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Abstract

We assess financial theory-based and machine learning-implied measurements of
stock risk premia by comparing the quality of their return forecasts. In the low
signal-to-noise environment of a one month horizon, we find that it is preferable
to rely on a theory-based approach instead of engaging in the computer-
intensive hyper-parameter tuning of statistical models. The theory-based
approach also delivers a solid performance at the one year horizon, at which
only one machine learning methodology (random forest) performs substantially
better. We also consider ways to combine the opposing modeling philosophies,
and identify the use of random forests to account for the approximation
residuals of the theory-based approach as a promising hybrid strategy. It
combines the advantages of the two diverging paths in the finance world.
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1 Introduction

When it comes to measuring stock risk premia, two roads diverge in the finance

world. Or so it may seem to a student of the recent literature on empirical asset

pricing. From Martin and Wagner (2019) that reader could learn how to quantify the

conditional expected return of a stock by exploiting the forward-looking information

embedded in option prices. The contribution by Gu et al. (2019b) pursues the

same end, but by completely different means. Reflecting the surge of data science

applications in economics and finance, and benefiting from advances in computer

technology, they advocate the use of machine learning techniques for the measurement

of stock risk premia. While Martin and Wagner (2019) derive their results from asset

pricing paradigms, Gu et al. (2019b) do not provide deeper references to financial

economic theory.

These stunningly different ways to address the same issue motivate us to provide

a level playing field for a comprehensive performance comparison of the theory-based

and machine learning approaches towards measuring stock risk premia. Because the

conditional expected value is the best predictor in terms of the mean squared error

(MSE), it is natural to compare the opposing modeling philosophies by gauging the

quality of their stock return forecasts at short and longer horizons. Such an analysis

tests whether the use of forward-looking information embedded in current market

prices is superior to sophisticated statistical analyses of historical data, or whether it

is the other way around. Precisely because of their different vantage points and use

of complementary data, we find it intriguing to combine the two methodologies. In

particular, we employ machine learning techniques to alleviate the approximation

errors of the theory-based approach towards measuring stock risk premia.

The present study thereby aims to connect two strands of literature, of which

the aforementioned papers are conspicuous examples. The first draws on the basic
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asset pricing equation and uses option data to quantify risk premia of financial assets.

It originates in Martin’s (2017) derivation of the lower bound for the conditional

expected return of a market index. Kadan and Tang (2019) take up this idea

and argue that it can also be applied to quantify risk premia for a certain type of

stocks. Assuming that the lower bound of the market index is binding, Martin and

Wagner (2019) extend Martin’s (2017) approach to the quantification of stock risk

premia. The distinctive feature of the first strand approaches is that the econometric

estimation of unknown model parameters – traditionally the focus of empirical asset

pricing – can be dispensed with.

The second strand consists of applications that address issues in empirical asset

pricing and return predictions with the help of machine learning. For example, Light

et al. (2017) predict returns of NYSE-, AMEX-, and NASDAQ-traded stocks by using

the partial least squares method to aggregate information from 26 observable firm

characteristics. Using an adaptive group LASSO, Freyberger et al. (2019) perform a

rolling estimation to assess which characteristics contain incremental information

on the cross-section of expected returns and how this set of characteristics changes

over time. Gu et al. (2019a) note that the prediction problems considered in Gu

et al. (2019b) do not constitute asset pricing models and propose an autoencoder

model that allows to address risk-return trade offs directly. Kelly et al. (2019) apply

instrumented principal component analysis to construct a five-factor model that

spans the cross-section of average returns and allows testing for anomalies. Focusing

on risk prices instead of premia, Kozak et al. (2019) use penalized regressions for the

purpose of shrinking coefficients on risk factors in the pricing kernel. Acknowledging

the importance of interactions among firm characteristics, Bryzgalova et al. (2019)

generalize the approach by Kozak et al. (2019) and use decision trees for the purpose

of constructing a set of base assets that span the efficient frontier. In a Bayesian
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study, Martin and Nagel (2019) apply shrinkage and selection techniques to a high-

dimensional vector of firm characteristics for the purpose of return prediction. They

find that standard tests of market efficiency are not applicable in such a setting

and stress the importance of out-of-sample tests. Addressing the fact that there

are hundreds of competing factors described in recent asset pricing literature, Feng

et al. (2019) combine two-pass regressions with regularization methods to assess the

marginal contribution of an individual factor in pricing the cross-section of expected

returns. Bianchi et al. (2019) study different regularization techniques in the context

of a large set of firm characteristics and allow for a time-varying degree of sparsity.

They identify a strong relationship between their sparsity measure and the VIX.

Two recent papers share our intent to combine theory-based and machine-learning

approaches. Chen et al. (2019) use Gu et al.’s (2019b) study as a benchmark and

find that the inclusion of the no-arbitrage constraints improves the prediction results.

Gu et al. (2019a) note that the prediction problems considered in Gu et al. (2019b)

do not constitute asset pricing models and propose an autoencoder model that allows

to address risk-return trade-offs directly. Finally, Avramov et al. (2020) take a

practitioner’s perspective and assess advantages and limitations of the approaches by

Kozak et al. (2019), Kelly et al. (2019), Gu et al. (2019a), Gu et al.’s (2019b), and

Chen et al. (2019) in a broad reality check.

The main results of our study can be summarized as follows. At the one month

forecast horizon, a theory-based approach outperforms the machine learning methods

that we consider: elastic net, neural network, boosted trees, and random forest.

Of the two theory-based procedures, Martin and Wagner’s (2019) take, which is

more costly in terms of data input, is preferable to Kadan and Tang’s (2019). This

conclusion also holds true at the one year horizon, where the expedient theory-based

approach surpasses two of the four machine learning methods. Boosted trees offer

3



a comparable performance, but the random forest delivers a notably better out-of-

sample forecast. An approach that combines the superior theory-based alternative

with this effective machine learning technique is identified as a promising hybrid

strategy. Although it has to rely on fewer data, due to the late availability of

information required for the theory-based approaches, it performs at least as good

as the best (pure) machine learning method. This hybrid approach might counter

the critique of “measurement without theory” regarding the use of machine learning

techniques by relying on financial economic paradigms and using statistical assistance

only for the components that are left unexplained by theory.

The remainder of the paper is structured as follows. Section 2 contrasts the theory-

based and the data science methodologies towards measuring stock risk premia, and

outlines ideas to combine them. Section 3 describes the preparation of the database

and the implementations of the respective risk premia formulas. Section 4 reports the

results of comparisons of the forecast quality of the theory-based and machine learning

approaches at short and longer horizons, and provides an assessment of the potential

of hybrid approaches. Section 5 concludes. Sections A.1–A.4 of the Appendix can be

consulted for more details on methodology, data, and implementation.

2 Methodological considerations

2.1 Two diverging roads

This section outlines the basic concepts and key equations associated with the theory-

based and the machine learning approaches that we focus on in our study. We explain

how, from a common starting point, the methodologies to measure stock risk premia

diverge. For the sake of a concise exposition in the main text, we outline details of

the respective approaches in the Appendix in Sections A.1–A.3 (theory-based) and
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in Appendix A.4 (machine learning). The implementation aspects that are specific

to the data that we use for our study are discussed in Section 2.4.

The theory-based approach (explicitly) and the machine learning approach (im-

plicitly) take as a point of reference the basic asset pricing equation applied to a

gross return of asset i from period t to T (Ri
t,T ) in excess of the respective gross

risk-free rate (Rf
t,T ),

Et(Rei
t,T ) = Et(Ri

t,T ) −R
f
t,T = −Rf

t,T ⋅ covt(mt,T ,R
i
t,T ), (2.1)

where the t subindex indicates that expected values are computed conditional on time

t information. In preference-based asset pricing, the stochastic discount factor (SDF)

mt,T represents the marginal rate of substitution between consumption in t and T .

The sign and size of the risk premia, reflected in the conditional expected excess

return on asset i, is determined by the conditional covariance on the right-hand

side of Equation (2.1). In the absence of arbitrage, a positive SDF exists, such that

Rf
t,T = Et(mt,T )−1 > 0.

Let us first take a look at the theory-based route. Using (2.1) as a starting point,

Appendix A.1 shows how Martin and Wagner (2019) derive the following expression

for the right-hand side of (2.1),

Et(Rei
t,T ) = R

f
t,T ⋅ {var∗t (

Rm
t,T

Rf
t,T

) + 1

2
⋅ [var∗t (

Ri
t,T

Rf
t,T

) −∑
j

wj
t ⋅ var∗t (

Rj
t,T

Rf
t,T

)]} + ait,T , (2.2)

where Rm denotes the return of a market index proxy and wj
t is the time-varying

value weight of index constituent j. var∗t denotes a conditional variance that is

computed under the risk-neutral measure. ait,T is a time-varying, asset-specific

component, which is, as shown in Appendix A.1, a function of conditional moments

either calculated under the risk-neutral or the physical measure.
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In a similar vein, Kadan and Tang (2019) advocate the following, even more

succinct theory-consistent formula for stock risk premia:

Et(Rei
t,T ) =

1

Rf
t,T

⋅ var∗t (Ri
t,T ) − ξit,T , (2.3)

where ξit,T = covt(mt,T ⋅Ri
t,T ,R

i
t,T ). In Appendix A.1 we show how Kadan and Tang

(2019) draw on Martin’s (2017) derivation of a lower bound for the market equity

premium. They argue that depending on the level of risk aversion that one is willing

to assume, ξit,T < 0 holds for a large fraction of stocks, such that 1/Rf
t,T ⋅ var∗t (Ri

t,T )

represents a lower bound for the risk premium of these stocks.

As shown by Martin (2017), the risk-neutral variances in (2.2) and (2.3) can be

obtained as follows (suppressing the asset index i for notational brevity):

var∗t (
Rt,T

Rf
t,T

) =
∫

Ft,T

0 putt,T (K)dK + ∫
∞

Ft,T
callt,T (K)dK

0.5 ⋅ S2
t ⋅R

f
t,T

, (2.4)

where callt,T (K) and putt,T (K) denote the time t prices of European call and put

options with strike price K and time to maturity T . St is the spot price and Ft,T

the forward price of the underlying asset. The components of the right-hand sides of

(2.2) and (2.3) except the “residuals” ait,T and ξit,T can thus be approximated using

data on risk-free rate proxies and current option prices for a sufficient number of

strike prices. For (2.3), these data are only required for asset i. Equation (2.2) is

more demanding in that the option data, along with the time-varying index weights,

must also be provided for the constituent stocks of the market index, as well as for

the index itself. Martin and Wagner (2019) argue that the consequences of setting

ait,T = 0 should be benign, such that stock risk premia can be quantified without the
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need to estimate any unknown parameters using:

Et(Rei
t,T ) ≈ R

f
t,T{var∗t (

Rm
t,T

Rf
t,T

) + 1

2
⋅ [var∗t (

Ri
t,T

Rf
t,T

) −∑
j

wj
t ⋅ var∗t (

Rj
t,T

Rf
t,T

)]}. (2.5)

Similarly, assuming that the NCC holds and that the lower bound in (2.3) is binding,

a parsimonious theory-consistent approximative formula for the risk premium on

stock i is given by:

Et(Rei
t,T ) ≈

1

Rf
t,T

⋅ var∗t (Ri
t,T ). (2.6)

Now let us sketch the alternative route that the data science approach takes.

They may not spell it out explicitly, but Gu et al. (2019b) also use Equation (2.1) as

a point of reference. However, the road taken from there is very different. While the

theory-based approach gives weight to the risk premium aspect of the basic asset

pricing equation, which naturally entails the change from the physical to the risk-

neutral measure, the data science perspective emphasizes the forecast implications of

(2.1). Recalling that the conditional expected value is the best predictor in terms

of MSE, Equation (2.1) states that the MSE-optimal prediction of Rei
t,T is given

by −Rf
t,T ⋅ covt(mt,T ,Ri

t,T ). Because the exact functional form of the conditional

covariance is not known (least not under the physical measure, we have seen that the

theory-based approach can characterize it under the risk-neutral measure), it may

be conceived as a function that depends on state variables zit ∈ Ft, such that:

Et(Rei
t,T ) = g0

T (zit), (2.7)

where the subindex T indicates that the functional form is assumed to depend on

the horizon of interest. The data science approach then proceeds to approximate
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g0
T (zit) by gT (zit, θT ), a parametric function implied by some statistical model with

parameter vector θT to be estimated. The estimation of θT using machine learning

procedures (henceforth MLPs) instead of standard econometric methods is advocated

because of the following reasons.

First, the number of candidates for state variables zit is large. A myriad of

correlated stock-level and macro-economic return predictors (named “features” in

machine learning terms) appear in the empirical finance literature, and dimension

reduction and feature selection is the very domain of MLPs. Second, the suite

of statistical models employed for MLPs trade analytical tractability and rigorous

statistical inference for flexible functional form and predictive performance (artificial

neural networks are a prominent example). The prediction aspect implied by the basic

asset pricing equation naturally provides the “learning” objective, the minimization

of the forecast MSE. However, the combination of these two issues – large number of

features and desire for flexibility – entails the risk of over-fitting. MLPs deal with this

caveat by dividing the data into three parts, a training sample, a validation sample,

and a forecast sample. The training sample is used to estimate θT by pursuing the

learning objective to minimize the forecast MSE at the horizon of interest.

