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Abstract. We present a purely proof-theoretic proof of the existence property
for the full intuitionistic first-order predicate calculus, via natural deduction,

in which commuting conversions are not needed. Such proof illustrates the

potential of an atomic polymorphic system with only three generators of for-
mulas – conditional and first and second-order universal quantifiers – as a tool

for proof-theoretical studies.

1. Introduction

In [5] it was shown that there is a purely proof-theoretic proof of the disjunction
property for the full intuitionistic propositional calculus (IPC), via natural deduc-
tion without the need of commuting conversions. Such a proof relies in a sound and
faithful embedding of IPC into an atomic polymorphic system with only two gen-
erators of formulas – conditional and second-order universal quantifier – denoted
by Fat.

Is it possible to give an alternative proof of the existence property for the full in-
tuitionistic first-order predicate calculus (IQC) in the above commuting conversion-
free manner? We show in this paper that the answer is yes. The atomic polymorphic

system used to interpret IQC, which we denote by FQ
at, was introduced in [3] under

the designation of atomic QSOLi. Such system, which we review in the section be-
low, has three generators of formulas, the conditional and the first and second-order
universal quantifiers.

Using atomic polymorphic systems to avoid complications of the natural deduc-
tion calculus is not a novelty. The defects of the latter calculus were eloquently
exposed in [8]. According to Jean-Yves Girard et al (page 74) ‘The elimination
rules [for ⊥, ∨ and ∃] are very bad.’ and proceed ‘Indeed, we cannot decently work
with the full fragment without identifying a priori different deduction... the need
to add these supplementary rules [referring to the commuting conversions for ⊥,
∨ and ∃] reveals an inadequacy of the syntax.’ Fernando Ferreira coined a simple
and elegant way of avoiding the ‘inadequacy’ of the natural deduction calculus in
the context of IPC presenting in [2] an embedding of IPC into Fat

1 – a pred-
icative system without bad connectives. Several studies in IPC taking advantage
of its embedding into Fat followed. See for example [4, 5, 6, 7]. F. Ferreira and
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the author showed in [3] that the previous embedding could be extended to the
full intuitionistic first-order predicate calculus. More precisely, it is possible to

embed IQC into an atomic polymorphic calculus (FQ
at) with implication and first

and second-order universal quantifiers, i.e., still without bad connectives. In the

present paper, having in view to show that the above embedding into FQ
at can be

a useful tool for IQC, we prove the faithfulness of such embedding and explore

some proof-theoretic properties of FQ
at. Namely, we show that if the translation of

∃x.A is derivable in FQ
at then there is a first-order term t such that the translation

of A[t/x] is derivable in FQ
at. Note that in order to obtain t we do not rely on

commuting conversions. As an illustration of the embedding’s potential we show
that the existence property for IQC can be easily derived from the homologous
property in the atomic polymorphic context. Not surprisingly, in this alternative
proof of the existence property for IQC commuting conversions are absent.

The paper is organized as follows: in Section 2 we review the atomic polymorphic

system FQ
at and the sound translation of IQC into FQ

at and we prove some properties

used in following sections such as strong normalization and faithfulness for FQ
at;

in Section 3, we prove that FQ
at enjoys the existence property and in Section 4

we present an alternative proof of the existence property for IQC, via natural
deduction, without commuting conversions.

2. Atomic polymorphism for IQC

The atomic polymorphic calculus used in this paper is FQ
at, a calculus described

in [3]2, which has first and second-order constants, first-order variables x, y, z,
. . ., sentential variables X, Y , Z, . . . and the connectives: → (conditional), ∀1
(first-order universal quantifier) and ∀2 (second-order universal quantifier). Atomic
formulas are either second-order constants and variables or expressions of the form
P (t1, . . . , tn), where P is a n-ary relational symbol and t1, . . . , tn are first-order
terms. The class of formulas is built in the usual way from atomic formulas, closing
the class under→, ∀1 and ∀2. I.e. if A and B are formulas, x is a first-order variable
and X is a second-order variable then A→ B, ∀1x.A and ∀2X.A are also formulas.
The subscripts in ∀1 and ∀2 are usually omitted. In what follows, the language of

FQ
at will be denoted by L.

The logic of FQ
at is intuitionistic logic that we formulate in the natural deduction

calculus through the usual introduction and elimination rules for →, ∀1 and ∀2:

[A]
.
.
.
B →I

A → B

.

.

.
A ∀1I∀x.A

.

.

.
A ∀2I∀X.A

where x and X do not occur free in any undischarged hypothesis (respectively),

.

.

.
A → B

.

.

.
A →E

B

.

.

.

∀x.A ∀1E
A[t/x]

.

.

.

∀X.A ∀2E
A[C/X]

2In [3], system FQ
at was denoted by atomic QSOLi.
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with t a term (free for x in A), C an atomic formula (free for X in A), and A[β/α]
results from A by replacing all the free occurrences of α by β.

