
Is Multiple Kernel 
Learning better than 
other classifier 
methods?
José António Amorim Lage de Carvalho
Mestrado em Ciência de Computadores
Departamento de Ciência de Computadores
2019

Orientador 
Inês de Castro Dutra, Professor Auxiliar
Faculdade de Ciências da Universidade do Porto





Todas  as  correções  determinadas 

pelo júri, e só essas, foram 

efetuadas.

O Presidente do Júri,

Porto, ______/______/_________





Abstract

Multiple kernel learning (MKL) is a machine learning approach that uses a combination of kernels
aiming for better modeling of different types of variables. It is particularly suitable to solve
multimodal learning tasks and has been used in multiple fields. However very few works compare
the method with other machine learning models, which hinders its actual quality and performance
when compared with other simpler models. In this work, we implement a variation of an MKL
algorithm and compare its quality and time performance with other machine learning models.
Although having a potential to build better data models because it can use multiple kernels for
subsets of variables, MKL has a very high computational cost. The algorithm combines several
kernels, but it needs to find the best weight for each kernel. The main algorithm needs to handle
four main problems: (1) which kernels to choose, (2) how many kernels to use, (3) how to combine
them, and (4) how to find the weights. We concentrate on the fourth problem and present a
novel algorithm that uses a genetic algorithm to choose the best set of weights. We start by
studying various approaches to MKL and discussing their advantages and drawbacks. Contrary
to most works in the literature, we compare our method with Support Vector Machines, decision
trees, random forests, k-nearest neighbours, naive Bayes and neural networks, applied to multiple
datasets. We use the F1-score to compare the quality performance of the models and guarantee
that the datasets have well balanced classes. Results show that MKL can have a competitive
quality when compared with the other models for some datasets, but its computational time is
still prohibitive even for small datasets.

i





Resumo

Multiple kernel learning (MKL) é uma abordagem de aprendizagem automática que usa uma
combinação de kernels visando gerar modelos de dados que levem em consideração diferentes
tipos de variáveis. É particularmente interessante para a modelagem de dados multi-modais e
tem sido usado em vários domínios. No entanto, muito poucos trabalhos comparam o método
com outros modelos de aprendizagem automática, escondendo a real qualidade e desempenho
deste método quando comparado com outros. Neste trabalho, implementamos uma variação de
um algoritmo MKL e comparamos sua qualidade e desempenho de tempo com outros modelos de
aprendizagem automática. Embora tenha potencial para construir melhores modelos de dados
porque pode usar vários kernels para subconjuntos de variáveis, o MKL possui um alto custo
computacional. O algoritmo combina vários kernels, mas precisa encontrar o melhor peso
para cada kernel. O algoritmo precisa lidar com quatro problemas principais: (1) quais de
cada kernel escolher, (2) quantos escolher, (3) como combiná-los e (4) como encontrar os
pesos. Concentramo-nos no quarto problema e apresentamos um novo algoritmo que usa uma
anordagem genética para escolher o melhor conjunto de pesos. Começamos estudando várias
abordagens do MKL e discutindo suas vantagens e desvantagens. Ao contrário da maioria dos
trabalhos da literatura, comparamos nosso método com máquinas de vetores de suporte, árvores
de decisão, florestas aleatórias, k vizinhos mais próximos, naive Bayes e redes neurais, aplicados
a vários conjuntos de dados. Usamos o escore F1 para comparar a qualidade e desempenho dos
modelos, garantindo que os conjuntos de dados tenham classes bem equilibradas. Os resultados
mostram que o MKL pode ter uma qualidade competitiva quando comparado com outros modelos
para alguns conjuntos de dados, mas seu tempo computacional ainda é proibitivo, mesmo para
pequenos conjuntos de dados.

iii





Acknowledgements

First I would like to express my gratitude to my family for the support they provided in the last
few months. I also would like to thank my advisor Inês Dutra for the guidance, help, and aid
that she granted to me in the last year. Lastly, I would like to thank my friends that help me at
best and the worst moments to endure the weight of this work, Thank you all.

v





Contents

Abstract i

Resumo iii

Acknowledgements v

Contents viii

List of Tables ix

List of Figures xi

Listings xi

Acronyms xiii

1 Introduction 1

2 Background 3

2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Validation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Positive definite function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Multiple kernel learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vii



2.6 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Other Machine Learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 State of the art 13

4 Evaluating MKL 19

4.1 SVM and MKL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Software and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Used Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Results and Discussion 27

6 Conclusion 37

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 41

viii



List of Tables

2.1 confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Other works involving MKL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Number of experiences during tuning for each algorithm . . . . . . . . . . . . . . 23

4.2 datasets used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 heart results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 pendigits result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 adult results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 mushrooms results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 fashion results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 hiragana results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.7 gisette results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.8 volcanoes results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.9 volcanoes2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.10 The number of iterations of a max of 100 that the MKL did in a max of 11h time
span for each dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix





List of Figures

2.1 SVM illustration: in this image we are trying to distinguish the circles from the
squares (two classes). The SVM tried to fit the best line (solid) that maximizes
the distance between classes using the support vectors and auxiliary lines, the
margins (traced lines). Where d = 1

||w|| as in the primal Equation 2.1 (Steinbach’s
book [28]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Classification of MKL algorithms done by Niazmardi et al. . . . . . . . . . . . . . 14

4.1 Experimental Methodology for our MKL . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 F1-scores to each algorithm in each dataset . . . . . . . . . . . . . . . . . . . . . 27

5.2 Best fitness in each generation in the heart dataset . . . . . . . . . . . . . . . . 34

5.3 Best fitness in each generation in the adult dataset . . . . . . . . . . . . . . . . . 34

5.4 Best fitness in each generation in the mushrooms dataset . . . . . . . . . . . . 35

5.5 Best fitness in each generation in the pendigits dataset . . . . . . . . . . . . . . 35

xi





Acronyms

MKL Multiple Kernel Learning

SVM Support Vector Machine

AI Artificial Intelligence

KNN K Neareast Neighbours

RBF Radial Basis Function

RAM Random-Access Memory

xiii





Chapter 1

Introduction

Machine learning software products are increasing trend in our world with many people using
tools like the google translator or siri. The field became particularly trending thanks to google’s
research in neural networks for deep learning [3] which resulted in solving many applications.
Despite the success of neural networks and deep learning, there are still several models that can
be useful, specially for learning tasks that involve heterogeneous sources of data. A particular
technique is the Multiple Kernel Learning (MKL), which has multiple supporters and has
proved to produce better models than, for example, neural networks [15] or Support Vector
Machines (SVM) [9] in several applications. MKL is used to solve multimodal problems where
multiple works have evidence of improved performance relatively to at least the SVM. For
example, in emotion recognition on speech using many features of sound [31] and in an efficient
way to join multimodal data [20]. Most work on MKL classifiers compare results against SVMs,
but only a few perform a fair comparison with other classification models, which hinders MKL’s
actual quality and performance when compared with other simpler machine learning models.
MKL is not much used due to its high computational complexity. The larger the number of
instances and variables, the larger is the search space, specially when tuning parameters for the
underlying classifier. Moreover, the combination of kernels using a highly dimensional dataset
can deeply hurt performance. In this work, we compare the performance of MKL with several
other classifiers and implement a new MKL method where parameters are generated resourcing
to a genetic algorithm. We test the performance (time-wise and quality-wise) using various
datasets also explored in the literature. Our main contributions are:

• Implementation of a new MKL algorithm based on genetic algorithms inspired by the work
of Pinar et al. [21].

• Comparison of MKL with other classification methods.

This work is organized as follows. Next chapter introduces the main concepts in SVMs and
MKL, describing the two different ways of modelling the data: column-based and row-based. The
row-based approach is the one that we follow, since SVMs use instances as support vectors to

1



2 Chapter 1. Introduction

build a model that would distinguish between classes. In that chapter we also discuss the main
concepts on machine learning, emphasizing supervised classification in contrast to regression or
unsupervised learning. We also discuss about SVM and MKL computational complexities and
present the classification models we use in this work. In Chapter 3 we review the main works
in the literature that use MKL for classification and discuss about their limitations. Next, we
present our MKL modeling. We start by discussing about the various choices for implementing
MKL (types of kernels, functions to combine kernels and parameter values) and introduce our
MKL genetic based algorithm. We next present the datasets used in this work together with
the experimental methodology. Chapter 5 presents our results and compares MKL with other
classifiers. We compare time and quality on various datasets also used in the MKL literature.
Finally, we conclude this work and present perspectives of future work.