The hallmark of MLPs is to introduce regularization in this process, that is,

measures to mitigate the risk of over-fitting. Regularization is controlled via the

tuning of so-called hyper-parameters. Such a hyper-parameter can be a penalty

parameter that is applied to the learning objective, early stopping rules applied to

its optimization, or, more generally, coefficients that determine the complexity of the

statistical model, for example, the number of layers in a neural network. Using a

given combination of hyper-parameters, the parameter vector θT is estimated on the

training sample, and the model performance is evaluated, in terms of forecast MSE, on

the validation sample. A search across hyper-parameter combinations will ultimately
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point to a specification that delivers the best performance. Using this hyper-parameter

combination, θT is re-estimated on the merged training/validation sample. The result

is the final estimated model, gT (zit, θ̂T ), that is used for out-of-sample evaluation on

the forecast sample and the machine learning implied approximative risk premium,

Et(Rei
t,T ) ≈ gT (zit, θ̂T ). (2.8)

Another hallmark of MLPs is to employ a variety of statistical models that offer

flexible approximations of g0
T (zit). For the purpose of quantifying stock risk premia,

Gu et al. (2019b) advocate the use of artificial neural networks and regressions trees,

as well as elastic net regression. Because the number of potential combinations of

hyper-parameter values in these models is so large that probing all of them for tuning

is infeasible, efficient search algorithms are required to estimate θT . The statistical

models and associated hyper-parameter value combinations that we consider for the

present study are described in detail in Section 3.3.

2.2 Pros and cons

We have seen that the theory-based and data science approaches towards quantifying

stock market premia have a common starting point, the basic asset pricing equation

(2.1), from which the two modeling philosophies depart in opposite directions. In

terms of empirical implementations, the two opposing approaches have, concerning

the following aspects, their pros and cons.

Parameter estimation and approximation errors

Using the theory-based formulas (2.5) or (2.6) one can, a result of working under

the risk-neutral measure, dispense with the estimation of unknown parameters

altogether. However, this parsimony of the theory-based approach comes at the
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cost of approximation errors, the practical consequences of which are not quite

clear. By contrast, the machine learning approach deals with a huge number of

unknown parameters, which have to be estimated while balancing the risk of over-

fitting. On the other hand, the flexibility of machine learning models helps mitigate

approximation errors.

Time-varying distributions and parameters

A conspicuous feature of the theory-based approach is that it can naturally deal with

changing conditional distributions and even non-stationarity of the data generating

process. The machine learning approach, like any statistical/econometric method,

struggles much more with ensuing problems like the incidental parameter problem

that occurs if the parameters in θT were time-varying. Gu et al. (2019b) account for

this caveat within their model validation scheme. Starting from an initial sample

split, the model is re-trained on updated splits. The updated training sample receives

an additional year of data previously included in the validation sample, and the

validation and training samples are also shifted one year forward. The optimal hyper-

parameter combination, and thus the statistical models’ complexity, can change with

every new split. Instead of (2.8) it is notationally more precise, albeit more cluttered,

to write

Et(Rei
t,T ) ≈ gs,T (zit, θ̂s,T ), (2.9)

indicating the dependence of the functional form and estimates on the sample split s

as well as on the horizon T .

Demand on data quality and computational resources

The demands on data quality and quantity in both the theory-based and the machine

learning approach are considerable, and they are, not surprisingly, different and
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complementary. For the machine learning approach, one has to supply historical

data on stock-level predictors for every asset of interest. While macro predictors

are publicly available, the stock-level predictors are not and access to Compustat

and CRSP is mandatory. The theory-consistent approaches have no need for these

data, but they require high quality option data. In particular, they require option

prices with times-to-maturity that match the horizons of interest, and a sufficiently

large number of strike prices K to provide a good approximation to the integrals

on the right-hand side of (2.4). Equation (2.5) reveals that these data are not only

required for the stocks of interest, but also for every current member of the market

index, as well as the index itself. Index membership changes, and these changes

must be tracked, which is, as outlined below, not straightforward using the available

data. The advantage of the theory-based approach by Martin and Wagner (2019) is

that, provided the index membership can be tracked, the computational resources

that are needed to provide quantifications of stock risk premia are moderate. The

same holds true for Kadan and Tang’s (2019) alternative approach. By contrast, the

computational resources required for the machine learning approaches are considerable

and access to a high performance computer cluster is mandatory. Training and hyper-

parameter tuning are required for each statistical model considered, for each horizon

of interest, and for every new sample split.

2.3 Roads not traveled: Hybrid approaches

“And sorry I could not travel both,” writes Frost (1916), contemplating which road to

take. In the present case, it is precisely because of the diversity of their respective pros

and cons that it is intriguing to actually travel both roads, by combining the theory-

based and machine learning philosophies. We consider two such hybrid strategies.

The first and obvious is motivated by the observation that while Gu et al.’s (2019b)
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machine learning approach includes a plethora of stock-level and macro features

(and interactions), it does not use the information provided by the theory-based

risk premium measure, or any other conditional time t moment computed under the

risk-neutral measure. By augmenting the set of features accordingly, we can assess

whether the theory-based measurements enhance the explanatory power of the data

science approach or even render the other predictor variables obsolete.

Our second hybrid approach starts from (2.2) and the approximative formula

(2.5), and then employs MLPs to account for the approximation residuals ait,T . This

strategy may be described as a theory-based, machine learning assisted approach

towards measuring stock risk premia.1 For that purpose, let us denote by Ẽt(Rei
t,T )

the right-hand side of (2.5). Then R̃ei
t,T = Rei

t,T − Ẽt(Rei
t,T ) gives the component of the

excess return that is left unexplained by the theory-based approximation of the stock

risk premium. Provided that the aforementioned data requirements are met, R̃ei
t,T

can be computed for every i, t, and T . Emphasizing the prediction aspect of the

basic asset pricing equation, consider the following decomposition,

R̃ei
t,T = ait,T + εit,T , (2.10)

where εit,T = Rei
t,T −Et(Rei

t,T ) can be conceived of as the irreducible idiosyncratic forecast

error (the smallest forecast MSE would be E([εit,T ]2)). Now consider applying the

machine learning procedures described above instead of to Rei
t,T and Et(Rei

t,T ) to

R̃ei
t,T and the approximation residuals ait,T . This is a sensible approach because as

Appendix A.1 shows, ait,T is a function of time t conditional moments. Similarly to

(2.7), we may therefore represent ait,T as a function of the time t state variables zit,

such that ait,T = h0
T (zit), and use a parametric statistical model with parameters ϑT

1 Alternatively, we could also take Kadan and Tang’s (2019) approximation (2.6) as a starting
point, but (2.2) is arguably more appropriate for a larger number of stocks. However, we will
consider the alternative in a later version of the paper.
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to approximate h0
T (zit) ≈ hT (zit, ϑT ).

Machine learning-style estimation of the parameters ϑT employs the learning

objective to minimize the forecast MSE of R̃ei
t,T −hT (zit, ϑT ) instead of Rei

t,T −gT (zit, θT ),

applying the hyper-parameter tuning procedures described supra. A hybrid risk

premia quantification/excess return forecast is then given by:

Et(Rei
t,T ) ≈ Ẽt(Rei

t,T ) + hT (zit, ϑ̂T ). (2.11)

The residual of this composite forecast can be decomposed as

Rei
t,T − (Ẽt(Rei

t,T ) + hT (zit, ϑ̂T ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
hybrid risk premium/ forecast

= (ait,T − hT (zit, ϑT ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

approximation error

+ (hT (zit, ϑT ) − hT (zit, ϑ̂T ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

estimation error

+εit,T .

(2.12)

Diligent hyper-parameter tuning is mandated to avoid over-fitting, i.e. acknowledge

that εit,T represents the inherently unforecastable part of the excess return Ri
t,T .

To account for time-varying model parameters and complexity, the dynamic

hyper-parameter tuning described in Section 2.3 can be applied in the same way as

described supra, which yields the hybrid approximative formula for the stock risk

premium,

Et(Rei
t,T ) ≈ Ẽt(Rei

t,T ) + hs,T (zit, ϑ̂s,T ). (2.13)

Neither the theory-based (“Econ”) approach nor the machine learning (“Metrics”)

approach would be described as Econometrics, the discipline once founded to connect

economic theory and statistics. Yet, the hybrid formula (2.13) may be seen as a

novel way of combining Econ and Metrics in the age of data science.
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2.4 A level playing field for comparison and evaluation

The approximative risk premium formulas – (2.5) for the theory-based forecast, (2.6)

for the theory-based alternative, (2.9) for the machine learning-based prediction,

and (2.13) for the hybrid approach – all have a common root in the basic asset

pricing equation (2.1). And they all provide an approximation of the MSE optimal

excess return forecast, Et(Rei
t,T ). It is therefore quite natural to assess the alternative

approaches based on their out-of-sample forecast quality at various horizons.

A central tenet of financial economics, derived from the basic asset pricing

equation, states that marginal utility weighted prices follow martingales. This

statement implies that return predictability should be a long-horizon phenomenon.

Short-run prices should behave like martingales, such that the MSE-optimal return

forecast at short horizons should be close to the zero forecast (cf. Cochrane (2005),

Section 2.4). Put differently, the signal (Et(Rei
t,T )) to noise (εit,T ) ratio should be

considerably higher at long horizons than at short horizons. So the question is, which

of the two approaches delivers the better approximation to Et(Rei
t,T ) at given horizons,

and by how much the hybrid approaches can enhance the performance. These are

empirical questions that we address in our study. To answer them we have to set up

a comprehensive data base.

3 Data and implementations

3.1 Data base: Making of

The selection of stocks for which we compare the alternative risk premium measure-

ments is defined by a firm’s membership in the S&P 500 index.2 One reason to choose

2 There can be multiple securities associated with an S&P 500 firm, e.g. Apple. An S&P 500
constituent is a specific company-security combination, but we refer to them, as is common in
the literature, interchangeably as “stocks” or “firms.”
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this criterion is that if we want to compute theory-based risk premia according to

Equation (2.5), we have to provide information about the index constituents. Using

the S&P 500 as the market index proxy, S&P 500 membership provides the obvious

selection criterion for our analysis.

The identification of S&P 500 constituents works as follows.3 Using a procedure

proposed by Wharton Research Data Services (WRDS), we first retrieve information

about a firm’s S&P 500 membership status from Compustat. We thereby obtain for

every month between March 1964 to December 2018 a list of S&P 500 constituents.

In total, we identify 1,697 firms that have been a member of the S&P 500 at least

for one month.4 For these stocks of interest, we retrieve price and return data from

CRSP. The option data, which are required to compute the theory-based measures,

come from OptionMetrics. From Compustat and CRSP we obtain feature data used

for the machine learning approaches. Linking the information across these WRDS

data bases is hampered, because the security identifiers are not unified. A perfect

match of securities across data bases is infeasible, although the WRDS linkage tables

are a great help. Notwithstanding these challenges, and as shown in Panel A of

Figure 1, we are quite successful in recovering the Compustat-identified S&P 500

members also in CRSP. Moreover, Panel B of Figure 1 shows that the true S&P 500

market capitalization is closely tracked by the aggregated market capitalization of

the S&P 500 constituents that we identify with our procedure.

[Insert Figure 1 about here]

The matching with OptionMetrics is notoriously less precise. OptionMetrics, which

provides daily data from January 1996 onward, uses its own security identifier. Panel

A in Figure 1 shows that our procedure can nevertheless recover a large fraction

3 A more detailed description is provided in Appendix A.2.
4 More precisely, these are 1,697 distinct GVKEY+IID combinations.
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of the S&P 500 constituents in OptionMetrics, too. The approximation formula

(2.5) shows that the higher the coverage of index stocks, the better the theory-based

approach can be expected to perform, while a poor match adds another source of

approximation error. Comparing descriptive statistics, we note that our coverage

rate is notably higher than that reported by Martin and Wagner (2019). Averaged

over the respective sample periods, we succeed in recovering 483/500 constituents;

Martin and Wagner’s (2019) ratio is 451/500.

We perform our comparative analysis, the out-of-sample forecast comparison, for

the period from January 1996, the starting date of OptionMetrics, until December

2018, the most recent CRSP date available at the time of writing. This is arguably a

challenging playground, because this time interval is cluttered with financial crises

(Asian, LTCM, Subprime), new economy euphoria, and bursts of (alleged) price

bubbles. Both theory-based and machine learning approaches are able to provide

stock risk premia measurements for this 22 years interval, during which 1,145 of the

initially identified 1,697 S&P 500 constituents still appear and can be recovered in

the OptionMetrics data. These stocks represent the cross section of assets that we

are focusing on in our analysis. We note that data on these 1,145 stocks are required

also before 1996, for purpose of parameter estimation with the help of MLPs.

Adopting the procedure used by Gu et al. (2019b), who draw on Green et al.’s

(2017) prior work, 93 stock-level predictor variables (collected in a vector cit) and 74

dummy variables that identify a firm’s industry are obtained from Compustat and

CRSP.5

5 For that purpose, we adapt the SAS program from Jeremiah Green’s website
https://sites.google.com/site/jeremiahrgreenacctg/home, accessed January 20, 2020. We are
one feature short of the 94 firm characteristics extracted by Gu et al. (2019b), because the
industry-adjusted firm size was not implemented in the SAS program. The industry dummies
are based on the first two digits of the SIC code. In line with Gu et al. (2019b), we use
cross-sectional median-based imputation to deal with missing observations. Note that Gu et al.
(2019b) additionally (and differently from us) rescale their features to the interval [-1,1] before
using them. Appendix A.4 provides details on these issues.
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The stock-level characteristics are augmented by 8 macro predictor variables at

the monthly level, obtained from Amit Goyal’s website.6 The stock-level and macro

features have a mixed frequency: monthly (20 stock level + 8 macro variables),

quarterly (13 stock level variables) or annual (60 stock level variables). Extracting

from CRSP the date of the last trading day of each month as a point of reference,

the stock-level and macro features are aligned according to Green et al.’s (2017)

assumptions about delayed availability to avoid the forward-looking bias.7 Moreover,

we match CRSP returns at horizons of one month (30 calendar days) and one year

(365 calendar days). These returns are forward-looking from the vantage point of the

end-of-month alignment day.

