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ABSTRACT 

MicroRNAs (miRNAs) are important regulators of many biological processes involved in 

cancer development and progression. However, the functional roles of miRNAs in some cancer 

types are still poorly understood. The aim of this thesis was to investigate the expressions, 

targets and functions of specific miRNAs in cervical, adrenocortical and Merkel cell carcinoma. 

In Paper I, we characterized the functional roles of miR-944, a miRNA with higher expression 

in cervical cancer. We showed that miR-944 promotes cell proliferation, migration and invasion. 

Using Ago2 PAR-CLIP sequencing, we identified 58 candidate targets of miR-944 and 

validated HECW2 and S100PBP as direct targets of miR-944 by luciferase reporter assays. This 

study reveals the oncogenic role and novel targets of miR-944 in human cervical cancer cells, 

suggesting its important role in cervical cancer development and its potential implications as a 

biomarker of cervical carcinoma or as a therapeutic target. 

In Paper II, we showed that the IGF2-H19 locus was consistently deregulated in adrenocortical 

carcinoma (ACC). We used available proteomic data, to identify a subset of proteins inversely 

correlated to miRNAs of the IGF2-H19 locus. Interestingly, several of the proteins are involved 

in mitochondrial respiration, such as NDUFC1, a subunit of mitochondrial respiratory complex 

I. NDUFC1 was observed to be down-regulated in our ACC cohort and was a predicted miR-

483-5p target. Inhibition of miR-483-5p in ACC cells increased NDUFC1 expression and 

reduced both glycolysis and mitochondrial respiration, suggesting that miR-483-5p controls 

major energy metabolism and its high expression is required to fuel cellular activies in ACC 

cells. 

In Paper III, we demonstrated that over-expression of miR-375 suppressed cell growth and 

migration, induced cell cycle arrest and apoptosis in Merkel cell polyomavirus-negative 

(MCPyV-) Merkel cell carcinoma (MCC). Inhibition of miR-375 suppressed cell growth and 

increased apoptosis in MCPyV-positive (MCPyV+) MCC. Additionally, we showed that LDHB 

is a target of miR-375 in MCC as shown by its inverse relationship. Low levels of LDHB are 

required to maintain cell growth and viability in MCPyV+ MCC, while high levels are required 

for MCPyV- MCC. 

In Paper IV, we revealed that MCPyV oncoproteins suppressed LDHB and promoted 

glycolysis. Intriguingly, LDHB overexpression could revert the growth-promoting effect of sT 

or truncated LT, indicating that a low LDHB expression is important for maintenance of cell 

growth and viability in MCPyV+ cells. Inhibition of glycolysis reduced cell growth and induced 

apoptosis in MCPyV+ MCC cell lines, whereas the MCPyV- MCC cell lines rely on oxidative 

phosphorylation for cell growth and viability. These data suggest targeting metabolism as a 

therapeutic strategy in MCC.  

Taken together, this thesis work provides new insights into the crucial roles of miRNAs in the 

molecular mechanisms of cervical, adrenocortical and Merkel cell carcinomas. 



  



 

 

SAMMANFATTNING 

I denna avhandling studeras hur förändringar av mikroRNA (miRNA) kan bidra till 

cancerutveckling genom att styra uttrycket av gener som påverkar biologiska processer av 

betydelse i cancer. Detta är ett nytt och lovande forskningsfält som redan bidragit till ökad 

förståelse och klinisk användning inom diagnostik och som har potential för utveckling av nya 

behandlingsstrategier. Samtidigt är många frågeställningar ännu obesvarade särskilt avseende 

vilka underliggande molekylära mekanismer som är involverade. Målet för denna avhandling 

var att karaktärisera förändringar i miRNA uttryck och hur det påverkar målgener och 

cellulära funktioner i livmoderhalscancer, binjurebarkscancer och Merkel cells cancer (MCC). 

Arbete I fokuserades på funktionen av miR-944 som tidigare visat ett ökat uttryck i 

livmoderhalscancer. Vi visade nu att uttryck av miR-944 ger ökad cellproliferation, migration 

och invasion av cancer celler i experimentella modellsystem. Med hjälp av den banbrytande 

metoden PAR-CLIP-sekvensering kunde vi upptäckta 58 gener som är möjliga målgener för 

miR-944 reglering. Två av dessa (HECW2 och S100PBP ) kunde sedan verifieras som direkta 

målgener för miR-944. Arbetet visar att miR-944 kan ha en tumördrivande roll genom att 

interagera med specifika målgener. Resultaten talar för att miR-944 har en viktig roll i 

utveckling av livmoderhalscancer och skulle kunna användas för utveckling av kliniska 

markörer samt utgöra en måltavla för ny behandling. 

I Arbete II studerade vi uttrycket av miRNA och mRNA från IGF2-H19-lokuset som är 

karaktäristiskt förändrat i ACC. Här använde vi befintliga globala proteinprofileringsdata från 

mass spektrometrianalys för att identifiera proteiner vars uttryck var omvänt korrelerat med 

miRNA uttrycket. Flera av dessa proteiner visade sig ha en känd funktion i mitokondriens 

andningskedja den s.k. elektrontransportkedjan. Bland dessa detaljstuderades NDUFC1, som 

ingår i andningskedjans komplex I. NDUFC1 befanns vara nedreglerad i ACC tumörer och är 

en känd målgen för miR-483-5p som genereras från IGF2. Inhibering av miR-483-5p i odlade 

binjurbarkscancerceller ledde till ökat uttryck av NDUFC1 samt minskad nedbrytning av glykos  

och mitokondriell andning. Detta talar för att miR-483-5p kontrollerar energimetabolism och att 

ett högt uttryck är nödvändigt för ökade cellulära aktiviteter i binjurebakscancer-celler. 

I Arbete III visade vi att överuttryck av miR-375 i virusnegativa (MCPyV-) MCC celler kan 

hämma celltillväxt och migration samt leda till stopp i cellcykeln. I motsats till detta ledde 

hämning av miR-375 i virus-positiva (MCPyV+) tumör celler till minskad celltillväxt och ökad 

apoptos. Vi visade vidare att LDHB kan vara en målgen för miR-375 i MCC, i enlighet med det 

inversa sambandet mellan uttryck av miR-375 och LDHB. Låga nivåer av LDHB krävdes för att 

bibehålla celltillväxt i MCPyV+ MCC celler, medan höga nivåer krävdes för MCPyV- celler. 

I det sista och fjärde arbetet studerade vi sambandet mellan virala onkoproteiner (LT och sT) 

och LDHB. Vi fann att LT och sT kan hämma LDHB och öka glykolysen. Överuttryck av 

LDHB kunde återställa den tillväxtbefrämjande effekten av sT och trunkerat LT, vilket talar för 

att lågt LDHB-uttryck är viktigt för celltillväxt i MCPyV+ celler. Hämning av glykolys med 



specifika hämmare minskade celltillväxten och inducerade apoptos i MCPyV+ cellinjer, medan 

oxidativ fosforylering var avgörande för celltillväxt i MCPyV- celler. Resultaten indikerar att 

påverkan på tumörcellernas metabolism kan vara en möjlig ny terapeutisk strategi för vid MCC. 

Sammanfattningsvis påvisas i denna avhandling hur förändringar i miRNA uttryck och 

funktioner har stor betydelse för att kontrollera molekylära mekanismer som bidrar till 

utveckling av livmoderhalscancer, binjurebarkscancer och Merkelcellscancer. Flera 

observationer har potential att användas för utveckling av biomarkörer och som måltavlor för 

nya behandlingsstrategier.   
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 1 

1 INTRODUCTION 

The story of ribonucleic acid has been evolving since the first discoveries of rRNA and tRNA 

in the 1950s and later RNA polymerases, ribozymes and RNA splicing. This prompted the 

hypothesis of an ‘RNA World’ where RNA was the precursor molecule able to self-replicate, 

hold information and carry out catalytic function (Joyce and Orgel, 1999). As more 

discoveries were made, RNAse P (Stark et al., 1978), snRNA (Yang et al., 1981), 7SL RNA 

(Walter and Blobel, 1982) and XIST RNA (Brown et al., 1991), RNA took a more central role 

in biology. The Human Genome and ENCODE projects revealed that only ~22,000 genes 

(<2%) were translated into protein, emphasizing the significance of non-coding genes in 

organism complexity (The ENCODE Project consortium, 2004; Moraes and Goes, 2016). 

With the advent of high-throughput sequencing it become apparent that most of the genome is 

transcribed into non-coding RNA or ncRNAs (Mattick and Makunin, 2006) and this discovery 

has expanded our understanding in regulation of gene expression.   

The first hint of the RNAi mechanism was observed when researchers inserted trans-

pigmentation genes in Petunia hybrida, only to observe no effect or ectopic pigmentation. 

This phenomenon was termed ‘co-suppression’ and could only be explained once the RNA 

interference (RNAi) mechanism was identified by Fire and colleagues in 1998 (Napoli et al., 

1990; van der Krol et al., 1990). Since then, the ncRNA family has grown further with the 

emergence of new RNA species that are broadly categorized as small ncRNAs (sRNA) or 

long ncRNAs (lncRNA). Small ncRNAs are <200 nucleotides (nt) long and include tRNAs, 

microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), small nucleolar RNA (snoRNA), 

small nuclear RNA (snRNA), vault RNAs (vtRNAs) and small vault RNAs (svRNAs). Less 

well known species include promoter-associated small RNAs (PASRs), antisense termini-

associated short RNAs (aTASRs), transcription start site associated RNAs (TSSa-RNA), 

splice-site RNA (spliRNA) and snoRNA-derived RNA (Wang et al., 2011a; Kapranov et al., 

2010; Taft et al., 2010). lncRNAs are large (>200 nts) poorly conserved mRNA-like 

transcripts, often exhibiting a 5’cap and a poly-A tail (Feng and Fullwood, 2016). These 

include rRNAs (18S; 28S) and long intergenic ncRNAs (lincRNA) such as HOTAIR (HOX 

antisense intergenic RNA), MALAT1 (metastasis-associated lung adenocarcinoma transcript 

1) and ANRIL (Antisense Non-Coding RNA in the INK4 Locus) (Rinn et al., 2007; Tano and 

Akimitsu, 2012). 

The work presented here focuses on miRNA biology but also extends into the tumor 

metabolic activities that had been observed since the 1920s (Warburg et al., 1927). Metabolic 

reprogramming has seen a renaissance in the last two decades and is now considered a 

fundamental characteristic of cancer, contributing to the onset and maintenance of the 

tumorigenic state. miRNA derangement and tumor metabolism are the two main aspects 

addressed in this thesis work, in order to deepen our knowledge in the molecular mechanisms 

of cancer development and progression.   



 

2 

1.1 MIRNA DISCOVERY 

In 1993, Victor Ambros and colleagues cloned the Caenorhabditis elegans lin-4 locus. This 

locus did not encode a protein product instead, the lin-4 gave rise to a 61 and a 22 nt RNAs 

that aligned to the 3’UTR of lin-14 transcript. The LIN-14 protein is highly expressed in the 

very early and late larval developmental stages but the lin-14 transcript is constantly 

expressed indicating posttranscriptional regulation. Before the discovery of the RNAi 

mechanism, there was already enough evidence indicating that the lin-4 product could interact 

with the 3’UTRs of the lin-14 and lin-28 transcripts to inhibit their translation (Arasu et al., 

1991; Lee et al., 1993; Wightman et al., 1993; Ambros, 2001). 

Later, Fire and colleagues demonstrated that dsRNA was more effective in regulating gene 

expression and suggested a mechanism for RNA interference (RNAi) in nematodes, 

invertebrates and vertebrates (Fire et al., 1998). Further reports started to uncover this 

mechanism involving small RNAs that guide mRNA cleavage in Drosophila cells (Hammond 

et al., 2000; Zamore et al., 2000). In the year 2000, a second gene let-7 was discovered to 

transiently express the let-7 miRNA to regulate proteins involved in C. elegans late larval to 

adult development (Reinhart et al., 2000). Unlike lin-4, let-7 expression was found to be 

conserved across the Ecdysozoan, Lophotrochozoan and Deuterostomia superphyla in 

metazoans (Pasquinelli et al., 2000). 

miRNA are boardly expressed in mammals, plants, unicellular organisms and viruses 

(Baulcombe, 2004; Pfeffer et al., 2004; Lee et al., 2007; Molnar et al., 2007; Friedman et al., 

2009). It is estimated >60% of the protein-coding genes in humans are modulated by miRNAs 

(Friedman et al., 2009) to coordinate physiological (development, hematopoiesis, cell growth 

and apoptosis, anti-viral defense) and pathological processes [cancer, vascular and immune 

disorders] (Ambros, 2001; Voinnet, 2001; He and Hannon, 2004; Li et al., 2009). The current 

number of known miRNAs has reached 38 589 pre-miRNAs and 48 860 mature miRNA 

sequences from 271 species. Of these, the human genome codes for 1917 pre-RNAs and 2654 

mature miRNAs (Kozomara et al., 2019). 

1.1.1 The canonical miRNA pathway 

MicroRNAs (miRNAs) are a class of small ncRNA that are biochemically analogous to small 

interfering RNAs (siRNAs). Genomically miRNAs can reside within intergenic regions as a 

sole or a cluster of genes. miRNAs can be transcribed as a polycistronic miRNA transcript 

harboring several hairpin structures (Ambros et al., 2003). Alternatively, miRNAs can 

originate from introns of coding or noncoding genes under the control of their host gene 

promoter. In exceptional instances, miRNAs can be of exonic origin, typically generated from 

sites overlapping an exon and an intron (Rodriguez et al., 2004). 

Mature miRNAs are single-stranded ~22 nt long molecules, derived from hairpin-shaped 

dsRNAs (Ambros, 2003; Kim, 2005). They are endogenously transcribed as long primary 
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miRNAs (pri-miRNA) by RNA polymerase II (pol II) or RNA pol III (Lee et al., 2004; 

Borchert et al., 2006). Newly transcribed pri-miRNA usually contains a 5’, 7-methyl 

guanosine cap and a poly-A tail (Ambros et al., 2003; Lee et al., 2002; Lee et al., 2004). The 

maturation process starts by the action of the microprocessor complex, containing the RNase 

III-type endonuclease Drosha and the DGCR8 co-factor (Figure 1). This complex trims pri-

miRNAs at the lower stem start-site in the nucleus to yield a miRNA precursor (pre-miRNA) 

hairpin molecule of 60 to 70 nt in length, with a 2 nt overhang at the 3’ end (Lee et al., 2003; 

Han et al., 2004; Han et al., 2006). The pre-miRNA is then exported to the cytoplasm by the 

nucleocytoplasmic protein Exportin 5 (XPO5)/Ran complex, in a GTP-dependent manner (Yi 

et al., 2003). The pre-miRNA is further processed by Dicer, another RNase III-type enzyme 

(Bernstein et al., 2001; Hutvagner et al., 2001), to produce a miRNA-duplex (~22 nt) transient 

molecule by cleaving the hairpin precursor across the terminal loop structure with a 2 nt 

overhang (Lima et al., 2009). Products of Dicer typically have a 5’ phosphate and a 3’ -OH 

group (Ambros, 2003). Dicer requires TARBP2 (HIV-1 TAR RNA-binding protein 2) and 

PACT (protein activator of PKR) cofactors for the stable formation of miRISC loading 

complex (miRLC) with the Argonaute 2 (Ago2) protein (Chendrimada et al., 2005; Maniataki 

& Mourelatos, 2005; Lee et al., 2006; MacRae et al., 2008). The miRLC loads the mature 

miRNA into the Ago2 component of the RISC (Schwarz et al., 2003; MacRae et al., 2008). 

The strand entering the RISC (RNA induced silencing complex) is selected on the basis of the 

binding strength at the 5’end of the miRNA duplex. The mature miRNA is then incorporated 

into the RISC as a guide strand whereas the passenger strand (miRNA*) is degraded (Schwarz 

et al., 2003; Bartel, 2009). In some cases the passenger strand can be loaded in the Ago 

complex and become functionally active (Czech et al. 2009) and can facilitate miRNA 

loading (Shin, 2008). miRNAs then mediate gene silencing post-transcriptionally by mRNA 

degradation, translation inhibition or both, in an ATP-independent manner (Meister et al., 

2004; Rand et al., 2005; Shin, 2008). 

1.1.2 Non-canonical miRNA biogenesis 

Mature miRNAs can be generated through alternative mechanisms to produce Drosha- or 

dicer-independent miRNAs (Figure 1). Mirtrons are an example of Drosha-independent 

miRNAs, originating as a direct by-product of mRNA splicing that fold-back into a hairpin 

pre-miRNA structure without the microprocessor catalytic activity, yet exhibiting a 2 nt 

overhang at the 3’end (Berezikov et al., 2007). Non-canonical pre-miRNAs are exported by 

the XPO5 complex where they join the canonical miRNA biogenesis pathway. Most mirtrons 

originate from the 3’ arm of their precursors (Okamura et al., 2007). Other Drosha-

independent miRNAs include the snoRNA ACA45-derived and small vault RNAs that 

possess miRNA-like function (Ender et al., 2008; Persson et al., 2009) and viral-encoded 

miRNAs (Cazalla et al., 2011; Rosewick et al., 2013). An exclusive maturation process is that 

of miR-451, which circumvents Dicer processing. The pre-miR is loaded and cleaved by the 

Argonaute, yielding a pre-miR-451 intermediate (Cheloufi et al., 2010) which in turn is 



 

4 

processed by the 3’ exonuclease activity of the poly (A)-specific ribonuclease (PARN) to 

generate the mature miR-451 (Yoda et al., 2013). 

