
Introduction toIntroduction to

Dynamical SystemsDynamical Systems

A HANDS-ON APPROACH WITH MAXIMA

Jaime E. Villate
9 789729 939600

ISBN 972-99396-0-8





Introduction to Dynamical Systems

A Hands-on Approach with Maxima

Jaime E. Villate
University of Porto

College of Engineering
Porto, Portugal



Introduction to dynamical systems: a hands-on approach with Maxima
Copyright c© 2006 Jaime E. Villate
E-mail: villate@fe.up.pt

This work is licensed under the Creative Commons Attribution-Share Alike 2.5 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/ or
send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105,
USA.

ISBN: 972-99396-0-8

This is a partial translation of the Portuguese version 1.2 of February 27, 2007.

The cover figure is the Julia set for the complex number −0.75+ i0.1, with 48 iterations, as
explained in chapter 12.

http://creativecommons.org/licenses/by-sa/2.5/


Contents

Preface ix

1 Introduction 1
1.1 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Solving physics problems with Maxima . . . . . . . . . . . . . . . . . . 1
1.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Multiple-choice questions . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Discrete dynamical systems 9
2.1 Discrete systems evolution . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Graphical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Periodic points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Solving equations numerically . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Iteration method . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Multiple-choice questions . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Continuous dynamical systems 27
3.1 First-order differential equations . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Direction fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography 31

Index 33





List of Figures

1.1 Power dissipated in a resistor . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Trajectory of a particle . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Evolution of yn+1 = cos(yn) with y0 = 2. . . . . . . . . . . . . . . . . . . 13
2.2 Staircase diagram for xn+1 = cos(xn) with x0 = 2. . . . . . . . . . . . . . 13
2.3 Solutions of the system yn+1 = y2

n−0.2. . . . . . . . . . . . . . . . . . . 14
2.4 Solutions of the discrete logistic model . . . . . . . . . . . . . . . . . . . 15
2.5 Newton’s method for finding roots of an equation. . . . . . . . . . . . . . 22

3.1 Direction field of the equation y′ = y+ x . . . . . . . . . . . . . . . . . . 29





Preface

This book is updated very often. The number of the current version can be found on the
second page and the most recent version can always be found on the Web at http://
fisica.fe.up.pt/maxima/dynamicalsystems. This version has been written
to be used with Maxima’s version 5.11. (http://maxima.sourceforge.net).

This book started as the lecture notes for a one-semester course on the physics of dynamical
systems, taught at the College of Engineering of the University of Porto, since 2003. The
subject of this course on dynamical systems is at the borderline of physics, mathematics
and computing, and it substituted a course on classical mechanics that we used to teach to
students majoring in computing engineering.

Since dynamical systems is usually not taught with the traditional axiomatic method used
in other physics and mathematics courses, but rather with an empiric approach, it is more
appropriate to use a practical teaching method based on projects done with a computer.

The study of dynamical systems advanced very quickly in the decades of 1960 and 1970,
giving rise to a whole new area of research with an innovative methodology that gave rise
to heated debates within the scientific community. The innovative boost was fueled by the
rapid development of computers.

A new generation of researchers rose, who used their computers as laboratories for ex-
perimenting with equations discovering new phenomena. The traditional mathematicians
criticized that approach for the lack of a rigorous mathematical foundations for those new
results. Many of those results were found within the framework of physical problems:
non-linear dynamics, condensed-matter physics and electromagnetism. However, many
physicists regarded that new research field simply as a computer simulation of old physical
concepts long established, without any new physics in it. A usual comment would be: “this
is all very nice, but where is the physics in it?”.

Thus, the pioneers in this new field of dynamical systems would be often confronted with
rejected publications in scientific journals and negative assessments of their work. On the
other hand, their activities awakened a strong interest that increased very quickly and were
viewed by some as a refreshing new trend; the methods used in the study of dynamical
systems match well with the working environment of modern scientists.

The new paradigm spread to teaching and the traditional courses on physics and mathemat-
ics have been gradually “infected” with this new experimental/ computational methodology,
contrasting with the traditional axiomatic method. As it happened in the scientific commu-
nity, the new methodology has also led to some debate among teachers; at the same time,
it has awakened big interest as a better way to motivate today’s students. Subjects such as

http://fisica.fe.up.pt/maxima/dynamicalsystems
http://fisica.fe.up.pt/maxima/dynamicalsystems
http://maxima.sourceforge.net


x Preface

chaos and fractals are very appealing to them.

In this book we intend to explore some topics on dynamical systems, using an active
teaching approach, supported by computing tools and trying to avoid too may abstract
details. The use of a Computer Algebra System (CAS) does not eliminate the need for
mathematical analysis from the student; using a CAS to teach an engineering course does
not turn it into a purely technical subject either. One of the difficulties inherent to any
Computer Algebra System is the fact that there are no unique solutions to the problems it
solves. Different methods to solve a problem may lead to solutions that look very different
but might be equivalent. Or the solutions can be really different and only equivalent within
some domain. In some cases the system does not give any answer or it might even give a
wrong answer.

It is necessary to gain some experience to be able to use CAS tools successfully and to be
able to test the validity of its results. In the process of gaining that experience, the user
will also gain a better insight into the mathematical methods implemented in the system.

Nowadays the great majority of engineering and exact sciences professionals depend on a
calculator to calculate the square root of a real number, for instance, 3456. Some of us
were taught in School how to do that with pencil an paper, in a time when there were no
calculators. I do not believe that this new dependency is a serious handicap, and I’m not in
favor of teaching kids how to calculate square roots with paper and pencil before they are
allowed to use the calculator. What I find very important is that the algorithm we used to
calculate square roots with paper and pencil remains available and well documented in the
literature; it is an valuable piece in our legacy of algorithms.

On the other hand, now that students have calculators to compute square roots, they can
move faster into other topics such as the study of quadratic equations; and in doing so,
they might even gain a deeper insight of the function

√
x, which they did not attain when

they had to spend a lot of time learning the algorithm to calculate square roots. In the
case of differential equations and difference equations, with the help of Computer Algebra
Systems students can advance faster into subjects such as chaos and fractals, instead of
dedicating a whole semester to learn several algorithms to obtain analytical solutions for a
few types of equations.

I would like to acknowledge the help of my colleagues Helena Braga and Francisco
Salzedas, with whom I have taught the course on Physics of Dynamical Systems; I would
also like to thank our students in that course throughout the last 3 years; their positive
comments have encouraged me to undertake the task of writing this book. The students
have been asked to make projects for that course, and some of those projects were very
interesting and helped me learn some of the subjects covered in this book. Special thanks
go to the student Pedro Martins and to my colleague Francisco Salzedas, who made a
careful review of the manuscript.