Chapter 2

Background

In this chapter we present essential topics to clearly understand this work. We start by briefly
discussing about machine learning techniques with emphasis on supervised learning and Support
Vector Machines (SVM). We then discuss about model evaluation and validation presenting
the main evaluation metrics and validation methods. Next, we present concepts related with
SVMs and MKL such as kernels and positive definite functions. An overview of the SVM and
MKL methods is then presented followed by a description of genetic algorithms and by a brief
description of the classification methods we use in this work to compare with MKL.

2.1 Machine Learning

Machine learning is a sub field of artificial intelligence (AI) that provides a set of algorithms that
allow a machine to learn patterns automatically from a set of data without human intervention.
The algorithms are divided in supervised and unsupervised. We focus on supervised learning,
which is the central subject of our work.

The task of supervised learning is defined as:
Given a training set x of N input-output pairs

(x1, y1), (x2, y2), · · · (xN , yN ),

where each yj was generated by an unknown function y = f(x), discover a function h that
approximates the true function f . When the yj is one of a finite set of values, the learning task
is called classification. It is called binary classification if yj can assume only two values. When
yj is a number, the learning task is called regression [23].

The concept is simple, but finding a suitable function h is not trivial. Issues related with
missing or incorrectly collected and stored data may interfere with the process of finding a good
h. When the data is perfect, the machine learning models could overfit. That happens when our
approximation h learns very well the data xj , but when it receives new data that was never seen

3



4 Chapter 2. Background

before, it performs poorly. Overfitting happens because the function h is excessively adjusted to
the data in x.

2.1.1 Evaluation metrics

An error measure is used to assess the learned function. In fact, the same data x and labels y
may fit different functions. For supervised learning methods that do classification, the evaluation
is usually performed using a confusion (or contingency) matrix. The confusion matrix shows
correct classified instances in the main diagonal. All other values are classification errors. Table
2.1 shows an example of a confusion matrix for a set y that contains only two distinct values
(binary classification). Considering one of the class values as positive and the second one as
negative, this matrix shows the counters for correctly classified positive (tp) and negative (tn)
instances in the main diagonal, while errors, false negatives (fn) and false positives (fp) are
shown in the secondary diagonal. The confusion matrix can be generalized to any number of
class values. From the confusion matrix, we can summarize the most common evaluation metrics
for classification:

• recall = tp
fn+tp

• precision = tp
tp+fp

• F1-measure = 2precision×recall
precision+recall

• accuracy = tp+tn
tp+tn+fn+fp

• error = 1− accuracy

Table 2.1: confusion matrix
positive negative

predicted positive tp fp
predicted negative fn tn

When measuring errors, it is also important to choose the normalization norm L1 or L2.
In some optimization MKL algorithms, a regularization (e.g L1 or Lp) to avoid overfitting in
the estimation of kernels. The regularization have a great affect in the performance of the
optimization of MKL algorithms. These algorithms lead to sparse solutions for the kernel weights
and their results are interpretable. The L1-norm regularization leads to more robust classification
performance, since it can exclude the weak or irrelevant basis kernels. However, due to their
sparse solution for the kernel weights, the L1-MKL algorithms will be unable to model the whole
information content of the data, resulting in a poor generalization capability. To address these
issues, the Lp-norm-regularized MKL algorithms are proposed. These solutions are not easily
interpretable due to their dense solutions, these algorithms can model all the information content



2.2. Kernel 5

of each basis kernel [20]. The no dense solutions are more interpretable because they have more
zeros and allow to relate the values of the weights with the importance of each kernel to the
model. In these algorithms we say the weights are in these norms if:

• L1: ∆1 = {d = (d1, .., dM )|di ∈ R+, ||d||1 ≤ 1}

• Lp: ∆p = {d = (d1, .., dM )|di ∈ R+, ||d||p ≤ 1}

where: ∆p is the set of weights in the norm regularizations p.

2.1.2 Validation methods

Validation methods are a way to give a perspective about how a certain model will perform when
it takes new data that was never seen before. The simplest method is holdout. It divides the
data in two subsets: training and test where, commonly, the test set is smaller than the train
set. A common way to make this split is to divide the original data in 80% for training and
20% for test. Other method is the k-fold cross validation, where the data is divided randomly
in k sets of rows. Training is performed k times using k-1 folds for training and the remaining
for test. In this method, the test set will be different for each iteration. Yet another method
is bootstrapping where the idea is to perform multiple holdouts but resampling the dataset
with replacement in each iteration. When dividing the datasets for validation it is common to
keep the same distribution of classes among the folds for the training an test sets. Models are
assessed using a performance metric that can be any of the ones discussed in Section 2.1.1. When
using cross-validation, evaluating performance can be tricky [8]. The best way of calculating the
metrics is using macro-averaging, which is to aggregate the results of confusion matrices produced
per fold for the test set and calculate the metrics from the aggregation of those numbers. When
training models it may be necessary to choose one among several parameters for the algorithms.
Therefore, an internal training-test is performed, tuning, which helps choosing the parameters
that are best suited for the training set. A model is then built using these best parameters and
tested on the test set to produce the final model performance.

2.2 Kernel

Let X be a non empty set. A function k : X ×X 7→ R is called a kernel [7].

Kernels are used in the context of this work to map the data to higher dimensional spaces
without explicitly calculating them. Some common utilized kernels are the Radial Basis
Function (RBF) kernel, the Polynomial kernel and the linear kernel, defined as:

• RBF: k(x, x′) = e−
||x−x′||2

2σ2 where sigma is a parameter chosen at train.



6 Chapter 2. Background

• Polynomial: k(x, x′) = (xTx′ + c)d

• Linear k(x, x′) = < x, x′ > ,where < x, x′ > is the inner product between the vector x and
x′.

2.3 Positive definite function

A symmetric function k : X×X 7→ R is positive definite [7] if ∀(a1, a2, ..., an) ∈ Rn,∀(x1, x2, ..., an) ∈
X,

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0

For the methods we present in this work, the kernel used must be positive definite.

2.4 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a model that was proposed by Vapnik [5] as a binary classifier.
The main idea of SVM is to draw a hyper-plane where the distance of the support vectors of
each class is maximal. Support vectors are instances in the dataset where the distance to the
hyperplane is minimal as shown in Figure 2.1. That method will make use of a kernel function
in its calculations.

The SVM algorithm uses mathematical optimization to train the classifier as follows:

The primal definition of the optimization problem is:

minimize
w,b,ζ

1
2w

Tw + C
n∑
i=1

ζi

subject to ∀i yi(wTφ(xi) + b) ≥ 1− ζi
∀i ∈ 1, .., n ζi ≥ 0

(2.1)

where w is a vector of weights given to each variable of the dataset, yi is the value of the class in
the row i and C is the smoothing factor which allows a certain degree of classification error.



2.4. Support Vector Machine (SVM) 7

Figure 2.1: SVM illustration: in this image we are trying to distinguish the circles from the
squares (two classes). The SVM tried to fit the best line (solid) that maximizes the distance
between classes using the support vectors and auxiliary lines, the margins (traced lines). Where
d = 1

||w|| as in the primal Equation 2.1 (Steinbach’s book [28])

The dual definition of the optimization problem is:

maximize
α

n∑
i=1

αi −
n∑
i=1

n∑
j=1

yiyjαiαjK(xi, xj)

subject to
n∑
i=1

αiyi = 0

∀i ∈ 1, .., n 0 ≤ αi ≤
1

2nλ = C

(2.2)

where yi is the value of the class in row i, xi is the feature vector of the row i and αi is the
weight given to the row i of the dataset. n is the number of rows (instances) in the dataset.

The primal solution (Equation 2.1) uses weights to each feature of the dataset and calculates
explicitly the high dimension φ(x). That is something that we would need if you want to solve
non linear problems. As shown in Figure 2.1, the way the SVM solves the problem is creating a
line that divides the classes. This does not work if the data is not linearly separable according to
the classes. The way the SVM solves that is by mapping the features to a higher dimension where
it is possible to linearly divide the classes with a hyperplane. But we don’t want to explicitly
calculate that new dimension because of its computational complexity as we would need to
project each feature to that dimension and calculate the weight there. Fortunately, we can use
the dual formulation where, instead of mapping each feature to another dimension, we perform
all the products in their original space and only map to another dimension after performing the



8 Chapter 2. Background

products.

The dual problem (Equation 2.2) assigns a weight to each row of the dataset. As the method
works with support vectors, the complexity is reduced. In order to project features to a higher
dimension the “kernel trick” explained in the last paragraph is used. The “kernel trick” is the
way of separating the features in a higher dimensional space without needing to calculate it,
using a kernel function.

Both optimization formulations (primal and dual) can be solved using a quadratic solver.

Notice that SVM is also capable of solving multiple class problems by using the one vs one
or the one vs all nethods, which involves training multiple models with subsets of the dataset.
SVM has a variation to solve regression problems.