When proceeding as described, we obtain an unbalanced panel data set at the

monthly frequency that contains information about the 1,145 stocks of interest, with

a varying number of observations per stock. From October 1974, which is the first

month used for training the machine learning algorithms, until the end of 2018, we

obtain 362,306 stock/month observations. Table 1 reports descriptive information

about this data set, which provides the basis for our analysis.

[Insert Table 1 about here]

To compute excess returns and all of the theory-based measures, we need risk-free

rate proxies that match the return horizon. Conveniently, OptionMetrics provides

time series of the zero curve, from which risk-free rate proxies at different horizons

can be computed at the daily frequency. These risk-free rate proxies are used by

6 http://www.hec.unil.ch/agoyal, accessed January 20, 2020. These variables are the dividend-
price ratio, earnings-price ratio, book-to-market ratio, net equity expansion, stock variance (all
non-stock-specific), as well as the Treasury-bill rate, term spread, and the default spread. Their
definitions are given by Welch and Goyal (2008). The macro variables are collected in a vector
denoted xt.

7 Following Green et al.’s (2017), variables at the monthly frequency are delayed at most one
month, quarterly variables with at least four month lag, and annual variables with at least six
months lag.
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Martin and Wagner (2019) and Kadan and Tang (2019). However, like any data

supplied by OptionMetrics, the zero curve is not available before January 1996. We

therefore employ the Treasury-bill rate as a risk-free rate proxy for earlier periods.

The monthly Treasury-bill rate is used to construct risk-free rate proxies at longer

horizons. Figure 2 shows that the two risk-free rate proxies behave similarly.

[Insert Figure 2 about here]

3.2 Theory-consistent approaches: Empirical implementa-

tions

This section addresses problems and solutions associated with the implementation

of the approximative risk premia formulas (2.5) and (2.6).8 The obstacles are

the following: First, options on S&P 500 stocks are American options, while the

computation of risk-neutral variances according to (2.4) relies on European options.

Second, as a continuum of strike prices is not available, the integrals in (2.4) must

be approximated, using a grid of discrete strikes. As pointed out by Martin (2017),

a lack of a sufficient number of strikes may severely downward bias the computation

of risk-neutral variances and thus that of the theory-based stock-risk premia. In

economic terms, the option market must be liquid enough to provide option prices

for a large number of strikes and maturities.9

Martin and Wagner (2019) advocate the use of the OptionMetrics volatility

surface to address these issues such that the computation of risk-neutral variances

according to (2.4) can be performed. A detailed exposition of how exactly we use the

volatility surface for this study is provided in Appendix A.3. A favorable innovation is

8 The main text provides a succinct discussion, Appendix A.3 outlines technical details.
9 Relatedly, we also note that the out-of-the money call options needed for the computation in

(2.4) are notoriously illiquid assets, but that problem that can be alleviated by exploiting the
put-call parity and using more liquid out-of-the money put options instead.
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that the latest OptionMetrics release (including data until December 2018) provides

the volatility surface for an increased number of standardized strike prices. Previous

releases provided 13 strikes, the recent release has 17. The wider range of strikes

is available also for the historical data back to January 1996. As reasoned supra,

the theory-based approaches should benefit from that modification; more strikes

should facilitate a more accurate approximation of risk-neutral variances. Although

European options are traded on the S&P 500 index, and their prices are available in

OptionMetrics, we also rely on the volatility surface to compute risk-neutral index

variances. We find that it is more convenient to approximate var∗t (Rm
t,T /R

f
t,T ) in

(2.5) in that way (see Appendix A.3). Albeit they are not explicit about it, our

calculations suggest that Martin and Wagner (2019) pursue the same strategy.

Using the most recent release of the OptionMetrics volatility surface, we compute

the theory-based risk premia measures for the selected stocks and the two horizons

of interest. These data are matched by security identifier and end-of-month date

to the unbalanced panel data described in the previous section; Table 1 contains

these additional descriptive statistics. Because the theory-consistent measures can

be computed on a daily frequency, we also construct a data set that contains these

measures along with the corresponding forward-looking returns at the horizons of

interest.

3.3 Machine learning and hybrid approaches: Empirical im-

plementations

This section provides information about the implementation of the machine learning

approaches: the statistical models and their hyper-parameters, the selection of
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features used in gT (zit, θ̂T ), and model validation strategies.10 The statistical models

that we focus on are those identified by Gu et al. (2019b) as the most appropriate for

the task of predicting excess returns and stock risk premia: random forests, artificial

neural networks, and gradient boosted regression trees. We also include elastic net as

an instance of penalized regression.11 The hyper-parameters of the respective models

are presented in Table 2.

[Insert Table 2 about here]

The selection of features zit follows Gu et al. (2019b), such that we include 91

stock-level characteristics as well as their interactions with the 8 macro predictors.12

Formally, zit is comprised of the vector (1, x′t)
′ ⊗ cit, which is augmented with the

industry dummies. Altogether we have 91 × 9 + 72 = 891 features. As in Gu et al.

(2019b), there are no interactions across stocks or lagged variables.

There is a considerable number of missing values for stock-level predictors dating

further back. To avoid negative consequences from massively imputing missing values,

we start the estimation when the problem is somewhat alleviated. Deviating from

Gu et al. (2019b), who start in 1957, our first training period is October 1974. Our

concrete implementation of the sequential validation procedure mentioned in Section

2.1 is illustrated in Figure 3. Adapting the procedure by Gu et al. (2019b), the

length of the training period increases from initially 10 years to 31, the 12 year

validation period is shifted forward by one year with every new split, and there are

10 The succinct exposition in the main text is augmented by Appendix A.4, where we explain
technical details.

11 We assume that the reader has some familiarity with these standard models and their application.
These statistical models are covered in Hastie et al. (2017), and Gu et al. (2019b) can be consulted
for a succinct but useful overview. Gu et al. (2019b) also consider linear regression, partial least
squares, and principal component regression. We do not consider these approaches, because we
only focus on the most flexible and thus promising competitors. Elastic net is included mainly
because of its relative computational ease and popularity.

12 Compared to Gu et al. (2019b), we exclude two features from the set of firm characteristics,
because they contain an excessive amount of missing values. The two features are “real estate
holdings” and “secured debt.” Also, we only find 72 SIC codes instead of 74.
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22 out-of-sample years with the final one year predictions made in December 2017 for

December 2018.13 For each of the sample splits, hyper-parameter tuning for each of

the statistical models is performed at the one month and one year forecast horizons.

[Insert Figure 3 about here]

While the basic setup remains the same when considering hybrid approaches, the

validation procedure changes because of the delayed availability of the OptionMetrics

data that are required for the theory-based approaches. Augmenting zit by the two

theory-consistent measures in (2.5) and (2.6) becomes possible beginning January

1996, which is also when the implementation of the machine learning-assisted theory-

based approach becomes feasible. We therefore consider the alternative “short”

validation procedure that is depicted in Figure 4.

[Insert Figure 4 about here]

The alternative validation procedure is applied using the theory-augmented feature

set and for the training on the residuals of the theory-based forecasts. Moreover,

to provide a benchmark for how these hybrid approaches compare to the base case,

we also re-train the models with the original feature set, but using the alternative

validation procedure. There, the training and validation periods are notably shorter.14

The initial 10 year training period is reduced to one year until it increases to 20

years; the validation periods comprise one year instead of 12. The reason for this

configuration is that we want to retain a sufficiently large number of out-of-sample

years comparable to the base case: At the one month forecast horizon, the alternative

13 Note that this out-of-sample forecast period only relates to the one year forecast horizon. When
considering the one month horizon, the number of splits increases to 23, because we can then
also make forecasts during the year 2018.

14 The calculations for the theory-based approaches remain unchanged, because no estimation is
required. However, two years of out-of-sample evaluation for the base case (1996 and 1997) are
lost.
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has 20 years instead of 22. Comparing the results with the base case is interesting for

another reason. It allows to study how important the length of the training period is

and to assess the effect of the length of the validation period.

4 Empirical Results

4.1 Comparison by out-of-sample forecast performance

This section compares the theory-based and machine learning approaches to measure

stock risk premia by their out-of-sample forecast performance. We have argued supra

that this is a sensible criterion for comparison, because the different methodologies

deliver quantifications of the conditional expected excess return, the MSE-optimal

prediction. We consider forecast horizons of one month (30 calendar days) and one

year (365 calendar days), for which both Gu et al. (2019b) and Martin and Wagner

(2019) argue that their approaches are most suitable. As is standard in the literature,

and following Welch and Goyal (2008), we use a performance measure that relates

the MSE of a model’s out-of-sample forecast to that of a benchmark. We use the zero

forecast for that purpose, which is, as argued in Section 2.4, the natural choice at

short horizons.15 Using the zero forecast as a benchmark, the performance criterion

is given by:

R2
oos = 1 −

∑i∑t (Rei
t,T − R̂ei

t,T )2

∑i∑t (Rei
t,T )

2 , (4.1)

15 Of course, there are alternative choices. Martin and Wagner (2019) also consider stock-specific
historical mean excess returns. However, because the goal of this study is a juxtaposition of
theory-based and machine learning approaches, the benchmark forecast is of lesser importance.
The zero forecast has the appeal of providing a theory-consistent, parameter-free benchmark.
Moreover, as pointed out by Gu et al. (2019b), the zero forecast is not a scapegoat. They
report that using the stock-specific historical mean excess returns instead of the zero forecast
considerably improves the relative performance of the competitor forecasts that they consider.
Another advantage of the zero forecast is that results can be better compared across studies.
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where the horizon index is dropped for notational brevity. The calculation of

R2
oos uses only observations included in the forecast samples, data of which are

not used for training or validation. There are S=22 forecast sample years for

the “long training/validation” scheme in Figure 3 and S=20 years for the “short

training/validation scheme” in Figure 4. One of the advantages of the theory-based

approaches is that the risk premia approximations according to (2.2) and (2.6) can

be computed on a daily frequency. We therefore compute R2
oos and the subsequent

statistics for the theory-based approaches in two variants. The base version uses the

end-of-month forecasts, the alternative the daily forecasts.

To study the performance over time, we also compute the out-of-sample R2 for

each of the forecast samples s = 1,2, . . . , S separately, viz:

R2
oos,s = 1 −

∑i∑t (Rei
t,T − R̂ei

t,T )
2 ⋅ 11[t ∈ S(s)]

∑i∑t (Rei
t,T )

2 ⋅ 11[t ∈ S(s)]
s = 1,2, . . . , S, (4.2)

where S(s) denotes the set of time indices of forecast sample s such that 11[t ∈ S(s)]

returns 1 if the observation at period t belongs to the sample year s, and 0 else.

For assessments of the statistical significance of differences in forecast performance,

we report p-values associated with Gu et al.’s (2019b) adapted Diebold-Mariano test.

The test statistic is based on the MSEs computed for the forecasts samples,

MSEs =
1

Ns
∑
i

∑
t

(Rei
t,T − R̂ei

t,T )
2 ⋅ 11[t ∈ S(s)] s = 1,2, . . . , S, (4.3)

where Ns is the number of forecasts issued in forecast sample s. Denoting the

difference of (4.3) implied by two models by ds =MSE
(1)
s −MSE

(2)
s , one can compute

the mean over the S forecast samples, d = 1
S ∑

S
s=1 ds, as well as its Newey-West (NW)

standard error σ̂(d).16 Gu et al. (2019b) assume that a central limit theorem (CLT)

16 The NW-correction accounts for serial correlation in ds.
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can be applied, such that the test statistic DM = d/σ̂(d) is approximately distributed

N (0,1) under the null hypothesis that the population MSEs implied by the two

model forecasts are identical. When using the DM-statistic for our purposes, we keep

the theory-based forecast implied by (2.5) as the first of the two forecasts (using the

end-of-month variant).

We also report p-values associated with a test of the null hypothesis that a

model’s forecast has no explanatory power over the zero forecast, formally phrased as

E(R2
oos,s) < 0. The construction of the test statistic is motivated in the same vein as the

DM-statistic. Take the mean of R2
oos,s across the testing samples, R2

oos = 1
S ∑

S
s=1R

2
oos,s,

and compute its NW-standard error σ̂(R2
oos). Then, provided that a CLT can

be applied, and assuming that E(R2
oos,s) = 0, the test statistic R2

oos/σ̂(R2
oos) is

approximately standard normally distributed, such that a one-sided p-value associated

with the null hypothesis that E(R2
oos,s) < 0 can be computed.17

[Insert Table 3 about here]

Comparing the results reported in Panel A of Table 3 with Panel B shows that the

one month horizon during the years 1996-2018 is a harsh environment for forecasting.

None of the machine learning approaches achieves a positive R2
oos,s. With an R2

oos of

0.9% (daily variant), the theory-consistent forecast implied by Martin and Wagner’s

approximation formula (2.5) stands out, also against the alternative theory-based

forecast based on (2.6). An R2
oos of about 1% may appear small, but compared to the

numbers reported by Gu et al. (2019b), it is notably high.18 Figure 5 illustrates the

advantage of the preferred theory-based approach. The idea behind this graphical

representation is to sort stocks into decile portfolios formed according to the excess

17 Because of the small number of observations S used to compute the means, the power of the
two tests is inevitably limited.

18 The neural networks that Gu et al. (2019b) train, arguably the best performing approach, achieve
R2

oos between 0.3% and 0.7%, depending on stock selection and network architecture.
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return forecast, and plotting the average predicted excess returns against the average

realized excess returns, which should align along the 45-degree line. It is evident that

the theory-based approach does a better job.

