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NOMENCLATURE

CONFOLD: ab initio protein folding method.

CASP 12: Protein datasets.

CNS: Crystallography and NMR System.

MSA: Multiple sequence alignments.

APC: Average product correction.



ABSTRACT

CONFOLD is an ab initio protein folding method that can build three-dimensional
models using predicted contacts and secondary structures. Under this method, we can
translate contact distance map and secondary structure into the distance, dihedral angle,
and hydrogen bond restraints according to a set of new conversion rules, and then using

this information as input to build structure models.

To improve this method, we added some new features to CONFOLD, such as disulfide
bond information, Beta contact prediction, and contacts distance multi-threshold.
CONFOLD New Version allows using disulfide bond information and Beta strands
prediction as input so that the Crystallography and NMR System can get the information
directly, improving the accuracy and efficiency in some specific cases. And it can exclude
some low probability residues contact information by setting multi-thresholds. I tested
this method based on CASP 12 datasets, and results show that it can improve the

efficiency of the program while keeping the TM-score.



Chapter 1 Introduction

CONFOLD is a method that can predict new protein folds using contact-guided protein
modeling [1]. It accepts contacts distance map, secondary structure information as input
to build three-dimensional models. When the predicted contacts are accurate, the
CONFOLD method can generate high-quality tertiary structures. It reconstructs models
from predicted contacts based on the Crystallography & NMR System (CNS), which is a
method designed for building models from Nuclear Magnetic Resonance (NMR)

experimental data.

There are some other tools, such as IMP [4] and Tinker, that can use different kinds of
contact distance restraints to build models, but in some specific cases, these tools have
some particular limitations. For example, they cannot reduce the low probability contacts
from the distance map. Even the Modeller, which is used widely for reconstruction,

cannot work on template-free modeling.

CONFOLD designed two stages to overcome these disadvantages. In stage one, it can use
contacts distance and secondary structure information to reconstruct protein models, then

filter out the information that does not match the conversion rules to ensure high quality.



In stage two, it takes updated distance restraints and secondary structure as input to

generate models using CNS suite [6], and select the best model for evaluation.

In this research, we added some new features into CONFOLD, included disulfide bond

information, beta contacts prediction, and multi-threshold contacts probability.

Disulfide bonds in protein can be found in both bacteria and eukaryotes. We choose to
use DIpro2 to predict disulfide bonds based on a 2D recurrent neural network. And the
beta contact prediction can be completed by bbcontacts, which is used for the prediction

of B-strand pairing from direct coupling patterns.



Chapter 2 Crystallography & NMR System

2.1 Background.

Crystallography & NMR System (CNS) is designed to provide a flexible multi-level
hierarchical approach for the most commonly used algorithm in macromolecular structure

determination. The CONFOLD is built based on this system.

The CNS can build models from Nuclear Magnetic Resonance experimental data and
reconstruct protein models from predicted contacts. In this research, our first step is to get
familiar with the CNS, knowing how it gets the distance restraints between atoms — and

then adding the desired new features on CONFOLD.

There are three CNS files used in CONFOLD to reconstruct the protein models:

99 ¢c b 1Y

“gesq.inp”, “extn.inp”, “dgsa.inp”.

*  Gesq.inp: Generate structure file for protein from sequence

information only.

*  Extn.inp: Generate an extended strand with ideal geometry for rach

connected polymer.

*  Dgsa.inp: Distance geometry with simulated annealing

regularization starting from extended strand.
-3-



And in the “extn.inp”, the molecular structure cannot include any closed loops except
disulfide bonds. Because disulfide bonds can be automatically excluded from the
generation of the strand conformation. This file is a CNS macro for generating extended

polypeptide chains as starting structures for our calculations.

I I
1 Crystallography & NMR System (CNS) 1
1 CNSsolve |
I I

Version: 1.1
Status: General release

Written by: A T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano,
P.Gros, B.W.Grosse-Kunstleve, 1.-5 Jiang,
L Kuszewski, M.Nilges, N.S.Pannu, R.J.Read.
L.M.Rice, T.Simonson, GG.L.Warren.

Copyright (c) 1997-2001 Yale University

Running on machine: sv (SGLTRIX.32-bit)

Program started by: urbauer

Program started at: 13:10:36 on 07-Apr-04

FFT3C: Using complib.sgimath

CNSsolves

Figure2.1: The interactive mode of CNS.

CNS can run in two modes: interactive mode or non-interactive mode. Figure 2.1 shows
the interactive way, and in this mode, we can see all the output of the program, and you

can exit the system by typing “stop” or “return” at the CNS solve prompt.



secondary structure translate using distance, dihedral and hydrogen bond restraints Stage 1
" . ) |
KSAKDALLLWCQVKTAG. . Sehadoaiai > ll— i
CCHHHHHHCCCEEEECC. . assign (resid 2 and name c) weighted / Build 20
(resid 3 and name n) models

(resid 3 and name ca) using CNS

Restraints derived ?
from SABmark (resid 3 and name ¢) 5.0 -63.47 3.68 2 suite

KSAKDALLLWCQMKTAG. . R
2129 0 8 0.958 " pa
36 66 9 8 9.519 contact distance restraints nueee

8 0.507 select all or top-xL contacts

8 0.437 >
8 0.164
8

contacts RR file

assign (resid 21 and name cb) -
(resid 29 and name cb) 3.60 0.10 4.40
assign (resid 36 and name cb)

(resid 66 and name cb) 3.600.10 4.40

1

[

| |

I |
= = = s
L
filter

unsatisfied
contacts

updated distance restraints

assign (resid 21 and name cb)
(resid 29 and name cb) 3.60 0.10 4.40 <«
assign (resid 41 and name cb)

&\ (resid 46 and name cb) 3.60 0.10 4.40

Build 20
models
using CNS
suite

——
select best

/\C model for

evaluation

hydrogen bond and distance restraints

assign (resid 21 and name n) detect p sheets
(resid 29 and name 0) 0.20 0.10 3.40 G = ———
assign (resid 36 and name ca)

(resid 66 and name ca) 0.300.10 2.20

Figure2.2: Process of CONFOLD.

The CONFOLD is built based on the CNS system. The input files are secondary structure
files and contact RR files. It can translate the secondary structure file using derived
restraints and generate the dihedral and hydrogen bond restraints information, and then
select top-xL contacts from contacts RR file and create the contact distance restraints.
Using those two restraints, it can build 20 models using the CNS suite. And selecting best
models, filtering unsatisfied contacts, and detecting beta-strands. Finally, we can get the

best model for evaluation.



2.2 Relationship between new features and CNS.

In this research, one of our goals is to enable CONFOLD to identify the disulfide bonds
prediction and B-sheet contacts prediction. From the introduction, we know that the
“gesq.inp” file is used to generate structure file for protein from sequence information

only, so it is a CNS macro for creating a molecular topology file for our molecules.

In this file we can define a disulfide bond between cysteine residues in protein or between
protein segments, and it includes the hydrogen flag, which determines whether the

hydrogens will be retained.

{* hydrogen flag - determines whether hydrogens will be retained *}

{* must be true for WMR, atomic resoclution X-ray crystallography
or modelling. Set to false for most X-ray crystallographic
applications at resoclution > 1A *}

+ choice: true false +)}

{
{===>} hydrogen_ flag=true;

Figure2.3: The hydrogen flag in CNS.

In the “dgsa.inp” file, there are also some crucial parameters.



molecular structure

|CNS_TOF’F’AR:protein-allhdg5-4.param

parameter file(s)||

|extended.mt‘f

structure file(s)||

oo oonon onnnn

|extended.pdb
input coordinate file(s) |

Figure2.4: Molecular structure file in CNS.
Figure 2.4 shows the structure file and input coordinate file required by CNS. The
structure file is “extended.mtf” which contains the information describing the topology of
the molecule. And the molecular topology file cannot be edited manually. The coordinate

input file is “extended.pdb” which contains the atomic coordinates in PDB type format.

atom selection

input "backbone" selection criteria for average structure generation
for protein (name n or name ca or name ¢ for nucleic acid (name O5' or name
C3"orname O3 or name F)

name I Or name Ca o0r name C

b

More Lines E|

Figure2.5: The atom selection in CNS.



