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Resumo 

 Este trabalho apresenta um modelo para apoiar o processo de tomada de decisão de 

investimento da perspetiva de um fornecedor de energia independente que deseja integrar 

sistemas de baterias em redes de distribuição. Para apoiar a decisão, um conjunto condicional 

de soluções ótimas economicamente viáveis para o modelo de negócio de compra e venda de 

energia é identificado, a fim de permitir que outros critérios de decisão (por exemplo, redução 

de perdas, confiabilidade, serviços auxiliares etc.) possam ser avaliados para aprimorar os 

benefícios econômicos como resultado das sinergias entre diferentes aplicações dos sistemas 

de baterias. Para isso, um novo modelo de otimização baseado na utilização de uma meta-

heurística, Differential Evolutionary Particle Swarm Optimization (DEEPSO) e redes neuronais 

Group Method of Data Handling (GMDH) é proposto para dimensionamento, localização e 

operação dos sistemas de baterias. Os resultados obtidos indicam que, após identificar o custo 

de break-even do modelo de negócio, é possível obter uma boa qualidade no conjunto de 

decisão condicional para avaliar outras alternativas de negócios. 
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Abstract 

This paper presents a model for supporting the investment decision-making process from 

the perspective of an independent energy provider that wants to integrate batteries in 

distribution networks. For supporting the decision, a conditional set of optimal solutions 

economically viable for the business model of buying and selling energy is identified in order to 

allow other decision criteria (e.g. loss reduction, reliability, ancillary services, etc.) to be 

evaluated to enhance the economic benefits as results of the synergies between different 

applications of BESS. For this purpose, a novel approach optimization model based on the 

metaheuristic Differential Evolutionary Particle Swarm Optimization (DEEPSO) and Group Data 

Method Handling (GMDH) neural networks is proposed for sizing, location, and Battery Energy 

Storage systems (BESS) operation schedule. The results obtained indicate that after identifying 

the breakeven cost of the business model, a good quality of conditional decision set can be 

obtained for assessing then other business alternatives. 
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Chapter 1  

Introduction 

During the last decades, severe structural changes have been introduced to the distribution 

and transmission networks due to the challenges imposed by the increase in energy demand, 

the need of electrification and/or interconnection of new areas, the need of a better 

integration of the growing share of renewable energy sources (RES), and other technical 

requirements of the networks, as well as environmental policies or proposals related to the 

decarbonization. Nowadays, with the accelerated growth, the technical maturity achieved and 

the diverse technological offer, energy storage systems (ESS) have attracted the attention of 

electric power systems and have positioned themselves as a technological solution that can 

offer both technical, economic, and environmental benefit [1],[2]. ESS can convert, through 

an external interface, electrical energy into a form of storable energy to convert it back into 

electrical energy and deliver it to distribution or transmission systems when necessary or 

economically interesting.  

ESS, when integrated into the distribution and transmission network, are characterized by 

several potential applications [1],[3],[4]: power quality improvement; reliability improvement; 

voltage support; load levelling and peak shaving; load shifting; energy arbitrage; ancillary 

services; network expansion deferral and support to RES integration and operation.  

Despite these numerous and varied applications, the investment costs required by the ESS 

still have been one of the main barriers towards achieving their massive proliferation [5],[6]. 

Likewise, for implementing some of these applications, regulatory modifications are still 

required to guarantee the economic viability of these implementations in the short-term. For 

mitigating the impact and justifying investment costs, improving the technical benefits offered 

and its profitability, ESS applications are usually oriented by establishing synergies between 

these applications [4],[5]. 



 

2  Introduction 

 

The technical and economic benefits to be obtained as a result of synergies between 

applications are significantly related to their optimal sizing and location. In other words, 

considering the existing barriers due to investment costs and current regulatory frameworks, 

recent years researches have addressed the problem of integrating ESS in the distribution and 

transmission network to an optimization problem that aims to find the optimal location for the 

ESS and/or power, energy capacity and its operation schedule over time [4]. 

This dissertation proposes a model for supporting the investment decision-making process 

from the perspective of an independent energy provider that wants to assess business 

alternatives for integrating BESS in the distribution networks with existing dispersed 

Photovoltaic (PV) generation. To achieve this goal, a hybrid novel model approach optimization 

based on a Monte-Carlo approach implemented with the metaheuristic, Differential 

Evolutionary Particle Swarm Optimization (DEEPSO) and Group Data Method Handling (GMDH) 

neural networks is proposed. This model controls the process via a DEEPSO procedure for sizing 

and location of the dispersed BESS and adopts a Linear Programming (LP) formulation for 

defining the battery operation and training a GMDH neural network for evaluating the battery 

operation over time. 
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Chapter 2  

State of the Art 

 

2.1. Battery Energy Storage Systems 

 

Battery energy storage systems (BESS) are a type of technology used for energy storage, 

where chemical energy is stored and converted to electrical energy through electrochemical 

reactions. There is a wide variety of battery solutions available, however, a great distinction 

is made between classical batteries and flow batteries [7]. In classical batteries, there is no 

physical separation between energy conversion unit and active material, while in flow batteries 

the energy conversion unit and active material are separate. The choice of adequate BESS will 

depend upon application requirements, such as power and energy rating, size, response time 

and operating temperature [3]. 

 

2.1.1. Classical batteries 

 

Classical batteries are composed of several electrochemical cells. Each cell is composed of 

a positive (anode) and a negative electrode (cathode) separated by an electrolyte [3]. When a 

battery discharges through a connected load, electrochemical reactions occur at the two 

electrodes generating a flow of electrons from anode to cathode. The battery can be charged, 

by applying an external voltage across the electrodes, reversing the flow of electrons, Figure 

2-1 [8]. 
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2.1.1.1. Lead-Acid Battery 

This type of battery is the oldest and most commonly used worldwide. They are made of 

lead plates immersed in an electrolyte solution of sulfuric acid and water. In order to discharge, 

lead on the cathode and lead dioxide on the anode combine with sulfuric acid present in the 

electrolyte forming lead sulfate and releasing electrons [10]. 

Despite being comparatively big and bulky, they are easy to install and have low capital 

and maintenance costs, as well as high efficiency [3],[8],[11]. Nevertheless, the battery 

capacity tends to diminish considerably over many charge-discharge cycles, presenting a low 

life cycle (number of cycles that result in a battery capacity lower than 80% of the initial value) 

for applications that demand a large depth of discharge. Other limitations include limited 

energy density and the fact that the toxicity of lead represents an environmental hazard 

restricting possible applications, despite the possibility of an effective recycling process [12] 

[13] 

 
Table 2.1 – Typical values of lead-acid batteries characteristics [3][8][14] 

Specific 

energy (Wh/kg) 

Specific 

power (W/kg) 
Cycle life 

Charge/discharge 

energy efficiency 

25-50 75-300 500-1500 63-90% 

 

 

2.1.1.2. Nickel-Cadmium Battery 

 

Just like the lead-acid battery, the nickel-cadmium battery (NiCd) is a very mature system. 

NiCd batteries are constituted by a nickel hydroxide anode, a cadmium hydroxide cathode, a 

separator, and an alkaline electrolyte. 

They have a high energy density, along with good reliability and low maintenance needs 

[8]. 

The main downside is the use of cadmium, a highly toxic metal, presents environmental 

hazards that require careful monitoring of the battery’s disposal. This has led to their 

Figure 2-1 - Battery discharging (left) and charging (right) [9] 
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prohibition for consumer use and limited to stationary applications in some countries [15] [16]. 

For this reason, this technology has generally been replaced by Nickel-metal hydride (NiMh) 

batteries, which additionally possess better energy density and increased cycle life [17]. Their 

main limitations are high self-discharge rate, and cell rupture risk when charged at a very high 

rate. 

