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Abstract

In a typing system, there are two approaches that may be taken to the notion of equality. One

can use some external relation of convertibility defined on the terms of the grammar, such as

β-convertibility or βη-convertibility; or one can introduce a judgement form for equality into

the rules of the typing system itself. For quite some time, it has been an open problem whether

the two systems produced by these two choices are equivalent. This problem is essentially the

problem of proving that the Subject Reduction property holds in the system with judgemental

equality. In this paper, we shall prove that the equivalence holds for all functional Pure Type

Systems (PTSs). The proof essentially consists of proving the Church-Rosser Theorem for a

typed version of parallel one-step reduction. This method should generalise easily to many

typing systems which satisfy the Uniqueness of Types property.

1 Introduction

When defining a typing system with dependent types, there are two approaches

that may be taken to the notion of equality. Firstly, we can use some external

syntactic relation defined on the terms of the grammar, such as β-convertibility or

βη-convertibility, as our criterion for equality. This is the method followed by Pure

Type Systems (Barendregt, 1992; van Benthem Jutting, 1993), as well as the Calculus

of Constructions (Coquand & Huet, 1988) and the Edinburgh Logical Framework

(Harper et al., 1993). In such a system, we typically have a rule of the following

form, for replacing a type with a convertible type:

Γ � M : A Γ � B type
(A � B)

Γ � M : B

where � denotes the external convertibility relation, defined without reference to

the judgement forms. We shall refer to such systems as type theories with external

equality.

The second approach is to introduce separate judgement forms,

Γ � M = N : A and Γ � A = B,

for equality of objects and types, and use these judgement forms in the system’s

rules of deduction. This is the way in which Martin-Löf’s Type Theory and Logical
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Framework (Nordström et al., 1990) are normally presented, as well as the recent

logical framework PAL+ (Luo, 2003), for example. In such a type theory, the rule

above is typically replaced with a rule such as

Γ � M : A Γ � A = B

Γ � M : B

making use of the judgement form for equality of types. We shall refer to such

systems as type theories with judgemental equality.

For some time, it has been an open question whether the two systems thus

produced are equivalent. It would certainly seem to be an important problem, for

the presentation with judgemental equality is usually the more convenient to use for

theoretical considerations, while almost every implementation of a type system uses

an external relation of convertibility to decide equality of terms or types.

The only difficulty in proving the equivalence of the two systems is the establish-

ment of the Subject Reduction property for the system with judgemental equality:

Subject Reduction

If Γ � M : A and M �β N, then Γ � M = N : A.

For such a system, Subject Reduction is essentially the claim that every reduction

possible within the external notion of reducibility is reflected by an appropriate

equality judgement. Subject Reduction is an important property of type theories

with external equality, and establishing that it holds for systems with judgemental

equality would also seem to be an important problem.

The problem of the equivalence of the two approaches to equality is mentioned

for PTSs with βη-convertibility in Geuvers (1993). The first positive result in this

direction was in Coquand (1991), where the equivalence for the system there called

Type Theory follows easily as a corollary of the main result. It is also possible, for

some systems, to prove the equivalence using the technique of typed operational

semantics (Goguen, 1994; Goguen, 1999).

However, both these proof methods rely essentially on the normalisation properties

of the type system concerned. This limits the class of systems to which such

methods can be applied: normalisability does not hold for every type system, and is

notoriously difficult to establish when it does.

In this paper, we shall prove that the equivalence holds for all functional Pure

Type Systems (PTSs) (Barendregt, 1992), both normalising and non-normalising;

indeed, the proof method is entirely independent of normalisability.

The proof relies essentially on mimicking, in a typed environment, the proof of

the Church-Rosser theorem for untyped reduction that uses parallel reduction. We

define a relation of typed parallel one-step reduction (TPOSR)

Θ |= M � N : A,

and prove that it satisfies the diamond property. For the system with judgemental

equality, we find ourselves able to prove subject reduction with respect to this typed

reduction, whereas we were unable to do so with untyped reduction. Once we have
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this result, the remainder of the proof is straightforward. Subject Reduction with

respect to the untyped reduction follows easily as a corollary.

The method relies heavily on the Uniqueness of Types property, so it does not

seem likely it could be extended to an arbitrary PTS; however, it would seem very

plausible that it could be adapted to a large number of typing systems that satisfy

Uniqueness of Types but cannot be defined as PTSs; for example, the method should

easily adapt to cope with the local definitions of PAL+ (Luo, 2003), or the inductive

types of UTT (Luo, 1994).

2 Pure type systems

Given a specification S, we form the PTS λS as usual, with a single judgement form,

Γ � M : A. We also form a system λ=S, a PTS with equality, with two judgement

forms, Γ �e M : A and Γ �e M = N : A. We shall give these details fairly briefly;

there is a wealth of literature on PTSs, and there is not too much that is innovative

in the definition of λ=S.

2.1 Grammar

A PTS specification S consists of:

• A set S of sorts. We shall use s and t, possibly adorned with subscripts or

accents, as metavariables for sorts.

• A binary relation A ⊆ S2 of axioms. We write the axiom (s, t) as

s : t

Informally, the axiom s : t indicates that the sort s is an object whose type is

the sort t.

• A ternary relation R ⊆ S3 of rules.

Informally, the rule (s1, s2, s3) indicates that, whenever A is of type s1 and,

given x : A, B is of type s2, then Πx : A.B exists and has type s3.

We also provide ourselves with an infinite set V of variables. We shall use x, y

and z, possibly adorned, as metavariables for variables.

Given a specification S – in fact, given just the set S of sorts – the set of terms

is defined by the grammar

Term M ::= x | s | Πx : M.M | λx : M.M | MM

where x denotes an arbitrary variable and s an arbitrary sort. x is bound within B but

not A in the terms Πx : A.B and λx : A.B. We identify terms up to α-convertibility.

We shall use capital letters as metavariables for terms.

We define the relations of

one-step beta reduction →β

beta reduction �β

beta conversion �β

parallel one-step reduction �1
β
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as usual, based on the contraction

(λx : A.M)N �β [N/x]M

For reference, the inductive definitions we are using for these relations are given in

Appendix A.

Theorem 2.1 (Church-Rosser)

If M �β N, then there exists a term P such that M �β P and N �β P .

Proof

There are many different proofs of this theorem. In Barendregt (1992), a proof

is given that uses the technique of underlining. For a simpler proof using parallel

reduction (see Luo, 1994). �

A context Γ is a sequence of pairs

x1 : A1, . . . , xn : An

where x1, . . . , xn are variables, all distinct, and A1, . . . , An are terms. Its domain, dom Γ,

is defined to be the set

{x1, . . . , xn}

We also recall that we say a specification S is functional iff the following two

conditions hold:

• If s : t, s : t′ ∈ A, then t ≡ t′.

• If (s1, s2, s3), (s1, s2, s
′
3) ∈ R, then s3 ≡ s′

3.

In Barendregt (1992), it is proven that a PTS with a functional specification has the

Uniqueness of Types property.