Figure 2.5 shows how to define the atom selection in CNS. Atom selection identifying the
“backbone” atoms for average structure generation. For the protein molecules, the format
is:

(name n or name ca or name c)

After the atom selection, CONFOLD needs to read the information from the contacts
restraints RR file and exclude the unsatisfied pairs. Then generating the generic restraints

which are required by the next step.

foreach my (sort { <=> } keys Tres ssE){
my E5D = ():
my = "unpaired E residue
if (defined {Zih{
E5D = split 3+/ . { { by
confess ": (" if (! [0] or ! [1] or ! [21):
= "paired E residue"
1
else{
5D = split s+/, {"uny s
confess ": (" if (! [0] or ! [1] or ! [21)
1
next if not defined {Zi+1};
next if {Zi+1} ne "E";
print2file{"ssnoe.tkl"™, (sprintf "assign (resid %3d and name %2s) (resid %3d and name

Figure2.6: CONFOLD generates generic restraints.

In the code, it will identify the strands that are not used for pairing and generate generic

restraints for them.



Generationg the molecular topology

= Generating initial extended coordinates

COMFOLD

Distance geometry simulated annealing

Figure2.7: CONFOLD in the CNS system.

The CONFOLD using CNS solve to reconstruct the model based on three functions.
Generation of the molecular topology, generation of the initial extended coordinates, and

distance geometry simulated annealing.



gseq.inp

{+ file: generate_seq.inp +}
{+ directory: general +}
{+ description: Generate structure file for protein, d
ligands and/or carbohydrate from segque
{+ comment: modified by Brian Smith (Edinburgh Univers
residue renumbering +}
{+ authors: Paul Adams, and Axel Brunger +}
{+ copyright: Yale University +}
{- Guidelines for using this file:
- 21l strings must be quoted by double-quotes
- logical variables (true/false) are not guoted
- do not remove any evaluate statements from the fi
{- Special patches will have to be entered manually at
in the file - see comments throughout the file -}
{- begin klock parameter definition -} define(
{============ protein topology, linkage, and parameter
{* topology files *}
} topology_infile 1="CN5_TOPPAR:!protein,top™;
topology infile 2="CNS5 TOPPRR:dna-rna.top";
} topology_infile 3="CN5 TOPPAR:water.top";
topology_infile 4="CNS TOPPAR:ion.top";
topology infile 5="CNS_TOPPAR:carbohydrate.top”

+rmm T mer imFila £=UN.

Figure2.8: Generation of the molecular topology.

The molecular topology information [11] must be first generated for the structure - this

contains the information about molecular connectivity. This information is then be used

in the next step to create extended conformation.

extn.inp

|(+ file: generate_extended.inp +}

{+ directory: nmr_calc +}

{+ description: Generates an extended strand with ideal geoms
for each connected polymer.
The molecular structure file must not contair
closed loops except disulfide bonds which art
excluded from the generation of the strand ot

{+ authors: Axel T. Brunger +}

{+ copyright: Yale University +}

{- begin block parameter definition -} define(

= molecular sStructure =======

{* structure file(s)
>} structure_file="extended.mtf";

arameter file(s)

} par_. N5_TCPPAR:protein.param”;

par_. ;

par_

input parameters =——
n number of trials to generate an acceptable structi
>} max trial=10;

output files ===

{ things below this line do not normally need to be cl

} {- end block parameter definition -}

Figure2.9: Generation of the initially extended coordinates.

-10 -



Because the structure calculation needs a starting model, so the next step is for the
starting model. It provides proper local geometry but contains no information about the

fold of the structure.

&+

file: dgsa.inp +}
directory: nmr_calc +}
description: distance geometry, full or substructure, wi
simulated annealing regularization starting
extended strand or pre-folded structures. !
[+ authors: Gregory Warren, Michael Nilges, John Kuszewski,
Marius Clore and Axel Brunger +}
copyright: Yale University +}
reference: Clore GM, Gronenkorn AM, Tjandra N, Direct st
against residual dipolar couplings in the pre
of unknown magnitude., J. Magn. Reson., 131,
[+ reference: Clore GM, Gronenborn M, Bax A, A robust metl
the magnitude of the fully asyvmmetric alignm:
oriented macromolecules in the absence of at:
information., J. Magn. Reson., In press (199§
[+ reference: Garrett D5, Kuszewski J, Hancock TJ, Lodi BJ,
Gronenborn AM, Clore GM, The impact of direct
three-bond HN-C alpha H coupling constants or
determination by NMR., J. Magn. Reson. Ser. I
99-103, (1994) May +}
[+ reference: Kuszewski J, Nilges M, Brunger AT, Sampling
of metric matrix distance geometry: & novel
algorithm, J. Biomol. NMR 2, 33-5, (18982),
[+ reference: Kuszewski J, Qin J, Gronenborn M, Clore GYM,
refinement against 13C alpha and 13C beta che
protein structure determination by NMR., J. )

1TAEIY 8% £ {TRAEY Tam 11

FNE

+ o+

dgsa.inp

Figure2.10: Distance geometry simulated annealing.
And the last one is for distance geometry simulated annealing. Here a structure is
calculated using experimentally measured interproton distance estimates, hydrogen

bonds, and coupling-constant-derived dihedral angle restraints.

-11 -



Figure2.11: Five structures after simulated annealing refinement.

After simulated annealing refinement, a summary of the structure calculation is written at
the top of each output PDB file. The information about violations can be used to select

acceptable structures.

2.2 Preparing work.

-12 -



Before we start our work, we need to promise that the dssp-2.0.4 linux kernel [7] exists.
The DSSP algorithm is the standard method for assigning secondary structure to the

amino acids of a protein, given the atomic-resolution coordinates of the protein.

It can identify the intra-backbone hydrogen bonds of the protein using a purely

electrostatic definition. A hydrogen bond is identified as:

1 1 1 1
E = 0.084 {— + — — = —} * 332 kcal/mol

Ton Tcu Ton  Tcn
After installing the dssp kernel, we need to determine the usage of our system. In this
version, we required four different inputs: predicted contacts in CASP RR format [14],
predicted secondary structure file, predicted beta-sheet contacts file, and predicted

disulfide bond information file.

-13-



CONFOLD wersion

PLELMETER DESCRIPTICH

rr i Predicted Contacts in CASP RER format

S5 : SCRATCH predicted secondary structure ('.ss' file in fasta format)

disu i Predicted disulfide bonds information.

beta i Predicted beta sheet contacts information.

out : Qutput directory

mcount ! Number of models for each CONFOLD jobk (default 20; change to 5 for faster results)

Example Usage:
W8 ./confoldZ-main.pl -rr ./dry-run/input/lgun.rr -ss ./dry-run/input/lguu.ss -beta ./dry-run/inpu

REFERENCES:
(A) CONFOLD v2.0:

(B) CCNFCLD v1.0:
"CONFOLD: Residue-Residue Contact-guided ab initio Protein Folding™,
Proteins: Structure, Function, and Bioinformatics, 2015.
B. Adhikari, D. Bhattacharva, R. Cao, J. Cheng.

Figure2.12: CONFOLD new version usage.

Under this usage, we can run the system and test our results based on the CASP 12

dataset.

-14 -



Chapter 3 Disulfide Bonds

3.1 Background

Disulfide bonds are relatively stable covalent bonds and are usually responsible for
stabilizing tertiary structures of proteins. In biochemistry, the disulfide bond is used to
describe the terminology R-S-S-R connectivity [15]. The most common way of creating
this bond is by oxidation of sulthydryl groups. The length of the disulfide bond is 2.05 A,
and the dissociation energy of a disulfide bond is 60 kcal/mole. We choose to use DIpro2
[2], the disulfide bond prediction tools to get the information. And processing this result

as input, to modify the Generate Structure file of CNS solve.