 
Table 2.2 - Typical values of nickel-cadmium batteries characteristics [3][8][14] 

Specific energy 

(Wh/kg) 

Specific power 

(W/kg) 
Cycle life 

Charge/discharge 

energy efficiency 

40-75 150-300 2000-2500 70-90% 

 

 

2.1.1.3. Lithium-Ion Battery 

 

In the last few years, Lithium-Ion batteries have become the fastest-growing technology 

for stationary storage applications. It is the standard technology for electric vehicles and most 

consumer electronics, becoming widely commercially available despite being a recent 

technology when compared to lead-acid batteries [12]. 

In a lithium-ion battery, the cathode is a lithiated metal, the anode is made of graphitic 

carbon with a layering structure and the electrolyte is made up of lithium salts dissolved in 

organic carbonates [8]. 

This technology has very high efficiency, a high energy density and cycle life (as high as 

10,000 cycles) as well as a low self-discharge rate. The main limitation of this technology is its 

high cost [11]. Nonetheless, with its rise in popularity, there was a significant decrease in the 

cost with respect to the increase in specific energy and energy density, resulting in lower 

material required for the manufacturing as represented in Figure 2-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 – Development of specific energy and energy density with respect 
to cost per watt-hour of Li-ion batteries [3] 
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Table 2.3 - Typical values of lithium-ion batteries characteristics [3][8][14] 

Specific energy 

(Wh/kg) 

Specific power 

(W/kg) 
Cycle life 

Charge/discharge 

energy efficiency 

150-300 200-315 1000-10000+ 95% 

 

 

2.1.1.4. Sodium-Sulphur Battery 

 

Sodium-sulphur batteries consist of a molten sulphur cathode and molten sodium anode, 

separated by a solid beta alumina ceramic electrolyte [18]. 

This technology holds its potential mainly for energy applications due to its long discharge 

capabilities and presents a high cycle life [12]. However, the operating temperature should be 

kept between 270°C and 350°C, which requires a heat source that partially reduces the 

battery’s performance.  

 
Table 2.4 - Typical values of Sodium-Sulphur batteries characteristics [3][8][14] 

Specific energy 

(Wh/kg) 

Specific power 

(W/kg) 
Cycle life 

Charge/discharge 

energy efficiency 

150-300 90-230 2500-5000 75-90% 

 

 

2.1.2. Flow batteries 

 

Flow batteries are a form of battery that converts electrical energy into chemical potential 

energy by means of a reversible electrochemical reaction between two liquid electrolyte 

solutions [19]. Contrary to classical batteries, flow batteries store energy in the electrolyte 

solutions and, therefore, the power and energy ratings are independent, with the storage 

capacity determined by the quantity of electrolyte used and the power rating determined by 

the active area of the cell stack. 

Generally, a flow battery is made up of several electrochemical cells. Each cell stores two 

electrolytes separated by an ion-exchange membrane. Two tanks are used to store the 

electrolytes which are then pumped through the cell stack, where the electrolytes will be 

subject to an oxidation-reduction reaction, as can be seen in Figure 2-3. 

This type of batteries varies in consideration to the different electrolytes used, the most 

common ones include zinc-bromine batteries and vanadium redox batteries. 
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2.1.2.1. Zinc-bromine Batteries 

 

In zinc bromide batteries both electrolytes are from an aqueous zinc bromide solution but 

with different bromide concentrations. During charge, zinc solidifies and is plated onto the 

negative electrode. Similarly, bromine is formed at the positive electrode. The cell electrodes 

are made of carbon plastic and are designed so that a given electrode can serve both as the 

cathode for one cell and anode for the next cell, also referred as bipolar [12]. 

Zinc-bromine batteries are suitable for a variety of applications, having discharge times 

ranging from seconds to several hours [19] which allows them to be both effective for power 

and energy applications. Further advantages include good specific energy and efficiency.  

 
Table 2.5 – Typical values of zinc-bromine batteries characteristics [8][21] 

Specific energy 

(Wh/kg) 

Specific power 

(W/kg) 

Cycle life Charge/discharge 

energy efficiency 

30-50 - 2000 60-85% 

 

 

2.1.2.2. Vanadium Redox Batteries 

 

In vanadium redox batteries the electrolyte, commonly constituted by vanadium sulphate 

dissolved in a solution of mild sulphuric acid [8], is used to store energy from charged ions of 

Figure 2-3 - Redox Flow battery [20] 
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differente valance states [3]. Its charging and discharging operation is similar to zinc bromide 

batteries but with the process using only the ionic forms of vanadium. 

Self-discharge is not a problem in this type of flow batteries since electrolytes are stored 

in separate tanks. Moreover, they have a long cycle life as the active materials do not degrade 

over time. 

Due to their relatively low specific energy, this type of battery is best suited for power 

applications such as power quality and peak shaving, as energy applications would require large 

volumes of electrolyte [8]. 

 
Table 2.6 – Typical values of vanadium-redox batteries characteristics [3][8][22] 

Specific energy 

(Wh/kg) 

Specific power 

(W/kg) 

Cycle life Charge/discharge 

energy efficiency 

10-30 - 12000+ 90-95% 

 

 

2.1.3. Supercapacitors 

 

Supercapacitors store electrical charge in an electric double layer at the interface between 

two electrodes with a very large surface area and a liquid electrolyte [7]. While regular 

capacitors have capacities in the mili-Farad range, supercapacitors have capacities in the kilo-

Farad range. They are like regular capacitors in the sense that they are basically double-layered 

versions of normal capacitors, but with a higher electrode surface area and a fluid electrolyte, 

Figure 2-4. When a current is applied, dissociate ions in the electrolyte are accumulated on 

the surface of each electrode, this way an electric charge is stored [22]. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2-4 - Supercapacitor scheme [23] 
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Relative to batteries, these have a very high specific power but low energy density [7]. 

Furthermore, supercapacitors are very durable, with a long cycle life, mainly due to the 

absence of chemical reactions in the electrodes. They also have a very high efficiency (95%), 

as well as very fast charge and discharge capabilities. The biggest drawback is the self-

discharge rate (around 5% per day), which doesn’t allow for long term storage. 

 
Table 2.7 - Typical values of supercapacitors characteristics [3][7][24].  

Specific energy 

(Wh/kg) 

Specific power 

(W/kg) 

Cycle life Charge/discharge 

energy efficiency 

8 10000-20000 10000+ 95% 

 

 

2.1.4. Flywheels 

 

Flywheels are a type of mechanical energy storage, storing energy in the angular 

momentum of a spinning mass. In order to charge the flywheel, a motor spins its rotor storing 

kinetic energy, and in order to discharge the same motor acts as a generator producing energy 

from said kinetic energy [8], as presented in Figure 2-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

They have a long cycle life capable of providing over 100,000 cycles. However, due to high 

friction losses causing a high self-discharge rate, long term-storage with this technology is not 

foreseeable [22]. This, added to its high specific power, makes its use is usually reserved power 

quality devices. 

Figure 2-5 - Flywheel scheme 



 

Applications of Energy Storage Systems  11 

 

 
Table 2.8 – Typical values of supercapacitors characteristics [3][12][25] 

Specific energy 

(Wh/kg) 

Specific power 

(W/kg) 

Cycle life Charge/discharge 

energy efficiency 

5-200 400-30000 100000+ 70-96% 

 

 

2.2. Applications of Energy Storage Systems  

 

Energy storage allows many applications with benefits to the network. These applications 

are usually categorized relative to their timescale. Firstly, energy applications, when the time 

scale is larger and large amounts of energy are supplied or absorbed from the grid. Thus, energy 

applications typically involve long charge or discharge cycles which require the storage system 

to be scaled to a high storage capacity (MWh). Secondly, power applications, when the time 

scale is shorter where network stability support is provided. These applications involve 

injecting active and reactive power over a short period of time, typically seconds to minutes, 

in order to maintain network stability [26]. 