2.2 Pure type systems

Given a specification S, the Pure Type System (PTS ) λS is the system defined as

follows.

A judgement in λS is an expression of the form

Γ � M : A

where Γ is a context and M and A are terms. The rules of deduction of λS are given

in Figure 1.

The best reference for the basic metatheory of PTSs is still Barendregt (1992),

and we shall freely use results from this paper. The only result about PTSs we shall

need that is not explicitly given there is Context Conversion:

Lemma 2.2 (Context Conversion)

If Γ, x : A,∆ � M : B, Γ � A′ : s, and A �β A′, then

Γ, x : A′,∆ � M : B.

This result is an easy corollary of the Weakening and Transitivity lemmas proved

in Barendregt (1992).
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(axioms)
� s : t

(s : t ∈ A)

(start)
Γ � A : s

Γ, x : A � x : A
(x /∈ dom Γ)

(weak)
Γ � M : A Γ � B : s

Γ, x : B � M : A
(x /∈ dom Γ)

(product)
Γ � A : s1 Γ, x : A � B : s2

Γ � Πx : A.B : s3
((s1, s2, s3) ∈ R)

(application)
Γ � M : Πx : A.B Γ � N : A

Γ � MN : [N/x]B

(abstraction)
Γ, x : A � M : B Γ � A : s1 Γ, x : A � B : s2

Γ � λx : A.M : Πx : A.B
((s1, s2, s3) ∈ R)

(conversion)
Γ � M : A Γ � B : s

Γ � M : B
(A �β B)

Fig. 1. The rules of deduction of a pure type system.

2.3 Pure type systems with judgemental equality

The system λ=S, a Pure Type System with Equality, is defined as follows.

A judgement of λ=S is an expression either of the form

Γ �e M : A

or

Γ �e M = N : A.

The rules of deduction of λ=S are given in Figures 2 and 3. Note that they do not

make use of any externally-defined notion of convertibility.

We can develop the metatheory of PTSs with equality quite some way; several

lemmas are proven in the Appendix B. However, we find ourselves unable to prove

Subject Reduction. See section 3.1 for further discussion on this point.

Our aim in this paper is to prove the following theorem (Theorem 4.6):

Theorem

If S is a functional specification, then

1. Γ �e M : A iff Γ � M : A.

2. Γ �e M = N : A iff Γ � M : A, Γ � N : A, and M �β N.

One direction – left-to-right – is easy in each case, and can be proven for an

arbitrary PTS:
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(ax)
�e s : t

(s : t ∈ A)

(var)
Γ �e A : s

Γ, x : A �e x : A
(x /∈ dom Γ)

(weak)
Γ �e M : A Γ �e B : s

Γ, x : B �e M : A
(x /∈ dom Γ)

(weak-eq)
Γ �e M = N : A Γ �e B : s

Γ, x : B �e M = N : A
(x /∈ dom Γ)

(prod)
Γ �e A : s1 Γ, x : A �e B : s2

Γ �e Πx : A.B : s3
((s1, s2, s3 ∈ R)

(prod-eq)
Γ �e A = A′ : s1 Γ, x : A �e B = B′ : s2

Γ �e Πx : A.B = Πx : A′.B′ : s3
((s1, s2, s3) ∈ R)

(lambda)

Γ, x : A �e M : B Γ �e A : s1
Γ, x : A �e B : s2

Γ �e λx : A.M : Πx : A.B

((s1, s2, s3) ∈ R)

(lambda-eq)

Γ, x : A �e M = M ′ : B Γ �e A = A′ : s1
Γ, x : A �e B : s2

Γ �e λx : A.M = λx : A′.M ′ : Πx : A.B

((s1, s2, s3) ∈ R)

(app)
Γ �e M : Πx : A.B Γ �e N : A

Γ �e MN : [N/x]B

(app-eq)
Γ �e M = M ′ : Πx : A.B Γ �e N = N ′ : A

Γ �e MN = M ′N ′ : [N/x]B

Fig. 2. The rules of deduction of a pure type system with equality.

Theorem 2.3

1. If Γ �e M : A, then Γ � M : A.

2. If Γ �e M = N : A, then Γ � M : A, Γ � N : A, and M �β N.

The proof is by induction on the derivation of the premise in λ=S. No case is very

difficult, if we have the results of Barendregt (1992) to hand.

The right-to-left direction would be just as simple if only we could use Subject

Reduction for the system with judgemental equality. Without it, the proof is very

difficult; the remainder of this paper is devoted to this proof (Theorem 4.5). Subject

Reduction shall follow as a corollary of this work (Corollary 5.3).
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(ref)
Γ �e M : A

Γ �e M = M : A

(sym)
Γ �e M = N : A

Γ �e N = M : A

(trans)
Γ �e M = N : A Γ �e N = P : A

Γ �e M = P : A

(conv)
Γ �e M : A Γ �e A = B : s

Γ �e M : B

(conv-eq)
Γ �e M = N : A Γ �e A = B : s

Γ �e M = N : B

(beta)

Γ, x : A �e M : B Γ �e N : A

Γ �e A : s1 Γ, x : A �e B : s2

Γ �e (λx : A.M)N = [N/x]M : [N/x]B

((s1, s2, s3) ∈ R)

Fig. 3. The rules of deduction of a pure type system with equality.

3 Typed parallel one-step reduction

3.1 Digression: The näıve solution

To provide extra motivation for the various definitions we are about to introduce,

and to show from where the idea for our proof method came, let us examine what

goes wrong in a näıve attempt to solve the problem we have outlined. We attempt

to prove

If Γ � M : A then Γ �e M : A

by induction on the derivation of Γ � M : A. The only case that gives any difficulty

is the rule

(conversion)
Γ � M : A Γ � B : s

(A �β B)
Γ � M : B

By the induction hypothesis, Γ �e M : A and Γ �e B : s. We can also show that

Γ �e A : t for some sort t.

By Church-Rosser, there is a term C such that

A�β C, B �β C

If only we could prove Subject Reduction for λ=S:

Conjecture 1 (Subject Reduction)

If Γ �e M : A and M �β N, then Γ �e M = N : A.

Then we could conclude Γ �e A = C : t and Γ �e B = C : s, and the result

Γ �e M : B would follow by two applications of (conv). Unfortunately, Subject

Reduction is very difficult to prove for λ=S.
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What goes wrong when we try to prove Subject Reduction by the same method

that we use for ordinary PTSs? That is, we attempt to prove simultaneously

1. If Γ �e M : A and Γ →β ∆, then ∆ �e M : A.

2. If Γ �e M : A and M →β N, then Γ �e M = N : A.

The difficult case, as is to be expected, is where the premise is derived by

(app)
Γ �e λx : A.M : Πx : B.C Γ �e N : B

Γ �e (λx : A.M)N : [N/x]C

and the reduction involved is (λx : A.M)N →β [N/x]M.