1.1.2.1 miRNA editing 

Alternative isoforms of miRNAs ‘isomiRs’ are generated by ribonucleoside post-

transcriptional modifications of miRNAs such as adenylation in mammals. Adenylations are 

catalyzed by PAPD4/5 (Poly (A) polymerase associated domain containing 4/5) on mature 

canonical miRNAs; MTPAP (mitochondrial PAP) polyadenylates miRNAs and mitochondrial 

transcripts; TUT1 (terminal uridylyl transferase 1) was found to be responsible for 3’ adenyl 

and 3’uridyl additions to miR-31 and miR-200a respectively (Burroughs et al., 2010; Wyman 

et al., 2011). Some pri-miRNA transcripts are subjected to modifications by Adenosine 

Deaminases Acting on RNA enzymes (ADAR1 and ADAR2). ADAR-editing occurs in 

dsRNA by an adenosine-specific deamination to inosine (A to I) which is common in 

primates (Eisenberg et al., 2005). A to I editing is responsible for at least 16% of the 

modifications in human pri-miRNAs, resulting in alterations in the pri-miRNA stem structure 

and stability, due to the replacement of A-U pairs to I•U wobble pairs. Indeed, altered seed 

sequences affect target-gene silencing or prevent microprocessor processing if substitutions 

are proximal to the cleavage-site. pri-miRNA transcripts with multiple A•I pairs are degraded 

by Tudor-SN (Tudor Staphyloccal nuclease), a ribonuclease component of the RISC. Thus, 

miRNA editing disrupts base complementarity with far-reaching consequences in miRNA 

regulated gene expression (Caudy et al., 2003; Blow et al., 2006; Yang et al., 2006; Kawahara 

et al., 2008). 

1.2 MECHANISMS OF ACTION 

1.2.1 Target recognition and regulation 

Metazoan miRNA targets are located in the main functional elements of mRNA transcripts, 

but predominantly in the 3’ untranslated region (UTR) and does not require perfect 

complementarity (Lewis et al., 2003). In contrast, target sequences in plants often match their 

target with perfect complementarity and can be located in any region along the transcript 

(Rhoades et al., 2002; Grimson et al., 2007).  

miRNAs identify their targets via seed-pairing, located at residues 2-8 of the mature miRNAs. 

Seed complementarity is essential and independent of 3’end pairing. Seed sites can be 

classified as 5’dominant or 3’compensatory sites and include 5’seed sites, 3’supplementary 

seed sites, 3’compensatory sites, cleavage sites and centered sites. Supplementary pairing 

gives miRNAs only minimal advantage, while 3’complementarity by itself does not yield 

miRNA-mediated targeting (Doench and Sharp, 2004; Brennecke et al., 2005; Bartel, 2009; 

Shin et al., 2010). The canonical miRNA seed types are described in Table 1 and are 

commonly used in the miRNA target prediction programs. Centered sites lack both 5’seed and 

3’compensatory site-pairing. Instead, these miRNAs possess 11-12 proximally-positioned 
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nucleotides spanning positions 4-15 that can direct Ago2-directed cleavage in vivo (Shin et 

al., 2010). 

 

 

 

 

 

 

 

Table 1 – Canonical miRNA complementarity sites 

Seed type Description 

6mer Six nucleotide seed match, spanning residues 2 to 7 of the mature miRNA 

7mer-m8 Seven nucleotide seed match, spanning residues 2 to 8 of the mature miRNA 

7mer-1A Seven nucleotide seed match, spanning residues 1 to 7 of the mature miRNA, 

followed by an “A” 

8mer Eight nucleotide seed match, spanning residues 1 to 8 of the mature miRNA 

Figure 1 - Canonical and noncanonical miRNA biogenesis pathways: Pri-miRNAs are 

transcribed by RNA polymerase II/III and trimmed by Drosha/DGCR8 at the cleavage sites (green 

arrows). Mirtrons arise from spliced introns and form a premirtrons. They are debranched into a 

precursor hairpins. Both canonical and mirtron precursors are exported by the Exportin5-Ran-GTP 

complex into the cytoplasm. Precursors are diced to form a miRNA duplex. The red strand represents 

the mature miRNA with a 5’ P and a 3’ OH. The duplex is unwound to separate the passenger strand 

(blue) from the guide strand (red). The miRNA is loaded into the AGO2, the core component of the 

RISC complex to guide mRNA degradation, translational repression or activation. 
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1.2.2 mRNA deadenylation and turnover 

This mechanism appears to be dependent on the degree of miRNA-mRNA complementarity. 

Perfect complementary binding induces mRNA cleavage by the Ago2 endonuclease. This 

mechanism commonly occurs in plants but rarely in animals (Meister et al., 2004; Yekta et al., 

2004; Petersen et al., 2006; Nielsen et al., 2007). Experimental evidence in Drosophila 

suggests that miRNAs activate mRNA degradation via deadenylation and decapping by the 

CCR4:NOT and DCP1:DCP2 complexes, respectively (Behm-Ansmant et al., 2006). 

1.2.3 Translational repression and blocking of elongation 

Partial complementarity between miRNA-mRNA interactions generally leads to target 

silencing via translational repression. Though it is unclear how the mechanism works at the 

molecular level, one model suggests that translational inhibition takes place at the initiation 

step, while the other model proposes ribosome drop-off by inhibiting the elongation step in 

animals (Petersen et al., 2006; Pillai et al., 2005; Zekri et al., 2013). 

1.2.4 Atypical targeting mechanisms 

Certain miRNAs mediate their action by 5’UTR-targeting to silence or enhance gene 

expression (Kloosterman et al., 2004; Ørom et al., 2008). Steitz and colleagues reported that 

miRNA-induced repression in proliferating cells switches to activation in serum-starved non-

proliferating cells (Figure 1), implicating a cell cycle-stage determined regulation (Vasudevan 

et al., 2007). In addition, several miRNAs such as miR-223 and miR-320 can mediate 

transcriptional gene silencing by binding directly on the promoter of their target genes to 

repress transcription (Kim et al., 2008b; Zardo et al., 2012). 

Some miRNAs can act as decoys by direct interaction with the RNA-binding site of RNA 

binding proteins (RBPs). For example, miR-328 binds to the translational regulator poly(rC)-

binding protein hnRNP E2 that leads to release of CEBPA mRNA from hnRNP E2-mediated 

translation repression during myeloid cell differentiation (Eiring et al., 2010). Likewise, miR-

29 binds to the RNA binding protein HuR that protects the A20 tumor suppressor transcripts 

from degradation by HuR (Balkhi et al., 2013). 

1.3 IDENTIFICATION OF MIRNA TARGETS 

To expand and deepen our insights into miRNA functions requires the identification of 

miRNA targets. The magnitude of this task presents us with the daunting challenge of 

identifying all these targets in both physiological and pathological conditions in all cell types. 

Regardless of the complexity, biochemical and bioinformatic methods have been developed to 

better discern the role of miRNAs in disease.  

1.3.1 Bioinformatic approach 

Computational biology tools such as miRanda, PicTar, PITA, TargetScan, RNA22 and 

DIANA-microT provide a useful approach in predicting miRNA:mRNA targets. However, 
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discrepancies often result due to different algorithms and criteria applied in each tool. For 

example ‘complementarity to the miRNA seed region’, ‘evolutionary conservation of the 

MRE’ (miRNA recognition element) and ‘thermodynamic stability’, are considered by 

different prediction tools (Thomas et al., 2010; Watanabe et al., 2011). The downside of a 

purely bioinformatic approach is high false discovery rates because the miRNA and its 

predicted targets may not be simultaneously expressed or the miRNA-mediated target site is 

not canonical (Watanabe et al., 2011; Pasquinelli et al., 2012). Indeed, distinctive miRNA 

profiles have been identified based on tissue type or disease (Liang et al., 2007; Lu et al., 

2005). For instance, miR-21 is overexpressed in many cancer types (Chan et al., 2005 ; Iorio 

et al., 2005; Si et al., 2007; Seike et al., 2009; Özata et al., 2011); multiple miRNAs can target 

the same transcript (Wu et al., 2010); whereas high expression of certain miRNAs can be 

organ-specific e.g. miR-122a (liver), miR-124 and miR-9 (brain), miR-1b and miR-133 

(muscle) and miR-223 (bone marrow) (Baskerville & Bartel 2005). Also, perfect miRNA 

complementarity is infrequent in metazoa (Lewis et al., 2003), making target prediction more 

intricate. This level of complexity demands further refinement in prediction tools by 

incorporating more experimental data. In fact, some databases already contain experimental 

data, for example miRWalk, miRTarBase, miRecords and miRNA_Targets. Recent 

refinements of bioinfomatic algorithms take into account RNA secondary structures, non-

canonical targeting and Argonaute protein constraints (Khorshid et al., 2013; Agarwal et al., 

2015). Yet much remains to be learned about factors that influence target site function in vivo.  

1.3.2 Experimental approach 

Early biochemical methods based on RNA immunoprecipitation (RIP) methodology were 

applied to identify RNA-binding proteins and eventually identify miRNA targets. This 

method relies on stable physical interactions between miRISC and the target mRNA in vivo. 

Prior to the high-throughput sequencing era, isolated transcripts were identified by a 

microarray-based approach, known as RIP-chip (Tenenbaum et al., 2000). This method was 

restricted to targets present on the microarray chip and the RBP-recognition-element could 

not be specified. In addition, only strong protein RNA interactions could be identified 

(Tenenbaum et al., 2000; de Silanes et al., 2004). To improve efficiency, crosslinking was 

applied to covalently bind RNA-protein molecules in the immediate proximity, creating CLIP 

(Cross-Linking and Immunopreciptiation) (Ule et al., 2003; Hafner et al., 2010; Licatalosi et 

al., 2010). CLIP methods utilize UV crosslinking since it only induces crosslinks between 

RNA species and RNA-protein at the molecular contact sites. Another benefit is irreversibility 

as the errors introduced during cDNA synthesis serve as tags, marking the exact sites of the 

RNA-protein binding (Darnell, 2010). Further developments coupled CLIP to next-generation 

sequencing (CLIP-seq) demonstrating its power in identifying miRNA targets and specific 

binding sites (Ule et al., 2003; Licatalosi et al., 2008; Sanford et al., 2009; König et al., 2010). 

Among various CLIP-seq methodologies, PAR-CLIP (PhotoActivatable-Ribonucleoside-

enhanced Crosslinking and Immunoprecipitation) and HITS-CLIP (HIgh-Throughput 
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Sequencing of RNA isolated by CrossLinking and ImmunoPrecipitation) are the most well-

known approaches (Chi et al., 2009; Hafner et al., 2010).  

In this thesis, the PAR-CLIP method (Figure 2) was used to identify miR-944 targets in 

human cervical cancer cells (Paper I). Cells are treated with a photo-activatable 

ribonucleoside analog, such as 4-thiouridine (4SU) or 6-thioguanosine (6SG), overnight. The 

ribonucleoside analogs incorporate into mRNA transcripts in living cells and then UV 

crosslinked at 365 nm prior to cell harvesting. Low energy UV crosslinking increases 

efficiency and allows identification of the precise target-binding site by T-> C transitions (4-

SU) and G->A (6-SG) in sequenced reads (Hafner et al., 2010). HITS-CLIP however, uses 

higher energy UV crosslinking (254 nm) and no ribonucleoside analogs (Chi et al., 2009) to 

identify miRNAs targets (Haecker et al., 2012). HITS-CLIP was further improved by 

applying stringent washes to eliminate background RNA species. Still, these methods are 

constantly evolving and being refined such as iPAR-CLIP (Grosswendt et al., 2014), CLASH 

(Crosslinking, Ligation And Sequencing of Hybrids) and CLEAR-CLIP (Covalent ligation of 

endogenous Argonaute-bound RNAs-CLIP), all employing miRNA-target chimeras in 

purified AGO complexes, for direct mapping of RNA-RNA interactions (Helwak et al., 2013; 

Moore et al., 2015). 

1.4 METABOLISM 

Metabolism is a sequence of chemical reactions that transform fuel molecules into smaller 

molecules that are of a biological useful form while extracting energy. Glucose and glutamine 

are the two main nutrients providing the carbon intermediates to build various 

macromolecules. Certain metabolic reactions require an energy input to proceed, called 

anabolic reactions. The oxidation of glucose and glutamine allows the cells to produce their 

reducing power in the form of NADH or FADH2 and transfer of electrons to generate 

adenosine triphosphate (ATP). The triphosphate unit contains two phosphoanhydride bonds 

that liberate large amounts of energy when it is hydrolysed to adenosine diphosphate (ADP) 

or adenosine monophosphate (AMP). However, certain reactions can be driven by other 

derivative nucleotide triphosphates. ATP hydrolysis powers metabolism by shifting the 

equilibrium of a coupled reaction. In oxidative metabolism, O2 is the ultimate electron 

acceptor in the oxidation of carbon-containing molecules into CO2 and H2O byproducts. 

Glutamine also supplies nitrogen for the synthesis of purines and pyrimidines nucleotides, 

glucosamine-6-phosphate and non-essential amino acids (Pavlova and Thompson, 2016). 

Ion gradients across membranes power the majority of ATP synthesis. Food energy is 

extracted in three stages: A) Breakdown of large molecules into smaller molecules; B) Small 

energy molecules are broken down into Acetyl CoA; and C) Complete oxidation of the Acetyl 

CoA  by the Kreb’s cycle and oxidative phosphorylation. These catabolic pathways are 

discussed in this section (Figure 3). 
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1.4.1 Glycolysis and Kreb’s cycle 

Glycolysis is a cytosolic pathway comprising of ten sequential reactions where one glucose 

molecule yields two pyruvate molecules (Figure 3). The net energy generated is two ATP 

molecules per glucose molecule since two ATPs are used in the first reactions yielding 

fructose 1, 6-bisphosphate. Glycolysis can be split into two stages. In the first stage, glucose 

enters the cell and is converted into fructose 1, 6-bisphosphate, a compound that can be 

readily cleaved into two glyceraldehyde 3-phosphate units. In the second stage, 

glyceraldehyde 3-phosphate undergoes oxidation to pyruvate with generation of ATP. 

Glycolysis is tightly controlled through three irreversible reactions catalyzed by 

phosphofructokinase (PFK), hexokinase (HK) and pyruvate kinase (PK) enzymes. 

Phosphofructokinase function is inhibited by high ATP levels but restored by AMP. 

Hexokinase is inhibited by the reaction end-product glucose 6-phosphate and by 

Figure 2 – PAR-CLIP methodology:  Cultured cells are transfected with the miRNA mimic of 

interest. 4SU is added to the culture overnight and cells are UV-crosslinked upon harvesting. Cell 

lysate is digested with RNase T1 and then immunopurified by Ago2 co-IP. After a second RNase T1 

treatment, the Ago2 is digested by proteinase K. Then total RNA extraction is performed, followed 

by sRNA cloning with Solexa linkers and cDNA synthesis. The library is purified on 3% nusieve gel 

and the expected band is cut out. The cDNA is extracted and library is then ready for sequencing. 

Data are analysed bioinformatically, for example by using the Bowtie - PARalyzer pipeline.  
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phosphofructokinase. Pyruvate kinase catalysizes the final reaction of the glycolytic pathway 

and is allosterically inhibited by ATP, when energy levels are high (Maughan, 2009). 

Glucose can also be synthesized from non-carbohydrate sources such as pyruvate, 

oxaloacetate, phosphoenolpyruvate (PEP), lactic acid, amino acids and glycerol. Lactic acid is 

formed when the glycolysis rate exceeds the rate of oxidative metabolism and can be 

interconverted into pyruvate by the lactate dehydrogenase (LDH) enzymes. Glucose can then 

be synthesized by gluconeogenesis during periods of fasting, starvation or surplus of 

biosynthetic precursors, ATP and by glucagon (Wasserman et al., 1989; Maughan, 2009).  

Glycolysis is an anaerobic process, which harvests only a fraction of the energy available 

from glucose. The complete oxidation of glucose into carbon dioxide (CO2) involves a series 

of oxidative reactions known as the Kreb’s cycle or the Citric acid cycle and oxidative 

phosphorylation. Cellular respiration takes place in the mitochondrion, an organelle 

responsible for multiple cellular functions (Mayer & Oberbauer, 2003; Nilsson et al., 2009; 

Wanders et al., 2010; Rudel et al., 2010; Scott et al., 2010; Finkel et al., 2012) and contains its 

own genome. Mammalian mitochondrial (mt) DNA encodes for mtRNAs (12S rRNA, 16S 

rRNA and 22 tRNAs) and encodes 13 polypeptides of the oxidative phosphorylation (Solaini 

et al., 2011).  

Fuel molecules enter Kreb’s cycle in the mitochondria as acetyl coenzyme A (acetyl CoA) by 

the oxidative decarboxylation of pyruvate. The cycle consists of eight reactions that harvest 

high-energy electrons from glucose, amino acids and fatty acids. Every reaction provides the 

substrate for the subsequent step, starting with the aldol condensation-hyration reaction 

between oxaloacetate and acetyl-CoA to form citrate. The end-product of every cycle is 

oxaloacetate and each round yields two CO2, one ATP, two NADH and one FADH2 

molecules. Both NADH and FADH2 drive the electron transport chain in building up a proton 

gradient against the inner mitochondrial membrane. Isocitrate dehydrogenase (IDH) is a main 

control point in Kreb’s cycle, which is activated by ADP, isocitrate, NAD
+
, Mg

++
 and 

inhibited by ATP and NADH. α-ketoglutarate dehydrogenase is another enzyme that controls 

the cycle and is inhibited succinyl-CoA, NADH and high energy charge (Taylor et al., 2008; 

Shi et al., 2011). 

