and analyse better the techniques used and what values were obtained.

In the table 5.11, excluding the DT because of the process time(simpler), we can observe the

MBB always have the better generalization error and it also appears as the best with R2 score in two

of three experiments. Consistency also exists when looking to the process time of each technique

where, with no doubts, XGB wins across all the experiments. So, we can conclude MBB is the

best for the situations we study but XGB is a very good option, not getting far behind but winning

at race time.

Experiment # MSE R2 Time(s)
EXP 1 MBB XGB and MG2 XGB
EXP 2 MBB WG, MG2 and MBB XGB
EXP 3 MBB MBB XGB

Table 5.11: Best results aggregated
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(a) DT (b) BG

(c) WG (d) RF

(e) GB (f) XGB

(g) MB1 (h) MG2

Figure 5.3: Boston - relation between true and predicted values

38



Implementation

(a) DT (b) BG

(c) WG (d) RF

(e) GB (f) XGB

(g) MB1 (h) MG2

Figure 5.4: Real Estate - relation between true and predicted values
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(a) DT (b) BG

(c) WG (d) RF

(e) GB (f) XGB

(g) MB1 (h) MG2

Figure 5.5: Relation between true and predicted values
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Chapter 6

Conclusions and Future Work

6.1 Satisfaction of Objectives

• Study and understand the bias/variance trade-off;

• Identification of which algorithms have a positive impact on the reduction of bias/variance;

• Try to obtain better predictive results working with some techniques, doing some experi-

mentations.

Regarding the work done, and looking at our core objectives in 1.2 we think the first objective,

study and understand the bias/variance trade-off was largely achieved, minutely explained and

took into account at the implementation phase.

The second goal on the list, identification of which algorithms have a positive impact on the

reduction of bias/variance, was also achieved. We clearly defined and measure two principal

metrics on generalization error, are they the bias and variance, for each used technique.

Another thing we are satisfied is the possibility we have to already saw in action and perceive

the strategies and methods in trend by different authors for a similar issue and the experiment

taken in section 5.

In section 5, we made all the set up and ran different techniques, obtaining diverse results. The

MBB technique, a hybrid technique using Wagging and XGradient Boosting, took us to a landing

where we think it deserves more attention. It is in our opinion an approach to keep exploring.

6.2 Future Work

Some work needs to be done yet and this field of study proved to have different possible paths to

follow. All kind of practical work like do much more simulations of results with some datasets,

determine the generalization errors in each approach and compare with other ensemble learning
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models needs to be done. Furthermore, identify what techniques to use in order to generate better

ensembles regarding which properties models need to have.

For that, we might have to implement and test the overall score of each approach and give a real

tentative of mixing some other techniques to get a better predictive analysis than others already on

the fly. We just have mixed Wagging with Gradient Boosting or Wagging with XGradient Boosting

and maybe with other mixtures we can get further.

We are clearly convinced that within this philosophy, we can bring innovation by creating new

ensembles and maybe better results.

Besides all, we also think we could explore more the idea addressed in chapter 3, namely, the

Negative Correlation Learning 2.3.1 and the Stacking technique referred on 5.2 of page 25.

Another thing we can address in the future is not to limit the utilization only to decision

trees and use for example also neural networks, because we only use decision trees but we could

have used some other base learners in our set up process. In that case we can not only have

different types of techniques combined but also different type of base learners. Evaluate those

results looking at generalization error as Ueda and Nakato presented, i.e., look into the covariance

component too.

Last but not least, the hyperparameter tuning could also have more attention and travel deep

into that thematic.

But the main idea to absorb here is that this work was some kind abstract and we not only look

into one dataset, we saw and analysed different scores, bias and variance weights at generalization

error and dataset characteristics across different datasets. The dataset per se, need to have its own

study and deserve analyse. Next coming soon idea is to use the approach we had in this work to

submit a solution in Kaggle competition.
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Appendix A

Ensemble Models Procedures 1

A.1 Random Forest

Figure A.1: Random Forest Model

1. Select a random number of subsets from the training set, let’s say N.

2. After that train N decision trees.

• one random subset is used to train one decision tree

• the optimal splits for each decision tree are based on a random subset of features (e.g.

10 features in total, randomly select 5 out of 10 features to split)

3. Each individual tree predicts the candidates in the test set, independently.

4. Make the final prediction.

For each candidate in the test set, Random Forest uses the class with the majority vote as

this candidate’s final prediction. Of course, our 1000 trees are the parliament here.
1 Based on [Zou17]
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A.2 Adaboost

Figure A.2: Adaboost Model

1. Initialize the weights of each single data point. Divide uniformly by the total number of

points to know the first weights.

2. Train a DT

3. Determine the error rate of the DT

4. Calculate this DT’s weight in the ensemble

• The higher weighted error rate of a tree, the less decision power the tree will be given

during the later voting

• The lower weighted error rate of a tree, the higher decision power the tree will be given

during the later voting

5. Update weights of wrongly classified points. The weight of each data point is equal to:

• If the model got this data point correct, the weight stays the same

• If the model got this data point wrong, the new weight of this point = old weight *

np.exp(weight of this tree)

6. Repeat first step unless all the trees were trained

7. Make the final prediction

Adaboost technique combines tree weights in order to obtain a new prediction.

Clearly, the impact of each tree is related with the weight it has. The more weight the greater

impact it will have. AdaBoost makes another forecast looking to each weight and multiplying by

the expected value for that tree as we can see in step 5 above.
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Figure A.3: Adaboost Model Final Prediction

A.3 Gradient Boosting

Figure A.4: Gradient Boosting Model

1. Train a DT

2. Apply the trained DT to prediction

3. Determine the residual of this DT

4. Repeat the first step, unless we train already all the trees

5. Make the final prediction

The Gradient Boosting makes a new prediction by simply adding up the predictions of all

trees.
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Figure A.5: Gradient Boosting Model Final Prediction
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Appendix B

Explored Datasets 1

B.1 Boston house prices

1Reports generated with python library pandas-profiling
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You can download all profiling measure made in the next url https://github.com/nmvalente/

diss/blob/master/boston_profiling.html and navigate better.
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B.2 Real estate
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You can download all profiling measure made in the next url https://github.com/nmvalente/

diss/blob/master/real_estate_valuation_profiling.html and navigate better.
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B.3 California
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You can download all profiling measure made in the next url https://github.com/nmvalente/

diss/blob/master/california_profiling.html and navigate better.
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