Inverting the first premise, there must be a rule (s1, s2, s3) ∈ R such that the

premise was derived from

Γ, x : A �e M : D

Γ �e A : s1

Γ, x : A �e B : s2

followed by several judgements of the form:

Γ �e Πx : A.D = X1 : t1, Γ �e X1 = X2 : t2, . . . ,Γ �e Xn = Πx : B.C : tn+1 (1)

We wish to conclude

Γ �e (λx : A.M)N = [N/x]M : [N/x]C.

The obvious way to do so is to use the (beta) rule. To do so, we can try to derive

the premise

Γ �e N : A

to yield Γ �e (λx : A.M)N = [N/x]M : [N/x]D, then try to prove Γ �e [N/x]C =

[N/x]D : t for some t. Or we can try to derive

Γ, x : B �e M : C,

from which the desired conclusion would follow immediately.

In either case, we would seem to need a lemma of this form:

Conjecture 2 (Injectivity of Π)

If Γ �e Πx : A.D = Πx : B.C : s3, then there are sorts s1, s2 such that (s1, s2, s3) ∈ R,

and

Γ �e A = B : s1, Γ, x : A �e D = C : s2 (2)

There is no obvious way to prove this statement, as the premise may have been

derived via the (trans) rule from a series of judgements of the form

Γ �e Πx : A.C = X1 : Y1, Γ �e X1 = X2 : Y2, · · · , Γ �e Xn = Πx : B.D : Yn+1

and the terms X1, X2, . . . , Xn may not be Π-terms. Of course, they must reduce to

Π-terms; but, as we have not yet proven Subject Reduction, this fact is of little use

to us.
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We meet a similar problem when proving Subject Reduction for traditional PTSs;

we must conclude, from

Πx : A.D �β Πx : B.C,

that

A �β B, C �β D.

This is quite easily done, using the Church-Rosser Theorem.

Can we do something similar for PTSs with equality? The Church-Rosser Theorem

can be proven using parallel one-step reduction. Can we find a relation that plays

the same role for PTSs with equality? We need a relation Γ |= M � N : A that:

• satisfies the diamond property: if Γ |= M � N : A and Γ |= M � P : A, then

there is a term Q such that Γ |= N � Q : A and Γ |= P � Q : A;

• generates the judgemental equality: Γ �e M = N : A is the symmetric,

transitive closure of Γ |= M � N : A;

• respects the formation of Π-types: if Γ |= Πx : A.B � C : s3, then there

are terms A′, B′ and sorts s1, s2 such that (s1, s2, s3) ∈ R, Γ |= A � A′ : s1,

Γ, x : A |= B � B′ : s2, and C ≡ Πx : A′.B′.

• satisfies Uniqueness of Types: if Γ |= M � N : A and Γ |= M � P : B, then

either A and B are the same sort, or Γ |= A � B : s for some sort s.

(Here, Γ |= A � B : s is the equivalence relation generated by Γ |= A � B : s.) If so,

then we could prove Conjecture 2 above.

It so happens we can give such a relation for a set of labelled terms, in which

each application is tagged with the codomain of the applied function. That is, the

term constructor for application is of the form

app(x)B(MN)

for M a term of type Πx : A.B and N a term of type A.

We shall call the relation Θ |= M � N : A typed parallel one-step reduction, or

TPOSR, thanks to the analogy between its definition and the definition of parallel

one-step reduction in the untyped case. As long as we have the Uniqueness of Types

property, the obvious translation from labelled to unlabelled terms

M 
→ |M|

is a bijection (up to β-convertibility) between the typable unlabelled terms and the

labelled terms typable by TPOSR.

We can define the relation of typed parallel one-step reduction for such a set of

terms; the definition is in Figure 4. We could now go on to complete the proof via

the method sketched out above. However, now that we have the relation of typed

parallel one-step reduction and its Church-Rosser property, a more direct method is

open to us. We establish the following lemmas:

Completeness of TPOSR for PTSs If Γ � M : A, then there exist Γ+, M+, A+ such

that |Γ+| ≡ Γ, |M+| ≡ M, |A+| ≡ A, and Γ+ |= M+ � M+ : A+. (Theorem 4.4)
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Subject Reduction If Θ |= M � X : A and M �1
β N, then Θ |= M � N : A. (Theo-

rem 3.10)

Soundness of TPOSR for PTSs with Equality If Θ |= M �N : A then |Θ| �e |M| =

|N| : |A|. (Theorem 3.5)

Given these three lemmas, the proof of the correspondence between PTSs and

PTSs with equality is quite simple (Theorem 4.5).

The Need for Labelled Terms It is perhaps worth noting where exactly the proof

breaks down if we try to use unlabelled terms rather than labelled terms.

Let us denote by Θ |= A � B : s the symmetric, transitive closure of the relation

Θ |= A � B : s. We shall need the following three results about TPOSR:

Uniqueness of Types (UT)

If Θ |= M � N : A and Θ |= M � P : B, then either A ≡ B, or there is a sort s

such that Θ |= A � B : s.

Church-Rosser (CR)

If Θ |= M � N : A and Θ |= M � P : B, then there exists Q such that

Θ |=N � Q : A Θ |=P � Q : A

Θ |=N � Q : B Θ |=P � Q : B

Injectivity of Π (Inj(Π))

If Θ |= Πx : A.B � Πx : C.D : s3, then there are sorts s1, s2 such that (s1, s2, s3) ∈ R
and

Θ |= A � C : s1

Θ, x : A |= B � D : s2

With unlabelled terms, we are able to prove the circle of implications:

UT ⇒ CR ⇒ Inj(Π) ⇒ UT

but we find ourselves unable to prove any one of these individually. In particular,

we require Injectivity of Π to prove Uniqueness of Types in the case where M is an

application.

With labelled terms, we have a way in: we are able to prove Uniqueness of Types.

In particular, in the case in which M is a (labelled) application, app(x)D(QR), say,

then A and B must each be convertible with [R/x]D.

The idea of adding typing information to applications has been used several times

before; Streicher (1991), for example, uses typed applications to give semantics to

the Calculus of Constructions, and examines in detail the relationship between such

a system and a system with untyped application.

We have chosen to label applications only with the codomain, not the domain:

we do not give applications the form

appΠx:A.B(MN).

If we did, then the reduction rule for labelled terms would not be left-linear, in the

terminology of Combinatory Reduction Systems. We would need to decide when we
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could contract a redex of the form

appΠx:A.B((λx : C.M)N).

Do we insist that A and C be identical terms, convertible terms, or do we impose

no restriction? Each of these choices leads to some added complication.

Having finished describing our plan of attack, we proceed with the details of the

proof.

3.2 Typed parallel one-step reduction

Definition 3.1 (Labelled Terms)

Define the set of labelled terms T+ by the grammar

Labelled term M+ ::= x | s | λx : M+.M+ | Πx : M+.M+ | app(x)M+(M+M+)

We shall refer to the terms we have been dealing with heretofore as unlabelled terms

when we wish to distinguish them from labelled terms.

We shall use all the capital letters as metavariables for labelled terms, as well as

for unlabelled terms. This should hopefully not cause any confusion; it should be

clear from which kind of term is intended in each case.

x is bound within B but not A in λx : A.B and Πx : A.B. It is bound within C

but not A or B within app(x)C (AB). We identify labelled terms up to α-convertibility.

