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Abstract 

The logistic and confined exponential curves represent growth over time in various 

contexts such as learning and technology transfer. Logistic growth operates as a 

contagion process in a population of interest, while the confined exponential curve 

represents the diffusion of an external process on a system, such as the transfer of 

information through communication channels. Prior work (e.g., Grimm & Ram, 2009) 

has shown that such nonlinear curves can be estimated using structural equation modeling 

(SEM) software, allowing model comparison. As an alternative to binary choice between 

such models, this paper shows how a hybrid model representing a weighted combination 

of the two models may be specified. In order to assess whether the hybrid model can be 

successfully estimated using SEM software and conditions under which it can be 

successfully differentiated from the stand-alone logistic and confined exponential 

alternatives, Monte Carlo simulations varying the number of measurement occasions (5, 

10, and 15), internal consistency (𝛼	= .5, .7, and .8), and sample size (N = 1,000, 500, and 

300) were conducted. Convergence failures appeared appreciable only when the 

estimated hybrid models were the special cases of logistic or confined exponential 

curves. The hybrid model was successfully preferred over the stand-alone models when 

10 or 15 measurement occasions are employed and when internal consistency is moderate 

(𝛼	= .7 or .8) across all sample sizes but not when only five measurement occasions are 

used or when internal consistency is low (𝛼	= .5). Implications for the application of the 

hybrid model to learning, growth, and psychopathology are discussed. 
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Hybrid Logistic and Confined Exponential Growth Models: 

Estimation using SEM Software 

The study of growth over time, or growth curve analysis, has long been an object 

of scientific inquiry. Early records from the Babylonians suggest a scientific interest in 

growth curves as early as 2,000 BCE, mostly for calculating interest and payments 

(Webb, 2000).  More recently, growth curve analysis has become popular in a variety of 

fields, such as models of psychology (e.g., Meredith & Tisak, 1990), technology transfer 

(e.g., Sharif & Ramanathan, 1981), bioenergetics (e.g., Brody, 1945; Wishart, 1938), and 

learning (e.g., Thurstone & Ackerson, 1929). 

Early mathematical models for growth curve modeling of longitudinal data began 

in the mid-twentieth century. Bollen (2007) provides an extensive discussion of many of 

the early models described here. For example, Wishart (1938) measured growth weights 

of pigs during the first 16 weeks of life and fit the data using orthogonal polynomials.  

Box (1950) used differences between successive measurement values, a rough measure of 

instantaneous change, to analyze growth and wear curves.  Tucker (1958) and Rao (1958) 

presented a growth factor model based on analysis of sums of squares and cross-products 

(SSCP) often referred to as “Tuckerized growth curves.”  Potthoff and Roy (1964) 

compared growth curves using multivariate analysis of variance (MANOVA). More 

recently, growth curve models using an exploratory structural equation modeling 

approach (ESEM, Grimm, Steele, Ram, & Nesselroade, 2013) and multilevel growth 

models (Grimm, Ram, & Estabrook, 2016) have been proposed. Within the fields of 

biometry and bioenergetics, surveys of numerous parametric growth curve models 
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(Panik, 2014) and growth and diffusion models (Banks, 2013) have also addressed the 

dynamics of growth and change over time. 

Assessment of the correct dimensionality and patterning of growth over time is a 

central problem in the evaluation and comparison of mathematical models of growth and 

change. Wood, Steinley, and Jackson (2015) proposed a three-step procedure for the 

“right-sizing” of structural models for longitudinal data whereby the dimensionality, 

parsimony, and mean level effects in the data were considered sequentially. Such 

sequential consideration of models often involves consideration of psychometric and 

factor analytic models which have been proposed for the characterization of growth and 

change as discussed below. 