OH
NH,

W
I\.

OH

Figure3.1: Two cysteine residues linked by a disulfide bond to form cystine.

-15-



3.2 Disulfide bonds information.

CONFOLD using CNS solve to reconstruct protein models, and the CNS system required
the molecular topology information must be first generated. It means that the disulfide

bond information must be prepared in the first stage of CONFOLD.

According to the CNS system, it can automatically detect the disulfide bonds based on the
distance between the sulfur atoms, which are less than 3A. But if we want to pursue more

reliable results, the molecular topology file should be modified as input changes.

Figure3.2: The disulfide bonds in protein 1a4g.

DIpro2 is a cysteine disulfide bond predictor, and it can predict if the sequence has

disulfide bonds or not and predict the bonding state of each cysteine and the bonded pairs.

-16 -



What we need from the prediction is the total number of cysteines in sequence and the

positions of cysteines, which are predicted to form disulfide bonds.

Total number of cocysteimes: 17
Predicted numbber of bonds: 7

Cysteines at the following position=s are pred
45,51,106,153,155, 160,201,203, 213,215,242, 261

Predicted disulfide bonds(cysteine pairs) oxrd
Bond IndeX Cwysl Position CysZ Position

1 =1 51

2 203 213
3 348 371
4 242 26l
o 155 1ad
o l1lde 153
7 201 215

Figure3.3: Prediction of the disulfide bonds based on DIpro2.

Figure 3.3 shows the format of DIpro2 Prediction. In this file, there two crucial pieces of
information that can be used in the next step. The first one is the predicted number of
bonds. Based on this number, we can determine how many inputs we need to write into
CNS. And the second one is the cysteines’ position, which is required by the CNS system

to build the disulfide bonds.

-17 -



3.3 Processing of disulfide bonds information.

The prediction of disulfide bond information cannot be used directly, and we developed
two subfunctions to process the result file. First, recognizing if the sequence contains
disulfide bonds. If the number of disulfide pairs is more than one, we can read the
position of the cysteine into hash. Then we need to check the distance between the two
cysteines. If there are no disulfide bonds in the sequence, we will generate a list of which
flag is “false”, the position of cysteines is 0, and the confirmed cysteines will be written
into the list. After generating a list of disulfide bonds information, we need to modify the
“gesq.inp” file for creating a molecular topology. The CNS system is divided into two

segments, with segment identifiers “A” and “B”.

-18 -



disulfide

input file
-
"false", 0, 0
Mo disulfide bonds "false”. 0. 0
: generate T
check list = . -
"false”, 0, 0
L

contains disulfide bonds
"l-r "
true", pos 1, pos 2

chlcck the disu_type: "A", "B"

distance generate -

between list = "true”, pos_1, pos_2

cysteines disu_type: "A","B"
Y

Figure3.4: Processing of disulfide bond information.

Running with the “gesq.inp” file, CNS can generate a molecular topology file named
“trx.mtf”. It can record the two protein molecules connected by a disulfide bond. In this
file, the first information we can see is information concerning the identity of each atom
and atomic charge and mass. Next, we can still see in this system how each atom is

connected to other atoms.
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disulphide bonds

Select pairs of cysteine residues that form disulphide bonds
First 2 entries are the segid and resid of the first cysteine (CVS A). Second 2 entries are the segid and resid of the second
cysteine (CYS B).
use segid CYS A resid CYS A segid CYS B resid CYS B

1 ® true O false 11 27

2 ® true O false 45 73

3 true © false 0 0

4 true ©® false 0 0

5 true ® false 0 0

6 true ® false 0 0

7 true ® false 0 0

8 true ® false 0 0

Figure3.5: The disulfide bonds part in the CNS system.
Figure 3.5 shows the interface of the disulfide bonds part in the CNS system. In the first
column, there is a flag specifying whether a disulfide bond should be created between the
specified residues. And we can set the flag to true or false. If true, we need to fill in the
columns “resid CYS” and “segid CYS”. The “resid CYS” is the number specifying the
residue for cysteine in a disulfide bond, and the “segid CYS” is the string specifying the

segment identifier for cysteine in a disulfide bond.

3.4 Comparing with original methods.

In CNS solve, the molecular topology information must be first generated for the
structure. Because this information is then be used in the next step to create starting
coordinates (extended PDB). CONFOLD Version 2 cannot get the information of
cysteine residues from disulfide bonds. It selects two pairs of cysteines and never
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changes. In the new version, we can improve our accuracy with DIpro2’s prediction and
make full use of the functions provided by CNS solve.

-rl}r-
-rllr-

.-rIIr-
7 -rl}r-

Figure3.6: Molecular topology file cannot use prediction.

ice: true false +}");

ss_use 1=8disu[l][0]:"):

} ss_i segid 1=\"R\"; ss_i resid 1=Sdisu[l][1];");
\"; =5 j resid 1=%disu[l][2];");

R I
; 85_1i resid 2=%disu]
; 88 j resid 2=f%disul

11:"y

[2]1:");

[SS TN )

1:M
; 55_1i resid 3=%disu[3][
; 88 j resid 3=S%disu[3]

11:7):

i)

(S

- 4=Sdisu[4][0]:"):

b s5_31 segid 4=\"B\"; ss5_i resid 4=%disu[4][1]:"):
} 853 3 segid 4=\"B\"; ss_j resid 4=%disu[4][2]:;");
trus false +}1"):

ss_use 5=5disu[>3][0]:"):

[

ss_i segid 5=\"B\"; ss_i resid 5=%disu[5][1]:"):
{===>} ss j segid 5=\"B\"; ss j resid S5=8disu[5][2]:"):

Figure3.7: Molecular topology file modified based on DIpro2 prediction.

In figure 3.6 and figure 3.7, you can see that the cysteine residues information in the

original version is hard to code. Users cannot modify the flag and the residue position.
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After adding the new feature, we can read the prediction information from the input file

and then modify the parameters of CNS.

{mznzm dlsulphlde bonds =

{* Select pairs of cysteine residues that form
{* First 2 entries are the segid and resid of t
{* Second 2 entries are the segid and resid of
{+ table: rows=8 numbered

cols=5 "use" "segid CYS A" "resid CYS A" "se
{+ choice: true se +}
{==>} ss_uss
{===>} s3 1 sclidim
{===>} ss j segid 1=""; ss
{+ choice: true false +)}
{===>} ss use 2=true;
{===>} ss_1i segid 2=""; ss_i resid 2=203;
{===>} ss_j segid 2=""; ss j resid 2=213;
{+ choice: true false +}
{===>} ss_use_3=true;
{===>} s8s i segid 3=""; ss i resid 3=348;
{===>} ss_j segid 3=""; ss_j resid 3=371;
{+ choice: true false +}

_resid_l-46:
\ resid 1=51;

Figure3.8: The gesq.inp file after modified.
Figure 3.8 shows gesq.inp file after modified. In this file, you can see the “true” or “false”

flag, and the position of cysteine is the prediction from DIpro2. And then, CNS can use

that information to build the molecular topology file.
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3.5 Results

Adding disulfide bonds information is essential at the first stage because the CNS solve
the addition of bond information to the molecular topology, which describes the covalent

topology of the molecule. It means that we can improve the accuracy of reconstruction.
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Figure3.9: Reconstructed model of protein la4g.

To compare the performance after adding new features, we selected one sequence to
reconstruct the protein models and observing the final TM-score. The sequence we
decided is 1a4g. The length of 1a4g is 390, contains seven predicted disulfide bonds. We
will test this protein sequence separately in two versions and see if the version with new

features will improve the test results.
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Figure3.10: The TM-score comparison of protein la4g.
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TM-score
0.21

0.205
0.2
0.195
0.19
0.185

0.18

—— Previous version = Disulfide bond version

Figure3.11: TM-score line chart.