Jaime E. Villate
Porto, February 2007



1 Introduction

1.1 Differential equations

Differential equations play a very important role in Engineering and Science. Many
problems lead to one or several differential equations that must be solved. Most attention
has been given to linear equations in the literature; several analytical methods have been
developed to solve that type of equations.

Non-linear differential equations are much harder to analyze and there are no general
solution techniques for those equations. Problems that lead to linear equations are easier to
study. From the last half of the 20th century, the rapid development of the computer made
it possible to solve non-linear problems using numerical methods. Non-linear systems lead
to a wealth of new and interesting phenomena not present in linear systems.

A new approach, that relies more on geometric interpretation rather than analytical analysis,
has gained popularity for the study of non-linear systems. Many of the concepts used in
that geometrical approach, such as the phase space, have long be used in dynamics to study
the motion of a mechanical system.

In order to give a short introduction to that methodology to study differential equations,
in the next chapters we will consider several problems specific dynamics and electrical
circuit theory. Before we begin, we will introduce a Computer Algebra System (CAS),
Maxima, which will be used extensively throughout the book.

1.2 Solving physics problems with Maxima

Maxima is a software package in the category of Computer Algebra Systems (CAS),
namely, a system that can be used not just for numerical calculation but also to deal with
algebraic equations with abstract variables. There are various CAS packages available;
we have decided to use Maxima because it is Free Software. That means that it can be
installed and used by our students without having to obtain a license for it, and they can
even study its source code to get a better understanding of how that system works. Another
important advantage is the possibility of modifying the original package to better suit our
needs; we took advantage of that facility to add new features needed for this book.

Maxima includes several functions to manipulate mathematical functions, including differ-
entiation, integration, power series approximation, Laplace transforms, solving ordinary
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differential equations and graph plotting in 2 and 3 dimensions. It can also work with
matrices and vectors. Maxima can be used to solve problems numerically and write down
programs as done with traditional programming languages.

The following examples should serve to give a first glimpse at the way Maxima can be
used. In the next chapters we will go deeper into the subject, but readers who are not
familiar with Maxima and would like to have a general overview from the beginning can
start by going through appendix A. The examples that we will solve in this section are in
the area of dynamics of a particle and direct-current circuits, which are the main subjects
in this book. A minimum knowledge in those two subjects will be necessary in order to
follow those examples.

Example 1.1
A battery is connected to an external resistor with resistance R and the voltage across the
resistor is measured with a voltmeter V. To find the electro-motive force ε and the internal
resistance r of the battery, two external resistors of 1.13 kΩ and 17.4 kΩ were used. The
voltage drop in both cases were 6.26 V e 6.28 V. Find the intensity of the current in both
cases. Obtain the values of ε and r. Plot a graph of the power dissipated in the external
resistance, as a function of R, for values of R within 0 and 5r.

Rε, r V

Solution: The current through R is found from Ohm’s law:

I =
∆V
R

(1.1)

With the values given for the potential difference, ∆V , and the resistance, R, we can use
Maxima to find the currents:

(%i1) 6.26/1.13e3;
(%o1) .005539823008849558

When Maxima’s console is started, the (%i1) label appears indicating that the system is
ready to accept a command; the letter “i” stands for input. The expression 1.13e3 is the
form used to represent the number 1.13×103 in Maxima. Each command must end with
a semi-colon. When the “Enter” key is pressed, the system responds with a label (%o1)
followed by the result of the first command (%i1); “o” stands for output.

The current in the second case is computed in a similar way:

(%i2) 6.28/17.4e3;
(%o2) 3.609195402298851E-4
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Thus, the current in the 1.13 kΩ resistor is 5.54 mA, and in the 17.4 kΩ resistor is 0.361
mA.

To obtain the battery’s electro-motive force and internal resistance we should use the
voltage-current characteristic for a battery:

∆V = ε− rI (1.2)

replacing the two set of values given for ∆V and R we will get a system of two equations
with two variables. We will save those two equations in two Maxima variables that we will
dub as eq1 and eq2

(%i3) eq1: 6.26 = emf - r*%o1;
(%o3) 6.26 = emf - .005539823008849558 r
(%i4) eq2: 6.28 = emf - r*%o2;
(%o4) 6.28 = emf - 3.609195402298851E-4 r

notice that the symbol used to save a value in a variable is a colon and not an equal sign. A
maxima variable can store a numerical value or something more abstract as a mathematical
equation in this case. The equal sign makes part of the equation that is being stored. To
avoid having to write the numerical values of the currents obtained previously, we used the
symbols %o1 and %o2 that stand for the value of those previous results.

The last two equations constitute a linear system of equations with two variables. That
kind of system can be solved in Maxima, using the command solve:

(%i5) solve([eq1,eq2]);
983100 79952407

(%o5) [[r = ------, emf = --------]]
254569 12728450

(%i6) %,numer;
(%o6) [[r = 3.861821352953423, emf = 6.281393806787158]]

The syntax [eq1,eq2] was used to create a list with two elements, which is what the
command solve expects when there are more than one equation to be solved. Some
warning messages given by Maxima were omitted above. The command solve gives
an exact result, in the form of two rational numbers. The command in %i6 was used
to approximate those rational numbers with fixed-point numbers. The symbol % stands
for the output of the last command executed; in this case it is equivalent to %o5. We
thus conclude that the electro-motive force is approximately 6.2814 V and the internal
resistance is 3.8618 Ω.

The electric power dissipated in the resistance R is

P = RI2

the current I across the external resistor can be calculated in terms of the electro-motive
force and the resistances r and R

I =
ε

R+ r
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therefore, the power dissipated in the external resistor is

P = R
(

ε

R+ r

)2

to draw the plot of P, as a function of R, we can use the following command
(%i7) plot2d(R*(6.2814/(R+3.8618))^2, [R, 0, 5*3.8618]);

the result is shown in figure 1.1. Moving the cursor in the graphic window, it is possible
to read the coordinates of the point where the cursor is. We can check that the power
dissipated in an external resistor reaches its maximum value when the external resistance
equals the internal one.

Figure 1.1: Power dissipated in the external resistor as a function of the external resistance.