Within parametric growth curve models, research has focused on the 

consideration of the parameterization of an individual model. As discussed later in this 

paper, however, such discrete choices may not be necessary if a more general model is 

considered which contains multiple discrete models as special cases. This general idea 

has been highlighted in some presentations of growth models. Panik (2014), for example, 

notes that Schnute and Gompertz curves contain other sigmoid growth curves as special 

cases when selected parameters of the model assume particular canonical values. This 

paper presents a model in which two commonly used models, the logistic and confined 

exponential models, are considered as special cases of a more general model in which 

components of both growth models are combined. Before proceeding, however, a brief 

introduction of the logistic and confined exponential curves and their applications is 

necessary. 
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Logistic Model 

 The logistic distribution was initially developed by Verhulst (1838) to express the 

relationship between population growth as a function of the current population size and 

available resources in Belgium. It is defined by the following equation (which will be 

explored in further detail in the subsequent sections): 

𝑁$ =
&∗

()*+,-.
   ,                    (1) 

where:  

𝑘 = (𝑁∗ 𝑁1)⁄ − 1			.                 (2) 

Ni above represents the population size at time i, 𝑁∗ the carrying capacity of the model (a 

horizontal asymptotic upper value of 𝑁$), and 𝑎 the growth coefficient which represents 

how quickly 𝑁$ approaches 𝑁∗. When the likelihood function is calculated based on this 

equation, 𝑁1 then represents the expected value of 𝑁$ at 𝑡 = 0. Graphically, the logistic 

curve is characterized by slow initial growth, rapid growth in the middle, and then slower 

growth eventually reaching a plateau. The inflection point of the logistic curve is exactly 

in the middle, where the rate of growth changes from increasing to decreasing, or vice 

versa as shown in Figure 1. The expected value of N at the inflection point is defined by 

the following equation: 

𝑁$:;<+=> =
&∗
?

   .                (3) 
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Figure 1. Example of the logistic curve over a thirty-year period. The asymptotic 𝑁∗ 

value of 100 displayed as a dashed line. The inflection point of 50 shown as a dot. 

 Applications of the logistic model. The logistic model has seen wide application 

in psychology and related social sciences, especially within the context of logistic 

regression, in which dichotomous or ordered categorical dependent variables are modeled 

as a criterion. Because disease states are often viewed as dichotomies, the logistic 

distribution has been widely used in areas of epidemiology such as studies of familial 

disease (Bonney, 1986). 

The logistic model has had a wide application to a variety of other contexts as 

well. In addition to its uses for modeling the growth of human populations (Verhulst, 

1838; Pearl & Reed, 1920; Schultz, 1930; and Oliver, 1982), the logistic distribution has 

been used to model the growth of yeast (Schultz, 1930), as well as agricultural production 

(Schultz, 1930; Oliver 1964). In item response theory (IRT), the logistic equation is used 

in various models, such as the Rasch or 1PL (one parameter logistic), 2PL, 3PL, and the 
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less common 4PL. The logistic equation also forms the basis of Luce’s (1959) beta 

response-strength model in which the improvement in performance induced by an event 

is proportional to the product of the improvement still possible and the amount already 

achieved. Additionally, the logistic distribution has been used to model the diffusion of 

new products in markets with risk-sensitive consumers (Oren & Schwartz, 1988). 
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Confined Exponential Model 

The second distribution that will be considered in this paper is the confined 

exponential. It is defined by the following equation: 

𝑁$ = 𝑁∗ − (𝑁∗ − 𝑁1)𝑒AB∗>   .               (4) 

The confined exponential equation is similar to the logistic equation in that 𝑁∗ represents 

the carrying capacity of the model (a horizontal asymptotic upper value of 𝑁$), and 𝑁1 is 

the expected value of N when 𝑡 = 0. In this equation however, 𝑎∗ represents the growth 

coefficient. Unlike the logistic curve, the confined exponential curve is characterized by 

large initial growth followed by progressively smaller growth as it reaches the asymptote. 

Because of this, the confined exponential curve has no inflection point (see Figure 2).  

 
Figure 2. Example of the confined exponential curve over a thirty-year period. The 

asymptotic 𝑁∗ value of 100 displayed as dashed line. 

Applications of the confined exponential model. As with logistic growth, the 

confined exponential curve has also seen a wide variety of applications. It has been used 
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to model various phenomena in the social sciences, such as the diffusion of information 

through different communication channels (e.g., Bartholomew, 1981; Ralston, 1983). The 

confined exponential distribution has also been useful in mass and heat transfer 

applications as discussed by Kreith (1958) and Bird, Stewart, and Lightfoot (1961).  