Note the restriction to atomic instantiations in the ∀2E-rule of FQ
at as opposed

to the well-known Girard/Reynold’s impredicative polymorphic system F [8, 10]
which allows instantiation with any (not necessarily atomic) formula. The severe
restriction above reduces enormously the expressive power of the system but has
the advantage of keeping it predicative and with a natural notion of subformula –
the immediate subformulas of the formula ∀X.A are the formulas A[C/X] with C
an atomic formula (free for X in A).

Furthermore, as shown in [3], FQ
at is expressive enough to interpret the (full)

intuitionistic first-order predicate calculus. I.e. via the following Russell-Prawitz

translation ([9, 11]) of formulas from IQC into FQ
at

(P (t1, . . . , tn))∗ :≡ P (t1, . . . , tn), with P a relational symbol and ti terms
(⊥)∗ :≡ ∀X.X
(A→ B)∗ :≡ A∗ → B∗

(A ∧B)∗ :≡ ∀X.((A∗ → (B∗ → X))→ X)
(A ∨B)∗ :≡ ∀X.((A∗ → X)→ ((B∗ → X)→ X))
(∀x.A)∗ :≡ ∀x.A∗
(∃x.A)∗ :≡ ∀X.(∀x.(A∗ → X)→ X),

where X is a second-order variable which does not occur in A∗ nor in B∗,
we have that

if Γ `IQC A then Γ∗ `FQ
at
A∗,

where Γ :≡ A1, . . . , An andA1, . . . , An, A are formulas in IQC and Γ∗ :≡ A∗1, . . . , A∗n.
The soundness proof relies on the phenomenon of instantiation overflow. Instan-

tiation overflow ensures that, from formulas of the form

∀X.X
∀X.((A→ (B → X))→ X)
∀X.((A→ X)→ ((B → X)→ X))
∀X.(∀x.(A→ X)→ X),

it is possible to deduce in FQ
at (respectively)

F
(A→ (B → F ))→ F
(A→ F )→ ((B → F )→ F )
∀x.(A→ F )→ F ,

for any (not necessarily atomic) formula F . See [3] for a detailed proof includ-
ing the algorithmic methods for instantiation overflow. For more information on
instantiation overflow see also [1].

The result below follows easily from the Russell-Prawitz translation:

Lemma 2.1. Let A be a formula in IQC and A∗ its translation into FQ
at. Then

i) A∗ has no second-order free variables.
ii) Second-order universal quantifications in A∗ always occur in one of the

following four specific forms:
a) ∀X.X,
b) ∀X.((D∗ → (E∗ → X))→ X),
c) ∀X.((D∗ → X)→ ((E∗ → X)→ X)) or
d) ∀X.(∀x.(D∗ → X)→ X)
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with D and E formulas in IQC. The formulas in a), b), c) and d) are the

translations into FQ
at of the subformulas of A: ⊥, D ∧E, D ∨E and ∃x.D

respectively.

A normalization theorem for FQ
at can be easily proved in the manner of Theorem

2 of section V of [9]. And normalization for FQ
at (considering β-conversions) is

enough for the purposes of the present paper. However, since the strategy to
prove strong normalization for Fat presented in [4] can be adapted to prove strong

normalization for FQ
at, we sketch here such adaptation showing that FQ

at enjoys the
strong normalization property considering βη-conversions.

By the Curry-Howard isomorphism also known as “formulas-as-types paradigm”,

FQ
at can be presented in the (operational) λ-calculus style. Types in FQ

at are con-
structed from atomic types (second-order constants, second-order variables and
expressions of the form P (t1, . . . , tn), with P a relational symbol and ti first-order
terms) by means of three type-forming operations →, ∀1 and ∀2. I.e. atomic types
are types and if A and B are types, x is a first-order variable and X is a second-

order variable then A → B, ∀x.A, ∀X.A are types. In FQ
at, λ-terms are generated

by the following clauses:

(i) For each type A there are countably infinite many assumption variables of
type A, xA, yA, zA, etc. Assumption variables are λ-terms.

(ii) If tA→B and qA are λ-terms of types A → B and A, respectively, then
(tA→BqA)B is a λ-term of type B.

(iii) If tB is a λ-term of type B and xA is an assumption variable of type A,
then (λxA.tB)A→B is a λ-term of type A → B. A λ-term of this form is
called an arrow abstraction.

(iv) If t∀X.A is a λ-term of type ∀X.A and C in an atomic type, then (t∀X.AC)A[C/X]

is a λ-term of type A[C/X]3.
(v) If tA is a λ-term of type A and the type variable X is not free in the type

of any free assumption variable of tA, then (ΛX.tA)∀X.A is a λ-term of type
∀X.A. A λ-term of this form is called a second-order universal abstraction.

(vi) If t∀x.A is a λ-term of type ∀x.A and q is a first-order term of L then
(t∀x.Aq)A[q/x] is a λ-term of type A[q/x].

