
The computational content of atomic

polymorphism

Gilda Ferreira
Universidade Aberta

Rua Braamcamp, 90, 1250-052 Lisboa, Portugal
gmferreira@fc.ul.pt

Vasco T. Vasconcelos
LaSIGE, Departamento de Informática,

Faculdade de Ciências da Universidade de Lisboa
Campo Grande, Ed. C6, 1749-016, Lisboa, Portugal

vv@di.fc.ul.pt

November 6, 2018

Abstract

We show that the number-theoretic functions definable in the atomic
polymorphic system (Fat) are exactly the extended polynomials. Two
proofs of the above result are presented: one reducing the functions’ defin-
ability problem in Fat to definability in the simply typed lambda-calculus
(λ→) and other directly adapting Helmut Schwichtenberg’s strategy for
definability in λ→ to the atomic polymorphic setting. The uniformity
granted in the polymorphic system, when compared with the simply typed
lambda-calculus, is emphasized.

Keywords. Predicative polymorphism, representable functions, lambda-calculus,
normalization, β-equality, extended polynomials.

MSC. 03F03, 03F07, 03B40.

1 Introduction

The atomic polymorphic system (Fat) is the extension of the simply typed
lambda-calculus (λ→) via universal quantification over atomic types. An al-
ternative way to present the system, which explains the acronym Fat, is as the
predicative restriction of Jean-Yves Girard system F [9], which keeps the types
unchanged but (severely) restricts the universal application to atomic types.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade Aberta

https://core.ac.uk/display/288864806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

System Fat was introduced (independently) by Fernando Ferreira in [2] and
by Daniel Leivant in [11]1. In [2] it was shown that the calculus is expressive
enough to embed full intuitionistic propositional logic (IPC). Recent research
on Fat (see [3, 4, 6, 7]) has revealed some nice proof-theoretical properties of the
system. The study in the present paper relies on the following three properties
of Fat: i) the strong normalization property, ii) the Church-Rosser property,
and iii) the subformula property (for normal derivations). Properties i) and
ii) are inherited from Girard’s system F (see [3, 5] for predicative/elementary
proofs of i) in the context of Fat); property iii) is proved in [2]. Note that
the subformula property is not available in system F where there is no sensible
notion of subformula.

Frequently, in presentations about system Fat, the following question arises:

“What is the computational content of the system?”

In the present paper we answer the above question by characterizing the
class of numeric functions representable within Fat.

It is known that the functions numeralwise representable in the simply typed
lambda-calculus are exactly the extended polynomials [14] and that the class
of functions representable in system F is the class of functions provably total
in full second-order Peano arithmetic [9]. Given the weak amount of polymor-
phism available in Fat

2 when compared with the impredicative polymorphism
of system F (and previous research on stratified intermediate systems, see for
example [10]) we had no doubt Fat would have a modest computational (descrip-
tive) power. Are there functions representable in Fat which are not representable
in λ→? We show that the answer is “No”.

We prove that the functions definable in Fat are exactly the extended polyno-
mials by reducing the functions’ definability problem in Fat to the homologous
problem in the simply typed lambda-calculus where the computational content
is already known (result independently due to Helmut Schwichtenberg [14] and
Richard Statman [16]). Although Schwichtenberg-Statman’s result concerning
the computational content of λ→ appears in several articles and books, only
the converse implication is usually sketched and the proof that “If a function is
representable in λ→ it is an extended polynomial” is redirected to [14]. We were
not able to find Schwichtenberg’s argument [14] (originally written in German),
published in English. In order to give visibility to Schwichtenberg’s ingenious
strategy and to have an alternative self-contained proof of our main result — the
computational content of atomic polymorphism — we present a second proof
of it, with a direct argument, adapting Schwichtenberg’s proof in [14] to our
polymorphic fragment.

The paper is structured as follows:

1The use of the expression Fat for “Atomic Polymorphism” to designate the system was
coined in [3].

2Although weak it seems that the amount of polymorphism available in Fat already makes
the system undecidable (see section 8 in [12]).

2

In Section 2 (Preliminaries) we briefly describe system Fat and establish
some concepts and results needed throughout the article, including the repre-
sentation of natural numbers in Fat via Church numerals. In Section 3 we char-
acterize the functions representable in the atomic polymorphic system. More
precisely, we show that the extended polynomials can be defined within Fat

and prove via a reduction to λ→ the converse (main result): any function rep-
resentable in Fat is an extended polynomial. Section 4 has some final remarks.
We finish the paper with an appendix where we give a direct proof of the com-
putational content of Fat adapting Schwichtenberg’s argument to the atomic
polymorphic setting.

2 Preliminaries

We start by briefly describing the atomic polymorphic system Fat [3], presenting
it in the (operational) λ-calculus style.

Types in Fat are exactly the types in Girard system F.

Definition 1. Types are constructed from atomic types (propositional constants
P , Q, R, . . . and second-order type variables X, Y , Z, . . .) by means of two
type-forming operations, → and ∀, in the following way:

(i) Atomic types are types.

(ii) If A and B are types then A→ B is a type.

(iii) If A is a type and X is a type variable then ∀X.A is a type.

By regarding types as formulas (Curry-Howard isomorphism), we have the
usual definitions of free and bound (type) variables in a type. As usual, the
bound variables in a type can be freely renamed. Being A a type, X a type
variable and C an atomic type, we write A[C/X] for the type obtained from A
by substituting the free occurrences of X in A by C (if C is itself a variable, we
may assume that it is free for X in A).