In contrast to the logistic model underlying the beta response-strength model 

proposed by Luce (1959), Bush and Mosteller (1955) proposed a linear-operator model 

under which improvement in performance induced by an event is proportional to the 

amount of improvement still possible (i.e., a confined exponential process.). In biology, 

this distribution has been used to model tree growth (Valentine, 1985) and the effects of 

fertilizers on crop growth (Batschelet, 1979). 
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Logistic Model Versus Confined Exponential Model 

In addition to there being several applications of these two models, it has often 

happened that these two particular models have been set in opposition to each other. For 

example, the earlier mentioned learning models contrast with each other. This 

relationship also holds in the literature discussing the diffusion of technology and 

innovation (Bartholomew, 1981; Haynes, Mahajan, & White, 1977; Lekvall & Wahlbin, 

1973; Ralston, 1983; Sharif & Ramanathan, 1981) in which the logistic and confined 

exponential curves are thought to represent fundamentally different underlying transfer 

mechanisms. The logistic growth curve is thought to represent a dynamic of internal 

contagion (Lekvall & Wahlbin, 1973) as occurs, for example, when some farmers in a 

community are early adopters of some technology (such as the use of a new wind turbine) 

who are then imitated by more risk adverse neighbors. The confined exponential growth 

curve, on the other hand, is appropriate when change in behavior occurs due to forces 

external to the population (Lekvall & Wahlbin, 1973) undergoing innovation as would 

occur in our earlier example if adoption of a new wind turbine were solely a function of 

the amount of external radio advertising targeted to the farming community (Banks, 

2013). The idea of internal contagion versus external influence could apply to 

psychological phenomenon as well. For example, the progression of psychological 

disorders could follow a logistic growth pattern if, for example, one psychopathology 

symptom has a contagious confluence on other symptoms. By contrast, a confined 

exponential growth pattern would occur if external stressors (an event, substance, etc.) 

cause a cumulative increase in psychopathology. 
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To date, comparison of candidate growth models involves the choice between 

discrete alternatives (e.g., logistic growth vs. confined exponential growth). However, 

choosing between discrete alternatives may not be ideal if the growth process is actually a 

combination of the discrete alternatives. Investigation of such a possibility makes a 

binary choice between models unnecessary and permits the specification of a third 

alternative in which components of these two processes are weighted. Such an approach 

has the added benefit of identifying intermediary models that contain aspects of both 

models as discussed below (see Figure 3). 
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Hybrid Model 

We now present such a hybrid model which contains both the individual logistic 

and confined exponential curves as special cases. Although informally introduced by 

Brody (1945), a more formal presentation of the model was reintroduced by Banks 

(2013). This model will then be used as the basis for a structural model of the hybrid 

model. The hybrid curve is defined by the following equation: 

𝑁$ = 𝑁∗
(A(CB∗ B⁄ )+,(-D-∗).

()C+,(-D-∗).
                   (5) 

where: 

𝑚 =
FG∗GH

A(I

FG∗GH
-∗
- )(I

                                        (6) 

with: 

𝑤 = 𝑎 (𝑎 + 𝑎∗)⁄    .                (7) 

The notation for the hybrid model is the same as the previous models such that, 𝑁∗ 

represents the carrying capacity of the model, 𝑁1 is the starting value of 𝑁$, and 𝑎 and 𝑎∗ 

are both growth coefficients. In Eq. 7, 𝑤 is not an estimated parameter but rather a weight 

between the two growth coefficients which reflects how closely the model is to either the 

logistic or confined exponential models. This weight allows for the logistic and confined 

exponential curves to exist as special cases if 𝑎 or 𝑎∗ are equal to zero.  

This model is particularly interesting to individuals interested in growth models 

because it includes the logistic and confined exponential growth curves as special cases 

but also allows assessment of intermediary models in which, for example, the curve can 

be 50% logistic and 50% confined exponential (see Figure 3, w = 0.5). The added benefit 

of this model, however, is that it also permits the researcher to entertain the possibility 
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that the growth process under investigation is actually an amalgam of the mathematical 

forms of the logistic and confined exponential curves. 

