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Abstract

Robotics and Artificial Intelligence are two deeply intertwined fields of study, currently experi-
encing formidable growth. To foster these developments, the RoboCup initiative is a fantastic test
bed to experiment new approaches and ideas.

This dissertation is rooted in the groundwork laid by previous FCPortugal3D contributions for
the RoboCup simulation 3D robotic soccer league, and seeks to design and implement a humanoid
robotic kick system for situations where the robot is moving.

It employs Reinforcement Learning (RL) techniques, namely the Proximal Policy Optimiza-
tion (PPO) algorithm to create fast and reliable skills. The kick was divided into 6 cases according
to initial conditions and separately trained for each of the cases.

A series of kicks, both static and in motion, using two different gaits were developed. The
kicks obtained show very high reliability and, when compared to state of the art kicks, displayed
a very high time performance improvement. This opens the door to more dynamic games with
faster kicks in the RoboCup simulation 3D league.
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Resumo

A Robótica e a Inteligência Artificial são duas áreas de estudo profundamente interligadas e a
experienciar um crescimento formidável na actualidade. Para encorajar esses desenvolvimentos, a
iniciativa RoboCup é um tubo de ensaio para testar novas abordagens e ideias.

Esta dissertação encontra-se alicerçada no trabalho desenvolvido por contribuições prévias da
equipa FCPortugal3D para a liga RoboCup de futebol robótico simulado 3D, e procura desenhar e
implementar um sistema de pontapé robótico humanóide para situações em que o robot se encontra
em movimento.

Para tal, utiliza técnicas de Reinforcement Learning (RL), nomeadamente o algoritmo Prox-
imal Policy Optimization (PPO) para criar comportamentos rápidos e fiáveis. O pontapé foi di-
vidido em 6 casos de acordo com as condições iniciais e treinado separadamente para cada um
destes.

Uma serie de pontapés, estáticos e em movimento, utilizando dois portes diferentes foram
desenvolvidos. Estes obtiveram uma fiabilidade elevada e, quando comparados aos pontapés ex-
istentes, uma melhoria substancial de performance temporal. Tal abre a porta para jogos mais
dinâmicos e com pontapés mais rápidos na liga RoboCup de simulação 3D.
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Chapter 1

Introduction

Even the simplest of actions in robotics, such as walking or kicking an object are non-trivial,

multi-dimensional problems, that still hold the potential for further improvement. Nevetheless,

recent advances in both the underlying tools and raw computing power now allow us to consider

situations where several of these atomic decisions are executed simultaneously.

This work was performed in the context of the dissertation of the Mestrado Integrado em

Engenharia Electrotécnica e de Computadores (MIEEC) of FEUP. It seeks to describe the work

performed and the approaches taken in it.

The aim of this chapter is to give an overview, context, motivation and objectives to the fol-

lowing chapters.

1.1 Context

Football is a collective sport where two teams of 11 players each seek to obtain at least one more

goal than the other. In collective sports such as football, the performance of each player, and the

ensuing result of the team is dependent on a hierarchy of interacting high and low level factors,

from physical ability, technique and mental condition to team tactics [1, 2].

In this way, and being football one of the sports with more fans and players worldwide [3], it

naturally follows that the area of study of robotics should use it as a reference point and a test tube

for the development of new approaches, doubly so when dealing with humanoid robotics, and as

a way to promote enthusiasm in the general audience. Therefore, the RoboCup initiative can be

seen in this context, using the sport as a starting point and a way to frame and focus efforts. The

long term goal of this initiative is, according to itself:

“By the middle of the 21st century, a team of fully autonomous humanoid robot soccer

players shall win a soccer game, complying with the official rules of FIFA, against the

winner of the most recent World Cup.” [4]

In this context, the team FCPortugal3D, a collaboration between the Universidade do Porto and

the Universidade de Aveiro, participates in the RoboCup initiative every year, having won several

1
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awards already, including the World Championship in 2006 and the European Championship in

2007, 2012, 2013, 2014 and 2015 [5]. The ample work developed throughout the years by the

team provided the basis for the work in this document.

1.2 Motivation

The RoboCup initiative seeks to achieve the aforementioned goals through a series of annual global

competitions, in which several teams face off in a series of different leagues. One of these is the

simulated humanoid league, where 11 robots per team play a match. In complement to this, there

is a symposium organized to share research and advances in the area [6, 7].

These robots follow a realistic physical model, behaving autonomously and following high

level decisions so as to obtain low level behaviours. One of these is to kick the ball, in order to

pass or shoot it [8].

Previous groundwork has obtained methodologies for several types of kicks (long, quick, pre-

cise). Nevertheless the current implementation still does not allow the kicks to be performed in a

similar way to humans, that is, without stopping their forward motion [9, 10, 11].

This forward motion corresponds to one of several skills developed for usage in a game envi-

ronment. These correspond to a sprinting and running pace [12].

With the goal of achieving the long term goals of the RoboCup initiative, there is a constant

refining of the rules and the physical model implemented in the simulation, resulting in the recent

removal of the tolerance to internal collisions of the robot, that is, clipping, which has invalidated

some of the strategies that the team FCPortugal3D previously implemented [13].

Furthermore, it must be noted that the work here performed could only ever be hoped to be

done in a simulation context, as the nature of the approaches requires hundreds of thousands of

training episodes. These would prove unfeasible to be done with a physical robot, due to both time

constraints and the natural wear and tear that repeated falls would entail on a expensive piece of

hardware. Thus, the simulation is a natural environment to study new approaches and algorithms

in a quick and inexpensive manner.

With these details in mind, the work of this thesis proves crucial to maintain the competitive

edge of the team.

1.3 Objectives

The main goal of this dissertation is the design and implementation of a humanoid kick system

based on deep neural networks capable of fluidly kicking a ball whilst walking, using the simulated

NAO robot as a test bed for the RoboCup 3D Simulation League Environment.

Based on previous work on kicking and walking, the learning algorithms must obtain the

parameters and associated movements to allow this sort of action. The implementation must allow

for future refinement work by upcoming team members.
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The end-goal of this dissertation is aimed at advancing the state-of-the-art while contributing

to the research and performance of the FCPortugal3D team and the overarching area of study.

1.4 Dissertation Structure

This document follows the typical dissertation structure, and the outline of its chapters are as thus

described:

Chapter 1 serves as an introduction to the problem, contextualizing it, providing motivations

and objectives and describing the structure of the document.

Chapter 2 discusses the state of the art in Robot Learning in general, with some focus on the

context of the work performed, starting with the foundations in machine learning before focusing

in more specific topics and approaches of relevance to this dissertation.

Chapter 3 gives a more focused look on the training environment and tools used in the dis-

sertation such as the simulator, visual interface, and the simulated NAO robot models, as well as

contextualizing these with the RoboCup rules and their real world counterparts.

Chapter 4 describes the optimization environment tools and frameworks used in this work,

such as TensorFlow, Stable Baselines and FCPGym, as well as the optimization algorithm cho-

sen, PPO, and the previously existing skills. Furthermore it describes how these elements come

together to create a training episode.

Chapter 5 presents a static kick using neural networks as a proof of concept, alongside a

description of the observation and action spaces and overall neural network structure, as well as

extra tools developed towards that goal.

Chapter 6 expands on the concepts of the previous chapter to create a kick in motion for the

skills provided.

Chapter 7 goes over some extra work done to employ the approaches of the previous chapters

to other situations where deep learning can be employed to optimize behaviours, namely, a targeted

kick in motion.

Chapter 8 provides a brief conclusion to the document, reflecting upon the work performed

throughout the last months and presenting some possibilities for future related work.



Chapter 2

Related Work

Before delving into more specific themes, an overview of the topic and its applications in the

context of the RoboCup is necessary. In the context of this document, several approaches will be

mentioned in section 2.7.

2.1 Machine Learning

Machine Learning (ML) is a term with its origins in the fifties [14], and in its essence, it is the

study of algorithms and models that permit a computer to learn from data, continuously improving

its performance. Or as more clearly stated:

”A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P if its performance at tasks in T, as measured by P,

improves with experience E.”[15]

This is an extremely powerful concept, as it allows for machines to discover optimal, or at least op-

timized strategies in contexts where humans would struggle to do so, especially where the amount

of data is immense and its correlations are not obvious to the human mind. Thus, we can see the

pervasive impact that machine learning has had in our modern society, from search engine opti-

mization [16], to social media [17], content distributors [18], to industrial processes optimization

[19], to banking [20] and medical research [21], just to mention a few. In essence, the impacts of

the subject are both tremendous and the shared conceptual underpinnings of the methods result in

advances in one area that can synergize across multiple sectors of society at once.

2.1.1 Robot Learning

The area of concern of this dissertation nevertheless is Robot Learning, that is the combined ap-

plication of both machine learning and robotics to obtain a robot that can learn how to perform

a given task. The joining of the two disciplines brings about a series of non-trivial, real-world

problems, such as a changing environments, reactivity and non-deterministic actions [22].

4
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It is to be noted that Robot Learning in a simulation context has its own particularities, as it

both solves the problem of limited training time but does so by creating a model that is not exactly

the same as the real world. Still, progresses in computing over the years have helped to bridge the

gap between simulation and real world in the field of robotics. Still, for the work performed in

this dissertation, an emphasis on considerations relevant to the simulation context will be kept in

mind.

2.2 Deep Learning

Deep Learning (DL), can be seen as a subset of the larger field of machine learning, and is de-

scribed as:

"A class of machine learning techniques that exploit many layers of non-linear infor-

mation processing for supervised or unsupervised feature extraction and transforma-

tion, and for pattern analysis and classification." [23]

For the purposes of this document, it is worthwhile to mention the difference between super-

vised, where the training data that the learner receives is labeled , and unsupervised learning where

the data is unlabeled. This second type has more issues quantitatively evaluating performances,

but has many useful implementations in areas such as clustering and dimensionality reduction

[24].

2.3 Reinforcement Learning

Reinforcement Learning (RL) can be seen as a branch of machine learning, where the goal of the

algorithm is to map situations to actions, so as to maximize (or minimize, in terms of optimization

both cases can be seen as interchangeable [25]) a numerical reward signal [26].

Unlike supervised and unsupervised learning, the goal of RL is not to find structure or to fit

a model, but instead to find a set of behaviours that optimize its reward function. Thus, while a

model can be seen as convenient, it is always a means and not an end. This is a wholly different

paradigm in the area of machine learning [27].

Although some more advanced models don’t follow this, a simple RL process can be seen as

a Markov Decision Process (MDP), where an Agent interacts with the environment:
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Figure 2.1: Generalized RL Scenario [28]

This is defined by:

• a state space S, with an initial s0 state

• an action space A

• a transition function T : S×A×S→ [0,1]

• a reward function R : S×A×S→ [Rmin,Rmax]

2.3.1 Policy in Reinforcement Learning

Given a set of possible actions, it is not a trivial problem to define how the ideal action will be

chosen by Agent in a certain state. This is defined by a policy. The role of policy in RL can be

clearly seen by the step by step representation in figure 2.2 below [29]:

Figure 2.2: Illustration of a MDP for two time steps [27]

Thus we can see the need for a policy to allow the algorithm to choose how to act. Furthermore,

we can also divide policies between deterministic, where the policy will consistently return the
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same action for a given state of the observation space, and stochastic, where there is an associated

probability π(s,a) that the action a will be taken in the state s. [30]

2.3.2 On and off policy

One of the main distinctions to do in the area of RL is the one between on and off policy methods.

This definition can be concisely stated as:

"On-policy methods attempt to evaluate or improve the policy that is used to make

decisions, whereas off-policy methods evaluate or improve a policy different from

that used to generate the data."[26]

2.3.3 Value-based and Policy-based

The main difference between these two types of approaches can be seen in that Value-based meth-

ods will seek to learn a value function V π or V ∗ or its generalization, the Q-function. Examples

of such approaches are SARSA and Q-Learning [26, 31].

On the other hand, policy-based methods will try to directly learn or approximate optimal

policy, avoiding a value function and replacing it with an arbitrary θ parameter to be maximized

according to state and action [26].

2.3.4 Model free and model dependent

The algorithms given in the previous subsection are concerned with model-free approaches to ML.

These eschew the model, to learn directly from the environment, through trial and error [32]. On

the other hand, model-based methods seek to construct a model, an internal set of dynamic states,

based on interactions with the real-world during the learning phase, unless the model is given a

priori [33].