Two frequent errors should be avoided:

• An expression such as

a = 3;

will not assign any value to the variable a. After that expression is written, variable
a remains as an undefined variable. To assign a value of 3 to the variable a, the
following command must be used:

a : 3;

• New users of Maxima should become aware of the distinction between equations
and expressions. An example of an equation is

x^2 - 3*x = 2*x + 5
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while an expression is something like
2*x + 5

Some commands in Maxima accept only equations or expressions as their input
values. For instance, the command plot2d used in the previous example accepts
only expressions and not equations. The command solve requires one equation, or
a list with several equations, but it will also accept expressions instead of equations:
each expression given will be automatically converted into an equation by equating
it to zero; for instance, the command

solve(x^2 - 5*x + 5);

will find the two values of x that will solve the equation

x2−5∗ x+5 = 0

Example 1.2
The position vector of a particle, as a function of time t, is given by the equation:

~r =
(

5− t2 e−t/5
)
~ex +

(
3− e−t/12

)
~ey

in MKS units. Find the vectors for the position, velocity and acceleration at t = 0, t = 15 s,
and when time approaches infinity. Plot the trajectory of the particle during the first 60
seconds of its motion.

Solution: We start by representing the position vector as a list with two elements; the first
element will be the x coordinate and the second one will be the y coordinate. We will save
that list in a variable named r, so we can use it later on.

(%i8) r: [5-t^2*exp(-t/5),3-exp(-t/12)];
2 - t/5 - t/12

(%o8) [5 - t %e , 3 - %e ]

the vector velocity equals the derivative of the position vector and the vector acceleration
is the derivative of the vector velocity. The command used in Maxima to find the derivative
of an expression is diff. The input to that command can also be a list with several
expressions; thus, the velocity and acceleration are:

(%i9) v: diff(r,t);
2 - t/5 - t/12
t %e - t/5 %e

(%o9) [---------- - 2 t %e , --------]
5 12

(%i10) a: diff(v,t);
2 - t/5 - t/5 - t/12

t %e 4 t %e - t/5 %e
(%o10) [- ---------- + ----------- - 2 %e , - --------]

25 5 144
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the constant %e in Maxima represents the Euler number, e. To find the position, velocity
and acceleration at t = 0, we use the following commands

(%i11) r, t=0, numer;
(%o11) [5, 2]
(%i12) v, t=0, numer;
(%o12) [0, .08333333333333333]
(%i13) a, t=0, numer;
(%o13) [- 2, - .006944444444444444]

The argument numer, was used to get the result in floating-point form. In vector notation,
the results we obtained are:

~r(0) = 5~ex+2~ey

~v(0) = 0.08333~ey

~a(0) = −2~ex−0.006944~ey

For t = 15 s the results are obtained in a similar way
(%i14) r, t=15, numer;
(%o14) [- 6.202090382769388, 2.71349520313981]
(%i15) v, t=15, numer;
(%o15) [.7468060255179592, .02387539973834917]
(%i16) a, t=15, numer;
(%o16) [0.0497870683678639, - .001989616644862431]

The limiting values when times goes to infinity can be calculated with Maxima’s command
limit; the symbol used in Maxima to represent infinity is inf
(%i17) limit(r,t,inf);
(%o17) [5, 3]
(%i18) limit(v,t,inf);
(%o18) [0, 0]
(%i19) limit(a,t,inf);
(%o19) [0, 0]

Thus, a particle will approach the point 5~ex +3~ey, where it will remain at rest.

To plot the graph of the trajectory we will use the option parametric of the command
plot2d. the x and y components of the position vector will be given separately; the
command plot2d will not accept them inside a list as we have been using them. To get
the first element of the list r (x component) is labelled as r[1] and the second element
r[2].

(%i20) plot2d([parametric,r[1],r[2],[t,0,60],[nticks,100]]);

The time domain, from 0 to 60, is defined with the notation [t,0,60]. The option
nticks was used to increase the number of intervals of t, because the default value of
10 intervals would render a broken curve instead of a continuous trajectory. The graph
obtained is shown in figure 1.2.
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Figure 1.2: Trajectory of the particle during the first 60 seconds, from the initial instant
when t was equal to 5.2 .

1.3 References

For more information about Maxima, see appendix A and the Maxima Book (de Souza
et al., 2003).

1.4 Multiple-choice questions
1. Only one of the following Maxima com-

mands is correct. Which one?

A. solve(t-6=0,u-2=0,[t,u]);
B. solve(t+4=0,u-4=0,t,u);
C. solve([x^3+4=2,y-4],x,y);
D. solve(x-6=0,y-2=0,[x,y]);
E. solve([t+3,u-4],[t,u]);

2. Newton’s second law was defined in Max-
ima with:
(%i6) F = ma;

which Maxima command should be used

to compute the value of the force corre-
sponding to a mass of 7 with an accelera-
tion of 5 (SI units).

A. solve(F, m=7, a=5);

B. solve(F, [m=7, a=5]);

C. solve(%o6, m=7, a=5);

D. %o6, m=7, a=5;

E. solve(F: m=7, a=5)

3. If we input the following commands in
Maxima:



8 Introduction

(%i1) x:3$
(%i2) x=5$
(%i3) x;

which will be the output (%o3)?

A. 5
B. x
C. 3

D. true
E. 0

1.5 Problems

1. An ammeter was used to measure the current at points D and F in the circuit which
diagram is shown in the figure. At point D the value obtained for the current was 0.944
mA, in the direction ADC, and at point F it was 0.438 mA, in the direction CFE. (a)
Store the equation for Ohm’s law, V = IR, in a Maxima’s variable “ohm”. (b) Give a
value to variable I equal to the current at point D, and substitute the resistance in Ohm’s
law with each of the values 2.2 kΩ and 6.8 kΩ, to compute the potential difference in
each of the resistors; repeat the same procedure to calculate the potential difference in
each resistor.

A
6.8 kΩ

B
3.3 kΩ

E

9 V

F
4.7 kΩ

C

6 V

1.0 kΩ

2.2 kΩ
D

3 V

2. The position of a particle moving along the x axis is given by the equation x = 2.5 t3−
62 t2 +10.3 t, where x is measured in meters and t in seconds. (a) Find the expressions
for the velocity and the acceleration as a function of time. (b) Find the values of the
time, position and acceleration in all the instants when the particle is at rest (v = 0). (c)
Draw the plots for the position, velocity and acceleration as a function of time, for t in
the interval between 0 and 20 seconds.

