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Zusammenfassung 

Menschen, die in niedrig gelegenen Küstengebieten leben, sind durch Sturmfluten und den 

Meeresspiegelanstieg gefährdet. Gefährdungsanalysen quantifizieren die potenziell betroffene 

Küstenbevölkerung und stellen die Basis bei der Identifikation und Auswahl von geeigneten 

Anpassungsmaßnahmen dar. Vor allem räumlich hochaufgelöste Informationen zur Bevölke-

rungsverteilung stellen dabei einen elementaren Eingangsparameter der Gefährdungsanalysen 

dar. Bei grobskaligen Betrachtungen (multinational bis global) bilden Bevölkerungsinformati-

onen auf Zensusebene die räumlich höchstaufgelöste Informationsquelle. Die dabei angenom-

mene Gleichverteilung der Bevölkerung innerhalb von Zensuseinheiten kann bei kleinflächi-

gen Zensuseinheiten (wenige Hektar) akkurat sein, entspricht bei großflächigen Zensuseinhei-

ten (mehreren Quadratkilometer) jedoch nicht der tatsächlichen Bevölkerungsverteilung. Bis-

herige Studien modellieren die Verteilung der Bevölkerung mit einer Vielzahl von Hilfsvari-

ablen, was die Übertragbarkeit in Gebiete mit spärlicher Datenverfügbarkeit einschränkt.  

Die vorliegende Arbeit hingegen arbeitet mit einem neuartigen Ansatz, indem Siedlungs-

gebiete aus dem ‚Global Urban Footprint’ abgeleitet werden. Untersucht wird, ob diese abge-

leiteten Siedlungsgebiete hinreichend sind, um die tatsächliche Bevölkerungsverteilung inner-

halb von Zensuseinheiten nachzubilden. Für die Untersuchungsregion der deutschen Ostsee-

küste zeigt sich, dass die abgeleiteten Siedlungsgebiete bis zu 95,3 % der tatsächlichen Bevöl-

kerung erfassen und somit einen geeigneten Parameter zur Bevölkerungsmodellierung darstel-

len. Darüber hinaus vergleicht die vorliegende Arbeit sechs Ansätze, die die Bevölkerungs-

dichte innerhalb der Siedlungsgebiete differenzieren. Im Vergleich zur Gleichverteilung der 

Bevölkerung weisen die verwendeten Ansätze bis zu sechs Mal geringere Fehlerwerte auf. In 

flutgefährdeten Gebieten reduzieren die verwendeten Ansätze die Überschätzung der gefähr-

deten Bevölkerung um bis zu 29 %. Somit zeigt sich, dass mit Hilfe der aus dem ‚Global Urban 

Footprint‘ abgeleiteten Siedlungsgebiete eine realistischere Verteilung der aktuellen Bevölke-

rung innerhalb von Zensuseinheiten abgebildet werden kann, die zu einer verbesserten Ab-

schätzung der Flutgefährdung beiträgt. 

Den zweiten inhaltlichen Schwerpunkt der Arbeit bildet die Regionalisierung von Bevöl-

kerungsprojektionen im Küstenraum. Viele Gefährdungsanalysen berücksichtigen die Auswir-

kungen des Klimawandels auf den Meeresspiegel sowie auf die Häufigkeit und die Intensität 

von Sturmfluten, während sozioökonomische Veränderungen entweder nicht betrachtet oder 

auf subnationaler Ebene nicht differenziert werden. Diese Arbeit beschreibt fünf sozioökono-

mische Entwicklungspfade für den Küstenraum, die die bestehenden „Shared-Socioeconomic-

Pathways“ erweitern. Basierend auf beobachteten Unterschieden im Bevölkerungswachstum 

zwischen Küsten- und Inlandsgebieten sowie Bevölkerungs- und Urbanisierungsprojektionen 

werden räumlich explizite Bevölkerungsprojektionen mit globaler Abdeckung entwickelt. Für 

die „Low Elevation Coastal Zone“ werden diese Bevölkerungsprojektionen anschließend mit 