2.5 Multiple kernel learning

Multiple Kernel Learning (MKL) is a machine learning technique where multiple kernels are
combined to produce a single classifier. The base learner can be any kernel-based learning
algorithm. In this work we use the SVM classifier with multiple kernels. The base learner
uses a kernel in its computation of the prediction (Classification/Regression). An Kη kernel is
computed as a combination of other kernels as shown below:

Kη(x, x′) = fη({Km(xm, x′m)}Pm=1|η)

where fη is a function which combines the P kernels in the kernel Kη(·, ·) with η being the
vector of weights associated with each kernel [9]. This approach is similar to an assemble learning
algorithm as it creates a model by using multiple simple models to learn and predict. In our case
we will train and predict using a set of functions (kernels), instead of models.

MKL can be used to solve two main kinds of problems:

1. Multimodal problems: this is achieved by assigning different sets of kernels to the variables
of each modality. This method could be used when our data possess different types of
data, for example text and video. But this also can be used when we intend to extract new
features from the data and use a different set of kernels to address that data.

2. Problems that an SVM is not capable of solving for using a single kernel: as an SVM only
uses a single kernel, it is possible that for every combination of parameters in the kernels:
linear, polynomial and RBF, the method is not expressive enough to solve the problem.
That can be improved with MKL by using a combination of kernels but this time each
kernel uses every feature in the dataset. The objective of this is to reach an optimal kernel
to solve the problem we are addressing [20].



2.6. Genetic algorithm 9

2.6 Genetic algorithm

The genetic algorithm is inspired by the natural selection in nature, and is used to optimize a
given function [13]. The algorithm starts with a set of solutions to the problem, where a solution
is represented as a string over a finite alphabet [23]. A fitness function measures how good
an individual is to solve the problem. Greater fitness values are from better individuals. This
function is normally formulated dependent of the problem we want to solve. This algorithm is by
nature iterative. Each iteration is also called a generation because after an iteration, the set of
solutions (population) will create a new one that will be passed to the next generation. In each
generation, a set of operations is performed: selection, crossover and mutation. The selection is
used to choose the parents that will give origin to new children for the next generation. This
choice is typically made having in consideration the fitness of each individual. For example,
choosing parents with high fitness probability. After selecting two parents, the crossover operation
is applied, by choosing an index in the string that represents the individual and concatenating
one of the parents’s prefix with the second parent’s suffix. This operation is applied such that
the two parents produce two offsprings. Usually, the new generation keeps the same number of
individuals in the next generation’s population, by evaluating the fitness of the new population
and discarding the less fit ones with a given probability. The mutation is an operation that can
occur in the individuals with low probability. It typically changes the value of a character of the
individual at some given index. This is made to increase the diversity of solutions which could
help to achieve better fitness scores in the next generations. Algorithm 1 illustrates these main
steps. In this algorithm, only one child is created from two parents.

Algorithm 1 genetic algorithm
1: population← initialPopulation()
2: while Termination criterion not reached do
3: newpop← []
4: fit← fitnessCalculation(population) {Gets the fitness values from population}
5: for j from 1 to population size do
6: parent1← Selection(population, fit) {Select first parent based on fitness}
7: parent2← Selection(population, fit) {Select second parent based on fitness}
8: child← Crossover(parent1, parent2) {Generate a descendant from parents}
9: if random > mutationProbability then

10: child←Mutation(chid) {if probability of mutation is reached mutate}
11: end if
12: newpop.add(child)
13: end for
14: population← newpop

15: end while
16: return best(population) {Return the best individual}



10 Chapter 2. Background

2.7 Other Machine Learning algorithms

Other algorithms that will be used at this work are the K neareast neighbours (KNN), the
decision tree, the neural network, the naive Bayes and the random forest. We will briefly explain
each of them.

KNN for some given number k. Given a new example, the k training examples that have
the input features closest to that example are used to predict the target value for the new example.
The prediction could be the mode, average, or some interpolation between the prediction of these
k training examples, perhaps weighting closer examples more than distant examples. For this
method to work, a distance metric is required that measures the closeness of two examples. First,
define a metric for the domain of each feature, in which the values of the features are converted
to a numerical scale that is used to compare values. Suppose Xi(e) is a numerical representation
of the value of feature Xi for the example e. Then (Xi(e1)−Xi(e2)) is the difference between
example e1 and e2 on the dimension defined by feature Xi. The Euclidean distance, the square
root of the sum of the squares of the dimension differences, could be used as the distance between
two examples. One important issue is the relative scales of different dimensions; increasing the
scale of one dimension increases the importance of that feature. [22].

A decision tree represents a function, in a form of a tree that takes as input a vector of
attribute values and returns a “decision” – a single output value. A decision tree reaches its
decision by performing a sequence of tests. Each internal node in the tree corresponds to a test
of the value of one of the input features, Ai, and the branches from the node are labeled with
the possible values of the attribute, Ai = vik. Each leaf node in the tree specifies a value to be
returned by the function.[23]

Neural networks are a popular target representation for learning. These networks are
inspired by 1the neurons in the brain. Neural networks have had considerable success in low-
level reasoning for which there is abundant training data, such as for image interpretation,
speech recognition and machine translation. There are many different types of neural networks.
Let’s consider feed-forward neural networks. Feed-forward networks can be seen as a hierarchy
consisting of linear functions interleaved with activation functions. Neural networks can have
multiple input features and multiple target features. These features are all real valued. Discrete
features can be transformed into indicator variables or ordinal features. The inputs feed into
layers of hidden units, which can be considered as features that are never directly observed, but
are useful for prediction. [22]

Naive Bayes model is a common Bayesian network model used in machine learning and is
graphically represented by a tree with only a root and the features of the dataset all linked
only to the root. In this model, the “class” variable C (which is to be predicted) is the root



2.7. Other Machine Learning algorithms 11

and the “attribute” variables Xi are the leaves. The model is “naive” because it assumes that
the attributes are conditionally independent of each other, given the class. Once the model
has been trained, it can be used to classify new examples for which the class variable C is
unobserved. With observed attribute values x1, · · · , xn, the probability of each class is given by
P (C|x1, · · · , xn) = αP (C) ∏

i P (xi|C). A deterministic prediction can be obtained by choosing
the most likely class [23].

The random forest algorithm works by creating many decision trees and training each one in
a random set of features of the original data. In order to predict new instances, it runs each
decision tree and outputs the mean (for regression tasks) or mode (for classification tasks) results
of all trees. In that case, it works as an ensemble model, where it combines the output predictions
of various base models. That is one of the best models used in practice as, in some cases, it is
capable of avoiding overfitting.





Chapter 3

State of the art

Many works have been developed in the area of MKL. Some of them approach the problem
studying how to improve complexity of the algorithms, e.g., [12]. Others, more empirical, propose
different methods for learning weights for the kernels, e.g., [20]. Gonen and Alpaydin [9] propose
a set of components that may vary in an MKL algorithm. These are:

• Learning method

• Functional form

• Target function

• Training method

• Base learner

For the Learning method they describe forms of training an MKL algorithm by choosing weights
for the kernels or adding kernels in boosting method, which is the idea of adding kernels to a
combination of kernels until that combination doesn’t improve anymore. Other choice is not
using weights at all as in fixed rules (e.g., summation or multiplication of the kernels).

The Functional form relates with the function that defines how the kernels used will be
combined. That could, for example, be the sum of all kernels associated with a weight as in a
linear combination method.

The target function is a metric that will be used to measure the performance of a kernel
combination. Ideally, we want to maximize that function to achieve a better combination and,
consequently, a good model.

The training method is the form which we train the MKL. It could be done in one step, where
the training of weights is incorporated in the training of the SVM. This could be achieved by just
adding the weights of the kernels to the mathematical formulation of SVM. It could also be done

13



14 Chapter 3. State of the art

in two steps, where, first, the weights are obtained by some method, then the resulting kernel for
that process is incorporated in the SVM and then a training of its own parameters takes place.

The authors also give a list of base learners commonly used in MKL, among them, the SVM.
They also did an experimental work trying some combinations of methods using three datasets.

Figure 3.1: Classification of MKL algorithms done by Niazmardi et al.

Another work that performed an exploratory analysis of MKL is the one by Niazmardi
et al. [20]. In their work they established a hierarchy of MKL methods shown in Figure 3.1.
Essentially, classifier dependent algorithms are in the category “one step” because the kernels and
the classifier are trained at the same time while the classifier independent ones use some other
way to optimize the kernels weights separated from the classifier. Niazmardi et al. also performed
an exploratory review of the norms L1 and L2. In the end, they used a linear combination of
kernels to address a problem of image classification.