(vii) If tA is a λ-term of type A and the first-order variable x is not free in
the type of any free assumption variable of tA, then (Λ1x.t

A)∀x.A is a λ-
term of type ∀x.A. A λ-term of this form is called a first-order universal
abstraction.

Note that (although sometimes represented by the same letters) first-order vari-
ables and assumption variables are distinct entities. Assumption variables are λ-
terms and always have a type associated. Assumption variables never occur in
types. First-order variables are variables of the language L and may occur in λ-
terms, inside or outside its type. First-order variables never have a type associated.
For example, in the λ-term (y∀xAz)A[z/x] of type A[z/x], y is an assumption vari-
able of type ∀xA and x and z are first-order variables. A comment similar to the
previous one may be made apropos first-order terms of L and λ-terms.

3By regarding types as formulas, we have the usual definitions of free and bound variables in a

type. We denote the set of free variables in A by FV(A). We write A[β/α] for the type obtained
from A by substituting the free occurrences of α in A by β. We assume w.l.o.g. that β is free for

α in A. As usual, we can freely rename the bound variables in a type.
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In the inductive definition of the free variables of a λ-term (definition 3 of [4],
page 262), we have now two new clauses: FV(Λ1x.t) :≡ FV(t) \ {x} and FV(tq) :≡
FV(t)∪V(q) with t a λ-term, q a first-order term and V(q) the set of variables in q.
In the replacement of a second-order free variable X in a λ-term t by an atomic type
C, denoted by t[C/X], according to [4] definition 4 page 262, we have two new cases:
(Λ1x.s)[C/X] :≡ Λ1x.(s[C/X]) and (sq)[C/X] :≡ s[C/X]q, with s a λ-term and q
a first-order term. The substitution of a free assumption variable xA in a λ-term t
by a λ-term sA or the substitution of a first-order free variable y in a λ-term t by
a first-order term q are done in the expected way and are denoted by t[sA/xA] and
t[q/y] respectively. For example (Λ1x.t)[q/x] :≡ Λ1x.t; (Λ1x.t)[q/y] :≡ Λ1x.(t[q/y]),
for x 6≡ y and (tq)[sA/xA] :≡ t[sA/xA]q, for q a first-order term.

Note that in FQ
at we have the same conversions we have in Fat plus the following

two (β and η respectively) conversions for Λ1:

(Λ1x.t)q  t[q/x]
Λ1x.(tx)  t, with x /∈ FV(t)

Remember that the strategy in [4] to prove that Fat enjoys the strong normal-
ization property (a simple adaptation of Tait’s convertibility technique) proceeds
as follows: i) we define by induction on the complexity of the types a class Red
of λ-terms of Fat; ii) we prove that all λ-terms in Red are strongly normalizable
considering βη-conversions; iii) we prove that all λ-terms in Fat are in Red.

Remember also that Red is defined in the following way:

For C an atomic type, t ∈ RedC :≡ t is strongly normalizable.
t ∈ RedA→B :≡ for all λ-term s, if s ∈ RedA then ts ∈ RedB .
t ∈ Red∀X.A :≡ for all atomic types C, tC ∈ RedA[C/X].

In the context of FQ
at we only have to add a new clause for first-order universal

quantification:

t ∈ Red∀x.A :≡ for all first-order term s in L, ts ∈ RedA[s/x].

We say that a λ-term is reducible if it belongs to Red and we say that a λ-term
is neutral if it is not of the form λx.t, Λ1x.t or ΛX.t, i.e., it is not an abstraction.

The proof that every λ-term in Red is strongly normalizable follows from the
following lemma (where t � q means that t βη-reduces to q and t �1 q means that
t βη-reduces to q in one step):

Lemma 2.2. RedA satisfies the following three conditions:

(CR 1) If t ∈ RedA then t is strongly normalizable.
(CR 2) If t ∈ RedA and t � t′ then t′ ∈ RedA.
(CR 3) If t is neutral and t′ ∈ RedA for all t′ such that t �1 t

′, then t ∈ RedA.

As a special case of CR 3, we have in particular:

(CR 4) If tA is neutral and normal then t ∈ RedA.

Proof. The proof is by induction on the complexity of the type A. For the atomic,
arrow and second-order universal types, the proof follows exactly as in [4], lemma
1. Let us analyze the type A :≡ ∀x.B.

Take t ∈ Red∀x.B in order to prove that t is strongly normalizable. By defi-
nition of Red∀x.B , tx ∈ RedB . By induction hypothesis, RedB satisfies CR 1, so
tx is strongly normalizable. Clearly, each reduction sequence for t gives rise to a
reduction sequence for tx by applying each term of the sequence to x. Hence, t is
strongly normalizable.
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In order to prove CR 2, let t ∈ Red∀x.B and t � t′. We want to show that
t′ ∈ Red∀x.B . Let q be a first-order term of L. We know that tq ∈ RedB[q/x]. Since
tq � t′q, by induction hypothesis (CR 2, for RedB[q/x]), we have t′q ∈ RedB[q/x].