We define the height h(A) of a type A by: h(A) := 0 if A is an atomic type;
h(A→ B) := max(h(A), h(B)) + 1; h(∀X.A) := h(A) + 1.

Terms in Fat are generated by the following clauses:

(i) For each type A there are countably infinite many (assumption) variables
of type A: xA, yA, zA, etc. Assumption variables are terms.

(ii) If tA→B and qA are terms of types A → B and A, respectively, then
(tA→BqA)B is a term of type B. (arrow application)

(iii) If tB is a term of type B and xA is an assumption variable of type A, then
(λxA.tB)A→B is a term of type A→ B. (arrow abstraction)

(iv) If t∀X.A is a term of type ∀X.A and C is an atomic type, then (t∀X.AC)A[C/X]

is a term of type A[C/X]. (universal application)

3

(v) If tA is a term of type A and the type variable X is not free in the type
of any free assumption variable of tA, then (ΛX.tA)∀X.A is a term of type
∀X.A. (universal abstraction)

Our formalism has rigid typing, i.e., every term has a fixed type. We write
rA to denote that the term r is of type A. When the type is clear from the
context, or need not be specified, we simply write r. We presuppose as known
the notion of the set of free (assumption and type) variables of a term r, denoted
by FV(r). We consider all expressions modulo renaming of bound variables. We
also presuppose as known the notion of substitution of a free assumption variable
xA in a term r by a term sA, denoted by r[s/x], and the notion of substitution
of a free type variable X in a term rB by an atomic type C, denoted by r[C/X]
(of type B[C/X]). We always assume that there are no clashes of variables
in the substitutions (if needed, bound variables are renamed). Details can be
found in [3], pages 261–263.

Note that Fat differs from Girard system F in clause (iv) of the generation
of terms above: universal application is restricted to atomic types, as opposed
to system F, where it is available to any type whatsoever. Since in F we can in-
stantiate the universal types ∀X.A by any type D (however complex), obtaining
A[D/X], Girard’s system (as we mentioned in the Introduction) has no sensible
notion of subformula. In contrast, there is a natural notion of subformula in
system Fat: the immediate subformulas of ∀X.A are the formulas of the form
A[C/X], where C is an atomic type (free for X in A). Formally:

Definition 2. The subformulas of a type A are defined by:

(i) A is a subformula of A.

(ii) If B → C is a subformula of A then B and C are both subformulas of A.

(iii) If ∀X.B is a subformula of A then B[C/X] is a subformula of A, for all
atomic type C free for X in B.

In analogy with the system F, we have two β-conversions:

(λx.t)s t[s/x]
(ΛX.t)C t[C/X].

The left hand side of a conversion is called its redex and the right hand side
its contractum.

Definition 3. A term t reduces to a term q (we write t � q) if there is a
sequence of conversions from t to q, i.e., a sequence t ≡ u0, u1, . . . , un ≡ q, such
that for i = 0, 1, . . . , n − 1, ui+1 is obtained from ui by replacing a redex by
its contractum. A term is normal if it has no redexes and so we can not apply
any further conversion. A term t is strongly normalizable if all the reduction
sequences starting with t have finite length.

4

In what follows, nothing being stated otherwise, by a normal term (or a term
in normal form) we mean a β-normal term, i.e., a normal term considering the
β-conversions above (a term which does not contain β-redexes).

It is well-known that system Fat enjoys the strong normalization property,
the Church-Rosser property and the subformula property [2, 3]. From the strong
normalization property and the Church-Rosser property we know that a normal
form of a term exists and is unique. We recall here the formulation of the
subformula property in the (operational) λ-calculus notation.

Proposition 1. Let tA be a normal term in Fat. Then the type of every sub-
term3 of t is a subformula of A or is a subformula of the type of a free assumption
variable of t.

Note that the natural numbers are not primitive in the atomic polymorphic
system. Since the goal of the present paper is to characterize the numeric
functions definable in such system, we need to know how to represent the natural
numbers within Fat.

Trivially, being the simply typed lambda-calculus a subset of Fat, a repre-
sentation of natural numbers in λ→ (for instance, via Church numerals indexed
by a certain type A, n̄A :≡ λyA→AλxA. y(y(. . . (y︸ ︷︷ ︸

n times

x) . . .)) – see Section 4.1) could

be adopted in Fat. But Fat allows for the following unified representation of
the natural numbers, we will use throughout the paper.

The natural numbers are represented in Fat by the Church numerals

n̄ :≡ ΛX λyX→XλxX . y(y(. . . (y︸ ︷︷ ︸
n times

x) . . .)), ∀n ∈ N0.

Notice that the Church numerals are closed, normal terms in Fat of type

Int :≡ ∀X.(X → X)→ (X → X).

Moreover, as we see in Proposition 2 below, the Church numerals almost
exhaust the closed, normal terms that inhabit Int. First some auxiliary results.

Lemma 1. A term in Fat is normal if and only if it is of the form

l c1 . . . l cn.zs1 . . . sm (†)

where n ≥ 0, m ≥ 0, l ci is either λxAi
i or ΛXi; z is an assumption variable

and each si is either a normal term or an atomic type.