We define a translation

M 
→ |M|

that maps labelled terms to unlabelled terms thus:

|x| ≡ x

|s| ≡ s

|λx : A.M| ≡ λx : |A|.|M|
|Πx : A.B| ≡ Πx : |A|.|B|

| app(x)A(MN)| ≡ |M||N|

We define a labelled context Θ to be a sequence of pairs x1 : A1, . . . , xn : An, where

x1, . . . , xn are distinct variables, and A1, . . . , An are labelled terms. We shall use Θ

and Φ as metavariables for labelled contexts.

We extend the translation above to contexts in the obvious manner:

|x1 : A1, . . . , xn : An| ≡ x1 : |A1|, . . . , xn : |An|

We define β-reduction, conversion, etc. on labelled terms as we did for unlabelled

terms, based on the contraction

app(x)B((λx : A.M)N)�β [N/x]M

Again, the definitions are written out in full in Appendix A for reference.

The following lemma is easily proven:
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Lemma 3.2

For labelled terms M, N, if M →β N then |M| →β |N|.

It is not that difficult to prove the following converse, either:

Lemma 3.3

Let M+ be a labelled term, and N an unlabelled term. If |M+| →β N, then there

exists N+ such that |N+| ≡ N and M+ →β N+.

Similar results hold for the relations �1
β and �β .

We now define the formal system Typed Parallel One-Step Reduction (TPOSR),

whose judgement forms are

Θ valid and Θ |= M � N : A,

where Θ is a labelled context and M, N, A labelled terms. The rules of deduction

of TPOSR are given in Figure 4. Note, in particular, the (red) and (exp) rules: we

make the definition of typed parallel one-step reduction self-contained, by using the

relation as its own criterion for convertibility of types.

We shall use Θ |= J to indicate either of the judgement forms Θ valid and

Θ |= M � N : A.

We write

Θ |= M � ? : A

for ∃N Θ |= M � N : A.

We define Θ |= X �+ Y : Z to be the transitive closure of Θ |= X � Y : Z; that

is, the relation Θ |= X �+ Y : Z is defined inductively by

Θ |= X � Y : Z

Θ |= X �+ Y : Z

Θ |= W �+ X : Z Θ |= X �+ Y : Z

Θ |= W �+ Y : Z

We also define Θ |= X � Y : s to be the symmetric, transitive closure of Θ |=
X � Y : s; that is, the relation Θ |= X � Y : s is defined inductively by

Θ |= X � Y : s

Θ |= X � Y : s

Θ |= X � Y : s

Θ |= Y � X : s

Θ |= X � Y : s Θ |= Y � Z : s

Θ |= X � Z : s

Of course, the (red) and (exp) rules give us:

Lemma 3.4

If Θ |= M � N : A and Θ |= A � B : s then Θ |= M � N : B.

We can immediately establish that the translation X 
→ |X| is a sound translation

from typed parallel one-step reduction to PTSs with equality:

Theorem 3.5

If Θ |= M � N : A then |Θ| �e |M| = |N| : |A|.
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(emp) 〈〉 valid

(ctxt)
Θ |= A � A′ : s

Θ, x : A valid
(x /∈ dom Θ)

(var)
Θ valid

Θ |= x � x : A
(x : A ∈ Θ)

(ax)
Θ valid

Θ |= s � s : t
(s : t ∈ A)

(prod)
Θ |= A � A′ : s1 Θ, x : A |= B � B′ : s2

Θ |= Πx : A.B � Πx : A′.B′ : s3
((s1, s2, s3) ∈ R)

(lambda)

Θ, x : A |= M � M ′ : B Θ |= A � A′ : s1
Θ, x : A |= B � B′ : s2

Θ |= λx : A.M � λx : A′.M ′ : Πx : A.B

((s1, s2, s3) ∈ R)

(app)

Θ |= M � M ′ : Πx : A.B Θ |= N � N ′ : A

Θ |= A � A′ : s1 Θ, x : A |= B � B′ : s2

Θ |= app(x)B(MN) � app(x)B′ (M ′N ′) : [N/x]B

((s1, s2, s3) ∈ R)

(beta)

Θ |= A � A′ : s1 Θ, x : A |= B � B′ : s2
Θ, x : A |= M � M ′ : B Θ |= N � N ′ : A

Θ |= app(x)B((λx : A.M)N) � [N ′/x]M ′ : [N/x]B

((s1, s2, s3) ∈ R)

(red)
Θ |= M � N : A Θ |= A � B : s

Θ |= M � N : B

(exp)
Θ |= M � N : B Θ |= A � B : s

Θ |= M � N : A

Fig. 4. Typed parallel one-step reduction.

Proof

We prove:

1. If Θ valid then

(∀s : t ∈ A)|Θ| �e s : t

(∀x : A ∈ Θ)|Θ| �e x : |A|

2. If Θ |= M � N : A, then |Θ| �e |M| = |N| : |A|.

simultaneously by induction on the derivation of the premise. All cases are straight-

forward. �
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We prove several other metatheoretic results about typed parallel one-step reduc-

tion in the Appendix C.

3.3 The Church-Rosser theorem

We need the following result before we are able to prove the Church-Rosser

Theorem for TPOSR. From now on, we shall always be assuming that S is a functional

specification.

Lemma 3.6 (Uniqueness of Types)

Suppose S is a functional specification. If Θ |= M � ? : A and Θ |= M � ? : B, then

either A ≡ B or there is a sort s such that Γ |= A � B : s.

Proof

The proof is by induction on M, using Generation (Lemma C.15).

The case where M is a λ-term uses Uniqueness of Sorts (Corollary C.1.4) and the

Functionality of Π (Lemma C.17).

In the case M ≡ app(x)C (NP ), Generation shows that A and B are each convertible

with [P/x]C within their respective sorts; Uniqueness of Sorts then gives the result

we need. �

We are now able to prove the diamond property for typed parallel one-step

reduction in the following form.

Theorem 3.7 (Church-Rosser)

If Θ |= M � N : A and Θ |= M � P : B, then there exists Q such that

Θ |=N � Q : A Θ |=P � Q : A

Θ |=N � Q : B Θ |=P � Q : B

Proof

The proof is by double induction on the two premises. The only difficult case is

where one premise was derived using (app), and the other using (beta):

So we assume the last steps in the two derivations were

(beta)

Θ |= A � A′ : s1 Θ, x : A |= B � B′ : s2
Θ, x : A |= M � M ′ : B Θ |= N � N ′ : A

((s1, s2, s3) ∈ R)
Θ |= app(x)B((λx : A.M)N) � [N ′/x]M ′ : [N/x]B

(3)

and

(app)

Θ |= λx : A.M � P ′′ : Πx : C.B Θ |= N � N ′′ : C

Θ |= C � C ′′ : t1 Θ, x : C |= B � B′′ : t2
((t1, t2, t3) ∈ R)

Θ |= app(x)B((λx : A.M)N) � app(x)B′′(P ′′N ′′) : [N/x]B

(4)

Now, Uniqueness of Types gives either A ≡ C or Θ |= A � C : t for some sort t; in

either case, Uniqueness of Sorts gives

s1 ≡ t1
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Further, by Context Conversion,

Θ, x : A |= B � B′′ : t2, Θ, x : C |= B � B′ : s2, (5)

and so Uniqueness of Sorts gives

s2 ≡ t2

(Functionality therefore gives s3 ≡ t3, but we shall not need this fact.)