For condition CR 3, take t∀x.B as in the hypothesis. We want to prove that
t ∈ Red∀x.B . Let q be a first-order term of L. Note that tq is neutral and that the
redexes in tq occur in t (since t is neutral and, hence, not a first-order universal
abstraction). Therefore, any single reduction step from tq has the form t′q with
t �1 t

′. By hypothesis t′ ∈ Red∀x.B , and we get t′q ∈ RedB[q/x]. Applying now the
induction hypothesis (CR 3 for RedB[q/x]), we conclude that tq ∈ RedB[q/x]. �

The proof that all λ-terms of FQ
at are in Red is immediate from Proposition 2.4

below4. First we need an auxiliary lemma:

Lemma 2.3. In FQ
at we have the following:

(i) If for all reducible r of type A, t[r/xA] is reducible, then so is λx.t.
(ii) If for all atomic types C, t[C/X] is reducible and X is not free in the type

of a free assumption variable of t, then ΛX.t is reducible.
(iii) If for all first-order terms s in L, t[s/x] is reducible and x is not free in the

type of a free assumption variable of t, then Λ1x.t is reducible.

Proof. We prove (iii). Assertions (i) and (ii) are proved in a similar way and such
proofs, in the context of Fat, can be found in [4], page 265.

Let us prove that, for all λ-terms t satisfying the conditions of Lemma 2.3 (iii), we
have: For all first-order term q, (Λ1x.t)q is reducible. The proof is by induction on
µ(t), i.e, on a number that bounds the length of every reduction sequence beginning
with t. (Indeed, t is strongly normalizable because t is t[x/x] which, by supposition,
is reducible and hence, by CR 1 is strongly normalizable.)

Fix q a first-order term. Since the λ-term (Λ1x.t)q is neutral, we only have
to show that the one-step reducts from this term are reducible (thanks to CR 3).
Such a one step reduct must be of the form t[q/x], (Λ1x.t

′)q with t �1 t
′ or sq,

when t is sx and x does not occur free in s. In the first case, reducibility follows
from the hypothesis. In the second case, note that µ(t′) < µ(t) and that, for
all first-order terms q, t′[q/x] is reducible (the last assertion uses CR 2). So, by
induction hypothesis, (Λ1x.t

′)q is reducible. The third case reduces to the first
since sq ≡ (sx)[q/x] ≡ t[q/x]. �

Proposition 2.4. Let t be any λ-term (not assumed to be reducible) and suppose
that all the free assumption variables of t are among x1, . . . , xn, of types A1, . . . , An

(respectively). Suppose, in addition, that all the first-order free variables of t are
among y1, . . . , yr and all the second-order free variables of t are among X1, . . . , Xm.
If q1, . . . , qr are terms of L, C1, . . . , Cm are atomic types and s1, . . . , sn are reducible
λ-terms of types A1[C̄/X̄][q̄/ȳ], . . . , An[C̄/X̄][q̄/ȳ] then the term t[C̄/X̄][q̄/ȳ][s̄/x̄]
is reducible.

Proof. The proof of the result above is done by induction on the complexity of the
λ-term t. We illustrate with the two new λ-terms and with the λ-term t :≡ ΛY.p.
All the other cases are easy adaptations of the proof of proposition 1 in [4].

If t :≡ (p∀z.Bu)B[u/z], with u a term of L, we want to prove that the λ-
term (pu)[C̄/X̄][q̄/ȳ][s̄/x̄] with q̄ terms of L, C̄ atomic types and s̄ reducible

4In such proposition just take qi as being yi, Ci as being Xi and si as being xi. Note that, by

CR 4, an assumption variable is a reducible λ-term.
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λ-terms of type Ā[C̄/X̄][q̄/ȳ], is reducible. By induction hypothesis we know
that p[C̄/X̄][q̄/ȳ][s̄/x̄] is reducible of type ∀z.(B[C̄/X̄][q̄/ȳ]). By definition of re-
ducibility we infer that the λ-term (p[C̄/X̄][q̄/ȳ][s̄/x̄])u[q̄/ȳ] is reducible of type
B[C̄/X̄][q̄/ȳ][u[q̄/ȳ]/z]. Just note that the latter λ-term is (pu)[C̄/X̄][q̄/ȳ][s̄/x̄].

If t :≡ Λ1z.p, we want to prove that (Λ1z.p)[C̄/X̄][q̄/ȳ][s̄/x̄] is reducible. Note
that, by the freely renaming of bound variables, we may assume w.l.o.g. that z is
a new variable, not occurring in C̄, q̄, nor in s̄. By definition of substitution, the
λ-term above is Λ1z.(p[C̄/X̄][q̄/ȳ][s̄/x̄]). By Lemma 2.3 (iii), it is enough to show
that for all terms v of L, p[C̄/X̄][q̄/ȳ][s̄/x̄][v/z] is reducible. But this latter λ-term
is p[C̄/X̄][q̄/ȳ, v/z][s̄/x̄] which is reducible by induction hypothesis.