3. The position vector of a particle, as a function of time, is given by the equation:

~r =
(

5.76− e−t/2.51
)
~ex + e−t/2.51 cos(3.4 t)~ey

in SI units. (a) Compute the position, velocity and acceleration in the instants t=0, t=8
s, and when time goes to infinity. (b) Plot the graphs of the x and y components of the
position, as a function of time, for t in the interval between 0 and 15 seconds. (c) Plot
the graph of the trajectory, on the plane xy, in the interval of t between 0 and 15 s.
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A discrete dynamical system is a system with a state that only changes at a discrete
sequence of instants {t0, t1, t2, . . .}. In the interval between two of those instants the state
remains constant.

In this chapter we will only consider first-order discrete systems. In the following chapters
the methods used in this chapter will be extended to the case of continuous dynamical
systems. In the last two chapters of the book we will resume the study of discrete systems
and we will introduce second-order systems and systems on the complex plane.

A first-order system is a system in which only one variable y is needed to describe its state.
The value of that variable at the instants {t0, t1, t2, . . .} will be a sequence {y0, y1, y2, . . .}.
The interval of time between a consecutive pair of instants tn and tn+1 does not have to be
constant, for different values of n.

The evolution equation allows us to compute the state yn+1, at an instant tn+1, from the
value of the state yn at the previous instant tn:

yn+1 = F(yn) (2.1)

where F(y) is a known function. The equation above is a first-order difference equation.
Given an initial state y0, successive applications of the function F will generate the
sequence of states yn which determine the evolution of the system. In some cases it might
be possible to find a general expression for yn as a function of n.

Example 2.1
Find the first four terms in the evolution of the system xn+1 = cosxn, with initial state
x0 = 2

Solution: Applying the difference equation three times, we obtain the first four terms in
the sequence:

{2, cos(2), cos(cos(2)), cos(cos(cos(2)))} (2.2)
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Example 2.2
A loan of $ 500 is obtained from a bank, which charges a 5% yearly interest rate. The loan
is to be paid in 20 months, with monthly payments of $ 26.11. What will be the amount in
debt after 10 months?

Solution: During the month n the amount in debt, yn, will be equal to the amount in debt
in the previous month, yn−1, plus the interests due for that month, minus the monthly
payment p:

yn = yn−1 + j yn−1− p (2.3)

where j is the monthly interest rate (in this case, 0.05/12). Using Maxima, the sequence
of amounts in debt yn can be obtained by applying the above recurrence relation several
times:

(%i1) j: 0.05/12$

(%i2) y: 500$

(%i3) y: y + j*y - 26.11;

(%o3) 475.9733333333333
(%i4) y: y + j*y - 26.11;

(%o4) 451.8465555555555
(%i5) y: y + j*y - 26.11;

(%o5) 427.619249537037

it would be necessary to repeat the command (%i3) ten times. The answer can be
obtained in an easier way if we define a Maxima function depending on an integer variable,
using the recurrence relation, and we use that function to calculate y10 directly:
(%i6) y[0]: 500$

(%i7) y[n] := y[n-1] + j*y[n-1] - 26.11;

(%o7) y := y + j y - 26.11
n n - 1 n - 1

(%i8) y[10];

(%o8) 255.1779109580579

Some care should be taken in Maxima when using functions of an integer argument. In
the previous example, when we calculated y[10], the values of y[9], y[8],. . ., y[1],
were also implicitly calculated and stored in memory. If we changed the recurrence relation,
those values that were already calculated and stored would not be updated. Thus, before
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we change the recurrence relation, or the initial value y[0], it is necessary to erase the
previously calculated sequence, by using the command kill.

For example, if the value of the loan was duplicated to $ 1000, and the monthly payment
was also duplicated, will the amount in debt after the tenth payment would also duplicate?
let us see:

(%i9) kill(y)$

(%i10) y[0]: 1000$

(%i11) y[n] := y[n-1] + j*y[n-1] - 52.22;

(%o11) y := y + j y - 52.22
n n - 1 n - 1

(%i12) y[10];

(%o12) 510.3558219161157

thus, the amount in debt also doubles.

Another question that we might ask in the original example is: what will the monthly
payment should be if instead of 20 months we would want to pay the loan in 40 months?

To answer that question, we use a variable p to represent the monthly payment, we calculate
the amount in debt after 40 months, as a function of p, and we equal that expression to
zero to calculate the value of p.

(%i13) kill(y)$

(%i14) y[0]: 500$

(%i15) y[n] := expand(y[n-1] + j*y[n-1] - p)$

(%i16) solve(y[40] = 0, p);
72970398

(%o16) [p = --------]
5366831

(%i17) %, numer;

(%o17) [p = 13.59655222979818]

The monthly payment should be $ 13.60. The function expand was used to force Maxima
to calculate the products in every step, avoiding large expressions with several parenthesis
in the calculation of yn. Some additional messages written by Maxima were omitted,
which explain that some floating point numbers were represented as fractions, to prevent
numerical errors.
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2.1 Discrete systems evolution

The evolution of a first-order discrete system:

yn+1 = F(yn) (2.4)

is obtained by applying successively a function F to the initial state y0 = c:

{c,F(c),F(F(c)),F(F(F(c))), . . .} (2.5)

or in a more compact form:

{c,F(c),F2(c),F3(c), . . . yn = Fn(c)} (2.6)

2.2 Graphical analysis

A graphical method to represent the evolution of a system consists on plotting a point for
each step in the sequence, with x-coordinate equal to the index n and y-coordinate equal to
yn. In Maxima, the function evolution in the additional package dynamics will plot
that kind of graph1.

Three arguments should be given to the program. The first argument must be an expression
that depends only on the variable y; that expression will specify F(y) from the right hand
side of the difference equation 2.1. The second argument should be the initial value y0,
and the third argument is the number of sequence elements that should be plotted.

For instance, using y to identify the state variable in example 2.1, we have F(y) = cosy
with initial value y0 = 2. To plot a graph with the first 20 terms, we use the commands:

(%i18) load("dynamics")$

(%i19) evolution(cos(y), 2, 20)$

The graph obtained in (%i19) is shown in figure 2.1.

Another type of diagram which will be very useful to analyze first-order discrete dynamical
systems is the so-called staircase diagram,2 which consists in plotting the functions
y = F(x) and y = x, as well as an alternating sequence of horizontal and vertical segments
joining the points (y0,y0), (y0,y1), (y1, y1), (y1,y2), and so on. For example, figure 2.2
shows the staircase diagram for the sequence represented in figure 2.1

The function staircase, included in the additional package dynamics, plots staircase
diagrams. That function needs the same three arguments as the function evolution;

1Maxima’s package dynamics was added in version 5.10; if you have an older version, you must upgrade
it in order to use that package.