Figure 3.10 and Figure 3.11 shows that under the same protein sequence, the performance

of protein model reconstruction can be improved slightly after adding disulfide bond

prediction.
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Chapter 4 Beta sheet contacts

4.1 Background.

The B-sheet is a common motif of regular secondary structure in proteins [17]. B-sheets
are formed by at least two or three backbone hydrogen bonds, and one B-strand is a
stretch of polypeptide chain typically 3 to 10 amino acids long with a backbone in an
extended conformation. There are three ways that adjacent B-strands form hydrogen

bonds: parallel, antiparallel and mixed arrangements.
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Figure4.1: Parallel and Antiparallel B-sheet hydrogen bond.
We choose to use the bbcontacts method to predict the B-strand pairing because it is
different from other methods. Most of the existing techniques use true secondary structure
as input, but in CONFOLD, we take predicted secondary structure as input, so bbcontacts
is the best choice. Before using bbcontacts, we are required to use HHblits, CCMpred and

Psipred to generate the input files.

The NOE distance restraints required by CNS solve are specified with the following

syntax:

assign (atom — selection) (atom — selection) d dmines dplus

e.g.,assign (resid 74 and name 0) (resid 112 and name H) 2.8 04 09

This kind of selection defines the atoms between which the distance restraint will be
applied. In the CNS system, building pseudo atoms can be completed by the “assign”
statement. According to the restraining functions, CNS can calculate the R-6 averaged
distance or the distance between the geometric centers of selected atoms. We only need to
change the format of the prediction of the beta-sheet contact to the “assign™ statement,

and then CNS can start the NMR structure calculation automatically.
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4.2 Using HHblits to generate multiple sequence alignments

HHblits is a part of the HH-suit that can build high-quality multiple sequence alignment,
and the input file of HHblits is a single query sequence. It can speed up the slow HMM-
HMM comparison process by the fast prefilter because the fast prefilter reduces the tens

of millions of HMMs to match against to a few thousands of them.

query seq
* add
(query Humj«— 2=
fast
prefilter accurate
HMM-HMM
search
data base
HMMs
select i
disctetized
profiles db accepted HMMs™ | _

rejected-HMMs

Figure4.2: Process of using HMMs search.

Hidden Markov Model (HMM) is a statistical Markov model that can be represented as

the dynamic Bayesian network [19]. The definition is:

P(Y, €EA|lXy=x, ., Xn=2x,) = P, €EA|X, = x)
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The Markov process itself cannot be observed, only the sequence of labeled clusters, thus

this arrangement is called a “hidden Markov process”.

Figure4.3: Probabilistic parameters of a hidden Markov model.

X represents the states, y represents the possible observations, represents the state

transition probabilities, and b represents the output probabilities.

First, we run HHblits against the uniprot20 database, avoiding any filtering in order to

retrieves as many homologous sequences as possible. We set the number of target
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sequences up to 10000, and the minimum probability in the hit list is 20%. Figure 3.2

shows the result of running the HHblits.

Vis Hits Aln Select All Forward Forward Query A3M Color 5eqs Wrap Seq

4 3
MNumber of Hits: 793

Visualization

Resubmit Section

b

Figure4.4: Visualization of the multiple sequence alignment.

After running the HHblits, we get the query template multiple sequence alignments. But

this a3m file cannot be used directly; the length of every alignment is different and
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contains much useless information. So, the next step is to use HHfilter to complete the
extraction of a representative of sequences from an alignment. The length of each

alignment should be equal to the length of the sequence.

——ADTAFLIDGSFHNIGORRFNLOENFVGEVALML.GIGTEGPHVGLVOASEHPEIEFYLENFT SAKDVLFATEE——
——ADTAFIMDSSGSIGVRDYRREEQFVOGLSDIFDISPGOSRASLITYSDFPELIFDLEDGVINONIT SVLENL—
——ADTAFYVDVSGHNLGOSNLERVIEY ILKFLDRSDVAQDENRVAVVGYDVVPHIELT L ——————-—————————
——ADTAVVVDASH- ITEEQLEOVEDFVREVLENFOI S5 50TAVSVASYGFNLFLASNFTHASD-TSVVEATESI -
——-ADIFFLVDSG--LHPTDFOOVET T LSRLVHOMNFNAY TYRLG LAY GONI DVEFLFNTHOTEEELLEATE A ——
——ADTFFLVDSG--LNPFTDFOOVET T LSRLVHOMNFNAY T YRLGLAQY GONT DVEFLFNTHOTEEELLEA TEAV—
——ADIGFLVDESSSIGWSHFNEVEDF LFRI I SYFEIGPEGTOVAVAQY SEEPRAAFHFNOHODENGALEAVEEL—
——ADTHVLVDGSESVEIRNFPAVROFILKLAAGFETIGPDEARIGVYQFAE DMOTE FEMNOYNNE———————————
——ADTHVLVDGSESVEIRNFPAVROFILKLAAGFEIGPDEARIGVYOFARDMOTEFEMNOYNNEET - ————————
——ADITHVLVDGSKSVEIRNFPAVROFILKLAAGFEIGPNEARFGVYQFAKDMOTE FEMNOYNNREALLDATHEI -
——ADTHVLVDGSESVEIRNFPAVROFILKLAAGFEIGFNEARIGVYOFAKDMOTE FEMNOYNNRE ———————————
——ADITFLIDGSESIKESNFEFMEE FMELMVHMSHIGPENVRIGVLOF S5 5PREEFMLNEYTTEEDLSRATSDI -
——ADTTFLIDGSESISPEDFEFMERFVASMVHOSHNIGT DGIQIGLLOFSSIPQEEFRLNOYSSEVDIYSATFD——
—-—-ADITFLIDGSESISPREDFEFMERFVESMVDIFDVOODGTR—-——-—-—--—-—-——-—-—"—"—""""""""""""-—-——————
——ADITFLIDGSESISPRDFEFRMERFVESMVHOSHNIGTDGIQIGLLOFSSIFLEEFRLNOYSSEVDIYRA—————
——ADTTFLIDVSGSISDDGFNTEREFVSSLLSEISVOPSARRIAVVI FGRDINEDIDY IDYG———-—————————
——ADITFVLDGSGSVE-QOFEOMTHMAS DI AKOF DI DEKEHRIATLEF S SEEWLRYPFDRIETHNDMEEVIQNL—
——ADITLLVDGSWSIGRELNFETIRNFIARTVSVEDIGPORVOIGLAQY SGDPETEWHLNAHPNRE SLLEAVSHL -
——ADITLLVDGSWSIGEMNFEITRNFIARTVSVENIGPGRVOIGLACY SGDPETEWHLNAHPTEESLLDAVANL—
——ADTTMLFDASHSILLENFDEQFIFAKRLIKNFEIGSNDVREFGGVVE SQRTQLLFNLEDHDDFDGLSEGLT ———
——ADILFLVDGSERINTRDFDEMEE FMMOMVNE SDLGPEEVOIGLLOFSSHNPOQEEFRLNT Y Y SEVDILRATTGM -
——ADTLFVVDGSS55IPPEEFEEVET FLNNIVGHFDIGPTATOVGVVOYS55POQEF - ————
——ADTMFLVDGS 55 IGY AN FEFMEN FMOT LLAK TOTGADETOIGVAQF SDYNEEEFPLNEYFTOEETISDA T DRME
——ADTMFLVDSS5GSIGHDNFGEMET FMENLLAKTOTIGPDSTOIGVVOFSDINQEEFQLNEYFTONET SDAT DRME
——ADTMFLVDSS5GSIGLENFGEMET FMESLV SESOIGAHRVOIGVVOFSHINEEEFQLDT FMSOSDISHAT DRME
——ADTMFLVDSS5GSIGLENF IFMET FMENLV SESQOIGADEVOIGVVOFSDINEEE FOQLNRYMSONE T SHA T DRME
——ADITMFLVDSSGSIGLENFIFMET FMENLYV SESOIGADEVOIGVVOFSDVHEEE FOLNEYMSONE I SNA T DRME

Figure4.5: Format of the alignments.
After reformatting the alignments, using those multiple sequence alignments as input to

get the prediction of direct couplings.
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4.3 Using CCMpred to predict direct couplings

CCMpred is free and open-source software that can predict protein residue-residue

contact [20]. Compared with other published methods, it can predict contacts faster and

with the same precision.