If t :≡ ΛY.p, we want to prove that (ΛY.p)[C̄/X̄][q̄/ȳ][s̄/x̄] ≡ ΛY.(p[C̄/X̄][q̄/ȳ][s̄/x̄])
is reducible. Following the proof in [4] page 266, we know that it is enough to prove
that for all atomic type D, (p[C̄/X̄][q̄/ȳ][s̄/x̄])[D/Y ] is reducible. Note that, tak-
ing w̄ a r-tuple of new first-order variables we have (p[C̄/X̄][q̄/ȳ][s̄/x̄])[D/Y ] ≡
(p[w̄/ȳ][C̄[q̄/ȳ]/X̄][q̄/w̄][s̄/x̄])[D/Y ] ≡ (p[w̄/ȳ][C̄[q̄/ȳ]/X̄][D/Y ][q̄/w̄][s̄/x̄]). The
result follows applying the induction hypothesis to p[w̄/ȳ]. Note that C̄[q̄/ȳ] are still
atomic types and s̄ are reducible terms of type Ā[C̄/X̄][q̄/ȳ] ≡ Ā[w̄/ȳ][C̄[q̄/ȳ]/X̄][q̄/w̄].

�

After this brief detour to show that system FQ
at is strongly normalizable, we

return to natural deduction notation and we prove that FQ
at enjoys the following

stronger version of the subformula property (first presented in [8] page 76 in the
fragment (∧,→,∀1)):

Proposition 2.1. Let ∆ be a normal derivation in FQ
at. Then

i) Every formula in ∆ is a subformula of the conclusion or of a (undischarged)
hypothesis of ∆. [Subformula Property]

ii) If ∆ ends in an elimination rule, it has a principal branch, i.e. a sequence
of formulas A0, A1, . . . , An such that

- A0 is an (undischarged) hypothesis;
- An is the conclusion;
- for i = 0, . . . , n− 1, Ai is the principal premise (i.e. the premise that

carries the eliminated symbol) of an elimination rule whose conclusion
is Ai+1.

In particular, An is a subformula of A0.

Proof. The proof is done by induction on the number of inferences in ∆ as in [8].
The rules for second-order universal quantification can be dealt with exactly in the
same way and were analysed in [2]. �

By a translated formula in FQ
at we mean a formula in FQ

at which is the translation
(via the Russell-Prawitz translation) of a certain formula in IQC.

Lemma 2.5. Let D be a derivation in FQ
at of a formula A from assumptions Γ.

Let X be a second-order variable and F be a formula in FQ
at. If all second-order

universal formulas in D and in Γ are subformulas of translated formulas, then D
can be transformed into a (normal) derivation of A[F/X] from Γ[F/X].

Proof. The proof is by induction on the number of inferences in D. If D consists
solely of an hypothesis (i.e. A is derived from A), the result is immediate: A[F/X]
is derived from A[F/X].
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For the implication rules, for the first-order universal rules, for the ∀2I-rule and
for the ∀2E-rule when the conclusion is not obtained by instantiating the second-
order bound variable of the universal quantifier by the atomic variable X the result
follows by induction hypothesis. Just notice that the rules are still valid when
replacing the free occurrences of X by F . We are assuming w.l.o.g. (modulo a
renaming of variables) that the first and second-order bounded variables in D do
not occur free in F and are not X.

Let us analyse a ∀2E-rule of the form ∀Y.H
H[X/Y ] . By induction hypothesis we have

that from Γ[F/X] we can derive (in FQ
at) (∀Y.H)[F/X]. By hypothesis we know

that all the second-order universal formulas in D (and in particular ∀Y.H) are
subformulas of translated formulas. From Proposition 2.1, easily we conclude that
∀Y.H is of one of the four logical types listed in Proposition 2.1-ii) which enjoy
the property of instantiation overflow and ∀Y.H has no second-order free variables

(thus, (∀Y.H)[F/X] ≡ ∀Y.H and H[F/X] ≡ H). Therefore, in FQ
at, from ∀Y.H we

can derive H[F/Y ] (instantiation overflow), and thus from Γ[F/X] we can derive

(in FQ
at) H[F/Y ] ≡ H[X/Y ][F/X]. �

In an easy adaptation of the faithfulness of Fat [5] we finish this section proving

that the translation of IQC into FQ
at more than being just sound it is also faithful,

i.e., if a translated formula is derivable in this latter calculus, then the original
formula is derivable in the predicate calculus.

The proof follows the strategy in [5], pages 1305–1310. It is based on the following
(adapted) definition and lemma.

Definition 2.2. Let A be a predicate formula, i.e, a formula in IQC. For B any
subformula of A∗, we define a formula B̃ in the language of predicate calculus (⊥,
∧, ∨, →, ∀1, ∃1) extended with second-order variables (but without second-order
quantifications) in the following way:

If B is an atomic formula, then B̃ :≡ B.
If B :≡ D → E, then B̃ :≡ D̃ → Ẽ.
If B :≡ ∀x.D, then B̃ :≡ ∀x.D̃.
If B :≡ ∀X.X, then B̃ :≡ ⊥.
If B :≡ ∀X.((D∗ → (E∗ → X))→ X), then B̃ :≡ D ∧ E.

