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Abstract: A support vector machine (SVM) based detection is applied to different equalization
schemes for a data center interconnect link using coherent 64 GBd 64-QAM over 100 km standard
single mode fiber (SSMF). Without any prior knowledge or heuristic assumptions, the SVM is able
to learn and capture the transmission characteristics from only a short training data set. We show
that, with the use of suitable kernel functions, the SVM can create nonlinear decision thresholds
and reduce the errors caused by nonlinear phase noise (NLPN), laser phase noise, I/Q imbalances
and so forth. In order to apply the SVM to 64-QAM we introduce a binary coding SVM, which
provides a binary multiclass classification with reduced complexity. We investigate the performance
of this SVM and show how it can improve the bit-error rate (BER) of the entire system. After
100 km the fiber-induced nonlinear penalty is reduced by 2 dB at a BER of 3.7 × 10−3. Furthermore,
we apply a nonlinear Volterra equalizer (NLVE), which is based on the nonlinear Volterra theory,
as another method for mitigating nonlinear effects. The combination of SVM and NLVE reduces
the large computational complexity of the NLVE and allows more accurate compensation of nonlinear
transmission impairments.

Keywords: digital signal processing; support vector machines; BCSVM; nonlinear equalization;
coherent detection

1. Introduction

The use of machine learning techniques in optical communication networks is currently a popular
research topic [1]. Among the various algorithms for machine learning the support vector machine
(SVM) can provide a powerful way of learning nonlinear functions. Besides noise, optical data
transmission is also affected by linear and nonlinear impairments. Using coherent detection at
the receiver, linear effects like chromatic dispersion can be successfully post-compensated by digital
signal processing (DSP). Compensation can be done through a finite impulse response filter, also known
as feed-forward equalizer (FFE). In case of long transmission distances, a separate electronic dispersion
compensation (EDC) [2] is usually implemented, since otherwise too many coefficients for the adaptive
FFE structure are required. With an increasing launch power, nonlinear effects additionally occur.
For single-carrier transmission self-phase modulation (SPM), caused by the Kerr effect and nonlinear
phase noise (NLPN), which results from the interaction between the amplified spontaneous emission
(ASE) noise of inline optical amplifiers and SPM can be regarded as the most limiting nonlinear
distortions [3]. These impairments cannot be compensated with conventional FFE structures. Previous
approaches for the compensation of these nonlinear impairments focused on replacing the FFE by
a nonlinear Volterra equalizer (NLVE) [4] or, if the fiber parameters are known, to replace the EDC with
a digital backpropagation algorithm to compensate for linear and nonlinear effects simultaneously [5].
After using these methods, a signal detection with conventional linear decision thresholds takes place.
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Another approach for the compensation of nonlinear effects is an extended signal detection where
the decision thresholds are adjusted to the disturbed constellations. In other words, the equalization
problem is defined as a classification task. To solve this problem suitable algorithms such as expectation
maximization (EM) [6,7], k-means algorithm (KMA) [8,9], neural network [10] or SVM [11] can be
found in the large field of machine learning algorithms.

The advantage of extended signal detection by SVM is already emphasized in references [3,12–14].
In order to investigate exclusively the influence of nonlinearities such as NLPN or SPM, the influence
of dispersion has been neglected deliberately in the past [3,12]. The absence of dispersion means that
the interaction between dispersion and nonlinearities is not investigated. Thus, it should be examined
whether these equalization techniques work equally well in dispersion influenced transmission.

In this paper we apply the SVM algorithm to a 64-QAM based coherent optical data center
interconnect transmission system to mitigate nonlinear impairments after 100 km transmission
distance, including the influence of dispersion. We numerically investigate, for the first time of
our knowledge, the impact of different combinations of equalizer (FFE, NLVE) with various detection
structures (SVM, KMA). Additionally, we show that the combination of SVM and NLVE can reduce
the computational complexity of the NLVE and that this combination allows a more accurate
compensation of the impairments that arise in an optical transmission system that is operated in
the nonlinear regime.