2Also know as cobweb diagram.
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n

yn

5 10 15

1

2

−0.5

Figure 2.1: Evolution of yn+1 = cos(yn) with y0 = 2.

yn

yn+1

1−1

1

2

−1

Figure 2.2: Staircase diagram for xn+1 = cos(xn) with x0 = 2.
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namely, function F(y) from the right-hand side of the difference equation 2.1, the initial
value y0 and the number of steps in the sequence. The independent variable in the
expression for F should always be y. You might need to make the appropriate change if
the state variable is something different from y in your problem.

The graph 2.2 was obtained with the command

(%i20) staircase(cos(y),2,8)$

Notice that we did not have to load the package dynamics again, because it was already
loaded in (%i18). the staircase diagram allows us to understand when a sequence will
converge or diverge. For instance, consider the system yn+1 = y2

n−0.2. If the initial value
is y0 = 1.1, we obtain the graph on the left side of figure 2.3; we see that the sequence will
converge to a negative value y, which is at the intersection of the functions F(y) = y2−0.2
and G(y) = y, namely, y = (5−3

√
5)/10.

The two functions intersect in another point, positive, equal to y = (5−3
√

5)/10. In the
graph we can see that even though the initial value was close to the second intersection
point, the sequence moved away from it and towards the second intersection point, due to
the fact that between the two intersection points the function y2−0.2 is under G(y) = y. if
we used an initial value to the right of the second intersection point, for instance, y0 = 1.5,
the sequence grows quickly towards infinity (right-hand side in figure 2.3). To make the
sequences converge to the second intersection point, it would have been necessary that
between the two intersection points F(x) > G(y); that is to say, the slope of F(y) should
be less than 1, rather that greater than 1, at the second intersection point.

yn

yn+1

1

1

yn

yn+1

2 4

2

4

Figure 2.3: Solution to the system yn+1 = y2
n−0.2 with initial values 1.1 (left) and 1.5

(right).

Example 2.3
Analyze the solutions to the logistic model, which consists in considering a population P
with constant natality rate, a, and a mortality rate bP, directly proportional to the population,
where a and b are constants.

Solution: The population under study could be a group of specimens from some animal
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species, where the sequence {P0, P1, P2, . . .} represents the number of specimens in several
consecutive years.

Let Pn represent the number of specimens at the beginning of period n. during that period
of time, an average aPn new specimens are born, and bP2

n specimens die. Thus, in the
beginning of the next period, n+1, the population would be

Pn+1 = (a+1)Pn

(
1− b

a+1
Pn

)
(2.7)

It is convenient to define a new variable yn = bPn/(a+1). Thus, we obtain an equation
with a single parameter c = a+1

yn+1 = cyn(1− yn) (2.8)

Figure 2.4 shows the solutions obtained with an initial value y0 = 0.1, in the cases c = 2
and c = 4. With c = 2, the solution converges quickly to the fixed point y = 0.5.

With c = 4, the state of the system goes through many different values between 0 and 1,
and it does not seem to follow any regular pattern. That type of behavior is called chaotic.
The state in any given period is perfectly determined from the state in the previous period,
but a very small modification of the state in an initial period will lead to a completely
different state in the next period. The state of the system takes different values within a
small interval, without ever repeating a previous value.

yn

yn+1

1

1

0.5

0.5

yn

yn+1

1

1

0.5

0.5

Figure 2.4: Solutions of the logistic model with an initial value 0.1. With c = 2 (left) the
sequence converges, while with c = 4 (right) it becomes chaotic.

2.3 Fixed points

A fixed point of the system 2.1 is a value y0 which, if used as initial value of the state it
would lead to a constant state in later periods. That will only be possible if

F(y0) = y0 (2.9)
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this implies that successive application of function F will not change the initial value. The
solution of the system with initial value y0 is a constant sequence, {y0,y0,y0, . . .}.
From the point of view of the graphical analysis, the fixed points are all those points where
the curve F(x) intersects the right line y = x in the stairway diagram. For example, in the
case of he logistic model, figure 2.4 shows that in the two cases c = 2 and c = 4 there are
two fixed points, one of them at y = 0. We can use Maxima’s command solve to find the
fixed points; in the case c = 4, the fixed points can be found in this way:

(%i21) flogistic: 4*y*(1-y);

(%o21) 4 (1 - y) y
(%i22) fixed: solve(flogistic - y);

3
(%o22) [y = -, y = 0]

4

The two fixed points are 0 and 0.75.

Let us consider a fixed point, where the curve F(x) intersects the straight line y = x, such
that the derivative F ′(y) is bigger than 1 at that point. Namely, at the intersection point
between the curve F(x) and the line y = x the curve F crosses from under the line, on the
left, to over the line, on the right. Thus, if we plot the staircase diagram starting from a
point near the fixed point, the sequence will move away from the fixed point, describing a
staircase in the staircase diagram. We call that kind of fixed point a repulsive node.

If the derivative is negative and less than -1, the sequences will also move away from
the fixed point, but alternating from side to side, describing a “cob web” in the staircase
diagram. We call that kind of fixed point a repulsive focus.

If the derivative of the function F near the fixed point has a value between 0 and 1, the
sequences that start near the fixed point will approach it describing a staircase. That kind
of fixed point is called an attractive node (an example of this case was already found in
the left-hand side of 2.4).

If the derivative of the function F near the fixed point has a value between 0 and -1, the
sequences starting near the point will approach it, describing a cob web that alternates
from side to side in the staircase diagram. That kind of point is called an attractive focus
(an example of that kind of point was already encountered in figure 2.2).

In summary, we have the following kinds of fixed points y0:

1. Attractive node, if 0≤ F ′(y0) < 1

2. Repulsive node, if F ′(y0) > 1

3. Attractive focus, if −1 < F ′(y0) < 0

4. Repulsive focus, if F ′(y0) <−1

If F ′(y0) equals 1 or -1, the situation is more complex: the fixed point could be either
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attractive or repulsive, or even attractive from one side and repulsive from the other side.

Returning to our previous example of the logistic model (see (%i21) through (%o22)
above), the value of the derivative of F at the fixed points is:

(%i23) dflogistic: diff(flogistic, y);

(%o23) 4 (1 - y) - 4 y
(%i24) dflogistic, fixed[1];

(%o24) - 2
(%i25) dflogistic, fixed[2];

(%o25) 4

Thus, in the case c = 4, both fixed points are repulsive. At y0 = 0 there is a repulsive node,
and there is a repulsive focus at y0 = 0.75.