10°
0.8+ -
c074 '~ ©10°
& 2o
0064 — CCMpred =*=. _ IS
U o =)
0054 --GRENLN - T @ 10°
QL4 --{pimDCA N -
03 . o
L/10L/5 L/2 L

Number of predicted contacts

-8 CCMpred.GPU

-0~ CCMpred 6Core

& pimDCA Sym.6Core
4 pmDCA Asym 6Core L
X PSICOV1Core et
#- GREMLIN.1Core .-~

Illlll
I T

100 1000
Number of columns in alignment

Figure4.6: CCMpred runtime and accuracy compared with other methods.

Protein structure can maintain stability is crucial under evolutionary pressure, which gives

rise to correlated mutations between contacting residue pairs. These correlated mutations

can be used to predict residue-residue contacts. The output file is a direct couplings

matrix that contains the contact information.
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1.1326137 0567407227e-01 7T.6£72291%540948 328le-02 1. 9315919509
9.21373218297958374023e-02 8.14730226993560791016e-02 8.757118880748748

Figure4.7: Format of the CCMpred result.

The columns number of direct couplings matrix is equal to the length of the sequence,
then bbcontacts can predict the B-strands pairing by detecting patterns in the matrix of

predicted couplings corresponding to interactions between secondary structure elements.

4.4 Using Psipred to predict secondary structure.

Psipred is a method used to predict a protein’s secondary structure from the primary
sequence. There are three stages in the prediction algorithm: generating a sequence
profile, predicting the initial secondary structure and filtering the predicted structure. The

web service is convenient to use.
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Figure4.8: Psipred web service.

It is very convenient to use the Psipred web server. We can just submit our protein
sequence and the email address when the work finished, and we will receive an email that

contains the information of the prediction.
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# PSIPEED HFOEMAT (PSIPRED V4.0)

T T T T T A T T 0 T T R D T T A 0 T

Conf: 95878559388224885095085050793775793855505450505589559508053588585
Pred: CCCCCCCHHHHCCCHHHHHHHHHHCEEEECCCEEEEEEECCCCCCEEEEEECCCCCCHHH
A% : GETESFTRRERLELRRDFLLIFEEGESLONEYFVVLFRENGMDY SRLGIVVEREFGEATR
10 20 30 40 50 &0

Conf: 9559555085085085030211955955895595483767115635559555095050508508588615

Pred: HHHHHHHHHHHHHHCCCCCCCCEEEEEEECHHHCHHHHCCCHHHHHHHHHHHHHHHCC

A% : RMNELERWVREIFRENEGVIPEGFDIVVIPREEELSEEFERVDFWIVEEELLNLLERIEG
70 80 90 100 110

Figure4.9: Prediction of the secondary structure.

In the secondary structure files, “E” represents an extended strand, participates in the beta
ladder. So, we need to identify the relationship between the “E” parts, and if they are

contacted, we can regard it as B-sheet contact.

4.5 Using BBcontacts to predict -sheet contacts.

The Hidden Markov Model (HMM) architecture is used for parallel and antiparallel -
sheet contacts. To run bbcontacts for a given protein, we need a matrix of predicted
couplings and a three-state secondary structure prediction. Because when CCMpred
performs the average product correction (APC) step [15], the minimum coupling value
gets subtracted from all coupling values, we should make sure to use a smoothing range

when running bbcontacts.
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Figure4.10: HMM architecture used in bbcontacts.

BBCONTACTS

CCMpred: matrix file

.76308482885360717773e-01
.422832310199737548832-01
.12249352453487243652e-01
.07007190585136413574e-01
.07965484261512756348e-01
.03851191699504852295e-02
.01178720593452453613e-01
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.06973342557484538623e-01
.04330122470855712891e-01
.21567660245704650875e=01
.08088359236717224121e-01
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0.00000000000000000000e+00
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.165049016475677490232-02
.13723674416542053223-02
.457716345787048339842-02

Bbcontacts generate Beta strands info

Psipred: SS file

>latzh

CCCCCEEEEEEEECCCCCCHHHHHHHHHHHHHHHHHAC!

[identifier diversity

direction viterbiscore indexpred

laczh 0.38 Parallel 7.271507
latza 0.38 Parallel 7.271507
latza 0.38 Parallel 7.271507
lacza 0.38 Parallel 7.271507
latza 0.38 Pparallel 7.271507
lacza 0.38 Parallel 7.271507
latza 0.38 Parallel 7.271807
latzh 0.38 Parallel 7.271507
latzd 0.38 Antiparallel  -2.982195
lacza 0.38 Antiparallel -2.982195
latza 0.38 Antiparallel -2.922185
laczd 0.38 Parallel  -3.842273
lacza 0.38 Parallel -3.842278
laczh 0.38 Parallel -3.842272
latzd 0.38 Parallsl  -3.842278
lacza 0.38 Parallel -3.842278
latza 0.38 Parallsl -3.842278
latzd 0.38 Parallel  -3.842278
latza 0.38 Antiparallel -4.667406
laczh 0.38

Antiparallel -4.667406

D S O N N P T T R

state
firsc
internal
internal
internal
internal
invernal
internal
last
first
internal
last
first
internal
internal
internal
internal
internal
last
first
last

resl

Figure4.11: BBCONTACTS processing requirements.

-37-

N - -



The output file contains the (-sheet contact predictions, and there are three key messages
that we will use in the next step:

*  Direction: Parallel or Antiparallel.

*  State: First, Internal or Last.

*  Residue position: residue 1, residue 2.
The direction of beta-strand determines the connection order, and three states tell us the

begin and end position. The residue position is the information required by CNS solve.

neW_lnz0D 0.38 HA HA HA HA& HE HA
$identifier diversity direction viterkbiscore indexpred state resl rzres2
neW_lnzdD 0.38 Parallel 12.718537 1 first 83 45
neW_lnzdD 0.38 Parallel 12.718537 1 internal 84 4
new_1nz0D 0.38 Parallel 12.718537 1 internal 85 47
new_1nz0D 0.38 Parallel 12.718537 1 internal 86 8
new 1lnzOD 0.38 Parallel 12.718537 1 internal 87 49
new 1lnzOD 0.38 Parallel 12.718537 1 internal 88 50
new _1nzOD 0.38 Parallel 12.718537 1 la=st 89 5l
neW _lnzdD 0.38 BAntiparallel 10.407942 2 first 33 a0
neW _lnzdD 0.38 BAntiparallel 10.407942 2 internal 34 29
neW_lnzdD 0.3% BAntiparallel 10.407942 2 internal 35 28
new_1nz0D 0.38 BAntiparallel 10.407942 2 internal 36 27
new_1nz0D 0.38 BAntiparallel 10.407942 2 last 37 26
new 1lnzOD 0.38 Antiparallel 9.814055 3 first 83 39
new 1lnzOD 0.38 Antiparallel 9.814055 3 internal g4 38
new _1nzOD 0.38 Antiparallel 9.814055 3 internal 85 37
neW _lnzdD 0.38 BAntiparallel 5.814055 3 internal 86 1
neW _lnzdD 0.38 BAntiparallel 5.814055 3 internal 87 35
neW_lnzdD 0.3% BAntiparallel 5.814055 3 internal it 34
new_1nz0D 0.38 BAntiparallel 5.814055 3 last 89 33

Figure4.12: Format of the bbcontacts output file.

The beta-sheets have three directions, parallel, antiparallel, and mix beta-sheets. In
parallel beta-sheets, all the beta strands run in the same direction. And in antiparallel beta-

sheets, the beta strands run in the opposite directions. The antiparallel beta-sheets are
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more stable than the parallel beta-sheets because parallel sheets are less twisted than

antiparallel, and the antiparallel sheets can bear more enormous distortions.