2. Theoretical Analysis

2.1. Support Vector Machine

The support vector machine is a commonly used algorithm to classify data sets with binary
output values. The method derived by Vladimir Vapnik is mainly based on the basics of statistical
learning theory and applies the quadratic optimization problem to distinguish two classes in a feature
space [15]. The training is done with a training set S of length N and consists of the input data xi
and binary classified data yi:

S = (x1, y1), ..., (xn, yn), xi ∈ Rn, yi ∈ ±1 (1)

In order to separate the input features, a hyperplane h(x) is calculated by a quadratic optimization
problem. To allow more general decision surfaces, the input data is mapped to a higher dimensional
feature space, that is, φ(x) ∈ Rm, where the data is linearly separable. The SVM classifies an estimation
according to

ŷ = sign{wTφ(x) + b}, (2)

where w and b are an orthogonal vector to h(x) and a bias term, respectively, which are determined
in a training process. The optimal hyperplane is found, if the margin—smallest distance between
the hyperplane and any of the samples—is maximized [3,16].

The mentioned optimization problem distinguishes two classes whose feature vectors are located
in an ideally delimitable area. If there are strong deviations of individual data points in the training
set, for example, if a data point is located in the area of the contrary class, it is not possible to separate
the data successfully. The problem can be solved by using a soft margin classifier. This enables
a tolerance against data anomalies. For this purpose the optimization problem is extended by an error
term including a weighting coefficient C and slack variables ξ [3]

min
w,b,ξ

1
2
||w||2 + C

N

∑
i=0

ξi (3)

under constraints
yi(wTφ(x) + b ≥ 1− ξi) (4)
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ξi ≥ 0, i = 1, ..., N. (5)

The basic algorithm of the SVM has been formulated in terms of scalar products in the feature
space F. According to Mercer’s theorem the intensive calculation in the higher dimensional space can
be significantly reduced by a suitable kernel function K(x, xi) = φ(x) · φ(xi) [16]. With the use of
different kernels, diverse problems can be solved, which opens up a wide variety of SVM learning
machines. In case of M-QAM transmission, the radial base function (RBF) is the most suitable kernel
and is defined by

K(x, xi) = exp(−γ||x− xi||2) (6)

with the kernel parameter γ > 0 [16].

SVM-based Detection

For coherent optical communications systems, the modulation format M-QAM is usually selected.
To be able to process the signals at the receiver by using an SVM, each cluster of the signal constellation
represents one class, for example, 16-QAM consists of 16 classes. Since the SVM is fundamentally
a binary classifier, an extension of the SVM structure is required. Various methods have been proposed
for combining multiple binary SVMs in order to build a multi-class SVM. Common methods to extend
the SVM are the one-vs-one (OVO), one-vs-all (OVA) and binary-coding SVM (BCSVM) or also called
M-ary SVM [15]. The OVO principle is based on the comparison of two different classes from the entire
set of all classes. If a data set contains N different classes, then N(N − 1)/2 different binary SVMs
are trained. For the concluding decision a voting procedure is used and the class with the highest
vote is detected. In the OVA scheme the data of one class is separated from the complete data of all
remaining N − 1 classes. Thus, N SVMs are trained. At the end, the class with the highest vote is
detected. For communication systems, the BCSVM is the most appropriate choice. The symbols or
classes are already labelled in binary format, enabling each individual bit to be modelled with one
conventional SVM. For M-QAM log2(M) SVMs are required.

Figure 1a shows the principle of the BCSVM for 16-QAM. The respective SVMs are color-coded
with the corresponding bits. Figure 1b illustrates the processing structure. The complex input vector
xrx contains the received symbols divided into real and imaginary parts. Training is done according to
the transmitted bit sequence y. The separating hyperplane of each SVM is determined by quadratic
programming during training [3].

[log (M)  N ]₂ "#$%&
y

y₁

y₂

y₃

y₄

Figure 1. Binary Coding Support Vector Machine (BCSVM) nonlinear classification using four support
vector machines (SVMs) [3]: (a) Coding and classification scheme for BCSVM based detection and
(b) the processing structure for BCSVM used for 16-QAM signal detection.

The output of the binary SVM array is an estimation of the transmitted bit sequence
ŷ = [ŷ1, ŷ2, ŷ3, ŷ4] . Consequently, the received signal is classified and demodulated at the same time.
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Figure 2 exemplarily shows an iteration of the training process of the presented methods. The data
points of the two opposite classes are colored red or blue. It can be seen, that the OVA and BCSVM
method, in contrast to the OVO, take into account all data points in each iteration step. This may
result in a significant computational complexity, if too much training data is used. However, the OVO
method requires significantly more iterations steps than the other methods [17].