 
Figure 3. Exemplar curves for the hybrid model over a thirty-year period for incremental 

values of 𝑤 between 0 and 1. The asymptotic 𝑁∗ value of 100 displayed as dashed line. 

Inflection points are shown as dots on the growth curves. 

Applications of the hybrid model. This model has previously been used for 

various types of diffusion involving external and internal influences, such as innovation 

diffusion (Haynes, Mahajan, & White, 1977; Lekvall & Wahlbin, 1973; Sharif & 

Ramanathan, 1981) and the diffusion of news and rumors (Bartholomew, 1981), as well 

as the spread of epidemics (Bartholomew, 1981). However, this model has not been 

estimated using SEM (structural equation modeling) software. 
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Model Equations 

In this section, the logistic and confined exponential differential equations will be 

presented. The hybrid model will then be created by combining those differential 

equations and integrating the result. An extended discussion of this derivation is 

presented in Banks (2013). 

To begin, the logistic and confined exponential models are presented by first 

introducing their respective differential (dimension-free) equations. These equations are 

then integrated to produce the curves as functions of time. In similar fashion, the 

differential equations of the logistic and confined exponential models are then used to 

create the differential equation for the hybrid model which is then integrated to produce 

the hybrid curve as a function of time.  

 Logistic model. The logistic model has the following differential equation: 

L&
L>
= 𝑎𝑁 − 𝑏𝑁?		,	                   (8) 

where a is the growth coefficient and b represents the crowding coefficient. Banks (2013) 

shows that the solution to this is the following equation, 

𝑁$ = O (
&∗
+ F (

&H
− (

&∗
I 𝑒AB>P

A(
               (10) 

which yields the following form of the logistic model: 

𝑁$ = 𝑁∗[1 + F
&∗
&H
− 1I 𝑒AB>]A(					.                       (11) 

In this equation, the growth coefficient, a, is assumed to be an unknown but 

positive constant. Accordingly, as time, t, increases, the second term in the denominator 

approaches zero, and the value of 𝑁$ approaches 𝑁∗. Because of this, 𝑁∗ is the asymptotic 

value of 𝑁$ for large values of t. 𝑁1 is the expected value of N when 𝑡 = 0. 
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 To simplify Eq. 11, we will rewrite it as: 

𝑁$ =
&∗

()*+,-.
				,              (12) 

where:  

𝑘 = (𝑁∗ 𝑁1)⁄ − 1			.               (13) 

 Confined exponential model. The confined exponential model has the following 

differential equation: 

L&
L>
= 𝑎∗(𝑁∗ − 𝑁$)			,              (14) 

in which 𝑎∗ is a growth coefficient and 𝑁∗ is the carrying capacity. For now, 𝑎∗ and 𝑁∗ 

are considered to be unknown but estimable constants. At the initial condition, 𝑁(0) =

𝑁1, the solution becomes: 

𝑁$ = 𝑁∗ − (𝑁∗ − 𝑁1)𝑒AB∗>			,             (15) 

which is labeled as the confined exponential equation. 

 Hybrid model. To create the hybrid model, the differential equations of the 

confined exponential and logistic are combined as follows: 

L&
L>
= 𝑎∗(𝑁∗ − 𝑁$) + 𝑎𝑁$ F1 −

&S
&∗
I			.            (16) 

To write it in dimensionless form, we set 𝑈 = 𝑁$ 𝑁∗⁄ , 𝑇 = 𝑎𝑡 , and 𝑤 = 𝑎 (𝑎 + 𝑎∗)⁄ . If 

𝑤 = 0 (i.e., 𝑎 = 0), Eq. 16 reduces to the confined exponential; if 𝑤 = 1 (i.e., 𝑎∗ = 0), it 

becomes the logistic. Because of this, 𝑤 acts as a measure of how logistic the model is 

(with higher values indicating more logistic). Substituting in these values yields: 