This model building phase usually employs model-free RL approaches. Through the model,

they simulate the interactions thereafter, applying it instead of the real environment [34]. The

relationships above described can be visualized in the following image:
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Figure 2.3: Relationships in model-free and model-based RL [26]

These have great advantages, as a model allows for a much greater sample efficiency. That

is, the training data set required will be much smaller to obtain a similar level of performance,

compared to a model-free approach.

The downside to this is that it comes at the cost of computational efficiency. Additionally, it

requires an accurate model to train, which can be untenable for many cases. Furthermore, if the

model doesn’t depict reality in a satisfactory manner, the policies developed will work only in the

context of the model and not real life. This is a relevant concern when translating from Simulated

Football to Robotic Football in a Real-World Context [35].

2.4 Hierarchical Reinforcement Learning

For the context of this dissertation, additional concepts in ML were considered, such as Hierarchi-

cal Reinforcement Learning (HRL), which have potential to address some of the intricacies of the

problem. The essence of the concept can be seen as:

"In the same way that deep learning relies on hierarchies of features, HRL relies on

hierarchies of policies." [36]

A very useful concept to understand HRL follows directly from the ideas discussed in section

2.3, and that is the concept of options. These can be seen as macro actions, which expand the

notion of MDP to allow for actions to be taken over multiple time steps, allowing for higher level

policies and goals, that coordinate lower-level ones [37, 38]. Nevertheless, it should be noted that

there are several other approaches to HRL such as Hierarchical Abstract Machines [39].
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2.5 Continuous and Discrete spaces

It is also to be noted that many of the earliest approaches to machine learning are limited to discrete

spaces with regard to both actions and states. This is a big constraint, as most real world situations,

are based out of interactions in the continuous domain. This is also true in the field of robotics

[40].

Quantization of data may seem the obvious solution to this issue, but it nevertheless hits on

the very common problem of the curse of dimensionality, especially when dealing with many-

dimensional data [41].

While some of the solutions to apply ML algorithms in continuous spaces will be covered in

section 2.7, the concepts covered in 2.3 can be extended to mention Semi-MDP, which can be used

to cover a continuous time state space [42]. This can be represented by the image below:

Figure 2.4: Comparison of MDP and MDP based approaches [38]

Here we can observe that the state trajectory of an MDP is constituted of individual discrete-

time transitions, while an SMDP larger, continuous-time transitions. Options enable an MDP

trajectory to be analyzed in either way [38].

2.6 Multi-Task Learning

Multi-Task Learning (MTL) is, in its essence an area of the field of ML that seeks to improve

generalization, through the training of tasks in a parallel manner, sharing representations. In this

manner, what is learned by one task can be applied to improve other related tasks [43, 44].

Several approaches in the field of MTL have been shown in the last few years that reveal great

potential. Some of them are top-down, and as shown in the figure below, seek to implement a

series of shared and task-specific layers to the ML algorithm, laid out in a pre-set manner.
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Figure 2.5: Top-down MTL through multilinear relationship networks [45]

This is a good approach for well understood problems, but can fall flat when addressing new

tasks [43]. On the other hand, bottom-up models have also been used with success, with a method

such as shown in the figure below:

Figure 2.6: Bottom-up MTL through Fully-adaptive Feature Sharing [46]

Thus far, the methods implementing these approaches follow a greedy algorithm, which can

result in a solution which is not optimal, as it seeks only a local and not a global minimum [47].

2.7 Some machine learning algorithms

The field of ML is an extremely expansive and fast developing area of study. Thus, this section

does not seek to be an exhaustive and comprehensive list of machine learning algorithms, nor to

provide a mathematical description of these, but to instead to serve as a quick overview, mentioning

some of the most important ones, while contextualizing them in relation to the concepts discussed

in the previous sections of this chapter.

2.7.1 SARSA

State–action–reward–state–action (SARSA), is probably the simplest algorithm to start describing

the class of algorithms based on Q-function optimization. It is an on-policy RL algorithm for

continuous state and action spaces that seeks to maximize the Q-function [48, 26].
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2.7.2 Q-Learning and DQN

Q-Learning can be seen as an off-policy variation to SARSA, and is the starting point to a series

of algorithms that work from its main idea [26].

Deep Q-(Learning) Network (DQN) provides an improvement through the usage of deep neu-

ral networks. This has allowed it to both train using raw visual data, but to solve part of the

dimensionality problem, permitting it to be used on a continuous state space (albeit not in a con-

tinuous action space) [40, 49].

2.7.3 DDPG

Deep Deterministic Policy Gradient (DDPG) can be seen as an implementation of DQN for a con-

tinuous action space context. This is done through the simultaneous learning of an approximator

to the optimal action a∗(s) for the Q-function [40].

Nevertheless, DDPG is not a perfect algorithm. In fact, Q-values tend to be overestimated over

time, in which cases the policy will start to exploit these errors.

2.7.4 TD3 and SAC

A very recent development to address these issues is Twin Delayed DDPG (TD3). This algorithm

implements a series of modifications to DDPG. Firstly it uses two different Q-functions, always

taking the smaller of the values. Furthermore it updates the policy at a slower rate than the Q-

functions, and finally it adds random noise to the action.These dramatically improve performance

by making it harder for errors to creep up [50, 51].

Another take on DDPG is Soft Actor Critic (SAC), which seeks bases itself on a entropy

augmented objective function to provide a trade-off between exploration (maximum entropy) and

exploitation (maximum return) [52]. A comparison between several state-of-the-art Q-Learning

based approaches can be seen in the figure below:

Figure 2.7: OpenAI Gym continuous control tasks learning curves. Shaded region represents half
a standard deviation [52]
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2.7.5 VPG

Vanilla Policy Gradient (VPG) is a simple policy-based on-policy algorithm for discrete and con-

tinuous action space. VPG updates the parameters of its policy through the usage of stochastic

gradient ascent. Thus, even if one of its steps is not the best, it will evaluate according to the

overall value of the set of actions. This does mean a loss of efficiency comparatively to greedy

algorithms but also a possibility of avoiding being stuck in a local minimum [53, 54].

2.7.6 A3C and A2C

Asynchronous Advantage Actor Critic (A3C) and its improvement Advantage Actor Critic (A2C)

are two actor-critic algorithms, that is, they merge features of both value-based and policy-based

RL. In these, the actor learns optimal policy while the critic seeks to maximize the value function

[55, 56]. This relationship can be seen below:

Figure 2.8: Actor-Critic architecture [26]

The goal of this competing relationship is to obtain a better outcome through this competing

interaction than through either of them alone. Furthermore, a good analogy to an actor-critic model

can be seen through a child and its parent. The child (actor) seeks to try out new behaviours,

playing with their toys or putting their hand in the electrical socket, while the parent (critic) will

observe and evaluate those actions. From this, the child grows and learns proper behaviour [57].

To understand A3C and A2C, we need to understand that the Q-function is split in two parts,

the Value and Advantage functions. It is the later of these that the two algorithms utilize, hence

the name.

The difference between A3C and A2C is a subtle one, hinging on synchrony. In A3C, multiple

independent agents create what are different copies of the model, while in A2C each step model

sends back data to the train model in a synchronous manner. This results in a great saving of

computer resources comparatively to A3C with a similar performance [49, 58].
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2.7.7 TRPO

Trust Region Policy Optimization (TRPO) is a method that seeks to use the concept of Trust

Regions in RL. Trust region methods utilize a model function to approximate the original objective

function, inside of a trust region T (k)
∆

that can be shrunk or expanded according to the accuracy of

a function ρ(k) of a k-dimensional dataset.

This prevents the time-steps to be either too slow, resulting in a slow rate of learning, or too

fast, totally missing the minimum or maximum of the objective function. It is to be noted that trust

region methods optimize for both step length and search direction simultaneously in each iteration

[59].

2.7.8 PPO

Proximal Policy Optimization (PPO) is a policy-based method that seeks to strike a compromise

between performance and simplicity. It is particularly easier to implement than for example TRPO

in many classes of problems, such as those where visual input is important [60].

This algorithm has seen successful implementation in the area of simulated robotics, with an

optimized GPU-enabled variant called PPO2, making it particularly interesting for the area of

studies of this dissertation [61].

2.7.9 MCTS and I2A

Many of the most widely spoken developments in ML have come from DeepMind’s work regard-

ing AlphaZero and its predecessors such as AlphaGoZero. To understand them, the concept of

Monte Carlo Tree Search (MCTS) is vital.

In many situations, such as in games like chess, the number of possible options when consid-

ering future moves grows in a exponential step with each step. Thus, it becomes computationally

untenable to try and evaluate the best possible path through brute force. For this, MCTS is a

heuristic approach to this problem, seeking to evaluate the smallest possible number of plays in

order to achieve the best move.

In its essence MCTS achieves this through a four stepped process, that can be seen in figure

2.9. Firstly, starting from a root node, it selects a path using some evaluating tree policy. Once it

reaches an expandable or leaf node that does not terminate the process, it will generate its child

nodes. A simulation is then run from the new node(s), according to some other default policy.

This result is then backpropagated to update the nodes [62, 63].
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Figure 2.9: One iteration of the MCTS process [62]

Furthermore, AlphaZero represents a great advance compared to its predecessors through the

use of Imagination-Augmented Agents (I2A). It combines model-free and model-based aspects to

both learn a model and disregard it whenever it finds unexpected situations where it fails. Through

I2A AlphaZero is capable of learning the rules of several different games unaided [64].

2.7.10 CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is an evolutionary algorithm for

problems in the continuous domain, typically applied to unconstrained or bounded constraint opti-

mization problems. CMA-ES is a second order approach for estimating a positive definite matrix,

not totally unlike in result to a quasi-Newton method. It is to be noted that unlike it, CMA-ES

does not require or approximate gradients, using instead a stochastic search algorithm. where the

search steps are done through the recombination (mutation) of existing data points [65].

CMA-ES has an important place in this dissertation as an implementation of it was used in the

work previously done by the FCPortugal3D team [9, 11], as it can be seen in the image below:

Figure 2.10: Implementation of the FCPortugal3D Omnidirectional Walk Engine [9]
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2.7.11 HIRO

HIerarchical Reinforcement learning with Off-policy correction (HIRO) is a type of recent devel-

opment to HRL based of an implementation of DDPG. It seeks to attribute goals low-level policies,

based on those of the higher levels, whose rewards will depend on their ability to fulfill them. It

has shown great potential in both performance and efficiency [50].

2.8 Previous Work in RoboCup

Throughout the early stages of this document, efforts were focused on the familiarization with the

concepts related to this dissertation, as this was considered to be the key priority.

Nevertheless, several relevant documents relating to both the FCPortugal3D team, some al-

ready widely cited in this document, and others such as [66, 67, 68, 69, 70, 71, 72, 73] were

studied in order to understand the current existing capabilities and approaches taken by members

of the team.

Regarding other teams in the area, works such as [74, 75] were looked into, revealing an ex-

tremely dynamic environment stemming from the RoboCup competition. All of these are elements

which this dissertation seeks to work upon.

2.9 Conclusions

With this chapter, a series of key concepts and algorithms in the field of machine learning were

explored, with a special regard to those that could prove useful to the dissertation, or to better

understand the underlying issues of creating a method through which to make a robot kick in

motion.

Still, during the dissertation, the optimization algorithm overwhelmingly employed was, as

further described in subsection 4.2.1, the PPO2 implementation from Stable Baselines. This is a

powerful algorithm already used by the FCPortugal3D team with a great degree of success. It is to

be noted that other algorithms could be swapped out due to the modular nature of the framework.
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Training environment

While there is a vast wealth of possible approaches to be taken while working in the area, these

need to be taken in the context of the given simulation environment, the available tools and the

previously developed skills, since any kick in motion skill developed must seamlessly follow from

them. Therefore these can be seen as both constraints and guiding principles for the work of the

following chapters.

As such, this chapter seeks to analyse the simulation environment server, SimSpark, the

graphic interface (RoboViz) as well the agent (NAO robot), comparing it with its real world coun-

terpart. Furthermore it seeks to put these in context regarding some of the relevant RoboCup

rules.

3.1 SimSpark

All of this dissertation, and indeed all of the Soccer Simulation 3D League ultimately hinge on

SimSpark1. SimSpark is a physical multiagent simulator for 3D environments built from the earlier

Spark framework.