If B :≡ ∀X.((D∗ → X)→ ((E∗ → X)→ X)), then B̃ :≡ D ∨ E.

If B :≡ ∀X.(∀x.(D∗ → X)→ X), then B̃ :≡ ∃x.D.

The above definition covers all the subformulas of translated formulas – note
that second-order quantifications in a translated formula (see Lemma 2.1) appear
in one of the four logical types above. Also note that the target system of the

(̃·)-translation is (not exactly but) almost IQC: the formulas of FQ
at that are sub-

formulas of translated formulas are translated via the (̃·)-interpretation into for-
mulas that are in the language of IQC enriched with second-order variables. And

(̃·) works as an undo translation of the (·)∗-translation in the sense that for D a

predicate formula, D̃∗ is just D.

Lemma 2.6. Let Γ be a tuple of formulas in FQ
at and A be a formula in FQ

at with
their second-order free variables among the variables in X̄. If there is a proof (say

D) in FQ
at of A[X̄] from Γ[X̄] in which all formulas (occurring in D and Γ[X̄]) are

subformulas of translated formulas, then
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Γ̃[F̄ /X̄] `IQC Ã[F̄ /X̄]

for any tuple of predicate formulas F̄ . For Γ[X̄] :≡ A1[X̄], . . . , An[X̄], Γ̃[F̄ /X̄]

denotes the tuple of predicate formulas Ã1[F̄ /X̄], . . . , Ãn[F̄ /X̄]5.

Proof. The proof is done by induction on the length of the derivation D. See [5]
pages 1306–1307 for the →-rules.6

Let us analyse the case where the last rule is a ∀1I-rule.

Γ[X̄]
.
.
.

A[X̄]
∀1I

(∀x.A)[X̄]

Fix F̄ a tuple of predicate formulas. The aim is to prove that Γ̃[F̄ /X̄] `IQC

(̃∀x.A)[F̄ /X̄]. According to the induction hypothesis, we have Γ̃[F̄ /X̄] `IQC

Ã[F̄ /X̄]. Thus, adding a ∀1I-rule, we obtain ∀x.(Ã[F̄ /X̄]), i.e. we obtain (∀x.Ã)[F̄ /X̄]

which by Definition 2.2 is (̃∀x.A)[F̄ /X̄]. We are assuming (modulo a renaming of
variables) that the bound variables in D do not occur free in F̄ .

Let us analyse the case where the last rule is a ∀1E-rule.

Γ[X̄]
.
.
.

(∀x.A)[X̄]
∀1E

(A[t/x])[X̄]

Fix F̄ a tuple of predicate formulas. By induction hypothesis, we have Γ̃[F̄ /X̄] `IQC

(∀x.Ã)[F̄ /X̄]. Applying the ∀1E-rule, we get (Ã[F̄ /X̄])[t/x] ≡ (Ã[t/x])[F̄ /X̄].
Again, we are assuming that bound variables in D, in particular x, do not occur
free in F̄ .

Let us analyse the case where the last rule is a ∀2I-rule7.

Γ[Ȳ ]
.
.
.

A[Ȳ , X]

∀X.A[Ȳ , X]

Since ∀X.A[Ȳ , X] is a subformula of a translated formula J∗, with J a predicate
formula, we know that only four cases may occur: (i) A is X; (ii) A has the form
(D∗ → (E∗ → X)) → X; (iii) A has the form (D∗ → X) → ((E∗ → X) → X) or
(iv) A has the form ∀x.(D∗ → X)→ X, with D and E predicate formulas. In any

5The formula Ãi[F̄ /X̄] consists in first consider the transformed formula Ãi and, afterwards,
effect the substitution [F̄ /X̄] in it.

6In the present context, derivation in IPC is replaced by derivation in IQC and tuples F̄ of

propositional formulas are replaced by tuples of predicate formulas.
7The rules for ∀2 are treated as in [5] (in the context of Fat). The reason why we sketch their

analysis here is because in the FQ
at framework we have an extra second-order universal formula to

consider: the formula ∀X.(∀x.(D∗ → X) → X).
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of the cases, the only free second-order variable in A is X. So, in the scheme above,
A[Ȳ , X] and ∀X.A[Ȳ , X] may be replaced by A[X] and ∀X.A[X] respectively.

Cases (i), (ii) and (iii) follow the exact some strategy as in [5] lemma 2.2. We
illustrate such strategy with case (iii).

In case (iii), the last rule is a ∀2I-rule of the form

Γ[Ȳ ]
.
.
.