Antiparallel beta-sheet  The different types of

4 1 beta-sheet. Dashed lines
" ] indicate main chain

'''' . hydrogen bonds.

-

- ——— ——— F Y &% :L E
----- (A [ap—— ’i ,*""___
L J L ... Rt RUSON Rl
-
M iy e I
'y & d F F = CO S See—
- - - . -

=" L -~ _,-"

—-] A -

- N el v o —
- ~f =~ L 4 F -
- " -’ -

-~L- -

- - Mixed beta-sheet

Parallel beta-sheet

Figure4.13: The diagrams of parallel and antiparallel beta-sheets.

The parallel and antiparallel beta-sheets use the same HMM architecture, but the

parameters are different.

4.6 Adding [B-sheet contacts information.

From the previous steps, we got the required information. Now we are trying to integrate
the data into “dgas.inp” file to calculate the structure. In CONFOLD Version 2, the beta
contact information can be detected from the stage one model. But the drawback of this

way is that we cannot avoid the mistakes in stage one. In order to solve this problem, we

choose to add the B-sheet prediction information in the first stage, so that the models in
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the early stage can use the position of B-sheet residues and improve the TM-score of the

reconstructed protein models.

. Psipred
Single
LI“EI':-" .'ﬂ.'l.llll..'"t'l.'j
HHblits
Raw Multiple
tw uencf Secondary
5€q Structure
alignments
HHfilter
Filtered Multiple | CCMpred .
P P Couplings
sequence | ——— _ —|
. matrix
alignments
bbcontacts
remove unpaired
residues
— wrediction of beta
CNS solve |- [ =2

sheet contacts

Figure4.14: Process of adding beta-sheet contacts information.

First, reading the required messages from the prediction file. We need to recognize the
state of the residue if the residue state is “first” we will start reading the next residues into
this strand until the state is “last”. Then the direction of the strand will be attached; the

symbol of parallel is “P” and the symbol of antiparallel is “A”.
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83 g9 45 51
33 37 30 26
83 g9 39 33
46 47 40 39
55 S5e 52 51
30 31 27 26

O R

Figure4.15: The prediction information after processing.
Sometimes the prediction of bbcontacts cannot match the secondary structure file. For
example, in some cases, the prediction of bbcontacts shows that the residues 35-38 and
residues 79-76 are beta contacts, but in the secondary structure file, the state of 79-76 is

not “E”. So we need to remove those unpaired strands.

After removing the unpaired strands, we start writing the beta contacts information into
“hbond.tbl” file. This file will be called by the “dgsa.inp” which is used to the distance

geometry simulated annealing.

hydrogen bond data

hydrogen-bond distance restraints file.||ile_hbonds.tbl =

enter hydrogen-bond distance averaging mode| cent v || =]

Figure4.16: The hydrogen bond distance restraints file in CNS.

Figure 4.16 shows the interface of CNS solve calling the hydrogen bond distance

restraints file. It contains all the hydrogen bond information, and we need to select the
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hydrogen bond distance averaging mode. There are four possible modes: R-6, R-3, sum,

cent.

* R-6: The distance between the selected sets of atoms is averaged
according to:

1
6

R = [distance]

* R-3: The distance between the selected sets of atoms is averaged
according to:

1
3

R = [distance]

*  Sum: The distance between the selected sets of atoms is computed
by adding up single contributions: (“nmono” is specified by the

monomer statement.)

6

R = sum(i,j)[Ri_j nmono]

1
6-

¢ Cent: The distance between the selected sets of atoms is set to the

difference between the geometric centers of the atoms:

R = (Reenter1 — Rcenterz)-
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assign
assign
assign
assign
assign
assign
assign
assign
assign

[resid
[resid
(resid
[resid
(resid
[resid
[resid
([re=sid
[resid

| SR N ]
[ R Ea e

g

3
34
36
36
38
38
46

and
and
and
and
and
and
and
and
and

name
name
name
name
name
name
name
name
name

H)
o)
H)
o)
H)
o)
g)
o)
o)

([resid 35
[resid 35
(resid 88
[resid &85
(resid B8e&
[resid B8e
[resid &4
(resid 84
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and
and
and
and
and
and
and
and

name
name
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Figure4.17: Beta contacts information in the hbond.tbl.

20
20
.20
20
20
20
20
.20
20

[ O e N O O O T O v |

.10
.10
.10
.10
.10
10
.10
.10
.10

Theta
'beta
Theta
Theta
Thbeta
'beta
'beta
Tbeta
Theta

Figure 4.17 shows the format of hydrogen bonds information in “assign” statement. The

real number 2.06 means the distance, the 0.20 and 0.10 means the extents either side of

this distance.

4.7 Result

In the CONFOLD new version, the beta-sheet contacts information can be accepted by

the CNS solve in stage one. And the TM-score of the protein models in stage one

improved significantly. But in CONFOLD Version 2, the beta contact information can be

detected from the stage one model, so the resulting model’s TM-score is quite similar to

the previous version.
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0 o o S 48 4 8o sk oo o oo 0 S oK s sk ok
TM-SCOEE
L zcoring function to azsesz the zimilarity of protein structures
Baszed on ztatistics
0.0 < TM-=zcore < 0.17, random structural similarity
0.5 < TM~zcore < 1.00, in about the =zame fold
Reference: Yang Thang and Jeffrew Skolnick. Proteins 2004 57: 702-710

For commentz, please email to: zhng@umich. edu
8 8K 8 R o S 84 o 8 8o 8 8 S 8 48 o 6 K o 6 K oK ok ok

x E % E X O X
x O=E E X X E X

Structurel: AL33802 Length= 108

Structure: B33802 Length= 118 (by which all scores are normalized)
Mumber of residues in common= 108

EMSD of the common residuess= 4. 708

TM-=zcore = 0.4225 (d0= 4.01)

MaxSub-score= 0.2028 (d0= 3. 500

GDT-TS-=zcore= 0.4131 $(d<1)=0. 1441 %(d<2)=0. 1695 %(d<4)=0. 4237 % (d<81=0. 9153
GDT-Hi-=zcore= 0.2087 %(d<0.5)=0. 1017 %(d<1)=0. 1441 %(d<2)=0.1695 %(d<4)=0. 4237

Figure 4.19: Protein model TM-score before adding beta sheet contacts

Figure4.20: Visualization of TM-score superposition
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S 8 G o o 8 8 8 8 8 6 88K 080822 oo oo oo o o o o o o 0 0080 KK oo
TM-SCORE
A zeooring function to asseszs the zimilarity of protein structures
Based on statistica:
0.0 < TM-=zcore < 0.17, random structural zimilarity
0.5 < TM-=zcore < 1.00, in about the =zame fold
REeference: Yang Thang and Jeffrey Skolnick. Froteins 2004 &Y: TO2-T10

For comments. pleaze emaill to: zhngiiumich. edu
S 8 G o o 8 8 8 8 8 6 88K 080822 oo oo oo o o o o o o 0 0080 KK oo

* E E X E X X
x = E X E X =

Structurel: AR1TITE Length= 108

Structured: B&1T9T3 Length= 112 (bv which all scorez are normalized)
Mumber of residuez in common= 108

EM5D of +the common residues= 4, hdZ

IM-zcore = 0.4358 (d0O= 4.01)

MaxSub—=core= 0.2109 ({d0O= 3.50)

GDT-T5-=score= 0.4195 %(d<1)=0. 1525 %(d<2)=0. 1610 %(d<4)=0. 4492 %(d<8)=0.9153
GDT-Hi-zcore= 0. 2161 %(d<0.51=0. 1017 %{d<1)=0, 1525 %{d<2)=0. 1610 %{d<4)=0. 4492

Figure4.21: Protein model TM-score after adding beta-sheet contacts

Figure4.22: Visualization of TM-score superposition
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The TM-score shows us that the score has not been significantly improved. I compared

the TM-scores of the first stage and found that the improvement of the models is visible.