1.4.2 The mitochondrion and the respiratory chain 

The mitochondrion is a double-membraned organelle. The outer membrane is highly 

permeable to most small molecules and ions due to the presence of the voltage dependent 

anion channel or Porin. Porin is key in regulating the metabolic flux by allowing anionic 

species through (Colombini et al., 1996). The inner mitochondrial membrane has cristae 

formations that significantly increase the surface area, accommodating more oxidative 

phosphorylation (oxphos) complexes. The inner membrane is impermeable to almost all 

charged species but allows transport of specific energy molecules (ATP, pyruvate, citrate). A 
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membrane potential is build-up across this membrane, with a negative charge inside the 

matrix and a positive charge in the intermembrane space (Schultz and Chan, 2001). 

Kreb’s cycle supplies NADH and FADH2 in the mitochondrial matrix, to support electron 

flow through the respiratory chain and the build-up of a proton gradient fueling ATP 

synthesis. The oxphos is the oxidation of energy molecules generating ATP, coupled by a 

trans-membrane proton flux across the inner mitochondrial membrane. Electrons flow from 

NADH and FADH2 through four protein complexes that ultimately reduce molecular oxygen 

to H2O. Protons return to the mitochondrial matrix by flowing through a fifth protein 

complex, ATP synthase that catalyzes ATP synthesis (Schultz and Chan, 2001). 

 

 

 

 

 

 

 

Figure 3 – Glycolysis and Kreb’s cycle: Left side shows the catabolic reactions under physiological 

conditions. Pyruvate is converted to acetyl CoA and fully oxidized to CO2 and H2O.  Right side 

shows selective metabolic reactions in the cancer cell characterized by high glucose 6-phosphate and 

GAPDH to support rapid cell growth and evade apoptosis. Rapid cell growth results in hypoxia that 

induces HIF-1α expression. Mutated SDH and FH further induce HIF-1α due to accumulation of 

succinate and fumarate respectively. C-Myc activates HIF-1α directly but also through LDHA 

overexpression and excess lactate production. In turn, HIF-1α induces overexpression of glycolytic 

enzymes, glucose transport, simulates vascular growth and inhibits generation of acetyl CoA. 
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The respiratory chain is made up of four complexes: Three proton pumps; NADH-Q 

oxidoreductase (complex I), Q-cytochrome C oxidoreductatase (complex III) and Cytochrome 

C oxidase (complex IV). Another complex, Succinate-Q reductase (complex II) links the 

oxphos directly to the Kreb’s cycle. Electrons flow through these complexes to reduce O2, and 

powering the proton flux across the inner membrane. Two electron carriers, coenzyme Q 

(ubiquinone) and cythochrome C, shuttle electrons from complexes I and II to complexes III 

and IV respectively. Kreb’s cycle is not the only source of NADH, as it can be sourced from 

fatty acid oxidation or transported from the cytoplasm (Schultz and Chan, 2001).  

Complex I is the entry point of high-potential electrons in the respiratory cycle. This complex 

is a large L-shaped protein complex made of 45 subunits and functions as a proton pump. For 

every two electrons entering the complex from NADH, four H
+
 are pumped out into the 

mitochondrial inter-membrane space. FADH2 enters the electron transport chain at complex II 

(Schultz and Chan, 2001; Dieteren et al., 2008). Electrons are then passed to complex III via 

coenzyme Q and to complex IV via cytochrome C to reduce O2. For every eight protons, O2 

yields two H2O molecules and four protons are pumped into the inter-membrane space. Water 

is a safe by-product of respiration, yet small amounts of dangerous intermediates do occur due 

to partial reductions. The flow of one electron to O2 leads to the formation of the superoxide 

anion (O2
-
) and peroxide ion (O2

2-
) if two electrons are accepted. These ions are collectively 

known as reactive oxygen species (ROS) and has been implicated in cancer and aging. Cells 

can neutralize superoxide and peroxide damage by superoxidase dismutase and catalase 

respectively, but also by other antioxidants (Schultz and Chan, 2001; Lenas & Genova et al., 

2010). 

1.4.2.1 ATP synthesis 

The respiration is coupled to ATP synthesis through the proton flux, powering the enzyme 

ATP synthase (complex V). This complex generates most of the ATP in healthy cells and is 

located in the inner mitochondrial membrane. ATP synthase is made up of two subunits, a 

cylindrical-shaped F0 subunit inserted in the inner mitochondrial membrane and a spherical-

shaped F1 subunit that performs the catalytic function (Schultz and Chan, 2001). ADP is the 

substrate that binds to an ortho-phosphate moiety, to synthesize and release ATP. The 

complete oxidation of one glucose molecule yields over 30 ATP molecules (Icard et al., 

2012).  

1.5 CANCER 

In 1970, the government of the United States declared a ‘war on cancer’, which led to the 

National Cancer Act of 1971 and establishment of the modern National Cancer Institute 

(National cancer Act, 1971). The last five decades of research have revealed that cancer is a 

multistep process involving a gradual transformation of non-cancerous cells to malignant 

cells, by acquiring capabilities that disrupt homeostasis. Cancer can be defined as a disease 

where cells gain functions prompting uncontrolled proliferation, promoted by mutations that 
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convert proto-oncogenes into oncogenes and the loss of tumor-suppressor genes function 

(Hanahan and Weinberg 2000). Initiation and progression of tumor development demands the 

presence of multiple factors that collectively drive the accumulation of genetic mutations and 

epigenetic changes that transform normal cells into malignant. Malignant cells harbor 

multiple genetic lesions that regulate cell growth. 

1.5.1 The hallmarks of cancer 

In the year 2000, Hanahan and Weinberg proposed six mechanisms that enable cancer cells to 

bypass the mechanisms controlling cell growth. These mechanisms or hallmarks include: i) 

evasion of apoptosis, ii) production of growth signals, iii) unresponsiveness to anti-growth 

signals, iv) local and metastatic spread, v) enhancement of angiogenesis, vi) unlimited 

proliferation. Later it became apparent that more mechanisms are at play: vii) metabolic 

reprogramming, viii) genome instability, ix) evasion of immunological surveillance and x) 

tumor inflammation. Understanding the mechanisms underlying these capabilities is key to 

uncover the tumorigenic processes (Hanahan and Weinberg, 2011).  

1.5.2 Degregulation of miRNAs in cancer 

Aberrant miRNA expression was found in many types of human cancers (He et al., 2005; Lu 

et al., 2005; O’Donnell et al., 2005; Zhang et al., 2006), for example colorectal neoplasia 

(Michael et al., 2003), lung cancer (Takamizawa et al., 2004), large B-cell lymphoma (Eis et 

al., 2005), breast cancer (Iorio et al., 2005), cervical (Lui et al., 2007; Witten et al., 2010) and 

neuroendocrine carcinomas (Soon et al., 2009; Özata et al., 2011; Xie et al., 2014). The first 

report was published by Croce and colleagues showing down-regulation of miR-15a and miR-

16-1 in B-cell chronic lymphocytic leukemia (B-CLL). Both miRNAs are located in the 

13q14 chromosomal region, a site frequently deleted in B-CLL. Indeed, most miRNA genes 

are located at sites already linked to cancer or fragile sites (Calin et al., 2002; Calin et al., 

2004). Furthermore, deregulation of the miRNA processing machinery can alter miRNA 

levels and promote cellular transformation and tumorigenesis (Melo et al., 2010; Hill et al., 

2009; Torrezan et al., 2014) of tumors with a highly invasive phenotype (Kumar et al., 2007). 

Transcription of miRNA genes are also affected by epigenetic changes, such as DNA 

methylation and histone modifications. For example, miR-15a, miR-16-1 and miR-29b are 

epigenetically silenced by histone deacetylases in CLL (Sampath et al., 2012). miR-203 is 

hypermethylated in hematological malignancies (Bueno et al., 2008) and breast cancer (Taube 

et al., 2013). 

1.5.2.1 OncomiRs 

OncomiRs are deregulated oncogenic miRNAs supporting tumor growth by inhibiting tumor-

suppressor genes. miR-21, miR-155 and miRNAs originating from the mir-17~92 cluster 

(oncomiR-1) are among the most well-known oncomiRs (Figure 4). miR-21 is highly 

expressed in tumors of the breast (Yan et al., 2008), lung (Seike et al., 2009), liver 



 

14 

(Gramantieri et al., 2008), pancreas (Dillhoff et al., 2008), colorectal (Asangani et al.,2008) 

and gastrointestinal (Zhang et al., 2008). It promotes proliferation, invasion, metastasis, 

inhibits apoptosis (Si et al., 2007; Asangani et al., 2008; Yan et al., 2011; Jin et al., 2013b) 

and transformation of stromal tissue in squamous cell carcinoma (Nouraee et al., 2013). The 

Grhl3 transcription factor is one crucial target with subsequent loss of PTEN expression, 

leading to amplification of the PI3K/AKT/mTOR pathway (Darido et al., 2011) in cervical 

tumorigenesis (Peralta-Zaragoza et al., 2016), by an intricate positive feedback mechanism 

(Bhandari et al., 2013). miR-21 can even induce invasion, metastasis and evasion of apoptosis 

via PDCD4 targeting (Asangani et al., 2008; Melnik, 2015). Indeed, miR-21 is a key promoter 

of oncogenesis targeting several signaling pathways and cell cycle control (Wang et al., 

2009a), particularly in diseases of the skin (Melnik, 2015).  

miR-155 was found to be over-expressed in hematological malignancies (Metzler et al., 2004) 

and solid tumors (Volinia et al., 2006; Gironella et al., 2007; Zhang et al., 2013), and its 

expression correlates to the BIC (B-cell integration cluster) host gene (Zhang et al., 2008). 

Transgenic mouse models over-expressing this miRNA developed B cell related pathologies 

(Costinean et al., 2006). The BIC/miR-155 expression was found to increase in activated T 

and B cells and other cells of the immune system and seems to be essential for lymphocyte-

mediated immune function (Rodriguez et al., 2007). The miR-155 mediated mechanisms 

promoting tumor growth are poorly understood however, several targets (Figure 4) were 

identified in B cell lymphomas/ leukemias, (Costinean et al., 2009; Pedersen et al., 2009), 

breast cancer (Jiang et al., 2010) and promotion of angiogenesis (Kong et al., 2014).  

The mir-17~92 cluster (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92-1) is 

located in chromosome 13q31, a region often amplified in several tumor types (Ota et al., 

2004; He et al., 2005; Hayashita et al., 2005; Mendell, 2008) driven by c-Myc and E2F 

transcription factors (He et al., 2005; O’Donnel et al., 2005; Aguda et al., 2008). E2F and 

Myc expressions are regulated by positive feedback-loops and simultaneously down-regulated 

by members of the miR-17~92 cluster by negative feedback (Aguda et al., 2008; Mendell, 

2008). This cluster modulates a vast number of targets (Mogilyansky and Rigoutsos, 2013). 

Though E2Fs are pro-apoptotic, E2F1 can also be post-transcriptionally regulated by other 

miRNAs (miR-106b-25 cluster), leading to increased cell proliferation rather than apoptosis 

(Hayashita et al., 2005; Mendell, 2008) and to other oncogenic phenotypes (Nagel et al., 

2009; Olive et al., 2009; Dews et al., 2010; Huang et al., 2012). In addition, miRNAs from 

this cluster target: i) SMAD2/3/4 (Mestdagh et al., 2010; Dews et al., 2010) of the TGFβ 

signaling pathway, ii) CDKN1A/p21 (Wong et al., 2010), iii) inhibitors of PI3K and NFқB 

pathways (Jin et al., 2013a), iv) Bcl-2 interacting mediator of cell death (Tsuchida et al., 

2011) and v) promote sonic hedgehog-mediated proliferation in medalloblastomas (Northcott 

et al., 2009).    
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1.5.2.2 Tumor-suppressor miRNAs 

Tumor suppressing miRNAs silence transcripts with oncogenic potential and are often down- 

regulated in cancer as a consequence of mutations, deletions, epigenetic silencing or 

disruption in the miRNA maturation process (Calin et al., 2002; He et al., 2005; Park et al., 

2009). As mentioned earlier, the mir-15a~16-1 cluster of tumor suppressor miRNAs are 

frequently down-regulated in B-CLL, but also in lung (Bandi et al., 2009) and prostate 

cancers (Porkka et al., 2011). This cluster targets CCND1 and CCNE1 (Bonci et al., 2008; 

Bandi et al., 2009), Smad3/ACVR2A (Jin et al., 2018) and BCL2 (Cimmino et al., 2005) to 

inhibit cell proliferation, invasion and promote apoptosis (Figure 4). 

The miR-34 family members are tumor suppressor miRNAs whose expression was found to 

be directly linked to that of p53. Silencing of p53 in human cancer cell lines decreased miR-

34a levels, while DNA damage restores its expression (Raver-Shapira et al., 2007). It has pro-

apoptotic and non-proliferative functions by targeting the apoptosis inhibitors BCL2 and 

SIRT1 (Yamakuchi and Lowenstein, 2009). The 1p36 chromosomal region hosts the miR-34 

family, a site found to be deleted in different cancer types (He et al., 2007; Raver-Shapira et 

al., 2007; Bagchi and Mills, 2008). Recently, the p53/miR-34 axis was shown to suppress 

PDL1 (Cortez et al., 2016) and SNAIL (Siemens et al., 2011). Genetic mutations or epigenetic 

silencing inactivate p53/miR-34 in cancer cells, allowing transformation of epithelial to 

mesenchymal cell transformation, invasion, metastasis and evasion of immunological 

surveillance (Siemens et al., 2011; Rokavec et al., 2015). 

Other tumor suppressor miRNAs include let-7 and miR-29. Various let-7 isoforms were found 

poorly expressed in lung and other cancer types (Takamizawa et al., 2004; Barh et al., 2010). 

Let-7 is a strict cell cycle modulator showing an anti-proliferative phenotype by targeting 

Figure 4 – Oncogenic and tumor suppressor miRNAs: Left - Verified targets of miR-21, miR-155 

and the miR-17~92 cluster oncomiRs. Right – Verified targets of miR-34, let-7 and the miR-15~16 

cluster tumor suppressor miRNAs. 
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RAS, CDC25a, CDK6, CCND2, HMGA2 (high mobility group at–hook 2), c-Myc and IMP1 

(Insulin-like growth factor 2 mRNA-binding protein-1) oncogenes (Johnson et al., 2005 & 

2007; Chang et al., 2008; Barh et al., 2010). Members of the miR-29 family mediate p53 

regulation by targeting CDC42 and p85, a subunit of PI3K. Silencing of p85α, upregulates 

p53 and induces apoptosis. miR-29 inhibits DNA methyltransferase activity to suppress DNA 

methylation and also targets MCL1 (myeloid cell leukemia-1) to suppress the Bcl2 protein 

family (Park et al., 2009). Moreover, miR-29 has been shown to be under the control of NF-

қB - Yin Yang-1 (YY1) interaction and deregulation can lead to rhabdomyosarcoma (Wang et 

al., 2008). Low miR-29 levels were reported in CLL (Pekarsky et al., 2006), lung (Yanaihara 

et al., 2006), prostate (Porkka et al., 2007) and breast cancers (Iorio et al., 2005). 

1.5.3 Tumor metabolism and respiratory complexes 

In the last two decades, it became more apparent that metabolic reprogramming is an essential 

malignant transformation and a hallmark of cancer (Hanahan & Weinberg, 2011). Altered 

metabolism leads oncometabolites that in turn affects gene expression, cellular differentiation 

and tumor microenviroment. Cancer-associated metabolism can be described by six 

hallmarks: 1) Deregulated glucose and amino acid uptake, 2) the opportunistic use of modes 

of nutrient acquisition, 3) the use of glycolysis and Kreb’s cycle intermediates for 

biosynthesis and NADPH production, 4) high nitrogen requirement, 5) altered metabolism-

induced gene expression and 6) altered microenvironment (Pavlova and Thompson, 2016). 

Some of these tumor-related metabolism characteristics are further discussed in this section 

(Figure 3).  

1.5.3.1 Aerobic glycolysis and altered gene expression 

Aerobic glycolysis is a property of rapidly dividing cells such as tumor cells. These cells 

exhibit high glucose uptake, high glucose 6-phosphate (G6P) and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) combined with high lactate production, even in the presence of 

oxygen. Aerobic glycolysis was first described by Otto Warburg in the 1920s and is also 

known as the Warburg effect (Warburg et al., 1927). Tumors with high glucose uptake are 

often very aggressive and show poor prognosis. The benefits of acidification of the tumor 

environment are yet elusive but presumably facilitates tumor invasion by evading an immune 

response (Lardner, 2001). Tumor cells utilize G6P from glycolysis to funnel it into the 

pentose phosphate pathway to generate reducing power and production of nucleotides (Patra 

and Hay, 2014).  