Bevölkerungsprojektionen verglichen, die innerhalb eines Landes eine einheitliche Bevölke-

rungsänderung annehmen. Basierend auf dem regionalisierten Bevölkerungswachstum leben 

in diesen Gebieten im Jahr 2100 zwischen 85 Millionen und 239 Millionen Menschen mehr als 

bei einem national einheitlichen Wachstum. Um zu untersuchen, ob Urbanisierung oder Küs-

tenmigration stärker zu diesen Unterschieden beitragen und ob Suburbanisierung diese Unter-

schiede verstärkt oder verringert, verwendet die vorliegende Arbeit das „Dynamic Interactive 

Vulnerability Assessment“ Tool. Im Vergleich zu homogenem Wachstum auf nationaler Ebene 

zeigt sich, dass die geschätzte Gefährdung der Bevölkerung durch Urbanisierung um 7 % bis 
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20 % ansteigt, durch Küstenmigration um weitere 1 % bis 20 % ansteigt und durch Suburbani-

sierung um 12 % bis 22 % abfällt. Diese Ergebnisse zeigen, dass Urbanisierung, Küstenmigra-

tion und Suburbanisierung auf subnationaler Ebene zu Unterschieden im Bevölkerungswachs-

tum führen und deren differenzierte Berücksichtigung zu einer verbesserten Abschätzung der 

zukünftigen Flutgefährdung von Bevölkerung im Küstenraum beiträgt.
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Summary 

Extreme sea levels and sea-level rise are two hazards that can harm populations situated 

in low elevated coastal areas. Impact and vulnerability assessments quantify the number of 

people living in flood prone areas and serve as a basis for planning adaptation measures. One 

of the prerequisites for these assessments is a realistic spatial representation of the potentially 

affected coastal population. Census data provide the highest spatial detail for assessments on 

coarse scales (multi-national to global). Within census units, population is assumed to be dis-

tributed homogeneously. This assumption might hold true for small census units (few hectares) 

but does not represent the actual distribution of population in large census units (several square 

kilometres). Previous studies use many ancillary data to allocate population within census units 

which restricts their transferability to data sparse regions. 

This thesis in contrast uses a novel approach by deriving settlement extents from the 

‘Global Urban Footprint’. It examines whether these derived settlement areas are sufficient to 

reproduce the actual population distribution within census units. For the German Baltic Sea 

region, the settlement extents capture 95.3 % of the actual population, qualifying them as a 

suitable parameter to model the distribution of population. In addition, this thesis compares six 

approaches to differentiate population density within the derived settlement extents. Compared 

to a homogeneous distribution of population, the error in the tested approaches is up to six 

times smaller. In flood prone areas, the tested approaches reduce the overestimation of popu-

lation exposure by up to 29 %. These results thus show that settlement extents derived from 

the ‘Global Urban Footprint’ lead to a more realistic distribution of the current population 

within census units, which improves the assessment accuracy of population exposure to coastal 

flooding. 

The regionalisation of population growth projections in coastal areas is the second focus 

of this thesis. Previous studies that assess exposure to coastal flooding account for changing 

sea-levels or the changes in the frequency and intensity of floods due to climate change. How-

ever, these studies do not consider socioeconomic development at all, or do not differentiate 

socioeconomic development at subnational level. This thesis extends the ‘Shared Socioeco-

nomic Pathways’ for the coastal zone by providing narratives of socioeconomic development 

under five scenarios. Furthermore, it combines observed differences in population growth be-

tween coastal and inland areas with existing projections on population and urbanisation to de-

velop spatially explicit population projections for the entire globe. Subsequently, this work 

compares these projections to projections that do not differentiate population growth within 

countries. Depending on the scenario, it finds the population living in the ‘low elevation coastal 

zone’ in the regionalised projections in 2100 to be 85 million to 229 million people larger. 

Furthermore, the thesis investigates, to what extent urbanisation or coastal migration contribute 

to these differences and whether urban sprawl increases or decreases these differences by em-

ploying the ‘Dynamic Interactive Vulnerability Assessment’ Tool. Compared to homogeneous 

population growth within countries, urbanisation increases the assessed exposure by 7 % to 

20 %, coastal migration increases the assessed exposure by 1 % to 20 % and urban sprawl de-

creases the assessed exposure by 12 % to 22 %. The results show that urbanisation, coastal 

migration and urban sprawl lead to heterogeneous population growth on a subnational level. 

