

 奈良先端科学技術⼤学院⼤学 学術リポジトリ

Nara Institute of Science and Technology Academic Repository: naistar

Title
Toward Sustainable Communities with a Community Currency – A

Study in Car Sharing

Author(s)

Keitaro Nakasai

Yoshiharu Ikutani

Daiki Takata

Hideaki Hata

Kenichi Matsumoto

Citation

 2019 20th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD)

Issue Date 2019-12-19

Resource Version Author

Rights

© 2019 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/SNPD.2019.8935650

URL http://hdl.handle.net/10061/13962

Toward Sustainable Communities with a
Community Currency – A Study in Car Sharing

Keitaro Nakasai∗, Yoshiharu Ikutani∗, Daiki Takata∗, Hideaki Hata∗, Kenichi Matsumoto∗
∗Nara Institute of Science and Technology, Japan

{nakasai.keitaro.nc8, ikutani.yoshiharu.ip8, takata.daiki.ta3, hata, matumoto}@is.naist.jp

Abstract—We consider Free/libre and open source software
(FLOSS) as a common pool resource (CPR). In economics, CPRs
are frequently associated with markets, and it is reported that
without appropriate agreement, monitoring and sanction, the
resource will be overused. Toward building sustainable com-
munities in FLOSS development, we first study our car-sharing
experiment at NAIST, as a common pool resource management.
We report the details of the car uses in our experiment, and
describe the design of our new system to make better CPR
management.

I. INTRODUCTION

Free/libre and open source software (FLOSS) is character-
ized as a privately produced public good and a common pool
resource (non-exclusive) [1]. Based on various internal and
external motivations, developers engage in FLOSS [2], and
FLOSS projects have a tremendous impact on our daily lives.

However, because of the nature of free and open source,
and the lack of the view of the whole picture, there are several
problems. (i) Broken library dependencies. Even though third-
party library reuse is common practice, updating libraries is
not as common. From the study of library migration in more
than 4,600 GitHub software projects, Kula et al. reported
that 81.5% of the studied software used outdated libraries [3].
From the survey, they also found that 69% of the answered
developers claimed to be unaware of their vulnerable depen-
dencies. (ii) License violations. From the study of the Android
application market F-Droid, Mlouki et al. found license
violations by developers in 17 out of 857 applications [4].
They also reported that many files are not licensed in their
first release. (iii) Ad hoc code reuses. Copying software
components and then maintaining them by a new owner is one
type of code reuse, which is known as clone-and-own [5], [6].
In software product line engineering, the usage of this clone-
and-own approach is discouraged, since it makes maintaining
multiple product lines difficult. If changes are made in the
original or copied components, they are not easily propagated.
This is because of the ad hoc nature of component reusing.
Developers working in different product lines do not know
when clone-and-own operations occurred and where the cloned
components are located. Although there are disadvantages, the
clone-and-own approach is adopted in FLOSS projects as well
as industrial software product lines due to its benefits, such as
simplicity, availability, and independence of developers [5].

“The Tragedy of the Commons” is a well-known theory
describing that, if all individuals maximize their gains from

non-renewable resources, these resources will diminish [7].
Are the abovmentioned problems in FLOSS the results of the
tragedy of the commons, which cannot be avoided? In this
context, we consider human resources or effort as resources.
It is known that such a dismal conclusion is not always true.
It would be true only if the individuals using the commons
are norm-free maximizers of immediate gains, who will not
cooperate to overcome the common dilemmas they face [8].

Regarding common pool resources (CPR), field and exper-
imental studies provided support for the proposition: without
some form of coordination or organization to enable indi-
viduals to agree upon, monitor, and sanction the patterns of
appropriation by individuals from a CPR, the resource will
be overused [9]. Potential causes of several problems found
in FLOSS development can be the lack of appropriate coor-
dination and organization mechanisms or systems in FLOSS
ecosystems.

Based on the extensive evidence from field studies, Ostrom
and Walker clarified that CPRs are frequently associated with
markets [9]. They also summarized design principles illus-
trated by long-enduring CPR institutions, such as, 1) clearly
defined boundaries, 2) congruence between appropriation and
provision rules and local conditions, 3) collective choice ar-
rangements, 4) monitoring, 5) graduated sanctions, 6) conflict
resolution mechanisms, and 7) minimal recognition of rights
to organize [9].