Although it was developed as part of the RoboCup initiative, and has been used in its succes-

sive iterations since 2004 as the simulation environment, it seeks to serve as a flexible platform

whose uses extend well outside the scope of soccer simulation. As such, it has separated the main

SimSpark repository from the RCSSServer3D soccer simulation server. Furthermore, it allows for

custom environment scenarios to be created using its scene description language [76, 77].

3.1.1 Simulated Soccer Field

For the kick in motion, we need to bear in mind the RoboCup scenario, with the modifications

elaborated in section 3.1.3. Thus, we deal with a simulated soccer pitch with an area roughly 35%

of an official one and whose dimensions are as such [78]:

• Dimensions of 30m by 20m.

1SimSpark Repository https://gitlab.com/robocup-sim/SimSpark/ (visited on 02/01/2020)
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• Each goal has height of 0.8m, length of 2.1m and depth of 0.6m.

• Penalty area of each goal of 6m by 1.8m.

• Center circle with a radius of 2 meters.

• Outside border of 10m in the x and y dimensions.

• Soccer ball with radius of 0.04m and mass of 26g.

• Unique Markers on the corners and goalposts.

It should be noted for the center circle, that although it is represented as such, for the vision

perceptor it is recognized as a set of 10 lines forming a decagon.

Furthermore, the set of uniquely tagged markers standing on known fixed positions and height

of zero, are perceived by the agent in tandem with the field lines to approximate its position on the

field.

All of the above mentioned can be seen in figure 3.1 , with the aforementioned caveat of the

center circle. Note the unique identifier on each of the markers.

Figure 3.1: Illustration of the RoboCup Simulation Soccer Field [78]

3.1.2 SimSpark Architecture in a Competition Context

While the description of the exact inner workings of SimSpark lies outside of the scope of this doc-

ument, it should be briefly mentioned how it allows for both flexibility and detail. It architecture
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allows, for example, for different physics engines to be plugged through an abstract physical layer

and for the in-depth simulation of physical properties of the agent, such as temperature regulation

and stiffness control in each of the agents’ servo motors [77, 79].

Furthermore, the overall architecture of SimSpark should be noted. While there are differences

in a simulation context, these will be approached in detail in subsection 3.1.3. In this case, we will

use the 2019 rules as a reference, as the full document for 2020 was not yet published at the time

of writing [80].

In essence, in a competition setting, there is a SimSpark server machine and a two client

machines, one for each of the teams in a match. This structure can be seen below on figure 3.2.

Additionally, a further monitor computer will be connected to the server to visually display the

simulation through RoboViz [81, 82].

Figure 3.2: SimSpark Competition Architecture [81]

It should be noted that each of the clients have a series of agents that communicate with the

server through an Agent Proxy. This proxy is divided into two threads that handle the agent’s

communications to and from the server. During a competition, the simulation is running in real-

time mode, with all elements in sync, to ensure an ease of visualization and fairness of the game.

For this effect the forwarding thread sends all messages to the agent before sleeping for 20ms.

Only then it sends a "Sync" command to the server.

3.1.3 Modifications for Simulation

While the set-up above described works perfectly well for a competition scenario, this is not so

the case when dealing with a simulation, since the goal at hand is to perform as many iterations as

possible in the given time in order to optimize the learning speed.

Considering that all simulations are done with a single agent, thus canceling the need to worry

about synchronization concerns between agents, we can disable real-time mode and turn agent

sync mode on. It should be noted that even in this accelerated mode, each sync tick represents the

same 20ms tick of simulation time it would in real time.
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Furthermore there were several other modifications done so as to disable some of the soccer

rules, remove noise from perceptions and give the agent a wider field of view than in game. The

goal of these is to allow the agent to train under ideal conditions for better and quicker learning.

To this effect, the following changes were made in the respective configuration files. These are in

fact the same as in previous deep learning projects done by the FCPortugal3D team [83].

1

2 /usr/local/share/rcssserver3d/rcssserver3d.rb

3 $enableRealTimeMode = false

4 /usr/local/share/rcssserver3d/naosoccersim.rb

5 addSoccerVar(’BeamNoiseXY’,0.0)

6 addSoccerVar(’BeamNoiseAngle’,0.0)

7 #gameControlServer.initControlAspect(’SoccerRuleAspect’)

8 /usr/local/share/rcssserver3d/rsg/agent/nao/naoneckhead.rsg

9 (setViewCones 360 360) ;

10 (setSenseMyPos true) ;

11 (setSenseMyOrien true)

12 (setSenseBallPos true) ;

13 (addNoise false)

14 ~/.simspark/spark.rb

15 $agentSyncMode = true

Listing 3.1: SimSpark simulation settings

3.2 RoboViz

While it is key to have a reliable simulation environment, it serves little purpose if no visual rep-

resentation can be attained. Thus, RoboViz 2 stands as the official monitor tool for the RoboCup

3D Simulation League, as a Java based fork of the original version by Justin Stoecker. It is de-

veloped and maintained by the magmaOffenburg team and seeks to improve from the dated, non

intuitive and low performance graphics given by the native SimSpark monitor, in a way that deeply

integrates with it [84, 85].

Additionally from providing a better representation of the ground truth, it allows for the graph-

ical display of objects, such as circles and lines, advanced camera modes and log file generation.

The result can be seen below in figure 3.3:

2Roboviz Repository https://github.com/magmaOffenburg/RoboViz (visited on 05/01/2020)

https://github.com/magmaOffenburg/RoboViz
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Figure 3.3: Example RoboViz visualization [86]

It should be pointed that although it entails in no behavioural difference in the simulation,

visual data from the server is only updated to RoboViz on every other step.

3.3 NAO Robot

With an understanding of the platform on which the simulation occurs, we can analyse the NAO

robot3, or more concretely, the simulated model of the robot, since this is not a perfect representa-

tion of the physical one.

Figure 3.4: Physical NAO robot (H21 model) schematic [87]

3NAO Robot homepage https://www.softbankrobotics.com/emea/en/nao (visited on 11/01/2020)

https://www.softbankrobotics.com/emea/en/nao
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The physical NAO Robot, now in its 6th iteration, is a bipedal humanoid robot, developed by

SoftBank Robotics (previously Aldebaran Robotics) and chosen by the RoboCup initiative as the

default agent for the simulated scenarios. It is represented as a custom variety of its NAO H21

model with 22 degrees of freedom4. It should be noted that the RoboCup version omits the hand

actuators from its simulation model.

The characteristics of the simulated robot are as follows5 [89]:

• Height of 57cm.

• Weight of 4.5kg.

• Degrees of freedom: 22, one for each joint effector.

• Gyroscopes: 1 located on the torso.

• Accelerometers: 1 located on the torso .

• Force Resistance Perceptors: 2, one in each foot.

• Vision Perceptors: 1 in the center of the head.

• Say Effectors: 1, used for communications

• Hear Perceptors: 1, used for communications

• Joint Perceptors: 22, one for each joint effector.

3.3.1 Robot Joints

Comparing the all factors mentioned so far, we can see how the simulation tries to be a faithful

model of the physical NAO robot, as can be seen through RoboViz on image 3.5 below:

Figure 3.5: Visual comparison of real (left,[90])versus simulated (right) NAO robots

4The first hip joints in the physical robot share the same motor, hence the discrepancy implied in the name [88]
5For the default player type, see subsection 3.3.3
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Nevertheless, there is a fair number of approximations taken in the simulation. First, as briefly

mentioned as a footnote, the first hip joints of each leg, LHipYawPitch and RHipYawPitch act as

independent joints in the model, whereas in the physical H21 model these are controlled by a single

effector, resulting in a simultaneous and symmetrical movement at all times, with LHipYawPitch

taking priority in a conflict situation [88].

As it can be seen in table 3.1 below, the chosen angles of the model correspond roughly well to

its physical counterpart, with negligible rounding of values in most situations. It should be pointed

that these are not the maximum and minimum angles in all conditions for the NAO H21, as there

are conditional limits placed on some of the joints, depending on the angles of other joints, so as

to prevent self-collisions and physical damage [91].

Simulation Model NAO H21
ID Joint Name Min Max Min Max Joint Name

0 head1 -120 120 -119.5 119.5 NeckYaw
1 head2 -45 45 -38.5 29.5 NeckPitch
2 lleg1 -90 1 -65.62 42.44 LHipYawPitch
3 rleg1 -90 1 -65.62 42.44 RHipYawPitch
4 lleg2 -25 45 -21.74 45.29 LHipRoll
5 rleg2 -25 45 -45.29 21.74 RHipRoll
6 lleg3 -25 100 -27.73 88.00 LHipPitch∗

7 rleg3 -25 100 -27.73 88.00 RHipPitch∗

8 lleg4 -130 1 -121.04 5.29 LKneePitch∗

9 rleg4 -130 1 -121.47 5.90 RKneePitch∗

10 lleg5 -45 75 -52.86 68.15 LAnklePitch∗

11 rleg5 -45 75 -53.40 67.97 RAnklePitch∗

12 lleg6 -45 25 -44.06 22.79 LAnkleRoll∗

13 rleg6 -25 45 -22.80 44.06 RAnkleRoll∗

14 larm1 -120 120 -119.5 119.5 LShoulderPitch
15 rarm1 -120 120 -119.5 119.5 RShoulderPitch
16 larm2 -1 95 -18 76 LShoulderRoll
17 rarm2 -95 1 -76 18 RShoulderRoll
18 larm3 -120 120 -119.5 119.5 LElbowYaw
19 rarm3 -120 120 -119.5 119.5 RElbowYaw
20 larm4 -90 1 -88.5 -2 LElbowRoll
21 rarm4 -1 90 2 88.5 RElbowRoll
* these joints were multiplied by -1 due to differences in chosen coordinate systems

Table 3.1: Joint names and angle limits for the NAO robot[89, 91]

In Table 3.1, the ID and joint names on the left side correspond to how the joints are indexed

in the XML file that describes the agent, and thus, in all of the functions and files pertaining

to RoboCup programming. On the right, stands the joint naming convention used by SoftBank

Robotics. Do note that naming conventions and indexation order of each joint change between the

two and are not kept constant between all sources used in this dissertation. For the sake of clarity,

the SimSpark naming on the left will be preferred except when explicitly dealing with the physical
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NAO robot or when using 3rd party figures.

We can observe on figure 3.6 how this table maps to the NAO robot. Additionally, see 5.1 to

observe a simplified schematic with the coordinate systems in place.

Figure 3.6: Joints mapped onto the NAO robot [92]

3.3.2 Box Model

While the approximation holds fairly well for the joints described in subsection 3.3.1 it should be

mentioned that the model approximation is much coarser when regarding the actual physical shape

of the agent. Visually they seem extremely similar, but the bounding volumes used for collision

detection and physics simulation are in fact quite simplified.

Figure 3.7: Schematic of the NAO H21 arm [91]
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Taking for an example the arm, that can be seen in detail in figure 3.7 above, one can see

how the arm in the real world has a very complex shape that can interact with an object in a wide

variety of ways. On the other hand, the model used for RoboCup abstracts that to a set of two

box shapes of equal value, with spheres to simulate the joint locations. This is extended to the rest

of the robot, as the shapes are turned into a set of boxes, cylinders and spheres. The full visual

description model can be seen on figure 3.8 below.

Figure 3.8: NAO robot box model for physics simulation [89]

While this model is still a far cry from the real world model of a NAO robot, and further still

from that of a human player, it is a stepping stone on the way towards the goal of the RoboCup

initiative.
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3.3.3 Heterogeneous Players

Four further variants of the NAO robot have been developed, derived from the robot described

above, as heterogeneous player types, including one with an additional joint in each foot.

According to the latest available rules, at least three player types must be used in a game situ-

ation. Nevertheless, the same general considerations of size and mass remain. For all simulations

performed in this dissertation, the base nao0 player type as described above was used [82].

3.4 Conclusion

This chapter sought to present the training environment upon which the learning occurs, based

on the official RoboCup tools, with SimSpark as the training simulation server, RoboViz as the

display interface and the NAO robot as the agent model, and the differences to their real life

counterparts.

Furthermore, as described in section 3.1.3, in order to achieve better performance during train-

ing sessions, modifications to the server were implemented.



Chapter 4

Optimization environment: tools, agent
and skills

With an understanding of the simulation environment and the robot, it becomes critical to describe

how these are used alongside a set of tools to implement the goal of this dissertation, that is, the

learning of further skills through the usage of RL algorithms.