LV
L>
= F(AW

W
+ 𝑈I (1 − 𝑈)			.             (17) 

 This dimensionless equation relates the growth rate, 𝑑𝑈 𝑑𝑇⁄ , to U for values of w 

between zero and one.  
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 The case 𝑤 = 1/2 is particularly important to consider, because Eq. 17 becomes: 

LV
L>
= 1 − 𝑈?   .              (18) 

As Eq. 18 indicates, the maximum growth rate is achieved when 𝑈 = 0. Since 𝑤 = 1/2, 

then 𝑎∗ = 𝑎, and we can say that the phenomenon is equally due to an “internal 

contagion” (logistic) and an “external influence” (confined exponential). 

Integrating the differential equation yields the equations for the hybrid model. 

𝑁$ = 𝑁∗
(A(CB∗ B⁄ )+,(-D-∗).

()C+,(-D-∗).
			,             (19) 

where: 

𝑚 =
FG∗GH

A(I

FG∗GH
-∗
- )(I

			.                  (20) 

 The slope of the hybrid curve is:  

𝑛$ =
L&
L>
= 𝑁∗𝑚𝑎 F1 +

B∗
B
I
? +,(-D-∗).

\()C+,(-D-∗).]
^					,          (21) 

and from the derivative, we can obtain the value of 𝑡 at the inflection point: 

𝑡$ =
(

B)B∗
𝑙𝑜𝑔+𝑚                 (22) 

and the value of 𝑁$ at the inflection point (see Table 1): 

𝑁$:;<+=> =
(
?
𝑁∗ F1 −

B∗
B
I				.             (23) 

Table 1 
Numeric Example of Parameter Values for Various w-Values in the Hybrid Model. 
w	 a	 a*	 m	 ti	 Ni	 Comments 

0 0.00 0.20 0 -∞ -∞ Confined Exponential (See Figures 4 and 5) 
1/4 0.05 0.15 0.29 -6.18 -100.00  
1/2 0.10 0.10 0.82 -1.00 0.00 (See Figures 6 and 7) 
3/4 0.15 0.05 2.08 3.66 33.33  

1 0.20 0.00 9.00 10.99 50.00 Ordinary Logistic (See Figures 8 and 9) 
Note. N∗ and N1 are assumed to be 100 and 10, respectively. 
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Current Study 

 Although specification of the hybrid model is straightforward, the question 

remains as to whether researchers can use structural equation modeling software to 

successfully recover the parameters of the model under various sample scenarios and 

with the relatively smaller number of measurement occasions typical in psychological 

research. Further, it is also unclear as to whether structural model fit can successfully 

discriminate between the estimated logistic, confined exponential, and hybrid models. To 

answer these questions, Mplus (Muthén & Muthén, 1998-2017) was used to conduct 

simulations to examine the utility of the hybrid curve, compared to the logistic and 

confined exponential curves, in modeling growth. 

  



 

 16 

Simulation Study 

 Monte Carlo simulations were conducted for various values of 𝑤 (the parameter 

that defines if the curve is logistic, confined exponential, or a hybrid) ranging from 0 to 1 

in increments of 0.1. For each value of 𝑤, 1,000 simulations were conducted. The data 

used in the simulations were generated in Mplus. These simulations included 15 

measurement occasions, sample sizes of n = 1,000, and intraclass correlations (ICC) of 

.75. Bayesian information Criterion (BIC) values were used to determine model 

preference in the simulations. Additionally, Bayes factor approximations (Jarosz & 

Wiley, 2014) were computed to aid in the interpretation of results. 

Example. For a numerical example as outlined by Banks (2013), the following 

values were specified in addition to the previously outlined parameters: 𝑁1 = 10,𝑁∗ =

100, and (𝑎 + 𝑎∗) = 0.20; we let 𝑤 = 𝑎 (𝑎 + 𝑎∗)⁄ = 0, (
j
, (
?
, k
j
, and 1. Results are 

displayed in the Table 1 and Figure 3. 