 

 

2.2.1. Energy Time shift 

 

Time-shifting refers to storing energy in periods of low demand and injecting this energy 

into periods of high demand, as represented in Figure 2-6. Since prices at low demand times 

are lower than prices at high demand times this option has the potential to be economically 

attractive.  With the increased integration of RES in the grid, production during off-peak hours 

can be higher than demand, leading to energy curtailment [12]. This is far from ideal, either 

economically or environmentally, but can be avoided with the use of ESS to store excess energy 

and discharging it during peak hours. 

 



 

12  State of the Art 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nevertheless, with the increase of energy storage in the grid, the amplitude of prices in 

the energy market may be reduced, which will in turn, reduce the profitability of energy time-

shifting. 

 

 

2.2.2. Distribution upgrade deferral 

 

ESS allow the postponing or avoiding of investments that would otherwise be required to 

provide adequate distribution capacity [12]. 

With ESS it is possible to charge the system during periods of low demand and consume this 

energy during periods of peak consumption.  Therefore, the need to draw electricity from 

power plants is diminished, which is translated in a reduction of losses and congestion of lines 

in the distribution grid. This allows postponing investment in the grid infrastructure [21]. 

 

 

2.2.3. Ancillary services 

 

Ancillary services can be defined as all the services required to enable the integrity and 

stability of the transmission or distribution system, as well as the power quality [27]. ESS 

enables, among others, the following ancillary services [28]: 

1. Frequency control 

2. Voltage control 

3. Black start capability 

Figure 2-6 – Schematic of time-shifting of energy 
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2.2.3.1. Frequency Control: 

In the electricity grid, demand and supply of energy must be equal during all times in order 

to maintain the system frequency. Charging ESS can increase demand and discharging can 

increase supply. We can distinguish three kinds of frequency control: 

i. Primary frequency control: This control is automatic and decentralized and should 

be activated within a few seconds after an incident provoking a frequency 

deviation. 

ii. Secondary frequency control: This control is automatic and centralized. The 

Automatic Generation Control (AGC) controls secondary control power. Its 

objective is to restore system frequency to its set-point value and to restore power 

interchange with neighbouring control areas. 

iii. Tertiary control: Controlled by the Transmission System Operator (TSO), it is used 

to restore the primary and secondary frequency control reserves. 

 

2.2.3.2. Voltage control 

The increasing penetration level of RES can cause an increase in distributed networks 

voltage profiles [29]. Since voltage levels must be within specified limits, their value must be 

controlled by injection or absorption of reactive power [7]. For this one normally uses systems 

made for this reason, however, the power components used in storage systems allow its 

operation to be at a non-unity power factor, in order to supply and absorb reactive power, 

which permits this function to be performed by an ESS in addition to its primary purpose [17]. 

 

2.2.3.3. Black start capability 

Under normal operating conditions, most synchronous generators start-up resorting to 

energy from the grid [30]. However, in the event of system failure that leads to a blackout, 

this is not possible and the power plants capable of starting up without power from the grid 

are used to re-energize the other generators. ESS can be used to provide the power and energy 

necessary to restart other generation units [7],[28]. This would represent another source of 

revenue through the ancillary services market but, nonetheless, would limit the range of state-

of-charge that the battery would be able to operate. 

 

2.3. Energy Markets 

 

Electricity contracting involves multiple forms, from contracting to the next day (daily 

market), to longer terms (forward market) or bilaterally or through specific legal or regulatory 
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mechanisms. The following points will refer to the Portuguese market. The Iberian Electric 

Energy Market (MIBEL) results from the union of the electrical systems of Portugal and Spain.  

 

In MIBEL, energy can be contracted through the following main markets:  

• Bilateral contracting market 

• Markets managed by the Iberian market operator (OMI): 

• Daily market  

• Intraday market  

• Forward market 

There are also ancillary services markets that are separate in Portugal and Spain. Each of 

the countries is subdivided into several balance areas in order to allow the monitoring of the 

values of generation and demand. The ancillary services markets are managed by the System 

Operators of each control area, REN being responsible for its management and operation in 

Portugal, and REE in Spain. These entities define the required levels and contract, assuming 

themselves as sole purchasers in the market. 
 

2.3.1. Bilateral Contracting market 

 

Contracts are permitted between all types of producers and other qualified agents, and the 

conditions under which traders and producers may sell previously acquired energy to other 

producers or external agents are well established [31]. 

 

2.3.2. Daily Market 

 

The configuration of this market is that of a daily market for next-day power delivery, in a 

format similar to most of those in Europe. Its basic features will be the independent trading of 

energy for each of the 24-hour periods of the day following its realization. Sales proposals are 

sorted by price, and purchase proposals are sorted by decreasing order. The market price for 

each period is obtained by crossing the supply and purchase curves, which is the lowest of the 

prices that ensures supply meets demand, as illustrated in Figure 2-7. 
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Congestion resolution uses market splitting mechanisms, which consists of the separation 

of the market into two price areas in the event of capacity constraints on interconnection 

[31],[32].  

 

 

2.3.3. Ancillary Services Market 

 

The system services market deals with the contracting of products separated from the 

power generation activity related to the safety and reliability of the operation of the electric 

system. Unlike the rest of these markets, they are separated in Spain and Portugal.  

BESS could have a great potential aptitude for this service, and according to the Portuguese 

market, could have a business opportunity whether in the secondary reserve market as well as 

in the tertiary reserve market. In the secondary reserve market, the players offer a power 

regulation band in MW and a price in € / MW. The ratio of upward reserve to downward reserve 

offered must be of 2/3. In this market, if the player offer is accepted, his price offer will be 

paid regardless of being the reserve being activated, however, if the reserve is used, the energy 

will be paid at the value of the tertiary reserve. In the tertiary reserve market, players will bid 

both upward reserve and downward reserve and a price in € / MWh. This price will only be paid 

if the reserve is used. 

 

 

 

 

 

 

Figure 2-7 – Example of daily market 



 

16  State of the Art 

  

2.4. GMDH 

 

The GMDH [33],[34],[35],[36],[37], is a feed-forward neural network with supervised 

learning. This type of neuronal network allows the approximation of inputs and outputs with a 

polynomial function. 

For the development of the network, it is necessary to form a training set and a test set 

defined with n inputs x and an output z. The inputs of the variables are combined two by two, 

forming a neuron represented by (Eq.  2.1). 

 

𝑌𝑖𝑘 = 𝐴𝑖𝑘 + 𝐵𝑖𝑘 ∙ 𝑥𝑖 + 𝐶𝑖𝑘 ∙ 𝑥𝑗 + 𝐷𝑖𝑘 ∙ 𝑥𝑖
2 + 𝐸𝑖𝑘 ∙ 𝑥𝑗

2 + 𝐹𝑖𝑘 ∙ 𝑥𝑖 ∙ 𝑥𝑗 (Eq.  2.1) 

 

Equation (Eq.  2.1) can be solved by the least-squares method in order to find the 

coefficients that best fit the training set.  

 

 

 

 

 

 

 

 

 

 

 

 

The quality of each neuron is assessed by calculating its Mean Squared Error (MSE) as in 

(Eq.  2.2): 

 

𝑟𝑖𝑘
2 =

∑ (𝑦𝑖𝑘,𝑚−𝑧𝑚)
2𝑁𝑡𝑒𝑠𝑡

𝑚=1

∑ (𝑦𝑖𝑘,𝑚)
2𝑁𝑡𝑒𝑠𝑡

𝑚=1

    (Eq.  2.2) 

 

Neurons can be ordered from r minimum to maximum, thus discriminating the neurons that 

allow a better approximation between the input-output relationship present in the training 

data. At this stage, the worst neurons can be eliminated to avoid exponential growth of the 

network size. 