In the last few years, MKL methods have been used in many areas with success. For example,
in Psichology, Beyan et al. [4] used an MKL method to detect emergent leaders. In the area
of security, Anderson et al.[1] used MKL to help in the task of malware detection. Fan and
Chen used the method to estimate the localization of wifi nodes[6]. Multiple works were done in
images as the one by Gu et al. [10]. Zhao et al. [32] tried to identify regions used to discriminate
classes in images, using MKL. In speech emotion recognition, the work by Zha et al.[31] uses
MKL with many features, and compares with SVM. Gu et al.[11] uses a non linear MKL to
incorporate spacial and spectral features of hyperspectral images. In 2017, Khattab et al.[17]
used an adaptive MKL to classify hyperspectral images. Other approaches can be found as in



15

Huang et al.[15] where they used a hierarchical MKL, Pinar et al.[21] that uses an MKL based in
fuzzy integrals to detect explosive hazards, and Hino et al.[12] that used a weights optimization
based in entropy.

Gustavo Augusto [2] and Tiago Santos [24] bouth made works with the objective of detecting
breast cancer using MKL.

Table 3.1 shows a summary of the MKL used in these papers sorted by year.



16 Chapter 3. State of the art

reference # year
kind of combi-
nation

how weights
are obtained

comparisons

[16] 2009 linear Shogun SVM only
[29] 2010 linear Shogun SVM only
[9] 2011 linear many SVM only
[33] 2011 nonlinear gradient descent other MKL, SVM

[10] 2012 linear
SVM optimization
problem

other MKL, SVM

[12] 2012 linear
minimal
conditional
entropy

other MKL,
i-vectors

[1] 2014 linear not explained only SVM
[30] 2014 many many other MKL, SVM
[15] 2014 nonlinear don’t use weights Neural Networks

[2] 2014 linear
matlab implemen-
tation

SVM

[19] 2015
handles missing
data

- other MKL

[32] 2016 linear gradient descent SVM only
[4] 2016 nonlinear gradient descent RFLA and SVM

[21] 2016 linear
Genetic algorithm
and fuzzy inte-
grals formulation

other MKL

[11] 2016 nonlinear
projection based
gradient descent

SVM and MKL

[31] 2016 linear
SVM optimization
problem

SVM only

[6] 2016 linear
SVM optimization
problem

SVM only

[18] 2017 linear not explained SVM, KNN

[17] 2017 linear gradient descent
changing parame-
ters only

[24] 2017 linear
matlab implemen-
tation

SVM

[20] 2018 linear many other MKL, SVM

[25] 2018

Detection of
evolving concepts
in non-stationary
data streams

-
SVM, other works
of same topic

Table 3.1: Other works involving MKL



17

As shown in Table 3.1, most works compare MKL with other MKL methods or with SVMs.
Only one work compares MKL with a neural network. Besides, very few works discuss about
execution times to run their experiments. In this work, we implement an MKL method using
a genetic algorithm to learn the kernels weights. We also perform a comparison of this MKL
method with various other classification models regarding quality and execution times.





Chapter 4

Evaluating MKL

In this chapter we describe our experimental methodology and datasets used. We start by
discussing about some MKL solutions available and our choice of implementing our own. Next,
we develop our genetic-based algorithm. We also describe the datasets used, validation method,
evaluation metrics and methodology employed to run the other machine learning models used in
this work.

4.1 SVM and MKL

Our base learner is an SVM as this is used in all works we know of that implement MKL. The
SVM algorithm, as explained in Section 2, requires the use of a kernel to achieve its objective.
The parameters that can be changed in this algorithm are C, the size of the margin, and the
kernel dependent parameters: gamma for the radial basis function (RBF) kernel and the degree
of the polynomial for the polynomial kernel.

MKL is an algorithm that frequently uses the SVM as a base learner. The difference is
that, instead of using a single kernel, MKL combines multiple kernels trying to achieve better
results. As explained in the work of Gonen and Alpaydin[9] there are 2 ways of combining kernels:
linearly or non-linearly. In this work, we use a linear combination of kernels. The MKL process
is performed using the genetic algorithm presented in Section 4.2 to obtain weights to the SVM
that will solve the Equation 2.2 to create our model.

Very few software is available that implement MKL. Among them are Shogun [26] and
Mklaren [27]. We decided to implement our own MKL method for two reasons: (1) Shogun does
not allow to introduce new kernels or combinations other than linear for the kernels; (2) Mklaren
can not run for all datasets we tested. An error message is issued by the function alignf

implemented in the cvxopt python module when solving the optimization problem to find the
best set of kernels weights.

19



20 Chapter 4. Evaluating MKL

4.2 Genetic algorithm

Aiming at reducing the combinatorial nature of MKL, we use a genetic algorithm to select
weights for each kernel. The input to this algorithm is a set of kernels weights and the size of the
population. This approach was also used by Pinar [21].

The fitness function we used was the mean of 5 holdouts of the F1 measure. For this work, the
fitness calculation was performed for all individuals in parallel in order to reduce the execution
time. Parents are randomly selected but individuals with higher fitness have a higher probability
of producing descendants. Crossover is performed by choosing a random point on the genome
and merging the first part of the first parent to the second part of the second parent to create a
new individual that will become a member of the next generation. Mutation is performed by
simply randomizing a weight from a number between 0 and 1. As we do not know anything about
the effect of weights before doing this, we thought a random replacing of the value would be the
best approach. For the mutation probability, we chose to have a mutation value that can change
during the genetic algorithm. The mutation probability starts with value 0.01 to each individual.
If at any point, 3 consecutive generations do have the same best fitness then the mutation
probability is increased to 0.05. Otherwise, the probability returns to 0.01. That approach was
made to avoid our optimization process to be stuck at a local maximum by introducing diversity
in the population. For all experiments, we used the same seed in order to have comparable
results. The pseudocode of the method described here is shown in Algorithm 2.



4.3. Software and tools 21

Algorithm 2 Genetic Algorithm as implemented in this work
1: best_individual← NULL {Saves the best individual from iterations}
2: population← initialPopulation() {Saves the best individual from iterations}
3: for i from 1 to 100 do
4: if runtime > 11h then
5: return best_individual {Return the best individual}
6: end if
7: for j from 1 to population size do
8: fit ← fitnessCalculation(population[j]) {Gets the fitness values from population in

parallel}
9: end for

10: best_individual ← BEST (best_individual, fit) {saves the best individual between the
actual population and the old best individual}

11: children← []
12: for j from 1 to population size do
13: parent1← Selection(population, fit) {Select the parent based on fitness}
14: parent2← Selection(population, fit) {Select the parent based on fitness}
15: child← Crossover(parent1, parent2) {Generate the new generation from parents}
16: if random > mutationProbability then
17: child←Mutation(chid) {if probability of mutation is reached mutate}
18: end if
19: children← children.add(child)
20: end for
21: population← children

22: if fitness is the same for 3 iterations then
23: mutationProbability ← mutationProbability + 0.05
24: else
25: mutationProbability ← 0.01
26: end if
27: end for
28: return best_individual {Return the best individual}

4.3 Software and tools

The code was written in python 2.7 because we started by using the Mklaren tool, which was
written in that version of python. We also used the tools available in the scikit-learn package
to create every model used in this work. We also used the imbalanced-learn package to
rebalance the data in unbalanced datasets. Finally, we use part of the tool mklaren available
in GitHub (https://github.com/mstrazar/mklaren) because it was successful in other works
[27]. But during our experiences, as mentioned before, we found out that the process of getting

https://github.com/mstrazar/mklaren


22 Chapter 4. Evaluating MKL

the weights for the kernels implemented with the function alignf returned an error from the
quadratic optimizer for some of our datasets. We are not sure of the cause as all data is treated
in the same way independent of the dataset. The error message appears only for some of them
independent of the number of features or rows in our test scenarios. Every test was made in
the same machine which has 24 cores, 800 MHz CPU, max 2100 MHz, min 800 MHz and a
Random-access memory (RAM) of 128 GBytes. The code used in this work can be found in
GitHub (https://github.com/JoseAALC/MKLcomparasion).

4.4 Preprocessing

We first started by removing duplicate rows in the dataset to avoid having the same data multiple
times across the samples. Leaving duplicates in the dataset could bias some models and, in some
cases, the time complexity increases with the number of samples which could make our model
training slower with duplicates. Also, all rows that have missing data present are eliminated.

Then we take each categorical variable and create N − 1 variables to each one of the N
possible values that indicate if that value is present for that variable(binarization). Converted all
categorical variables into multiple boolean variables.

Then the data is balanced if the class with more frequency is at least 60% of all data. In
this work, that value is the minimum necessary to consider the data unbalanced. We performed
under-sampling as a method to rebalance the data.

Finally, the data is normalized because some models are sensitive to the range of those values,
for example, K-Nearest Neighbors.