This chapter seeks to present the remaining tools upon which this work is rooted, namely

those that pertain directly to machine learning, some of which were developed by elements of

the FCPortugal3D team during the realization of this dissertation, such as FCPGym, described in

section 4.3, as well as give a description of the RL algorithm used in the following chapters.

Furthermore, this chapter seeks to describe the Deep Agent itself, and how the communication

loop between the several components at hand occurs in a training scenario. Finally it introduces

the two previously developed skills run and sprint that the kick in motion must flow from.

4.1 TensorFlow

TensorFlow1 is an open-sourced, python-oriented, machine learning framework, developed by

Google from its earlier DistBelief library. It uses dataflow graphs to represent state, computations,

and the operations that change the states. It has revealed a great flexibility of its applications and

usable hardware, ease of use and enormous scalability. Due to these advantages it has since gained

wide adoption for academic purposes [93].

1TensorFlow homepage https://www.tensorflow.org/

26
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Figure 4.1: TensorBoard displaying results of a learning run

A key component to TensorFlow is TensorBoard, as this tool allows for the generated log data

to be easily displayed and analysed, with regard to both rewards and other metrics such as entropy

and loss, as shown of figure 4.1 above. Furthermore, detailed graphs of the inner structure of the

network can be generated and interacted with ease as can be seen below in figure 4.2:

Figure 4.2: TensorBoard graph of a network used in this dissertation

Thus, TensorFlow underlies the whole dissertation, generating the underlying neural network

upon which reinforcement learning algorithms operate. This was implemented through Stable
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Baselines, as described in the next section.

4.2 Stable Baselines

While it is fundamental to have a solid framework for creating and performing computations on

neural networks, they stand of little use without a proper Reinforcement Learning algorithm to

back it up. It should be noted that such algorithms are extremely complex to create and to optimize

its computational efficiency. Furthermore, the creation of one lies well outside the topic of this

dissertation.

Thus, Stable Baselines2 is a fork of OpenAI Baselines3 that seeks to build upon it with solid

documentation, TensorBoard support and several other features that make developing code much

simpler. It has been used on previous RL work by the FCPortugal3D team with success and it was

used to provide the RL algorithm implemented in this dissertation.

4.2.1 PPO2 in Stable Baselines

Although, many algorithms were considered beforehand to create the desired RL skills, as men-

tioned in chapter 2, in the end, Proximal Policy Optimization, briefly mentioned in section 2.7.8

was chosen as the preferred implementation. That was due to both its ease of implementation,

proven capabilities in previous work done by the FCPortugal3D team and recommendations given

by the supervising professor.

More specifically, the PPO2 implementation was chosen. The difference between PPO and

PPO2 is mainly one of optimization, as PPO2 allows for greater capabilities in multiprocessing

situations [94]. While a thorough description of all the intricacies of the PPO algorithm would

be a task for a dissertation of its own, the main description of its working and how these values

names map to the hyperparameters’ in Stable Baselines is deserved. In PPO, the first step is to let

the data to be sampled for a number of steps across the several threads, and then perform a number

of epochs of stochastic gradient ascent on it. The objective function LPPO
t for a vector of policy

parameters θ is given as thus [60, 61]:

LPPO
t (θ) = Êt [LCLIP

t (θ)− c1LV F
t (θ)+ c2S[πθ ](st)] (4.1)

This equation can be divided in three sub-components. LV F
t (θ) is a squared error loss related

to the value-function, whose associated coefficient value was not tuned in this dissertation. On

the other hand, S is an entropy bonus designed to encourage a greater degree of exploration, and

prevent the solution to converge prematurely on a local minimum. Êt is the expectation, that is,

the averaged value over the sampled values.

2Stable Baselines repository https://github.com/hill-a/stable-baselines (visited on 16/01/2020)
3OpenAI Baselines repository https://github.com/openai/baselines (visited on 16/01/2020)

https://github.com/hill-a/stable-baselines
https://github.com/openai/baselines
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More relevant to understanding PPO is the first term of the equation, which can be expanded

to [60]:

LCLIP(θ) = Êt [min(rt(θ))Ât ,clip(rt(θ),1− ε,1+ ε)Ât ]

f or rt(θ) =
πθ (at |st)

πθold(at |st)

(4.2)

Where rt(θ) is the ratio between the old and the new conditional probabilities of taking action

at given the state st . The nature of the clip function makes it so that if a change in policy is

beneficial it moves within the bounds of the trust region to prevent excessive movements that

could undo the learning. Furthermore, Ât must be mentioned, as to assess this improvement, the

calculation of the advantage is essential. This is done through a truncated Generalized Advantage

Estimator (GAE) that is described as such [60, 95]:

Ât = δt +(γλ )δt+1 + · · ·+(γλ )T−t+1
δT−1

where δt = rt + γV (st+1)−V (st)
(4.3)

Thus, with reward r and a value function V , the truncated version limits its horizon to the events

up to T , the final step. More important are the two parameters at hand, γ , representing a discount

factor for steps further ahead from the immediate moment in evaluation, and λ representing a ratio

between a Temporal Difference (λ = 0) and a Monte Carlo (λ = 1) estimation approach. This is

a trade-off, as Temporal Difference results in lower variance in exchange for bias and vice versa.

In the tests described in this dissertation, the algorithm is run for a preset number of steps, or

until it deems it has reached a convergence situation, from which improvement is highly unlikely

before stopping.

It should be noted that different implementations and frameworks have diverging names for

the hyperparameters. During the following chapters of this dissertation, those used will follow the

Stable Baselines PPO2 naming convention [94].

4.3 FCPGym

The FCPortugal3D team is, in its essence, a collaborative project that has been in constant im-

provement for many years; and in few places that is as clear as when dealing with the optimization

environment and tools used throughout this dissertation.

At the start of the dissertation, a framework for implementing RL algorithms for a soccer

simulation was already in place, OpenAI Gym4. OpenAI Gym is, in its essence, a toolkit to test

and compare RL algorithms and strategies in a streamlined way, while making no assumptions on

the environment used [96].

Said implementation presented both flexibility in the scope of its possibilities, and, most im-

portantly, allowed for a great deal of scalability, permitting for multiple episodes to be ran as

parallel threads for a greater usage of computational resources [83].

4OpenAI Gym homepage https://gym.openai.com/ (visited on 15/01/2020)

https://gym.openai.com/
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While this strategy was able to create successful training results, it left a great margin of

improvement. Namely, the communication between existing FCP agent code (in C++) and the

code pertaining to the optimization (in Python) was done through a back and forth communication

through a series of TCP sockets. The passing of data worked through a series of ad hoc files,

which required changes across multiple directories for every small change to be implemented.

Thus, during the realization of this dissertation, a new toolkit, FCPGym, was developed by

Tiago Silva, a member of the FCPortugal3D team, which retained all of the advantages of the pre-

vious implementation it is based upon, while abstracting communications between the two layers

through a third-party library. This has allowed to migrate all the code referring to the calcula-

tion and definition of rewards, observation and action spaces to C++, which further optimized

computation while simplifying the programming process.

An important part of this toolkit is its functionality for fetching from the FCPortugal3D code

a series of data points, such as object positions, joint angles and gyroscope data, as well as their

maximum and minimum possible values and directly appending it to a vector to be sent back to

the optimizer. This greatly streamlines the creation of new learning scenarios.

4.3.1 Vector spaces and normalization

While the action and observation spaces themselves will be addressed in detail in chapter 5, and

from then on, wherever they are changed, it should be mentioned how normalization is used to

improve the results. In essence, the observation space is a vector of the chosen input variables for

the neural network, and these variables present a great range of magnitudes. While some can be

a fraction of a unit, such as those representing foot data, others, such as those pertaining to the

gyroscope can go into the hundreds. Since this variation of several orders of magnitude does not

typically result in good learning data, a normalizing wrapper function VecNormalize was applied

to the environment.

4.4 Deep Agent and learning episode

Over time, the FCPortugal3D team has developed a robust agent for playing soccer, and this makes

up, with its comprehensive modeling and associated files, the basis of the Deep Agent used in

learning situations. This agent has had its default decision module removed. In its stead, the loop

described in figure 4.3 was placed, where the optimizer is none other than the algorithm already

described in subsection 4.2.1 of this chapter.

The first step is the creation of a preset number N of parallel Gym environments, defined

chiefly by the sum of the number of threads in all of the cores of the computer, so as to maximize

computational power5, each with their own associated SimSpark and agent instances.

The manner of communication between the Deep Agent and the Optimizer has already been

described in section 4.3, but it should be explained how a step in the episode loop works. At the

5Due to inefficiencies in code, some machines do present a measurable, albeit diminishing return through the defi-
nition of multiple environments per thread, even when accounting for losses due to context switching
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start of it, a set of actions is given by the optimizer to the Agent, which executes them over a

time step of 20ms of simulation time. Following the taking of the action, an observation vector is

returned to the optimizer that performs an evaluation of the result, before starting a new step.

Figure 4.3: Agent - Optimizer communication in an episode [83]

The end of an episode occurs when due to one or several conditions defined in the step func-

tion, a done flag is triggered.

It should be noted that before the start of a learning episode, a reset period occurs. This serves

to place both the robot and the ball back into their default positions and to reset the joints to their

default states, without which would be impossible to provide a consistent initial state. This can be

conceptually seen as the loop above where the optimizer is replaced by a set of given instructions.

It should be pointed out that in this phase, there is no learning occurring.

Furthermore, since the goal of this dissertation is to create a kick in motion, the initial step of

the learning must be one where the agent is already moving, thus it is here that the skills described

in the section 4.5 were ran, so as to simulate the motion, which is an integral part of initial state of

the learning episode.

Finally, it should be mentioned that several threads run in parallel and after a set number of

steps, a stochastic gradient ascent, as described in subsection 4.2.1 is performed, after which, each

of the optimizers in each of the threads is updated.
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4.5 Skills

While the work so far has addressed most of the issues thus far presented, one key component

remains to be described. This component is comprised of the skills that generate the motion from

which the kick follows. These skills were previously developed by Miguel Abreu using a PPO

algorithm [12].

In the end, two separate skills were used, which will be described in this section. It should be

noted that these skills are, at the moment, undergoing constant development by members of the

FCPortugal3D team, so it is possible that the behaviours and statistics used in the realization of

this dissertation will be out of date, and further retraining, as defined in the next chapters may be

required.

4.5.1 Run

The Run skill is the slowest of the two movement behaviours developed through the usage of

neural networks. Like its Sprint counterpart, it uses two layers of 64 hidden neurons to generate a

movement. Relevant data is as described in table 4.1 below, directly obtained from the developer:

Skill Avg. linear speed Max. linear speed Max. rot. speed Start time Stop time
Run 1.41 ms−1 1.51 ms−1 160 ◦ s−1 0.9 s [1 , 1.6]s

Table 4.1: Run Skill Characteristics

This behaviour does present a few advantages compared to the Sprint skill, such as the larger

turning velocity6. Furthermore, its movement is more similar to that of a human, as can be seen in

figure 4.4:

Figure 4.4: Several instants of the Run behaviour

6Although this has been seen to also induce some erratic side movements
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This skill was thoroughly used in chapters 6 and 7 as the basis for the development of a kick

in motion, as well as for the testing of other strategies, such as precision kicks.

4.5.2 Sprint

The Sprint skill is an extremely fast movement behaviour, developed in a similar fashion to the

Run previously described, and with data as described in table 4.2 below, also directly obtained

from the developer:

Skill Avg. linear speed Max. linear speed Max. rot. speed Start time Stop time
Sprint 2.48 ms−1 2.62 ms−1 10 ◦ s−1 0.9 s [1 , 1.8]s

Table 4.2: Sprint Skill Characteristics

Despite its faster speed contributing to more kinetic energy being transferred when kicking the

ball, the Sprint skill does present some disadvantages. As it keeps its legs more bent, as visible in

figure 4.5 below, when kicking, the movement of the leg, which moves in a pendulum-like fashion,

presents a smaller distance between the hip and the foot.

Since this distance is proportional to the velocity of the foot, this results in smaller force

imparted on the ball. Furthermore, the speed itself adds difficulty, as it reduces the reaction time

allowed to perform a kick.