Aerobic glycolysis diminishes the cell dependence on oxygen for growth, a requirement for 

the highly proliferative cancer cells. However, hypoxia ensues in unvascularized tumor tissue 

since blood vessels grow at a slower rate. This induces a metabolic switch by altering which 

isoform of hexokinase (HK) and pyruvate kinase (PK) are expressed but mainly tumor 

hypoxia triggers the expression of hypoxia-inducible factor (Wallace, 2005; Luo and 

Semenza, 2011). Hypoxia inducible factor 1 (HIF-1) induces overexpression of genes 
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regulating glycolysis, GLUT1 and GLUT3 glucose transporters (Iyer et al., 1998), LDHA, 

PDK1 (Semenza, 2007) and vescular endothelial growth factor (Jung et al., 2005). Metabolic 

adaptations allow the cancer cells to survive until blood vessels regenerate.    

Mutations in enzymes of the Kreb’s cycle (Figure 3), succinate dehydrogenase (SDH), 

fumarate hydratase (FH), pyruvate dehydrogenase kinase (PDK) and isocitrate dehydrogenase 

(IDH), promote tumor development by enhancing aerobic glycolysis (Pollard et al., 2005; 

King et al., 2006; Deberardinis and Chandel, 2016). All these enzymes except for IDH are 

related to the HIF-1 transcription factor. Under physiological conditions, HIF-1 up-regulates 

glycolytic enzymes and glucose transporters only under hypoxic conditions (during exercise) 

and is then hydroxylated to prolyl hydroxylase 2 and destroyed by the proteasome to abolish  

glycolytic stimulation (King et al., 2006). However, mutations in SDHx or FH genes induce 

accumulation of succinate, fumarate and lactate in the mitochondria and cytoplasm which 

inhibit prolyl hydroxylase 2 and stabilize HIF-1 (Selak et al., 2005; King et al., 2006; 

Sonveaux et al., 2012). HIF-1 enhances production of PDK to inhibit pyruvate to acetyl CoA 

conversion and accumulates in the cytoplasm. Mutations in PDK also enhance aerobic 

glycolysis, increase lactate concentration and HIF-1 stabilization (Semenza, 2007). Some 

pyruvate is still converted into acetyl CoA and used for lipid synthesis in tumor cells, 

allowing adaptation to metabolic stress and proliferation (Dang, 2013; Munir et al., 2019). 

Under physiological conditions, IDH catalyzes the converstion of isocitrate into α-

ketoglutarate but when mutated, it reduces α-ketoglutarate to 2-hydroxyglutarate, an 

oncometabolite. 2-hydroxyglutarate alters DNA methylation patterns and promotes 

uncontrolled cell growth (Dang et al., 2009; Xu et al., 2011).  

1.5.3.2 Dysfunctional oxidative phosphorylation 

Reduced mitochondrial respiration is a feature occurring in many cancer types and linked to 

aerobic glycolysis (Meierhofer et al., 2004; Hervouet et al., 2008; Calabrese et al., 2013). 

Decreased activity of complex I and III in cancer was reported to result due to mitochondrial 

DNA mutations in ND1 gene of complex I (Bonora et al., 2006; Sharma et al., 2011) or K-ras 

(Baracca et al., 2010). Heteroplasmic mitochondrial DNA mutations in ND1 and cytochrome 

b (complex III subunit) genes have been reported in thyroid carcinoma (Bonora et al., 2006) 

and lead to high ROS production (Guzy et al., 2005; Ishikawa et al., 2008; Koopman et al., 

2010). High ROS levels contribute to tumorigenesis by activating the expression of HIF-1α 

and other transcription factors while inhibiting expression of PTEN and PTP1B phosphatases 

(Bertout et al., 2008; Pavlova and Thompson, 2016). Mutations in SDHx, encoding a nuclear-

encoded mitochondrial protein, has been linked to malignant disease (Linehan and Rouault, 

2013; Aspuria et al., 2014; Else et al., 2017). Repression of complex II subunits (SDHA and 

SDHB) in cancer contributes to pseudo-hypoxia, HIF-1α overexpression and angiogenesis 

(Burnichon et al., 2010). SDHx and FH mutations occur in hereditary tumors.  
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In addition, the oncoprotein c-Myc promotes a shift from ATP production to aerobic 

glycolysis, by blocking pyruvate to acetyl-CoA conversion via pyruvate dehydrogenase 

kinase (PDK) regulation. Myc also increases lactate production through overexpression of 

LDHA and the lactate transporter MCT1 (Graves et al., 2012; Wahlström & Henriksson, 

2015; Pavlova and Thompson, 2016). In addition, the overall oxphos activity correlates to 

tumor aggressiveness (Simonnet et al., 2002). Indeed, when the oxphos is inhibited by the 

ATPase inhibitory factor 1 (ATPIF1), an inhibitor of complex V, a shift to aerobic glycolysis 

is again observed. ATPIF1 also promotes glycolysis and was found highly expressed in 

breast, lung and colon cancers (Sanchez-Cenizo et al., 2010). 

1.5.4 Cervical carcinoma 

Cervical cancer is a malignant neoplasm that has the third highest incidence and the third 

most frequent cancer deaths among women in low/middle income countries. In high-income 

countries, the incidence has decreased due to the screening programs (Jemal et al., 2011; 

Torre et al., 2016). The majority of cervical tumors are squamous cell carcinomas (80%), and 

the remaining (20%) are adenocarcinomas (Durst et al., 1983). 

Human Papillomavirus (HPV) infection is prevalent in cervical cancer (Durst et al., 1983; 

Gissmann et al., 1983). Over 200 types of HPV have been identified (Bzhalava et al., 2014) 

and categorized as low-(LR) or high-risk (HR) based on their oncogenic potential (Burd, 

2003). Indeed, cervical tumors with HR-HPV types 16 and 18 infections are collectively 

responsible for >70% of invasive cervical carcinomas (Guan et al., 2012). Persistent HR-HPV 

subtype infections can develop lesions, cytologically described as cervical intraepithelial 

neoplasia (CIN). Cytological grading is based on the Bethesda system: Low-grade squamous 

intraepithelial lesion (LSIL) CIN1, and high-grade squamous intraepithelial lesion (HSIL) 

CIN2 and CIN3. CIN1 and CIN2 represent transformation of a third to 2/3 dysplastic basal 

epithelium. In CIN3 or cervical carcinoma in situ, more than 2/3 of the whole epithelial layer 

is transformed. Upon invasion of the stromal tissue underneath, the neoplasia is then referred 

to as cervical cancer (Nayar and Wilbur, 2015; Wang et al., 2014). Though HR-HPV infection 

is necessary for cancer development, it is not sufficient to develop cervical cancer. Multiple 

etiologies likely contribute to the disease outcome (Walboomers et al., 1999; Haverkos et al., 

2000). 

HPV is a small circular DNA (7.9 kb) virus. Its genome is composed of three regions: i) The 

non-coding region that regulates DNA replication, ii) the early region that encodes early 

proteins E1, E2, E4, E5, E6 and E7 necessary for viral replication and oncogenesis, and iii) 

the late region, encoding the L1 and L2 viral capsid proteins. HPVs can be divided into 

cutaneous or mucosal types depending on the targeted area (Burd, 2003). The HPV early 

proteins E5, E6 and E7 are the most significant viral oncoproteins with the potential to 

promote tumor initiation and progression (Moody and Laimins, 2010). However, HPV16 E5 

by itself is only partially oncogenic as it is only capable of inducing cervical neoplasia. A 
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more aggressive tumor results when E5 is expressed in combination with either E6 or E7 by 

promoting their oncogenicity (Maufort et al., 2010). Recently, the HPV16 E5 gene was 

reported to downregulate miR-196a, resulting in upregulation of its target (Yekta et al., 2004; 

Liu et al., 2015). Furthermore, an increase in cell proliferation and growth was observed upon 

miR-196a inhibition (Liu et al., 2015). The viral oncogenic protein E6 is well known to target 

the p53 protein for degradation and immortalization of cells (Scheffner et al., 1990; Niccoli et 

al., 2012; Togtema et al., 2015). Reduced p53 levels correlate to declined miR-34a levels, 

attributed to E6 that ultimately abolishes the cell cycle checkpoints (Sun et al., 2008; 

Yamakuchi et al., 2008; Wang et al., 2009b; Wang et al., 2011b; Zuo et al., 2015). In line with 

this, miR-34a expression levels are lower in LSIL, HSIL and cervical cancer than in 

uninfected cervical epithelium (Li et al., 2010). The E6 forms a complex with E6-associated 

protein (E6AP), a ubiquitin ligase, that ubiquitinates and degrades p53 in the proteasome 

(Lechner et al., 1992; Scheffer et al., 1993). E6 also interacts independently with c-Myc 

transcription factor to promote TERT transcription (Veldman et al., 2003). Telomerase 

activity and expression is further enhanced when E7 is present (Oh et al., 2001). HPV E7-

mediated Retinoblastoma (pRb) protein degradation releases E2F1 to drive the cell cycle into 

S phase (Gonzalez et al., 2001; Roman and Munger, 2013). Unbound E2F1 promotes c-Myb 

and c-Myc expressions and in turn upregulates the DLEU2 (deleted in lymphocytic leukemia 

2) non-coding gene, the region harboring the miR-15a~16-1 cluster (Zheng and Wang, 2011). 

Although this region is frequently deleted in malignancy (Calin et al., 2002; Lerner et al., 

2009), this cluster is highly expressed in cervical cancer than in matched controls (Wang et 

al., 2008); still, its significance in cervical cancer is unclear. In addition, the E7 can bind c-

Myc directly to promote its DNA-binding and transcription activation capabilities (Wang et 

al., 2007). HPV E6/E7 hijacking of c-Myc disturbs the expression of many cellular miRNAs, 

including miR-17~92 cluster (O’Donnell et al., 2005), let-7a-1/f-1/d, miR-15a~16-1, miR-22, 

miR-29a/b and miR-34a (Chang et al., 2008). 

Several studies reported aberrant miRNA expression profiles in cervical cancer (Table 2) (Lui 

et al., 2007; Wang et al., 2008; Wang et al., 2009b; Li et al., 2011b). Nine miRNAs (miR-9, 

miR-142, miR-642a, miR-101, miR-3607, miR-502, miR-378c, miR-150 and miR-200a), were 

shown to be of prognostic value in determining patient survival in metastatic cervical cancer. 

In particular, miR-200a expression was associated with good prognosis (Hu et al., 2010; Liu 

et al., 2016). The miR-200 family, miR-141, miR-149, miR-34a and miR-205 were identified 

as tumor suppressive and anti-metastatic miRNAs (Gregory et al., 2008; Korpal et al., 2008; 

Pang et al., 2010). 
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Table 2 – Commonly aberrant miRNA expressions in cervical cancer 

Overexpressed in cervical cancer Underexpressed in cervical cancer 

miR-15b miR-29a 
miR-16 miR-34a 

miR-17-5p miR-126 
miR-20a/b miR-127 

miR-21 miR-143/145 
miR-93 miR-218 

miR-106a miR-424 
miR-155 miR-450 
miR-182 miR-455 
miR-185  
miR-224  
miR-944  
miR-205  

 

1.5.5 Neuroendocrine carcinomas 

1.5.5.1  Adrenocortical carcinoma 

Adrenocortical carcinoma (ACC) is an aggressive neoplasm with an annual incidence of 0.7 – 

2.0 cases per million people. Most adrenal masses are benign adenomas (ACA), often 

detected incidentally, so called incidentalomas (Young, 2007). However, ACCs are often 

revealed by compression and metastasis or even by excess steroid hormone production 

(Guillaud-Bataille et al., 2014). Typically, the patient is about 45 years of age, predominantly 

female and with poor prognosis (Fassnacht et al., 2013). Only a fraction of all adrenocortical 

tumors (ACT) diagnosed are carcinomas with the majority being adenomas (Giordano et al., 

2009). Histopathology is the current method of choice to assess ACT to determine the origin 

and distinguish benign from malignant disease using the Weiss score criteria (Lau and Weiss, 

2009). Unfortunately, histopathological examination proved to be challenging due to 

inconsistencies among observers (Fassnacht et al., 2013). Indeed, better prognostic and 

diagnostic markers are required. 

Mutations in TP53, CTNNB1 and the TERT promoter as well as IGF2 overexpression and 

activation of the WNT/β-catenin pathway are common abnormalities in ACC (de Fraipont et 

al., 2005; Else et al., 2014; Liu et al., 2014). Germline mutations such as R337H in the TP53 

gene are predominant in pediatric ACCs and manifests as Li-Fraumeni syndrome with high 

predisposition to other cancerous diseases (Faria et al., 2012; Fassnacht et al., 2013). In adult 

ACC patients, ~6% carry germline TP53 mutations (Raymond et al., 2013). In addition, 

somatic TP53 mutations and loss of heterozygosity of the TP53 locus are prevalent in adult 

ACC patients (Else et al., 2014). The WNT/ β-catenin signaling pathway is essential for 

normal adrenal development and maintenance (Kim et al., 2008a). Accumulation and 

stabilization of β-catenin in the cell occurs in most ACC cases, by blocking of its degradation 

complex by members of the Wnt signaling pathway. The protein is then translocated to the 
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nucleus where it promotes expression of Wnt/ β-catenin target genes that control cell 

proliferation (He et al., 1998; Tetsu and McCormick, 1999; Bielinska et al., 2009). CTNNB1 

gene mutations are observed in ~25% of both benign and malignant ACTs (Tissier et al., 

2005; Rubin et al., 2016). 

IGF2 and H19 are two proximally located imprinted genes clustered on human chromosomal 

region 11p15.5. IGF2 is expressed from the paternal allele (DeChiara et al., 1991) and H19 

from the maternal (Bartolomei et al., 1991). The expression of both genes is closely linked 

and regulated by common regulatory elements (Srivastava et al., 2000). The IGF2 transcript 

gives rise to the IGF2 protein and two miRNAs (miR-483-5p/ -3p) from intron 7. The H19 

gene is a noncoding gene that harbors miR-675. In addition, H19 locus codes for a protein 

product located antisense to H19, known as HOTS or H19 opposite tumor suppressor 

(Onyango and Feinberg, 2011). IGF2 overexpression has been extensively studied in pediatric 

(Wilm’s tumor), ACC and other adult tumors (Tricoli et al., 1986; Cariani et al., 1988; Zhan 

et al., 1994; Vu et al., 2003; de Fraipont et al., 2005). Epigenetic deregulation of the 

IGF2/H19 domain, known as loss of imprinting (LOI), is known to partly contribute to IGF2 

up-regulation. On the other hand, H19 is lower in ACC compared to normal adrenal glands 

(Gao et al., 2002), i.e. not expressed due to maternal H19 inactivation (Larsson, 2013). 

IGF2/H19 domain LOI has also been reported to silence HOTS gene in Wilm’s tumor 

(Onyango and Feinberg, 2011). It is clear that deregulation of IGF2 and H19 is common in 

ACCs (Gicquel et al., 1997; 2001), however how these genes contribute to ACC development 

remains unclear. 

miRNA profiling can efficiently classify benign from malignant ACTs (Patterson et al., 2011; 

Özata et al., 2011). Overexpression of miR-483 is a common finding in ACC (Soon et al., 

2009; Patterson et al., 2011; Özata et al., 2011). miR-483-3p inhibits apoptosis by targeting 

PUMA/BBC3 and enhances cell proliferation in many cancers types (Veronese et al., 2010; 

Özata et al., 2011). Overexpression of miR-483-5p is a distinct feature of ACC (Patterson et 

al., 2011) and can promote cell proliferation, migration, invasion and metastasis (Özata et al., 

2011; Song et al., 2014). Interestingly, miR-483-5p can target the 5’UTR of IGF2 transcript to 

upregulate IGF2 expression and promote tumorigenesis in Ewing’s sarcoma cells (Liu et al., 

2013). Expression of miR-21 and miR-210 is higher in ACC than in ACA and miR-21 

promotes cell proliferation (Romero et al., 2008; Özata et al., 2011). Furthermore, HIF-1α 

was shown to activate miR-210 expression under hypoxic conditions and in turn targets MNT, 

a Myc antagonist. As a consequence, c-Myc is activated, to support cell growth (Zhang et al., 

2009). Some miRNAs are associated with short-term survival. For example, high expression 

of miR-503, miR-1202, miR-1275 is associated with poor prognosis in ACC patients (Özata et 

al., 2011); whereas a lower expression of miR-195 and miR-497 is consistently found in ACC, 

but not ACA and normal cortices (Soon et al., 2009; Doghman et al., 2010; Özata et al., 

2011). miR-195 is regarded as a strong differential marker (Soon et al., 2009; Özata et al., 

2011; Chabre et al., 2013) that exhibits an inverse correlation with tumor size and cell growth 
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(Chabre et al., 2013). Moreover, miR-195 and miR-497 overexpression induces apoptosis in 

ACC cells (Li et al., 2011a). The mir-195/497 cluster is located in chromosomal region 

17p13.1, a region often deleted (Gicquel et al., 2001) in many cancers, including ACC (Pinto 

et al., 2005; Li et al., 2011a). Low expression of miR-195 and miR-497 can lead to increased 

expression of their targets TARBP2 and DICER. Indeed, differential expressions can 

discriminate malignant from benign adrenocortical tumors based on TARBP2, GRIM-19 

(NDUFA13) and several other proteins belonging to mitochondrial complex I (Caramuta et 

al., 2013; Kjellin et al., 2014). Their aberrant expression can trigger metastatic cell invasion 

and metabolic reprogamming (Goodarzi et al., 2014; Kjellin et al., 2014). 