4.5 Experimental methodology

Before training the models, we preprocess the data. We keep at most 1200 instances in each
dataset in order to reduce execution time. The undersampling is performed randomly. A second
preprocessing is performed in one of the datasets in order to artificially introduce multimodal
characteristics (this is explained later). After preprocessing, each dataset is balanced, if needed,
according to the class values using undersampling, as explained before. We then split the dataset
in 20% for validation and 80% for training.

This work tests neural networks, decision trees, naive Bayes, random forest, and KNN against
our approach of MKL. For tuning, we use 5 fold cross-validation, optimization by F1-score and a
grid search method which makes the number of experiences for each model, dependent on the
number of combinations of parameters. For KNN we use 1, 2, 3, 5, 7, 9 and 11 nearest neighbours.
For the decision trees, we just use the default without tuning. For the neural network, we also
do not make any tuning. We just use a hidden layer with 100 nodes as default. For the naive
Bayes, we vary the smoothing parameter with the values: e−i ∀i ∈ [0, 9]. The random forest is

https://github.com/JoseAALC/MKLcomparasion


4.5. Experimental methodology 23

tuned using 100, 500 and 1000 trees. For the SVM we create 3 models in the tuning process
using three kernels: polynomial, RBF and linear. We choose the best from these three as our
best SVM. For the linear kernel we vary C in the range 10i ∀i ∈ [−5, 2], for the RBF we also
vary gamma in the range i/#rows ∀i ∈ [1, 6] and for the polynomial kernel we use the same
values of C used in the RBF kernel and polynomials of degree 1, 2 and 3.

These parameters result in the number of experiences for tuning the models shown in Table
4.1. As mentioned before, decisions trees (Tree) and Neural Network were not tuned (the reason
why we did not tune parameters for the decision trees and neural networks was that they could
consume too much time and our time to finish this work was limited).

Table 4.1: Number of experiences during tuning for each algorithm
Algorithm Number of training processes during tuning

Tree 0
KNN 35

Naive Bayes 50
Random Forest 15
SVM linear 40
SVM RBF 240
SVM Poly 120

Neural Network 0
MKL 40

The models are trained to improve the F1-score, but we report other metrics: Accuracy, area
under the ROC curve (auroc), Recall and Precision. We also report execution times in order to
assess each method’s efficiency.

Figure 4.1: Experimental Methodology for our MKL



24 Chapter 4. Evaluating MKL

When we use the genetic algorithm, we split the data in a different way. First, as for the
other algorithms, we split the data in 80% training and 20% testing as seen in Figure 4.1. Then
we split the training set in half. The first half is used in the genetic algorithm to obtain the
weights. In the next step, we use the weights and the other half to find the best C parameter for
this kernel combination with these weights. Then we take our test set and our MKL trained
with the weights and parameters obtained in previous steps and predict the class for the test.
From there we get the metrics that we will show as results in Chapter 5.

Regarding the parameters of our genetic algorithm, we chose a population of 18 individuals
and a maximum number of 100 generations. We use only 18 individuals and 100 generations in
order to be able to keep the experimental time within this project’s time frame. We also limit
the runtime of the genetic algorithm to 11h, also because of the time constraints. Regarding
the choice of kernels, we use 40 kernels in our experiments with each kernel randomly selected
as linear, RBF or polynomial. If it is polynomial or RBF the parameters for those kernels are
randomly selected from the same set of parameters we gave to the SVM. Notice that because of
the nature of our method we do 5-holdouts for each member of the population in each iteration
which conduces to a total of 9000 experiences to conclude the genetic algorithm.

4.6 Used Datasets

We use multiple datasets as presented in Table 4.2, with varied number of features, instances
and types of features. The column “#rows” corresponds to the original number of instances of
each dataset. The “Final #rows” corresponds to the number of rows after preprocessing the
data. Likewise, column “#features” corresponds to the initial number of features and “Final
#features” corresponds to the number of features after preprocessing. Column “Type” indicates
the kind of features for each dataset. Most datasets were chosen because they commonly appear
in other works. Their origin is also shown in the table.

Table 4.2: datasets used

Name Type #features #rows
Final
#fea-
tures

Final
#rows

Source #pos #neg

heart numeric 13 303 13 303 UCI 139 164
pendigits numeric 16 10992 16 1200 UCI 705 495
adult mixed 14 32561 90 636 UCI 318 318

mushrooms categorical 22 8124 94 1200 UCI 628 572
fashion numeric 784 70000 784 1199 Kaggle 607 592
hiragana numeric 784 232365 784 1200 Kaggle 498 702
gisette numeric 5000 6000 5000 1200 UCI 584 616

volcanoes numeric 12100 7000 12100 360 Kaggle 180 180
volcanoes2 numeric 24200 7000 24200 360 This work 180 180



4.6. Used Datasets 25

heart was taken from the UCI repository (https://archive.ics.uci.edu/ml/datasets/heart+
Disease) the processed cleveland. Each row corresponds to a patient with 13 annotated features.
The target variable indicates if the patient has a heart disease or not.

pendigits is a dataset that contains a representation of handwritten digits with 16 features
that was used in the work of Gonen an Alpaydin [9] and is in the UCI repository (https:
//archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits).

The adult dataset was also taken from the UCI repository (https://archive.ics.uci.edu/ml/
datasets/Adult). This contains demographic data where each line is a person and the classification
task is to determine if that person gains over 50, 000$ or not.

The mushrooms dataset was taken from UCI (https://archive.ics.uci.edu/ml/datasets/
mushroom) and it has 22 features annotated from different types of mushrooms. The target
variable is if it is poisonous or not. This dataset is very easy to model and classification metrics
are usually very high. We use it for comparison, but also to validate our MKL method.

The fashion dataset was created by using the training dataset from MNIST fashion on
kaggle (https://www.kaggle.com/zalando-research/fashionmnist). This has images of clothes
represented as 28 x 28 images. We created a binary classification problem by predicting if a piece
of clothing covers the upper body (classes 0,2,3,4 and 6 in the original dataset) or not.

hiragana is a dataset where we used the training set from Kuzushiji MNIST from kag-
gle (https://www.kaggle.com/anokas/kuzushiji), which has the objective of classifying the 49
Japanese handwritten hiragana characters. The characters are represented by 28 x 28 images.
We transformed this in a binary classification problem and predict if the character belongs to
the first 25 characters group or not.

gisette is a dataset containing 28 x 28 images of handwritten numbers with highly confusable
digits ’4’ and ’9’. New features were created as products of the images pixels to plunge the
problem in a higher dimensional feature space (https://archive.ics.uci.edu/ml/datasets/Gisette).

The dataset volcanoes contains a set of 110 × 110 images. The target variable indicates
if the image is or is not a volcano. This dataset was taken from a kaggle challenge (https:
//www.kaggle.com/fmena14/volcanoesvenus).

The volcanoes2 is the same as volcanos, but we added 110× 110 pixels resulting from the
application of a sobel filter to the image, which is a filter that has the objective of detecting edges
in an image. That was done with the intention of showing the capacity of solving multimodal
problems by MKL. Sobel was used just to make the experiment simple and because we did not
have time to apply a sophisticated feature extraction or use actual multimodal data because we
explored the datasets common in the literature what consumed too much time and we didn’t
have time to add additional datasets.

Yet about volcanoes2, we performed an extra experiment with a different combination of
kernels trying to explore multimodality capabilities of MKL. We used 20 kernels instead of 40 for

https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/mushroom
https://archive.ics.uci.edu/ml/datasets/mushroom
https://www.kaggle.com/zalando-research/fashionmnist
https://www.kaggle.com/anokas/kuzushiji
https://archive.ics.uci.edu/ml/datasets/Gisette
https://www.kaggle.com/fmena14/volcanoesvenus
https://www.kaggle.com/fmena14/volcanoesvenus


26 Chapter 4. Evaluating MKL

the data from volcanoes and other 20 kernels using only the features we created. This method is
called MKL20_20 in the next chapter.



Chapter 5

Results and Discussion

In this chapter we show the results of our experiences as described in Chapter 4 and discuss the
reasons that could have influenced the behaviour of our model. We show rounded values of the
metrics that we used to validate our models.

We start by comparing the performance of the algorithms in Figure 5.1. The MKL20_20 is a
version of the volcanoes2 where we use 20 kernels to the first half of the features and the other
20 to the other half.