 Convergence. During the simulations, the logistic model experienced 

convergence issues when the underlying data was confined exponential. Similarly, the 

confined exponential model experienced convergence issues when the underlying data 

was logistic. The hybrid model experienced no convergence issues (Table 2). 
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Table 2 
Convergence Rates for Simulations in the Simulation Study by Model and w-value. 

w Logistic Confined Exponential Hybrid 
0.0 82.1% 100.0% 100.0% 
0.1 76.1% 100.0% 100.0% 
0.2 84.9% 100.0% 100.0% 
0.3 99.8% 100.0% 100.0% 
0.4 100.0% 100.0% 100.0% 
0.5 100.0% 100.0% 100.0% 
0.6 100.0% 100.0% 100.0% 
0.7 100.0% 100.0% 100.0% 
0.8 100.0% 100.0% 100.0% 
0.9 100.0% 100.0% 100.0% 
1.0 100.0% 63.9% 100.0% 

 

Purely confined exponential. As discussed earlier in the paper and shown in 

Table 1, when 𝑤 = 0 the hybrid equation (Eq. 19) reduces to the confined exponential 

equation (Eq. 15). In the simulations, comparable growth curves (Figure 4) and growth 

rates (Figure 5) were found for the hybrid model and the confined exponential model. 
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Figure 4. Growth curve for the hybrid model at w = 0.0. For reference, the logistic and 

confined exponential (CE) curves are also displayed.  

 
Figure 5. Growth rate for the hybrid model at w = 0.0. For reference, the logistic and 

confined exponential (CE) growth rates are also displayed. 
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 Equally weighted logistic and confined exponential. When 𝑤 = 0.5, the hybrid 

equation (Eq. 19) becomes equally logistic and confined exponential (as examined earlier 

in the paper). As expected, growth curves (Figure 6) and growth rates (Figure 7) for the 

hybrid model did not accurately reflect either of the other models. 

 
Figure 6. Growth curve for the hybrid model at w = 0.5. For reference, the logistic and 

confined exponential (CE) curves are also displayed.  
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Figure 7. Growth rate for the hybrid model at w = 0.5. For reference, the logistic and 

confined exponential (CE) growth rates are also displayed. 

Purely logistic. When 𝑤 = 1, the hybrid equation (Eq. 19) reduces to the logistic 

equation (Eq. 12). Similar to what we saw with 𝑤 = 0, in the simulations for 𝑤 = 1 we 

see comparable growth curves (Figure 8) and growth rates (Figure 9) between the hybrid 

model and the logistic model. 
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Figure 8. Growth curve for the hybrid model at w = 1.0. For reference, the logistic and 

confined exponential (CE) curves are also displayed. 

 
Figure 9. Growth rate for the hybrid model at w = 1.0. For reference, the logistic and 

confined exponential (CE) growth rates are also displayed. 
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 Model comparison. To determine which models most accurately represented the 

data, BIC values were compared for each model across each increment of 𝑤. The 

confined exponential model was most preferred for values of 𝑤 between 0 and 0.2, the 

hybrid model was preferred for values of 𝑤 between 0.3 and 0.9, and the logistic model 

was preferred when 𝑤 = 1 (Figure 10). 

 
Figure 10. Percent of simulations that preferred the logistic, confined exponential, or the 

hybrid model as determined by BIC values across increments of w-values. 

 The BIC values were then used to calculate Bayes factor approximations (Jarosz 

& Wiley, 2014; BFAs). The BFAs indicated a similar pattern of model preference as the 

BICs. Examining the distributions of BFA values shows a large range of variability in the 

strength/weakness of the model preferences (Table 3). For example, the BFA values for 

the 𝑤 = 0.5 simulations range from 4.64 to 8.69 × 10??. 
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Table 3  
Descriptive Statistics for the Distribution of Bayes Factor Approximations by Increments  
of w-Values. 
w Median Mean 10% Quantile 90% Quantile Minimum Maximum 