( )a ( )c( )b

Figure 2. Illustration of one iteration during training for (a) OVO, (b) OVA and (c) BCSVM methods in
case of 16-QAM transmission. The opposite classes are marked in red and blue and the corresponding
hyperplane is indicated by the dashed line.

During the training process it is necessary to adapt certain parameters of the optimization problem
to the characteristics of the input data. The aim is to avoid over- or underfitted systems, which leads to
a significantly reduced classification accuracy [12]. The adaptation and verification is implemented
using the two optimization algorithms Grid-Search and Cross Validation [12,18]. In the optimization
process, 70% of the training data is used for training and 30% for validation.

2.2. Nonlinear Volterra Equalizer

The principle of the NLVE is based on the theory of the Volterra series, which is an important
tool for the analysis of nonlinear systems and provides a complete description of the channel
nonlinearity [19,20]. The realization can be done either in the frequency domain or entirely in the time
domain, as will be shown here. A general discrete Volterra filter input-output relation is given by [4]

yn =
N1−1

∑
v = 0

evxn−v +
N2−1

∑
v=0

N2−1

∑
l=v

ev,l xn−vxn−l +
N3−1

∑
v=0

N3−1

∑
l=v

N3−1

∑
m=0

ev,l,mxn−vxn−l x∗n−m, (7)

where xn and yn are the complex-valued filter input and output of the equalizer at the time index n, Ni
is the memory length of the i-th order and ev, ev,l , ev,l,m are the equalizer coefficients. The first term of
Equation (7) represents a linear filter, whereas the others are nonlinear.

The coefficients can be estimated using the minimum mean square error (MMSE) criterion.
The dimension of the model grows rapidly, as can be seen from the total number of coefficients given by

Nt = N1 + N2(N2 + 1)/2 + N2
3 (N3 + 1)/2. (8)

According to Equation (7) we choose the notation NLVE[N1,N2,N3] as full description of
the Volterra filter. In this case N1-N3 represents the memory length of the 1st–3rd order of the NLVE.

3. Simulation Setup

The proposed techniques are subsequently thoroughly evaluated in numerical simulations
for a 64 GBd 64-QAM system. For simulation purposes we will initially restrict ourselves to
a single-polarization system but it can be extended straight forward to a dual-polarization system.
A schematic of the general setup is given in Figure 3. A 216 randomly generated bit sequence,
using the MATLAB R2018a (9.4.0.813654) rand function, is mapped to the 64-QAM symbols. The digital
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to analog conversion is modelled as a root-raised cosine pulse shaping filter with roll-off factor β = 0.3.
The symbols are modulated on the carrier (wavelength λc = 1550 nm) via an I/Q MZ-modulator.
The linewidth of the laser is set to zero. The modulated optical signal is coupled into the fiber after it is
amplified by the erbium doped fiber amplifier (EDFA) with a noise figure (NF) of 5 dB.

I/Q Imbalance
2·f!"#

B = 90 GHz
I/Q

MZM
CO-RX

EDC

NLVEFFE w/o

Equalizer

Detection & Demapping

Matched Filter

Downsampling f!"#

Bit Generator

Mapping

Pulse Shaping

SSMF

Noise Loading

( )a

( )b

Tx DSP

Rx DSP

Link Setup

SVMLD KMA

BER

Figure 3. Simulation setup of the 64 Gbd 64-QAM single-polarization coherent optical simulation
system including two different setups for the link. By using the setup (a) a B2B transmission with noise
loading is examined. The setup (b) consists of a 100 km SSMF transmission with subsequent electronic
dispersion compensation (EDC) to investigate a dispersion uncompensated link.