2.4 Periodic points

If the sequence {y0,y1,y2, . . .} is a solution of the dynamical system

yn+1 = F(yn) (2.10)

any element in the sequence can be obtained from y0, applying the composed function Fn

yn = Fn(y0) = F(F(. . .(F︸ ︷︷ ︸
n times

(y)))) (2.11)

A solution is dubbed a cycle of period 2, if it is a sequence of only two alternating
values: {y0,y1,y0,y1, . . .}. The two points y0 and y1 are periodic points with period
equal to 2. Since y2 = F2(y0) = y0, it is necessary that F2(y0) = y0. Furthermore, since
y3 = F2(y1) = y1 we also have F2(y1) = y1. Finally, since F(y0) = y1 6= y0, it is also
necessary that F(y0) 6= y0, and since F(y1) = y0 6= y1, we also have F(y1) 6= y1.

Those conditions can be summarized by saying that two points y0 and y1 form a cycle of
period two if both of them are fixed points of the function F2(y), but none of them is a
fixed point of the function F(y). Explained in a different way, if we calculate the fixed
points of F2(y), all of the fixed points will appear, plus the periodic points of period 2 of
functio F .

The cycle of period two will be attractive or repulsive according to the value of the
derivative of F2 at each point in the cycle.

To calculate the derivative of F2 at y0, we use the chain rule

(F2(y0))′ = (F(F(y0)))′ = F ′(F(y0))F ′(y0) = F ′(y0)F ′(y1) (2.12)
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thus, the derivative of F2 takes the same value in the two points y0 and y1 of the cycle, and
it is equal to the product of the derivatives of F in those two points.

Generalizing the definition a point y0 is part of a cycle of period m, if Fm(y0) = y0, but
F j(y0) 6= y0 for any j < m. The complete set of m points that make part of the cycle are

y0

y1 = F(y0)
y2 = F2(y0)

...
ym−1 = Fm−1(y0)

All those points are fixed points of Fm but they cannot be fixed points od F j, with j < m.

If the absolute value of the product of the derivative at the m points of the cycle:

m−1

∏
j=0

F ′(y j) (2.13)

is greater than 1, then the cycle is repulsive; if the product is less than 1, the cycle
is attractive, and if the product is identical to 1, the cycle could be either attractive or
repulsive in different regions.

Example 2.4
Find the cycles with period 2 for the logistic system

yn+1 = 3.1yn(1− yn)

and say whether they are attractive or repulsive.

Solution: We start by defining function F(y) and the composed function F2(y)

(%i26) flog: 3.1*y*(1-y)$

(%i27) flog2: flog, y=flog;

(%o27) 9.610000000000001 (1 - y) y (1 - 3.1 (1 - y) y)

The periodic points of period 2 will be among the solutions of the equation F2(y)− y = 0
(%i28) periodic: solve(flog2 - y);

sqrt(41) - 41 sqrt(41) + 41 21
(%o28) [y = - -------------, y = -------------, y = --, y = 0]

62 62 31
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The last two points, namely 0 and 21/31 are fixed points (the proof of that is left as an
exercise for the reader and can be done by solving the equation F(y) = y, or simply by
showing the validity of that equation in each case).

The other two points must then form a cycle of period two; if we use any of them as initial
value, the sequence will oscillate between those two points.

To find out whether the cycle is attractive or repulsive, we compute the product of the
derivative at the two points in the cycle
(%i29) dflog: diff(flog, y);

(%o29) 3.1 (1 - y) - 3.1 y

(%i30) dflog, periodic[1], ratsimp, numer;

(%o30) - .3596875787352

(%i31) dflog, periodic[2], ratsimp, numer;

(%o31) - 1.640312421264802

(%i32) %o30*%o31;

(%o32) .5900000031740065

The absolute value of the product is less than 1, which implies that the cycle is attractive.

2.5 Solving equations numerically

Discrete, first-oder dynamical systems can be used for solving one-variable equations
numerically. The problem to be solved consists on finding the roots of a real function f ,
namely, the values of x that satisfy the equation

f (x) = 0 (2.14)

For example, suppose we want to find the values of x that solve the equation:

3x2− xcos(5x) = 6

That kind of equation cannot be solved analytically; it must be solved by numerical
methods. The numerical methods to solve that equation consist on defining a dynamical
system with convergent sequences which approach the solutions of the equation. In the
following sections we will study two of those methods.
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2.5.1 Iteration method

If the equation 2.14 can be written in the form

x = g(x) (2.15)

Its solutions are the fixed points of the dynamical system:

xn+1 = g(xn) (2.16)

To find a fixed point, we choose an arbitrary initial point and calculate the evolution of the
system.

Example 2.5
Find the solution of the equation x = cosx

Solution: This equation is already given in a form that allows us to use the iteration
method. We use the dynamical system with recurrence relation

xn+1 = cos(xn)

To find a fixed point, we choose an arbitrary initial point and calculate the evolution of the
system

(%i33) x: 1$

(%i34) for i thru 15 do (x: float(cos(x)), print(x))$

0.54030230586814
0.85755321584639
0.65428979049778
0.79348035874257
0.70136877362276
0.76395968290065
0.72210242502671
0.75041776176376
0.73140404242251
0.74423735490056
0.73560474043635
0.74142508661011
0.73750689051324
0.74014733556788
0.73836920412232

The solution of the equation is approximately 0.74. This method was successful in this
example, because the fixed point of the dynamical system chosen happened to be attractive.
If the point were repulsive, the iteration method would have failed.
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Example 2.6
Find the square root of 5, using only additions, multiplications and divisions.

Solution: The square root of 5 is the positive solution of the equation

x2 = 5

which can be written as:

x =
5
x

we solve the dynamical system associated to the function

f (x) =
5
x

It can be easily seen that for any initial value x0, different from
√

5, the solution of that
system will always be a cycle with period 2:{

x0,
5
x0

,x0,
5
x0

, . . .