[Insert Figure 5 about here]

These results suggest that at the one month horizon not much may be gained by

investing in computer-intensive data science methods. Relying on the (superior)

theory-consistent approach seems to be the prudent choice in this low signal-to

noise environment. The favorable conclusions regarding the use of machine learning

approaches at the one month horizon reported by Gu et al. (2019b) should therefore

be taken with a grain of salt.

One may express reservations about this conclusion. It may be argued that the

results are based on a different sample period and a different selection of stocks,

for which the forecasting task is more difficult for machine learning (yet arguably

not so much for the theory-based approach). One could also point out that we

use fewer stocks for training and validation, and that our training begins in a later

year, all of which may prevent the machine learning approaches to unfold their full

potential. Moreover, our choice of hyper-parameters may be to blame, because it is

well known that highly non-linear models, like artificial neural networks, are very

sensitive towards the hyper-parameter tuning procedure.19

Most of these concerns are alleviated when taking a look at Panel B of Table 3,

which presents the results for the one year forecast horizon. Compared to the Panel A

results, the R2
oos increase by an order of magnitude. In line with notions of financial

theory, the prediction job becomes easier as the signal-to-noise ratio is more favorable.

The results reported in Panel B of Table 3 refute the notion that our selection of

19 Unfortunately, Gu et al. (2019b) do not provide sufficient details on their hyper-parameter
combinations for a comprehensive comparison.
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stocks constitutes a more difficult environment for machine learning approaches,

because their performance also considerably improves. Both neural network and

elastic net deliver R2
oos that are comparable to those reported by Gu et al. (2019b).20

Notwithstanding, the theory-based forecast using Martin/Wagner’s approximation in

Equation (2.5) delivers a notably higher R2
oos than the neural network. Among the two

theory-consistent alternatives, the more sophisticated approach by Martin/Wagner

outperforms Kadan/Tang’s, which delivers the smallest R2
oos among the competitors.

The performance of the regression-tree methods, identified by Gu et al. (2019b) as

promising models for the one month horizon, is remarkably good. In our study, these

approaches show their potential at the one year horizon. While the performance

of gradient-boosted trees is comparable to the preferred theory-based method, the

random forest offers a considerable improvement. The prediction deciles plots in

Figure 6 corroborate these conclusions.

[Insert Figure 6 about here]

The favorable results for the regression tree methods (and for the other machine

learning approaches, too) mitigates the caveat that our hyper-parameter tuning may

be completely ill-advised.

A issue that has not been explicitly addressed in previous literature is the variation

of the forecast performance over time. This phenomenon is reflected in the high

R2
oos,s standard deviations and p-values reported in Table 3. While Gu et al. (2019b)

do not discuss the time series variation of R2
oos,s, it also translates into the p-values

of the DM-statistic that they report.21

The time series variation of the R2
oos,s is illustrated in Figures 7 and 8. The three

20 Depending on the selection of stocks, the R2
oos of their best trained neural network range from

3.4% to 5.2%, for elastic net from 1.8% to 3.9%.
21 As Table 3 in Gu et al. (2019b) reveals, significant differences of the forecasting performance can

only be detected if a very poorly performing model is compared to a well performing alternative.
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panels take Martin/Wagner’s theory-consistent approach as a point of reference and

compare it in Panel A against the best-performing machine learning approach, in

Panel B against the least successful competitor, and against all the others in Panel

C. The volatility of the R2
oos,s during our forecast sample years 1996-2018 is not

surprising, because it is a period that is rife with crises and crashes.22 Their impacts

are conspicuous in the R2
oos,s time series plots in Figures 7 and 8.

[Insert Figures 7 and 8 about here]

Figure 8 shows that on the one year horizon the impact of the build-up and burst

of the so-called dot-com bubble is more pronounced than that of the financial crisis

in 2008. The yearly forecasts of all models (safe one) issued in the years 2000 and

2001 yield negative R2
oos.

23 Panel A illustrates that the random forest forecast offers

an overall improvement over the theory-consistent forecast, albeit the negative R2
oos

associated with 2015 forecasts indicates some erratic behavior. The year 2016 may

not be considered a particularly conspicuous period. An interesting observation in

Panel C of Figure 8 is that the neural network is the only model that weathered the

dot-com bubble well, but it loses it at the end of the sample period when it exhibits

very erratic behavior. A poor forecast performance during black swan-like crashes is

explainable, a sudden drop in forecast performance during calm times is not.

22 Gu et al.’s (2019b) forecast sample contains the more tranquil years between 1986 and 1995.
Because of the late availability of the Optionmetrics data required for the theory-based approaches,
we have to start in 1996.

23 Note that the R2
oos in Figures 7 and 8 refer to the year at which the forecast was issued. For

example, the R2
oos for the one year horizon forecasts for the year 2008 have been issued from

January 2007 to December 2007, thus the effect of the financial crises is visible in 2007. Except
for the end-of-month December forecast, all monthly forecasts are issued in the same year as the
realization.
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4.2 Short training and hybrid approaches

So far, we have treated the theory-based and the machine learning methodologies as

competitors, but as outlined in Section 2.3, we also want to assess the potential of

hybrid approaches that combine these opposing philosophies. The results reported

in Table 4 indicate that this may be a promising idea. We observe that although the

theory-based and machine learning forecasts covary positively, the correlations are

not strong, such that the two approaches appear to account for different aspects.

[Insert Table 4 about here]

Any hybrid methodology must accommodate the late availability of the Option-

metrics data, which are required for the implementation of the theory-based formulas.

The training of hybrid models therefore can not begin before 1996. Accordingly,

training and/or validation samples must be shortened to retain a sufficient number

of out-of-sample years for comparison with the “long-training” results. As outlined

supra, we deal with this issue by applying the alternative validation scheme in Figure

4. Tables 5 (one month horizon) and 6 (one year horizon) report the results thus

obtained.24 These tables display two sets of machine learning results, one using the

same feature input as before, but applying the short training scheme. The other set,

referred to as “ML with theory features” is obtained by adding to the feature set

the two theory-based stock risk premia measures (Martin/Wagner’s and Kadan/-

Tang’s) as well as Martin’s (2017) lower bound of the expected market return. The

following discussion of the results intertwines the assessment of the incremental effect

of including these theory-based features with that of applying the short validation

scheme.

[Insert Tables 5 and 6 about here]

24 Comparing Tables 5 and 6 with Table 3, it should be noted that theory-based results only change
because the out-of-sample evaluation period is shortened: The years 1996 and 1997 are not used.
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We have seen that at the one month horizon the machine learning approaches do

not perform well. As expected, the results worsen when applying the short training

scheme. Panel A of Table 5 shows that this deterioration is only mildly mitigated by

the inclusion of the theory-consistent features. This result corroborates the conclusion

that pursuing a (pure) theory-based approach is the preferable strategy at the short

horizon.

Table 6 shows that the detrimental effect of shortened training is also observed

on the one year horizon, but that it is different across machine learning approaches.

The neural network performances deteriorate so substantially that the conclusion is

supported that the short training scheme should be avoided altogether. By contrast,

boosted trees and random forests are affected to a much lesser extent: As a result

of the shorter training, the R2
oos decreases and its standard deviation increases for

random forests, too; but Panel A of Figure 9 suggests that the effect is mitigated as

the training sample grows. At the beginning of the sequential validation procedure,

there are only a few years of observations available for training. Accordingly, the

dot-com turmoil hits a relatively “untrained” random forest, which results in a

deterioration of the R2
oos. This can be seen by comparing the year 2000 R2

oos,s of

the random forest in Panel A of Figure 8 with the counterpart in Figure 9. As the

training sample grows, the random forest performance picks up and reaches, towards

the end of the sample period, the performance level of the “long training” variant.

These observations suggests that the shortening of the validation period (from 12

years to one) is of a much lesser importance than the shortening of the training

period.

[Insert Figure 9 about here]

Table 6 indicates that the augmentation of the feature set by theory-based

measures has a positive effect only for random forests. The effect is not large, but it
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is interesting to see how the augmentation helps the “short-trained” random forest

when it is needed, namely for the 2008 forecast (cf. Panel A of Figure 9). These

results support the notion that random forest are the most useful machine learning

approach for the job at hand.

An epistemological concern regarding the use of machine learning techniques

is that although they may perform well empirically, it is often unclear why. Take

the random forest results at the one year horizon. Our training and validation

scheme can obviously detect non-linearities that translate into a superior forecast

performance. As a next step, one may investigate the reasons by (metaphorically

speaking) exploring the depths of the forest. And as it sometimes happens, when

relying on data science methods, one would engage in trying to understand the

complexity of a trained model, instead of economic reality itself.

The hybrid approach proposed in Section 2.3 is based on a different philosophy.

It relies on Martin/Wagner’s theory-based approach, which starts from the basic

asset pricing equation, the keystone of financial economics. We have seen that this

approach is empirically not unsuccessful. Our idea for a hybrid strategy is to take it

as a basis, and to model what theory can not account for, the approximation errors,

with the help of machine learning techniques.

In the segment labeled “Theory assisted by ML” in Table 6, we report the results

obtained when taking this idea to the data.25 We observe that an improvement of

the theory-consistent approach through machine learning assistance is not a given.

In fact, elastic net and neural network drive the originally positive R2
oos of the

theory-consistent approach into the negative domain. While the assistance of boosted

25 We do not report the one month horizon results, because we have seen supra that machine
learning approaches do not perform well here. We did not expect more when explaining the
residual of the theory-based forecast, and indeed we did not find an improvement. These
additional results are available upon request. Moreover, we only use Martin/Wagner’s formula
(2.5) as a basis for the hybrid approach, because the previous results indicate that it is the more
promising of the two theory-based approaches.
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trees offer just a mild improvement, it is again the random forest that stands out

and increases the theory-based R2
oos of 9.1% by 7 percentage points. The standard

deviation of R2
oos,s also grows, but as can be seen in Figure 10, this increase is mainly

due to the adverse effect of short training. We again observe the harsh drop of

the R2
oos,s in the year 2000, when an insufficiently trained random forest is asked

to perform in a turbulent time. However, Figure 10 also illustrates the machine

learning-assisted improvement of the theory-based forecast as the training sample

size increases towards the recent past.

[Insert Figure 10 about here]

Due to the “short-training” effect, the 16.1% out-of-sample R2 delivered by the

random forest-assisted Martin/Wagner approach is not directly comparable with

the 19.1% of the “long-trained” pure random forest reported in Table 3. However,

by zooming in on more recent forecast samples, we observe in Figure 11 that with

increasing training sample size, the performance of the ML-assisted, theory-based

forecast aligns with that of the long-trained random forest, and at the very end of

the sample period even surpasses it.

[Insert Figures 11 and 12 about here]

The prediction deciles plots in Figure 12 further corroborate the conclusion that

a hybrid approach that combines Martin/Wagner’s theory-consistent approach with

random forest machine learning is, not only from an epistemological point of view, a

promising alternative for the task of quantifying stock risk premia.

5 Conclusion

In this study, we have followed and compared two diverging paths towards measur-

ing stock risk premia and attempted a reconciliation of the opposing philosophies.
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Exploiting the alleged predictive abilities of theory-based and machine learning

methodologies, we compare them at the one month and the one year forecast horizon.

We find that the theory-consistent approach offers advantages at the one month

horizon, where machine learning approaches do not perform well. Recommendations

regarding the use of data science methods at short horizons should therefore be

taken with a grain of salt. At the one year horizon, the picture is more complex.

Of the four machine learning methods that are considered in this study, two deliver

worse performances than the theory-based approach, one is comparable, and one, the

random forest approach, is superior. Its out-of-sample R2 is notably higher than what

is reported in previous work. Neural networks, which prior literature characterizes

as both extremely flexible, but also somewhat unstable, are outperformed by the

theory-based approach.

When considering hybrid approaches that aim for a combination of the theory-

consistent and the machine learning methodologies, we have to acknowledge restric-

tions on data availability. The computation of the theory-consistent measures is

not possible before 1996. Machine learning techniques that attempt to make use

of theory-consistent features must therefore rely on shorter training samples, which

adversely affect the initial forecast performance. Fortunately, the effect is mitigated

as the training sample size increases, when a dynamic training procedure is applied.

Acknowledging epistemological concerns regarding the use of agnostic machine

learning procedures in a well-developed field like finance, we propose a hybrid

methodology that takes the theory-based approach towards stock risk premia as

its basis and then applies machine learning techniques to a residual component

unexplained by theory. The empirical performance of this combined approach is

encouraging. Of its overall explanatory power in excess of a zero forecast, which

matches that of the best agnostic machine learning approach, 57 percent comes from
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the theory-based part, 43 percent are attributable to machine learning assistance.

We view this hybrid model as a promising alternative to unite the diverging paths in

finance.

A Appendix

A.1 Details on the theory-based stock risk premia formulas

This section provides details behind the stock risk premia formulas (2.2) and (2.3) and

the nature of the approximation residuals ait,T and ξit,T . We delineate the assumptions

and rationales behind their omission, which provides the theory-based approximation

formulas in Equations (2.5) and (2.6).