Accounting for these differences in population growth contributes to improved estimates of the 

future population exposure to coastal floods.
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1 Introduction 

Coastal areas offer resources for subsistence, which make them attractive locations for 

human settlement (Neumann et al. 2015). Furthermore, coastal areas are used for recreational 

activities and provide access points to trade and transport. This is reflected in a high population 

density, which is three times higher than the global average and in a high urbanisation level, 

which exceeds the global average by 40 % (Kummu et al. 2016). Land areas that are hydrolog-

ically connected to the ocean and not exceeding an altitude of 10 m are also known as the Low 

Elevation Coastal Zone (LECZ). Globally, these areas amount to 2 % of the land area but host 

more than 10 % of the total population (McGranahan et al. 2007). In 2010, 20 out of 31 meg-

acities (population > 8 million) were located in the LECZ (Brown et al. 2013). 

However, coastal areas face hazards, such as coastal floods. In the period from 1900 to 

2015, coastal floods affected about 172.5 million people and caused almost 1 million fatalities 

(Bouwer and Jonkman 2017). Most fatalities occur in places with high population densities but 

with low protection levels and insufficient warning systems. In order to identify these places 

impact and vulnerability assessments are used. These assessments aim to quantify the risk of 

coastal flooding. According to the Intergovernmental Panel on Climate Change (IPCC) risk is 

defined as a function of hazard, exposure and vulnerability (Field et al. 2012). More detailed, 

hazard refers to natural or human-induced physical events that have a negative effect on ex-

posed or vulnerable elements. Exposure encompasses all elements in an area where hazards 

may occur. Elements outside the hazard zone are not exposed to specific events and therefore 

not at risk. Vulnerability describes the capacity of an element to endure negative effects caused 

by a hazard event (Cardona et al. 2012). For example, if the population is prepared for hazard 

events by taking adaptation measures, it might not be vulnerable but still be exposed. However, 

being vulnerable to a hazard also means being exposed (Cardona et al. 2012). Consequently, 

exposure needs to be assessed before risk can be quantified. 

Exposure assessments that quantify the number of people living in flood prone areas on a 

global scale are of specific interest for international organisations, such as the United Nations 

(UN) and the World Bank (Ward et al. 2013). If consistent methods are used on a global scale, 

the exposure of countries becomes comparable and regions that are most exposed can be iden-

tified. In a next step, international investments can be allocated to those regions to implement 

measures to reduce the risk of coastal flooding (Hammond et al. 2013).  

To decide on specific measures, stakeholders require information on current and future 

exposure. The current exposure of coastal population is mainly induced by extreme sea levels 

(ESL), which lead to a temporal inundation of land areas (hours to days). However, some 

coastal regions already face the consequences of sea-level rise (SLR), leading to permanent 

inundation of land areas. For the next decades SLR will continue and the rate of SLR is pro-

jected to increase. This results in the permanent flooding of larger areas and also more intense 

ESL (Church et al. 2013). At the same time, population in coastal areas is projected to grow 

(Brown et al. 2013; Neumann et al. 2015; Jones and O’Neill 2016). These physical (SLR and 

ESL) and socioeconomic changes (population growth) lead to an increase of population expo-

sure to coastal floods.  

The remainder of chapter 1 is structured as follows: subsection 1.1 discusses the drivers 

leading to SLR and gives an overview of observed global SLR. It introduces the Representative 



20  Chapter 1 

Concentration Pathways (RCPs) and states the projected changes in sea-level until 2100. Sub-

section 1.2 provides an overview of methods and data employed in previous studies to assess 

land areas exposed to coastal flooding. Then, subsection 1.3 introduces spatially explicit pop-

ulation datasets that serve as a basis for assessing current exposure. Subsection 1.4 describes 

approaches to consider population changes employed by previous studies and compares their 

findings. Furthermore, it introduces the Shared-Socioeconomic Pathways (SSPs). This is fol-

lowed by the research questions of this thesis in subsection 1.5. 

1.1 Climate change and coastal floods 

Although climate change has many implications for coastal areas, this thesis focusses on 

the effects on coastal floods. Global warming is the main driver of SLR (Gregory and Lowe 

2000). Higher temperatures lead to melting of land ice (glaciers and ice sheets) and to thermal 

expansion of ocean water. Consequently, the volume of the ocean water mass increases. The 

extraction of groundwater and surface water on land enhances the increase of the ocean water 

mass (Church et al. 2013). However, sea levels do not change at the same rate all over the globe 

but show regional differences. Changes in the distribution and strength of ocean currents, in 

salinity and in the distribution of atmospheric pressure as well as isostatic adjustment and land 

subsidence affect regional sea levels. The net result of the global and regional factors gives the 

regional sea level change (Kopp et al. 2014). 