Stage one TM-score
044

042

0.4
0.38
0.36
0.34
0.3z

0.3

Figure4.23: TM-score in the first stage. (red: new version, blue: previous version)

From the line chart, we can see that the performance of our new version can be more
stable. There are too many factors that can affect our result, such as prediction accuracy;
it’s challenging to improve TM-score significantly. In our new version, we improved our
best model TM-score from 0.4225 to 0.4359. It is about 3.14%. And I believe if the

model contains more beta-sheet contacts, the performance can be better.

And I think the reason why the resulting model’s TM-score is quite similar to the

previous version is that the earlier version can detect the hydrogen bonds from generated
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models. CONFOLD can recognize the beta contacts from the model created by stage 1
and using this information into the next stage. In the future, maybe we can try to
reconstruct a protein which contains many beta-sheet contacts, I think the TM-score can

be improved more significantly.

- 48 -



Chapter 5 Contacts probability

5.1 background.

One of the input files is the contact prediction results in an “id.rr” file, which contains the
residue-residue separation prediction. There are five columns in the RR file: residue

number indices 1, residue number indices j, distance 1, distance two and probability.

Residues number indices i and j are used for distance specification, the distance one and
distance 2 indicate the range of CB-Cp distance predicted for the residue pair (Ca for
glycine), and the probability suggests the probability of the distance falling between the

predicted range.

GSTESFTRRERLRLRRDFLLIFEKEGKSLONEYFWV

25 37 0 g 0.5884906
27 38 0 g 0

25 38 0 8 a. 71848
28 35 0 8 0.9865860
26 37 0 g 0.5852040
37 8 0 8 0.97593594
35 87 0O 8 0.9757853
21 38 0 8 0.9731122
40 &4 0 g 0.8705287
48 8e 0 8 0.%964416a7
27T 34 0 8 0.9612460
25 36 0 8 0.9583705
33 83 0 g 0.5570545
49 87 O 8 0.9543952
27T 35 0 8 0.9520718
48 87 0O 8 0.9515582
24 38 0 g 0.5504214
50 88 0 8 0.94859701
47 85 0O 8 0.9437256
46 E4 0 g 0.5428074
26 38 0 g 0.5941028

1z 18 0 8 0.9370776

Figure5.1: Format of the contacts prediction results.
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Figure 5.1 shows an example of the contact prediction results. In this example, the CB-Cp

less than 8 A so that it can be predicted with the format as

In the previous CONFOLD version, the value of probability is not fully utilized. It can
generate 40 different subsets of predicted contacts results by selecting top XL contacts. In

some cases, this method may miss some essential contact information.

5.2 CONFOLD Version 2

CONFOLD Version 2 generates 40 different subsets and selects 5 top models from each
of them. So, it can predict 200 models using a various subset of input contacts. Each
subset selects top xL contacts from the RR file, x = 0.1, 0.2, 0.3, ..., 4.0 (total 40 items)

and L is the length of the protein sequence.

Under this pattern, if the length of the protein sequence is 1000, in the 3.0L stage, input
RR file needs (3 * 1000) 3000 contacts distance. After using multiple thresholds contacts
probability pattern, we need to provide 1000 contacts restrains as input. It can save a lot

of running time.
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RR file

Contacts prediction

1

B ———

40 subsets

" 0.1L subset )
0.2L subset

0.3 subsct

total 200 mosels

"

\. 4.0L subsct J

top 5

exclude unsatisfied

models

results

models

Figure5.2: Process of CONFOLD Version 2.

Figure 5.2 shows the process of CONFOLD 2, dealing with the prediction of the contact.
After resulting in a total of 200 models, it calculates the contact satisfaction score using
top L/5 long-range contacts and sorts, and the top 50 models will be selected. Then the 50

models separate into 5 clusters and choose the best model from each cluster to form the

results.

This way can significantly improve the performance, but it will also make the entire

program running time too long. And the program only selects the top xL contacts, and

this method may lose some vital information.

-51 -



my *lowerbound = rrZcontacts hash({:file rr, Zmin seq =ep, 100000, "lowerbound"):;

i , 100000 , "1
my *rr conf = rr2contacts hash(>file rr, fmin =seq sep, 100000, "confidence™);

my %rows and weights = ();

foreach (keys frlalrZaZ){
my EC = split /i=+/, I ¢
my > lbound = Slowerbound{sC[
my sdistance sprintE{":.2f", g} ;
my snegdev sprintf("s.2f", 1y;
my Sposdev = gprintf("%.2f", (Srlalr2ai{s_} - 3.6)):

# Thi= iz probably a non-contact information

if {($lbound » 4){
sdistance = sprintf{"%.2f", (Slbound + ?:_3_:;3;{3_}}IE};

LU | =l "
n i | v

0].
3.

cnegdev = gprintf("%.2f", Fdistance - Slhound);
nsdev = gprintf({"%.2f", Sdistance - Zlbhound):
}
srows and weights{ (sprintf "as=zign (resid %3d and name %2s2) (resid %3d and na

Figure5.3: CONFOLD 2 using probability value.

In CONFOLD version 2, the probability value is used to detect whether this column is
non-contact information. In the new version, we are trying to use the probability value as

thresholds to judge how many distances should be added.

5.3 Multiple Thresholds contacts probability.

The probability of the distance between CB atoms is within the range of 0 to 1. To make

sure every contact prediction has the chance to be selected, we choose to use multiple

threshold methods to select the contacts.
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Multiple thresholds method is to divide the entire data set into several clusters by using
the value of probability as an indicator, different clusters have different weights, and the

weight is used to determine the proportion of the cluster.

All distance

Possibility > 0.6 All of them will be selected

Possibility > 0.4 80% of them will be selected

Possibility > (.2 60% of them will be selected

Possibility < (.2 30% of them will be selected

Figure5.4: Example about how to set thresholds

Figure 5.4 shows an example of how to set the probability thresholds. In this example, we
set three thresholds: 0.6, 0.4 and 0.2. If a cluster’s probability of the residue-residue
contacts is greater than 0.6, it means that the confidence of this cluster is high so that we
will select all the residue-residue contacts. If a cluster’s probability of the residue-residue

contacts is between 0.6-0.8, we will choose 80% of them into protein reconstruction. And
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if a cluster’s possibility is less than 0.2, it means that the confidence of this cluster is low,

so that we will select only 30% of them.

In a RR file, most of the residue-residue contacts’ probability is between 0 to 0.3, and this

method can exclude most of the low probability contacts and save the running time.

if [defined 5C[3]){

if (SC[4] »= 0.8){
Sseqment {SC[0]." ".SC[1].™ O & ".S8C[4]} = SC[4]:

if (SC[4] >= 0.4 and SC[4] < 0.6){
Sseqment2{SC[0O]."™ ".SC[1].™ O & ".SC[4]} = SC[4]:
ScounterZ++;

if (SC[4] >= 0.2 and SC[4] < 0.4){
Ssegment3{SC[0]."™ ".SC[1]."™ O & ".5C[4]} = 5C[4]:
Scounteri++;

if (SC[4] < 0.2)1{
$segment4{$C[O]." ".SC[1]."™ O & ".SC[4]} = 5C[4]:
Socounterd++;

else{

confess "ERERCR!™;

Figure5.5: Coding to divide the clusters.
After separating the entire data set into four clusters, we need to select the contacts from
each cluster. Since there are 40 subsets in the program, we require to promise every
contact has the chance to be chosen. So, the best way is to select contacts from the cluster

randomly.
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Cluster 0-0.2

randomly select

contact 1

hash 1
- contact 2
hash 2 — contact 3
contact 4

hash 3

_-.-

contact m

hash n

(n=30% m)

Figure5.6: the process of randomly selecting contacts from the cluster.