Martin and Wagner’s (2019) derivations originate from basic asset pricing equation

by focusing on the gross return of a portfolio with maximal expected log return

(Rg
t,T ). This growth-optimal return has the unique property among gross returns

that its reciprocal is an SDF, such that mt,T = 1/Rg
t,T . Using this SDF to price the

payoff X i
t,T = Ri

t,T ⋅R
g
t,T gives:

Et(mt,T ⋅X i
t,T ) = Et(Ri

t,T ) =
1

Rf
t,T

E∗

t (Ri
t,T ⋅R

g
t,T ), (A-1)

where the ∗ notation again (and henceforth) indicates that the expected value is

computed with respect to the risk-neutral measure. Division by Rf
t,T and subtracting

E∗

t (Ri
t,T /R

f
t,T ) ×E∗

t (R
g
t,T /R

f
t,T ) = 1 (the price of any gross return is 1) yields:

Et(
Ri

t,T

Rf
t,T

) = 1 + cov∗t (
Ri

t,T

Rf
t,T

,
Rg

t,T

Rf
t,T

), (A-2)
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An orthogonal projection under the risk-neutral measure of Ri
t,T /R

f
t,T on Rg

t,T /R
f
t,T

and a constant gives:

Ri
t,T

Rf
t,T

= αi
t,T + βi

t,T ⋅
Rg

t,T

Rf
t,T

+ uit,T , (A-3)

where the moment conditions E∗

t (uit,T ) = 0 and E∗

t (uit,T ⋅R
g
t,T ) = 0 define the projection

coefficient

βi
t,T =

cov∗t (
Ri

t,T

Rf
t,T

,
Rg

t,T

Rf
t,T

)

var∗t (
Rg

t,T

Rf
t,T

)

and αi
t,T = 1 − βi

t,T . Insertion in (A-2) gives:

Et(
Ri

t,T

Rf
t,T

) = 1 + βi
t,T ⋅ var∗t (

Rg
t,T

Rf
t,T

). (A-4)

Moreover, (A-3) implies:

var∗t (
Ri

t,T

Rf
t,T

) = (βi
t,T )2 ⋅ var∗t (

Rg
t,T

Rf
t,T

) + var∗t (uit,T ). (A-5)

To make these results practically usable, Martin and Wagner (2019) propose to

linearize (βi
t,T )2 ≈ 2βi

t,T −k, which for k = 1 amounts to a first-order Taylor approxima-

tion at βi
t,T = 1. Using this approximation and inserting in (A-4) (for k = 1) removes

the dependence on βi
t,T , viz:

Et(
Ri

t,T

Rf
t,T

) ≈ 1 + 1

2
var∗t (

Ri
t,T

Rf
t,T

) + 1

2
var∗t (

Rg
t,T

Rf
t,T

) − 1

2
var∗t (uit,T ). (A-6)

We note that the term that is neglected on the right-hand side due to the linearization

is −var∗t (R
g
t,T /R

f
t,T )(βi

t,T −1)2. The approximation should thus be reasonable for stocks

whose βi
t,T is close to one.
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Using wj
t , the weight of stock j in a market index with gross return Rm

t,T , Martin

and Wagner (2019) perform a value-weighting of (A-6) to obtain:

Et(
Rm

t,T

Rf
t,T

) ≈ 1 + 1

2
∑
j

wj
tvar∗t (

Rj
t,T

Rf
t,T

) + 1

2
var∗t (

Rg
t,T

Rf
t,T

) − 1

2
∑
j

wj
t ⋅ var∗t (uit,T ). (A-7)

Subtracting (A-7) from (A-6) removes the dependence on the unobservable optimal

growth portfolio, such that:

Et(Ri
t,T ) ≈ Et(Rm

t,T ) +
Rf

t,T

2
[var∗t (

Ri
t,T

Rf
t,T

) −∑
j

wj
t ⋅ var∗t (

Rj
t,T

Rf
t,T

)]

−
Rf

t,T

2
(var∗t (uit,T ) −∑

j

wj
t ⋅ var∗t (u

j
t,T )). (A-8)

Keeping track of the approximation error due to the linearization, we note that the

term that is omitted on the right-hand side of (A-8) is

κit,T = − 1

2Rf
t,T

var∗t (R
g
t,T ) ⋅

⎡⎢⎢⎢⎢⎣
(βi

t,T − 1)2 −∑
j

wj
t ⋅ (βi

t,T − 1)2

⎤⎥⎥⎥⎥⎦
.

To account for the first term on the right-hand side of (A-8), Martin and Wagner

(2019) draw on a result by Martin (2017) who derives a lower bound for the expected

return of a market index. His starting point is again the basic asset pricing equation

(2.1), which can be written in terms of the price of the payoff (Ri
t,T )2 using an add

and subtract strategy:

Et(Ri
t,T ) −R

f
t,T = (Et[mt,T ⋅ (Ri

t,T )2] −Rf
t,T ) − (Et[mt,T ⋅ (Ri

t,T )2] −Et(Ri
t,T )). (A-9)

The first term on the right-hand side of (A-9) can be related to a risk-neutral variance
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and the second term to a covariance under the physical measure, viz:

Et(Ri
t,T ) −R

f
t,T = 1

Rf
t,T

var∗t (Ri
t,T ) − covt(mt,T ⋅Ri

t,T ,R
i
t,T ). (A-10)

As noted in the main text, Kadan and Tang (2019) use (A-10) for their quantification

and approximation of stock risk premia.

Martin (2017) argues that for an asset return that qualifies as a market return

proxy (denoted Rm
t,T ), it should be the case that

ξt,T = covt(mt,T ⋅Rm
t,T ,R

m
t,T ) < 0, (A-11)

which is referred to as the negative correlation condition (NCC). Intuitively, an

investor’s marginal rate of intertemporal substitution should be negatively correlated

with any portfolio that qualifies as a market index. Accordingly,

Et(Rm
t,T ) −R

f
t,T ≥ 1

Rf
t,T

var∗t (Rm
t,T ). (A-12)

Assuming that the inequality (A-12) is binding, and using it for (A-8) yields:

Et(Ri
t,T ) −R

f
t,T ≈ Rf

t,T ⋅ [var∗t (
Rm

t,T

Rf
t,T

) + 1

2
{var∗t (

Ri
t,T

Rf
t,T

) −∑
j

wj
t ⋅ var∗t (

Rj
t,T

Rf
t,T

)}]

−
Rf

t,T

2
⋅ [var∗t (uit,T ) −∑

j

wj
t ⋅ var∗t (u

j
t,T )], (A-13)

where the approximative formula (A-13) omits the term κit,T − ξt,T on the right-hand

side. Equation (2.2) in the main text thus obtains using

ait,T = κit,T − ξt,T − ζ it,T (A-14)
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where

ζ it,T = 1

2
Rf

t,T ⋅ [var∗t (uit,T ) −∑
j

wj
t ⋅ var∗t (u

j
t,T )]. (A-15)

Working with the abbreviated formula in (2.5) in the main text thus entails three

approximations. First, the linearization of (βi
t,T )2, second, the assumption that

Martin’s (2017) lower bound for the expected return of the market is binding, and

third, that the residual variances var∗t (uit,T ) are very similar across stocks, such that

ζ it,T is negligibly small in absolute terms.

A.2 Details on the construction of the data base

Identifying historical S&P 500 constituents

In our analysis we focus on firms that appear at least once as an S&P 500 constituent

during March 1964 and December 2019. For that purpose, we must identify the set

of active S&P 500 constituents for each date of the sample period. WRDS allows for

different ways to obtain the desired list of historical S&P 500 consituents (HSPC).

Due to user-specific WRDS data access constraints, not all paths are feasible for

us. In particular, we cannot access the HSPC tables that are, according to WRDS,

available from CRSP.26 The access to these tables is desirable because if we had it,

the identification of historical S&P 500 constituents and the extraction of security

level information from CRSP would be based on the same security identifier. Instead,

we have to take a detour via Compustat to connect securities across data bases. To

our knowledge, there are two different paths that help achieve this goal.

The first is based on a monthly security query from Compustat’s SECM file. In the

SECM file, the variable SPMIM (S&P Major Index Code - Historical) allows us to

26 The (for us) inaccessible SAS data files in question are named dsp500list and msp500list.
They contain the starting and ending dates for each security identified by PERMNO.
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identify the S&P 500 constituents. As advised by WRDS, from March 1964 until

November 1994 we select SPMIM ∈ {10, 40, 49, 60} to identify the S&P 500 constituents.

According to WRDS, S&P 500 constituents are the union of S&P Transportation

(SPMIM=40), Utilities (SPMIM=49), Financial (SPMIM=60), and Industrial (SPMIM

10).27 From December 1994 onwards, WRDS advises to just select SPMIM=10 to

identify S&P 500 constituents. The resulting table contains information on each

security’s identity providing permanent company (named GVKEY) and security (named

IID) identifiers. Moreover, it reports the dates at which a given security was part of

the S&P 500.

The alternative path to generate the HSPC list is based on the Compustat table

IDXCST_HIS, which collects securities that are identified by the variable GVKEYX,

which indicates the membership of a company in the S&P 500.

The HSPC lists resulting from the two approaches differ only slightly, and we believe

that both methods yield reliable data on S&P 500 firm membership over time. The

first of the two approaches identifies 1,697 S&P 500 constituents between January

1962 and December 2019, whereas the second identifies 1,713 S&P 500 constituents

between March 1964 and December 2019. Both agree on 1,691 of the union of

1,719 identified S&P 500 constituents. There are six S&P 500 constituents that are

identified exclusively by the first approach, and 22 S&P 500 constituents that are

identified exclusively by the second approach. We choose the first approach because

it provides a more consistent coverage of HSPCs during the 1970s.

Linking Compustat and CRSP

The security identifier CUSIP, just as ticker symbols, can change over time. CUSIPs

27 This information is taken from https://wrds-www.wharton.upenn.edu/

pages/support/applications/programming-examples-and-other-topics/

sp-500-datasets-and-constituents/
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are not permanently linked to a firm. As noted by WRDS,28 “[a] change in CUSIP

[...] could be triggered by any change in the security, including non-fundamental

events such as splits and company name changes.” Compustat therefore also supplies

a permanent security identifier, which results from the combination of the variables

GVKEY and IID, which we retrieve along with CUSIP when constructing the list of

HSPC. A permanent security identifier is important in order to keep track of any

legal or structural changes that may occur during the lifetime of a company.

Even though Compustat, CRSP and OptionMetrics have CUSIP identification in

common, their permanent identifiers differ. Moreover, despite the common identi-

fication via CUSIP, it is still possible that the tags of one and the same security

differ. The reason for this is often a different assessment of whether a change in the

corporate structure should actually be recorded in CUSIP. First we will examine the

possibilities of combining Compustat and CRSP and then we will take a closer look

at the connection possibilities of Compustat and OptionMetrics.

Establishing a connection between CRSP and Compustat, and merging the respective

data for a security, is a common task in empirical finance. For that purpose, WRDS

provides a linkage table that enables the cross-database identification of securities

using each database’s permanent identifiers. As mentioned before, Compustat uses a

combination of GVKEY and IID to track securities whereas CRSP relies on a perma-

nent security identifier called PERMNO.29

We find that using the linkage table, it is not possible to find a one-to-one assignment

of the permanent identifiers across CRSP and Compustat. Instead, there are several

CRSP PERMNO identifiers that can be assigned to a unique combination of Compus-

28 For a detailed description of the cross-database identification problem see https:

//wrds-www.wharton.upenn.edu/pages/support/applications/linking-databases/

linking-crsp-and-compustat/
29 CRSP additionally provides company identification via PERMCO. However, since securities are

unambiguously identified by PERMNO, PERMCO is not of particular importance in our context.
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tat’s GVKEY+IID. As a result, when we use the S&P 500 constituents identified with

the help of Compustat, the list of matched CRSP CUSIPs is longer than the list of

Compustat CUSIPs. This suggests that it may sometimes be necessary to merge the

price information of multiple CRSP CUSIPs with a single Compustat CUSIP.

However, a particular connection between the permanent identifiers in CRSP and

Compustat must be one-to-one only at a given point in time. For this purpose we use

the variables LINKDT and LINKENDDT, which contain information about the validity

of a connection of the permanent CRSP and Compustat identifiers at a certain point

in time. The good news is that the connection of the permanent identifiers in CRSP

and Compustat indeed is one-to-one at corresponding dates.

Using the list of S&P 500 constituents obtained from Compustat, we extract security

level information from CRSP. The crspa library provides price information and the

number of outstanding shares on a daily frequency for each index constituent. The

CRSP index price data is obtained from the library crsp via the table dsi.

Linking Compustat and OptionMetrics

We obtain the OptionMetrics volatility surface data from the library optionm where

there is a separate volatility surface table for each available year. WRDS offers a beta

version of a linkage table, named opcrsphist, to connect CRSP and OptionMetrics.

In this table there are scores that indicate the quality of a match between SECID

and PERMNO. The highest score for the most reliable link is given to 8-digit CUSIP

identification. To the best of our knowledge, there is currently no better way to link

either Compustat or CRSP to OptionMetrics. Putting aside all the shortcomings

that are attached to CUSIP identification, we search OptionMetrics for the list of

HSCP that we derived from Compustat. Clearly, this approach does not yield a

100% coverage of S&P 500 constituents in the OptionMetrics data, however, the

average per day coverage of constituents is still quite satisfactory and improves on
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Martin and Wagner (2019).

The calculation of the theory-consistent excess return forecasts requires the price

of the underlying at the day the forecast is made. There are several ways to obtain

these prices. Firstly, CRSP provides daily security price data for the period from

December 1925 until December 2019. Furthermore, the OptionMetrics database

provides prices for all stocks for which options are traded between January 1996

and December 2018. It seems natural to take the prices from OptionMetrics and

calculate expected excess returns. This would ensure that we get both the volatility

surface and the associated price data from the same data source, so that we do not

face any cross-database security identification problems. However, at the latest when

comparing the theory-consistent forecasts to those of machine learning models, our

study requires that we have prices available for all S&P 500 constituents at times

before 1996. These are needed to train the machine learning models on a period

prior to the out-of-sample testing period. Thus, we decide to get the price data from

CRSP instead of OptionMetrics.