Having assembled the first layer, its outputs should be used as the variables to create a 

new layer. This process can be repeated until the best r index in a layer is worse than the best 

of the previous layer. 

Figure 2-8 – Neuron model 
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At this moment one can reconstruct a polynomial input-output relation from the created 

network. For this purpose, the best neuron of the last layer is selected and all neurons which 

are out of paths between it and the inputs are eliminated, as shown in Figure 2-10 and Figure 

2-11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9 -Formation of network’s layers 

Figure 2-10 -Eliminating worst r indices in each layer (Red) and 
finding the best r index in the last layer (Green) 
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2.5. Metaheuristics 

 

Metaheuristics are general algorithmic frameworks, often inspired in nature, which can be 

applied to different optimization problems. They are particularly useful in addressing problems 

that include in their mathematical formulation uncertain, stochastic, and dynamic information 

[38]. In power systems optimizations, metaheuristics are particularly useful for planning and 

operation-based problems. 

 

2.5.1. PSO 

 

Particle Swarm Optimization (PSO) [39] relies on mimicking the collective or social 

behaviour of animal swarms or flocks. It is, therefore, a population-based optimization 

algorithm, with each population being a set of possible solutions represented by “particles” 

placed in the space defined by a problem or function. These particles are evaluated by an 

objective function that ranks them in relation to their fitness.  

New particles are formed from an ancestor, according to the movement rule, (Eq. 2.3). 

 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑉𝑖

𝑛𝑒𝑤    (Eq.  2.3) 

 

Where 𝑉𝑖
𝑛𝑒𝑤 is the particle i velocity, defined by (Eq.  2.4): 

 

Figure 2-11 -Final formation of a GMDH network 
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𝑉𝑖
𝑛𝑒𝑤 = 𝐷𝑒𝑐(𝑡) ∙ 𝑤𝑖0 ∙ 𝑉𝑖 + 𝑅𝑛𝑑1 ∙ 𝑤𝑖1 ∙ (𝑏𝑖 − 𝑋𝑖) + 𝑅𝑛𝑑2 ∙ 𝑤𝑖2 ∙ (𝑏𝑔 − 𝑋𝑖)  (Eq.  2.4) 

 

This equation can be decomposed in three terms, as represented in Figure 2-12 and as 

follows: 

• The first term represents Inertia, meaning each particle is inclined to move in the 

direction it was previously moving. 

• The second term expresses memory, this is, each particle is attracted to the past best, 

promoting the particle to search the most promising region visited in its lifetime. 

• Finally, the third term represents cooperation, the particles are attracted to the best 

point found by all particles in any generation. 

 

The parameters 𝑤𝑖1 are weights fixed at the beginning of the process, 𝑅𝑛𝑑𝑥 are numbers 

sampled randomly by a uniform distribution in [0, 1] and Dec(t) is a function which decreases 

with the evolvement of the iterations, diminishing the influence of inertia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSO depends on a number of parameters externally defined by a user, and therefore 

requires an arduous work of fine-tuning the algorithm to obtain optimal results. This drawback 

is overcome with the method described in the next section. 

 

2.5.2. EPSO 

 

Evolutionary Particle Swarm Optimization (EPSO) [40],[41],[42] is an auto-adaptive 

evolutionary algorithm. Therefore, it depends on a selection operator and its parameters are 

not fixed, but instead possess self-adapting properties. This way, this method combines the 

Figure 2-12 - Illustrating the movement of a particle, influenced by three terms 
[40] 
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benefits of Evolution Strategies (ES), namely the Darwinist process of selection, and PSO, 

namely the particle movement rule.  

The variables used in EPSO formulation are divided into object parameters (the X variables) 

and strategic parameters (the weights w), each particle is a set of object and strategic 

parameters [X, w]. 

A general scheme for EPSO is present in Figure 2-13 and is as follows: 

• REPLICATION – each particle is replicated r times; 

• MUTATION – each particle has its weights w mutated; 

• REPRODUCTION – each mutated particle generates an offspring according to the 

particle movement rule; 

• EVALUATION – each offspring has its fitness evaluated; 

• SELECTION – by stochastic tournament or elitist selection, the best particles survive 

to form a new generation; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-13 - EPSO scheme [43] 
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The velocity equation is like the one used in PSO, however, as previously mentioned, the 

weights are mutated as presented in (Eq. 2.5) and (Eq. 2.6). This grants self-adaptive properties 

to the algorithm by automatically adjusting its parameters in response to the development of 

the particle's fitness. 

 

𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0

∗ ∙ 𝑉𝑖 + 𝑤𝑖1
∗ ∙ (𝑏𝑖 − 𝑋𝑖) + 𝐶 ∙ 𝑤𝑖2

∗ ∙ (𝑏𝑔 − 𝑋𝑖)  (Eq.  2.5) 

 

𝑤𝑖𝑘
∗ = 𝑤𝑖𝑘 + 𝜏 ∙ 𝑁(0,1)     (Eq.  2.6) 

 

In (Eq.  2.5), C is a binary variable equal to 1 with a given probability p, and 0 with 

probability (1-p), used in order to simulate the effects of lack of communication between 

members of the swarm. (Eq.  2.6) represents a basic additive mutation rule for the weights, 

however, one can use other mutation strategies such as  𝑤𝑖𝑘
∗ = 𝑤𝑖𝑘[1 + 𝜏 ∙ 𝑁(0,1)]. 

The global best can also be disturbed by adding noise to the exact location of 𝑏𝑔, as 

presented in (Eq 2.7), with beneficial results: 

 

𝑏𝑔
∗ = 𝑏𝑔 + 𝜏′ ∙ 𝑁(0,1)     (Eq.  2.7) 

In (Eq.  2.7) 𝜏 and 𝜏′ are learning parameters and can also be subject to mutation. 

 

2.5.3. DEEPSO 

 

DEEPSO is an advanced version or variant of EPSO, originally developed to incorporate some 

traits of Differential Evolution. The core of DE lies in a given population of individuals 

generating a new solution from an existing individual from the sum of fractions obtained by the 

difference between two sampled points of the population, Xr1 and Xr2. 

Similarly, EPSO, in the motion equation, evaluates the macro-gradient of the objective 

function by the difference between two points, the current position and the best location. This 

reasoning led to the proposal of a generalization of EPSO, equal to EPSO in sequence, however 

with a transformation of the movement rule now expressed as (Eq.  2.8): 

 

𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0

∗ ∙ 𝑉𝑖 + 𝑤𝑖1
∗ ∙ (𝑋𝑟1 − 𝑋𝑟2) + 𝐶 ∙ 𝑤𝑖2

∗ ∙ (𝑏𝑔 − 𝑋𝑖)  (Eq.  2.8) 

 

Due to the dependence on the particle evaluating the macro-gradient of the objective 

function, in a DEEPSO scheme, in a minimization context, the particles must be ordered such 

as (Eq. 2.7): 

 

𝑓(𝑋𝑟1) < 𝑓(𝑋𝑟2)     (Eq. 2.9) 
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Several variants may be defined, depending on how the particles are sampled: from the 

current generation set, or sampled from the set of local best particles. Also, note that DEEPSO 

defines that 𝑋𝑟1 is equal to 𝑋 and only 𝑋𝑟2 is sampled [44]. 
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Chapter 3  

Stochastic Scenarios 

In order to test the proposed methodology, it is necessary to consider a scenario of loads, 

generation and energy price. For this, a stochastic model was developed from historical data 

of the Portuguese network. For this, a Monte-Carlo sampling approach is used where uniformly 

distributed random numbers are used to form the scenarios distribution. For typical load, the 

data used was gathered from EDP Distribuição [45] public records. The photovoltaic generation 

data was from a PV station situated in Évora, Portugal [46]. Finally, for energy prices, data was 

gathered from OMIE public records [47]. The resulting scenario, as well as all the data used, is 

composed of one-hour intervals. 