Proof. It is clear that every term of the form (†) is in normal form.
For the converse, let t be a term in normal form. We show, by induction

on t, that t is of the form (†). If t is a variable then it is of the form (†) with
n = m = 0.

3A subterm of a term t is a subsequence of the symbols of t which is itself a valid term.

5

Case t :≡ rs. Since t is normal, we know that r and s are normal terms.
Applying the induction hypothesis to r, we know that r is of the form (†). But
t is normal, so r can not be an abstraction. Thus, n = 0, i.e., r is of the form
zs1 . . . sm. Therefore t is itself of the form (†). Case t :≡ rC is entirely similar.

Case t :≡ λxA.r (or t :≡ ΛX.r). Since t is normal we have that r is normal.
So, by induction hypothesis, r is of the form (†). It follows immediately that t
is also of the form (†).

Corollary 1. Let tA be a normal term:

(i) If the types of the free assumption variables of t have height strictly smaller
than the height of A then t is an abstraction.

(ii) If t is closed then t is an abstraction.

Proof. (i) The proof is done by contraposition. Suppose that tA is a normal
term which is not an abstraction. We want to prove that at least one free
assumption variables of t has type with height greater than or equal to the
height of A. By Lemma 1, tA ≡ zBs1 . . . sm, with m ≥ 0. We prove by
induction on n ≤ m that the height of the type of z (i.e., h(B)) is greater than
or equal to the height of the type of zs1 . . . sn. If n = 0 then zs1 . . . sn ≡ z and
the result is clear. Suppose that the result is valid for n (with n < m), i.e.,
h(B) ≥ h(type of zs1 . . . sn). Let us prove that h(B) ≥ h(type of zs1 . . . sn+1).
Since (zs1 . . . sn)sn+1 is a term, zs1 . . . sn has type D → E in which case sn+1

has type D and (zs1 . . . sn)sn+1 has type E, or zs1 . . . sn has type ∀X.D in which
case sn+1 is an atomic type and (zs1 . . . sn)sn+1 has type D[sn+1/X]. In both
cases h(type of zs1 . . . sn) > h(type of (zs1 . . . sn)sn+1) and since by induction
hypothesis h(B) ≥ h(type of zs1 . . . sn) we have h(B) > h(type of zs1 . . . sn+1).

(ii) It is a particular case of (i).

Proposition 2. The closed normal terms of Fat of type Int are exactly the
numerals n̄ for all n ∈ N0 and the term ΛXλyX→X .y.

Proof. It is immediate that the numerals n̄ and the term ΛXλyX→X .y are
closed normal terms of Fat of type Int. Let us prove the converse inclusion.
Take tInt a closed normal term of Fat. Applying Lemma 1/Corollary 1 and the
fact that t has type ∀X.(X → X) → (X → X), we can deduce that t has the
form ΛXλyX→X .y or ΛXλyX→XλxX .rX . Since r has type X, r can not be an
abstraction.

Let us prove, by induction, that r has the form

y(y(. . . (y︸ ︷︷ ︸
n times

x) . . .)), with n ∈ N0.

Suppose, in order to get a contradiction, that r ≡ vu (arrow application)
or r ≡ vC (universal application) with v 6= y. Since r is normal and v 6= y, v
must be of the form v′u′ or v′C ′. Note that v′ would be normal and, because
t is a closed term, the only possible free assumption variables of v′ would be

6

xX and/or yX→X . But h(X) = 0 and h(X → X) = 1, both strictly less than
the height of the type of v′ which would be greater or equal than 2. Thus, by
Corollary 1, v′ is an abstraction. Contradiction, because v is normal.

Therefore, r ≡ x in which case t corresponds to the numeral 0̄, or r ≡
yX→XsX and we apply the induction hypothesis to sX .

In the next definition, by =β , we mean β-equality of terms, i.e., two terms
are β-equal if they have the same β-normal form.

Definition 4. A function f : Nk0 → N0 is representable (or definable) in Fat

if there is a closed term t in Fat such that

t n1 . . . nk =β f(n1, . . . , nk), ∀n1, . . . , nk ∈ N0.

Note that the definition of a function being definable in the simply typed
lambda-calculus only differs from the above definition in considering the Church
numerals over a fixed type.

We end this preliminary section with the definition of the class of extended
polynomials.

Definition 5. The class of the extended polynomials is the smallest class of
functions in N0 which contains:

(a) the unary constant functions

(b) the projections

(c) addition

(d) multiplication

(e) the discriminator function d(n,m, i) =

{
n if i = 0
m if i 6= 0,

and is closed under composition.

3 Functions representable in Fat

Not surprisingly, taking in account the expressiveness of the simply typed lambda-
calculus, we have that:

Theorem 1. The extended polynomials are representable in Fat.

Proof. It is easy to prove that the terms:

a) λuIntΛXλyX→XλxX . y(. . . (y︸ ︷︷ ︸
m times

x) . . .)

b) λuInt1 . . . λuIntk .ui

7

c) λuIntλvIntΛXλyX→XλxX .(uXy)(vXyx)

d) λuIntλvIntΛXλyX→X .(uX)(vXy)

e) λuIntλvIntλwIntΛXλyX→XλxX .(wX)(λzX .vXyx)(uXyx)

represent respectively:

a) the constant functions Cm(n) := m, ∀n ∈ N0

b) the projections pi(n1, . . . , nk) := ni

c) addition

d) multiplication

e) the discriminator function d(n,m, i) =

{
n if i = 0
m if i 6= 0.