1.5.5.2 Merkel cell carcinoma 

MCC is an aggressive neuroendocrine skin tumor, first described in 1972 (Toker, 1972). In 

most cases, MCC lesions appear on the head and neck area and limbs. The incidence is low 

but increasing and mortality rate is high (Fitzgerald et al., 2015). Risk factors for MCC 

include sun exposure, Caucasian ethnicity, UV radiation, specific viral infection and 

immunosuppression (Schrama et al., 2012). Local and distant metastasis are common, often to 

the lymph nodes and distant skin (Bichakjian et al., 2007).  

MCC is thought to arise from Merkel cells, a type of neuroendocrine cells found in the touch-

sensitive epidermal layer, that express epithelial cytokeratins (CKs), specifically CK20, 

neurosecretory granules (Moll et al., 1992 & 1995; Erovic and Erovic, 2013) and CD56 

(Kurokawa et al., 2003). However, the origin of MCC is still unclear as other markers such as 

CD171 (L1CAM), CD117 (c-KIT receptor) and CD24 (mucin‐like adhesion protein) are 

expressed in the majority of MCC but not in Merkel cells (Su et al., 2002; Deichmann et al., 

2003; Feinmesser et al., 2004). Further ambiguous is the fact that MCC cells are highly 

proliferative and aggressive (Krasagakis et al., 2001), whereas Merkel cells are post-mitotic, 

terminally differentiated cells indicating a stem cell-like, undifferentiated epidermal origin 

(Moll et al., 1996). Recent reports showed that most MCC cells express PAX5 (paired box 

gene 5) and TdT (terminal deoxynucleotidyl transferase) early B-cell lineage markers, adding 

another layer of perplexity to the precursor of MCC (zur Hausen et al., 2013). 

MCC is associated with Merkel cell polyomavirus (Feng et al., 2008). Merkel cell 

polyomavirus (MCPyV) belongs to the Polyomaviridae virus family carrying a 5.4 kb circular 

DNA, containing an early and a late region. The early region codes for four T-antigens [Large 

(LT), small (sT), 57 kDa T, and alternate frame of the LT (ALTO)] and a viral miRNA (mcv-

miR-M1). The late region encodes viral capsid proteins (VP1, VP2 and VP3). MCPyV DNA 

is integrated in the MCC tumor DNA (Feng et al., 2008; Feng et al., 2011; Erovic and Erovic, 

2013), which encodes a truncated form of the LT (Cheng et al., 2013). The truncated form of 

the LT is a viral oncogene that lacks the helicase domains required for viral DNA replication 

(Shuda et al., 2008), but preserves the Rb-binding motif (LxCxE) (Cheng et al., 2013). Rb 

regulates the E2F transcription factor that controls cell cycle progression from G1 to S 
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(Cobrink, 2005). The LT oncoprotein interaction with Rb1 disrupts E2F regulation, thereby 

transforms cells leading to enhanced cell growth and proliferation (Hesbacher et al., 2016). 

The LT also binds Hsc70, via its functional domains in the cell nucleus, mediated via the 

HPDK motif located in the DnaJ domain. This interaction was found to be essential to 

maintain MCC cell growth and proliferation and inactivation of Rb (Kwun et al., 2009; 

Houben et al., 2015). Additionally, LT binds Vam6p via its MUR (MCPyV T antigen unique 

region) domain at position 209. This interaction displaces Vam6p to the nucleus and 

perinuclear area, making it unable to cluster lysosomes (Liu et al., 2011). The purpose of 

Vam6p re-localization is unknown, however, it was shown to have a role in MCV replication 

(Feng et al., 2011). 

The small T antigen (sT) is another oncoprotein encoded by the MCPyV genome that is able 

to transform cells and enhance cell proliferation in MCC (Kwun et al., 2013). MCPyV sT 

enhances LT expression independently of PP2A (sT binding site) and promotes MCPyV DNA 

replication in synergy with LT (Kwun et al., 2013). sT has been shown to interact with Fbw7 

E3 ligase via its LT-stabilization domain (LSD) to diminish LT ubiquitinylation and inhibit 

degradation of c-Myc and cyclin E, among other cell cycle regulators and tumor suppressors 

(Kwun et al., 2013). In addition, the LSD domain interacts with downstream factors in the 

Akt-mTOR pathway by targeting 4E-BP1, a regulator of eIF4E. When active, 4E-BP1 binds 

to eIF4E to inhibit translation initiation. mTOR1-mediated phosphorylation deactivates 4E-

BP1 to detach it from eIF4E and initiate translation. Moreover, 4E-BP1 can be 

phosphorylated by sT, independently of mTOR1 by an unkown mechanism (Shuda et al., 

2011). Further sT interactions have been reported via its cellular phosphatase subunits PP4C 

and PP2A Aβ to inhibit NF-κB via NEMO (NF-κB essential modulator), rendering it inactive 

and unable to activate NF-κB-mediated inflammatory pathway (Griffiths et al., 2013). 

Additionally, the PP4C subunit has been implicated in promoting sT-mediated cell motility, 

migration and invasion by inhibiting stathmin phosphorylation (Knight et al., 2015). 

Only a limited number of reports have characterized the role of miRNAs in MCC. miRNA 

expression profiling can distinguish MCC tumors based on MCPyV status. Five differentially 

expressed miRNAs were validated including miR-30a-5p/-3p, miR-375, miR-34a that are up-

regulated, whereas miR-203 is down-regulated, in MCPyV+ tumors (Xie et al., 2014). 

Functional studies showed that miR-203 regulates cell growth, cell cycle progression and 

targets survivin (BIRC5) in MCPyV-, but not MCPyV+, cell lines. On the other hand, in 

MCPyV+ MCC cells, the LT regulates survivin expression instead. Comparative analysis of 

primary versus metastasis tumor profiles, highlighted four miRNAs (miR-150, miR-630, miR-

483-5p, miR-142-3p) that were differentially expressed (Xie et al., 2014). Very recently, miR-

375 was shown to act as a tumor suppressor and neuroendocrine differentiator by targeting 

Notch2 and RBPJ in MCPyV- MCC cell lines (Abraham et al., 2016). The role of MCC-

specific miRNAs in disease progression and metastasis is yet elusive and further studies are 

required.
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2 AIMS OF THE STUDY 

The main objectives of this thesis work were to characterize miRNA regulation, miRNA targets 

and tumor metabolism in tumorigenesis. Furthermore, we aimed to evaluate the impact of the 

aberrant miRNAs expression and oncometabolism for prognostic and diagnostic implications in 

clinical and therapeutic applications. More specifically, we aimed to: 

 

Paper I: Characterize the functions and targets of miR-944 in cervical cancer 

 

Paper II: Evaluate and characterize the expression of miRNAs located in the IGF2-H19 locus 

and identify potential miRNA targets in adrenocortical carcinomas 

 

Paper III: Investigate the functional roles of miR-375 regulation of LDHB in MCC cells 

 

Paper IV: Determine the involvement of MCPyV T-antigens in regulation of LDHB expression 

in tumor cell metabolism. 
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3 MATERIALS AND METHODS 

3.1  PATIENT MATERIAL 

Studies in this thesis included materials from three human cancers including cervical, Merkel 

cell and adrenocortical carcinomas. All tumors and their normal counterparts were 

histopathologically verified before they were added to our cohorts. Ethical approvals were 

granted prior to commencement of each study by the ethical committee boards. 

3.1.1 Cervical carcinomas (Paper I) 

Twenty-seven paired frozen cervical tumors and normal cervical specimens were supplied 

from the Gynecologic Oncology Group Tissue Bank (Colomubus, OH) which included 19 

squamous cell carcinoma (SCC); 7 adenocarcinoma (ADC); and 1 adenosquamous cell 

carcinoma (ASC), as listed in Table 3. 

Table 3 – Cervical tumors and normal specimens used in Paper I 

Samples 
Age at diagnosis 

(years) 
Histological subtype 

G013 53 SCC 

G603 48 SCC 

G702 25 SCC 

G026 62 SCC 

G243 30 SCC 

G507 52 SCC 

G601 55 SCC 

G531 49 SCC 

G612 n.a. SCC 

G699 57 SCC 

G623 35 SCC 

G645 70 SCC 

G529 n.a. SCC 

G648 n.a. SCC 

G576 48 SCC 

G850 50 SCC 

G871 47 ASC 

G613 48 SCC 

G652 46 SCC 

G575 n.a. SCC 

G220 n.a. ADC 

G428 38 ADC 

G659 n.a. ADC 

G696 n.a. ADC 

G761 n.a. ADC 

G691 29 ADC 

G547 60 ADC 

n.a. - not available; SCC - squamous cell carcinoma; ASC - 

adenosquamous cell carcinoma; ADC – adenocarcinoma. 
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3.1.2  Adrenocortical carcinomas (Paper II) 

A total of 73 fresh-frozen tumor specimens were obtained from the Karolinska University 

Hospital biobank from patients that were surgically treated for adrenocortical carcinoma 

(ACC) or adrenocortical adenoma (ACA). This study included 43 ACAs, 30 ACCs and 13 

normal adrenal cortices from patients undergoing nephrectomy for reasons other than adrenal 

diseases. The tumors were classified based on the WHO criteria. Clinical details of the 

adrenal tumors are specified in Table 4. 

Table 4 – Adrenocortical adenoma and carcinoma specimens used in Paper II 

Sample 
Histological 

diagnosis 
Gender 

Age 

(years) 

Tumor 

size 

(cm) 

Metastasis 
Follow-up 

months
#
 Outcome 

Ad 1 Adenoma F 38 2.5 No 231 Alive 

Ad 2 Adenoma F 63 6.0 No 195 Dead 

Ad 4 Adenoma F 35 4.0 No 93 Alive 

Ad 5* Adenoma F 42 3.5 No 87 Alive 

Ad 6 Adenoma F 81 2.5 No 23 Alive 

Ad 7 Adenoma M 52 3.2 No 27 Alive 

Ad 10 Adenoma F 80 2.5 No 18 Dead 

Ad 11 Adenoma F 27 4.0 No 39 Alive 

Ad 12 Adenoma F 75 5.0 No 12 Dead 

Ad 13 Adenoma F 40 6.5 No 14 Alive 

Ad 14 Adenoma F 50 2.0 No 258 Alive 

Ad 16* Adenoma F 29 2.0 No 218 Alive 

Ad 17 Adenoma F 79 2.0 No 112 Dead 

Ad 30 Adenoma F 63 5.0 No 216 Alive 

Ad 31 Adenoma M 63 4.0 No 215 Alive 

Ad 32 Adenoma F 42 2.5 No 89 Alive 

Ad 33* Adenoma F 64 4.0 No 163 Alive 

Ad 34* Adenoma F 63 4.0 No 158 Alive 

Ad 35* Adenoma M 66 4.0 No 117 Dead 

Ad 36* Adenoma F 54 4.0 No 107 Alive 

Ad 37 Adenoma F 59 2.5 No 104 Alive 

Ad 40 Adenoma M 46 3.5 No 12 Alive 

Ad 41 Adenoma M 66 5.3 No 29 Alive 

Ad 42 Adenoma M 65 3.5 No 43 Alive 

Ad 43 Adenoma F 50 4.7 No 24 Alive 

Ca 1 Carcinoma F 63 20.0 Yes 6 DOD 

Ca 2* Carcinoma M 78 15.0 No 3 DOD 

Ca 3* Carcinoma F 72 7.0 No 5 Dead 

Ca 4* Carcinoma M 30 10.0 Yes 58 DOD 

Ca 5 Carcinoma M 72 11.0 Yes 162 DOD 

Ca 6* Carcinoma F 40 18.0 No 188 Alive 

Ca 7 Carcinoma F 56 9.0 No 9 Dead 

Ca 8  Carcinoma F 54 15.0 Yes 4 DOD 

Ca 9 Carcinoma M 68 15.0 No 145 Alive 
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Table 4 cont. 

Sample 
Histological 

diagnosis 
Gender 

Age 

(years) 

Tumor 

size 

(cm) 

Metastasis 
Follow-up 

months
#
 Outcome 

Ca 10* Carcinoma M 52 11.0 No 132 Alive 

Ca 11* Carcinoma M 68 12.0 Yes 69 DOD 

Ca 12* Carcinoma F 84 19.0 Yes 29 Dead 

Ca 13 Carcinoma M 64 21.0 Yes 91 Alive 

Ca 14 Carcinoma M 67 19.0 No 65 Dead 

Ca 15 Carcinoma M 77 11.0 Yes 78 Alive 

Ca 18 Carcinoma F 28 21.0 No 53 Alive 

Ca 19 Carcinoma F 61 14.0 No 51 Alive 

Ca 20 Carcinoma M 60 10.0 No 48 Alive 

Ca 22 Carcinoma F 59 10.0 Yes 22 DOD 

Ca 25 Carcinoma M 49 16.0 Yes 2 DOD 

Ca 26 Carcinoma F 68 12.0 Yes 168 Alive 

Ca 27 Carcinoma F 48 10.0 Yes 18 DOD 

Ca 29 Carcinoma F 35 8.0 No 195 Alive 

Ca 30 Carcinoma F 43 6.6 n.a. n.a. n.a. 

Ca 31* Carcinoma F 35 9.0 No 108 Alive 

*Specimens used in the screening series; # Time between surgery and follow-up; F = 

female; M = male; DOD = Dead of disease.    

 

3.1.3  Merkel cell carcinomas (Paper III) 

Fifty-four MCC tumor specimens were collected from Karolinska University Hospital or 

Stockholm South General Hospital between 1986 and 2003. These include 26 formalin-fixed 

paraffin-embedded (FFPE) tumor specimens and 28 fresh-frozen MCC tumors. All MCC 

cases were verified by routine histopathology and immunohistopathology (see Table 5). 

Table 5 –  MCC specimens used in papers III and IV 

Sample 

no.
1
 

M/F Age 

Sample 

analyzed Viral 

status
2
 

Primary tumor   Follow-up 

tumor Type 
Size 

(cm) 

Tumor 

site 
L R Met Time Outcome 

MCCT_2b F 91 L. R. FFPE - 1.5 face yes yes 20 Dead-DOD 

MCCT_3a F 83 P FFPE + 1.5 face no yes 6 Dead-DOD 

MCCT_3b     Met FFPE +             

MCCT_4a M 69 P 

FFPE & 

Frozen + 3.5 elbow no yes 17 Dead-DOD 

MCCT_4b     Met FFPE +             

MCCT_5a F 84 P FFPE + 1 face yes yes 11 Dead-DOD 

MCCT_5b     L. R. FFPE +             

MCCT_6a M 74 P FFPE + 4.5  elbow yes no 113 Dead 

MCCT_6b     L. R. FFPE +             

MCCT_7a F 87 P 

FFPE & 

Frozen + 2.5 face yes yes 13 Dead-DOD 

MCCT_7b     Met FFPE +             
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Table 5 cont. 

Sample 

no.
1
 

M/F Age 

Sample 

analyzed Viral 

status
2
 

Primary tumor 

L R Met 

Follow-up 

tumor type 
Size 

(cm) 

Tumor 

site 
Time Outcome 

MCCT_8 F 85 P FFPE + 3.5  forearm n.a. n.a. n.a. n.a. 

MCCT_9 M 67 P 

FFPE & 

Frozen + 2.3 face no no 17 Dead 

MCCT_10 F 70 P FFPE + n.a. thigh no no 1 Dead-DOD 

MCCT_16a M 62 P FFPE - 3 groin yes yes 5 Dead-DOD 

MCCT_16b     Met Frozen -             

MCCT_18 M 71 P FFPE + 3 

gluteal 

region no no 60 Dead 

MCCT_19 M 76 L. R. 

FFPE & 

Frozen + 6 

 gluteal 

region yes no 9 Dead-DOD 

MCCT_20 F 46 L. R. 

FFPE & 

Frozen + 1 arm yes yes 230 Alive 

MCCT_22 F 63 Met FFPE + 5 

gluteal 

region no yes 222 Alive 

MCCT_23 M 81 Met FFPE - 1 scalp no yes 46 Dead-DOD 

MCCT_24 F 72 Met FFPE - 0.7  face no yes 82 Dead-DOD 

MCCT_26 F 85 Met FFPE - n.a. face no yes 94 Dead 

MCCT_27 F 89 P Frozen + 4 

face 

(chin) no yes 4 Dead-DOD 

MCCT_28 M 94 P Frozen + 5 scalp yes no 17 Dead-DOD 

MCCT_29 M 71 P Frozen + 2.2 temple no yes 36 Alive 

MCCT_30 F 75 P Frozen + 1 arm no no 35 Alive 

MCCT_31 M 83 P Frozen + n.a. 

arm 

(wrist) no no 31 Alive 

MCCT_32 F 87 P Frozen + 3.1 temple yes yes 5 Dead-DOD 

MCCT_33 M 75 L.R. Frozen + 0.9 

face 

(cheek) yes yes 18 Alive 

MCCT_34 F 73 P Frozen + 3.5 leg no yes 12 Alive 

MCCT_35 F 100 P Frozen + n.a. 

face 

(cheek) yes yes 4 Alive 

MCCT_37 F 89 P FFPE + 4.5 chin no yes 5 DOD 

MCCT_39 F 78 P FFPE + 1.5 

right 

lower arm no no 40 Dead 

MCCT_40 F 90 P FFPE - 2.5 

right 

lower arm no no 14 Dead 

MCCT_41 M 94 P FFPE - 2 left chest no no 22 Dead 

MCCT_42 M 76 P FFPE + 3.4 right ear no ? 13 Dead/DOD? 

MCCT_43 M 82 P FFPE + n.a. left thigh no yes 58 Dead/DOD? 