 

3.1. Scenarios Generation 

 

In order to create the stochastic scenario, the available data were grouped by seasons of 

the year: Winter, Spring, Summer, and Autumn.  For the load data, year-round load forecasting 

was available for each type of consumer (Residential and Commercial/Industrial). Thus, 

although each bus contemplates more than one type of consumer, it was possible to join the 

daily load curves by type of consumer and create a single daily load curve by bus, as presented 

in Figure 3-1. 
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For the PV generation, the average value for each season was used considering the weather 

conditions. The weather conditions considered have different probabilities of occurring and 

vary according to the season as presented in Figure 3-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The energy prices used were 21-day samples of the daily market price curves for each 

season. For each season, each sample contained 6 weekend days for a better representation of 

the differences in load patterns on weekdays and weekends. 

Figure 3-1 – Daily load curve formation 
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Figure 3-2 – Seasonal weather conditions probability 
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3.1.1. Day scenario generation 

 

In order to create the stochastic scenario, each day is generated individually. For each day, 

a random value (α) is drawn between zero and one from a normal distribution. This value 

defines the season of the year corresponding to the day according to Figure 3-3. 

 

 

Once the season for that day is defined, a random number (β), will be drawn from the total 

number of days of that season, which will define the daily load curve. For the price curve of 

that day, yet another random number (γ) is drawn that will select the energy price data of that 

day from the total number of days corresponding to that season present in the database. To be 

noted that if the load curve corresponds to a weekend, the price data will also be associated 

with a weekend, otherwise, the price data will correspond to a weekday.  

Finally, the weather condition for that day is selected by a final random value (β), as 

represented in Figure 3-4. The resulting weather condition and season will define the PV 

generation daily curve. This is done according to the probabilities defined in Figure 3-2, such 

that CS is the clear sky probability, CM is the cloudy in the morning probability, CA is the cloudy 

in the afternoon probability and CD is the cloudy day probability. 

 

 

This way load price and PV generation data are saved in the database used in this scenario. 

Figure 3-3 – Scheme of the season selection process 

Figure 3-4 – Scheme of the weather selection process 
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3.1.2. Final scenario 

 

In order to obtain a database with the scenario to be used in the proposed methodology, 

the process described in Section 3.1.1. is repeated until the desired number of days is obtained, 

and thus generating a sequential series, stored in a database for load, PV generation and energy 

price, as can be seen in Figure 3-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With this approach, the database will have a season data dispersed through the year instead 

of being grouped by season. This differs from a proper global sequential simulation process, 

guaranteeing a larger sampling dispersion of initial conditions for the simulation of each day, 

which is performed in a sequential way within 24-hour periods. This allows the generation of a 

larger sampling data dispersion over what would otherwise be achieved with a classical 

grouping of season data. 

 

Figure 3-5 – Stochastic scenario creation 
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Chapter 4  

DEEPSO application for sizing and 
location 

In this chapter the proposed methodology will be presented, as well as the proposed 

software tool for solving battery sizing and location problems in the distribution network.  This 

problem is composed of two sub-problems. First, at a higher level, the location and sizing of 

the BESS are calculated using DEEPSO. In the second sub-problem, the operation of each BESS 

is determined, at first using mathematical programming, and then, after a number of 

iterations, a GMDH type neural network, which allows to greatly decrease computational time. 

Figure 4-1 presents an overview of the proposed methodology. Every iteration, the data of 

each particle is transmitted to the lower level problem, from which the BESS operation is 

optimized in order to allow maximum economic gains. The results are then returned to the 

Upper-level problem. 
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4.1. Sizing and Location  

 

For this part of the problem, a MATLAB [48] script was developed. As noted, the location 

and sizing of batteries in the network is a problem solved by DEEPSO.  

In the proposed model each particle represents a possible solution to the sizing and location 

problem. The objective parameters will be the battery’s capacity and its discharge/charge 

rate. However, there are several possible buses for the location, and therefore, for an N-bus 

distribution network, a 2N-element particle is created, so that each pair of elements 

represents, respectively, the battery’s capacity and its charging/discharging rate, as 

represented in Figure 4-2. Thus, the position of that battery on the particle defines the network 

bus on which it is located.  

 

 

 

 

 

After the generation of the particles of each iteration, it is necessary to evaluate the fitness 

of each solution. For this purpose, the fitness function described in (Eq. 4.1) considers the 

operational revenue generated by the battery, the capital investment in energy-related costs 

Figure 4-2 – Proposed particle structure 

Figure 4-1 - Proposed methodology scheme 
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and power-related costs, maintenance costs, and penalties when line power flow limits are 

violated. The penalties for line power flow limit violations are high in order to prevent those 

particles that do not comply with the network’s operation requirements advance to further 

iterations. 

 

min 𝐹𝑖𝑡 =  ∑ 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 + 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 − 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠𝑁
𝑛=1    (Eq.  4.1) 

 

As presented in Figure 4-3, regarding the capital cost of a BESS, one must consider the cost 

of the storage technology, such as the battery pack, as well as its interface with the network. 

The latter also includes the costs of installing the system and connecting it to the electrical 

network. Both the energy cost and power cost will be represented by a linear function. 

 

 

 

 

 

 

 

The capital cost calculation of a BESS can be expressed as (Eq.  4.2): 

 

 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡(€ 𝑀𝑊ℎ)⁄ =  𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡(€ 𝑀𝑊ℎ)⁄ + 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑠𝑡(€ 𝑀𝑊)⁄  (Eq.  4.2) 

 

For a proper financial analysis, the operational costs should be actualized according to the 

battery's lifespan. 

 

𝐶𝑜𝑠𝑡 = 𝑝 ∙
(1+𝑖)𝑌−1

𝑖∙(1+𝑖)𝑌     (Eq.  4.3) 

 

In which:  

• p - Batteries annual yield (€); 

• i – Interest rate (e.g. 8%); 

• y - lifespan in years; 

 

The network model considered implements a DC optimal power flow (OPF) to evaluate its 

performance. The DC OPF allows the simplification of the power flow problem by considering 

a series of approximations: ignoring reactive power, consider all voltages as one and ignore 

losses. Thus, the power flow problem can be represented by a series of linear equations that, 

albeit result in a less accurate model, drastically reduce the computational effort relative to 

AC OPF. 

Figure 4-3 – BESS cost components 
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𝑃𝑘,𝑡 = ∑ 𝑃𝑙𝑘,𝑡
𝑁
𝑘=1 − ∑ 𝑃𝑔𝑘,𝑡

𝑁
𝑘=1     (Eq.  4.4) 

𝑃𝑓𝑙𝑜𝑤𝑡 = 𝐴 ∙ 𝑃𝑡    (Eq.  4.5) 

|𝑃𝑓𝑙𝑜𝑤𝑖𝑘,𝑡| ≤ 𝑃𝑓𝑙𝑜𝑤𝑖𝑘
𝑚𝑎𝑥    (Eq.  4.6) 

 

In which: 

• 𝑃𝑘,𝑡 – Power in bus k on time period t; 

• 𝑃𝑙𝑘,𝑡 – Load in bus k on time period t; 

• 𝑃𝑔𝑘,𝑡 – Power generation in bus n on time period t; 

• 𝑃𝑓𝑙𝑜𝑤𝑡 – Power flow matrix in time period t;  

• 𝐴 – Sensitivity matrix;  

• 𝑃𝑓𝑙𝑜𝑤𝑖𝑘,𝑡 – Power flow in the line ik;  

• 𝑃𝑓𝑙𝑜𝑤𝑖𝑘
𝑚𝑎𝑥 – Maximum power flow in the line ik; 

 

In order to consider the battery’s operation, the value charged, 𝐵𝑙𝑘,𝑡, or discharged, 𝐵𝑔𝑘,𝑡, 

in each period is represented, respectively, as an increase in load and generation, such as (Eq.  