We illustrate such proof with the case of multiplication. Let t be the term
λuIntλvIntΛXλyX→X .(uX)(vXy).

tn̄m̄ =β ΛXλyX→X .(n̄X)(m̄Xy)

=β ΛXλyX→X .(λfX→XλzX . f(. . . (f︸ ︷︷ ︸
n times

z) . . .))(λwX y(. . . (y︸ ︷︷ ︸
m times

w) . . .))

=β ΛXλyX→XλzX . (λwX y(. . . (y︸ ︷︷ ︸
m times

w) . . .))(. . . ((λwX y(. . . (y︸ ︷︷ ︸
m times

w) . . .))

︸ ︷︷ ︸
n times

z) . . .)

=β ΛXλyX→XλzX . y(. . . (y︸ ︷︷ ︸
n·m times

z) . . .)

≡ n ·m, ∀n,m ∈ N0.

To complete the proof it is enough to show that the class of functions
representable in Fat is closed under composition. Let g, h1, . . . , hm be func-
tion representable in Fat by the terms tg, th1

, . . . , thm
respectively. Let f be

the function defined by f(n1, . . . , nk) := g(h1(n1, . . . , nk), . . . , hm(n1, . . . , nk)).
Easily one can check that the function f is representable in Fat by the term
λuInt1 . . . λuIntk .tg(th1

u1 . . . uk) . . . (thm
u1 . . . uk).

Let us prove that the converse of Theorem 1 is also true (Theorem 2 below).
First we present an auxiliary lemma.

Lemma 2. Let tX→X be a normal term in Fat of type X → X such that
FV(t) ⊆ {uInt, vInt, X, yX→X}, with u, v, y assumption variables and X a type
variable. Then the subterms of t of type X → X are of the form: a) yX→X , b)
uXs or vXs, with s a subterm of t of type X → X or c) λxX .s1(. . . (skx

′) . . .),
where s1, . . . , sk may be the empty sequence, x′ may be x and si (i ∈ {1, . . . , k})
results from a) or b).

Proof. Let tX→X be a normal term in Fat such that

8

(δ1) FV(t) ⊆ {uInt, vInt, X, yX→X}.

We are going to use the following Facts:

(δ2) Each subterm of t has type ∀X.(X → X) → (X → X) or (C → C) →
(C → C) or C → C or C, with C an atomic type.4

(δ3) If xA is a bound variable in t then there exists pB such that λxA.pB is a
subterm of t of type A→ B.

(δ4) If srA (sC respectively) is a subterm of t of type B (B[C/X] respectively)
then s is a subterm of t of type A→ B (∀X.B respectively).

(δ5) If rA is a proper subterm of t which is an (arrow or universal) abstraction
then there exists s a subterm of t of type A′ → B with A a subformula of
A′.5

Let us prove that the subterms of t of type ∀X.(X → X) → (X → X) are
u or v. Let r∀X.(X→X)→(X→X) be a subterm of t. The term r is not an arrow
abstraction because the types do not match. By Facts (δ5) and (δ2), r is not a
universal abstraction. By Facts (δ4) and (δ2), r is not an (arrow or universal)
application. And by Facts (δ3) and (δ2), r is not a bound variable in t. If
r ∈ FV(t), by the hypothesis (δ1) r ≡ u or r ≡ v.

Let us prove that the subterms of t of type (X → X) → (X → X) are uX
or vX. Let r(X→X)→(X→X) be a subterm of t. By the hypothesis (δ1), r is
not a free variable in t and, by Facts (δ3) and (δ2), r is not a bound variable
in t. By Facts (δ5) and (δ2), r is not an arrow abstraction and, because the
types do not match, r is not a universal abstraction. By Facts (δ4) and (δ2), r
is not an arrow application. If r ≡ sC, we know that s is a subterm of t of type
∀X.(X → X)→ (X → X) (and so, from what we proved before, s has to be u
or v) and C ≡ X. Therefore, r ≡ uX or r ≡ vX.

We prove now that the subterms of t of type X → X are of the form: a)
yX→X , b) uXs or vXs, with s a subterm of t of type X → X or are of the form
c) λxX .s1(. . . (skx

′) . . .), where s1, . . . , sk may be the empty sequence, x′ may
be x and si (i ∈ {1, . . . , k}) results from a) or b). Let rX→X be a subterm of t.
The term r is not a bound variable because, by Facts (δ3) and (δ2), λrX→X .p
would be a subterm of t of type (X → X) → (X → X), which is not the case
since it differs from uX and vX. The term r is not a universal abstraction
because types do not match. By Fact (δ2), and because types do not match, r
is not a universal application. If r is a free variable of t, by the hypothesis (δ1),
r ≡ y [assertion a)]. If r ≡ pp′, by Facts (δ4) and (δ2), p is a subterm of t of
type (X → X)→ (X → X). Thus p ≡ uX or p ≡ vX. And p′ is a subterm of t
of type X → X [assertion b)]. It remains to analyse r ≡ λxX .wX . It is easy to

4Immediate by the subformula property (see Proposition 1) and (δ1).
5Note that because t is normal and rA 6= t, we have that λx.r or ΛX.r or s′r are subterms

of t. Given the incompatibility of types, the two former cases are still proper subterms of t.
Easily we can see that r occurs in t in the form s(lc1 . . . lcn.r) with n ≥ 0 and lci either λxi
or ΛXi.