There are some studies related to monetary systems or
markets in FLOSS development. A number of companies and
FLOSS projects rely on external parties to perform the security
assessment of their software for reward called bug bounty
program. It is reported that there are non-project-specific
bug bounty hunters and they are different from traditional
contributors who work on specific projects [10]. Nakasai et al.
studied the impact of budges donors will get and reported that
monetary contributions have impact on software development
processes [11]. Although monetary systems are known to work
in specific aspects in software development, currently there
is no community currency working in the whole aspects of
software development.

We are interested in building sustainable FLOSS com-
munities as sustainable CPRs, with a community currency.
However, FLOSS development communities are too hard to be
experimental fields at our early stage, because of their complex
internal and external systems and environments. Hence, we
will first try an experiment with car sharing as an alternative

30

60

90

120

150

180

210

240

2

4

6

8

10

2017−9 2017−12 2018−3 2018−6 2018−9 2018−12 2019−3

us

es

users

0

Fig. 1. The numbers of car uses (bar) and users (line) in months.

CPR, since we have started our car-sharing experiment at
NAIST [12].

II. CAR SHARING AT NAIST

As it is known that common pool resources (CPRs) are
frequently associated with markets [9], we study a community
currency within a CPR. As a field of a CPR, we study our car-
sharing experiment at NAIST [12].

In this car-sharing experiment, there are two electric cars
(Mitsubishi i-MiEV) and two stations at NAIST and a near
station (Gakken Nara-Tomigaoka Station), in which chargers
exist. The two stations are in a walkable distance. Only
the registered users can use cars by reserving a car in the
predetermined time with their points, which can be considered
to be a currency. In the current car-sharing setting, no specific
mechanism to coordinate, monitor, and sanction the patterns
of appropriation by users. According to the above-mentioned
proposition [9], the overusing of the cars can be expected.

In this study, we analyze the records of our experiment
during September 2017 to March 2019. Although we have
approximately 20 registered users, some of them have left
NAIST as well as the experiment. Figure 1 presents the
number of car uses as a bar chart and the number of users
as a line chart, per month. After the early phase and car
maintenance period (no use), there had been around eight
users and more than 60 uses in a month. Figure 2 shows the
distribution of using time for one use. We found that short
time uses of 30 minutes and one hour are the majorities in all
uses.

Figure 3 illustrates car uses in different time slots in a
week. We first observe that car uses decrease in weekends
compared with weekday uses. Although the number of car uses
in midnight (00:00-04:00) is smaller, cars had been used in
most time slots. Figure 4 presents the distributions of starting
times for different car directions. We see that the direction
from NAIST to NAIST is the majority of uses. Especially in
the time slot 16:00-20:00 there are many uses from NAIST,

0

20

40

60

80

100

120

0 1 2 3 4 5 6
hour

Fig. 2. The distribution of using time for one use.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

Mon Tue Wed Thu Fri Sat Sun

time
00:00−04:00
04:00−08:00
08:00−12:00
12:00−16:00
16:00−20:00
20:00−00:00

Fig. 3. Car uses in different time slots for seven days.

and many uses in 08:00-12:00 from the station. We can infer
that there are typical uses from the station in the morning and
from the NAIST in the evening.

Figure 5 is a chord diagram representing the volume of car
uses from departing parking and time slots (right side) and
arriving parking and time slots (left side). We see many uses
(then bars are wide) (i) from the station to NAIST in 08:00-
12:00, (ii) from NAIST to the station in 16:00-20:00, and (iii)
from NAIST in 16:00-20:00 to NAIST in 20:00-24:00.

Figure 6 presents statuses of car reservations. More than
90% of reservations had been successfully executed. We think
this is because of the small number of users (around eight
as seen in Figure 1). Although the number is not large, there
are some reservations that had not been executed. Figure 7 is
a chord diagram representing those failed reservations. Two
chord diagrams of succeeded and failed reservations look
similar, which means conflicts of reservations hinder efficient

0

10

20

30

40

50

60

4 6 8 10 12 14 16 18 20 22 0 2
Time

direction
NAIST to NAIST
NAIST to Station
Station to NAIST
Station to Station

Fig. 4. The distributions of starting times for different car directions.

Fig. 5. Chord diagram of succeeded car uses. Right side is departure time
slots and left side is arrival time slots. N stands for NAIST and S stands for
the station. Orange bars represent car uses arriving at NAIST and blue bars
represent car uses arriving at the station.

NG (no car)

NG (other)

OK

0 100 200 300 400

33 (6.8%)

14 (2.9%)

441 (90.4%)

Fig. 6. Statuses of car reservations. OK for succeeded car uses, NG because
there is no car, and NG because of other reasons.