In order to investigate the performance of the enhanced detection algorithms, two types of
communication systems are modeled. The link setup (a) is used to test a back-to-back (B2B)
scenario, that is, no transmission link was simulated. The setup (b) is used to examine a dispersion
uncompensated link, where the dispersion is compensated by DSP at the end of the transmission.
The parameters for the SSMF are given by the attenuation coefficient α = 0.2 dB/km, the dispersion
coefficient D = 17 ps/(nm·km), dispersion slope S = 0.06 ps/(nm2·km) and the nonlinear coefficient
γ = 1.3 (W·km)−1. For a complete compensation of span loss an EDFA (NF = 5 dB) is applied.
After transmission a Gaussian optical filter with 90 GHz bandwidth is used to reduce ASE noise.
The received signal is detected by a coherent receiver and downsampled to 128 GS/s. After matched
filtering an ideal EDC is used to compensate for dispersion. After the equalization stage, which
consists of either an FFE, an NLVE or no equalizer at all (w/o), the signal is downsampled to symbol
frequency and detected. Detection and demodulation is performed either linear by using conventional
linear decision thresholds and demapping, here called linear detection (LD), or by machine learning
algorithms such as SVM or KMA [8,9]. System performance is evaluated by BER. The hard-decision
forward error correction (HD-FEC) limit is assumed to be 3.7 × 10−3. We examine the suitability
of the SVM as a classifier and combine the mentioned equalizer schemes with the SVM to achieve
the maximum gain of the machine learning algorithm.

Since more coefficients require more training symbols, increasing the number of coefficients
without adjusting the number of training symbols might decrease the performance. Thus, for a correct
adjustment of the Volterra equalizer it is necessary to determine the optimal number of coefficients
and training symbols. For the further investigations the training length of 2048 symbols and memory
lengths of NLVE[4,2,5] was determined after optimization.

4. Results and Discussion

Initially the behavior of SVM against I/Q imbalances was examined. In an I/Q modulator,
the ideal phase shift between the I- and Q-branch is 90◦. Due to physical imperfections of the system
components and the non-perfect tuning of the π/2 phase shift, amplitudes and phase mismatches may
occur. These I/Q imbalances may considerably disturb the signal constellation [21]. We investigate
the I/Q imbalances in a B2B scenario according to Figure 3a at an optical signal-to-noise ratio (OSNR)
of 28 dB, where the signal is disturbed at the transmitter side. The amplitude mismatch is set to 0.125
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and the phase mismatch is varied between 0◦ and 30◦. To cope with these imperfections, we examine
the performance of the BCSVM and the OVA-SVM and compare them to LD. In order to compare
the SVM with other enhanced detection techniques, the KMA is added to this comparison. The training
length of the respective SVMs and KMA is set to 1024 symbols. Moreover, the number of iterations for
KMA is set to 5.

Figure 4 shows the performance of the various detection methods depending on the transmitter
I/Q imbalances. As expected, detection by machine learning algorithms is more robust against
I/Q imbalances compared to LD. For low phase mismatch, the performance of the two enhanced
detection techniques seems similar. However, above 12◦ phase mismatch the KMA’s performance
rapidly deteriorates. For SVM a decline in performance can be observed above 20 ◦ phase mismatch.
Compared with OVA-SVM, the BCSM achieves slightly better performance, which is in the range
of 1 × 10−4.

@OSNR =   8dB2

LD

BCSVM

OV -SVMA

KMA

Figure 4. Simulations results in case of transmitter I/Q imbalances. BER vs. phase mismatch for
an amplitude mismatch of 0.125 and 28 dB OSNR.

It should be mentioned that SVM and KMA are two completely different procedures. The SVM
has already been introduced as classification algorithm in Section 2.1. The KMA, in contrast, belongs
to a cluster-based detection. The training of KMA is iterative and unsupervised, while the training
of the SVM is supervised. The KMA is initialized with the centers of the cluster. Therefore, it is
necessary to know how many clusters are present and where the centers are approximately expected.
If the actual cluster is too far away from the expected cluster, the KMA is no longer able to separate
the clusters correctly. This can be seen for example in the constellation of the KMA at 17.5 ◦ phase
mismatch, where the field at the top right has been assigned to about two full constellation points.
Although the centers of the clusters are updated in each iteration. This effect may also occur in case of
a phase rotation induced by SPM. Furthermore, the KMA is only a linear algorithm in essence, while
the SVM is a nonlinear classifier due to the usage of kernels. Accordingly, the KMA is unsuitable for
highly complex and nonlinear data distributions and is therefore no longer used as comparison in
the following investigations.

Regarding the visualization of the decision thresholds, the different working principles of
the algorithms can be observed. Based on the RBF kernel, the SVM calculates significantly rounder
and softer decision thresholds than the KMA. Additionally, a difference between the multi-class
methods of the SVM can be seen. Therefore, we would like to point out at this point that besides
the selection of the kernel also the choice of the SVM multi-class method may have a more or less
significant influence on the results.