MCCT_45 M 91 P Frozen + 2,3 scalp yes yes 6 DOD 

MCCT_46 F 78 P Frozen + 1,8 face no no 24 Alive 

MCCT_47 F 70 P Frozen   0,2 face yes yes 9 DOD 

MCCT_49 M 76 P Frozen + 1 scalp no yes 21 Alive 

MCCT_50 M 62 P Frozen + 3 back no yes 11 Alive 

MCCT_51 F 66 P  Frozen + 2,5 left arm no no 20 Alive 

MCCT_53a F 92 P Frozen + 4,5 left chest no yes 6 Dead 

MCCT_53b     Met Frozen +             

MCCT_54 F 69 Met Frozen + 2,5 right leg LN yes 94 Alive 
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Table 5 cont. 

MCCT_55 M 82 P Frozen + n.a. 

right 

elbow n.a. n.a. n.a. n.a. 

MCCT_56 F 81 P Frozen + n.a. left cheek n.a. n.a. n.a. n.a. 

MCCT_57 M 72 P Frozen + n.a. right leg n.a. n.a. n.a. n.a. 

MCCT_58 n.a. na. n.a. Frozen + n.a. n.a. n.a. n.a. n.a. n.a. 

MCCT_59 n.a. na. n.a. Frozen - n.a. n.a. n.a. n.a. n.a. n.a. 

MCCT_60 M 71 P Frozen + 1.5x2 arm no no   Alive 

MCCT_61 M 67 P Frozen + 4.5 thigh no no   Alive 

1 = a and b indicate primary and recurrent tumor, respectively, of the same patient.  

2 = MCPyV status determined by PCR of tumor genomic DNA combined with IHC for MCPyV large T-

antigen expression, - = negative; + = positive. 

M/F = gender; F = female; M = male; L.R. = local recurrence; Met  = metastasis; LN = lymph node; Age 

and time measured in years; n.a. = not available; P = Primary tumor; DOD = died of disease.  

 

3.2   ESTABLISHED CANCER CELL LINES 

All cell lines used in this study were authenticated by short tandem repeats profiling (STR) at 

Bio-Synthesis, Inc (Lewisville, TX) or by the National Genomics Infrastructure-Uppsala 

(SciLifeLab, Uppsala University, Sweden) prior to running experiments (Table 6). 

Table 6 – STR profiles of cell lines used for functional studies in this thesis work 

Locus CaSki HeLa 
NCI-

H295R 

MCC 

13 

MCC 

14/2 

MCC 

26 
WaGa MKL-1 MKL-2 

D8S1179 15, 15 12, 13 13 13, 14 10, 14 8, 10 10, 13 10, 10 11, 13 

D21S11 30, 30 27, 28 32.2 30, 31 29, 32.2 
31, 

32.2 
28, 30 30, 30 

31.2, 

31.2 

D7S820 8, 11 8, 12 9, 12 10, 10 8, 10 8, 9 10, 10 8, 11 10, 13 

CSF1PO 10, 10 9, 10 10, 12 12, 12 10, 11 10, 11 12, 12 11, 12 10, 12 

D3S1358 15, 15 15, 18 15, 16 16, 18 16, 16 17, 17 14, 14 16, 16 17, 17 

THO1 7, 7 7, 7 9.3 7, 9.3 6, 9.3 9.3, 9.3 
9.3, 

9.3 
9, 9.3 7, 8 

D13S317 8, 12 
13.3, 

13.3 
13 12, 12 13, 13 13, 14 8, 13 8, 11 12, 13 

D16S539 11, 12 9, 10 11 9, 11 13, 13 11, 13 11, 12 10, 12 10, 12 

D2S1338 21, 21 17, 17 25 19, 20 19, 19 23, 26 20, 23 17, 17 17, 23 

D19S433 15, 16 13, 14 13 15, 15 12, 14 16, 16 14, 16 
14.2, 

15.2 
13.2, 14 

vWA 17, 17 16, 18 17, 18 17, 17 17, 18 16, 18 16, 17 16, 18 16, 17 

TPOX 8, 8 8, 12 8 8, 8 8, 8 8, 8 8, 11 8, 8 8, 11 

D18S51 17, 17 16, 16 17 16, 17 15, 17 15, 18 10, 13 12, 18 14, 17 

AMEL X, X X, X X, X X, X X, X X, X X, Y X, Y X, Y 

D5S818 13, 13 11, 12 12 9, 12 13, 13 12, 12 12, 12 11, 12 12, 14 

FGA 
21, 

23.2 
18, 21 19.2, 24 19, 20 21, 21 24, 25 19, 19 21, 25 19, 26 

3.2.1 Cervical cancer cell lines 

Seven cervical carcinoma cell lines including CaSki, HeLa, SW756, ME-180, SiHa, C4I and 

C33A were purchased from American Type Culture Collection (ATCC, Manassas, VA) and 

cultured in RPMI 1640 (Caski and ME-180) and DMEM (SW756, SiHa, C4I, C33A, HeLa)  
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media. All cell lines were supplemented with 10% FBS and 1% Pen Strep (Gibco, cat# 

15140-122) and kept in a humidified incubator at 37°C in a 5% CO2 atmosphere. 

3.2.2  Adrenocortical carcinoma cell line 

The NCI-H295R ACC cell line was purchased from the American Type Culture Collection 

(ATCC; LGC Standards, Middlesex, UK) and used in Paper II. This cell line was established 

from an invasive metastasizing adrenocortical tumor and was verified to continuously produce 

over 30 steroidal secretions synonymous with cells from the adrenal cortex (Gazdar et al., 

1990). This cell line was cultured in DMEM:F12 (Gibco) supplemented with 2.5 % NuSerum 

growth medium (Corning 355100) and 1% Insulin-Transferrin-Selenium basal supplement 

(Thermo Fisher Scientific) in a humified CO2 incubator maintained at 37°C. 

3.2.3  Merkel cell carcinoma cell lines 

Six MCC cell lines were used in Paper III and four were used in Paper IV. Of these, three 

MCPyV+ cell lines (WaGa, MKL-1, MKL-2) were kindly donated by Dr. J.C. Becker 

(Medical University of Graz, Austria), Dr N.L. Krett (Nortwestern University, IL, USA) and 

Dr. Roland Houben (University Hospital Würzburg, Germany) respectively. The other three 

cell lines are MCPvV- (MCC13, MCC14/2, MCC26) and were purchased from CellBank 

Australia (Westmead, Australia). 

3.3  TRANSFECTIONS 

A transfection is the process of introducing foreign material, generally nucleic acids of 

chemically synthesized or recombinant origin, into a eukaryotic cell. In this thesis two 

transfection methods were used: lipid-based complex transfection and electroporation. Lipid-

based complexes mimic the cell membrane phospholipid bilayer to transport their material in 

a liposome-like manner. The DNA/ RNA of interest are mixed and incubated to from 

cationic-lipid complexes capable of delivering their cargo with minimal toxicity. 

Electroporation is an alterative way to deliver genetic material into cell using electrical pulses 

that allows transfection of primary cultures or cells that are otherwise difficult to transfect. By 

optimizing the number of electrical pulses, duration and power together with the optimal 

solutions can yield higher transfection efficiency. 

3.3.1  RNA mimics and anti-miRs 

miRNA mimics are chemically modified dsRNA molecules that mimic endogenous miRNA 

duplexes when transfected in the cell. One strand is loaded into the RISC complex while the 

other strand is a nonfunctional (miRNA*) strand. miRNA inhibitors (antimiRs) are single-

stranded RNA molecules exhibiting a 2’-O-methyl (2’-MOE)/ 2’-O-methoxy/ 2’-O-

methoxyethyl modification, designed to bind and inhibit endogenously-expressed miRNAs. 

These modifications stabilize the RNA and enhance their binding affinity. Small interfering 

RNAs (siRNAs) are chemical synthesized dsRNAs that can cleave a specific RNA transcript 
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via the RNAi mechanism. All experimental designs included matching negative controls 

containing scrambled RNA oligos with the same chemical modification but do not target any 

known human transcripts.    

In Paper I, HeLa, CaSki and SW756 cells were transfected with miRNA mimics (pre-miR-

944 or pre-miR negative control) or inhibitors (anti-miR-944 or anti-miR negative control) 

using siPORT NeoFX transfection reagent (Applied Biosystems/ Ambion).  

In Paper II, NCI-H295R cells were transfected with mirVana (anti-miR-483-5p, anti-miR-

483-3p or anti-miR negative control), using the Amaxa Nucleofector technology (Lonza). 

In Paper III, miR-375 mimic or negative control was transfected into MCPyV- MCC cell lines 

using Lipofectamine RNAiMAX reagent (Invitrogen) for functional assays. Additionaly two 

siRNA mimics (siLDHB#1 and siLDHB#2) were used to silence LDHB expression in 

MCPyV- cell. 

3.3.2  Plasmids 

Plasmids are small circular dsDNA molecules that occur naturally in prokaryotic cells and 

replicate separately from chromosomal DNA. Plasmids serve as vectors to clone or transfer 

specific gene/s of interest (Table 7). 

Table 7 – Plasmids used in this thesis work 

Plasmid Description Source 

miR-375sp miRNA sponge that inhibits miR-375 function Kumar et al., 2019 

miR-375OE Plasmid expressing miR-375 Kumar et al., 2018 

sTco Plasmid expressing MCPyV sT 
Gift from Drs Y Chang and P 

Moore; Shuda et al., 2011 

LTco Plasmid expressing full-length LT of MCPyV 
#40200, Addgene, Cambridge, 

MA 

LT339 Plasmid expressing truncated LT of MCPyV 
#28193, Addgene, Cambridge, 

MA 

shTA 
Plasmid expressing shRNA targeting exon 1 of 

MCPyV T-antigens 
Xie et al., 2014 

shsTA Plasmid expressing shRNA targeting sT only Kumar et al., 2019 

LDHB-

FLAG 

Plasmid expressing full-length coding sequence of 

LDHB with FLAG-tagged on its carboxyl 

terminus 

#OHu08149D, GenScript, 

Piscataway, NJ 

  

In Papers III and IV two types of plasmids were used: 1) MCPyV T-Ags were cloned in 

pcDNA6 vector to over-express sTco, LTco and LT339 (pcDNA6.MCV.sTco,  

pcDNA6.MCV.LTco, pcDNA6.MCV.LT339 respectively) purchased from Addgene except 

for sTco construct, which was donated by Drs Y. Chang and P. Moore (University of 

Pittsburgh). These plasmids were transfected using Lipofectamine 2000 (Invitrogen). 
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In Paper III, short hairpin RNA (shRNA) vectors were electroporated to silence LT and sT 

(shTA) or sT only (shsTA) in MCPyV+ MCC cell lines, cloned in pcDNA3-U6M2. To 

silence miR-375 expression, miRNA sponge sequences containing five tandem miRNA 

binding sites with a bulged site at miRNA positions 9–12 (to avoid Ago2 cleavage site), were 

cloned into pcDNA3 vector (miR-375sp) and inserted between BamHI and XhoI restriction 

sites. In addition, miR-375-expressing plasmid (miR-375OE) in a pcDNA3 vector was used to 

stably overexpress miR-375 in MCPyV- cells and transfected using Lipofectamine 2000. 

In Paper IV, a plasmid (pcDNA3.1
+
/-LDHB-C-(K)-DYK) expressing the full-length LDHB 

sequence (NM002300.7) with a C-terminal FLAG-tag (DYKDDDDK) was purchased from 

GeneScript (Piscataway, NJ) and transfected using Lipofectamine 2000 (Invitrogen). In 

addition, short hairpin RNAs (shRNA) targeting both LT and sT (shTA) or sT only (shsTA) 

were transfected using the Amaxa Nucleofector.  

3.4  FUNCTIONAL ASSAYS 

Increased proliferative cell growth, migration, invasion and resistance to cell death are among 

the principle mechanisms promoting tumorigenesis. In this thesis, several assays were 

performed to evaluate cell viability, proliferation, apoptosis, migration and invasion. 

3.4.1 Cell growth and proliferation 

Cell proliferation assays can be divided in four catagories: i) Metabolic assays: Cell growth or 

viability is based on the metabolic activity in viable cells that converts tetrazolium salts such 

as WST-1 ((4-(3-(4-iodophenyl)-2-(4nitrophenyl)-2H-5-tetrazolio)-1,3-benzene disulfonate), 

MTT, XTT and MTS into a colored formazan dye. The colored dye is measured 

spectrophotometrically and is proportional to the activity of the mitochondrial succinate-

tetrazolium-reductase system in viable cells. Alternatively, one can use Resazurin redox 

reagent (BioRad). ii) Cell proliferation-markers: Certain antigens are specifically expressed 

in proliferating cells such as Ki-67, proliferating cell nuclear antigen (PCNA), DNA 

Topoisomerase II α and their detection correlates to cell proliferation (Brustmann and Naudé, 

2002). iii) ATP concentration: ATP levels are proportional to cell proliferation and its 

availability is scarce in death or dying cells thus, it can determine cell proliferation status. iv) 

Direct measurement of DNA synthesis: Assays such as 5-Bromo-2’-deoxyuridine (BrdU) or 

Click-iT EdU assays (Molecular Probes/ Life Technologies) measure the incorporation of Edu 

in the cellular DNA and detected on addition of a dye-labeled azide group or antibody. 

Alternatively, Trypan blue exclusion assay can be used. In this thesis work, three different 

approaches were applied to evaluate cell growth and viability, as described below. 

3.4.1.1 Cell viability 

Cell viability was measured by the WST-1 colormetric assay. This is a robust and widely used 

method that has the advantage of being soluble, non-toxic and allows continuous monitoring 

over time. This method was used in Papers I, III and IV.  
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3.4.1.2 Trypan blue exclusion assay 

This assay was applied in Papers I and III to discriminate live from dead/ dying cells on the 

basis of cell membrane integrity by penetrating the degenerating cell membranes of apoptotic 

or necrotic cells. Cells with intact membranes will thus not take up the stain. Dead (or live) 

cells are quantified by a hemocytometer or automated cell counter (TC10, Bio-Rad). This 

method was used as a complement to the WST-1 assay. 

3.4.1.3 The xCELLigence RTCA system 

The xCELLigence system (ACEA BioScience Inc./ Agilent) provides real-time cell analysis 

for cell morphology, proliferation and migration monitoring in a 96 well-plate format. Loss 

and/or gain-of-functions experiments were performed to characterize miR-944 inhibition in 

CaSki cells. The instrument utilizes electrical impedance measured by a set of gold 

microelectrodes embedded at the bottom of every well. When a conductive solution (buffer or 

culture media) are present, an electric potential (22mV) allows current to flow. However, the 

presence of adherent cell increases resistance in solution depending on cell shape, size and 

number. This system can monitor cell behavior over a period of time and does not require any 

labels or dyes that might otherwise affect the results. This system was used in Paper I to 

characterize the effect of miR-944 inhibition on cell proliferation in CaSki cells. 

3.4.2 Cell apoptosis 

Apoptosis is a highly controlled suicidal cell death that occurs as a result of DNA damage and 

inability to maintain cell homeostasis. However, DNA mutations and genetic instability can 

lead to an abnormal state where mechanisms intended to keep the cell in-check become 

ineffective allowing the cell to gain the ability to evade apoptosis and become cancerous. 

Different assays have been developed including Annexin V assay, caspase-3 assay, TUNEL 

(Terminal deoxynucleotidyl transferase dUTP Nick End Labeling), mitochondrial membrane 

potential (JC-1 dye) and PARP cleavage. Three assays were used in this thesis work. 

3.4.2.1 Annexin V assay 

This is the gold-standard method for detection of the early apoptotic process. In a healthy cell, 

phosphatidylserine (PS) is located on inside of the cell membrane. In early apoptosis however, 

PS is translocated “flipped” to the outer side of the cell membrane and thus exposed on the 

cell surface. Annexin V has a high binding-affinity to PS, making detection possible when 

labeled with a fluorophores, such as FITC or other conjugates. When combined with 

Propidium Iodide (PI) or 7-AAD, the assay can distinguish early from late apoptosis or 

necrotic cells. This assay was used in Papers I and IV.   

3.4.2.2 Caspase-3 colorimetric assay 

A simple and easy method taking advantage of the activation of ICE-family of caspases that 

activate apoptosis in mammilan cells. Caspase-3 activity cleaves the DEVD motif in the 
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added p-nitroaniline substrate (DEVD-pNA). If caspases are present, the labeled chromophore 

p-nitroaniline (pNA) is released, allowing spectrophometric detection at 400-405 nm 

(Biovision, Mountain View, CA). This method can distinguish necrotic from apoptotic cells 

and was used in Paper I. 

3.4.2.3 PARP cleavage 

PARP-1 is a nuclear poly (ADP-ribose) polymerase involved in DNA repair following 

environmental stress. Upon apoptotic signaling, the PARP-1 (116 kDa) is cleaved by caspase-

3 into two smaller fragments (~89 and ~24 kDa), abolishing its DNA repair function. Thus, 

detection of cleaved PARP-1 is commonly used as a marker of the late apoptosis. Cleaved 

PARP-1 was detected by Western blot in Paper III. 

3.4.3 Migration and invasion assays 

3.4.3.1 Wound healing assay 

Adherent monolayer cells are seeded in six-well plates and incubated in a cell culture 

incubator until confluent. A scratch (or wound) is introduced in the middle of the well. The 

wound closure (or gap) were photographically recorded and compared at different time points, 

starting at 0 hour. The relative migration rate can be determined at specific time-points in 

experiment and control cells. Using 0 hour time-point as comparson, the relative migration 

rate is determined. A cell cycle blocker (e.g. hydroxyurea), is often used to distinguish cell 

migration from cell proliferation. This method was used in Papers I and III.      