The global mean SLR amounted to 19 cm in the period from 1901 to 2010, which corre-

sponds to a rate of 1.7 mm per year. The rate increased considerably in the last decades: the 

observed mean rate of global SLR was 1.5 mm per year from 1901 to 1990, 2 mm per year 

from 1971 to 2010 and 3.2 mm per year from 1993 to 2010 (Church et al. 2013). The rate of 

future SLR depends on the emission of greenhouse gasses. Higher emissions lead to higher 

concentrations of greenhouse gasses in the atmosphere, which lead to an increase of the radia-

tive forcing levels compared to pre-industrial conditions. Increased radiative forcing leads to 

higher temperatures, which again cause thermal expansion of the ocean water and melting of 

land ice (Church et al. 2013). The level of future greenhouse gas emissions depends on socio-

economic development and on the willingness or unwillingness to reduce greenhouse gas emis-

sions. The IPCC uses four RCPs to represent different levels of greenhouse gas emissions lead-

ing to forcing levels of 2.6  W/m², 4.5  W/m², 6  W/m² and 8.5 W/m² in 2100 (van Vuuren et 

al. 2011). The stated levels indicate the increase in radiative forcing compared to pre-industrial 

levels. In RCP2.6 radiative forcing peaks at 3 W/m² before 2050 and declines to 2.6 W/m² by 

2100. In RCP4.5 and RCP6.0 the radiative forcing stabilises after 2100 due to a reduction of 

emissions by 2050. RCP8.5 is the only RCP where emissions continuously increase until 2100, 

which also leads to rising radiative forcing levels beyond 2100 (van Vuuren et al. 2011).  

The global mean sea level for the period 2081 to 2100 is projected to rise by 40 cm in 

RCP2.6, by 47 cm in RCP4.5, by 48 cm in RCP6.0 and by 63 cm in RCP8.5 compared to the 

period of 1986 to 2005. The rate of SLR in 2100 is 4.4 mm per year in RCP2.6, 6.1 mm per 

year in RCP4.5, 7.4 mm per year in RCP6.0 and 11.2 mm per year in RCP8.5 (Church et al. 

2013). A structured expert judgement study undertaken by Bamber et al. (2019) suggests that 

these projections underestimate the potential contribution of ice sheet melting to global SLR in 

2100 by 8 cm under RCP2.6 and by 30 cm under RCP8.5. The IPCC Special Report on Ocean 

and Cryosphere considers higher contribution of ice sheet melting and updated the projected 

global mean SLR to 0.43 m (RCP2.6), 0.55 m (RCP4.5) and 0.84 m (RCP8.5) (Oppenheimer 

et al. 2019). 

The total water level is a combination of the mean sea level, the tide and the surge compo-

nent (Santamaria-Aguilar et al. 2017). ESL occur at high astronomical tides and strong surge 



1.2 Assessing flood-prone areas   21 

components. SLR affects all components of the total water level. SLR leads to more frequent 

and more intense flood events, as it rises the mean sea level. Furthermore, studies find that SLR 

has a non-linear effect on tides (Pickering et al. 2017; Mawdsley et al. 2015), which can further 

intensify ESL. Lastly, changes in the intensity, frequency, duration and the path of tropical and 

extratropical storms effect the surge component (Church et al. 2013). 

The heights of SLR and ESL serve as a basis to define current and future exposure of land 

areas to coastal floods. Coastal impact assessments then combine these areas with population 

data to analyse the current exposure of population and to project the future exposure of popu-

lation. 

1.2 Assessing flood-prone areas 

To identify areas affected by coastal floods on a global scale, studies employ digital ele-

vation models (DEMs) (McGranahan et al. 2007; Lichter et al. 2011; Hinkel et al. 2014; 

Neumann et al. 2015; Muis et al. 2017). Only few DEMs have a (near) global coverage, which 

is required for consistent global assessments. The Shuttle Radar Topography Mission (SRTM) 

(Farr et al. 2007) is the most popular open-access DEM (Hawker et al. 2018). SRTM has a 

coverage from 56° S to 60° N and a horizontal resolution of 1 and 3 arc-seconds (approximately 

30 m and 90 m at the equator). For high latitudes outside the coverage of SRTM, studies em-

ploy elevation datasets with a coarser resolution of 30 arc-seconds (approximately 1 km at the 

equator), such as GLOBE (Hastings and Dunbar 1998) or GTOPO30 (USGS 1996) (Neumann 

et al. 2015). SRTM, GLOBE and GTOPO use integers to represent elevation heights in meters. 