Figure 4.5: Several instants of the Sprint behaviour

This skill was also used in chapter 6. It should be pointed out that both skills are, despite their

great capability, inaccurate, since they create a motion that tends to drift over time from the desired

path. To fix this, an offset in the target location was given, so as to compensate for this movement.
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4.6 Conclusion

This chapter sought to describe the tools and frameworks upon which the RL work developed in

the next chapters is rooted, as well as give a more detailed description of the algorithm chosen for

this dissertation. Furthermore it described the deep agent, the execution of a learning episode and

the skills upon which the kick in motion must follow from.

With this knowledge, it is now possible to address the first attempts done towards the develop-

ment of a kick strategy.



Chapter 5

Static Kick - A Proof of Concept

To be able make a kick in motion is a skill that can greatly improve the performance of any

team, as it eliminates the time between stopping and kicking, precious time that can be used by

the opposing team to take rearrange the position of their own robots or even worse, take back

possession of the ball.

Starting to solve that problem however required the solving of several smaller ones, the process

of which is described at length in this chapter.

5.1 Problem

Previous work had been done by the FCPortugal3D team to try and create kicking motions using

Machine Learning. While approaches based on discrete key-frames, where several slots containing

joint positions are interpolated over time with a sinusoidal function and optimized using the CMA-

ES algorithm mentioned in 2.7.10, the strategies based on RL techniques using neural networks,

such as those described in this dissertation or the ones used to make the skills described in section

4.5 failed to obtain satisfactory results [83].

Thus, before even trying to create a full kick in motion, the fundamental question of whether

it is or not possible to create a kick had to be answered. To do so, a simplified scenario with an

initially static robot was created.

5.2 Action Space

The first step was to create an action space, that is, an N-dimensional vector that encodes the

degrees of control that the optimizer has available. While in theory these can map to anything

chosen, such as a set of macro-actions involving whole limbs, the option was taken to map each

of the outputs of the action space to an actuator of the robot.

Furthermore, the head1 and head2 joints were excluded, reducing the total dimensional size of

the Action space to 20. This is possible since in a kick scenario, moving the head joints brings little

35
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advantage to the agent, as can be understood from the joint schematic in figure 5.1. Thus, reducing

the dimensionality of the Action Space tends to result in better results and faster convergence.

Figure 5.1: Schematic illustration of the joints in a NAO robot [89]

While the action space corresponds to a movement by the effector, there are several possible

avenues on how to transform an output from the Action Space into an input for the NAO robot

to react. It should be pointed that the communication to the robot is done through the function

agent::actions->moveJoint(i,vel); , where i is the ID from table 3.1 and vel is an

angular velocity expressed in radians per second and clipped to a maximum of ±6.109rads−1,

thus any choice must be bound to this.

Early attempts tried to directly relate the values of the action space to the angular velocities,

using variations on a simple proportional or a complete PID controller. Nevertheless, as also

verified in previous work [12], a noticeable improvement is obtained through interpreting each

term of the action space as relating to an angle, and from there deriving an angular velocity to feed

as an input. In the end, the desired objective angle θ goal , can be obtained from the action space
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output as:

θ
goal
i = bi +(

xi

k
+1)∗ vi− vi

where vi = max(−mi,ni)
(5.1)

Where, for a joint1 i with an action space output of xi, bi is a bias term, used to make it so

that if xi = 0 we obtain θ
goal
i = bi. This implementation is further described in section 5.6. The

rest of the equation is a particular case of a linear interpolation, where mi and ni are the minimum

and maximum angles for the joint. Finally, k is a dampening constant, empirically set to k = 5,

allowing for finer movements. Although this solution can result in invalid angles, since the robot

cannot move beyond them, this is not an issue, rather, an incentive to keep applying a certain

torque if advantageous.

With θ goal now defined we can now obtain from it the angular velocity as:

ω
t
i = (θ goal

i −θ
t−1
i )∗ r−ω

t−1
i (5.2)

Where θ
t−1
i is the value of the joint, as given from the server in the previous step. Since, as

can be seen in figure 4.3, the action is given before the step, the information has a one tick delay,

thus requiring an ω
t−1
i term to account for this delay. Furthermore, both angular velocity values

are clipped to their maximum values. Finally, r is an additional constant, used to convert from

degrees per step to rads−1 and given by r = 50∗π/180.

5.3 Observation Space

The observation space in the static kick consists in a set of 138 input variables, of which 25 are

instances of differentiation between some other variable in steps t − 1 and t. These variables

are grouped in table 5.1 according to their acquisition method and data size, that is, how many

variables correspond to a certain description.

By acquisition method, three types of variables should be considered:

• Raw : Data provided directly by the FCPGym framework, usually directly from the server.

• Generated : Data generated by the optimizer, such as the action space or the counter.

• Calculated : Where data is processed to obtain a better result.

Raw data includes the angular value from the joints’ perceptor as well as their velocity and

acceleration and the agent’s current height. Furthermore, it gives the internal gyroscope and ac-

celerometer data as well as the foot force data, giving force and contact values for each of the

feet. These are given as multiples of three since data is expressed through a Cartesian coordinate

system.

1Since the head joints (ID 0 and 1) are not used, in code, output i relates to joint i+2
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It should be pointed that while it would be possible to provide the estimation of the position

of the robot, as well as its rotation in reference to absolute coordinates, these are not given, so as

to allow the learning algorithm to learn for relative positions instead, freeing the resulting action

from part of the context for greater versatility.

Acquisition Method Parameter Data Size

Raw

Joint angle 22

Joint velocity 22

Joint acceleration 22

Feet Force * 12

Accelerometer * 3

Gyroscope * 3

Height * 1

Generated
Action Space 20

Counter 1

Calculated

Foot Distance * 4

Average Distance * 2

Ball Speed 1

* Differentiation 25

Total 138

* Values marked as such have differentiation performed on.

Table 5.1: Observation State Parameters and Details

Regarding the generated values, the action space is stored from step t−1 and given as an input

for the neural network at step t. The counter is the internal counter that stores the current step,

from 0 to max_step. Data from all the joints is gathered, since the head joints’ noisy movement,

although not actuated, can bring about perturbations to the robot.

Before considering the calculated values, a very important factor must be addressed, which

is the data update cycle. While each tick of the physics simulation corresponds to an interval

of 0.02s, and internal values of the robot, such as the angle of the joints, are updated in each of

these ticks, data from the vision perception is only updated every third step. Furthermore, all this

data has a one step delay, as mentioned in section 5.2. This means that some data is not updated,

resulting in outdated data.

Previous work done by the FCPortugal3D team has successfully sidestepped this issue by only

considering every third tick for the simulation, and performing the same action for those where

data is not up to date [12, 83]. Unfortunately, given the nature of the kick, and the short time-

frames it entails, this sort of granularity was not acceptable. Thus, solutions to this issue were

found and described in section 5.5.
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While differentiation has already been addressed, the other remaining values must be ex-

plained. Ball Speed is a value that corresponds to 10 times ∆r, the magnitude of change in the

estimated absolute position of the ball from step to step. The multiplication factor was chosen

empirically, as this component is used in the reward function described in section 5.8. Since this

is a noisy value, is clipped so that values under 0.05m are rounded down to zero. In steps where

no server data update occurs this value is kept as is from the previous step.

Finally, average distance is the average between each of the feet distances. Each of these is

given in polar coordinates, disregarding the z-axis component and estimated when no data update

occurs. The method of calculating these positions is explained at length in section 5.5.

5.4 Network Shape and Hyperparameter Tuning

During the realization of this dissertation, a variety of possibilities was studied for modifying

network shape, in terms of numbers of layers and of neurons in each of these layers. It should be

noted that the default policy, and the one used in previous work by the FCPortugal3D team uses

two layers of 64 neurons each, in both the value and the action networks, none of them shared.

For the static kick described in this chapter, an improvement was found in adding a third layer of

64 neurons.

Regarding hyperparameters, these are extremely difficult to properly iterate on, requiring a

great number of attempts to successfully cover the range of possibilities accurately. Thus, for the

static kick ability, the option was taken to largely conform to the default parameters defined in

Stable Baselines, or used in previous work by the FCPortugal3D team. The chosen values, when

differing from the default parameters set by the Stable Baselines algorithm, are thus defined in

table 5.2, using its variable naming convention:

Hyperparameter Value Default Value
n_steps 1024 128

ent_coef 0.00 0.01

noptepochs 10 4

learning_rate 2×10−4 2.5×10−4

Table 5.2: Modified Hyperparameters for Static Kick

5.5 Obtaining data for foot positions

For any kick, one can arguably say that the most important ability is to be able to effectively hit the

ball with the foot. Thus, obtaining a reliable algorithm to measure the distance between the foot

and the ball is a cornerstone of any attempt to obtain a successful kick behaviour. Additionally,

this must be able to create a result even in situations where there is no data update from the server,

based on previously held data.
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To do so, the first step is to define a function to obtain this distance in the situation where a data

update occurs. This is done through the following formula, resulting in a distance vector between

the surface of the ball (ball′) and the tip of each foot ( f oot ′):

~P t,side
ball′, f oot ′ =

~P t
ball,agent +~P t,side

agent, f oot +
~P t,side

correct (5.3)

The first component from the equation, the relative distance between the head of the agent and

the ball, is trivial to obtain from the FCPGym framework. For the second component, some extra

work is done, for even though the agent possesses a sense of proprioception, and is able to give the

relative distance between the center of the head and each of the joints and body parts, it does so

with regard to the agents’ own relative coordinate frame, based on the rotation and inclination of

the head itself. Thus the worldState->visionTransform(Vector3f) function was called2

to perform an estimation of the correction of the reference frame.

Finally, the ~P t
correct component serves to account for the fact that both of these two previous

vectors assume that both the ball and the foot are point objects, while in fact they have a well

defined hitbox, as described in 3.3.2 and 3.1.1. While the difference is seemingly small, at about

0.1m, when dealing with precisely hitting the ball, which has a radius of 0.02m, such a level of

accuracy is not acceptable. The addition of this correction factor gives an offset for this and is

calculated as such:

~P t
correct =

 0.1cosθ t

−0.1sinθ t

0.025

 (5.4)

Where θ t is the estimate of the absolute rotation angle of the agent, as given by the FCPGym

framework. The 0.1 component comes from the sum of the radius of the sphere with the distance

between the center of the hitbox and half its length. The component for the z-coordinate was

interestingly found to be of 0.025m, instead of the 0.015m expected for the difference of the

heights when at rest. The resulting vector can thus be observed in figure 5.2 below:

2This function needs to be changed from private to public in order to access it by default
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Figure 5.2: Foot to ball distance on server update step

With these angles calculated, a conversion to polar coordinates was performed, where the angle

obtained is subtracted by θ t , so as to provide a relative angle from the agent’s frame of reference.

It should be pointed that while magnitude was obtained from the three vector components, the

relative angle uses only the xy-plane.

5.5.1 Accounting for server data

While the algorithm as described above works very well when all data from the server is updated,

this same result is found to be lacking when accounting for the two thirds of the steps when it

is not. It should be pointed that this is not an issue for ~P t,side
agent, f oot , as this parameter is constantly

updated. On the other hand ~P t
ball,agent is only updated every third step, as previously mentioned in

section 5.1, resulting in a movement that is twitchy and often simply incorrect. To account for this,

an estimator algorithm was employed, replacing the aforementioned component by a term ~P t
estimate

whenever data is not updated from the server. Assuming that the data was last updated in step k,

the algorithm is as such:

~P t
estimate = ~P k

ball,agent +(vk
P×

∆t
3
+

ak
P

2
× ∆t2

9
)×d t

where



∆t = t− k

vk
P = ~P k

ball,agent −~P k−3
ball,agent

ak
P = vk

P− vk−3
P

d t =
[
0.75+ | 0.5cosθ | 0.75+ | 0.5sinθ | 0.66

]T

(5.5)

Thus, ~P t
estimate may be seen as an interpolation for intermediate steps of a simple kinematic

equation for discrete times. Furthermore d t is an empirically derived dampening factor, designed
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to underestimate movement. This is beneficial, since a small jump every third step due to the

update is still preferable to the oscillating movement that an overestimation would induce. Addi-

tionally θ is the same rotation of the agent as previously described in this section.

Even if it is completely impossible to say the exact error that the estimation has, since the

ground truth is not available at these steps (or else this algorithm would be unnecessary), an upper

bound to it can be established, by extending the estimate for a third step (t = k+ 3), beyond the

required trust region of two estimation steps. Comparing the estimate to the updated value from

the server, it can be ascertained with a reasonable degree of certainty that the error in t = k+2 will

be lower.