A.3 Details on the implementation of the theory-based ap-

proaches

In the following, we describe how to approximate the formula for risk-neutral variances

in (2.4) using volatility surface data from OptionMetrics. The right-hand side of (2.4)

depends on observable time t information only. We require the price of the underlying,

a proxy for the risk-free interest rate, the price of the forward contract and the

prices of European options at different strikes, each of the latter with maturity in T .

Since the formula in (2.4) is based on the put-call parity, it exclusively applies to

European option contracts. In Martin (2017) this is not an issue since options on

the S&P 500 index are traded European style and the observed option price data
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from OptionMetrics can be used to approximate the risk-neutral variances. However,

options on the constituents of the S&P 500 are traded American style. As is well

known, there is no put-call parity for American options and thus prices of American

options are not directly useful. However, we find the prices of equivalent European

options using OptionMetrics’ volatility surface. This volatilty surface is constructed

using the price of the underlying, the risk-free interest rate and various times to

maturity and strike prices of American options. With these implied volatilities one

can calculate the price of an equivalent European option using the Black-Scholes-

Merton (BSM) formula. This is possible, because the implied volatility is, apart from

the risk-free interest rate, the only ingredient of the BSM model which is not directly

observable. Further, the implied volatility depends on the nature of the underlying

but is independent from the terms and conditions of the option contract. Thus, it

may be conceived as a conversion factor for translating between otherwise equivalent

European and American style options.

Besides the issue with the exercise style of options on S&P 500 constituents, we have

to approximate the integrals in (2.4) because we do not observe option prices at a

continuum of strikes. Martin’s (2017) strategy amounts to using for every strike Kj

from the ascending list of available strikes K1,K2, . . .Kn
30

Ωj(Kj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

putj(Kj) if Kj < Fj

callj(Kj) if Kj ≥ Fj

(A-16)

to approximate the sum of the two integrals on the right-hand side of (2.4) via

∑
j

Ωj(Kj) ⋅∆Kj, (A-17)

30 For notational convenience, we drop the security, time, and maturity indices.
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where

∆Kj =
Kj+1 −Kj−1

2
j = 2, . . . , n − 1,

∆K1 =K2 −K1,

∆Kn =Kn −Kn−1.

Put differently, we sum over discrete strikes, weighting observations with the distance

between previous and next strike divided by two. Hence, we center the rectangles, of

which we add their areas, around the observed strikes. This approach ensures that

the approximation error, that is due to the discreteness of strikes, is limited from

above.

It is important to mention that Martin (2017) uses observed European option prices

to calculate risk-neutral variances for the S&P 500 index, whereas Martin and

Wagner (2019) base their calculations on the volatility surface with its standardized

implied strikes, which has the advantage that all calculations are based on the same

standardized number of strikes, both for the index and its constituents. We decide

to follow the latter approach.

A.4 Details on the implementation of the machine learning

approaches

A.4.1 Software and computing resources

We implement our machine learning procedures using Python’s scikit-learn ecosystem,

which provides a considerable number of popular machine learning models. For the

training of neural networks we rely on Python’s deep learning library Keras with

the Tensorflow backend. Although scikit-learn also allows the training of neural
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networks, it is less flexible than Keras and lacks some degrees of freedom in the

construction of network architectures. In order to achieve maximum parallelization

during our extensive hyper-parameter search, we further combine scikit-learn with

the parallel computing environment Dask. The hyper-parameter optimization for the

Keras networks is conducted using Talos, an efficient hyper-parameter optimization

toolbox which delivers Tensorflow’s native parallelism out of the box.

The computing infrastructure that we use for our experiments is provided by the state

of Baden Württemberg in the shape of a High Performance Computing (HPC) cluster

named MLS&WISO, which is short for Molecular Life Science (MLS) and Economics

and Social Science (WISO). On this cluster, we primarily use the “standard” compute

nodes, of which there are 476 in total, each equipped with 2 x Intel Xeon E5-2630v3

Haswell Processors (2.4 GHz), 16 Cores and 64 (128) GB working memory (RAM).

A.4.2 Comparison with Gu et al. (2019b)

Gu et al. (2019b) set a benchmark for machine learning based excess return predic-

tions with a forecast horizon of both one month and one year. Since in our experiment

we rely on the same source of data (Green et al.’s (2017) SAS code), a natural check

is whether the machine learning models can live up to their promises. Even though

we believe that the long-term forecasts should be more promising, our out-of-sample

results for the one month horizon should ideally be in vicinity of what is reported in

Gu et al. (2019b). We find, however, that the one month performance of our machine

learning models lag behind the performance of the models presented in Gu et al.

(2019b). This observation may be attributed to several reasons.

Universe of stocks

We believe that the deviations in out-of-sample performance partially stem from

differences in the universes of stocks being considered. Since the theory-consistent
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approach allows us to compute excess return forecasts exclusively for S&P 500 con-

stituents, we feed our machine learning models with features of S&P 500 consituents

only. In this way we are not only able to establish a fair comparison between the

two approaches, but further make it possible to combine them in a hybrid manner,

which for non-S&P 500 constituents is impossible. Gu et al. (2019b) instead rely on

a much broader set of NYSE-, AMEX- and NASDAQ-traded firms and also include

penny stocks, yielding an average number of stocks per month that exceeds 6,200.31

Sample period

Our overall sample period deviates from the one reported in Gu et al. (2019b). They

start their training in 1957, the beginning of the S&P 500. However, taking the

problem of missing values into consideration, we find that we are unable to replace all

of the missing values that occur between 1957 and October 1974. The reason is that

we follow Gu et al. (2019b) in filling a feature’s missing values with the cross-sectional

median at a given point in time. A problem that is attached to any cross-section

based imputation method is, that if the first observation of some variable is dated

October 1974 (as is the case for “cash flow volatility”), these methods break down

since there is no cross-section from which the missing data prior to October 1974

could be inferred. One might be inclined to resort to more sophisticated imputation

31 In case of the long training/validation scheme described in Figure 3 we do not use any of the
theory-consistent measures. Hence, in principle, we could have used the extended set of NYSE-,
AMEX- and NASDAQ-traded firms which is used in Gu et al. (2019b) to train our machine
learning models. However, we want to be able to compare the models with long training/validation
scheme to the (hybrid) machine learning models with the short training/validation scheme
described in Figure 4. Hence, for a true ceteris paribus assessment of the effect of reducing the
size of the training/validation windows, we must exclude all non-S&P 500 stocks. What speaks in
favor of an extended universe of stocks is that with a higher number of observations, the machine
learning procedures are less likely to overfit. However, this advantage may be compensated by
an (allegedly) higher signal-to-noise ratio, which we believe is due to the fact that S&P 500
stocks are larger than the average stock listed on NYSE, AMEX and NASDAQ. Ultimately,
it is unclear whether additional stocks with a lower market capitalization add information for
a prediction of excess returns on S&P 500 stocks. The figures in Figure 1 Gu et al. (2019b),
however, suggest that there is quite some variation in a model’s performance across stocks with
different market capitalizations.
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methods, but we refrain from doing so because we fear that our results could be

biased by overly restrictive assumptions about the structure of the missing data.

Out-of-sample testing period

We need to adjust our out-of-sample testing period in order to enable a comparison

with the theory-consistent forecasts proposed by Martin and Wagner (2019) and

Kadan and Tang (2019). Gu et al. (2019b) report their out-of-sample results on

a testing period that ranges from 1987 to 2016. The option data that are used

to construct the theory-consistent forecasts are, however, only available from 1996

onwards. We therefore extend our training/validation period until 1995 and begin

with out-of-sample testing not before 1996.

Feature transformations

In the construction of our feature set, we follow an earlier version of Gu et al. (2019b)

which is dated April 9, 2018. In this version they seem to take their set of firm

characteristics as they are, without any transformations except for the Kronecker

product with the macroeconomic variables. In the recently published version of their

paper, however, it is mentioned in footnote 29, that they map their firm characteris-

tics based on a period-by-period ranking to the interval [−1,1], an approach that is

used, among others, by Freyberger et al. (2019). Thereby they account for the fact,

that “[one is] typically not interested in the value of a characteristic in isolation, but

rather in the rank of the characteristic in the cross section.” (cf. Freyberger et al.

(2019)) The effect of switching from the one approach to the other will be discussed

in a future version of our paper.

Hyper-parameter tuning

We adapt the search space for the hyper-parameters of each machine learning model

to the requirements of our restricted sample. Any differences in the out-of-sample

forecast performance may be due to these changes. For example, Gu et al. (2019b)
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set the maximum depth of each tree in their random forest to 6, which in our case

appears to be too restrictive. Thus, we increase the upper boundary of the interval

from 6 to 30, which improves our results especially with a forecast horizon of one

year. Also we extend the search space for the elastic net’s L1-ratio, which in Gu

et al. (2019b) is fixed at 0.5, to allow for a more flexible combination of L1- and

L2-penalization. For the gradient boosted regression trees we limit the number of

trees to the interval [2,100], increase the maximum tree depth to 3 and extend the

interval for the learning rate to [0.005,0.12]. In case of the neural networks, we

switch from the seed-value based ensemble approach that is propagated in Gu et al.

(2019b) to dropout regularization, which is a more efficient way of regularizing neural

networks. Admittedly, ensemble methods have proven to be the gold standard in

many machine learning applications since they allow the different aspects learned

by each individual model to be subsumed in a single prediction. However, creating

ensembles can become prohibitively expensive if the number of sample observations

is large and/or each individual model is highly complex. Srivastava et al. (2014)

address this issue by proposing dropout regularization which retains the capability

of neural networks to learn different aspects of the data while being computationally

more efficient than the standard ensemble approach. As proposed in the original

paper, we also introduce a maximum weight norm for each hidden layer. Compared

to Gu et al. (2019b), we also reduce the batch size, both due to the fact that a

smaller batch size typically improves the generalization capabilities of a model that

is trained with stochastic gradient descent (cf. Keskar et al. (2016)) and also due

to our reduced sample size which is restricted to S&P 500 constituents only. For a

detailed comparison of the hyper-parameter search spaces the reader may refer to

our Table 2 and Table A.5 in Gu et al. (2019b).
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Table 1: Variable descriptives. The table reports descriptive statistics and general information on the variables used for the empirical analyses. Panel A1 is based
on Table A.6 by Gu et al. (2019b) and contains information on the firm characteristics used for the machine learning approach. Panel A2 does the same for the macro
features and Panels B and C refer to the realized excess returns and the theory-based forecasts that are proposed by Martin and Wagner (2019), Kadan and Tang
(2019) and Martin (2017), respectively. For each measure, we report its debut in finance literature (author(s), year, journal), from which database it can be obtained
(source), at which frequency it is reported (freq.), and the mean and standard deviation in our sample (avg. and std., respectively).

Panel A1: Firm characteristics Source Freq. Avg. Std. Author(s) Year Journal

1-month momentum CRSP Monthly 0.015 0.106 Jegadeesh & Titman 1993 JF

12-month momentum CRSP Monthly 0.175 0.429 Jegadeesh 1990 JF

36-month momentum CRSP Monthly 0.397 0.766 Jegadeesh & Titman 1993 JF

6-month momentum CRSP Monthly 0.077 0.257 Jegadeesh & Titman 1993 JF

Abnormal earnings announcement volume Compustat/CRSP Quarterly 0.631 1.173 Lerman, Livnat & Mendenhall 2007 WP

Absolute accruals Compustat Annual 0.065 0.060 Bandyopadhyay, Huang & Wirjanto 2010 WP

Accrual volatility Compustat Quarterly 0.561 13.997 Bandyopadhyay, Huang & Wirjanto 2010 WP

Asset growth Compustat Annual 0.145 0.324 Cooper, Gulen & Schill 2008 JF

Beta CRSP Monthly 1.022 0.533 Fama & MacBeth 1973 JPE

Beta squared CRSP Monthly 1.329 1.399 Fama & MacBeth 1973 JPE

Bid-ask spread CRSP Monthly 0.028 0.020 Amihud & Mendelson 1989 JF

Book-to-market Compustat/CRSP Annual 0.582 0.507 Rosenberg, Reid & Lanstein 1985 JPM

Capital expenditures and inventory Compustat Annual 0.074 0.138 Chen & Zhang 2010 JF

Cash flow to debt Compustat Annual 0.212 0.930 Ou & Penman 1989 JAE

Cash flow to price ratio Compustat Annual 0.078 0.193 Desai, Rajgopal & Venkatachalam 2004 TAR

Cash flow volatility Compustat Quarterly 0.998 26.096 Huang 2009 JEF

Cash holdings Compustat Quarterly 0.107 0.136 Palazzo 2012 JFE

Cash productivity Compustat Annual 1.774 57.792 Chandrashekar & Rao 2009 WP

Change in 6-month momentum CRSP Monthly 0.001 0.404 Gettleman & Marks 2006 WP

Change in inventory Compustat Annual 0.011 0.037 Thomas & Zhang 2002 RAS

Change in shares outstanding Compustat Annual 0.125 0.347 Pontiff & Woodgate 2008 JF

Change in tax expense Compustat Quarterly 0.001 0.010 Thomas & Zhang 2011 JAR

Convertible debt indicator Compustat Annual 0.178 0.382 Valta 2016 JFQA

Corporate investment Compustat Quarterly -0.002 0.429 Titman, Wei & Xie 2004 JFQA

Current ratio Compustat Annual 2.344 3.795 Ou & Penman 1989 JAE

Debt capacity/firm tangibility Compustat Annual 0.483 0.136 Almeida & Campello 2007 RFS

Depreciation/PP&E Compustat Annual 0.191 0.233 Holthausen & Larcker 1992 JAE

Dividend initiation Compustat Annual 0.017 0.130 Michaely, Thaler & Womack 1995 JF

Dividend omission Compustat Annual 0.014 0.117 Michaely, Thaler & Womack 1995 JF

Dividend to price Compustat Annual 0.027 0.032 Litzenberger & Ramaswamy 1982 JF

Table 1 continued . . .
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Table 1 continued . . .