Applying Generation to the premise Θ |= λx : A.M � P ′′ : Πx : C.B, there exist

A′′, M ′′ , D, D′′ such that the given derivation of that premise has subderivations of

Θ |= A � A′′ : s1 (6)

Θ, x : A |= M � M ′′ : D (7)

Θ, x : A |= D � D′′ : s2

Further, P ′′ ≡ λx : A′′.M ′′, and Θ |= Πx : C.B � Πx : A.D : s3. (Again, Uniqueness

of Sorts shows that it must be the same rule (s1, s2, s3) used here.)

By the induction hypothesis, we conclude that there exist labelled terms A0, B0,

M0, N0 such that

Θ |=A′ � A0 : s1 Θ |=A′′ � A0 : s1

Θ, x : A |=B′ � B0 : s2 Θ, x : A |=B′′ � B0 : s2

Θ, x : A |=M ′ � M0 : B Θ, x : A |=M ′′ � M0 : B

Θ |=N ′ � N0 : A Θ |=N ′′ � N0 : A

(If (3) is the derivation of our first premise, then we have applied the induction

hypothesis to its premises. If (4) is the derivation of our first premise, then we have

applied the induction hypothesis both to its premises and to (6) and (7), which occur

in the derivation of one of its premises.)

Substitution now gives

Θ |= [N ′/x]M ′ � [N0/x]M0 : [N ′/x]B.

We can derive the judgements

Θ, x : A′′ |= B′′ � B0 : s2

Θ, x : A′′ |= M ′′ � M0 : B′′

and (beta) then gives

Θ |= app(x)B′′ ((λx : A′′.M ′′)N ′′) � [N0/x]M0 : [N ′′/x]B′′;

i.e.

Θ |= app(x)B′′(P ′′N ′′) � [N0/x]M0 : [N ′′/x]B′′.

It remains only to adjust the types of these two conclusions, using Reflexivity,

Substitution and (exp). �

Corollary 3.8

If Θ |= A � B : s, there exists C such that Θ |= A �+ C : s and Θ |= B �+ C : s.
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We have the following two very important corollaries of the Church-Rosser

Theorem:

Corollary 3.9 (Injectivity of Π)

If Θ |= Πx : A.B � Πx : A′.B′ : s3, then there are sorts s1, s2 such that (s1, s2, s3) ∈ R
and

Θ |= A � A′ : s1

Θ, x : A |= B � B′ : s2

Proof

By Church-Rosser, there are sequences of terms X1, . . . , Xm and Y1, . . . , Yn such that

Θ |= Πx : A.B � X1 � X2 � · · · � Xm � Z : s3

and

Θ |= Πx : A′.B′ � Y1 � Y2 � · · · � Yn � Z : s3.

By Generation, each Xi, Yj , and Z itself is a Π-term; hence, by Generation and

Uniqueness of Sorts, A and A′ both reduce to the domain of C , and B and B′ to its

codomain. �

Theorem 3.10 (Subject Reduction)

If Θ |= M � ? : A and M �1
β N, then Θ |= M � N : A.

Proof

Induction on the relation M �1
β N, using Generation. The case M ≡ N is handled

by Left-Hand Reflexivity. All the remaining cases apart from the β-contraction case

are straightforward.

The β-contraction case is handled as follows:

Suppose M ≡ app(x)C ((λx : B.P )Q) and N ≡ [Q′/x]P ′, where P �1
β P ′, Q�1

β Q′.

By Generation, there exists D and a rule (s1, s2, s3) ∈ R such that

Θ |= D � ? : s1

Θ |= Q � ? : D

Θ, x : D |= C � ? : s2

Θ |= A � [Q/x]C : s2

and either

Θ |= λx : B.P � ? : Πx : D.C

or D ≡ B and

Θ, x : B |= P � ? : C.

In either case (using Generation in the first case), there exists E such that

Θ, x : B |= P � ? : E, Θ |= Πx : B.E � Πx : D.C : s3.
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Therefore, by Π-injectivity,

Θ |= B � D : s1

Θ, x : B |= E � C : s2

The induction hypothesis gives us

Θ |= Q � Q′ : D

Θ, x : B |= P � P ′ : E

� Θ |= app(x)C ((λx : B.P )Q) � [Q′/x]P ′ : [Q/x]C (beta)

� Θ |= app(x)C ((λx : B.P )Q) � [Q′/x]P ′ : A ((red) and (exp)) �

4 The translation from typed reduction to pure type systems

Now that we are armed with the Church-Rosser Theorem, we can establish that the

translation

M 
→ |M|

is a sound and complete translation from TPOSR to PTSs, and also from TPOSR

to PTSs with equality. Together, these two results will establish the correspondence

between PTSs and PTSs with equality that we desire.

We first need to establish that two typable labelled terms that have identical

translates are convertible, in the following sense:

Lemma 4.1

Suppose Θ |= M � ? : A, Θ |= N � ? : B, and |M| ≡ |N|. Then there exists P such

that

Θ |=M �+ P : A Θ |=N �+ P : A

Θ |=M �+ P : B Θ |=N �+ P : B

Proof

The proof is by induction on M. We deal here with the most difficult case:

M ≡ app(x)D(PQ). Then N ≡ app(x)D′(P ′Q′), where |P | ≡ |P ′| and |Q| ≡ |Q′|.
By Generation, there exist labelled terms C , C ′ and rules (s1, s2, s3), (t1, t2, t3) ∈ R
such that

Θ |= C � ? : s1 Θ |= C ′ � ? : t1
Θ, x : C |= D � ? : s2 Θ, x : C ′ |= D′ � ? : t2

Θ |= Q � ? : C Θ |= Q′ � ? : C ′

Θ |= A � [Q/x]D : s2 Θ |= B � [Q′/x]D′ : t2
Θ |= P � ? : Πx : D.C Θ |= P ′ρ? : Πx : C ′.D′

Therefore, by induction hypothesis, there exist P ∗, Q∗ such that

Θ |=P �+ P ∗ : Πx : C.D Θ |=P ′ �+ P ∗ : Πx : C.D

Θ |=P �+ P ∗ : Πx : C ′.D′ Θ |=P ′ �+ P ∗ : Πx : C ′.D′

Θ |=Q �+ Q∗ : C Θ |=Q′ �+ Q∗ : C

Θ |=Q �+ Q∗ : C ′ Θ |=Q′ �+ Q∗ : C ′
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Hence, by Uniqueness of Types, we have

Θ |= Πx : C.D � Πx : C ′.D′ : s3, Θ |= C � C ′ : s1

and also s1 ≡ t1, s2 ≡ t2, s3 ≡ t3. By Π-injectivity,

Θ, x : C |= D � D′ : s2.