3.4.3.2 Transwell cell migration and invasion assays 

In the migration assay, PET (polyethylene terephthalate) inserts containing a membrane with 

pores (8.0 µm) were equilibrated in cell culture medium supplemented with 20% FBS. 

Transfected cells were seeded on the upper side of the insert membrane and incubated for 24h 

(HeLa and SW756) or 48h (CaSki). For the invasion assay, the PET inserts were filled with a 

layer of buffered Matrigel Matrix basement membrane (BD Bioscience/ Corning) and pre-

incubated at 37°C. A chemo-attractant (20% FBS) was added in the lower chamber, whereas 

cells are seeded in serum-free medium on top of the matrix basement membrane (Figure 5). 

After a 48h incubation, cells remaining on top of the membrane or matrix gel were removed 

whereas the migrated/ invaded cells were fixed and stained in 0.5% crystal violet and the dye-

uptake is quantified spectrophotometrically at 570nm (630nm background). Migration or 

invasion was normalized to the respective negative controls. This method was applied in 

Paper I. 

3.4.3.3  The xCELLigence system for cell migration analysis 

This system (described in section 3.4.1.3) was also utilized for cell migration using a special 

CIM-plate. This plate is essentially similar to the transwell assay, consisting of an upper and a 

lower chamber. The upper chamber has a micropore PET membrane at the bottom of the 
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chamber, and gold microelectrode sensors are attached at the bottom side of the membrane. 

The sensors generate signals when cells migrate through the membrane. This assay was used 

in Paper I. 

 

 

 

 

 

3.4.4 Cell cycle analysis 

Propidium Iodide (PI) or 7-AAD (7-amino-actinomycin D) are dyes with a high binding 

affinity to nucleic acids. Combined with RNase A treatment, it allows exclusive DNA staining 

for DNA studies, cell death or cell cycle analysis. The dye is detected at 650 nm in red side of 

the visible spectrum upon excitation at 488 nm using a flow cytometer. Fluorescence intensity 

is proportional to the DNA content in the cell, thus it can segregate cells in G1/G0 phases 

from cells in the S, G2 or M phases of the cell cycle. This analysis was performed in Papers I 

and III. 

3.5 RNA ISOLATION AND DETECTION    

All total RNA extractions were performed using TRIzol reagent (Invitrogen), or mirVana 

miRNA Isolation kit (Ambion Inc/ Life Technologies Corp.) used as specified by the 

manufacturers. RNA concentrations were measured by NanoDrop ND-1000 

spectrophotometer (Thermo Scientific) or Qubit 2.0 fluorometer (Thermo Fisher Scientific) 

for small RNA libraries. 

3.5.1 Gene expression assay by real-time PCR 

The TaqMan assay (Applied Biosystems) is a robust platform for quantifying the expression 

level of mRNAs with high specificity and sensitivity. The assay utilizes probes labeled with a 

5’ fluorescent reporter (FAM-dye, reference ROX-dye) and a 3’ non-fluoresecent quencher. 

In the presence of the target sequence, the probe and primers anneal to the DNA template. 

The probe is degraded by the polymerase 3’->5’ exonuclease activity on encountering the  

DNA polymerase, freeing the fluorophore from quencher proximity. Fluorescent intensity 

Figure 5 – Transwell migration and invasion assays: To test for migratory and invasion assays 

cervical cancer cells were seeded in PET insert (upper chamber) containing a porous membrane that 

allows cell to pass through. For invasion assay, a layer of basement gel matrix was included right 

above the membrane. A chemoattractant was added in the lower chamber and the experiment was 

incubated for 48h. On harvest time, invaded cells were stained and dye intensity was measured with a 

plate reader. 
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increases with every successive cycle and is reported in an amplification plot as ΔRn against 

cycle number. Results can be reported as an absolute amount target or comparative between 

samples and controls. These assays are normalized to stable endogenous mRNA transcripts 

that are abundant enough, such as genes supporting the basic cellular functions. Genes 

frequently used as  endogenous control include GAPDH, 18S, ACTB and B2M. This assay was 

used quantify TP63 (Paper I), IGF2 and H19 (Paper II) and LDHB (Papers III and IV). An 

alternative method to TaqMan assay is SYBR green, a fluorescent dye that intercalates 

dsDNA. Fluorescent signal is proportional to the amount of dsDNA present however, not 

specific to target. This method was not used in this thesis work. 

3.5.2 TaqMan miRNA assay 

The TaqMan miRNA assay involves two steps: i) cDNA synthesis and ii) real-time target 

amplification. For reverse transcription a stem-looped primer is used to lengthen the small 

RNA and allow reverse transcription to start. The cDNA is then amplified and detected using 

the specific assay probe and primers as explained in section 3.5.1. The assay is normalized to 

endogenous small ncRNAs such as RNU6B, RNU48, RNU44, U47 or any specific miRNA 

that is stable and independently expressed in the experimental conditions. This assay was 

applied to quantify miR-944 (Paper I), miR-483-3p, miR-483-5p and miR-675 (Paper II) and 

miR-375 (Paper III). 

3.6 IDENTITIFICATION OF MIRNA TARGETS 

As aforementioned, numerous methods have been developed to detect RNA-protein and 

RNA-RNA binding sites (section 1.3.2). In this thesis, PAR-CLIP (PhotoActivatable 

Ribonucleotide-enhanced CrossLinking and ImmunoPrecipitation) was employed to identify 

miRNA targets in-vitro. 

3.6.1 PAR-CLIP  

A photoactivatable nucleoside (4SU or 6SG) is added to cells in culture. These nucleotides 

incorporate into mRNA transcripts, which are then crosslinked at 365 nm prior to harvesting. 

This allows identification of targets with high precision due to the presence of T → C or G → 

A transitions. In addition, the nucleoside analog allows a lower energy level UV cross-linking 

with high efficiency. Cell lysates are treated with RNase T1 and immunopurified by Ago2 

conjugated beads subjected to RNase T1 treatment. After treatment with Proteinase K and 

total RNA extraction, short RNA sequences are obtained, then cloned and sequenced. This 

methodology was used in Paper I. 

3.6.1.1 Small RNA cloning 

Short RNAs recovered from the PAR-CLIP experiments were dephosphorylated and ligated 

to pre-adenylated 3’-adaptor oligonucleotides using T4 RNA ligase 2. The ligated product 

was purified on 12% denaturing polyacrylamide gel (PAGE) and incubated with T4 
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polynucleotide kinase and a second 5’-adaptor was ligated using T4 RNA ligase. Reaction 

was heat inactivated and the ligated products were purified and converted to cDNA and PCR-

amplified. The PCR products were gel purified (Nusieve gel) to obtain a 125bp sequencing 

libraries that were sequenced on the Illumina (HiSeq2000) sequencing platform.     

3.6.1.2 Bioinformatic analysis 

FastaQ Illumina sequencing files were collapsed to FASTA files and aligned to the UCSC 

human genome (hg19) using Bowtie (v 2.0). Further analysis using the PARalyzer v1.1 tool 

(http://www.genome.duke.edu/labs/ohler/research/PARalyzer) was performed using the 

default settings. Reads aligning to tRNA, rRNA and repeat elements (LTR, LINE, SINE) 

were discarded. Overlapping reads were extracted (1 nt or more) and normalized (read/ total 

read count) The remaining reads were clustered and annotated based on the UCSC human 

genome (hg19). Identified targets in our libraries were compared to targets predicted by 

TargetScan 6.2 (http://www.targetscan.org). 

3.7 VERIFICATION OF MIRNA TARGETS 

3.7.1 Western blot analysis 

This is a fundamental method to confirm protein expression levels in cultured cells and tissue 

specimens. The tissue or cell specimens are lysed in RIPA (Radio immuno-precipitation 

assay), Nonidet-P40 (NP40) or other buffers and supplemented with additives on ice to 

minimize sample degradation. Lysed samples are loaded and separated on denaturing PAGE 

gel and then transferred to nitrocellulose (or PVDF) membrane. An incubation in blocking 

buffer prevents nonspecific interactions. The membrane is then incubated with the antibody 

against the protein of interest and an endogenous control. A short secondary labeled antibody 

incubation (against the primary antibody’s host) allows detection by different methods 

(radioactive, chemiluminescent, fluorescent or colorimetric). This method requires multiple 

washing steps after every antibody addition. Signal can be visualized using light or x-ray-

sensitive films or CCD-based imaging instruments. Enzyme-labeled antibodies require the 

addition of a substrate prior to visualization. Fluorescent-labeled antibodies can be visualized 

directly in instruments equipped with the appropriate excitation and emission filters. This 

method was used to analyze the targets of miR-944 (Paper I), miR-483-5p (Paper II) and miR-

375 (Paper III). In addition to the assessment of miRNA targets, Western blotting was also 

applied to detect cleaved PARP in Paper III and to verify the transfection efficiency of 

MCPyV T-antigens or shRNA in Paper IV. 

3.7.2 Luciferase reporter assay 

This method was employed to verify direct interaction between miRNA and target mRNA. 

Generally a fragment of the target gene is cloned downstream in a vector containing the 

firefly luciferase gene. If the miRNA interacts with the targets site, the transcript is silenced 

by the RNAi machinery, thus disrupting the firefly luciferase protein expression. However if 

http://www.genome.duke.edu/labs/ohler/research/PARalyzer
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the miRNA do not target the gene, the luciferase protein is freely expressed and detected as a 

luminous signal. As a negative control, a similar reporter with mutations in the target sites 

interacting with the seed region of miRNA is used.  

To verify direct targets of miR-944 (Paper I), the pmirGLO dual-luciferase miRNA target 

expression  vector (Promega Corp. Madison, WI) was used. The wild-type and mutated miR-

944 binding sites occurring in the 3’UTR of the presumed target transcripts (HECW2 or 

S100PBP) were cloned in tandem downstream of the luc2 reporter gene within the PmeI and 

XbaI restriction sites and propagated clones were confirmed by sequencing. The reporter 

constructs were co-transfected with pre-miR-944 mimic or pre-miR-Negative control into 

HeLa cells in a 96-well plate format. At 24h post-transfection, cells were lysed followed by 

firefly luciferase and Renilla luciferase activity measurements (Luciferase Activity assay) in a 

microplate luminometer. The firefly luciferase to Renilla luciferase activity ratios were 

calculated and normalized to the luciferase activity of the empty  pmirGLO vector control.  

3.8 METABOLIC PROFILING ASSAYS 

To assess metabolic function, the Mito Stress Test and Glycolysis Stress Test kits (Aglilent 

Technologies Inc.) were used on the Seahorse XF platform (Agilent). 

3.8.1 The mitochondrial stress assay 

This method allows direct measurement of the cellular oxygen consumption rate (OCR) in 

real-time. The assay measures several parameters including the basal respiration, ATP 

production/ proton leak, maximal respiration, spare respiration capacity and non-

mitochondrial respiration. Time-delayed sequential injections of the compounds challenge the 

mitochondrial state and oxygen consumption is measured at each stage. Prior to the 

experiment it is important that cell culture medium is changed to the XF Base medium 

(Agilent) and the plate is incubated in a non-CO2 incubator.  

The function of respiratory complexes is regulated by addition of: 1) Oligomycin, an ATP 

synthase inhibitor, suppressing mitochondrial respiration and OCR; 2) FCCP (carbonyl 

cyanide-4 (trifluoromethoxy) phenylhydrazone), uncouples oxygen consumption and ATP 

synthesis and disrupts the mitochondrial membrane potential; 3) Antimycin A, a complex III 

(Q-cytochrome c oxidoreductase) inhibitor; 4) Rotenone, a complex I (NADH-Q 

oxidoreductase) inhibitor. Both Rotenone and Antimycin A have a negative effect on the 

OCR. After the basal cell respiration is determined, Oligomycin injection allows ATP 

production (or proton leak) to be measured. FCCP [Carbonyl cyanide-4(trifluoromethoxy) 

phenylhydrazone] is then injected to measure the maximal respiration. FCCP disrupts 

membrane potential allowing electrons to flow uninterrupted, inducing the maximum oxygen 

consumption by complex IV. This allows the spare respiratory capacity to be calculated. In 

the final injection, Antimycin A and Rotenone halt mitochondrial respiration completely, 

permitting measurement of the non-mitochondrial respiration. A mitochondrial stress profile 
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(Figure 6A) is then generated using the Wave software (Agilent Technologies). This method 

was used in Paper II. 

Alternatively OCR can also be measured using the oxygen-sensitive fluorescence dye, such as 

the extracellular oxygen consumption reagent (Abcam, Cambridge, UK). The dye is normally 

quenched by oxygen. During respiration, depletion of oxygen increases fluorescence signal of 

the dye due to loss of quenching. Unlike the Seahorse platform, this method requires the 

addition of mineral oil to block atmospheric oxygen from dissolving into the media. This 

method was used in Paper IV. 

 

 

 

3.8.2 Glycolysis Stress Test 

This method employs the direct measurement of the extracellular acidification rate (ECAR) to 

assess the cellular glycolytic function using the Seahorse XF platform. Glycolytic flux 

parameters gathered reveal the glycolysis, glycolytic capacity, glycolytic reserve and non-

glycolytic acidification. Again, compounds are injected to stimulate the glycolytic capacity of 

the cells. These include glucose, oligomycin and 2-deoxyglucose (2-DG). In the first stage, 

the non-glycolytic ECAR is determined in cells incubated in a medium without glucose or 

pyruvate. In the first injection, cells are stimulated by saturating the cell medium with glucose 

to determine the ECAR under basal conditions. The second injection, introduces oligomycin 

to inhibit mitochondrial ATP production, revealing the maximal cellular glycolytic capacity 

and glycolytic reserve calculation. The final injection releases 2-DG, a glycolysis inhibitor 

that competes for glucose hexokinase binding. Addition of 2-DG serves as a control to 

confirm that the ECAR observed is glycolysis-dependent. Data collected is used to generate a 

glycolytic stress profile (Figure 6B). This method was used in Paper II. 

In Paper IV, ECAR was determined by the Glycolysis assay (Abcam), which employs a pH-

sensitive reagent that increases its signal when acidification is increased. The ECAR can be 

calculated by the change in fluorescent signal over time.  
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Figure 6 - An example of the Seahorse metabolic assays results: A) Mitochondrial stress assay 

profile and B) Glycolysis Stress test profile. Sequential compound injections and the key parameters 

of mitochondrial and glycolytic functions are illustrated. 
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3.9 STATISTICAL ANALYSIS 

All statistical analyses were performed using Statistica 7.0 or 10.0 (StatSoft, Tulsa, OK), IBM 

SPSS Statistics 24.0 (IBM Corp., Armonk, NY) or MS Office Excel 2007. Paired Student’s t-

test (Papers I, III and IV) or Wilcoxon matched pairs signed rank test (Paper II) was used to 

compare between two experimental conditions and one-way ANOVA with post-hoc Tukey 

test was used to compare three conditions or more. For clinical samples, Mann-Whitney U-

test was used to assess the differences between two sample groups. Spearman’s rank order 

correlation was to determine expression correlations between two genes. All analysis were 2-

tailed, and p-values below 0.05 were considered significant. 
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4 RESULTS & DISCUSSION 

4.1 FUNCTIONS AND TARGETS OF MIR-944 IN CERVICAL CANCER (PAPER I) 

We, and others, have previously identified a subset of differentially expressed miRNAs in 

cervical cancer as compared to normal cervices (Lui et al., 2007; Wang et al., 2008; Lee et al., 

2008; Witten et al., 2010). miR-944 is one of the differentially expressed miRNAs that is more 

abundant in cervical cancer (Witten et al., 2010).  

miR-944 was first identified in our previous study using small RNA cloning (Lui et al., 2007). 

This miRNA is located in chromosomal region 3q28, which is frequently amplified in cervical 

cancer (Heselmeyer et al., 1996 & 1997). In addition, miR-944 has been demonstrated as a 

predictive marker for early diagnosis of cervical cancer (Liu et al., 2018b) and as a poor 

prognostic marker in advanced cervical cancer (Park et al., 2019). Besides cervical cancer, miR-

944 is also associated with tumor development and progression of several tumor types, 

including melanoma (Stark et al., 2010), colorectal (Christensen et al., 2013) and bladder 

cancers (Nordentoft et al., 2012). Despite these findings, its function and targets remained 

unknown. The main focus of this study was to characterize miR-944 function and identify its 

targets that could be responsible for cervical carcinogenesis. 

4.1.1 Characterize miR-944 function in cervical cancer cell lines 

We assessed the effect of miR-944 regulation on cell growth, apoptosis, cell cycle, migration 

and invasion in cervical cancer cell lines. Our results showed that miR-944 enhances cell 

proliferation in both HeLa and CaSki cells. miR-944 also promotes migration and invasion in 

HeLa, but not CaSki, cells. No effect on apoptosis and cell cycle were observed in both cell 

lines. One of the explanations for the lack of migration and invasion effect in CaSki cells could 

due to the higher endogenous miR-944 in CaSki cells, which could not be completely 

suppressed by the anti-miR-944 transfection, and the residual miR-944 expression was 

sufficient to retain the phenotypes. Another explanation could be due to different histological 

subtypes between HeLa (adenocarcinoma) and CaSki (squamous cell carcinoma). In summary, 

our data shows that miR-944 enhances cell proliferation, migration and invasion, but not 

apoptosis. Further studies are warranted to address the clinical impact and functional roles of 

miR-944 in these two histological subtypes. 