Figure 5.1: F1-scores to each algorithm in each dataset

Regarding the F1-score, in Figure 5.1, the datasets mushrooms, gisette, heart and fashion
are the easiest to classify with all models. fashion did not perform so well with the naive Bayes
model. hiragana seems to be the most difficult dataset. In fact, the choice of binarizing the

27



28 Chapter 5. Results and Discussion

classification task made the discrimination of classes more difficult, because some japanese
characters in the first 25-length size have similarity with the second half, and some characters
in the same set are very dissimilar. This causes confusion when trying to learn patterns. It is
also possible that hiragana had the worst performance because it is the one that suffers greater
reduction in number of instances after preprocessing. We use only 1200 rows from the original
dataset of 232,365 lines which is less than 1%. This reduction could have limited the capacity of
the models to learn well from this dataset.

We can not consider difficulty to generalize the model as a function of the number of features
since fashion and hiragana have the same number of features and achieve very different results.
The kind of data also seems to have no influence because gisette is numeric, mushrooms
categorical and heart is a numeric dataset and all had good performance. The neural network
had a value of zero for the F1-score in the volcanoes dataset. The reason for that is that the
model classifies every test example as belonging to the same class (negative).

Our MKL model was capable of, at least, keeping the same scores in relation with other
models, but, as we show later, at a very high computational cost.

Next, we analyse each dataset individually.

Table 5.1: heart results
algorithm accuracy F1 rocauc precision recall time

Tree 0.754 0.706 0.746 0.783 0.643 1s<
KNN 0.770 0.741 0.766 0.769 0.714 1s<

Naive Bayes 0.836 0.821 0.835 0.821 0.821 1s<
Random Forest 0.803 0.800 0.807 0.750 0.857 2s

SVM 0.836 0.821 0.835 0.821 0.821 6s
Neural Network 0.820 0.807 0.820 0.793 0.821 1s<

MKL 0.770 0.767 0.774 0.719 0.821 8 min 43s

In the heart dataset (results shown in Table 5.1), the scores of almost all models were good.
The best models were the SVM and Naive Bayes. But Naive Bayes reached the highest rocauc,
neural network the highest precision and Random forest provided the best recall.



29

Table 5.2: pendigits result
algorithm accuracy F1 auroc precision recall time

Tree 0.938 0.947 0.936 0.950 0.943 1s<
KNN 0.992 0.993 0.991 0.993 0.993 1s

Naive Bayes 0.775 0.806 0.771 0.818 0.794 1s<
Random Forest 0.975 0.979 0.976 0.986 0.972 3s

SVM 0.975 0.979 0.974 0.979 0.979 43s
Neural Network 0.975 0.978 0.977 0.993 0.965 2s

MKL 0.975 0.979 0.974 0.979 0.979 1h 52 min 5s

In Table 5.2, pendigits obtained the best F1-score with KNN. This dataset has only 16
variables, but it is relatively easy to classify. MKL behaves as well as SVM for this dataset with
little scope for improvements.

Table 5.3: adult results
algorithm accuracy F1 auroc precision recall time

Tree 0.758 0.763 0.758 0.746 0.781 1s<
KNN 0.797 0.776 0.797 0.865 0.703 2s

Naive Bayes 0.797 0.776 0.797 0.865 0.703 1s<
Random Forest 0.844 0.841 0.844 0.855 0.828 3s

SVM 0.844 0.841 0.844 0.855 0.828 44s
Neural Network 0.836 0.835 0.836 0.841 0.828 3s

MKL 0.828 0.825 0.828 0.839 0.813 1h 44 min 34s

Starting with Table 5.3, in the adult dataset, SVM and Random Forest were the best models
and our method of MKL was the 4th best model. That could be happening because of the
random choice of kernels and parameters to each kernel, as opposite to the SVM, where the
single kernel used is chosen by the tuning process. The MKL could have had bad luck and as
most models already have an accuracy and F1 high, the genetic-based MKL struggled to improve.
Naive Bayes and KNN are the models with best precision which means that it reduced better
than any other model the number of false positives.



30 Chapter 5. Results and Discussion

Table 5.4: mushrooms results
algorithm accuracy F1 auroc precision recall time

Tree 1.000 1.000 1.000 1.000 1.000 1s<
KNN 1.000 1.000 1.000 1.000 1.000 8s

Naive Bayes 0.988 0.987 0.988 0.974 1.000 1s<
Random Forest 1.000 1.000 1.000 1.000 1.000 3s

SVM 1.000 1.000 1.000 1.000 1.000 1 min 58s
Neural Network 1.000 1.000 1.000 1.000 1.000 3s

MKL 1.000 1.000 1.000 1.000 1.000 4h 19 min 50s

The dataset mushrooms is widely used in the literature of machine learning as an easy
dataset. And the scores shown in Table 5.4 demonstrate that our MKL model also is capable of
achieving maximum scores for all metrics.

Table 5.5: fashion results
algorithm accuracy F1 auroc precision recall time

Tree 0.946 0.947 0.946 0.936 0.959 1s<
KNN 0.954 0.954 0.955 0.974 0.934 55s

Naive Bayes 0.838 0.825 0.839 0.911 0.754 3s
Random Forest 0.979 0.979 0.980 1.000 0.959 7s

SVM 0.975 0.975 0.975 1.000 0.951 13 min
Neural Network 0.975 0.975 0.975 1.000 0.951 23s

MKL 0.971 0.970 0.971 1.000 0.943 11h>

The fashion dataset, with our formulation (top clothes versus bottom clothes) is an easy
classification task, since image pixels show a very good separation between top and bottom parts
of clothing. For that reason, almost all models managed to achieve a good classification, with
exception of the naive Bayes. Random forest was probably better because our formulation made
the prediction dependent of a smaller number of variables. Therefore a set of decision trees could
easily decide the class of each image. This did not happen to the naive Bayes model because all
variables are conditionally independent on each other given the class, which clearly is not the
case in this dataset. MKL has a competitive quality performance being the third best model.



31

Table 5.6: hiragana results
algorithm accuracy F1 auroc precision recall time

Tree 0.613 0.503 0.592 0.540 0.470 1s<
KNN 0.762 0.705 0.751 0.731 0.680 55s

Naive Bayes 0.521 0.549 0.546 0.452 0.700 3s
Random Forest 0.704 0.594 0.678 0.693 0.520 7s

SVM 0.754 0.691 0.741 0.725 0.660 15 min 57s
Neural Network 0.742 0.680 0.730 0.702 0.660 35s

MKL 0.650 0.553 0.631 0.591 0.520 11h>

According to our formulation, hiragana is a difficult dataset. Recall we transformed the
class variable in two different values: characters that belong to the first 25 group of the 49 and
characters that belong to the second half group (24 characters). This proved to be a not so good
decision as results in Table 5.6 show, but served our purpose of having a binary class variable.
MKL was the 4th best classifier after KNN, pure SVM and Neural Network. Trees performed
very badly in this dataset for the set of fixed parameters we used (notice that we did not tune
parameters for the decision trees). The MKL only was capable of train for 40 generations which
could be bad for the performance quality (40 generations may not be enough to improve the
F1-score). Regarding accuracy, Random Forest was capable of surpassing MKL and naive Bayes
has the worst accuracy (almost random classification). On the other hand, it has the best Recall.

Table 5.7: gisette results
algorithm accuracy F1 auroc precision recall time

Tree 0.900 0.894 0.899 0.927 0.863 2s
KNN 0.942 0.942 0.942 0.919 0.966 6 min 7s

Naive Bayes 0.925 0.917 0.923 0.990 0.855 20s
Random Forest 0.921 0.914 0.919 0.971 0.863 11s

SVM 0.950 0.949 0.950 0.949 0.949 1h 54 min 12s
Neural Network 0.954 0.954 0.954 0.942 0.966 55s

MKL 0.950 0.949 0.950 0.941 0.957 11h>

In gisette, Table 5.7, the model that achieved the best score was the neural network. Notice
that our MKL model has the same F1-score as the SVM, but better Recall. This may be useful
if we intend to optimize for true positives. The MKL was only capable of reaching 5 generations
in the genetic algorithm (it stopped due to time exceeded). This may have prevented the method
from obtaining better weights. The best precision was obtained by the naive Bayes model.



32 Chapter 5. Results and Discussion

Table 5.8: volcanoes results
algorithm accuracy F1 auroc precision recall time

Tree 0.722 0.722 0.722 0.722 0.722 3s
KNN 0.639 0.480 0.639 0.857 0.333 1min 18s

Naive Bayes 0.528 0.653 0.528 0.516 0.889 11s
Random Forest 0.750 0.743 0.750 0.765 0.722 11s

SVM 0.792 0.776 0.792 0.839 0.722 29 min 57s
Neural Network 0.500 0.000 0.500 0.000 0.000 26 min

MKL 0.792 0.776 0.792 0.839 0.722 11h>

Table 5.8 shows that in the volcanoes dataset MKL was capable of being as good as the
SVM and these two are the best models. But even with SVM achieving the best accuracy and
F1-score, the KNN got better precision and naive Bayes better recall. In this dataset the neural
network seems to classify everything as negative as the recall and precision are 0.