Hence, by Church-Rosser, there exists D∗ such that

Θ, x : C |= D �+ D∗ : s2, Θ, x : C |= D′ �+ D∗ : s2.

Therefore,

Θ |= app(x)D(PQ) �+ app(x)D∗ (P ∗Q∗) : [Q/x]D,

Θ |= app(x)D′ (P ′Q′) �+ app(x)D∗ (P ∗Q∗) : [Q′/x]D′

As we also have Θ |= A � [Q/x]D � [Q′/x]D′ � B : s2, the desired conclusion

follows. �

Corollary 4.2

If Θ |= A � ? : s, Θ |= B � ? : t, and |A| ≡ |B|, then s ≡ t and Θ |= A � B : s.

Corollary 4.3

If Θ |= M � N : A, Φ valid, and |Θ| ≡ |Φ|, then Φ |= M � N : A.

Proof

By Corollary 4.2 and Context Conversion. �

We are now ready to establish the correspondence between PTSs and TPOSR.

Theorem 4.4

If Γ � M : A then there exist Γ+, M+, A+ such that

|Γ+| ≡ Γ

|M+| ≡ M

|A+| ≡ A

and

Γ+ |= M+ � M+ : A+.

Proof

Induction on Γ � M : A. Most cases are straightforward now that we have Corollary

4.3. We deal here with the case

(conversion)
Γ � M : A Γ � B : s

(A �β B)
Γ � M : B
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By the induction hypothesis, there exist Γ+, M+, A+, Γ+
2 , B+ such that

|Γ+| ≡ |Γ+
2 | ≡ Γ

|M+| ≡ M

|A+| ≡ A

|B+| ≡ B

Γ+ |= M+ � M+ : A+

Γ+
2 |= B+ � B+ : s

� Γ+ |= B+ � B+ : s

By Type Validity, either A+ is a sort or there is a sort t such that

Γ+ |= A+ � ? : t.

Case 1: A+ is a sort. In this case, A is a sort. Hence, B �β A, and so B+ �β A+.

Therefore, by Subject Reduction,

Γ+ |= B+ �+ A+ : s

and so

Γ+ |= M+ � M+ : B+

by (exp).

Case 2: Γ+ |= A+ � ? : t In this case, by Church-Rosser, there is an unlabelled term

C such that

A�β C, B �β C.

By Lemma 3.3, there are labelled terms C0, C1 such that

A+ �β C0, B+ �β C1, |C0| ≡ |C1| ≡ C.

By Subject Reduction,

Γ+ |= A+ �+ C0 : t

Γ+ |= B+ �+ C1 : s

Therefore, by Corollary 4.2,

Γ+ |= C0 � C1 : s

(and also s ≡ t). Hence, using (red) and (exp) repeatedly,

Γ+ |= M+ � M+ : B+. �

Finally, we can put all our results together and prove our main theorem.

Theorem 4.5

1. If Γ � M : A then Γ �e M : A.

2. If Γ � M : A, Γ � N : A, and M �β N, then Γ �e M = N : A.
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Proof

1. By Theorem 4.4, there exist Γ+, M+, A+ such that |Γ+| ≡ Γ, |M+| ≡ M,

|A+| ≡ A, and

Γ+ |= M+ � M+ : A+

� Γ �e M = M : A (Theorem 3.5)

� Γ �e M : A (Equation Validity)

2. By Church-Rosser, there exists P such that M �β P and N �β P . By Theo-

rem 4.4, there exist Γ+, M+, A+ such that |Γ+| ≡ Γ, |M+| ≡ M, |A+| ≡ A, and

Γ+ |= M+ � M+ : A+

� Γ+ |= M+ �+ P+ : A+ (Subject Reduction)

� Γ �e M = P : A (Theorem 3.5 and (trans))

Similarly,

Γ �e N = P : A

� Γ �e M = N : A ((sym) and (trans)) �

Theorem 4.6

For a functional PTS:

1. Γ �e M : A iff Γ � M : A.

2. Γ �e M = N : A iff Γ � M : A, Γ � N : A and M =β N.

Proof

From Theorems 2.3 and 4.5. �

5 Completing the theory

To round off this long development, we make explicit the relationship between

TPOSR and PTSs, and between TPOSR and PTSs with equality.

Theorem 5.1

1. If Θ |= M � N : A, then |Θ| � |M| : |A|, |Θ| � |N| : |A|, and |M|�1
β |N|.

2. If Γ � M : A and M �1
β N, then there exist Γ+, M+, N+, A+ such that

|Γ+| ≡ Γ, |M+| ≡ M, |N+| ≡ N, |A+| ≡ A, and

Γ+ |= M+ � N+ : A+.

Proof

1. Follows from Lemmas 3.2, 3.5 and 2.3.

2. Follows from Theorems 4.5 and 3.10. �

Theorem 5.2

1. If Θ |= M � N : A, then |Θ| �e |M| = |N| : |A| and |M|�1
β |N|.

2. If Γ �e M : A and M �1
β N, then there exist Γ+, M+, N+, A+ such that

|Γ+| ≡ Γ, |M+| ≡ M, |N+| ≡ N, |A+| ≡ A, and

Γ+ |= M+ � N+ : A+.
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Proof

1. Follows from Lemmas 3.2 and 3.5.

2. Follows from Theorems 2.3, 4.5 and 3.10. �

And so we are also able to complete the metatheory of PTSs with equality with

the following results, which include the long promised Subject Reduction:

Corollary 5.3 (Subject Reduction)

If Γ �e M : A and M �β N, then Γ �e M = N : A.

Proof

By our main result (Theorem 4.5), Γ � M : A. By Subject Reduction for PTSs,

Γ � N : A. Therefore, by Theorem 4.5 again, Γ �e M = N : A. �

Corollary 5.4 (Injectivity of Π)

If Γ �e Πx : A.B = Πx : A′.B′ : s3, then there are sorts s1, s2 such that (s1, s2, s3) ∈ R
and

Γ �e A = A′ : s1, Γ, x : A �e B = B′ : s2.

Proof

By Theorem 4.5, Γ � Πx : A.B : s3 and Γ � Πx : A′.B′ : s3. Therefore, by Generation

for PTSs, there are sorts s1, s2, t1, t2 such that (s1, s2, s3), (t1, t2, s3) ∈ R and

Γ �A : s1 Γ �A′ : t1

Γ, x : A �B : s2 Γ, x : A′ �B′ : t2

Using Uniqueness of Types and Context Conversion, it follows that s1 ≡ t1 and

s2 ≡ t2. Therefore, by Theorem 4.5,

Γ �e A = A′ : s1, Γ, x : A �e B = B′ : s2. �

6 Conclusion and future work

We have proven the equivalence of a system with an external criterion for equality

(the PTS) with one with a judgement form for equality (the PTS with equality) for

all functional PTSs. It should be straightforward to extend the result to other type

systems with the Uniqueness of Types property.