4.1.2 Identification and verification of miR-944 targets 

The PAR-CLIP methodology was used for identification of miR-944 targets. The PAR-CLIP 

sequencing data revealed a list of 58 candidate targets, of which 19 were also predicted targets 

by TargetScan 6.2. Two of these targets (HECW2 and S100PBP) have conserved miR-944 

binding sites, therefore these two genes were chosen for further validation. Wild-type and 

mutated (four mismatches in the seed region) sequences, putative to the miR-944 binding sites 

in the 3’UTR of HECW2 and S100PBP were inserted into the pmirGLO dual-luciferase 

expression vector. Co-transfection of wild-type constructs of HECW2 and S100PBP with pre-
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miR-944 resulted in significantly decreased luciferase activties when compared with the pre-

miR negative control. The seed mutants rescued the suppression of luciferase activities by miR-

944. Additionally, the expressions of HECW2 and S100PBP were decreased following miR-944 

overexpression whereas, their expressions were increased upon miR-944 inhibition. Altogether, 

our results supported that HECW2 and S100PBP are bona fide direct targets of miR-944 in 

human cervical cancer cells. 

The main findings in this paper demonstrate that: 

 miR-944 is an oncomir that promotes cell proliferation, migration and invasion in human 

cervical cancer cells. 

 PAR-CLIP sequencing data identified 58 potential miR-944 targets of which  two 

HECW2 and S100PBP are validated as direct targets. 

4.2 ABERRANT IGF2-H19 LOCUS EXPRESSIONS AND MITOCHONDRIAL 
DYSFUNCTION IN ADRENOCORTICAL CARCINOMA (PAPER II)  

The 11p15.5 chromosomal region harbors IGF2, a frequently over-expressed gene in 

adrenocortical carcinoma (ACC) that may result due to loss of imprinting (Giordano et al., 

2009; Laurell et al., 2009; de Reynies et al., 2009). In addition, its overexpression is associated 

with malignant transformation and tumor growth. H19 is a gene located downstream of IGF2 

that gives rise to an untranslated transcript often under-expressed in ACC (Liu et al., 1995; Gao 

et al., 2002). The IGF2-H19 locus gives rise to three miRNAs: miR-483-3p and miR-483-5p 

from intron 7 of IGF2, and miR-675 from exon 1 of H19. Both miR-483-3p and miR-483-5p are 

overexpressed in several cancer types, including ACC (Veronese et al., 2010; Doghman et al., 

2010; Özata et al., 2011; Soon et al., 2009). miR-483-3p was shown to promote cell 

proliferation and inhibit apoptosis by targeting the p53 upregulated modulator of apoptosis 

(PUMA) (Veronese et al., 2010; Özata et al., 2011), while miR-483-5p was demonstrated to 

promote cell invasion through regulation of the N-Myc downstream-regulated gene 2 (NDRG2) 

(Agosta et al., 2018). On the other hand, miR-675 is under-expressed in ACC compared to their 

non-malignant counterparts (Schmitz et al., 2011) and its functions in ACC are as yet unclear. 

The main focus of this study was to comprehensively characterize the host transcripts and 

miRNAs originating from the IGF2-H19 locus in adrenocortical tumors and to identify potential 

targets of these miRNAs by comparing the proteomic data of these tumors. 

4.2.1 Expression of the IGF2-H19 locus in ACC  

Using RT-qPCR, we quantified the expression levels of IGF2, H19, miR-483-3p, miR-483-5p 

and miR-675 in 30 ACC, 43 ACA and 9 normal adrenals. Our results showed higher 

expressions of miR-483-3p, miR-483-5p and their host mRNA IGF2 in ACC than ACA or 

normal adrenals. On the other hand, H19 and miR-675 were down-regulated in ACC compared 

to ACA or normal adrenals. Both miR-483 showed a proportional expression to the IGF2 

transcript whereas miR-675 expression corresponded to H19. Consistently higher IGF2 and 
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lower H19 levels were also observed in 77 ACC compared to 128 adrenals using the Cancer 

Genome Atlas Program (TCGA) and Genotype-Tissue Expression (GTEx) data sets. These 

results indicate that the IGF2-H19 locus is consistently deregulated in ACC, and the host 

transcripts and miRNAs of this locus may play important functional roles in ACC development. 

4.2.2 Potential targets of miR-483 and miR-675 

To identify potential targets of these miRNAs, we compared the miRNA expressions to the 

proteomic profiles previously published by Kjellin et al. (2014). The analysis revealed seven 

proteins for miR-483-3p, 101 for miR-483-5p and eleven for miR-675 that were inversely 

correlated with their miRNA levels. Among these, several were also predicted as targets by 

TargetScan 7.1. Notably, we observed that 46 out of 101 proteins inversely correlated with miR-

483-5p were differentially expressed between ACA and ACC. The gene signature of these 46 

proteins could also differentiate between ACC and normal adrenals, using the TCGA and GTEx 

data sets. Gene ontology analysis of this signature showed a significant enrichment of genes 

related to mitochondrial function, in particular the mitochondrial respiratory complex I. 

Interestingly, one of these genes, NDUFC1, was also predicted as a target of miR-483-5p by 

TargetScan 7.1. These results prompted us to further characterize mitochondrial metabolism in 

ACC and the involvement of miR-483-5p in regulation of NDUFC1 and cell metabolism.    

4.2.3 Mitochondrial respiratory complexes in ACC 

Using Western blot analysis we assessed nine adrenal glands, 10 ACA and 10 ACC tumors for 

the protein expression of mitochondrial respiratory complexes (ATP5A [complex V]; UQCRC2 

[complex III]; MTCO1 [complex IV]; SDHB [complex II]; NDUFB8 [complex I]). Our results 

show lower expression of complexes I and IV in ACC, compared to ACA (P = 0.009 and P = 

0.002 respectively). On the other hand, expression of complexes II and III was higher in ACC 

compared to their normal counterparts. 

Furthermore, the role of complex I in ACC was assessed by measuring the NDUFC1 protein 

expression in a larger cohort consisting of 13 adrenal glands; 25 ACA and 29 ACC. Western 

blot analysis showed a lower NDUFC1 expression in ACC compared to ACA (P = 0.043) and 

normal glands (P = 0.046).  In addition, we also observed an increase of NDUFC1 protein level 

upon inhibition of miR-483-5p, indicating a potential role of this miRNA in mitochondrial 

respiration. 

4.2.4 Role of miR-483 in metabolism of ACC cells 

Using the Seahorse system, the oxygen consumption (OCR) and extracellular acidification 

(ECAR) rates were measured upon miR-483-3p and miR-483-5p inhibition. The OCR profiling 

showed a decreased basal cell respiration, maximum respiration and ATP production, only in 

miR-483-5p down-regulated cells. However, inhibition of both miR-483-3p and miR-483-5p 

showed a reduced glycolysis as indicated in the ECAR profile. Beside glycolysis, the high 
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endogenous miR-483-5p expression in ACC cells regulates mitochondrial respiration, implying 

a major role in energy metabolism.  

The main findings in this paper demonstrate that: 

 IGF2 and its host miRNAs are overexpressed in ACC but inversely correlated to H19 

and miR-675.   

 Proteomic and Western blot analysis point out protein subunits of the respiratory system 

as targets for miR-483, in particular respiratory complexes I and IV in ACC. 

 Metabolic profiling reveals that miR-483-5p plays a major role in ACC cell metabolism.  

4.3 THE ROLE OF MIR-375 AND LDHB IN MERKEL CELL CARCINOMA (PAPER 
III) 

miR-375 is highly abundant in MCC (Renwick et al., 2013), and differentially expressed 

between MCPyV+ and MCPyV- MCCs (Xie et al., 2014).  This miRNA has been shown to 

repress multiple targets, including phosphoinositide-dependent kinase 1 (PDK1), Yes-

associated protein (YAP), Janus kinase 2 (JAK2), 14-3-3 protein zeta (14-3-3ζ) and LDHB 

(Ding et al., 2010; Liu et al., 2010; Tsukamoto et al., 2010; Nakagawa et al., 2011).  LDHB is 

an enzyme catalyzing lactate to pyruvate conversion that can both enhance or suppress tumor 

growth (Brisson et al., 2016; Liu et al., 2018a; McCleland et al., 2012 & 2013) and was detected 

in MCC tumors (Shao et al., 2013) however, its function remains unknown. Here, we 

determined whether miR-375 regulates LDHB and the functional role of this regulation in 

MCC. 

4.3.1 LDHB expression is regulated by miR-375 

First, we evaluated the expression levels of miR-375 and LDHB in MCC cell lines and clinical 

samples. Our results showed that miR-375 was highly expressed but LDHB expression was 

relatively lower in MCPyV+ MCC cell lines, and vice versa in MCPyV- MCC cell lines. 

Concordantly, an inverse correlation was observed between miR-375 and LDHB in 54 MCC 

samples. To determine whether miR-375 could regulate LDHB, we over-expressed miR-375 in 

three MCPyV- MCC cell lines and inhibited miR-375 expression in two MCPyV+ MCC cell 

lines. In line with their inverse relationship, overexpression of miR-375 decreased LDHB 

whereas its inhibition increased LDHB at both RNA and protein levels, supporting LDHB as a 

target of miR-375 in MCC. 

4.3.2 Dual roles of miR-375 regulation in MCC cells 

The differential expression of miR-375 between MCPyV+ and MCPyV- MCC tumors and cell 

lines led us to speculate that miR-375 might have distinct roles between the two tumor types. 

We therefore investigated the functional roles of miR-375 in both MCPyV+ and MCPyV- MCC 

cell lines. Our data showed that overexpression of miR-375 in MCPyV- MCC cells reduced cell 

viability and wound healing capacity, induced cell cycle arrest and triggered cell apoptosis. In 
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contrast, inhibition of miR-375 decreased cell viability and induced apoptosis in MCPyV+ 

MCC cells. Taken together, these results suggest that miR-375 has a prominent but distinct role 

in cell growth and metabolism in both tumor subtypes.  

4.3.3 Opposite effect of LDHB in MCPyV+ and MCPyV- MCC cells 

To determine if LDHB contributes to the cell growth suppression by miR-375 inhibition in 

MCPyV+ MCC cells, we suppressed miR-375 together with and without silencing of LDHB. 

We observed a diminished cell viability in miR-375 only silenced cells and a reversed 

phenotype in co-silenced MCPyV+ MCC cells. Our results showed that silencing of LDHB 

could rescue cell growth suppression by miR-375 inhibition, indicating its tumor suppressor role 

in MCPyV+ MCC cells. On the other hand, when silencing LDHB in MCVPyV- cells, we 

observed a reduced cell growth and induced apoptosis i.e. a phenocopy effect of miR-375 

overexpression. These findings suggest an oncogenic role of LDHB in MCPyV- MCC cells. 

    The main findings in this paper demonstrate that: 

 LDHB is a target of miR-375 in MCC. 

 Overexpression of miR-375 in MCPyV- MCC cells reduces cell growth and migration, 

and induces cell cycle arrest and apoptosis.  

 Inhibition of miR-375 reduces cell growth and induces apoptosis in MCPyV+ MCC 

cells. 

 Silencing LDHB in MCVPyV- cells, reduces cell growth and induces apoptosis. 

However,  miR-375 inhibition rescues cell growth suppression. 

4.4 VIRAL ONCOGENES EXPLOIT LDHB FOR METABOLIC CONTROL (PAPER 
IV) 

A recent report from our group showed that MCPyV T-antigens can regulate miR-375 (Kumar 

et al., 2019). In Paper III, we showed the distinct roles of miR-375 regulation of LDHB in 

MCPyV+ and MCPyV- MCC cell lines, which could be due to different cellular metabolisms 

between these two tumor subtypes. This prompted us to investigate the relationship of LDHB 

and metabolisms between MCPyV+ and MCPyV- cells. The LDH enzymes catalyze the 

interconversion of pyruvate and lactate and level of LDHB may dictate the metabolic 

phenotype. In virus-induced tumor cells, glucose to lactate conversion is generally driven by 

aerobic glycolysis (Warburg et al., 1927; Berrios et al., 2016; Yu et al., 2018). Here we sought 

out to determine whether MCPyV T-antigens can regulate LDHB and the involvement of 

MCPyV T-antigens in energy metabolism. 

4.4.1 MCPyV T-antigens control glycolysis through LDHB expression 

To determine whether MCPyV T-antigens could regulate LDHB, we transfected shTA 

(silencing both LT and sT) or shsTA (sT only) in MCPyV+ MCC cell lines. Silencing of both 

LT and sT or sT only, increased LDHB expression at both mRNA and protein levels. 



 

48 

Consistently, ectopic expression of sT and truncated LT (LT339) reduced LDHB mRNA and 

protein levels, however the full-length LT (LTco) had no effect. Given that LDHB expression is 

low in MCPyV+ cells, we expected these cells to be glycolytic by shifting the equilibrium to the 

lactate. Silencing of both viral antigens (shTA) or sTAg only (shsTA) in WaGa and MKL-1 cell 

lines showed an increase in LDHB expression and a decreased glycolysis rate. We then 

ectoptically expressed MCPyV antigens (sTco; LTco; LT339) in two MCPyV- cell lines. Cells 

overexpressing the small antigen (sTco) and truncated large antigen (LT339) showed increased 

glycolysis and decreased LDHB protein expression but not in the wild-type LT (LTco) 

expressing cells. Taken together, these results demonstrate that the MCPyV sT and LT 

oncoproteins down-regulate LDHB expressions and promote glycolysis.     

4.4.2 Impact of ectoptic LDHB  and MCPyV  T-Ags co-expression on cell 
growth and apoptosis 

Next, we tested whether LDHB function is susceptible to MCPyV T-antigens expression. 

MCPyV- cell lines were transfected with MCPyV T-antigens together with and without LDHB 

expression. Cells expressing sT and LT339 oncoproteins showed increased cell growth. 

However, cells co-expressing LDHB neutralized the pro-growth effects of sT and LT339 

oncoproteins. Besides, overexpression of LDHB reduced the proportion of apoptotic cells in 

MCC14/2 cells in a similar way to sT or truncated LT. However, co-transfection of LDHB and 

sT or truncated LT increased the number of apoptotic cells compared to the cells transfected 

with sT or truncated LT alone. Together, our findings indicate that suppression of LDHB is 

important for the maintenance of cell growth and viability in MCPyV+ cells. 

4.4.3 Distinctive metabolic mechanisms for cell growth in MCPyV+ and 
MCPyV- MCC cells  

The differential LDHB expression between MCPyV+ and MCPyV- MCC cell lines and the 

central role of LDHB in metabolism prompted us to investigate whether the growth of these two 

cell types is dependent on different energy metabolism. We inhibited glycolysis, using oxamic 

acid, or oxidative phosphorylation, with antimycin A, in MCPyV+ and MCPyV- MCC cell 

lines. Our results showed that inhibition of glycolysis reduced cell growth only in MCPyV+ cell 

lines, whereas in MCPyV- cells, cell growth was inhibited by blocking oxidative 

phosphorylation. These results suggest a different metabolic dependence between MCPyV+ and 

MCPyV- MCC cells. While the virus-positive cells are dependent on glycolysis for cell growth, 

the virus-negative MCC cells are reliant on mitochondrial respiration. 

The main findings in this paper demonstrate that: 

 MCPyV oncoproteins (sT and truncated LT) suppress LDHB expression and increase 

glycolysis rate. 

 LDHB expression counteracts the pro cell-growth effects of MCPyV oncoproteins. 
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 Distinctive metabolic activities are present in virus-positive and virus-negative MCC 

cells. MCPyV+ MCC cells are dependent on glycolysis, whereas MCPyV- MCC cells 

rely on the activity of the oxidative phosphorylation for cell growth and viability. 
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5 CONCLUSIVE REMARKS 

Through this thesis work we have gained deeper understanding of the biological funtions and 

identification of novel targets of several miRNAs in various tumor types. In particular, the 

function and targets of miR-944 were unknown prior to this study.  

With these findings presented here, we can conclude that: 

 miR-944 promotes cell proliferation, migration and invasion, suggesting an oncogenic  

role in cervical cancer. This miRNA may have potential clinical applications as a 

complementary tool for the diagnosis and prognosis of cervical cancer. 

 

 Applying the PAR-CLIP methodology demonstrates the potential of this method in 

identifying miRNA targets. 

 

 Altered expression of IGF2-H19 locus is consistently observed in ACC, indicating the 

importance of this locus in the development of ACC. 

 

 Deregulation of the mitochondrial respiratory complexes is common in ACC, which 

may lead to dysfunctional oxidative phosphorylation.  

 

 High expression of miR-483-5p is required for maintaining the high metabolic state of 

ACC cells, and highlights this miRNA as a potential therapeutic target in ACC patients. 

 

 Depending on the viral status, miR-375 regulation of LDHB plays dual roles in MCC, 

suggesting distinct cellular metabolisms between MCPyV+ and MCPyV- MCC. 

 

 Dual roles of LDHB is dependent on MCPyV T-antigens. In MCPyV+ MCC cells  or 

cells expressing MCPyV oncoproteins, suppression of LDHB is required to maintain 

cell growth and viability. This is likely due to the glycolysis-dependent growth in 

MCPyV+ cells. 

 

 Targeting tumor metabolism can be an effective treatment strategy for MCC patients. 

However, different strategies should be applied depending on the viral status. 
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