Table 5.9: volcanoes2 results
algorithm accuracy F1 auroc precision recall time

Tree 0.597 0.567 0.597 0.613 0.528 5s
KNN 0.556 0.500 0.556 0.571 0.444 2 min 40s

Naive Bayes 0.486 0.648 0.486 0.493 0.944 23s
Random Forest 0.792 0.783 0.792 0.818 0.75 16s

SVM 0.778 0.765 0.778 0.813 0.722 1h 2 min 26s
Neural Network 0.750 0.750 0.750 0.750 0.75 11 min 56s

MKL 0.806 0.800 0.806 0.824 0.778 11h>
MKL20_20 0.750 0.735 0.750 0.781 0.694 11h>

volcanoes2 is a dataset that is produced by applying a sobel filter to the original volcanoes.
Results in Table 5.9 show that MKL is the best model. There are two possible reasons for that:
(1) the features added create confusion in the other models and (2) the weights given to the
kernels improve the performance on this dataset when compared with other models and to MKL
on the original volcanoes. The results of MKL were obtained with only 10 generations in the
genetic algorithm which means that it is possible to reach improvements with fewer than the 100
generations we chose.

MKL20_20 is an experience where we use 20 kernels to the original volcanoes data and other
20 to the pixels extracted from the sobel filter. That experience shows worse results than freely
training a combination of 40 kernels.



33

Table 5.10: The number of iterations of a max of 100 that the MKL did in a max of 11h time
span for each dataset

dataset number of iterations before timeout
heart 100

pendigits 100
adult 100

mushrooms 100
fashion 45
hiragana 40
gisette 5

volcanoes 17
volcanoes2 10

volcanoes2 with MKL20_20 19

Table 5.10 shows the number of generations the genetic algorithm was able to run in a limited
time of 11h and with a limit of 100 iterations at most. Six datasets out of 10 can not finish the
100 iterations before timing out. Some of them take a very long time to run reaching only as few
as 5 iterations even having a small number of features (e.g., gisette). The datasets with larger
number of features all failed to reach the 100 iterations. Some metric values could be better if
we allowed the experiments to run longer. These results play against using MKL as a classifier.
For some of the easiest to learn datasets (mushrooms, pendigits and heart), MKL did not
outperform any of the other models and took much longer to run. For another easy to learn
dataset, fashion, it took more than 11 hours to run without outperforming any of the other
models. In order to better investigate the behavior of our MKL implementation, we plotted
the behavior of the genetic algorithm showing the changes in F1-score across generations for
some datasets (plots are ordered from worst to best individuals of each run and not according to
iterations).



34 Chapter 5. Results and Discussion

Figure 5.2: Best fitness in each generation in the heart dataset

Figure 5.3: Best fitness in each generation in the adult dataset



35

Figure 5.4: Best fitness in each generation in the mushrooms dataset

Figure 5.5: Best fitness in each generation in the pendigits dataset

As shown in Figures 5.2, 5.3, 5.4, and 5.5, the fitness of the genetic algorithm populations
remains almost the same for all the generations in the datasets, with some slight improvement for
5.2 and 5.3. They are particularly similar for the mushrooms and for the pendigits datasets,
which have similar sizes. One of the reasons for not significantly improving fitness from one
generation to another is the use of a small test set when tuning for the best weights. We perform
two rounds of tuning for the MKL. The first one to obtain the weights through the genetic
algorithm and the second one to train and test the MKL for the best set of weights. We also
need to train SVMs/MKL for each new individual of the genetic algorithm population which
consumes extra time.

In this work we first intended to experiment with non linear multiple kernel learning



36 Chapter 5. Results and Discussion

combinations. Because of that we started by choosing not to use Shogun. However, due
to time constraints we compared only linear combinations of kernels.

For the datasets used in this work, that have high performance for the other models, it
becomes very difficult for our MKL model to match performance and have some improvement.
For the ones that are not so easy, our MKL can find some room for improvement, specially the
ones that have some source of multimodality as in the volcanoes2. Our choices of parameters
may not be the best. For example, randomly choosing variables to choose with a set of kernels
may not be the best because some of these variables may be of different types. Nevertheless,
MKL still remains a difficult classifier due to its prohibitive execution times.

In the work of Gonen and Alpaydin [9]accuracy results for the many MKL versions they
tested were between 93% and 97.8%. We also can reach those levels of accuracy. Zhuang et
al. [33] tested multiple versions of MKL with an SVM base learner and achieved maximum
accuracy of 83.6%, which is above our result with MKL (77%). In the adult dataset they get a
maximum accuracy of 82.1% which is similar to ours even when we cut part of the data and
have a test and train set different. Notice that a direct comparison can not be made given that
we had to reduce the sizes of some datasets.



Chapter 6

Conclusion

MKL is a an alternative machine learning algorithm that instead of using a single kernel, may
use a combination of various kernels in order to capture differences in subsets of data. For
example, one direct use of MKL is to handle multimodal data or variables of several types using
a kernel for each subset. MKL has been used in various domains, but its performance has not
been studied from the point of view of comparing it with other machine learning methods and
studying its execution time performance. Works in the literature report benefits of using MKL,
but only comparing the quality of the models produced with various MKL methods or SVM.
Derived from these works, there are some MKL implementations available. The most popular
and accessible are Shogun and Mklaren. Shogun only works with linear kernel combination and
Mklaren fails to produce models to some datasets used in this study. Our own implementation is
based on a genetic algorithm where the population is a list of weights to be used to combine
kernels. We trained this MKL algorithm and compared results with other machine learning
models on a variety of datasets available in the literature. We concluded that MKL, in some
cases, can be competitive with other models, but at the expense of a very high computational
time. Even reducing the sizes of the lager datasets, MKL takes quite a long time (more than 11
hours) to produce a model.

Some of the datasets used in this work are easy to model, therefore, for those, MKL does
not have much room for improvement. For some of the most difficult datasets, MKL either
failed to achieve better results than the other models or when it outperformed, it did it at a
very high computational time. volcanoes2 is the dataset where MKL has the best score. We
believe that the other classifier models failed to produce a better solution because of the very
low ratio between number of instances and number of features (360 rows and 24,200 features).
The difficulty in obtaining good-quality model for the datasets do not seem to be related directly
with the number of features. In fact, this is discussed in the literature and there is no agreed
consensus for what number of features versus number of instances should be used to obtain a good
classifier (cf., for example, work by Hua et al. [14]). For our datasets, gisette, volcanoes
and volcanoes2 are the datasets with a larger number of features but hiragana (with less
features) is the most difficult as no algorithm was capable of reaching scores of 80% in accuracy or

37



38 Chapter 6. Conclusion

F-measure. The kind of dataset also does not seem to influence the generation of good classifiers.
We have datasets with features of various types and the easiest one is mushrooms with only
categorical features.

As SVM and MKL are very time-consuming, we had to reduce the sizes of the datasets and
the maximum amount of time to execute. The limitation in time forced MKL to stop before
the maximum number of iterations for some datasets. This may have limited the search for
better solutions. The idea of using a genetic algorithm to find the best weights introduced
complexity, and, consequently, produced very high execution times. However, the method works
better than randomly selecting weights to the kernels (we performed a few experiments that
have shown that random selection produced bad results). We focused in combining the kernels
independently of the kind of variable. One possible modification could be to group variables
with similar distribution and types and use the same kernel for those. This would perhaps be
more convenient to solve multimodal problems. In fact, some of the works discussed in the
literature review chapter use hyper spectral images, speech, among other kinds of data. Yet
another limitation of this work is that we did not explore combinations of kernels other than
linear or multi-class problems.

Our motivation to use genetic algorithms was inspired by the work of Pinar et al. [21]. They
applied a genetic-based MKL algorithm to explosive hazards detection using data from a ground
penetration radar. Results of this work show that the best method used was the genetic algorithm
with an L1 normalization and NAUC of 0.504 where NAUS is the area under the normalized
ROC curve. Execution times are not reported and no comparison is made with decision trees,
naive bayes, KNN or any other model. Gonen and Alpaydin [9] published results about several
variations of MKL on a limited number of datasets. Execution times are not reported and no
comparison with other ML methods is performed. Although we share some of the same datasets,
results of both papers are not directly comparable with our work because we had to reduce the
number of instances and rebalance the datasets.

Summarising, our main conclusion with this work is that, when compared with other less
complex methods, MKL can be competitive in terms of classification quality, but at the cost of a
high computational cost. Therefore, for the datasets we used in this work, we recommend using
other classifiers. Nevertheless, we believe that further work can be done, specially due to the
limitations of this work. Next, we discuss about some possible paths to follow.