Such a technically complex proof should be checked mechanically. The author is

working on a formalisation of this result in Coq, and has made his partial results

available on his website.

The question naturally arises whether this approach could be applied to η-

conversion, or to systems with a subtyping relation, such as ECC (Luo, 1994) or

the Pure Type Systems with Universes, or γPTSs, studied by Ruiz (1999, 2000).

These latter systems do not satisfy Uniqueness of Types; but, under appropriate

hypotheses, every typable term has a unique principal type, and it may be that this

is sufficient for the method to be applied.

It remains to be seen whether the relation of TPOSR can be applied in other

areas of the theory of PTSs, or type systems in general. One idea might be to make
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some progress on the problem of expansion postponement (Poll, 1998) using the

properties of the relation formed by leaving out the (exp) clause in the definition

of TPOSR. Unfortunately, the properties of this relation prove difficult to establish.

(See Gutiérrez & Ruiz (2003) for the latest progress on expansion postponement.)

There is also an obvious superficial similarity between TPOSR and typed opera-

tional semantics (Goguen, 1999). It remains to be seen whether it would be useful

to establish a more formal correspondence between the two.

The question of the equivalence of external and judgemental equality remains an

open problem for an arbitrary PTS. It is a plausible enough conjecture: the rules for

judgemental equality amount to little more than checking that a β-redex is well-typed

whenever it is contracted; and, by Church-Rosser, for any two convertible well-typed

terms, there is a reduction-expansion sequence between the two in which each redex

is well-typed. However, it proves stubbornly difficult to establish in practise. It is

quite possible that some pathological PTS will turn out to be a counterexample.

A Reduction relations

The relations

one-step beta reduction →β

beta reduction �β

beta conversion �β

parallel one-step beta reduction �1
β

are defined on the set of unlabelled terms inductively by the following clauses:

One-step Beta Reduction

(λx : A.M)N →β [N/x]M

A →β A′

Πx : A.B →β Πx : A′.B

B →β B′

Πx : A.B →β Πx : A.B′

A →β A′

λx : A.M →β λx;A′.M

M →β M ′

λx : A.M →β λx : A.M ′

M →β M ′

MN →β M ′N

N →β N ′

MN →β MN ′

Beta-Reduction

M →β N

M �β N M �β M

M �β N N �β P

M �β P

Beta Conversion

M →β N

M �β N M �β M

M �β N

N �β M

M �β N N �β P

M �β P
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Parallel One-Step Beta Reduction

M �1
β M

A�1
β A′ B �1

β B′

Πx : A.B �1
β Πx : A′.B′

A�1
β A′ M �1

β M ′

λx : A.M �1
β λx : A′.M ′

M �1
β M ′ N �1

β N ′

MN �1
β M ′N ′

M �1
β M ′ N �1

β N ′

(λx : A.M)N �1
β [N ′/x]M ′

The relations

one-step beta reduction →β

beta reduction �β

beta convertibility �β

parallel one-step beta reduction �1
β

are defined on the set of labelled terms as follows:

One-step Beta Reduction

app(x)B((λx : A.M)N) →β [N/x]M

A →β A′

Πx : A.B →β Πx : A′.B

B →β B′

Πx : A.B →β Πx : A.B′

A →β A′

λx : A.M →β λx;A′.M

M →β M ′

λx : A.M →β λx : A.M ′

M →β M ′

app(x)A(MN) →β app(x)A(M ′N)

N →β N ′

app(x)A(MN) →β app(x)A(MN ′)

A →β A′

app(x)A(MN) →β app(x)A′(MN)

Beta-Reduction

M →β N

M �β N M �β M

M �β N N �β P

M �β P

Beta Conversion

M →β N

M �β N M �β M

M �β N

N �β M

M �β N N �β P

M �β P
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Parallel One-Step Beta Reduction

M �1
β M

A�1
β A′ B �1

β B′

Πx : A.B �1
β Πx : A′.B′

A�1
β A′ M �1

β M ′

λx : A.M �1
β λx : A′.M ′

A�1
β A′ M �1

β M ′ N �1
β N ′

app(x)A(MN)�1
β app(x)A′(M ′N ′)

M �1
β M ′ N �1

β N ′

app(x)B((λx : A.M)N)�1
β [N ′/x]M ′

B Metatheory of pure type systems with equality

The following are the results about pure type systems with equality used in this

paper. They can be proven in the following order; each proof is by induction on the

first-mentioned premise, making use of the previous results.

Lemma B.1 (Free Variables and Contexts)

1. If Γ �e M : A, then Γ is consistent and FV (M) ∪ FV (A) ⊆ dom Γ.

2. If Γ �e M = N : A, then Γ is consistent and FV (M)∪FV (N)∪FV (A) ⊆ dom Γ.

Lemma B.2 (Context Conversion, Preliminary Form)

If Γ, x : A,∆ �e J , Γ �e A = B : s and Γ �e B : s, then Γ, x : B,∆ �e J .

Lemma B.3 (Substitution)

If Γ, x : A,∆ �e J and Γ �e M : A, then Γ, [M/x]∆ �e [M/x]J .

Lemma B.4 (Functionality, Preliminary Form)

If Γ, x : A,∆ �e M : B, Γ �e N = P : A, and Γ �e N : A, then Γ, [N/x]∆ �e

[N/x]M = [P/x]M : [N/x]B.

Definition B.5

We shall write “Γ �e X � Y ” for “Either X ≡ Y , or there exists a sequence of terms

X1, . . . , Xn and a sequence of terms A0, A1, . . . , An such that

Γ �e X = X1 : A0, Γ �e X1 = X2 : A1, . . . ,Γ �e Xn = Y : An.”

Lemma B.6 (Generation)

1. If Γ �e s : A, then there is a sort t such that s : t ∈ A, and Γ �e A � t.

2. If Γ �e x : A, then x : B ∈ Γ for some B, and Γ �e A � B

3. If Γ �e Πx : A.B : C , then there is a rule (s1, s2, s3) ∈ R such that Γ �e A : s1,

Γ, x : A �e B : s2, and Γ �e C � s3.

4. If Γ �e λx : A.M : B, then there is a rule (s1, s2, s3) ∈ R and term C such that

Γ �e A : s1, Γ, x : A �e C : s2, Γ, x : A �e M : C , and Γ �e B � Πx : A.C .

5. If Γ �e MN : C , then there are terms A and B such that Γ �e M : Πx : A.B,

Γ �e N : A, and Γ �e [N/x]B � C .
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Lemma B.7 (Type Validity and Equation Validity)

1. If Γ �e M : A, then either A is a sort, or there is a sort s such that Γ �e A : s.

2. If Γ �e M = N : A then Γ �e M : A, Γ �e N : A, and either A is a sort, or

there is a sort s such that Γ �e A : s.

Now that we have Equation Validity, we can remove one premise from two

previous lemmas:

Corollary B.8 (Context Conversion)

If Γ, x : A,∆ �e J and Γ �e A = B : s, then Γ, x : B,∆ �e J .