Next, we include the fiber in our simulations. To evaluate the ability of the SVM to compensate
nonlinear impairments in the 100 km setup for different launch powers, we compare the nonlinear
detection by SVM with an FFE and an NLVE. To distort the 64-QAM constellation we set the modulation
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depth of the modulator to m = Vpp/Vπ = 2.2 and generated an I/Q imbalance with 5% phase
deviation from 90◦. The number of training symbols for SVM is set to 1024.

The BER as a function of the launch power after 100 km dispersion uncompensated transmission is
shown in Figure 5. The launch power of the 64-QAM signal ranges from−6 to +12 dBm. We investigate
different combinations of equalizers and detection techniques. Figure 5a first presents the results for
FFE[1] and NLVE[4,2,5] in conjunction with LD. In addition, the red curve shows a detection based on
SVM only without any previously inserted equalizer. It can be seen that a nonlinear detection with
SVM only is already quite powerful. Here, the lowest BER is achieved by SVM at 3 dBm launch power,
which is about six times lower than the BER using the FFE. Up to 4 dBm the best results can be achieved
with SVM detection. Above 4 dBm nonlinear effects dominate and the optimally configured NLVE
shows the best performance while the SVM is not as good as the NLVE but still better than the FFE.
The launch power to stay below HD-FEC can be increased by 2 dB, if NLVE[4,2,5] is used and by 1 dB
if the SVM is used compared to FFE[1]. If an FFE[1] or NLVE[4,2,5] is now added before the SVM,
the overall system performance can be improved significantly, as shown in Figure 5b,c. Especially
the combination of NLVE[4,2,5] and SVM further minimizes the BER significantly as can be seen in
Figure 5c at 3 dBm launch power, where the BER is reduced from 7.7 × 10−5 to 3.1 × 10−6 by SVM.

10
-6

10
-4

10
-2

B
E

R

Launch Power [dBm]

-5 0 5 10
10

-6

10
-4

10
-2

B
E

R

Launch Power [dBm]

-5 0 5 10

(a) (b) (c)

NLVE[4, , ] &2 5 SVM

NLVE[4, , ] &2 5 LDFFE[1] & LD

FFE[1] & SVM

Launch Power [dBm]

-5 0 5 10

HD-FEC

FFE[1] & LD

NLVE[4, , ] &2 5 LD

w/o & SVM

Figure 5. BER as a function of the launch power at 100 km dispersion unmanaged transmission: (a) shows
equalization by FFE[1] and NLVE[4,2,5] combined with LD and only SVM detection. (b) shows the combined
structure FFE[1] and SVM and (c) shows the combination NLVE[4,2,5] with SVM.

The optimum setting for the NLVE is given by NLVE[4,2,5]. So, the total number of NLVE
coefficients sums up to Nt = 82, according to Equation (8). The majority of coefficients belongs to
the third order of the NLVE. Therefore, in our further investigations we have reduced the number of
delay elements in the third order to N3 = 3. Consequently, the number of coefficients is decreased
from 75 to 18 (74%). Figure 6 shows the obtained BER as a function of the launch power for the optimal
and reduced NLVE. The SVM is trained with 1024 and the NLVE with 2048 symbols. It can be seen
that further reducing the coefficients of the NLVE leads to a decline of the overall system performance.
To stay below the HD-FEC, the launch power is reduced by 1 dB in case of NLVE[3,2,3] and LD
compared to the NLVE[4,2,5] and LD. Furthermore, NLVE[4,2,3] is continuously worse than a detection
by SVM only. By combining the reduced NLVE[4,2,3] and the SVM, it can be observed that better
results are achieved compared to the optimally adjusted NLVE[4,2,5] and LD. At 3 dBm launch power,
the BER of NLVE[4,2,3] and LD (green dashed line) is 1.2 × 10−4 and can be reduced to 1 × 10−5 by
SVM (orange dashed line).
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w/o & SVM

NLVE[4,2,5] & LD

NLVE[4,2,5] & SVM

NLVE[4,2,3] & LD

NLVE[4,2,3] & SVM

10
-6

10
-4

10
-2

FFE[1] & LD

Figure 6. BER as a function of the launch power at 100 km for NLVE equalization with optimal
and reduced number of coefficients in combination with SVM based detection.