6.1 Future Work

This work left the following gaps that could be filled with the next works:

1. Datasets

• study how the variation of the number of features and number of instances for the
same dataset affects the quality and time performance



6.1. Future Work 39

• study how groups of variables of the same type can affect the quality and time
performance

• study multi-modal datasets

• study multi-class datasets

2. Algorithm

• profiling and optimizing bottlenecks

• parallelization

• study other choices for selecting weights

• study other choices for combining kernels and use combinations other than linear





Bibliography

[1] Blake Anderson, Curtis Storlie, Micah Yates, and Aaron McPhall. Automating reverse
engineering with machine learning techniques. In Proceedings of the 2014 Workshop on
Artificial Intelligent and Security Workshop, pages 103–112. ACM, 2014.

[2] Gustavo Barbosa Augusto. Computer Aided Diagnosis for Breast Cancer Detection. Master’s
thesis, Department of Computer Science, Faculty of Sciences, University of Porto, Porto,
Portugal, December 2014.

[3] Yoshua Bengio and Yann Lecun. Scaling learning algorithms towards AI. MIT Press, 2007.

[4] Cigdem Beyan, Francesca Capozzi, Cristina Becchio, and Vittorio Murino. Identification of
emergent leaders in a meeting scenario using multiple kernel learning. In Proceedings of
the 2nd Workshop on Advancements in Social Signal Processing for Multimodal Interaction,
pages 3–10. ACM, 2016.

[5] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152. ACM, 1992.

[6] Heng Fan and Zhongmin Chen. Wifi based indoor localization with multiple kernel learning.
In 2016 8th IEEE InternatFional Conference on Communication Software and Networks
(ICCSN), pages 474–477. IEEE, 2016.

[7] Gregory E Fasshauer. Positive definite kernels: past, present and future. Dolomite Research
Notes on Approximation, 4:21–63, 2011.

[8] George Forman and Martin Scholz. Apples-to-apples in cross-validation studies: pitfalls in
classifier performance measurement. ACM SIGKDD Explorations Newsletter, 12(1):49–57,
2010.

[9] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. Journal of
machine learning research, 12(Jul):2211–2268, 2011.

[10] Yanfeng Gu, Chen Wang, Di You, Yuhang Zhang, Shizhe Wang, and Ye Zhang.
Representative multiple kernel learning for classification in hyperspectral imagery. IEEE
Transactions on Geoscience and Remote Sensing, 50(7):2852–2865, 2012.

41



42 Bibliography

[11] Yanfeng Gu, Tianzhu Liu, Xiuping Jia, Jón Atli Benediktsson, and Jocelyn Chanussot.
Nonlinear multiple kernel learning with multiple-structure-element extended morphological
profiles for hyperspectral image classification. IEEE Transactions on Geoscience and Remote
Sensing, 54(6):3235–3247, 2016.

[12] Hideitsu Hino and Tetsuji Ogawa. An improved entropy-based multiple kernel learning. In
Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pages
1189–1192. IEEE, 2012.

[13] John H. Holland. Genetic algorithms and adaptation. In Oliver G. Selfridge, Edwina L.
Rissland, and Michael A. Arbib, editors, Adaptive Control of Ill-Defined Systems, pages
317–333. Springer US, Boston, MA, 1984. ISBN: 978-1-4684-8941-5. doi:10.1007/978-1-4684-
8941-5_21.

[14] Jianping Hua, Zixiang Xiong, James Lowey, Edward Suh, and Edward R. Dougherty. Optimal
number of features as a function of sample size for various classification rules. Bioinformatics,
21(8):1509–1515, 11 2004. ISSN: 1367-4803. doi:10.1093/bioinformatics/bti171.

[15] Shian Chang Huang and Lung Fu Chang. Oil price forecasting with hierarchical multiple
kernel machines. In 2014 International Symposium on Computer, Consumer and Control,
pages 260–263. IEEE, 2014.

[16] Taichi Joutou and Keiji Yanai. A food image recognition system with multiple kernel
learning. In 2009 16th IEEE International Conference on Image Processing (ICIP), pages
285–288. IEEE, 2009.

[17] Noha S Khattab, Shaheera Rashwan, Hala M Ebeid, Howida A Shedeed, Walaa M Sheta, and
Mohamed F Tolba. Adaptive multiple kernel self-organizing maps for hyperspectral image
classification. In Proceedings of the 8th International Conference on Computer Modeling
and Simulation, pages 119–124. ACM, 2017.

[18] Haitao Lang and Siwen Wu. Ship classification in moderate-resolution sar image by naive
geometric features-combined multiple kernel learning. IEEE Geoscience and Remote Sensing
Letters, 14(10):1765–1769, 2017.

[19] Xinwang Liu, Lei Wang, Jianping Yin, Yong Dou, and Jian Zhang. Absent multiple kernel
learning. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[20] Saeid Niazmardi, Begüm Demir, Lorenzo Bruzzone, Abdolreza Safari, and Saeid Homayouni.
Multiple kernel learning for remote sensing image classification. IEEE Transactions
on Geoscience and Remote Sensing, 56(3):1425–1443, March 2018. ISSN: 0196-2892.
doi:10.1109/TGRS.2017.2762597.

[21] Anthony Pinar, Joseph Rice, Timothy Havens, Matthew Masarik, Joseph Burns, and Derek
Anderson. Explosive hazard detection with feature and decision level fusion, multiple kernel
learning, and fuzzy integrals. In 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 1–8. IEEE, 2016.

http://dx.doi.org/10.1007/978-1-4684-8941-5_21
http://dx.doi.org/10.1093/bioinformatics/bti171
http://dx.doi.org/10.1093/bioinformatics/bti171
http://dx.doi.org/10.1109/TGRS.2017.2762597


Bibliography 43

[22] David L Poole and Alan K Mackworth. Artificial Intelligence: foundations of computational
agents 2ed. Cambridge University Press, 2010.

[23] Stuart Russell and Peter Norvig. Artificial Intelligence-A Modern Approach (3rd internat.
edn.). Pearson Education, 2010.

[24] Tiago André Guedes Santos. Weighted Multiple Kernel Learning for Breast Cancer Diagnosis
applied to Mammograms. Master’s thesis, Department of Computer Science, Faculty of
Sciences, University of Porto, Porto, Portugal, December 2017.

[25] Sajjad Kamali Siahroudi, Poorya Zare Moodi, and Hamid Beigy. Detection of evolving
concepts in non-stationary data streams: A multiple kernel learning approach. Expert
Systems with Applications, 91:187–197, 2018.

[26] Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large scale
multiple kernel learning. Journal of Machine Learning Research, 7(Jul):1531–1565, 2006.

[27] Martin Stražar and Tomaž Curk. Approximate multiple kernel learning with
least-angle regression. Neurocomputing, 340:245 – 258, 2019. ISSN: 0925-2312.
doi:https://doi.org/10.1016/j.neucom.2019.02.030.

[28] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Pearson
Education India, 2016.

[29] Hong Wu, Hao Zhang, and Chao Li. Medical image classification with multiple kernel
learning. In Proceedings of the Second International Conference on Internet Multimedia
Computing and Service, pages 189–192. ACM, 2010.

[30] T Zare, Mohammad Sadeghi, and Hamid Abutalebi. A comparative study of multiple
kernel learning approaches for svm classification. In 7’th International Symposium on
Telecommunications (IST’2014), pages 84–89. IEEE, 2014.

[31] Cheng Zha, Ping Yang, Xinran Zhang, and Li Zhao. Spontaneous speech emotion recognition
via multiple kernel learning. In 2016 eighth international conference on measuring technology
and mechatronics automation (ICMTMA), pages 621–623. IEEE, 2016.

[32] Ji Zhao, Liantao Wang, Ricardo Cabral, and Fernando De la Torre. Feature and region
selection for visual learning. IEEE Transactions on Image Processing, 25(3):1084–1094,
2016.

[33] Jinfeng Zhuang, Ivor W Tsang, and Steven CH Hoi. Two-layer multiple kernel learning.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 909–917, 2011.

http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.02.030
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.02.030

	Abstract
	Resumo
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Listings
	Acronyms
	1 Introduction
	2 Background
	2.1 Machine Learning
	2.1.1 Evaluation metrics
	2.1.2 Validation methods

	2.2 Kernel
	2.3 Positive definite function
	2.4 Support Vector Machine (SVM)
	2.5 Multiple kernel learning
	2.6 Genetic algorithm
	2.7 Other Machine Learning algorithms

	3 State of the art
	4 Evaluating MKL
	4.1 SVM and MKL
	4.2 Genetic algorithm
	4.3 Software and tools
	4.4 Preprocessing
	4.5 Experimental methodology
	4.6 Used Datasets

	5 Results and Discussion
	6 Conclusion
	6.1 Future Work

	Bibliography