Performing this calculation over several hundred iterations, we were able to obtain the data in

table 5.3 below, for a motion on the x-axis:

Mean Error (cm) Mean Absolute Error (cm)

x y z r |x| |y| |z| |r|

With Estimator -1,85 -0.16 0.09 1.86 2.19 0.99 1.66 2.93

Without Estimator -4.95 -0.29 -0.10 4.95 4.95 1.66 1.18 5.35
Table 5.3: Estimator error

Where r is the magnitude of a vector containing the three error components for the axis. For

comparison, the average error between the previous and next server data was included. It was

concluded that this is a very acceptable margin of error, as can be clearly visualized in figure 5.3:

Figure 5.3: Agent to ball estimation and updated result
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This further translates, for the final foot to ball distance, the value sought to be calculated, as

an error as can be observed in figure 5.4 below:

Figure 5.4: Foot to ball estimation and updated result

With all of this data, a solid estimate of the relative position of the ball to the tip of the feet can

be obtained in every step, allowing for better accuracy, even more so, considering that the actual

error will be smaller than the one above described.

5.6 Action Bias Vector and Initial Condition

The choice of implementing a Bias Vector emerged from the analysis of previous work by the

FCPortugal3D team. In it, it was hypothesised that part of the reason for the underperforming

behaviour from neural networks in previous kick attempts was due to the greedy nature of the

algorithm attempting to maximize rewards in early steps, thus simply pushing the ball instead of

first retracting it before swinging it back like in the pendulum-like fashion of a kick [83].

Thus, a series of bias values were chosen, so that for an action space output of 0 from the neural

network, the robot would move towards a kicking motion with open arms and the leg performing

the kick pushed back. This can be observed below in figure 5.5:
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Figure 5.5: Visual representation of bias vector

In this manner, an initial incentive encourages the push back motion while the algorithm ex-

ploration deduces the forward motion, reducing the chance of the network getting stuck in a local

maximum reward. This bias vector is represented in table 5.4 below, where ID and joint name are

as in table 3.1. The values not represented are by default 0.

ID Name Angle
6 lleg3 20

7 rleg3 -25

8 lleg4 -51

9 rleg4 -130

10 lleg5 36

11 rleg5 40

14 larm1 -20

15 rarm1 -20

16 larm2 54

17 rarm2 -54
Table 5.4: Nonzero bias components for Static Kick

Furthermore, it is necessary to define the initial condition. As mentioned in section 4.4 this is

done through a reset function. This function sets the angles to a predetermined set of values, as

can be visualized in figure 5.6 below.
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Figure 5.6: Initial conditions for the static kick

These values were chosen based on an averaging of the several of the joint angle values over

several hundred steps while performing the run skill, as presented in table 5.5. Note that omitted

values are equal to 0.

ID Name Angle
6 lleg3 20

7 rleg3 9

8 lleg4 -51

9 rleg4 -51

10 lleg5 36

11 rleg5 40

14 larm1 -64

15 rarm1 -20

16 larm2 54

17 rarm2 -18

18 larm3 -96

19 rarm3 35

20 larm4 -78

21 rarm4 89
Table 5.5: Initial nonzero angles for Static Kick

As it can seen in the figure 5.6, while the resetting of joints occurs, the agent is kept slightly

above the ground before being allowed to fall on its designated position, and only when the agent
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is firmly on the ground does the training part of the episode begin. The initial position of the

ball is given by a point of absolute coordinates P0
ball = ( 0 0 0.02), and the agent position through

P0
agent = (−0.2 −0.06 0.5).

The combination of these two vector spaces results in a starting position that tends, by default,

to move the joints from the initial to the bias position. It should be pointed that since the initial

position is not very stable by itself, the movement, even when not using the action space inputs

tends to result in the agent falling to the side.

This is actually an intended and beneficial effect, since it further emulates the inherent insta-

bility in the kick in motion situation, where, if one were to suddenly stop the movement skill, it

would result in it falling over in almost every case.

5.7 Episode Layout

In the static kick, after the reset period, the optimization starts instantly, with the step cycle as

described in figure 4.3 then occurring. It proceeds until the done flag is set to true. There are

several conditions for this to happen, which are as follows:

• Agent height < 0.225 m

• Counter > 70

• Ball Speed > 0.05m

In the case of the ball moving more than 5 centimeters, the flag is not immediately triggered.

Instead, the optimization is allowed to run for another 4 steps, since force can often still be applied,

for a better final distance. Furthermore, it encourages the agent to take actions that result in it not

falling over the ball, a problem often found in early attempts.

After these steps pass, the agent is transported away from the ball and a series of server side

steps is done until the ball is stationary, without updating the optimizer. Only then is the final

reward calculated. This is crucial, as although during the movement of the ball the action of

the agent are irrelevant, thus giving more steps to the episode would only be detrimental to the

intended learning, the final state of the system, as a result of the kick, is the real objective of the

training.

Since that is so, it would be simple to assume that the reward function would result in a

sparse reward environment. This would pose a significant problem, since a sparse reward tends to

converge into a maximum result much more slowly, if at all, when comparing to a dense reward.

Thus, several steps were taken to solve this issue as best as possible, as described in section 5.8.
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5.8 Reward Shaping

As mentioned in the previous section, steps were taken to ensure that the effects of a sparse reward

environment could be mitigated. For this, the following reward function for an episode Rt
episode

was chosen:

Rt
episode = Rt

sparse +
t−1

∑
i=1

Ri
dense (5.6)

With regard to sparse component, calculated after the done flag is triggered, it can be directly

obtained from the equation

Rt
sparse = ∆

2
x−∆

2
y (5.7)

Given that the initial orientation and position are well defined in this case, one can directly ob-

tain the reward as function of the movement on the x-axis, that is, in front, and penalize sideways

motions on the y-axis. The quadratic component ensures that small improvements are progres-

sively more rewarded, further encouraging exploration.

In further chapters, where, due to the erratic nature of the movement skills, the angle is not

kept constant, a correction is applied as described in section 6.8

For the dense component of the reward, given on every step, this is given by the sum of two

components as:

Rt
dense = Rt

f oot +BallSpeedt

where Rt
f oot = rt−1

f oot − rt
f oot

(5.8)

With Ball Speed being the variable already described in section 5.1, and r f oot the magnitude

of the vector between the foot and ball, as described in section 5.5. Since the initial position was

preset, this foot distance is preset in the Static Kick thus described as relating to the right foot in

particular.

The sum of this dense optimization space tends to be an order of magnitude smaller than the

final component for a kick that moves the ball more than a few meters, thus becoming less and less

relevant as the kick improves. It is important, in the early stages nevertheless, to guide the foot in

its initial attempts at hitting the ball.

5.9 Results

The results for the training scenario described in the previous sections were taken after a training

session of 30M steps over 25 hours, performed with 8 parallel threads on the personal computer

of the student.

These were observed to be extremely positive, with the final results for the training scenario,

evaluated for a sample of 1000 episodes, as described in the table below:
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Number (%) Average Distance (m) Range (m)

Failed kicks 7 0.7 0 0

Bad kicks 24 2.4 0.82 ]0 , 1.5[

Mediocre kicks 36 3.6 2.16 [1.5 , 3[

Good kicks 933 93.3 8.53 [3 , +∞[

Best kick Distance : 12.52m

Average time Duration : 0.38s
Table 5.6: Static Kick results

It should be mentioned that during the training phase results of over 13.2m were observed,

although this may be seen as a statistical anomaly. Nevertheless, less then 1% of the kicks did

not hit the ball, and over 93% moved the ball more than 3m. This distance was considered the

threshold between an actual kick and a movement due to chance.

Taking into account these results, the static kick could already be considered a solid success.

Even more so, when considering that the average time from the start of the episode to its end 3 is

of only 0.38s, making it the fastest kick in the FCPortugal3D tool set. This in itself is already very

advantageous for a much more dynamic game play in competitions.

The static kick can be observed in figure 5.7 below, showing several moments of a static kick

episode.

Figure 5.7: Several moments of a static kick

As expected, the neural network learned to first allow for the foot to retract, before only then

starting to proceed with the forward foot movement, just as a human player would. Afterwards,

the natural tendency is to fall away from the ball, avoiding the possibility that the fall may hinder

the forward movement of the ball.

Additionally, taking the sampled data from table 5.6, frequency distributions of the kicks,

according to their final distance and angle offset from a kick that travels straight ahead were

obtained, as seen in figure 5.8

3when accounting for kicks that do not fail
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Figure 5.8: Static kick frequency distribution

There is a slight tendency for the ball to move to the left as it can be seen in the distribution.

This might be explained by the small rotation in the first moments, induced by a change in the

center of gravity due to the moving arms and retracting right foot, depicted in figure 5.7 above.

Finally a scatter plot was obtained, describing the final positions for a subset of 100 episodes,

observable in figure 5.9 below, for starting position for the ball at the center spot of the soccer

pitch.
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Figure 5.9: Static kick results for 100 kicks

These results allowed to conclude that, while not as powerful as some of the best kicks in

the FCPortugal3D inventory, it is the fastest in the duration of its episode. Thus, the usage of

neural networks to optimize static kicks was proven a viable strategy. It should be noted that it is

very possible that extending the training may result in further improvements over time, but, due to

timing constraints, and the fact that a static kick is only a stepping stone and a test-bed for results,

the results here obtained were considered a very acceptable final result.

5.10 Conclusion

This chapter served to present the proof of concept of a static kick scenario, one where some of

the dynamic concerns of the kick in motion were already at play, namely, a degree of instability of

the initial situation.

To this end, a training scenario with its many components was developed as described. This

structure was kept largely for the next chapters, except when thus mentioned. Additionally, a
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method to reliably obtaining the relative position of the ball with regard to the feet, even in steps

when the data is not fully updated from the SimSpark server was also developed.

The resulting behaviour performed quite successfully, proving the viability of the usage of

these strategies for developing kick skills, and paving the way for the next chapters.



Chapter 6

Kick in Motion - A Method

To kick a ball is a natural and vital skill for any soccer team, since to do so is not simply to throw

it between the goalposts. A kick can have have a huge swath of objectives, from passing the ball

to another player to simply moving it to a more strategically advantageous position.

Thus, any improvement on that capability can mean the difference between victory and defeat

in a match. With that in mind, developing a method to perform such a kick while moving is

an asset which, if successful, can lead to substantial benefits for the FCPortugal3D team. This

chapter seeks to provide a description of the changes done from the Static kick scenario to make

it possible, and to present and discuss the results of the learning scenarios here described.

6.1 Problem

With the simpler question of whether it is possible to employ an RL strategy to learn a kick from

a static initial position answered in chapter 5, it becomes possible to use these same tools, with

modifications, to develop a set of kick behaviours for the existing movement skills.

Due to timing and computational constraints, discussed at length in sections 6.5 and 6.7, it was

chosen to optimize a kick in motion technique for the maximum possible distance. The skills used

for this chapter were Run, completely trained for all sub-scenarios described, and Sprint, partially

trained.

6.2 Action and Observation Space

While the action space for the kick in motion, and the algorithm to convert it to a set of movements,

have remained identical from that which was described in section 5.2, several changes to the

observation space were done for the kick in motion so as to obtain better results. These are shown

on table 6.1.

52
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Acquisition Method Parameter Data Size

Raw

Joint angle 22

Joint velocity 22

Joint acceleration 22

Feet Force * 12

Accelerometer * 3

Gyroscope * 3

Height * 1

Rotation * 1

Generated
Action Space 20

Counter 1

Calculated

Foot Distance * 6

Average Distance * 2

Ball Speed 1

* Differentiation 28

Total 144

* Values marked as such have differentiation performed on.

Table 6.1: Observation State for Kick in Motion

The modifications to the Observation Space add a few more variables, changing no existing

ones. Namely, the estimation of the rotation given by the FCPGym framework and the addition

of the z components left out from ~P t,side
ball′, f oot ′ , obtained as described in section 5.5. Note that this

z-axis component value was not introduced in the average for the feet. Differentiation was also

performed in these new parameters, for a total of 144 variables.

6.3 Early attempts

While many iterations of a strategy for the kick in motion were tried, both before and after the

creation of the Static Kick proof of concept, the reality observed is that the neural network was

proven incapable of simply handling the kick in motion by itself.