The Multi-Error-Removed Improved -Terrain DEM (MERIT-DEM) is the first nearly global 

DEM (coverage 60° S to 90° N) that uses floating-point numbers instead of integers (Yamazaki 

et al. 2017). This allows to differentiate elevation heights in higher detail than meters. How-

ever, these freely available (nearly) global DEMs are surface models, not terrain models. They 

cannot differentiate between the elevation of objects and the bare ground, which can lead to an 

overestimation of elevation in built-up areas or in areas with a high vegetation coverage. Gesch 

(2018) found that in the United States of America SRTM overestimates the elevation of the 

ground by about 4 m. For flood impact assessments, this leads to an underestimation of the 

extent of flood prone areas. The CoastalDEM (Kulp and Strauss 2018) aims to overcome this 

limitation by utilising neuronal networks to correct SRTM elevation heights. For the United 

States of America, Kulp and Strauss (2018) compare SRTM elevation to elevation heights de-

rived from light detection and ranging (LiDAR) data. They employ 23 variables derived from 

DEMs, population densities, vegetation and the Ice, Cloud and land Elevation Satellite (ICE-

Sat) to explain these differences. The variables are then used to predict SRTM errors for the 

entire globe and to correct SRTM elevation data accordingly. 

To define areas exposed to coastal floods on a spatially explicit level, the elevation of each 

cell in a DEM is compared to an elevation threshold which defines the height of a coastal flood. 

For the LECZ, a threshold of 10 m is used, whereas a varying threshold is employed to assess 

the floodplain of ESL. In case the elevation value of a cell does not exceed the elevation thresh-

old, the cell represents a low-lying area that is potentially prone to coastal flooding. Then, the 

identified areas are checked for hydrological connectivity to the ocean (Poulter and Halpin 

2008). Hydrological connectivity ensures that landlocked depressions with an elevation below 

the given threshold are not identified as areas prone to coastal flooding. However, on local 

scales the omission of hydrological connectivity might be desirable, if groundwater intrusion 

as a consequence of SLR is considered (Rotzoll and Fletcher 2013). 

Whereas the described DEM-based scheme (also known as bathtub approach) is accepted 

for identifying areas exposed to SLR, studies question the applicability for modelling the flood 
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extent of ESLs (Vousdoukas et al. 2016). The bathtub approach tends to overestimate the flood 

extent of observed events because it does not consider the available water volume (Breilh et al. 

2013) or water attenuation (Vafeidis et al. 2019). On local scales, hydrodynamic models (e.g. 

DELFT3D) are used to simulate the actual flow movement of water during extreme events 

(Teng et al. 2017). After calibration to site-specific characteristics, these hydrodynamic models 

can simulate the flood extent of observed events. However, the models are computationally 

expensive and require time series of water levels and detailed data on elevation and protection 

measures which are not available for many coastal regions (Teng et al. 2017; Ramirez et al. 

2016). Hydrodynamic models of reduced complexity appear to be a compromise between hy-

drodynamic models and the bathtub approach. Although the computational costs are higher 

compared to the bathtub approach, the overestimation of floodplains can be considerably re-

duced. Ramirez et al. (2016) simulate ESL without waves of three events at different sites and 

compare the results of the bathtub approach to a reduced complexity hydrodynamic model. 

They find that the overestimation of the floodplain in low lying areas can be reduced from 

~200 % to ~60 % if a reduced complexity hydrodynamic model is used instead of the bathtub 

approach. Vousdoukas et al. (2016) use a reduced complexity hydrodynamic model to simulate 

ESL including waves and show that the overestimation of the floodplain can be reduced from 

~230 % to ~70 % compared to the bathtub approach. On the other hand, the studies of Ramirez 

et al. (2016) and Vousdoukas et al. (2016) show that the reduced complexity hydrodynamic 

models lead to a three- to fourfold increase of areas actually flooded during an event but not 

predicted to be flooded. Depending on the risk-tolerance of decision makers, it might be more 

desirable to decide on flood protection measures based on a model that overestimates flood 

extents (worst-case flood extents) than based on a model that falsely claims flood prone areas 

as safe areas that do not need protection. Particularly for multi-national to global assessments 

that account for different scenarios and require more than one simulation, the low computa-

tional costs of the bathtub approach still makes it a valid approach. 