Corollary B.9 (Functionality)

If Γ, x : A,∆ �e M : B and Γ �e N = P : A, then Γ, [N/x]∆ �e [N/x]M = [P/x]M :

[N/x]B.

C Metatheory of typed parallel one-step reduction

The following are the results about the relation of TPOSR used in the paper. In

most cases, the proof is a straightforward induction on the derivation of the first

premise given, making use of the previously proven lemmas.

Firstly, we can take advantage of the correspondence between TPOSR and PTSs,

and the Uniqueness of Types result for PTSs, to prove a Uniqueness of Sorts lemma

for typed parallel one-step reduction:

Corollary C.1

1. If Θ |= M � N : A then |Θ| � |M| : |A| and |Θ| � |N| : |A|.
2. If Θ |= A � B : s then |Θ| � |A| : s and |Θ| � |B| : s.

3. Suppose S is a functional specification. If Θ |= A � B : s and Θ |= A � C : t,

then s ≡ t.

4. Suppose S is a functional specification. If Θ |= A � B : s and Θ |= A � C : t,

then s ≡ t.

Proof

Part 1 is a consequence of Theorems 3.5 and 2.3; part 2 follows easily by induction

on the premise. Parts 3 and 4 follow from parts 1 and 2 respectively, and the

Uniqueness of Types result proven in (Barendregt, 1992). �

It is clear that typed reduction entails untyped reduction:

Lemma C.2

If Θ |= X � Y : Z then X �β Y .

Corollary C.3

If Θ |= X � Y : s then X �β Y .

Lemma C.4 (Context Validity)

If Θ,Φ |= J , then Θ valid.

Lemma C.5 (Free Variables)

If x1 : X1, . . . , xn : Xn |= J , then FV (Xi) ⊆ {x1, . . . , xi−1} and FV (J) ⊆ {x1, . . . , xn}.
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Lemma C.6 (Weakening)

If Θ |= X � Y : Z , Θ ⊆ Φ, and Θ valid, then Θ |= X � Y : Z .

Lemma C.7 (Context Reduction, Preliminary Form)

If Θ, x : X,Φ |= J , Θ |= X � X ′ : s, and Θ |= X ′ � X ′ : s, then Θ, x : X ′,Φ |= J .

Lemma C.8 (Left-Hand Reflexivity)

If Θ |= X � Y : Z then Θ |= X � X : Z .

Lemma C.9 (Substitution)

1. If Θ, x : X,Φ valid and Θ |= W � W ′ : X, then Θ, [W/x]Φ valid.

2. If Θ, x : X,Φ |= Y � Y ′ : Z and Θ |= W � W ′ : X, then Θ, [W/x]Φ |=
[W/x]Y � [W ′/x]Y ′ : [W/x]Z .

Lemma C.10 (Right-Hand Reflexivity)

If Θ |= X � Y : Z then Θ |= Y � Y : Z .

Corollary C.11

If Θ |= X � Y : s, then Θ |= X � X : s and Θ |= Y � Y : s.

Right-Hand Reflexivity allows us to remove one of the premises in Context

Reduction:

Corollary C.12 (Context Reduction)

If Θ, x : X,Φ |= J and Θ |= X � X ′ : s, then Θ, x : X ′,Φ |= J .

Lemma C.13 (Context Expansion)

If Θ, x : X ′,Φ |= J and Θ |= X � X ′ : s, then Θ, x : X,Φ |= J .

Corollary C.14 (Context Conversion)

If Θ, x : X,Ψ |= J and Θ |= X � Y : s, then Θ, x : Y ,Ψ |= J .

Lemma C.15 (Generation)

Suppose S is a functional specification.

1. If Θ |= s � X : Y , then X ≡ s, and there exists t ∈ S such that s : t ∈ A, and

either Y ≡ t or Θ |= Y � t : t′ for some sort t′.

2. If Θ |= x � X : Y , then X ≡ x, and there exist Z , s such that x : Z ∈ Θ and

Θ |= Y � Z : s.

3. Any derivation of Θ |= Πx : W.X � Y : Z has subderivations of

Θ |= W � W ′ : s1

Θ, x : W |= X � X ′ : s2

for some labelled terms W ′, X ′ and rule (s1, s2, s3) ∈ R; further, Y ≡ Πx :

W ′.X ′, and either Z ≡ s3, or Θ |= Z � s3 : t for some sort t.

4. Any derivation of Θ |= λx : W.X � Y : Z has subderivations of

Θ |= W � W ′ : s1

Θ, x : W |= V � V ′ : s2

Θ, x : W |= X � X ′ : V

for some labelled terms W ′, X ′, V , V ′ and rule (s1, s2, s3) ∈ R; further,

Y ≡ λx : W ′.X ′, and Θ |= Z � Πx : W.V : s3.
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5. Any derivation D of Θ |= app(x)V (WX) � Y : Z has subderivations of

Θ |= U � U ′ : s1

Θ, x : U |= V � V ′ : s2

Θ |= X � X ′ : U

for some labelled terms X ′, U, U ′, V ′ and rule (s1, s2, s3) ∈ R. Furthermore,

Θ |= Z � [X/x]V : s2

and either

(a) there exists W ′ such that D has a subderivation of

Θ |= W � W ′ : Πx : U.V

and Y ≡ app(x)V ′ (W ′X ′); or

(b) W ≡ λx : U.T , and there exists T ′ such that D has a subderivation of

Θ, x : U |= T � T ′ : V

and Y ≡ [X ′/x]T ′.

Proof

Straightforward induction on the premise in each case, using the fact that a type

can be in only one sort. �

Without the assumption of functionality, we would need to replace each conclusion

of the form Θ |= X � Y : s with “There exist a sequence of labelled terms Z1, . . . , Zn,

and a sequence of sorts s1, . . . , sn+1, such that

Θ |= X � Z1 : s1, Θ |= Z1 � Z2 : s2, · · · , Θ |= Zn � Y : sn+1.”

Corollary C.16 (Type Validity)

If Θ |= X � Y : Z , then either Z is a sort, or there is a sort s and labelled term Z ′

such that Θ |= Z � Z ′ : s.

Proof

Inspection of each case of Generation. �

Lemma C.17 (Functionality of Π)

If (s1, s2, s3) ∈ R, Θ |= X � X ′ : s1, and Θ, x : X |= Y � Y ′ : s2, then Θ |= Πx :

X.Y � Πx : X ′.Y ′ : s3.

Proof

We prove the two statements:

1. If Θ |= X � X : s1 and Θ, x : X |= Y � Y ′ : s2, then Θ |= Πx : X.Y � Πx :

X.Y ′ : s3.

2. If Θ |= X � X ′ : s1 and Θ, x : X |= Y � Y : s2, then Θ |= Πx : X.Y � Πx :

X ′.Y : s3.

These, together with Reflexivity, suffice to prove the lemma. The proofs are by

induction on Θ, x : X |= Y � Y ′ : s2 in the first case, and Θ |= X � X ′ : s1 in the

second. �
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