In these attempts, the agent was started a certain distance away from the ball, and the move-

ment behaviour engaged. At some closer distance, the behaviour would be disengaged and the

learning episode would start. While some attempts proved largely capable of keeping the walking

movement going for a short distance after the sudden interruption, if need be, that usually came at

the cost of not learning how to perform the kick itself.

The simple conclusion drawn from these trials was that episodes where the agent would only

start learning in close proximity to the ball result in a training only focused on the kicking aspect,

and therefore, a better final result. It follows that the idea of simply reducing the transition to a
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small distance was experimented with. While a substantial improvement was noticed, the results

were still largely underwhelming.

A frame-by-frame analysis of a series of kick episodes was then done, with the conclusion

being that the nature of the behaviours at hand is such that, after a small number of steps, the

position of the agent presents a large possible variation in both its position, rotation and joint

angles. Thus, with such a wide swath of variation in the initial conditions of the observation state,

it became much harder for the agent to learn a proper set of actions for each of the episodes. To

mitigate this, a series of actions were taken, as described in section 6.5.

6.4 Hyperparameter Tuning and Network Shape

During the study of the kick in motion, some fine tuning was done to the hyperparameters of the

neural network used. These sought to better reward behaviours that happen later in the episode,

thus reducing the greediness of the algorithm. Furthermore, some velocity in convergence was

traded by less variance. To this end, the set of hyperparameters, when differing from the pre-set

values in Stable Baselines are given in table 6.2:

Hyperparameter Value Default Value
n_steps 1024 128

ent_coef 0.00 0.01

learning_rate 2×10−4 2.5×10−4

nminibatches 16 4

gamma 0.999 0.99
Table 6.2: Modified Hyperparameters for Kick in Motion

Additionally, a fourth hidden layer of 64 neurons was added for a better resulting performance.

Although it is hard to extrapolate from the architecture of neural networks, it can be assumed that

this helped to model the extra complexities and variations in initial conditions inherent in a moving

kick.

6.5 Tailoring Kicks and Initial Conditions

As previously mentioned in section 6.3, using a single neural network on the Run and Sprint

behaviours to create a kick in motion was an unfruitful task. Thus, a solution found to work

around this issue, was to divide the problem into a set of smaller sub-problems.

In this way, taking the set of possible initial conditions, a basic criteria was set, such that an

episode would only start when:

• The agent is properly oriented towards the ball (i.e., the behaviour has not set it astray).

• One of the feet is on the ground.
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By setting these two basic criteria, and a tailored set of specific ones for each of the sub-

problems we can obtain a number of more similar states for the initial conditions in each situation.

This brings a clear trade off, for the larger the number of sub-divisions used, the better the learned

behaviour will be, so will the number of neural networks needed to be trained grow, and the

computation time alongside with it.

As a compromise, the problem was divided into 6 sub-kicks, 3 for each feet. The chosen

criteria for each feet are given by the values in table 6.3 below:

Foot Kicking Conditions ID Foot Down at t = 0 Foot Down Conditions

Left θle f t < θright

(0,0) Right In line with ball

(0,1) Left Behind ball

(0,2) Right To the side and behind ball

Right θle f t > θright

(1,0) Left In line with ball

(1,1) Right Behind ball

(1,2) Left To the side and behind ball

Any

∣∣∣∣~hle f t,y+~hright,y
2

∣∣∣∣< 0.12m

|αagent |< 20◦

Table 6.3: List of Kick Sub-types and criteria

Where θside is the relative angle of the polar coordinate conversion of ~P t,side
ball′, f oot ′ , as described

in section 5.5, and αagent is the drift from the initial absolute angle for the agent, as given by the

FCPGym framework.

The vector~hside is also derived from ~P t,side
ball′, f oot ′ but a rotation matrix is applied to it for a angle

φ to correct it for the agent’s reference frame. This angle φ is a conservative estimate, derived

from the application of an Infinite Impulse Response filter to the absolute angle for the agent. In

this way~h f oot,y is the sideways difference between the foot and the ball.

It becomes then a matter of setting the behaviour moving towards the ball, and in each time

step verify whether any of the condition sets are met. In tests run, assuming that the agent does not

drift due to the behaviour, in the overwhelming majority of the situations, there is at least one time

step where one of the kick condition sets is obtained, which is then used as the starting situation.

The initial conditions for the learning episode can be observed in figure 6.1 and 6.2 for the

Run and Sprint behaviours respectively.
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6.5.1 Run Initial Conditions

Figure 6.1: Initial conditions for the Run based kick

As it can be seen in the figure, the divisions chosen cover a wide range of the valid starting

positions for a kick. It should be pointed that many more sub scenarios could be drawn, but for

each one of them, a great deal of computational resources must be used.

Thus, this set of 6 starting conditions can be see as a good compromise between specificity

and use of computational resources.
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6.5.2 Sprint Initial Conditions

Figure 6.2: Initial conditions for the Sprint based kick

For the Sprint behaviour, not all of the sub-kicks were tested, Nevertheless, the initial behaviour

can likewise be like divided as was done for the Run behaviour.

6.6 Action Bias Vectors

With regard to the action bias vector, the solution becomes trivially simple. Given the motion of

the Run and Sprint behaviours, there are already moments in their gait that serve as good basis for

the kick, with a foot pushed back and the other forward. Examples of these can be seen in figures

6.1 and 6.2 already for kicks with both feet.
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A average of several of these positions was then taken and used as the Bias Vector, with the

foot performing the kick always set as the foot retracted. This is less important in kicks of the

type (n,0) and (n,2), as the joints will already be in the vicinity, but for kicks of the type (n,1),

it ensures that the kicking foot is retracted while encouraging the other foot forward. This is very

similar to the situation described for the static kick.

6.7 Episode Layout

While the ending conditions are left unchanged, the episode layout is deeply modified in com-

parison to chapter 5. These changes come chiefly in the reset phase of the episode. As already

mentioned in section 6.5, the kick in motion must naturally start with some motion. Thus, the

agent is set at some distance away from the ball, and the behaviour is ran until a timeout or the

criteria matching the type of kick being trained occur.

For the case they do not match, or the behaviour times out, the reset is contained in a wrapping

function, and is itself reset, so as ensure that the initial conditions are as desired for every episode.

It should be pointed that although there is a chaotic component to the movement behaviours,

for a small enough length, the initial position can be set, so that on average most kicks will be of

a certain type.

This is important due to the massive amount of computational overhead inherent in a kick in

motion. Since a kick in motion naturally requires movement, for every episode, dozens of extra

time steps must be simulated for these behaviours. This unfortunately results in a much slower

speed for the training runs when compared to a static kick.

6.8 Reward Shaping

While there are no conceptual changes in the reward shaping between a static kick and a kick in

motion, a pragmatic one must be applied. For while the angle of the agent was a known constant

in the static kick, in a kick in motion, an amount of drift from preset values is unavoidable. Thus,

the final position of the ball, considered by the reward function is changed, so that:

R t
sparse = ∆

′ 2
x −∆

′ 2
y

where

(
∆′x

∆′y

)
=

(
cosφ −sinφ

sinφ cosφ

)(
∆x

∆y

)
(6.1)

Here, the logic is similar to what is described in section 6.5 for obtaining~hright , for the same

φ , calculated only until the start of the episode. The rotation matrix accounts for the rotation of

the agent at the start of the learning episode. In this way, the new position is taken as if the robot

had performed a kick with the right orientation.

Do note that the corrected positions are the ones used to present the tabled results in the next

section.
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6.9 Results

The results described in this section correspond to a series of values obtained for the several sub-

problems, as described in section 6.5. Some of these were performed in with 32 parallel threads

on a server provided by the Faculdade de Engenharia da Universidade do Porto. Others were

simultaneously trained with 8 parallel threads on the personal computer of the student.

6.9.1 Run

The Run behaviour was trained for the six sub-problems in question. The training runs were

performed for a minimum of 20M steps and 24h each, over the course of several days.

The results obtained for each sub-problem are displayed in Appendix A for an evaluated sam-

ple of 1000 kicks each. The results displayed below on table 6.4 are the averaged out results for

each of the tested sub-problems.

Number (%) Average Distance (m) Range (m)

Failed kicks 80 1.33 0 0

Bad kicks 536 8.93 0.75 ]0 , 1.5[

Mediocre kicks 415 6.91 2.28 [1.5 , 3[

Good kicks 4969 82.81 5.71 [3 , +∞[

Best kick Distance : 8,89m

Average time Duration : 0.33s
Table 6.4: Results for Run behaviour

It should be noted that the several cases of the kick have displayed very different behaviours

and results, depending on their relative position to the ball. Below in figure 6.3 is an example of a

kick of type (1,0).

Figure 6.3: One episode of the Run based kick

Taking some examples, some of the best kicks were performed by the cases with the worst av-

erage performance, such as the Type (0,1), showing a large performance distribution. On the other

hand, the kick of Type (1,0) has an impressive performance, with no single kick not hitting the ball
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in 1000 episodes, but a considerably smaller maximum distance for a kick. When considering the

overall time of the kicks, with an average of 0.33s, and going as low as 0.24s in some sub-problem

cases, it becomes clear that this kick has a great deal of potential for application.

Additionally, frequency distributions were obtained for the episode data used in table 6.4, as

seen in figure 6.4 below for the distance of the kick and the angle offset from a kick that travels

straight ahead. The figures for each of the sub-problems are available in Appendix B.

Figure 6.4: Frequency distribution for Run kicks

It should be noted how for the angle, the shape obtained is similar to that of a normal distri-

bution, with a small offset already explained in section 6.8. For the distances, this is not the case,

as there is a severe skew on the smaller distances. This might be due to the random nature of the

initial state.

Additionally, for each of the sub-problems, 100 episodes were taken, and a scatter plot was

generated, as seen in figure 6.5 below. The figures for each of the sub-problems are available in

Appendix B.
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Figure 6.5: Run kick results on the field

6.9.2 Sprint

For the Sprint behaviour, only two of the six sub-problems were studied, namely (0,0) and (0,1).

This was due to timing and computational constraints, for the calculation of every 1M steps took at

least 2 hours, even when running on the server. This is due to the Sprint behaviour resulting in an

even greater variation on the initial scenario, and consequently, a greater rate of discarded initial

conditions. The results are described in table 6.5 for an average of the sub-problems, evaluated for

1000 kicks each. The complete results are available in Appendix A:

Number (%) Average Distance (m) Range (m)

Failed kicks 112 5.6 0 0

Bad kicks 134 6.7 0.70 ]0 , 1.5[

Mediocre kicks 62 3.1 2.45 [1.5 , 3[

Good kicks 1692 84.6 5.27 [3 , +∞[

Best kick Distance : 7.04m

Average time Duration : 0.26s
Table 6.5: Results for Sprint behaviour

These are extremely impressive results, especially when taking the average speed into account.

It is considered that with some further fine tuning, these results may even vastly overwhelm the
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performance observed for the Run behaviour. While not all Sprint based kicks are the same, a

visual representation of an episode can be seen in figure 6.6 below:

Figure 6.6: One episode of the Sprint based kick

Similarly as described for the Run skill, frequency distributions were obtained for the episode

data used in table 4.2, as seen in figure 6.7 below, for the distance of the kick and the angle offset

from a kick that travels straight ahead. The figures for each of the sub-problems are available in

Appendix B.

Figure 6.7: Frequency distribution for Sprint kicks
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Additionally, for each of the sub-problems, 100 episodes were taken and a scatter plot was

generated, as seen in figure 6.8 below. Individual figures for each of the sub-problems are available

in Appendix B.

Figure 6.8: Sprint kick results on the field

6.10 Conclusion

In this chapter, an approach to the realization of a kick in motion was created. During this process,

several modifications and adaptations were done to the kick described in chapter 5. Although the

performance obtained was not good as for the static kick, the speed with which it can be done

makes it an interesting kick for situations where there is a need for a fast game

The problem was decomposed into several sub-problems, which were optimized for all cases

for the Run scenario. Regarding the Sprint scenario, not all of these were optimized, but enough

were to prove that the concept can likewise be applied in this situation.



Chapter 7

Expanding on the Kick in Motion

Taking the lessons learned on the previous chapters it was possible to test some possibilities to-

wards expanding the work developed in this dissertation in future paths. In this chapter, one of

these, the targeted kick, was briefly studied.