4.7) and (Eq.  4.8). To be noted that 𝐵𝑙𝑘,𝑡 and 𝐵𝑔𝑘,𝑡 represent only positive values. 

 

𝑃𝑙𝑘,𝑡 =  𝑃𝑙_𝑛𝐵𝑘,𝑡 + 𝐵𝑙𝑘,𝑡    (Eq.  4.7) 

𝑃𝑔𝑘,𝑡 =  𝑃𝑔_𝑛𝐵𝑘,𝑡 + 𝐵𝑔𝑘,𝑡    (Eq.  4.8) 

 

In which 𝑃𝑙_𝑛𝐵𝑘,𝑡 and 𝑃𝑔_𝑛𝐵𝑘,𝑡 represent respectively, the load and generation on bus k and 

time period t without any implemented battery. 

 

 

4.2. Battery Operation 

 

4.2.1. Mathematical programming  

 

The operation of a battery in the distribution network must be defined as an optimization 

problem with a cost function defined by financial benefits, through a metric of network 

operation benefits or a combination of the two.  In this work, the operation of each battery in 

the distribution network will be optimized by mathematical programming with the objective 

of maximizing revenue, and with that purpose, a model is developed in GAMS [49]. 
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Therefore, MATLAB is used to handle the input data of the battery operation optimization 

model and send it to GAMS. Subsequently, GAMS is used to solve the optimization model and 

the results are sent to MATLAB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Within the mathematical programming, linear programming can be highlighted. The 

formulation is described in (Eq.  4.9). 

 

 

• Linear programming: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 ≤ 𝑏    (Eq.  4.9) 

𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 𝑥̅ 

 

 

4.2.2. GMDH Neural Network 

 

A limitation of modelling a problem by mathematical programming with several restrictions 

and a vast data set, like the one used in this work, is the high computational effort required. 

Therefore, in order to reduce the computational effort required by mathematical 

programming, GMDH neuronal networks were developed. 

Figure 4-5 presents the two types of GMDH neuronal networks considered for the proposed 

model. The first receives as inputs the capacity and charge/discharge rates of the battery and 

outputs the revenue that that battery configuration can generate in the network at study. The 

second type of network considered takes as input a particle with the network’s battery 

Figure 4-4 – MATLAB/GAMS information exchange 
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configuration and outputs the maximum power flow registered. This way it is possible to 

penalize battery configurations that result in a violation of the network lines limits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 – Proposed GMDH architecture 
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Figure 4-6 – Proposed methodology’s flowchart 
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Chapter 5  

Numerical experiments and validation 

In this chapter, the proposed methodology will be validated, with a series of experiences 

in order to prove its adequacy. For this, we will use a modified CIGRE MV distribution 

benchmark network [50]. 

 

5.1. CIGRE MV Distribution Network benchmark 

 

This network follows a European configuration where feeders are three-phase with either 

meshed or radial structure.  The nominal voltage is 20 kV and the frequency is 50 Hz 

The chosen topology of the network used for tests follows a radial structure, with switches 

S1, S2, and S3 open. Both feeders are fed via separate transformers from a 110 kV substation 

network. 

On feeder 1 lines are underground and composed of XPLE cables with round, stranded 

aluminium conductors and copper tape shields. On feeder 2 lines are aerial and make from 

aluminium with steel reinforcement. 

The parameters of lines and transformers are used to calculate the sensitivity matrix which 

will be used to calculate the networks power flow. Load data was manipulated according to 

the daily load curves described in chapter 3 in order to reflect a realistic behaviour for the 

nominal loads from CIGRE benchmark network resulting in a different daily load curve for every 

day of the year.  

PV generation was included in buses 3 to 6 and buses 8 to 11. 
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Figure 5-1 – Topology of the CIGRE MV Distribution network benchmark – European 
configuration 
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5.2. Stochastic Scenario Creation 

 

As mentioned in Chapter 3, a stochastic scenario of load, generation and prices was created 

for the following experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 – Load in Bus 5 over 10 days 

Figure 5-3 – Load in bus 5 over 6 months 
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As illustrated in Figure 5-2 and Figure 5-3, there is a lot of variability between daily load 

curves for the same bus, representing days from different seasons as well as differentiation 

between weekdays and weekend days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4 – PV Generation in bus 5 over 10 days. 

Figure 5-5 – Energy prices over 10 days 
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5.3. Business model experiments 

 

The methodology described in the previous chapter was tested considering different 

business models. The objective is to evaluate the feasibility of a business of buying and selling 

energy through BESS, in distribution networks by entities independent of the distribution 

network operators. The main objectives will be the identification of a breakeven cost for the 

business model and then the creation of a conditional decision set. This set is composed by 

economically viable solutions that will have be evaluate by the energy provider considering 

more complex criteria. 

For all the business models considered, the following assumptions apply: 

• Bess is a price taker, and as such its operation does not affect the market price; 

• The characteristics of BESS throughout its life cycle are constant; 

• The efficiency of BESS is considered to be 100%; 

• It is considered that the BESS can have a depth of discharge of 100%; 

• Although the purchase and sale of energy in distribution networks is subject to 

additional fees, MIBEL's daily market prices were considered; 

 

 

5.3.1. Bess as a participant in the daily market 

 

Sets: 

• b – Set of indices of the network buses; 

• t – Set of indices of the hourly time periods 

Parameters: 

• 𝐸𝑝𝑡 – Market clearing price for time t; 

• 𝑆𝑜𝐶, 𝑆𝑜𝐶 – Minimum and maximum state of charge of the BESS, respectively 

• 𝑃𝑟̅̅
𝑏̅ – Maximum charge/discharge power of the BESS 

Variables: 

• 𝐵𝑔𝑏,𝑡  – Discharging phase of the BESS; 

• 𝐵𝑙𝑏,𝑡  – Charging phase of the BESS; 

• 𝑆𝑜𝐶𝑏,𝑡 – State of charge of the BESS; 

 

The main objective considered is the maximization of the battery’s revenue considering 

energy price values, (Eq  5.1) . The state of charge, 𝑆𝑜𝐶, in any t, is calculated from the 

previous 𝑆𝑜𝐶 and the energy balance of the operation of the battery, (Eq.  5.2). The 𝑆𝑜𝐶 is 

limited by the maximum energy capacity of the battery and by a lower limit defined by the 

user, (Eq  5.3). 𝐵𝑙 and 𝐵𝑔 are limited by zero and by the maximum power rating of the battery, 

(Eq.  5.3) and (Eq.  5.5). 
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max ∑ ∑ (𝐸𝑝𝑡(𝐵𝑔𝑏,𝑡 −𝑡𝑖𝑚𝑒
𝑡 𝐵𝑙𝑏,𝑡 )

𝑏𝑢𝑠
𝑏 )     (Eq.  5.1) 

 

∀𝑏 ∀𝑡  𝑆𝑜𝐶𝑏,𝑡 = 𝑆𝑜𝐶𝑏,𝑡−1 + 𝐵𝑙𝑏,𝑡 − 𝐵𝑔𝑏,𝑡   (Eq.  5.2) 

 

∀𝑏 ∀𝑡  𝑆𝑜𝐶 ≤ 𝑆𝑜𝐶𝑏,𝑡 ≤ 𝑆𝑜𝐶     (Eq.  5.3) 

 

∀𝑏 ∀𝑡  0 ≤  𝐵𝑙𝑏,𝑡 , 𝐵𝑔𝑏,𝑡    (Eq.  5.4) 

 

 ∀𝑏 ∀𝑡  𝐵𝑙𝑏,𝑡 , 𝐵𝑔𝑏,𝑡 ≤ 𝑃𝑟̅̅
𝑏̅    (Eq.  5.5) 

 

∀𝑏 𝑆𝑜𝐶𝑏,1 = 𝑆𝑜𝐶 ∙ 0.5     (Eq.  5.6) 

 

 

For the testing of this business model, 3 price scenarios of battery investment costs were 

used. Further increments in price were not analyzed in this work as they were not deemed 

economically viable. 