}
To escape from that cycle, and approach the fixed point at

√
5, we can try to use the middle

point:

xn+1 =
1
2

(
xn +

5
xn

)
That new system will converge quickly to the fixed point at

√
5:

(%i35) x : 1$

(%i36) for i thru 7 do (x: float((x + 5/x)/2), print(x))$
3.0
2.333333333333334
2.238095238095238
2.236068895643363
2.236067977499978
2.23606797749979
2.23606797749979
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2.5.2 Newton’s method

Newton’s method can be used to find the roots of the equation 2.14. We start by assuming
that there is a root of the equation at approximately value x0 and we improve that approxi-
mation by finding the point x1 where the tangent to the function at f (x0) intersects the x
axis (see figure 2.5)

x1 = x0−
f (x0)
f ′(x0)

(2.17)

We can use the same equation to further improve our guess x1 to a new guess x2. In general

xn+1 = xn−
f (xn)
f ′(xn)

(2.18)

x

f

x0x1

f(x0)

Figure 2.5: Newton’s method for finding roots of an equation.

It must be noticed that the roots of a continuous function f , points where f is zero, are
fixed points of the dynamical system defined by equation 2.18 3.

The advantage of this method, over the iteration method, can be seen by using our analysis
of the fixed points of a dynamical system. The function that generates the system 2.18 is

g(x) = 1− f (x)
f ′(x)

(2.19)

the derivative of that function is

g′ = 1− ( f ′)2− f ′′ f
( f ′)2 =

f ′′ f
( f ′)2 (2.20)

at the fixed points, f vanishes. Thus, g′ will also vanish at the fixed points. Therefore, the
fixed points of 2.18 will always be attractive. It means that if the initial point x0 is chosen

3If there are any regions where f and f ′ are both equal to zero, the roots will not be isolated points, but
there will be a whole interval with an infinite number of roots. In this section we will not study those
kind of roots.
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close enough to one of the roots of f , the sequence xn will approach it. The problem
consists on finding what close enough means in each case.

To illustrate the method, we will solve example 2.6 once again, using Newton’s method.

The square root of 5 is one of the solutions of the equation x2 = 5. Hence, to find the
square root of 5 we can search for the positive root of the function

f (x) = x2−5

The derivative of that function is
f ′(x) = 2x

substituting it into the recurrence relation 2.18, we obtain

xn+1 = xn−
x2

n−5
2xn

=
1
2

(
xn +

5
xn

)
which is exactly the same sequence that we have already obtained and solved in the
previous section. However, in this case we did not need to introduce any clever tricks; we
just applied the standard method.

2.6 References

Some useful references, with a level similar to the one used here, are Chaos (Alligood
et al., 1996), A First Course in Chaotic Dynamical Systems (Devaney, 1992) and Chaos
and Fractals (Peitgen et al., 1992).

2.7 Multiple-choice questions
1. The state variable of a first-order, discrete

dynamical system takes on the values
from the following sequence:
{3.4,6.8,7.2,5.1,6.8, ...}
what can be concluded about that system:

A. it does not have any cycles with pe-
riod less than 5.

B. it has a fixed point.
C. it is a chaotic system.
D. it has a cycle of period 3.
E. it has a cycle of period 2.

2. The figure shows the staircase diagram

of the discrete dynamical system yn+1 =
y2

n−0.2, which has two fixed points y =
−0.17 and y = 1.17.

yn

yn+1

1

1

what type of fixed point is y = 1.17?
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A. repulsive focus.
B. attractive focus.
C. attractive node.
D. part of a cycle with period 2.
E. repulsive node.

3. A first-order discrete dynamical system
has a single fixed point at 0.739, and
no cycles. Starting with an initial value
2, the evolution of the system is the se-
quence:
{2,0.915,0.610,0.820,0.683, . . .}
what can be said about that system?

A. it is chaotic.
B. the fixed point is attractive.
C. it has a cycle with period 2.
D. it has a cycle with period 3.
E. the fixed point is repulsive.

4. A function F(x) has the following prop-
erties:

F2(2) = 5 F(5) = 2
thus, we can conclude that the discrete
dynamical system xn+1 = F(xn) has a
cycle with period equal to:

A. 2
B. 3
C. 4

D. 5
E. 1

5. The figure shows the staircase diagram
for the first 40 iterations of a discrete dy-
namical system.

thus, we can conclude that the system
has:

A. an attractive focus.
B. a repulsive focus.
C. a cycle with period 2.
D. a cycle with period 3.
E. a cycle with period 40.

2.8 Problems

1. The sequence obtained in this chapter to calculate square roots,

xn+1 =
1
2

(
xn +

a
xn

)
was already known by the Sumerians, 4000 years ago. Using that method, calculate√

3,
√

15 and
√

234. Use any positive initial value and represent the number a as a
floating-point number (for instance, 3.0), to force Maxima to give its results also as
a floating-point number. In each case, compare the result with the value obtain using
function sqrt() in Maxima.

2. Assume that the current whale population in the world is 1000 and that every year
the normal increase of the population (births minus deaths by natural causes) is 25%.
Assuming that the number of whales killed by fishermen every year remained constant
at 300 during the next years, how will the whale population evolve during the next 10
years?



2.8 Problems 25

3. Compute the first 10 terms of the sequence defined by the equation:

xn+1 = x2
n−2

using the following initial values:

a) x0 = 1
b) x0 = 0.5

c) x0 = 2
d) x0 = 1.999

Discuss the behavior of the sequence in each case.

4. For each function in the following list, the point y = 0 makes part of a cycle for the
system yn+1 = F(yn). Determine the period of the cycle for each case and calculate
the derivative of the function in order to determine whether the cycle is attractive or
repulsive. Draw the staircase diagram of the sequence with initial value 0.

a) F(y) = 1− y2

b) F(y) =
π

2
cosy

c) F(y) =−1
2

y3− 3
2

y2 +1

d) F(y) = |y−2|−1

e) F(y) =− 4
π

arctg(y+1)

5. Find the fixed points and the cycles with period 2 of the dynamical system:

yn+1 = F(yn)

and classify each point and cycle as attractive or repulsive, for each of the following
cases:

a) F(y) = y2− y
2

b) F(y) =
2− y
10

c) F(y) = y4−4y2 +2

d) F(y) =
π

2
siny

e) F(y) = y3−3y

f) F(y) = arctg(y)

In each case, start by drawing a staircase diagram using the function staircase and
use it to find out the position of the fixed points and cycles; use the option domain
to get a better overview of the position of the fixed points. Then try to find the points
analytically. In some cases that will not be possible and the result will have to be
obtained approximately from the plots.

6. Considering the sequence xn+1 = |xn−2|
a) Find all the fixed points. Show those points in a plot of the functions F(x) = |x−2|

and G(x) = x.
b) Explain the kind of sequence that will be obtained if x0 were a integer, either even

or odd.
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c) Find the solution for the initial value 8.2.
d) Find all the cycles with period two. Show all the points in those cycles in a plot of

the functions F2(x) and G(x) = x.