Hybrid Model Compared to the Confined Exponential Model 
0.0  1.20e-3   2.38e-3   9.98e-4   3.99e-3   5.19e-9   1.47e-1  
0.1  2.95e-3   2.87e-2   1.11e-3   3.26e-2   1.96e-7   6.79e0  
0.2  2.11e-2   4.64e0   2.16e-3   8.61e-1   1.00e-3   2.84e3  
0.3  1.47e0   3.47e4   2.55e-2   3.74e2   1.19e-3   3.01e7  
0.4  4.04e3   4.28e10   7.98e0   8.69e6   8.65e-3   4.08e13  
0.5  3.91e9   8.86e19   6.39e5   1.07e14   4.64e0   8.69e22  
0.6  5.66e19   1.49e34   4.21e14   5.00e25   2.52e6   1.48e37  
0.7   5.13e36     1.14e56     4.09e29     4.16e44     3.60e17     1.12e59   

Hybrid Model Compared to the Logistic Model 
0.8  1.53e55   1.60e74   7.19e45   1.92e65   2.34e36   1.02e77  
0.9  8.81e21   3.24e35   1.06e16   2.83e28   2.06e9   2.99e38  
1.0   2.07e-3     9.41e-3     1.12e-3     1.05e-2     9.98e-4     1.06e0   
Note. BFAs > 1 indicate preference for the hybrid model. BFAs < 1 indicate preference 
for the alternative models. 
Note. The hybrid model was compared to either the confined exponential or logistic 
based upon which was most preferred by the BICs. 

 Overall, the simulations provide strong support for the hybrid model, particularly 

in the midrange 𝑤-values. However, the generous sample size used leaves open the 

question of whether researchers can successfully estimate and compare models when 

fewer measurement occasions, smaller sample sizes, substantial missing data rates, or 

measures with different internal consistency (i.e., intra-class correlations (ICC) multiplied 

by the manifest variable variance) are used. 
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Method 

Data Simulation 

 Mplus simulations were conducted for the logistic, confined exponential, and 

hybrid models with variations of sample sizes (1,000, 500, 300, 100, 50), measurement 

occasions (15, 10, 5), intraclass correlation values (0.8, 0.7, 0.5), and w-values (ranging 

from 0 to 1 in 0.1 increments). All simulations had 1,000 replications and included 30% 

missing data. In total, 1,485 simulations were conducted. 
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Model Comparison 

Bayesian information Criterion (BIC) values were used to determine model 

preference in the simulations. Additionally, Bayes factor approximations (BFAs) were 

computed to aid in the interpretation of results. 
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Results 

Convergence Issues 

 Convergence issues occurred for a number of the model simulations. In particular, 

the simulations for the confined exponential model with a w-value of 1 (purely logistic) 

failed to complete after running for a month. The confined exponential model did not 

display any other convergence issues. 

On the other hand, the logistic model simulations with a w-value of 0 (purely 

confined exponential) completed relatively quickly; however, the convergence rates were 

very poor (near 10%). Additionally, consistent convergence issues (rates of 80 – 90%) 

occurred for the logistic model when the w-value was near 0 (e.g., 0.1 – 0.3). 

 Convergence issues also occurred for the hybrid model. Issues typically occurred 

during simulations that included lower values of simulation parameters (sample size, 

measurement occasions, ICC), particularly for w-values near, but not including, 0. For 

example, the convergence rate was 74.8% for the simulations with n = 100, t = 5, ICC = 

.50, and w = 0.1. Interestingly, as the simulation parameters began to include 

combinations of lower parameter values, the convergence issues spread to higher w-

values. For example, the convergence rate for n = 100, t = 5, ICC = .50, and w = 0.5 was 

87.1%. 
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Parameter Recovery 

Based on these simulations, it seems possible to recover parameters of the hybrid 

model in a variety of realistic real-world scenarios. This is somewhat tempered by the 

convergence of the models at the end points of the w-values, however. As a result, 

researchers may wish to consider separately estimating the logistic or confined 

exponential models explicitly and not relying solely on the hybrid model approach.  

  



 

 28 

Model Preference 

 BIC values were used to determine preference between the three models for the 

various combinations of parameters used in the simulations. Visually examining the 

patterns that emerge from graphing the proportions of model preference leads to the 

realization that decreases in ICC and measurement occasions, individually, cause a 

decrease in the preference for the hybrid model. Additionally, simultaneous decreases in 

these parameters cause even more pronounced decreases in hybrid model preference. 