Then we need to integrate the selected residue-residue contacts to form a complete RR
file. But this RR file is unsatisfied with the requirement of CONFOLD, and it should be

sorted and add the protein sequence (fasta file) on the first line.

5.4 Results.

To compare the performance with the previous version, we tested the program on CASP
12. Because of the limitation of the machine, we just selected some of the datasets to get

the TM-score of the resulting models and the running time of the entire program.
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TN-5CORE
A& zooring function to asszess the similarity of protein structures
Bazed on statistics:
0.0 ¢ TM-zcore < 0.17. random structural zimilarity
0.5 < TM-score < 1.00, in about the zame fold
Reference: Tang Ihang and Jeffrey Skolnick, Proteins 2004 57Y: T02-710

For comments, pleaze email to: zhng@umich. edu
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*
*
*
*
*
*

Structurel: 4403418 Length= 108

Structure2: B403418 Length= 118 (by which all scores are normalized)
Number of residues in common= 108

EM5D of the common residuss= 4. 850

TM-zcore = 0.4094 (d0= 4.01)

MaxSub-score= 0. 2176 (d0= 3.580)

GDT-T3-zcore= 0. 4153 %(d<1)=0. 1625 %{d<2)=0. 1610 % (d<4)=0. 4322 %(d<8)=0. 91563
GDT-Hi-score= 0. 2076 %(d<0.5)=0.0847 % (d<1)=0. 1525 %(d<2)=0. 1610 %(d<4)=0.4322

(1). Previous version

K KoK o KA KR KA o K o K o o K o o oo o o ook o Kok o
TN-SCORE
L zcoring function to assezs the similarity of protein structures
Bazed on statistics:
0.0 < TM-score < 0.17, random structural similarity
0.6 < TM-score < 1.00, in about the zame fold
Eeference: Yang Thang and Jeffrey Skolnick, Proteins 2004 57: F02-710

For comments, please email to: zhng@umich. edu
KK KK o KA KR KA o K Ao KA o o Ko oo A oo o o ook oKk o

LN N )
® E OE X E X X

Structurel: AGRH1Z Length= 108

Structure?: BF9512 Length= 118 (by which all zcorez are normalized)
Number of residues in common= 108

EMZD of the common residues= 4,788

TH-zcore = 0.4082 (d0= 4.01)

MaxSub-score= 0.2117 (d0= 3.50}

GDT-TS—=zcore= 0.4110 %(d<1)=0. 1441 %(d<2)=0. 1610 % (d<4)=0. 4237 %(d<8)=0. 9153
GDT-Hi-=zcore= 0. 2034 %(d<0.5)=0. 0847 % (d<10=0. 1441 %{d<2)=0. 1610 %{d<4)=0.4237

(2). Multiple thresholds version.

Figure5.7: The TM-score from a different version.

Figure 5.7 shows that the TM-scores from different version is quite similar; it means that

the multiple thresholds probability method is a reliable way to select the prediction of the

contact from the RR file.
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T0859 T0862 T0863 T0866 T0870

e Multi-thresholds version =~ Previous version

Figure5.8: The comparison of the two versions.

Figure 5.8 shows that the multiple thresholds probability version can be faster than the
previous version. We take protein T0859 and T0870 as examples, the running time of two
protein sequences in the last version is 154.36 minutes and 159.63 minutes, and the
running time in multiple thresholds version is 140.58 minutes and 143.74 minutes. The
improvement of these two examples is 8.9% and 9.95%. It can improve efficiency while

keeping accuracy.
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Figure5.9: Visualize the 1nz0 protein model.

This TM-score is generated based on the thresholds 0.6, 0.4, and 0.2, in the future we can
try some different thresholds. And we can use different weights in different clusters to

improve the performance.
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Chapter 6 Summary

In this research, we ran our system based on the Red Hat Enterprise Linux Server release
6.4 (Santiago), and CPU has four cores. We tested our results based on the dataset CASP
12, which can provide research groups with the opportunity to test the structure prediction
methods. CASP is a Critical Assessment of protein Structure Prediction, and it can help

advance the methods of identifying protein 3-D structure from its amino acid sequence.

processor : B

rendor_1d : AuthenticAMD

pu family : 21

odel 1 1

odel name : AMD Opteron(tm) Processor 4284
stepping : 2

pu MHz : 3000.312

ache size : 2048 KB

physical id - 0

s1blings - 8

ore 1d - 0

pu cores 4

apicid : B

initial apicad : @
pu :
pu_exception
puid level

P

.

*

D.'Jl"-[': [4¥]

* e b
[ s ]

b
[4¥]
(%5}

Figure6.0.1: Linux system information.

Under this system, we tested our new version CONFOLD, and we get the running time

information. The length of protein T0859 is 129, in the CONFOLD version 2 running
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time is 154.36 minutes, and in the new version, the running time is 140.58 minutes. We

have improved efficiency by 8.9%.

Running Time
220

200
180
160
140
120

100
T0859 T0862 T0863 T0866 T0870

o Multi-thresholds version ==~ Previous version

Figure6.2: Running time improvement.

And for the protein which contains the disulfide bond information such as protein l1a4g,

the TM-score can be improved from 0.2006 to 0.2041. We have developed the accuracy

by 1.74%.
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Disulphide Bond

. TH-SCORE . * TR-SCORE *

* A scoring function to assess the similarity of protein structures . * A scoring function to assess the similarity of protein structures .

. Bucd on statistics: . * Based on statistics: .
0.0 < T-score < 0,17, random structural similarity . * 0.0 < TH-score < 0,17, randem structural similarity .

o 0.5 < TH-gcore < 1.00, in about the same fold . . 0.5 < TH-score < 1.00, in about the saae fold .
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Figure6.3: Disulfide bond feature improvement.

For the protein which contains the beta-sheets contacts information such as 1nzD, the

TM-score can be improved from 0.4225 to 0.4358. We have developed the accuracy by

3.14%.
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Figure6.4: Beta sheet contacts feature improvement.
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The reconstruction of the protein model is a very complicated task, which contains many
influencing factors. In this research, we improved the CONFOLD system with three new

features, and the results show that in the new version, it can perform better.
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Chapter 7 Future Work

In the future, we can continue to improve the performance of CONFOLD. According to
the disulfide bonds part, now we can use DIpro2 to predict the position of pairs of
cysteines, but we still cannot recognize the residue is thioredoxin or peptide. CNS can
receive this kind of information to make the structure more reliable.

What’s more, we can modify the thresholds and then observe which set of thresholds will
get the best TM-score and the fastest running time. In this way, the performance of
CONFOLD will be improved.

We can also integrate the HHblits, HHfilter, CCMpred, and bbcontacts into one program

so that the user can save a lot of time generating multiple sequences and direct couplings.
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Chapter 8 Conclusion

In this research, we got familiar with the CONFOLD and added some new features to it.
Because the CONFOLD is built based on CNS solve, we also spent plenty of time

studying how to use CNS.

The first feature of this new version is disulfide bond prediction, using DIpro2 to predict
the information is my first step. Then the next step is to figure out how to make CNS
using the prediction, and the tutorial told me to write those cysteines position into the
Molecular topology file. Since then, the new version can recognize disulfide bond

information from input files.

Adding Beta-sheet contacts prediction into CONFOLD is also a new feature. During this
part, we focused on how to recognize the direction of the beta-strands. After a long period
of research, we found “bbcontacts” which can predict the position and direction of the
beta-sheet contacts. The “bbcontacts” require the secondary structure file and direct
couplings matrix, so we need to use HHblits, CCMpred and Psipred to generate the
required input files. After getting the prediction of beta-sheet contacts, we need to
exclude the unpaired strands. And we are then writing the beta strands information into

“hbond.tbl” file to reconstruct protein.

And the last new feature is multiple thresholds contacts probability. CONFOLD is a

residue-residue contact-guided ab initio protein folding method, but the value of
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probability in the RR file is not used. In this research, we separated contacts into different
clusters and gave each cluster a weight. It can make the program faster and keep the TM-

Score.
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