. . . Source Freq. Avg. Std. Author(s) Year Journal

Dollar trading volume CRSP Monthly 14.595 2.307 Chordia, Subrahmanyam & Anshuman 2001 JFE

Earnings announcement return Compustat/CRSP Quarterly 0.005 0.061 Kishore, Brandt, Santa-Clara & Venkatachalam 2008 WP

Earnings to price Compustat Annual 0.044 0.217 Basu 1977 JF

Earnings volatility Compustat Quarterly 0.013 0.020 Francis, LaFond, Olsson & Schipper 2004 TAR

Employee growth rate Compustat Annual 0.069 0.249 Bazdresch, Belo & Lin 2014 JPE

Financial statement score Compustat Quarterly 4.427 1.675 Mohanram 2005 RAS

Financial statements score Compustat Annual 4.746 1.607 Piotroski 2000 JAR

Gross profitability Compustat Annual 0.357 0.293 Novy-Marx 2013 JFE

Growth in capital expenditures Compustat Annual 0.515 2.023 Anderson & Garcia-Feijoo 2006 JF

Growth in common shareholder equity Compustat Annual 0.142 0.514 Richardson, Sloan, Soliman & Tuna 2005 JAE

Growth in long term net operating assets Compustat Annual 0.087 0.114 Fairfield, Whisenant & Yohn 2003 TAR

Growth in long-term debt Compustat Annual 0.181 0.523 Richardson, Sloan, Soliman & Tuna 2005 JAE

Idiosyncratic return volatility CRSP Monthly 0.042 0.020 Ali, Hwang & Trombley 2003 JFE

Illiquidity CRSP Monthly 0.000 0.000 Amihud 2002 JFM

Industry momentum CRSP Monthly 0.153 0.281 Moskowitz & Grinblatt 1999 JF

Industry sales concentration Compustat Annual 0.075 0.078 Hou & Robinson 2006 JF

Industry-adjusted book to market Compustat/CRSP Annual 15.292 656.543 Asness, Porter & Stevens 2000 WP

Industry-adjusted cash flow to price ratio Compustat Annual 8.657 271.989 Asness, Porter & Stevens 2000 WP

Industry-adjusted change in asset turnover Compustat Annual -0.007 0.168 Soliman 2008 TAR

Industry-adjusted change in employees Compustat Annual -0.120 0.648 Asness, Porter & Stevens 1994 WP

Industry-adjusted change in profit margin Compustat Annual -0.073 19.993 Soliman 2008 TAR

Industry-adjusted % change in capital exp. Compustat Annual 0.247 13.836 Abarbanell & Bushee 1998 TAR

Leverage Compustat Annual 2.097 4.584 Bhandari 1988 JF

Maximum daily return CRSP Monthly 0.045 0.036 Bali, Cakici & Whitelaw 2011 JFE

Number of earnings increases Compustat Quarterly 1.098 1.483 Barth, Elliott & Finn 1999 JAR

Number of years since first Compustat coverage Compustat Annual 23.113 13.623 Jiang, Lee & Zhang 2005 RAS

Operating profitability Compustat Annual 0.358 0.472 Fama & French 2015 JFE

Organizational capital Compustat Annual 0.009 0.009 Eisfeldt & Papanikolaou 2013 JF

% change in current ratio Compustat Annual 0.033 0.357 Ou & Penman 1989 JAE

% change in depreciation Compustat Annual 0.038 0.276 Holthausen & Larcker 1992 JAE

% change in gross margin - % change in sales Compustat Annual -0.004 0.515 Abarbanell & Bushee 1998 TAR

% change in quick ratio Compustat Annual 0.050 0.424 Ou & Penman 1989 JAE

% change in sales - % change in A/R Compustat Annual -0.025 0.399 Abarbanell & Bushee 1998 TAR

% change in sales - % change in inventory Compustat Annual -0.021 0.503 Abarbanell & Bushee 1998 TAR

Table 1 continued . . .
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Table 1 continued . . .

. . . Source Freq. Avg. Std. Author(s) Year Journal

% change in sales - % change in SG&A Compustat Annual 0.003 0.160 Abarbanell & Bushee 1998 TAR

% change sales-to-inventory Compustat Annual 0.065 0.621 Ou & Penman 1989 JAE

Percent accruals Compustat Annual -1.068 4.907 Hafzalla, Lundholm & Van Winkle 2011 TAR

Price delay CRSP Monthly 0.098 0.609 Hou & Moskowitz 2005 RFS

Quick ratio Compustat Annual 1.785 3.521 Ou & Penman 1989 JAE

R&D increase Compustat Annual 0.094 0.292 Eberhart, Maxwell & Siddique 2004 JF

R&D to market capitalization Compustat Annual 0.031 0.049 Guo, Lev & Shi 2006 JBFA

R&D to sales Compustat Annual 0.057 0.554 Guo, Lev & Shi 2006 JBFA

Return on assets Compustat Quarterly 0.014 0.025 Balakrishnan, Bartov & Faurel 2010 JAE

Return on equity Compustat Quarterly 0.034 0.102 Hou, Xue & Zhang 2015 RFS

Return on invested capital Compustat Annual 0.105 0.199 Brown & Rowe 2007 WP

Return volatility CRSP Monthly 0.021 0.014 Ang, Hodrick, Xing & Zhang 2006 JF

Revenue surprise Compustat Quarterly 0.024 0.130 Kama 2009 JBFA

Sales growth Compustat Annual 0.138 0.319 Lakonishok, Shleifer & Vishny 1994 JF

Sales to cash Compustat Annual 49.249 135.423 Ou & Penman 1989 JAE

Sales to inventory Compustat Annual 22.766 57.214 Ou & Penman 1989 JAE

Sales to price Compustat Annual 1.602 2.383 Barbee, Mukherji, & Raines 1996 FAJ

Sales to receivables Compustat Annual 11.823 23.007 Ou & Penman 1989 JAE

Secured debt indicator Compustat Annual 0.368 0.482 Valta 2016 JFQA

Share turnover CRSP Monthly 1.359 1.511 Datar, Naik & Radcliffe 1998 JFM

Sin stocks Compustat Annual 0.013 0.115 Hong & Kacperczyk 2009 JFE

Size CRSP Monthly 14.742 1.735 Banz 1981 JFE

Tax income to book income Compustat Annual 0.064 1.632 Lev & Nissim 2004 TAR

Volatility of liquidity (dollar trading vol.) CRSP Monthly 0.542 0.250 Chordia, Subrahmanyam & Anshuman 2001 JFE

Volatility of liquidity (share turnover) CRSP Monthly 3.622 5.271 Chordia, Subrahmanyam, &Anshuman 2001 JFE

Working capital accruals Compustat Annual -0.021 0.085 Sloan 1996 TAR

Zero trading days CRSP Monthly 0.041 0.477 Liu 2006 JFE

Panel A2: Macro features Source Freq. Avg. Std. Author(s) Year Journal

Book-to-market ratio Goyal Monthly 0.421 0.262 Goyal & Welch 2008 RFS

Default yield spread Goyal Monthly 0.011 0.004 Goyal & Welch 2008 RFS

Dividend price ratio Goyal Monthly -3.713 0.424 Goyal & Welch 2008 RFS

Table 1 continued . . .
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Table 1 continued . . .

. . . Source Freq. Avg. Std. Author(s) Year Journal

Earnings price ratio Goyal Monthly -2.913 0.464 Goyal & Welch 2008 RFS

Net equity expansion Goyal Monthly 0.006 0.020 Goyal & Welch 2008 RFS

Stock variance Goyal Monthly 0.002 0.005 Goyal & Welch 2008 RFS

Term spread Goyal Monthly 0.022 0.014 Goyal & Welch 2008 RFS

Treasury bill rate Goyal Monthly 0.043 0.033 Goyal & Welch 2008 RFS

Panel B: Excess returns Source Freq. Avg. Std. Author(s) Year Journal

Excess return 1 month CRSP/OptionM./Goyal Daily 0.010 0.110

Excess return 1 year CRSP/OptionM./Goyal Daily 0.150 0.494

Panel C: Theory-based measures Source Freq. Avg. Std. Author(s) Year Journal

Martin/Wagner 1 month Compu./CRSP/OptionM. Daily 0.006 0.010 Martin & Wagner 2019 JF

Kadan/Tang 1 month Compu./CRSP/OptionM. Daily 0.015 0.019 Kadan & Tang 2019 forth. RFS

Martin 1 month Compu./CRSP/OptionM. Daily 0.003 0.003 Martin 2017 QJE

Martin/Wagner 1 year Compu./CRSP/OptionM. Daily 0.071 0.112 Martin & Wagner 2019 JF

Kadan/Tang 1 year Compu./CRSP/OptionM. Daily 0.159 0.230 Kadan & Tang 2019 forth. RFS

Martin 1 year Compu./CRSP/OptionM. Daily 0.040 0.022 Martin 2017 QJE
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Table 2: Hyper-parameter combinations. Panels A to D present the hyper-parameter combinations that we
search during our training/validation procedure. Any parameter configurations that are not listed here correspond
to the respective default settings of the software packages used.

Panel A: Elastic Net Panel B: Random Forest

Software: Software:
Scikit-learn (SGDRegressor) Scikit-learn (RandomForestRegressor)

Feature transformation: Feature transformation:
Standard & robust scaling Standard & robust scaling
Selection by variance threshold Selection by variance threshold

Model parameters: Model parameters:
L1-L2-penalty: {x ∈ R ∶ 10−5 ≤ x ≤ 10−1} Number of trees: 300
L1-ratio: {x ∈ R ∶ 0 ≤ x ≤ 1} Max. depth: {x ∈ N ∶ 2 ≤ x ≤ 30}

Max. features: {x ∈ N ∶ 2 ≤ x ≤ 150}

Optimization:
Stochastic gradient descent
Tolerance: 10−4

Max. epochs: 1,000
Learning rate: 10−4/t0.1

Random search: Random search:
Number of combinations: 1,000 Number of combinations: 500

Panel C: Boosted Trees Panel D: Neural Network

Software: Software:
Scikit-learn (GradientBoostingRegressor) Keras/Tensorflow (Sequential)

Feature transformation: Feature transformation:
Standard & robust scaling Standard & robust scaling
Selection by variance threshold Selection by variance threshold

Model parameters: Model parameters:
Number of trees: {x ∈ N ∶ 2 ≤ x ≤ 100} Activation: TanH, ReLU
Max. depth: {x ∈ N ∶ 1 ≤ x ≤ 3} Hidden layers: {1,2,3,4,5}
Max. features: {20,50,All} First hidden layer nodes: {32,64,128,256}
Learning rate: {x ∈ R ∶ 5 × 10−3 ≤ x ≤ 1.2 × 10−1} Network architecture: Rectangle, Pyramid

Max. weight norm: {3,4,5}
Dropout rate: {x ∈ R ∶ 0 ≤ x ≤ 0.5}
L1-penalty: {x ∈ R ∶ 10−5 ≤ x ≤ 10−2}

Optimization:
Adaptive moment estimation
Batch size: {10,20,50,100,200,500,1,000}
Learning rate: {x ∈ R ∶ 0.01 ≤ x ≤ 0.1}
Early stopping
Epochs w/o change: {2,4,6,8,10,12}
Max. epochs: 150
Batch normalization

Random search: Random search:
Number of combinations: 300 Number of combinations: 500
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Table 3: Performance comparison: Theory-based vs. machine learning forecasts. The
table presents information on the out-of-sample forecast performance for variants of the theory-
based forecasts (Martin and Wagner (2019) and Kadan and Tang (2019)) and the machine learning
models with the long training/validation scheme. For each competitor, we report the associated
R2

oos×100 and the standard deviations of R2
oos,s, calculated on annual splits. The last two columns

contain the p-values associated with testing the null hypothesis that a model’s forecast has no
explanatory power over the zero forecast, i.e. E(R2

oos) ≤ 0 and the p-values of the Diebold-Mariano
test (using end-of-month theory-based forecast of Martin and Wagner (2019) as a basecase), re-
spectively. Panel A refers to the one month forecast horizon and Panel B to the one year forecast
horizon. For Panel A, the out-of-sample testing period starts in January 1996 and ends in November
2018. For Panel B, the out-of-sample testing period ends in December 2017. Both panels consider
the theory-based forecasts on a monthly and on a daily frequency.

Panel A: One month horizon

p-values

R2
oos×100 Std Dev E(R2

oos) ≤ 0 DM

T
h
eo

ry
-

B
a
se

d

Martin/Wagner 0.2 3.2 0.154
Martin/Wagner (daily) 0.9 2.3 0.008 0.612
Kadan/Tang −1.8 6.9 0.704 0.089
Kadan/Tang (daily) −0.5 5.3 0.502 0.115

M
a
ch

in
e

L
ea

rn
in

g Elastic Net −0.3 3.5 0.161 0.479
Neural Network −68.7 121.9 1.000 0.022
Boosted Trees −0.6 4.2 0.248 0.353
Random Forest −1.6 5.2 0.435 0.301

Panel B: One year horizon

p-values

R2
oos×100 Std Dev E(R2

oos) ≤ 0 DM

T
h
eo

ry
-

B
a
se

d

Martin/Wagner 8.8 16.3 0.051
Martin/Wagner (daily) 9.0 16.2 0.046 0.132
Kadan/Tang 3.1 47.6 0.694 0.295
Kadan/Tang (daily) 3.5 48.2 0.677 0.217

M
a
ch

in
e

L
ea

rn
in

g Elastic Net 5.5 18.5 0.125 0.259
Neural Network 5.6 28.6 0.512 0.324
Boosted Trees 10.6 20.5 0.035 0.195
Random Forest 19.5 23.6 0.002 0.003
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Table 4: Forecast correlations. The table reports pearson correlation coefficients for the out-of-sample forecasts of
the theory-based approaches (Martin and Wagner (2019) and Kadan and Tang (2019)) and the machine learning models
with the long training/validation scheme. Panel A refers to a forecast horizon of one month with a testing period from
January 1996 to November 2018 and Panel B refers to a forecast horizon of one year and a testing period from January
1996 to December 2017.