 
Table 5.1 – Capital investment scenario definition 

Scenario Very Optimistic Optimistic Breakeven 

Power Costs 

(€/kW) 
82.5 90 97.5 

Energy Costs 

(€/kWh) 
55 60 65 

Maintenance Costs 

(€/kWh) 
0.100 0.100 0.100 

 

All buses in the network were considered as possible locations for a battery, except bus 15, 

which is used as the slack bus. The maximum battery capacity was limited to 1 MWh. 

 

5.3.1.1. Battery Operation 

 

In this section the operation of a 1MWh and 0.4 MW battery optimized by LP was analyzed. 

As noted in Figure 5-6, the battery waits for the periods when the energy is cheaper to charge 

and stores the energy until a point of greater economic value. 
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Figure 5-6 -Battery operation (down) relative to energy price (up) over 1 day 

Figure 5-7 - Battery operation (down) relative to energy price (up) over 5 days 
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With an analysis with a longer time horizon, it is proved that the battery has very different 

behaviors depending on the market curve for the day in question (Figure 5-7). 

 

5.3.1.2.  Results 

Figure 5-8 - Examples of solutions for the very optimistic scenario that compound the conditional decision set 

Figure 5-9 - Examples of solutions for the optimistic scenario that compound the conditional decision set 

Figure 5-10 - Examples of solutions for the break-even scenario that compound the conditional decision set 
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In Figure 5-8, Figure 5-9 and Figure 5-10 are shown examples of final solutions obtained for 

the 3 scenarios considered. DEEPSO used a 40 particles swarm for 100 iterations. It is noticeable 

that the differences in the solutions found are quite small between the all the scenarios 

evaluated, this fact supports the idea about the necessity of a conditional decision set as these 

small differences may not pose much difference with the criteria defined for this business 

model but a better distinction may arise if more applications of the BESS are added to the main 

business model. This occurs because the addition of other applications such as loss reduction, 

reliability, voltage support and ancillary services must be tested under an AC power flow 

model, which means more detailed and complex network model. 
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Figure 5-11 - 5% step of dispersion histogram of the results of solutions for the very 
optimistic scenario. 
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For supporting the investment planning decision-making from an energy provider 

perspective, a good-quality conditional decision set of optimal solutions economically viable 

for the business model of buying and selling energy is built based on the consideration that the 

solutions selected must be in the first 5%-step of dispersion in order to guarantee that no only 

one solution, frequently called best solution, is reported as the most interesting solution that 
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Figure 5-12 - 5% step of dispersion histogram of the results of solutions for the  
optimistic scenario. 
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Figure 5-13 - 5% step of dispersion histogram of the results of solutions for  the break-
even scenario. 
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solves the problem. Under this assumption, other economically viable solutions located close 

to the best solution are identified for evaluating them and analyze which of them could be 

properly selected to enhance the economic benefits as results of establishing synergies 

between different applications of BESS. The results of the 5%-step of dispersion histogram for 

the scenarios cost analyzed are shown in Figure 5-11, Figure 5-12 and Figure 5-13.As noted, in 

the first 5%-step a representative quantity of solutions are found. Nonetheless, the quantity of 

solution to compound the conditional decision set decreases when the scenario cost is closer 

to the breakeven, which supports the idea that only a few solutions in this scenario allows the 

main business model becomes profitable for the energy provider.  

 

 

5.3.2. Bess coupled with PV as a participant in the daily market 

 

For this model the energy provider is the owner of PV generation within the distribution 

network and wants to include BESS technology in his business. An extra consideration must be 

emphasized in this model, since the price attributed to PV generation is normally set at auction. 

However, with this format, no economic benefit could exist through time-shifting with a BESS. 

To do this, it is necessary to consider a scenario with price variations that allows the battery 

the possibility of transferring energy between periods leading to greater economic gain. As 

such, in this analysis, the prices of the daily energy market of MIBEL were used. 

 

Sets 

• b – Set of indices of the network buses; 

• t – Set of indices of the hourly time periods 

Parameters 

• 𝐸𝑝𝑡 – Market clearing price for time t; 

• 𝑆𝑜𝐶, 𝑆𝑜𝐶 – Minimum and maximum state of charge of the BESS, respectively; 

• 𝑃𝑟̅̅
𝑏̅ – Maximum charge/discharge power of the BESS; 

• 𝐺𝑒𝑟𝑏,𝑡  - PV generation; 

Variables 

• 𝐵𝑔𝑏,𝑡  – Discharging phase of the BESS; 

• 𝐵𝑙𝑏,𝑡  – Charging phase of the BESS; 

• 𝑆𝑜𝐶𝑏,𝑡 – State of charge of the BESS; 

 

The difference in this model lies in (Eq.  5.6) where parameter 𝐺𝑒𝑟 is considered. This way 

energy from PV generation is either stored in the battery or sold in the market. 

 

max ∑ ∑ (𝐸𝑝𝑡(𝐵𝑔𝑏,𝑡 + 𝐺𝑒𝑟𝑏,𝑡 −𝑡𝑖𝑚𝑒
𝑡 𝐵𝑙𝑏,𝑡 +)𝑏𝑢𝑠

𝑏 )    (Eq.  5.7) 
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∀𝑏 ∀𝑡  𝑆𝑜𝐶𝑏,𝑡 = 𝑆𝑜𝐶𝑏,𝑡−1 + 𝐵𝑙𝑏,𝑡 − 𝐵𝑔𝑏,𝑡   (Eq.  5.8) 

 

∀𝑏 ∀𝑡  𝑆𝑜𝐶 ≤ 𝑆𝑜𝐶𝑏,𝑡 ≤ 𝑆𝑜𝐶     (Eq.  5.9) 

 

∀𝑏 ∀𝑡  0 ≤  𝐵𝑙𝑏,𝑡 , 𝐵𝑔𝑏,𝑡    (Eq.  5.10) 

 

 ∀𝑏 ∀𝑡  𝐵𝑙𝑏,𝑡 , 𝐵𝑔𝑏,𝑡 ≤ 𝑃𝑟̅̅
𝑏̅    (Eq.  5.11) 

 

∀𝑏 𝑆𝑜𝐶𝑏,1 = 𝑆𝑜𝐶 ∙ 0.5     (Eq.  5.12) 

 

The investment scenarios were those present in Table 5.1. In this case, only buses that had 

PV generation were considered as possible buses for placing batteries. This is as if the PV 

generation and the BESS were placed in different buses, the energy provider would have to pay 

network usages fees, and such fees are not considered in this work. The maximum battery 

capacity was limited to 1 MWh. 