(D∗ → X)→ ((E∗ → X)→ X)

∀X.((D∗ → X)→ ((E∗ → X)→ X))

and we need to prove that Γ̃[F̄ /Ȳ ] `IQC D ∨ E, for every tuple F̄ of predicate

formulas. Fix F̄ . By induction hypothesis, we know that Γ̃[F̄ /Ȳ ] `IQC Ã[G/X],
for any predicate formula G. In particular, for G :≡ D ∨ E, we have

Γ̃[F̄ /Ȳ ] `IQC (D → D ∨ E)→ ((E → D ∨ E)→ D ∨ E).

Thus, in the intuitionistic predicate calculus, we have the following proof

[D]

D ∨ E
D → D ∨ E

Γ̃[F̄ /Ȳ ]
.
.
.

(D → D ∨ E) → ((E → D ∨ E) → D ∨ E)

(E → D ∨ E) → D ∨ E

[E]

D ∨ E
E → D ∨ E

D ∨ E

Therefore, Γ̃[F̄ /Ȳ ] `IQC D ∨ E.
In case (iv), the last rule is a ∀2I-rule of the form

Γ[Ȳ ]
.
.
.

∀x.(D∗ → X)→ X

∀X.(∀x.(D∗ → X)→ X)

and we need to prove that Γ̃[F̄ /Ȳ ] `IQC ∃x.D, for every tuple F̄ of predicate

formulas. Fix F̄ . By induction hypothesis, we know that Γ̃[F̄ /Ȳ ] `IQC ∀x.(D →
G)→ G for any predicate formula G. In particular, for G :≡ ∃x.D, we have

Γ̃[F̄ /Ȳ ] `IQC ∀x.(D → ∃x.D)→ ∃x.D.
Thus, in the natural deduction calculus for the intuitionistic predicate calculus,

we have the following proof

[D]

∃x.D
D → ∃x.D

∀x.(D → ∃x.D)

Γ̃[F̄ /Ȳ ]
.
.
.

∀x.(D → ∃x.D)→ ∃x.D
∃x.D

Therefore, Γ̃[F̄ /Ȳ ] `IQC ∃x.D.
Let us analyse the case where the last rule is a ∀2E-rule:



ATOMIC POLYMORPHISM AND THE EXISTENCE PROPERTY 11

Γ[Ȳ ]
.
.
.

∀X.A[X, Ȳ ]

A[C/X, Ȳ ]

with C an atomic formula in FQ
at. We assume w.l.o.g that if C is a second-order

variable then C is among the variables Ȳ , say Yi.
By hypothesis, since ∀X.A[X, Ȳ ] is a subformula of a translated formula, we know

that this formula falls into one of the following four cases: (i) it is the translation of
⊥; (ii) it is the translation of a conjunction; (iii) it is the translation of a disjunction
or (iv) it is the translation of a first-order existential quantification. Moreover,
∀X.A[X, Ȳ ] has no free second-order variables and so, in the scheme above we can
replace ∀X.A[X, Ȳ ] and A[C/X, Ȳ ] by ∀X.A[X] and A[C/X], respectively.

Once again, since cases (i), (ii) and (iii) can be done mutatis mutandis as in [5]
lemma 2.2 (in the context of Fat) we just present case (iii) to illustrate how it also

works in the framework of FQ
at.

In case (iii), we have the following proof in FQ
at

Γ[Ȳ ]
.
.
.

∀X.((D∗ → X)→ ((E∗ → X)→ X))

(D∗ → C)→ ((E∗ → C)→ C)

with C and atomic formula in FQ
at and we need to prove that Γ̃[F̄ /Ȳ ] `IQC (D →

C[Fi/Yi])→ ((E → C[Fi/Yi])→ C[Fi/Yi]), for any tuple F̄ of predicate formulas.

Fix F̄ . By induction hypothesis, Γ̃[F̄ /Ȳ ] `IQC D∨E. Thus, we have the following
proof in the intuitionistic predicate calculus

Γ̃[F̄ /Ȳ ]
.
.
.

D ∨ E
[D → C[Fi/Yi]] [D]

C[Fi/Yi]

[E → C[Fi/Yi]] [E]

C[Fi/Yi]

C[Fi/Yi]

(E → C[Fi/Yi])→ C[Fi/Yi]

(D → C[Fi/Yi])→ ((E → C[Fi/Yi])→ C[Fi/Yi])

In case (iv) the last rule is a ∀2E-rule of the form

Γ[Ȳ ]
.
.
.

∀X.(∀x.(D∗ → X)→ X)

∀x.(D∗ → C)→ C)

with C an atomic formula in FQ
at, and we need to prove that Γ̃[F̄ /Ȳ ] `IQC ∀x.(D →

C[Fi/Yi])→ C[Fi/Yi] for every tuple F̄ of predicate formulas. Fix F̄ . By induction

hypothesis, we know that Γ̃[F̄ /Ȳ ] `IQC ∃x.D.
Thus, we have the following proof in IQC
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[∀x.(D → C[Fi/Yi])]

D → C[Fi/Yi] [D]

C[Fi/Yi]

Γ̃[F̄ /Ȳ ]
.
.
.
∃x.D

C[Fi/Yi]

∀x.(D → C[Fi/Yi])→ C[Fi/Yi]

Therefore, Γ̃[F̄ /Ȳ ] `IQC ∀x.(D → C[Fi/Yi])→ C[Fi/Yi].
�

Proposition 2.3 (Faithfulness). Let Γ :≡ A1, . . . , An and A be formulas in IQC

and consider their translations Γ∗ :≡ A∗1, . . . , A∗n and A∗ into FQ
at.