9

argue that a subterm w of t of type X which occurs in t in the form λxX .wX

or zX→XwX is of the form
w ≡ x′X or w ≡ wX→X1 w′X1

with w1 resulting from a) or b). Just notice that, since types do not match,
w can not be an (arrow or universal) abstraction and w can not be a universal
application because again, by Fact (δ2), types do not match. So w is a variable
(say x′) or w ≡ w1w

′
1 and by Fact (δ2) w1 has type X → X and w′1 has

type X. Since w1 is not a λ-abstraction (t is normal), w1 results from a) or
b). By induction on the complexity of the terms we prove that wX has the
form sX→Xn (. . . sX→X1 x′X) with si resulting from a) or b). If w is a variable
just take n = 0. If w ≡ wX→X1 w′X1 , by induction hypothesis we know that
w′X1 ≡ sX→Xn (. . . sX→X1 x′X). So w ≡ wX→X1 (sX→Xn (. . . sX→X1 x′X)) has the
desired form.

Theorem 2. If f is a function representable in Fat then f is an extended
polynomial.

Proof. Let f be a binary (for ease of notation) function representable in Fat. Fix
tInt→(Int→Int) a closed term in Fat such that tn̄m̄ =β f(n,m), for all n,m ∈ N0.

Since Fat has the strong normalization and Church-Rosser properties, w.l.o.g
we may assume that t is normal.

Being t a closed normal term of type Int → (Int → Int), by Corollary 1
(ii) and Lemma 1 we know that t has the form λuIntλvInt.r, where i) r ≡ u or
r ≡ v or ii) r ≡ ΛX.uX or r ≡ ΛX.vX or r ≡ ΛXλyX→X .t′X→X , with t′ a
normal term in Fat of type X → X such that FV(t′) ⊆ {uInt, vInt, X, yX→X}.
Applying Lemma 2 we have that t′ has the form: a) yX→X , b) uXs or vXs,
with s subterm of t′ of type X → X or the form c) λxX .s1(. . . (skx

′) . . .), where
s1, . . . , sk may be the empty sequence, x′ may be x and si (i ∈ {1, . . . , k})
results from a) or b).

Now that the possible forms for the term t were revealed, we see that in case
ii) the variables u and v occur in t in the form uX and vX, i.e., t has the form

λu∀X.(X→X)→(X→X)λv∀X.(X→X)→(X→X)ΛXλyX→XλxX .F (y, x, uX, vX),
where λy, λx may be absent (and subsequently the variables y and x) and F
has no universal abstractions and no universal applications.

This allow us to reduce definability in Fat to definability in λ→ as follows:
Since, tn̄m̄ =β f(n,m) we have that tn̄m̄X =β f(n,m)X . In the latter

equality just notice that the Church encoding of n ∈ N0 in λ→, fixing the
type X, denoted by n̄X is β-equal to n̄X where n̄ is the Church encoding
of n in Fat. In case i) the functions represented are the projections which
are extended polynomials. In case ii) we have that f(n,m)X =β tn̄m̄X =β

λyX→XλxX .F (y, x, n̄X, m̄X) =β λy
X→XλxX .F (y, x, n̄X , m̄X) =β

(λu(X→X)→(X→X)λv(X→X)→(X→X)λyX→XλxX .F (y, x, u, v))n̄Xm̄X .
Since λu(X→X)→(X→X)λv(X→X)→(X→X)λyX→XλxX .F (y, x, u, v) is a closed

term in λ→, we have that the binary function f is representable in the simply
typed lambda-calculus. By Schwichtenberg-Statman’s result [14, 16], we know
that f is an extended polynomial.

10

From Theorems 1 and 2, we conclude that the functions representable in Fat

are exactly the extended polynomials.

4 Final Remarks

1) In the simply typed lambda calculus, because there is no quantification over
types, the Church numerals depend on a fixed type, i.e., for each type A there
is a term n̄A :≡ λyA→AλxA. y(y . . . (y︸ ︷︷ ︸

n times

x) . . .)). Therefore, the representation of

the natural number n in λ→ is not unique, there is a different representation of
n for each type A.

As we saw in the previous section, in terms of computational content, atomic
polymorphism yields no gain over λ→ (both exactly represent the extended
polynomials) but there is a gain in uniformity: natural numbers in Fat can
have a unique representation instead of having to be indexed by a fixed type.
Moreover, the fact that the computational power of Fat does not exceed the
computational power already available in the simply typed lambda calculus
may seem at first glance a disappointing result but it is exactly the opposite.
System Fat was not proposed for computational reasons but as a natural and
appealing framework for full intuitionistic propositional calculus (IPC) [2, 3].
Fat expresses the connectives of IPC in a uniform way avoiding bad connectives
(“bad” according to Girard [9], page 74) and avoiding commuting conversions.
This explains the usefulness of the system in proof theoretical studies. Not
exceeding logic shows that Fat is not stronger than it should be, being one
more indicator that it is a natural choice as a framework for full IPC.