Finally, we examined the impact of the number of training symbols on the performance of
the NLVE and the SVM. The obtained results are presented in Figure 7 including the investigations for
the NLVE with optimal and reduced coefficients in combination with LD and SVM based nonlinear
detection plus a single detection only by SVM. We increased the number of training symbols from 512
to 3584 at 5 dBm launch power. The main improvement is observed after an increase from 512 to 1024
symbols for all investigated structures.

# of Training Symbols

10-5

B
E

R

1000         1500        2000      2500         3000      3500

(c)(b)

w/o & SVM NLVE[ ,2,5] &4 LD

NLVE[ ,2,5] &4 SVM

NLVE[ ,2,3] &4 LD

NLVE[ ,2,3] &4 SVM

(a)                                                        (b)                            (c)

Figure 7. (a) Shows the BER as function of the number of training symbols for 100 km dispersion
unmanaged transmission at 5 dBm launch power. (b) Shows the the corresponding constellation
diagram for NLVE[4,2,5] & SVM trained with 1024 symbols and (c) Shows the constellation diagram
for NLVE[4,2,5] & SVM trained with 3072 symbols.

The training of the SVM is based on the classes that are included in the classification task.
To ensure that the SVM can learn and capture link properties from ony a small amount of training
data [12], it is important, that besides a sufficient number of training symbols all classes are uniformly
distributed in the training set. For example, with the amount of 512 training symbols and 64 different
classes it is not guaranteed that each class is included in the training data, if a randomly generated
training sequence is used. Concerning the NLVE, the training is based on the amount of inter symbol
interference which is independent on the training data itself. Here, a certain number of symbols is
necessary to estimate the coefficients correctly. In case of the NLVE[4,2,5], the training length of 512 is
not sufficient to determine the coefficients correctly. However, if a certain number of training symbols
is used, the channel estimation of the NLVE can improve its performance barely, even if more training
data is used as it can be seen for the reduced NLVE[4,2,3]. While the plain NLVE and SVM structures
saturated fast, the results with combined NLVE and SVM based detection are quite remarkable.
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5. Conclusions

In this paper we compared and combined nonlinear detection by SVM with post-compensation
techniques for the mitigation of nonlinearities regarding their performance and computational
complexity. Unlike clustering and classification algorithms like EM or KMA, the SVM does not
require any prior knowledge of the modulation format. We have shown that by combining NLVE
and SVM based detection it is possible to improve the overall system performance for 64 GBd 64-QAM
coherent transmission over 100 km. For example, at 3 dBm launch power, the BER is reduced from
7.7 × 10−5 to 3.1 × 10−6 by SVM. It is well known that nonlinear equalization using an NLVE is
computationally quite complex, so a trade-off between complexity and performance is often required.
Therefore, the performance of a reduced NLVE was evaluated and the obtained results have shown,
that by adding an SVM it is possible to reduce the number of coefficients by 74% while maintaining
or improving the overall system performance. The SVM classification approach provides a way to
cluster datasets without prior knowledge of the channel characteristics or the modulation format.
Based on the previous studies and discussions, we strongly believe that in context of coherent optical
transmission systems, an enhanced detection by using SVM and its methods should be further
investigated. So far, we mainly examined a single channel and single-polarization. Other effects among
multiple channels and polarization effects will be taken into account in future studies.
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Abbreviations

The following abbreviations are used in this manuscript:

ASE Amplified Spontaneous Emission
BCSVM Binary Coding Support Vector Machine
BER Bit Error Ratio
B2B Back-to-Back
DSP Digital Signal Processing
EDC Electronic Dispersion Compensation
EDFA Erbium Doped Fiber Amplifier
HD-FEC Hard-Decision Forward Error Correction
KMA K-Means Algorithm
LD Linear Detection
MMSE Minimum Mean Square Error
NF Noise Figure
NLPN Nonlinear Phase Noise
OVA One versus All
OVO One versus One
OSNR Optical Signal-to-Noise Ratio
QAM Quadrature Amplitude Modulation
RBF Radial Basis Function
SSMF Standard Single Mode Fiber
SVM Support Vector Machine
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