Fig. 7. Chord diagram of reserved but not used reservations. Right side is
departure time slots and left side is arrival time slots. N stands for NAIST
and S stands for the station. Orange bars represent car uses arriving at NAIST
and blue bars represent car uses arriving at the station.

car uses.
Although there is no specific mechanism to coordinate,

monitor, and sanction the patterns of appropriation by users,
we think most car reservations executed effectively. Since we
limit the number of users for the current preliminary exper-
iment, cars are more underused than overused. However, as
seen in Figure 2, some users appropriate cars for longer time,
and as seen in Figure 6, some users cannot use cars, which
may be caused by not efficient coordination. Note that we did
not know when users gave up reservations although they would
like to use cars. Considering such unknown intentions, there
can be much more insufficient car uses. If we increase the

Fig. 8. Overview of our new car-sharing system.

number of users for our further experiment, it is expected that
more failure reservations because of the overuses will increase.

III. BLOCKCHAIN-BASED SYSTEM

Currently we are planning to build a new car-sharing system
to support “some form of coordination or organization to
enable individuals to agree upon, monitor, and sanction the
patterns of appropriation by individuals from a CPR”. We
intend to make a decentralized system instead of a centralized
system in order to enable participants manage the system.
To this aim, we are building a blockchain-based system. In
this section, we briefly introduce some key concepts and the
overview of our system design.

A. Blockchain

A blockchain is a chronologically irreversible distributed
ledger that records history of transactions between nodes in a
community. Blockchain was originally proposed as a solution
to the double-spending problem of electronic payments by
Satoshi Nakamoto in 2008 [13].

To elucidate the characteristics of blockchain, we can com-
pare it with a traditional client-server model: (i) each node
behaves as a predefined roll, client or server, (ii) all requests
from clients are executed through a server, (iii) all history of
transactions is stored only in a server. In contrast, a blockchain
is based a peer-to-peer (P2P) model, which has the different
characteristics: (i) every node is equivalent to each other and
have a fair authority, (ii) every transaction is directly executed

between two peers, (iii) all history of transactions is stored in
a distributed ledger that all nodes share.

B. Smart Contracts
Nick Szabo introduced the concept of a smart contract as a

computerized transaction protocol that executes the terms of a
contract [14]. Within the blockchain context, smart contracts
are scripts stored on the blockchain [15]. By addressing a
transaction, we can trigger a smart contract. It then executes
independently and automatically in a prescribed manner on
every node in the blockchain network. Smart contracts op-
erate as autonomous actors, whose behaviors are completely
predictable.

The most prominent framework for smart contracts is
considered to be Ethereum [16], a blockchain platform that
remotely executes software on a distributed computer system
called the Ethereum Virtual Machine. Ethereum smart con-
tracts generally serve four purposes [17].

• Maintain a data store. For example, simulating a currency
and recording membership in a particular organization.

• Manage an ongoing contract or relationship between
multiple users. One example of this is a contract that
automatically pays a bounty to whoever submits a valid
solution to some mathematical problem

• Resend incoming messages to some desired destination
only if certain conditions are met. This is called a
forwarding contract.

• Provide functions to other contracts like a software li-
brary.

Fig. 9. A prototype of the interface of expressing a car demand.

C. Distributed Autonomous Organizations

Based on smart contracts, there is a concept of “decentral-
ized autonomous organizations” (DAOs) [15]. The organiza-
tion members follow rules written in smart contracts, and those
rules can be modified based on the voting of members. With
our concept of global systems, all participants can be regarded
as members of a DAO. Everyone, including smart agents,
share information, follow rules and manage rules, based on
autonomous and reliable mechanisms.

D. Overview of a New System

Figure 8 presents the design overview of our new car-
sharing system. When a user express a requirement of a car
use to a bridge server (1), it broadcasts its requirement to each
car manager server (2). If a car can satisfy the requirement,
its car manager server will create a smart contract on the
Ethereum blockchain (3). After the user agree the contract
(4), s/he can use the car with the condition described in the
contract. Performed contracts can be publicly visible.

With this system, individual users can agree upon the
predetermined car usages and monitor other car uses. Instead
of enabling sanction to appropriation by individuals, we plan

to impose extra fees for nuisance car uses, such as longer uses
and not considerate car returns. These features and mechanism
can mitigate the overuses of cars as common pool resources.