2) It is known that the descriptive power of simply typed lambda-calculus can
be increased once we allow different representations of natural numbers (more
precisely, Church numerals over different types) to be intermixed in the same
term [17].6 For instance exponentiation is definable in λ→ once we represent
the base as a numeral of type X and the exponent as a numeral of type X → X
and we read the output as a numeral of type X. Note that the representation
of a number in this framework depends on its place in the input/output of the
function. As we argue next, this lack of uniformity can be avoided once we work
in a predicative extension of Fat (we denote by Fqf) instead of λ→. Fqf , is the
calculus which differs from Fat only in the universal application: a term t∀X.A

can be applied to any type F (not only to atomic types) as long as F has no
universal quantifications. The strong normalization property, the Church-Rosser

6The functions described as in Definition 5 but including the predecessor and exponen-
tiation as initial functions can be represented in λ→ once we allow Church numerals over
different types (more precisely, Church numerals n̄Ai

(for i ≥ 0) with A0 an atomic type and
Ai+1 :≡ Ai → Ai). The previous calculus is however not able to represent subtraction (see
[8]). Thus the number-theoretic functions representable in this calculus is a proper subset of
the elementary functions.

11

property and the subformula property still hold in Fqf . Representing the natural
numbers in Fqf exactly as in Fat (as n̄ :≡ ΛXλyX→XλxX . y(y . . . (y︸ ︷︷ ︸

n times

x) . . .))), we

can define in Fqf , in a uniform way, the functions the enlargement of Definition
5 described in footnote 6. We illustrate with exponentiation.

Let us show that the term t :≡ λuIntλvIntΛX.v(X → X)(uX) is such that
tn̄m̄ =β nm for m > 0.

tn̄m̄ =β ΛX.(m̄(X → X))(n̄X)

≡ ΛX.[(ΛXλyX→XλxX . y . . . (y︸ ︷︷ ︸
m times

x))(X → X)][(ΛXλyX→XλxX . y . . . (y︸ ︷︷ ︸
n times

x))X]

=β ΛX.[λy(X→X)→(X→X)λwX→X . y . . . (y︸ ︷︷ ︸
m times

w)][λyX→XλxX . y . . . (y︸ ︷︷ ︸
n times

x)]

=β ΛXλwX→X .(λyX→XλxX y . . . (y︸ ︷︷ ︸
n times

x)) . . . ((︸ ︷︷ ︸
m times

λyX→XλxX . y . . . (y︸ ︷︷ ︸
n times

x))w)

=β ΛXλwX→X .(λyX→XλxX y . . . (y︸ ︷︷ ︸
n times

x)) . . . (︸ ︷︷ ︸
m times

λzX . w . . . (w︸ ︷︷ ︸
n times

z))

=β ΛXλwX→X .(λyX→XλxX y . . . (y︸ ︷︷ ︸
n times

x)) . . . (︸ ︷︷ ︸
m−1 times

λxX . w . . . (w︸ ︷︷ ︸
n2 times

x))

=β ΛXλwX→XλxX . w . . . (w︸ ︷︷ ︸
nm times

x)

≡ nm.

As a referee pointed out to us, system Fqf corresponds to level 1 (S1F2) of
the finitely stratified polymorphic lambda calculus (SF2) of Leivant (see [10]).
Statman in [15] was the first to introduce stratification of type abstraction in the
polymorphic lambda calculus and to state that every super-elementary function
is representable in such a stratified system. A proof that the definable functions
in SF2 correspond exactly to the class E4 of the Grzegorczyk’s hierarchy can
be found in [10]. It seems that the class of functions representable in S1F2

is properly contained in the class E3 of the Grzegorczyk’s hierarchy, i.e., the
Kalmár elementary functions (see [10, 1]).

3) There is an alternative way to represent the natural numbers in Fat (see
[17] page 349 and [9] page 89 in the context of simply typed lambda-calculus
and system F respectively), namely through Church numerals of the form

n̄∗ :≡ ΛXλxXλyX→X . y(. . . (y︸ ︷︷ ︸
n times

x) . . .) of type Int∗ :≡ ∀X.X → (X → X) →

X. With this latter representation we get the elegant result ([9] page 121):
the closed normal terms of type Int∗ are exactly the numerals n̄∗. [Com-
pare the previous result with Proposition 2.] Thus, a closed term t of type
Int∗ → (Int∗ → (. . . → Int∗)) always represents a function on the natu-
ral numbers. Although the Int representation seems particulary suitable in
some concrete situation, e.g. in the construction of certain terms to capture
particular functions or in the proof of Theorem 2 (see the Appendix in the
end of the present paper where we present a self-contained proof of Theorem
2) we can anyway present our main result in the Int∗ representation. Note

12

that there is a translation from the Int to the Int∗ representation (and vice
versa) via the terms rInt

∗→Int ≡ λuInt
∗
ΛXλyX→XλxX .uXxy and sInt→Int∗ ≡

λvIntΛXλxXλyX→X .vXyx, which satisfy rn̄∗ =β n̄ and sn̄ =β n̄∗. Focusing
in the alternative proof in the Appendix, we see that we could have started by
fixing a closed term t of type Int∗ → (Int∗ → Int∗) which represents a function,

say f , i.e. tn̄∗m̄∗ =β f(n,m)
∗
. Taking the term t′ :≡ λxInt1 λxInt2 .r(t(sx1)(sx2))

of type Int→ (Int→ Int) which is such that t′n̄m̄ = f(n,m) we could proceed
as in the above mentioned proof to conclude that f is an extended polynomial.