7.1 Problem

While having a skill that allows for the agent to kick a ball forward is advantageous, as briefly

mentioned, there is much more to it that is required to play soccer in a realistic manner. In fact,

to reach the goals of the RoboCup Initiative, or more pragmatically, a better result in competitions

for the FCPortugal3D team, a set of other related skills must be developed, such as a targeted

kick. Such a kick can be used to pass a ball to another team member with confidence for exam-

ple, and being able to do so in a moving scenario, would greatly improve the capabilities of the

FCPortugal3D team.

With such a goal in mind, one of the cases for the Run behaviour was trained, in order to see

whether that would be a feasible goal to achieve.

7.2 Neural Network

While the structure of the Neural Network was largely kept intact from the one described in chapter

6, with regard to the action space, number and size of layers and hyperparameters, it should be

noted that two extra variables were added, for a total of 146 variables in the observation space, as

per table 7.1 below:

64
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Acquisition Method Parameter Data Size

Raw

Joint angle 22

Joint velocity 22

Joint acceleration 22

Feet Force * 12

Accelerometer * 3

Gyroscope * 3

Height * 1

Rotation * 1

Generated
Action Space 20

Counter 1

Calculated

Foot Distance * 6

Average Distance * 2

Target Distance 2

Ball Speed 1

* Differentiation 28

Total 146

* Values marked as such have differentiation performed on.

Table 7.1: Observation State for Targeted Kick

These two new variables are the distance from the ball to the intended target, in polar coor-

dinates. Like the coordinate system for the feet described extensively in section 5.5, it should be

pointed that a relative angle is calculated, adjusting for the frame of reference of the agent, and not

simply using the absolute system of coordinates. This is vital for the agent to learn how to kick to

any certain point regardless of its own rotation on the field.

7.3 Initial Conditions and Episode Layout

In this situation, the initial condition is based, and nearly identical to one of the ones previously

described in chapter 6, using the Run skill. More specifically a Run kick of type (0,0).

The main difference thus, comes from the small change imposed by the need to create a set of

target coordinates before the start of the game. These were set to random values, bounded to an

angle of ±45◦ relative to the agent’s starting orientation and to a magnitude between 3m and 7m.

The resulting area where a target may be is thus visualized in the area shaded green in figure 7.1:
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Figure 7.1: Target area bounds for kick

The layout of an episode as such is identical to that which was described in 6 for this skill,

with the small aforementioned difference that a set of target coordinates for the ball are generated

during the reset stage of the episode.

7.4 Reward Shaping

While the reward function for the dense component at every step was kept unchanged from previ-

ous chapters, the sparse reward at the end of each episode was modified for the new type of kick.

In this way, Rt
sparse, may be defined as:

Rt
sparse =

(
1−
√

rt
target

r0
target

)
×100 (7.1)

Where rt
target is the distance between the ball and the predetermined target at moment t. It

naturally follows that r0
target is the distance of the ball to the target at start. The square root term

seeks to provide an extra incentive towards movement in the correct direction, by guaranteeing a

steeper slope in the reward function as the ball nears the target position.
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7.5 Results

The results for the training scenario described in the previous sections of this chapter were obtained

after a session of over 20M steps over 25 hours, performed with 32 parallel threads on a server

provided by the Faculty of Engineering of the University of Porto. The produced neural network

was then evaluated for a sample of 1000 episodes, the results of which can be seen on table 7.2,

where the average distance is the percentage of improvement relative to the original distance:

Number (%) Average Distance (%) Range (%)

Failed kicks 16 1.6 0 0

Bad kicks 46 4.6 -9.82 ]-∞ 0[

Mediocre kicks 346 34.4 18.42 ]0 33]

Good kicks 406 40.6 49.12 ]33 66]

Great kicks 188 18.8 77.55 ]66 100]

Best kick Distance : 99.80%

Average time Duration : 0.34s
Table 7.2: Targeted Kick results

The resulting kick can be seen in figure 7.2 below, with the yellow line representing the initial

vector between the ball and the target, is very similar to a regular kick in motion, already described

in chapter 6. Furthermore, an analysis of the data shows that while only a marginal number of kicks

do not hit the ball (<2%), a small minority do move to a point farther away from the target than the

original position, resulting in a negative reward. It should still be noted that about 94% of episodes

result in a positive reward.

Figure 7.2: Several moments of a targeted kick

To understand if this was due to a targeted kick or a trend to push the ball forward, two series

of 100 episodes were evaluated, for fixed target coordinates (4,4) and (4,-4), as seen in figure 7.3:
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Figure 7.3: Final ball position for different targeted kicks

While the radial component of the ball seems to be in line with the desired values, the correla-

tion between the y-axis coordinates of the balls and the targets appears to be much more tenuous.

A frequency distribution, similar in nature to the ones described in previous chapters was generated

for the two situations, as observable in figure 7.4 below.

Figure 7.4: Frequency distribution of results for different targets
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As it can be seen, while a distinction exists for the two situations, it is not as relevant as it

could be hoped. A possible explanation to this, is that the neural network learned only to target the

center of the desired area instead of the whole area, so as to maximize the reward in a stochastic

manner.

A possible way to work around this situation could be to set the target position to only one

of two positions on the sides of the area shaded green, so as to encourage better learning of the

relationship between the angle and target position, further subdividing the problem in its nature.

7.6 Conclusion

This chapter approached some other kick in motion techniques that were briefly analysed in the

realization of this dissertation, namely the precision kick in motion, presenting a limited amount

of success. It nevertheless shows how the work developed in this dissertation may be expanded

upon in the future.



Chapter 8

Future Work and Conclusion

8.1 Future Work

Some paths for future work seem quite clear at this point, with regards to improvements in the

kick in motion. Firstly, as it was shown, for a more practical kick in motion to be developed and

used in competition there is a clear need for a degree of further refinement in the sprint and run

algorithms. The goal of this refinement being to ensure the regularity of the movements; for while

their movement speed is remarkable, their tend to veer off course in unpredictable ways.

This results in extra noise in the observation space, creating a drop in the performance com-

pared to the static kick. While the solutions described to overcome the problem have proved to

have a degree of effectiveness, they require a much higher usage of computer resources to train

several neural networks for one single behaviour. It should be pointed that work in this area is

already occurring in the FCPortugal3D team as of now.

Secondly, it should be noted that the tools developed in this dissertation, such as the estimator

for the foot distance, already open the doors to a variety of possible new behaviours, such as a

more thorough study of the targeted kick, for both the static and the in motion scenario, serving as

a way to create a better passing behaviour for example.

Another area where more work can be done is in changing the layout of the neural network,

since great variations of performance were seen dependent on said factor.

More complex scenarios have also been posited, such as the development of dribbling be-

haviours, or the interception of a ball of an opponent getting ready to kick, but these require even

further work to make them completely viable.

Finally, the static kick described in chapter 5 has proven to be remarkably fast, at just under

0.4s, while keeping a very decent performance. Thus, an extra possible avenue for work could be

to further explore it for usage as a middle range kick, so as to create a more dynamic play style in

a competition.
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8.2 Conclusion

This document started by setting out an introduction and motivations for this work in chapter 1, in

the context of the FCPortugal3D team and of the whole RoboCup competition.

It then described the state of the art in chapter 2, with a strong emphasis in Reinforcement

Learning methods, as the applications in this area in the context of RoboCup are still very inchoate.

Chapter 3 served to provide an overview of the simulation environment used for the simula-

tion, including the robot itself. On the other hand, chapter 4 provided a contextualization on the

optimization side, with an overview of the tools and frameworks and algorithms upon which this

dissertation rests.

In chapter 5, a proof of concept for a static kick was developed. This was very successful in

creating an extremely fast kick while keeping a good kick distance.

Chapter 6, provided an analysis of the kick in motion situation, analysing the results obtained

for two movement behaviours previously developed by the FCPortugal3D team. This resulted in

some very attractive results for kicks with a deep focus on speed. Additionally, chapter 7 served

as an extension of the concept of the kick in motion in an attempt of developing more elaborate

kicks.

It stands clear by now that the application of new techniques based on Reinforcement Learning,

and the methods developed in this dissertation hold a great potential for creating new skills for the

FCPortugal3D team, especially when dealing with improvements in speed. This has the potential

of making the play style of the team much more dynamic. It was found nevertheless, that future

work is still needed to fully explore and unlock these possibilities, as previously described in this

chapter.
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Kick in Motion tables

A.1 Run Behaviour sub-problems

Number (%) Average Distance (m) Range (m)

Failed kicks 19 1.9 0 0

Bad kicks 86 8.6 0.70 ]0 , 1.5[

Mediocre kicks 45 4.5 2.14 [1.5 , 3[

Good kicks 850 85.0 4.53 [3 , +∞[

Best kick Distance : 6.36m

Average time Duration : 0.25s
Table A.1: Type (0,0) kick results

Number (%) Average Distance (m) Range (m)

Failed kicks 29 2.9 0 0

Bad kicks 256 25.6 0.77 ]0 , 1.5[

Mediocre kicks 200 20.0 2.23 [1.5 , 3[

Good kicks 515 51.5 5.73 [3 , +∞[

Best kick Distance 8.89m

Average time Duration : 0.35s
Table A.2: Type (0,1) kick results
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Number (%) Average Distance (m) Range (m)

Failed kicks 11 1.1 0 0

Bad kicks 35 3.5 0.79 ]0 , 1.5[

Mediocre kicks 50 5.0 2.47 [1.5 , 3[

Good kicks 904 90.4 6.15 [3 , +∞[

Best kick Distance : 7.58m

Average time Duration : 0.40s
Table A.3: Type (0,2) kick results

Number (%) Average Distance (m) Range (m)

Failed kicks 0 0 0 0

Bad kicks 45 4.5 0.70 ]0 , 1.5[

Mediocre kicks 18 1.8 2.07 [1.5 , 3[

Good kicks 937 93.7 6.03 [3 , +∞[

Best kick Distance : 7.27m

Average time Duration : 0.24s
Table A.4: Type (1,0) kick results

Number (%) Average Distance (m) Range (m)

Failed kicks 12 1.2 0 0

Bad kicks 72 7.2 0.82 ]0 , 1.5[

Mediocre kicks 21 2.1 2.16 [1.5 , 3[

Good kicks 895 89.5 6.53 [3 , +∞[

Best kick Distance : 7.95m

Average time Duration : 0.34s
Table A.5: Type (1,1) kick results

Number (%) Average Distance (m) Range (m)

Failed kicks 9 0.9 0 0

Bad kicks 42 4.2 0.73 ]0 , 1.5[

Mediocre kicks 81 8.1 2.44 [1.5 , 3[

Good kicks 868 86.8 5.25 [3 , +∞[

Best kick Distance : 7.09m

Average time Duration : 0.41s
Table A.6: Type (1,2) kick results



74 Kick in Motion tables

A.2 Sprint Behaviour sub-problems

Number (%) Average Distance (m) Range (m)

Failed kicks 64 6.4 0 0

Bad kicks 84 8.4 0.71 ]0 , 1.5[

Mediocre kicks 43 4.3 2.49 [1.5 , 3[

Good kicks 809 80.9 5.41 [3 , +∞[

Best kick Distance : 6.94m

Average time Duration : 0.24s
Table A.7: Type (0,0) kick results

Number (%) Average Distance (m) Range (m)

Failed kicks 48 4.8 0 0

Bad kicks 50 5.0 0.69 ]0 , 1.5[

Mediocre kicks 19 1.9 2.36 [1.5 , 3[

Good kicks 883 88.3 5.15 [3 , +∞[

Best kick Distance : 7.04m

Average time Duration : 0.29s
Table A.8: Type (0,1) kick results
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Kick in Motion figures

B.1 Run Behaviour sub-problems

Figure B.1: Type (0,0) kick frequency distribution and scatter plot
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Figure B.2: Type (0,1) kick frequency distribution and scatter plot

Figure B.3: Type (0,2) kick frequency distribution and scatter plot
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Figure B.4: Type (1,0) kick frequency distribution and scatter plot

Figure B.5: Type (1,1) kick frequency distribution and scatter plot
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Figure B.6: Type (1,2) kick frequency distribution and scatter plot

B.2 Sprint Behaviour sub-problems

Figure B.7: Type (0,0) kick frequency distribution and scatter plot
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Figure B.8: Type (0,1) kick frequency distribution and scatter plot
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