 

5.3.2.1. Battery Operation 

 

 

 

Figure 5-14 - - Battery operation (down) relative to energy price (up) over 1 day 
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As can be noted from Figure 5-14, the battery waits for the periods when the energy has 

less value to charge and stores the energy until a point of greater economic value, just like in 

the first model analyzed. Another conclusion that can be made from Figure 5-15 is that the 

battery's operation is similar to the operation for the previous model. This suggests for a 

business model such as that established in this chapter, the addition of a BESS to the PV does 

not lead to a greater economic gain compared to operating them separately. This can be 

attributed mainly to two factors: Firstly, PV production usually occurs at times when energy is 

more expensive, so it is beneficial to sell energy immediately to the grid. Second, the BESS will 

be able to maximize its profit if it can buy the maximum amount of energy in periods of lower 

prices, other than holding energy from PV to sell to sell in subsequent periods with a lesser 

margin. 

 

 

 

 

 

 

Figure 5-15 - - Battery operation (down) relative to energy price (up) over 5 days 
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5.3.2.2.  Results 

 

 

 

 

 

 

 

 

 

 

Figure 5-18 - Examples of solutions for the very optimistic scenario that compound the conditional 
decision set 

Figure 5-17 - Examples of solutions for the optimistic scenario that compound the conditional decision 
set 

Figure 5-16 - Solution for the break-even scenario that compound the conditional 
decision set 
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In Figure 5-18, Figure 5-17 and Figure 5-16 are shown examples of final solutions obtained 

for the 3 scenarios considered. DEEPSO used a 40 particles swarm for 100 iterations. It is, again, 

noticeable that the differences in the solutions found are quite small between the all the 

scenarios evaluated. A similar result to the previous model was expect because, just like was 

observed in section 5.3.2.1 the PV doesn’t affect the battery operation. 
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Figure 5-19 - 5% step of dispersion histogram of the results of solution for the  very 
optimistic scenario. 
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Figure 5-20 - 5% step of dispersion histogram of the results of solution for the  
optimistic scenario. 
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5.4. Methods Validation 

 

5.4.1. GMDH vs mathematical programming 

 

In this chapter a comparison of the use of only mathematical programming versus its 

combination with the use of the GMDH will be made for the scenario exposed in 5.2.1. However, 

due to time constraints for carrying out this work and considering the fact that a simulation 

using only mathematical programming has a high execution time, the stochastic scenario under 

study will only have a total of 120 days as opposed to the 365 used for the previous sections. 

For the period described, the results for the 3 investment scenarios considered to be viable 

are analyzed, and the performance of the algorithm is compared in a scenario where it uses 

only LP, and the scenario in which it uses LP and GMDH networks. For each test the same 

random number generator was used, so that any differences observed are a reflection of the 

evaluation method used. As a result of this, until the iteration in which the GMDH is trained is 

reached, the cost evolution will have the same behavior. In addition, since the computational 

effort of an iteration using GMDH is very low, twice as many iterations were performed as for 

the case that only uses LP. 
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Figure 5-21 - 5% step of dispersion histogram of the results of solutions for the break-
even scenario. 
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Figure 5-22 – Comparison of the evolution of the cost best particle found by DEEPSO 
using just LP (GAMS) or using LP and GMDH (GMDH) for the very optimistic scenario, 

simulation 1. 

Figure 5-23 - Comparison of the evolution of the cost best particle found by DEEPSO 
using just LP (GAMS) or using LP and GMDH (GMDH) for the very optimistic scenario, 

simulation 2. 
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Figure 5-22 and Figure 5-23, represent simulations with the same parameters, except for 

the random number generator. As can be noted, from the 10th iteration on, (the iteration in 

which GMDH is trained) the cost curves diverge. This is due to small differences in the 

evaluation of the solutions, converging to a better solution in slightly different ways. It should 

be noted that the error in calculating the battery operation by GMDH was only of 1.24% for the 

scenario in Figure 5-22 and 1.3% for the scenario in Figure 5-23. 

With this in mind, the version with GMDH alone finds a superior solution, since the cost of 

the solution is still better since the difference for the solution found by the LP solution is larger 

than the network evaluation error. However, this may not happen, and the evaluation by LP 

alone find the better solution, as shown in the figure below. Until interaction 50, the LP version 

seemed to have found a better solution. Despite this, due to the possibility of performing a 

large number of iterations with GMDH, this option ends up finding a better solution. The same 

conclusions can be extended to the remaining investment scenarios for which the results 

presented in imagens. 

In relation to computational time, a single iteration using LP lasted an average of 784 

seconds, that time can be reduced to around 1 second using GMDH networks. This enormous 

decrease in computational time is even larger when the 365-day scenario is considered as the 

same time would be obtained from GMDH networks, 1 second, while LP time vastly increases 

to 3769 seconds. 
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Figure 5-24 - Comparison of the evolution of the cost best particle found by DEEPSO 
using just LP (GAMS) or using LP and GMDH (GMDH) for the optimistic scenario 

Figure 5-25 - Comparison of the evolution of the cost best particle found by DEEPSO 
using just LP (GAMS) or using LP and GMDH (GMDH) for the break-even scenario 
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Chapter 6  

Conclusions and Future Work 

6.1. Conclusions 

 

A model for supporting the investment planning decision-making from a perspective of an 

independent energy provider that wants to obtain a conditional decision set that can be 

evaluated for multiple decision criteria such as loss reduction, reliability, voltage support, 

ancillary services, etc. was proposed, in order to raise the profitability of integrating BESS in 

the distribution networks. For this, it was modelled the main economical compromises between 

(i) the investment costs and BESS application as a business model of purchasing and sale energy 

at a day ahead market price; and (ii) the investment costs and options for sizing, location, and 

BESS operation as an optimization model based on the DEEPSO-GMDH approach.  

Although with a scope limited to the system tested, interesting conclusions could be drawn. 

From the perspective of an independent energy provider, the integration of BESS is non-

profitable at the current value cost of the batteries when a business model based on the 

purchase and sales of energy in the day ahead energy market was evaluated. Then, it becomes 

mandatory to establish the breakeven cost of investment planning for integrating BESS 

guarantee the start point where the business model becomes profitable. To identify a 

conditional decision set of optimal solutions economically viable for the business model of 

buying and selling energy makes possible to reduce the combinatorial behavior of modelling 

the investment plan required for integrating BESS in distribution networks where profitable 

businesses are searched for an independent energy provider while the sizing, location, and 

operation of BESS are optimized. From this conditional decision set of optimal solutions, other 

business models can be evaluated to raise the economic benefits an energy provider can receive 

if synergies between business model for BESS are established. Nevertheless, it is important to 

highlight that each optimal solution must be evaluated on an AC power flow model for 
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representing a realistic network scenario where characteristics such as voltage profile, losses, 

and AC power flow are considered because these characteristics can mark differences between 

optimal solutions evaluated when one or several applications of the BESS want be added to the 

main business model. 

 

 

6.2. Future work 

 

The work developed over this thesis contributes to the study of the sizing, location and 

optimization of the operation of batteries. However, the methodology can be improved, and 

some suggestions will be presented to further develop this work: 

• GMDH was able to dramatically reduce computational time by iteration, however, it 

remains high since some iterations by LP are necessary for neural networks to be 

trained. Therefore, options to reduce this computational time should be evaluated, 

such as optimizing the GAMS model; 

• The development of an AC model that allows testing other battery applications in order 

to obtain a better distinction from the conditional decision set obtained; 

• Only one business model for buying and selling energy in the daily market was 

approached, however, other models could be promising, such as the secondary reserve 

market and the tertiary reserve market; 

• The introduction of a degradation model of the batteries based on the number of cycles 

and their depth of charge instead of relying on its life expectancy in years might 

condition the operation of the battery and result in a more realistic result. 
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