4) In the present paper we consider β-equality in the characterization of the
functions representable in Fat. We could have worked with βη-equality instead,
i.e., taking for equality normal forms considering not only the β but also the η-
conversions. Note that the η-conversions in the context of Fat are: λx.tx t,
with x /∈ FV(t) and λX.tX t, with X /∈ FV(t). Using βη-normal terms,
the natural number 1 should be represented by 1̄ :≡ ΛXλyX→X .y instead of
ΛXλyX→XλxX .yx (which is not η-normal). From the self-contained proof of
Theorem 2 in the Appendix it is straightforward to see how we could adapt such
a proof to the βη-equality context (y1 denotes y and not λx.yx). Immediately
from Proposition 2, we have that the closed βη-normal terms of type Int are
exactly the numerals n̄ for all n ∈ N0 (with 1̄ :≡ ΛXλyX→X .y).7

Funding

This work was supported by Fundação para a Ciência e a Tecnologia [UID/MAT/
04561/2013, UID/CEC/00408/2013 and grant SFRH/BPD/93278/2013 to G.F.].
The first author is also grateful to Centro de Matemática, Aplicações Fun-
damentais e Investigação Operacional and to Large-Scale Informatics Systems
Laboratory (Universidade de Lisboa).

Acknowledgements

The first author is grateful to Fernando Ferreira for interesting discussions in
the topic of the paper. Both authors thank the anonymous referees for useful
comments and suggestions which significantly improved the paper.

References

[1] Aehlig, K., Johannsen, J., An elementary fragment of second-order lambda-
calculus, ACM T. Comput. Log., Vol. V, No. N, 1–13 (2004).

[2] Ferreira, F., Comments on predicative logic, J. Philos. Logic, 35, 1–8 (2006).

7Note that a closed βη-normal term is, in particular, a closed β-normal term.

13

[3] Ferreira, F., Ferreira, G., Atomic polymorphism, J. Symbolic Logic, 78(1),
260–274 (2013).

[4] Ferreira, F., Ferreira, G., The faithfulness of Fat: a proof-theoretic proof,
Studia Logica, 103(6), 1303-1311 (2015).

[5] Ferreira, F., Ferreira, G., An elementary proof of strong normalization for
atomic F, Bulletin of the Section of Logic, 45(1), 1–15 (2016).

[6] Ferreira, G., Rasiowa-Harrop disjunction property, Studia Logica, 105(3),
649–664 (2017).

[7] Ferreira, G., Eta-conversions of IPC implemented in atomic F, Logic Jnl
IGPL, 25(2), 115–130 (2017).

[8] Fortune, S., Leivant, D., O’Donnell, M., The expressiveness of simple and
second-order type structures, J. Assoc. Comput. Mach., 30(1), 151–185
(1983).

[9] Girard, J.-Y., Lafont, Y., Taylor, P., Proofs and Types. Cambridge Uni-
versity Press (1989).

[10] Leivant, D., Finitely stratified polymorphism, Inform. Comput., 93(1), 93–
113 (1991).

[11] Leivant, D., A foundational delineation of poly-time, Inform. Comput.,
110(2), 391–420 (1994).

[12] Pistone, P., Proof nets and the instantiation overflow property
https://arxiv.org/abs/1803.09297

[13] Prawitz, D., Natural Deduction, 126 pages. Almkvist & Wiskell, Stockholm
(1965). Reprinted in Dover Publications (2006).

[14] Schwichtenberg, H., Definierbare Funktionen im λ-kalkül Mit Typen, Arch.
math. Logik, 17, 113–114 (1976).

[15] Statman, R., Number theoretic functions computable by polynomial pro-
grams (extended abstract), FOCS , 279–282 (1981).

[16] Statman, R., The typed λ-calculus is not elementary recursive, Theor. Com-
put. Sci., 9, 73–81 (1979).

[17] Troelstra, A. S., Schwichtenberg, H., Basic Proof Theory, 417 pages. Cam-
bridge University Press, second edition (2000).

14

Appendix

Instead of reducing the problem of definability of functions in Fat to the ho-
mologous problem in the simply typed lambda-calculus, we could have adapted
Schwichtenberg’s proof of the expressiveness of λ→ to the context of Fat. The
reason to present here such an alternative detailed proof is twofold. Firstly to
bring Schwichtenberg’s argument to a non German reader, turning the present
paper self-contained. Secondly to show explicitly the connection between atomic
polymorphism and the class of extended polynomial allowing a deeper analysis
of the proof (see Final Remarks 3 and 4).

Theorem 2. [alternative proof]
Let f be a binary (for ease of notation) function representable in Fat. Fix

tInt→(Int→Int) a closed term in Fat such that tn̄m̄ =β f(n,m), for all n,m ∈ N0.
Let X be a type variable and uInt, vInt, yX→X assumption variables in Fat.

Since Fat is strongly normalizable and confluent (Church-Rosser property), we
can take for q the normal form of tuvXy. The term q has type X → X and
is such that FV(q) ⊆ {uInt, vInt, X, yX→X}. Applying Lemma 2, we know that
the subterms of q of type X → X are of the form: a) yX→X , b) uXs or vXs,
with s subterm of q of type X → X or are of the form c) λxX .s1(. . . (skx

′) . . .),
where s1, . . . , sk may be the empty sequence, x′ may be x and si (i ∈ {1, . . . , k})
results from a) or b).