If Γ∗ `FQ
at
A∗ then Γ `IQC A.

Proof. Suppose that Γ∗ `FQ
at
A∗. Since FQ

at enjoys the normalization property

(see the beginning of Section 2), we know that there is a normal proof in FQ
at,

say D, of A∗ with premises Γ∗. By the subformula property (Proposition 2.1), all
formulas that occur in D are subformulas of A∗ or are subformulas of formulas in
Γ∗. Therefore, we are in the conditions of Lemma 2.6. Applying such lemma, we

conclude that Γ̃∗ `IQC Ã∗, i.e., Γ `IQC A. �

3. The existence property for FQ
at

In this section we prove that FQ
at enjoys the existence property.

In order to simplify notation, we denote the Russell-Prawitz translation of ∃x.A
into FQ

at by ∃x.A∗. I.e., ∃x.A∗ abbreviates the formula ∀X.(∀x.(A∗ → X) → X)

(with A a formula in IQC). Note that ∃ is not a primitive symbol in FQ
at, just an

abbreviation for ease of notation.

Theorem 3.1. Let A be the translation into the language of FQ
at of a given formula

of IQC.

If `FQ
at
∃x.A then there exists a term t such that `FQ

at
A[t/x].

Proof. Suppose that `FQ
at
∃x.A. Since FQ

at enjoys the (strong) normalization prop-

erty (see Section 2), we can take a normal derivation D of ∃x.A, i.e. a normal proof

of ∀X.(∀x.(A→ X)→ X) in FQ
at.

The last rule of such a proof has to be an introduction rule, otherwise by Propo-
sition 2.1 there should be an undischarged hypothesis which is not the case.

Thus we have

.

.

.

∀x.(A→ X)→ X

∀X.(∀x.(A→ X)→ X)

Again, by Proposition 2.1, the penultimate inference is an introduction rule:
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[∀x.(A→ X)]
.
.
.
X

∀x.(A→ X)→ X

∀X.(∀x.(A→ X)→ X)

Since X is a second-order variable, it can not result from the application of an
introduction rule, so by Proposition 2.1 we can consider the principal branch of the
derivation:

∀x.(A→ X)
.
.
.
X

More precisely, we have:

∀x.(A→ X)

A[t/x]→ X A[t/x]

X

for a certain term t.
If, in the right side of the derivation, A[t/x] is derivable without (undischarged)

premises, the result is immediate.
If not, necessarily, we have

∀x.(A→ X)
.
.
.

A[t/x]

I.e., we have a normal proof in FQ
at of A[t/x] from the premise ∀x.(A → X).

Moreover, since A is a translated formula, by Proposition 2.1, we know that any
second-order universal formula in such a proof is a subformula of a translated
formula, i.e. we are in the conditions of Lemma 2.5.

Applying Lemma 2.5 (with F :≡ X → X), we have ∀x.(A → (X → X)) `FQ
at

A[t/x]. Therefore we have in FQ
at

[X]

X → X
A→ (X → X)

∀x.(A→ (X → X))
.
.
.

A[t/x]

i.e., `FQ
at
A[t/x].

�
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4. The existence property for IQC

Illustrating the potential of the sound and faithful embedding of IQC into FQ
at

in exporting properties of the latter calculus into the former one, we give a new
proof of the existence property for the (full) intuitionistic predicate calculus. The
novelty of this alternative proof is that, being a proof-theoretic proof via natural
deduction, it does not rely on commuting conversions. Note that, as opposed to
IQC where in order to ensure that normal proofs enjoy the subformula property
commuting conversions (also known as permutative conversions) have to be added

to the calculus, in FQ
at the connectives ⊥, ∨ and ∃ are absent and there are no

commuting conversions. I.e., the atomic polymorphic calculus does not suffer from
the defects pointed by Girard (see Section 1) associated with the bad connectives.

This explains the advantage of proving results in IQC via this FQ
at detour. Moreover

once the sound and faithful translation is in place the transference of results between
the two systems, as illustrated here, becomes an immediate exercise.

Theorem 4.1. If `IQC ∃x.A then there exists a term t such that `IQC A[t/x].

Proof. Suppose that `IQC ∃xA. Since the embedding of the full intuitionistic pred-

icate calculus into FQ
at is sound, we have `FQ

at
(∃x.A)∗, i.e., `FQ

at
∃x.A∗. Applying

Theorem 3.1, we know that there is t such that `FQ
at

(A[t/x])∗. By the faithfulness

of FQ
at (Proposition 2.3), we conclude that `IQC A[t/x]. �
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