However, with a sample size of 1,000, the hybrid model is still largely preferred when 

there is adequate measurement reliability and enough measurement occasions (see Figure 

11). As would be expected, the confined exponential and logistic models are consistently 

preferred for w-values of 0 and 1, respectively. 
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Figure 11. Preference between models, as determined by BIC values, across all 

combinations of measurement occasions, ICC values, and w-values for a sample size of 

1,000. 

 A similar pattern (decreasing preference for the hybrid model as the parameters 

decrease in value) emerges for other sample sizes. For a sample size of 500, the hybrid 

model is still adequately preferred when the other parameter values are high (See Figure 

12), but the hybrid model is never the most preferred model for low-value combinations 

of the parameters. Comparison of Figures 11 and 12 shows that preference for the hybrid 

model also decreases as a function of sample size. 
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Figure 12. Preference between models, as determined by BIC values, across all 

combinations of measurement occasions, ICC values, and w-values for a sample size of 

500. 

 For a sample size of 300 (see Figure 13), the hybrid model is still preferred for 

many w-values when paired with high values of ICC and enough measurement occasions. 

However, when the sample size decreases further (100 and 50, in this study), the hybrid 

model is rarely the preferred model even when paired with an ICC of 0.8 and 15 

measurement occasions. 
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Figure 13. Preference between models, as determined by BIC values, across all 

combinations of measurement occasions, ICC values, and w-values for a sample size of 

300. 
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Discussion 

 The results of this study demonstrate the ability to create and implement hybrid 

models in SEM software, as well as the potential utility for a model that combines the 

logistic and confined exponential models. Given how widely used these models are, the 

hybrid model could potentially act as a diagnostic tool for determining if the previously 

mentioned models are actually the best choices in their current applications.  
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Potential Applications 

Practically speaking, use of a hybrid model has many applications. For example, 

many categorical models assume that the link function is logistic in nature. Use of a 

hybrid model provides researchers with a way of testing whether this assumption is, in 

fact, reasonable. 

Psychopathology and learning models similarly assume a single parametric form 

for growth. It may be, for example, that logistic growth, which assumes an internal, self-

propagating process, may be inaccurate and that forces external to the individual, to some 

extent, drive the longitudinal course of pathology. If this is the case, then neither logistic 

nor confined exponential growth would accurately reflect the true growth pattern of 

pathology. However, the hybrid model would allow researchers to entertain intermediary 

models that can have varying degrees of being logistic or of being confined exponential. 

Similarly, the hybrid model would allow researchers to examine the relationship 

between the beta response-strength model of learning (Luce, 1959) and the linear-

operator model (Bush & Mosteller, 1955) by simply allowing them, like with the 

previous example, to commingle. This could be used, for example, to suggest pools of 

items to include in tests that reflect both the logistic and confined exponential models of 

learning.  
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Limitations and Future Directions 

The most notable limitation of this study is that the extent of missingness in the 

data was consistent (30%) throughout the simulations and was therefore assumed to be 

ignorable, which it likely is not. To that end, it would be worthwhile to consider the 

extent of missingness in your data when using a hybrid model. It is also important to 

mention that researchers wishing to use this technique should investigate whether 

influential observations are present in their data which could unduly influence the 

parameters of the hybrid model and could affect the adjudication between the hybrid, 

logistic, and confined exponential models.  

Another avenue of future research involves the use of base models other than the 

logistic and confined exponential. This study has demonstrated that a combination of 

these two base models could be useful in various applications. However, there are many 

circumstances where different base models could be thought to represent related 

mechanisms of growth (e.g., the logistic and confined exponential representing two 

different transfer mechanisms). Thus, it may be worthwhile to create different hybrid 

models that are applicable in these varying circumstances.  
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Conclusions 

 The creation and implementation of hybrids of commonly used models offers a 

potential addition to traditional model comparison approaches. This approach would 

allow for the possibility of intermediary models in addition to the original discrete 

models.   
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