In what follows, being yX→X the assumption variable fixed in the beginning
of the proof, we denote by yk, with k ∈ N0, k 6= 1, the term λx. y(y . . . (y︸ ︷︷ ︸

k times

x) . . .).

By y1 we denote the term y or the term λx.yx.
Let us prove, by induction on s (according to the three possible forms a), b)

and c) of subterms of q of type X → X), that:
for all s subterm of q of type X → X there exists a polynomial P such

that s[n̄/u, m̄/v] =β y
P (n,m),∀n,m ≥ 1 or s[n̄/u, m̄/v] is β-equal to a constant

function λw.yP (n,m)z,∀n,m ≥ 1, with z an assumption variable.
Case a) Immediate. yX→X [n̄/u, m̄/v] ≡ y.
Case b) Note that (uXs)[n̄/u, m̄/v] ≡ n̄X(s[n̄/u, m̄/v]). Thus, by induc-

tion hypothesis, there exists a polynomial P (n,m) such that

n̄X(s[n̄/u, m̄/v]) =β n̄XyP (n,m)

≡ (ΛXλyX→XλxX . y(. . . (y︸ ︷︷ ︸
n times

x) . . .))XyP (n,m)

=β λxX . yP (n,m)(. . . (yP (n,m)︸ ︷︷ ︸
n times

x) . . .)

=β yP (n,m)n

or

15

n̄X(s[n̄/u, m̄/v]) =β n̄X(λw.yP (n,m)z)

≡ ([ΛXλyX→XλxX . y(. . . (y︸ ︷︷ ︸
n times

x) . . .)]X). λw.yP (n,m)z︸ ︷︷ ︸
constant function

n>1
=β λx.yP (n,m)z.

(vXs)[n̄/u, m̄/v] can be analysed in a similar way.
Case c) Note that
(λxX .s1(. . . (skx

′) . . .))[n̄/u, m̄/v] ≡ λxX .s1[n̄/u, m̄/v](. . . (sk[n̄/u, m̄/v]x′) . . .). Thus,
by induction hypothesis, two situations may occur: i) no si[n̄/u, m̄/v] is a con-
stant function, in which case

λxX .s1[n̄/u, m̄/v](. . . (sk[n̄/u, m̄/v]x′) . . .) =β λxX .yP1(n,m)(. . . (yPk(n,m)x′) . . .)

=β λxX . y (y (. . . (y︸ ︷︷ ︸
P1(n,m)+...+Pk(n,m)times

x′) . . .))

(i.e., if x = x′ we obtain yP1(n,m)+...+Pk(n,m); if x 6= x′ we obtain the constant
function λxX .yP1(n,m)+...+Pk(n,m)x′)
or ii) si[n̄/u, m̄/v] =β λw.y

Pi(n,m)z is the first constant function, in which case

λxX .s1[n̄/u, m̄/v](. . . (sk[n̄/u, m̄/v]x′) . . .) =β λx
X .yP1(n,m)(. . . (yPi−1(n,m)((λw.yPi(n,m)z)︸ ︷︷ ︸

constant function

(. . .))) . . .)

=β λx
X . y(. . . (y︸ ︷︷ ︸

P1(n,m)+...+Pi(n,m) times

z) . . .)

(again, depending on z being the variable x or not, we have yP1(n,m)+...+Pi(n,m)

or the constant function λxX .yP1(n,m)+...+Pi(n,m)z).
Analogously, we can prove that for all s subterm of q of type X → X, there

exists a polynomial P such that s[0̄/u, m̄/v] =β y
P (m),∀m ≥ 1 or s[0̄/u, m̄/v] is

β-equal to a constant function λw.yP (m)z,∀m ≥ 1. Note that (uXs)[0̄/u, m̄/v]
is now 0̄X(s[0̄/u, m̄/v]) ≡ (ΛXλyX→Xλx.x)X(s[0̄/u, m̄/v]) =β λx.x ≡ y0.

The situation m = 0 and n ≥ 1 admits a mutatis mutandis result.
Immediately from the proofs above, for all s subterm of q of type X → X,

there exists a constant l such that s[0̄/u, 0̄/v] =β y
l or s[0̄/u, 0̄/v] is β-equal to

a constant function λw.ylz.
Applying the previous results to s :≡ qX→X , we conclude that there are

polynomials P1, P2, P3 and a constant l such that

q[n̄/u, m̄/v] =β


yP1(n,m) if n,m ≥ 1
yP2(m) if n = 0,m ≥ 1
yP3(n) if n ≥ 1,m = 0
yl if n = m = 0.

(Note that, since q[n̄/u, m̄/v] has no free variables of type X, it is not a
constant function λw.yP z.)

But

16

q[n̄/u, m̄/v] =β (tuvXy)[n̄/u, m̄/v]

≡ tn̄m̄Xy

=β f(n,m)Xy

≡ (ΛXλyX→XλxX . y(y . . . (y︸ ︷︷ ︸
f(n,m) times

x) . . .))Xy

=β λxX . y(y . . . (y︸ ︷︷ ︸
f(n,m) times

x) . . .)

In the above we are using the fact that tn̄m̄ = f(n,m). See the beginning
of the present proof.

Thus,

f(n,m) =


P1(n,m) if n,m ≥ 1
P2(m) if n = 0,m ≥ 1
P3(n) if n ≥ 1,m = 0
l if n = m = 0

is an extended polynomial.

17