Panel A: One month horizon

Neural Network Random Forest Boosted Trees Elastic Net Kadan/Tang

Martin/Wagner 0.01 0.25 0.32 −0.06 0.98
Kadan/Tang 0.00 0.25 0.31 −0.04
Elastic Net 0.01 0.70 0.45
Boosted Trees 0.07 0.82
Random Forest 0.09

Panel B: One year horizon

Neural Network Random Forest Boosted Trees Elastic Net Kadan/Tang

Martin/Wagner 0.12 0.33 0.34 0.00 0.98
Kadan/Tang 0.08 0.32 0.35 0.02
Elastic Net −0.02 0.49 0.57
Boosted Trees 0.06 0.72
Random Forest 0.15

Table 5: Performance comparison: Pure vs. hybrid forecasts (one month horizon). The
table presents information on the out-of-sample forecast performance for variants of the theory-based
forecasts (Theory-based), the machine learning models (Machine Learning), and a hybrid approach
in which the theory-consistent forecasts serve as additional features in the machine learning models
(ML with theory features). The general outline is as in Table 3. All results refer to a one month
forecast horizon and use the period January 1998 to November 2018 for out-of-sample forecasting.

p-values

R2
oos×100 Std Dev E(R2

oos) ≤ 0 DM

T
h
eo

ry
-

B
a
se

d

Martin/Wagner 0.1 3.4 0.206
Martin/Wagner (daily) 0.9 2.4 0.016 0.756
Kadan/Tang −2.0 7.2 0.739 0.086
Kadan/Tang (daily) −0.6 5.6 0.575 0.160

M
a
ch

in
e

L
ea

rn
in

g Elastic Net −4.0 8.6 0.840 0.130
Neural Network −43.1 57.3 0.996 0.087
Boosted Trees −29.5 57.7 0.860 0.245
Random Forest −8.4 15.1 0.869 0.173

M
L

w
it

h
th

eo
ry

fe
a
tu

re
s

Elastic Net −3.2 7.1 0.790 0.130
Neural Network −29.5 38.3 1.000 0.002
Boosted Trees −25.6 53.1 0.855 0.253
Random Forest −7.6 13.3 0.871 0.157
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Table 6: Performance comparison: Pure vs. hybrid forecasts (one year horizon). The
table presents information on the out-of-sample forecast performance for variants of the theory-based
forecasts (Theory-based), the machine learning models (Machine Learning), a hybrid approach in which
the theory-consistent forecasts serve as additional features in the machine learning models (ML with
theory features), and a second hybrid attempt in which ML models are trained to deliver predictions of
the forecast errors of the theory-based approaches (Theory assisted by ML). The general outline is as in
Table 3. All results refer to a one year forecast horizon and use the period January 1998 to December
2017 for out-of-sample forecasting.

p-values

R2
oos×100 Std Dev E(R2

oos) ≤ 0 DM

T
h
eo

ry
-

B
a
se

d

Martin/Wagner 9.1 17.1 0.072
Martin/Wagner (daily) 9.3 17.0 0.066 0.158
Kadan/Tang 3.1 49.9 0.706 0.315
Kadan/Tang (daily) 3.5 50.5 0.692 0.231

M
a
ch

in
e

L
ea

rn
in

g Elastic Net −31.6 153.6 0.873 0.131
Neural Network −346.2 398.1 0.859 0.263
Boosted Trees 10.3 36.6 0.308 0.849
Random Forest 12.4 45.1 0.329 0.645

M
L

w
it

h
th

eo
ry

fe
a
tu

re
s

Elastic Net −32.6 160.3 0.868 0.139
Neural Network −2.4 22.6 0.604 0.117
Boosted Trees 9.7 39.7 0.356 0.973
Random Forest 14.6 42.3 0.244 0.387

T
h
eo

ry
a
ss

is
te

d
b
y

M
L

Elastic Net −38.2 192.9 0.885 0.168
Neural Network −1.9 42.6 0.633 0.308
Boosted Trees 9.2 45.2 0.440 0.955
Random Forest 16.1 50.6 0.259 0.367
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Figure 1: Identification of S&P 500 constituents. The figure illustrates the ability to detect historical
S&P 500 constituents using our identification strategy. Panel A presents the coverages of S&P 500 constituents
that we achieve at different stages of our data preprocessing. The line in light grey refers to the historical S&P
500 constituents in Compustat. The blue line shows for how many of these constituents we can find stock price
information on CRSP when combining the permanent stock identifiers of Compustat and CRSP. The red line starting
in 1996 illustrates those constituents for which we can furthermore find information on OptionMetrics and thus are
able to compute theory-based forecasts. Panel B visualizes the aggregate market capitalizations for each of these
three groups.
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Figure 2: Comparison of risk-free rate proxies. This figure presents a comparison between the two annual
risk-free rate proxies that we use in our study. The zero curve obtained from OptionMetrics (dashed blue) is available
from January 1996 until December 2018. The Treasury-bill rate (solid red) is taken from Amit Goyal’s webpage
and is available from March 1964 until December 2018.
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Figure 3: Long training/validation scheme with a forecast horizon of one year. The data range from
October 1974 to December 2017. The training period (red/dark grey) initially spans 10 years and increases by one
year after each validation step. Each of the 22 validation steps delivers a new set of parameter estimates. Each
validation window (gold/light grey) covers 12 years and is rolled forward with a fixed width. After each validation
step, there is one year of out-of-sample testing (checkered blue/grey).
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Figure 4: Short training/validation scheme with a forecast horizon of one year. The data range from
January 1996 to December 2017. The training period (red/dark grey) initially spans 1 year and increases by one
year after each validation step. Each of the 20 validation steps delivers a new set of parameter estimates. Each
validation window (gold/light grey) covers 1 year. After each validation step, there is one year of out-of-sample
testing (checkered blue/grey).
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Figure 5: Decile portfolios (one month horizon): Theory-based vs. machine learning forecasts. Panels
A to D show average realized excess returns of stocks which are, each month, sorted into deciles based on the
models’ predictions. The models being considered are the theory-based approach of Martin and Wagner (2019) and
its machine learning competitors based on the long training/validation scheme described in Figure 3. Panels A and
B cover the theory-based approach with a monthly (A) and a daily (B) frequency. Panels C and D contain the
best (C) and the worst (D) machine learning competitor. The forecast horizon is one month and the sample period
ranges from January 1996 to November 2018 for all panels. Each of the symbols represents a combination of average
predicted decile excess returns and average realized decile excess returns (in %). The numbers that are associated
with the symbols indicate the rank of the prediction deciles. We also include a 45-degree line for reference.
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Figure 6: Decile portfolios (one year horizon): Theory-based vs. machine learning forecasts. Panels A
to D show average realized excess returns of stocks which are, each month, sorted into deciles based on the models’
predictions. The models being considered are the theory-based approach of Martin and Wagner (2019) and its
machine learning competitors based on the long training/validation scheme described in Figure 3. Panels A and
B cover the theory-based approach with a monthly (A) and a daily (B) frequency. Panels C and D contain the
best (C) and the worst (D) machine learning competitor. The forecast horizon is one year and the sample period
ranges from January 1996 to December 2017 for all panels. Each of the symbols represents a combination of average
predicted decile excess returns and average realized decile excess returns (in %). The numbers that are associated
with the symbols indicate the rank of the prediction deciles. We also include a 45-degree line for reference.

5 10 15 20 25

5

10

15

20

25

A
vg

.
p

re
d

ic
te

d
ex

ce
ss

re
tu

rn
s

Panel A

1
2

3
4
5

6
7

8

9

10

10 20 30

5

10

15

20

25

30
Panel B

1
2

3
4

5
6

7

8

9

10

0 10 20 30
Avg. realized excess returns

0

5

10

15

20

25

30

35

A
vg

.
p

re
d

ic
te

d
ex

ce
ss

re
tu

rn
s

Panel C

1

2
3

4
5

6
7

8

9

10

10 15 20
Avg. realized excess returns

6

8

10

12

14

16

18

20

22

Panel D

1

2

3
4

5
6

7
8

9

10

Martin/Wagner

Random Forest

Martin/Wagner (daily)

Elastic Net

64



Figure 7: Performance comparison (one month horizon): Theory-based vs. machine learning fore-
casts. The figure depicts the one month out-of-sample forecast performance of competing theory-based and machine
learning approaches as a time series of R2

oos,s on annual splits. The out-of-sample period ranges from January 1996
to November 2018. Each of the three panels contains the theory-based forecast as proposed in Martin and Wagner
(2019) (upward pointing triangle/red) along with a set of competitor models. These competitor models include both
the alternative theory-based forecast by Kadan and Tang (2019) (downward pointing triangle/yellow) and machine
learning models similar to those used in Gu et al. (2019b). In Panel A, we present the best among the machine
learning competitors, whereas in Panel B, we contrast the forecast by Martin and Wagner (2019) to the weakest
machine learning competitor. In Panel C we collect the R2

oos,s for all remaining models. All machine learning results
are obtained using the validation scheme outlined in Figure 3.
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Figure 8: Performance comparison (one year horizon): Theory-based vs. machine learning forecasts.
The figure depicts the one year out-of-sample forecast performance of competing theory-based and machine learning
approaches as a time series of R2

oos,s on annual splits. The out-of-sample period ranges from January 1996 to
December 2017. Each of the three panels contains the theory-based forecast as proposed in Martin and Wagner
(2019) (upward pointing triangle/red) along with a set of competitor models. These competitor models include both
the alternative theory-based forecast by Kadan and Tang (2019) (downward pointing triangle/yellow) and machine
learning models similar to those used in Gu et al. (2019b). In Panel A, we contrast the forecast by Martin and
Wagner (2019) with the best among the machine learning competitors, whereas in Panel B, we choose the weakest
machine learning competitor. In Panel C, we collect the R2

oos,s for all remaining models. All machine learning
results are obtained using the validation scheme outlined in Figure 3.

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

−40

−20

0

20

40

R
2 oo
s
×

10
0

Panel A

Martin/Wagner Random Forest

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

−45

−30

−15

0

15

30

R
2 oo
s
×

10
0

Panel B

Martin/Wagner Elastic Net

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

−160

−120

−80

−40

0

40

R
2 oo
s
×

10
0

Panel C

Martin/Wagner

Kadan/Tang

Neural Network

Boosted Trees

66



Figure 9: Performance comparison (one year horizon): Theory-based vs. augmented machine learning
forecasts. The figure depicts the one year out-of-sample forecast performance of competing theory-based approaches
and machine learning models that include the theory-consistent forecasts in their feature set. That performance
is visualized as a time series of R2

oos,s on annual splits. The out-of-sample period ranges from January 1998 to
December 2017. Each of the three panels contains the theory-based forecast as proposed in Martin and Wagner
(2019) (upward pointing triangle/red) along with a set of competitor models. These competitor models include
both the alternative theory-based forecast by Kadan and Tang (2019) (downward pointing triangle/yellow) and
augmented machine learning models. In Panel A, we contrast the forecast by Martin and Wagner (2019) with the
best among the augmented machine learning competitors, whereas in Panel B, we choose the weakest augmented
machine learning competitor. In Panel C, we collect the R2

oos,s for all remaining models. All machine learning
results are obtained using the validation scheme outlined in Figure 4.

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

−120

−80

−40

0

40

R
2 oo
s
×

10
0

Panel A

Martin/Wagner Random Forest (non-aug.) Random Forest

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

−600

−450

−300

−150

0

R
2 oo
s
×

10
0

Panel B

Martin/Wagner Elastic Net

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

−160

−120

−80

−40

0

40

R
2 oo
s
×

10
0

Panel C

Martin/Wagner

Kadan/Tang

Neural Network

Boosted Trees

67



Figure 10: Performance comparison (one year horizon): Theory-based vs. machine learning assisted
forecasts. This figure shows time series of annual out-of-sample R2

oos,s for the theory-based forecast proposed
in Martin and Wagner (2019) (upward-pointing triangle/light red), the random forest forecast that is based on
the short training/validation scheme as described in Figure 4 (circle/light grey) and the machine learning assisted,
theory-based approach (Martin/Wagner+random forest; hexagon/dark grey). The results are presented for a one
year forecast horizon. The out-of-sample period ranges from January 1998 to December 2017.
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Figure 11: Performance comparison (one year horizon): Random forests vs. hybrid approach. This
figure contrasts the out-of-sample performance of a random forest trained using the long validation scheme depicted
in Figure 3 (circle/light grey) with that of a theory-based, random forests assisted forecast obtained from the short
validation scheme illustrated in Figure 4 (hexagon/black). In both cases, the forecast horizon is one year and the
forecast performance is measured by time series of R2

oos,s on annual splits
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Figure 12: Decile portfolios (one year horizon): Theory-based vs. theory-assisted machine learning
forecasts. Panels A and B show average realized excess returns of stocks which are, each month, sorted into deciles
based on the models’ predictions. The models being considered are the theory-consistent approach of Martin and
Wagner (2019) and the theory-assisted random forest based on the short training/validation scheme described in
Figure 4. The forecast horizon is one year and the sample period ranges from January 1998 to December 2017 for
both panels. Each of the symbols represents a combination of average predicted decile excess returns and average
realized decile excess returns (in %). We also include a 45 degree line for reference.
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