7. Consider the function

F(x) =
{

2x , if x≤ 1
4−2x , if x≥ 1

a) Show that F(x) is equivalent to 2−2|x−1|.
b) Plot, in the same graph, the functions F(x), F2(x), F3(x) and G(x) = x. What can

you conclude about the fixed points and cycles of the system xn+1 = F(xn)?
c) Make a table or plot a graph of n against xn, between n = 0 and n = 100, for each

of the initial values 0.5, 0.6, 0.89, 0.893 and 0.1111111111. Discuss the results
obtained.

d) In the previous item, the sequence remains constant, starting at n = 55, for each
of the initial values. Compute again the sequences obtained in the last item, using
the following program, which uses higher numerical precision than the function
evolution from the dynamics module.

evolution60(f, x0, n) :=
block([x: bfloat(x0), xlist:[0, x0], fpprec: 60],
for i thru n
do (x: ev(f), xlist: append(xlist, [i, float(x)])),
openplot_curves([["plotpoints 1 nolines"], xlist])
)

what can you conclude?
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In this chapter we will use the abbreviated notation ẋ, ẍ, . . . to represent the time derivatives
of a time-dependent function x(t). The derivatives of a function y(x), with respect to x,
will be represented as y′, y′′, . . . . Consider for example:

ẋ =
dx
dt

ẍ =
d2x
dt2 y′ =

dy
dx

y′′ =
d2y
dx2 (3.1)

In Maxima those four derivatives are represented in this form:
diff(x,t) diff(x,t,2) diff(y,x) diff(y,x,2)

3.1 First-order differential equations

An ordinary differential equation (ODE) is an equation involving a function of only
one variable, for instance y(x), and its derivatives; the variable x may also appear in the
equation. If the only derivative appearing in the equation is the first-order derivative, the
equation is called a first-order ordinary differential equation. Hence, first-order ODE’s
have the general form F(x,y,y′) = 0, but we will consider only the equations that can be
rewritten as one or several equations with the form

y′ = f (x,y) (3.2)

Two examples of first-order ODE’s are the following:

y′ycos(x) = 3xy2 sin(y)
ẏ = 3−5y− y

the function in question, in both cases y, is dubbed dependent variable. The variable on
which the function depends is dubbed independent variable. In the first case above, the
independent variable is x. In the second case, the independent variable does not appear in
the equation, but from the derivative ẏ it becomes clear that the independent variable is t.

A solution of a ODE, in a given interval, is any function f of one variable which satisfies
that equation, when substituted for the dependent variable. A solution of the differential
equation might also be given in implicit form, namely as an implicit function, as we will
see in the example that follows.
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Example 3.1
Show that the implicit function assim, vemos que a equação obtida é a mesma equação
diferencial dada.

x+ y+ exy = 0 (3.3)

is a solution of the first-order differential equation

dy
dx

=−1+ yexy

1+ xexy (3.4)

Solution: from the differential equation, we see that the independent variable is x. In order
to prove that the given implicit function is a solution we will differentiate it in terms of x,
keeping in mind that y is a function that depends on x, and we will show that the equation
obtained is equivalent to the differential equation.

(%i2) eq1: x + y + exp(x*y) = 0$
(%i3) depends(y,x);
(%o3) [y(x)]
(%i4) diff(eq1,x);

x y dy dy
(%o4) %e (x -- + y) + -- + 1 = 0

dx dx
(%i5) solve(%,diff(y,x));

x y
dy y %e + 1

(%o5) [-- = - -----------]
dx x y

x %e + 1

thus, we obtain the same differential equation given in the problem, which proves that the
implicit function is a solution of it.

In the previous example it was necessary to use the command depends to declare that y
is a function that depends on x. If we did not use that command, x and y would be regarded
as independent variables and the derivative of y in terms of x would be replaced by zero,
rather than dy/dx.

In some cases it is possible to find functions which are solutions of a differential equation.
For instance, if the equation had the simple form

y′ = f (x) (3.5)

its solutions would follow from the fundamental theorem of integral calculus

y(x) =
∫

f (x)dx+ c (3.6)

where c is any arbitrary constant.
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There is no general method to find the solutions of any first-order ODE. In some cases the
solutions are known but they are special functions which will have to be evaluated with
approximate numerical methods. Later in this chapter we will study a simple numerical
method to solve differential equations, the Euler method, and at the end of the chapter we
will discuss some particular kinds of differential equations which can be solved analytically.

3.2 Direction fields

It is possible to obtain very important information about the solutions of an equation such
as 3.2 from a simple geometrical analysis of function f (x,y). Function f (x,y) defines, at
each point in the (x,y) plane, the slope that a function y(x) should have in order to be a
solution of the ODE.
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Figure 3.1: Direction field of the equation y′ = y+ x, and the solution that goes though
the point (x0,y0).

A direction field is a plot of the plane (x,y), where at some points it is shown a vector
with slope equal to the value of f (x,y) at that point. Hence, the solutions of the differential
equation must be the curves which are tangent to those vectors. For exmaple, figure 3.1
shows the direction field of the equation y′ = y+x, and one of the solutions of the equation.

The direction field (figure 3.1) makes it clear that there is an infinite number of solutions
to the differential equation. Every curve that can be traced following the direction of the
vectors will be a solution. However, if we fix an initial point (x0),y0) on the plane, and if
the function f (x,y) has a unique value at every point on the (x,y) plane, there will be only
one solution that goes throught that point, because at every point the direction in which the
curve must follow is uniquely defined by the function f (x,y).
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The solution that goes through a given point (x0,y0) is called a particular solution. The
specification of an given point is amounts to imposing a condition for the value y0 that
the solution must have at an initial value of the independent variable, x0. Thus, an initial
value problem consists in finding the particular solution to a differential equation with an
initial condition given:

y′ = f (x,y) y(x0) = y0 (3.7)

To plot the direction field corresponding to equation 3.2 we can use Maxima’s additional
package plotdf. For instance, to plot the direction field for the differential equation
y′ = y+ x we use the following command:
(%i6) plotdf(y + x)$

A new window will be open with a grid of vectors showing the direction field. If you
move the cursor over the field, the (x, y) coordinates of the point where the cursor is will
be shown in the lower right corner of the window. If you click on a point in the field, the
solution that goes through that point will be plotted.
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