Figure 9 shows the prototype of the interface of expressing
a car demand. Each user has its Ethereum address, which
will be recorded in agreed smart contracts. Users hold their
Ethereum tokes, which is prepared as the community currency
of this car sharing. In the further study, we plan to empirically
study the impact of the community currency to learn findings
toward diverting this car-sharing currency system to software
development ecosystems.

IV. CONCLUSION

This paper discusses the problem of community manage-
ment from common pool resource management. We report
several statistics of car uses in our car-sharing experiment as
CPR management. Without preferable agreement, monitoring
and sanction in the current setting, the results indicate the
issue of overuses of the common pool resources. By taking
the findings in economics into account, we are building a
blockchain-based CPR management system.

ACKNOWLEDGMENT

This work has been supported by JSPS KAKENHI (Grant
Number 16H05857 and 17H00731).

REFERENCES

[1] S. O’Mahony, “Guarding the commons: how community managed
software projects protect their work,” Research Policy, vol. 32, no. 7,
pp. 1179 – 1198, 2003, open Source Software Development.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0048733303000489

[2] J. Coelho, M. T. Valente, L. L. Silva, and A. Hora, “Why we
engage in floss: Answers from core developers,” in Proceedings
of the 11th International Workshop on Cooperative and Human
Aspects of Software Engineering, ser. CHASE ’18. New York,
NY, USA: ACM, 2018, pp. 114–121. [Online]. Available: http:
//doi.acm.org/10.1145/3195836.3195848

[3] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” Empirical Software
Engineering, May 2017. [Online]. Available: https://doi.org/10.1007/
s10664-017-9521-5

[4] O. Mlouki, F. Khomh, and G. Antoniol, “On the detection of licenses
violations in the android ecosystem,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, March 2016, pp. 382–392.

[5] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker,
and K. Czarnecki, “An exploratory study of cloning in industrial
software product lines,” in Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering, ser. CSMR
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 25–34.
[Online]. Available: http://dx.doi.org/10.1109/CSMR.2013.13

[6] T. Ishio, Y. Sakaguchi, K. Ito, and K. Inoue, “Source file set
search for clone-and-own reuse analysis,” in Proceedings of the 14th
International Conference on Mining Software Repositories, ser. MSR
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 257–268. [Online].
Available: https://doi.org/10.1109/MSR.2017.19

[7] G. Hardin, “The tragedy of the commons,” Science, vol. 162, no. 3859,
pp. 1243–1248, 1968. [Online]. Available: https://science.sciencemag.
org/content/162/3859/1243

[8] E. Ostrom, “Coping with tragedies of the commons,” Annual Review of
Political Science, vol. 2, no. 1, pp. 493–535, 1999.

[9] E. Ostrom and J. Walker, Neither markets nor states: Linking transfor-
mation processes in collective action arenas. Cambridge University
Press, 1996, p. 3572.

[10] H. Hata, M. Guo, and M. A. Babar, “Understanding the heterogeneity
of contributors in bug bounty programs,” in Proceedings of the
11th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’17. Piscataway, NJ,
USA: IEEE Press, 2017, pp. 223–228. [Online]. Available: https:
//doi.org/10.1109/ESEM.2017.34

[11] K. Nakasai, H. Hata, and K. Matsumoto, “Are donation badges appeal-
ing?: A case study of developer responses to eclipse bug reports,” IEEE
Software, vol. 36, no. 3, pp. 22–27, May 2019.

[12] Y. Arakawa, K. Yasumoto, K. Matsumoto, H. Hata, H. Suwa, A. Ihara,
and M. Fujimoto, “Project is3: Incentive-based intelligent intervention
for smart and sustainable society,” in Proceedings of 5th IIAI Interna-
tional Congress on Advanced Applied Informatics (IIAI-AAI), July 2016,
pp. 215–218.

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[14] N. Szabo, “Smart contracts,” http://www.fon.hum.uva.nl/rob/Courses/

InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.
best.vwh.net/smart.contracts.html, 1994, [Online; accessed Oct-2017].

[15] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[16] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts sok,” in Proceedings of the 6th International
Conference on Principles of Security and Trust - Volume 10204. New
York, NY, USA: Springer-Verlag New York, Inc., 2017, pp. 164–186.
[Online]. Available: https://doi.org/10.1007/978-3-662-54455-6 8

[17] ethereum/wiki, “Ethereum development tutorial,” https://github.com/
ethereum/wiki/wiki/Ethereum-Development-Tutorial, 2014–2017, [On-
line; accessed Oct-2017].