On a global scale, several studies employ the bathtub approach to quantify the size of the 

LECZ or to assess areas exposed to 1 in 100-year coastal floods (see Table 1.1). Lichter et al. 

(2011) determine and compare the size of the LECZ based on GTOPO, GLOBE and the SRTM 

Enhanced Global Map (SRTM-EGM), which combines SRTM with GTOPO elevation data for 

the high latitudes. They find differences of 17 % with SRTM showing the smallest exposed 

area. Based on McGranahan et al. (2007) and Neumann et al. (2015) the LECZ is 11 % and 

9 % larger than reported by Lichter et al. (2011), although the three studies use the same DEM. 

In contrast to the other two studies, the study of McGranahan et al. (2007) does not explicitly 

mention the consideration of hydrological connectivity, which could explain the reported larger 

area of the LECZ in their study. Furthermore, Neumann et al. (2015) use another source of 

elevation data for Greenland, which restricts the comparability to the other two studies to some 

extent. 
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Table 1.1: Global exposure of land areas to coastal hazards. 

Study Hazard Area DEM Exposure (Mio km²) 

Lichter et al. 2011 LECZ GTOPO30 2.78 

 LECZ GLOBE 2.78 

 LECZ SRTM-EGM 2.38 

McGranahan et al. 2007 LECZ SRTM-EGM 2.64 

Neumann et al. 2015 LECZ SRTM-EGM 2.60 

Hinkel et al. 2014 1 in 100-year (DIVA*) GLOBE 1.20 

 1 in 100-year (DIVA) SRTM 0.66 

Muis et al. 2017 1 in 100-year (DIVA) SRTM 0.65 

 1 in 100-year (GTSR**) SRTM 0.45 

* Dynamic Interactive Vulnerability Assessment (DIVA); ** Global Tide and Surge Reanalysis (GTSR) 

The relative differences in exposed areas between different datasets become larger if the 

floodplain of a 1 in 100-year coastal flood is analysed instead of the LECZ. For example, Hin-

kel et al. (2014) show that the floodplain based on GLOBE elevation data is almost twice the 

size of the SRTM floodplain. This observation is in line with the study of Lichter et al. (2011) 

who find that the relative differences between SRTM and GLOBE increase with smaller ele-

vation thresholds. For example, based on SRTM, the area between 0 and 2 meters elevation is 

50 % smaller than that based on GLOBE or GTOPO, whereas the LECZ is 17 % smaller 

(Lichter et al. 2011).  

The study of Muis et al. (2017) shows that the underlying ESL data affect the estimation 

of exposed area considerably. They compare the flood heights and the corresponding flood 

extent of 1 in 100-year coastal floods based on the Dynamic Interactive Vulnerability Assess-

ment Tool (DIVA) (Vafeidis et al. 2008) and the Global Tide and Surge Reanalysis (GTSR) 

(Muis et al. 2016). Their study finds the flooded areas based on DIVA flood heights to be 

~40 % larger than based on GTSR flood heights. Differences in ESL heights can emerge from 

differences in the length of water level time series, the detrending of the original data and the 

sampling of extreme values (Arns et al. 2013).  

This type of uncertainty does not apply to studies focussing on the LECZ, which is defined 

by a fixed elevation level of 10 m. As exposed areas serve as basis for assessing exposure of 

population, the data-related uncertainties stated in this subsection also apply to subsections 1.3 

and 1.4. In the future, the estimates of flood-prone areas will become more robust as the cov-

erage and availability of LiDAR data improves (Gesch 2018). 

1.3 Current exposure of population 

Assessing the exposure of population adds substantial value to impact assessments as pop-

ulated areas in the zone of exposure can serve as a basis for decisions on adaptation (Tamura 

et al. 2019). Comparable to elevation, the number of population datasets that cover the entire 

globe is limited. Different versions of four population datasets are commonly used for assessing 

the current exposure of population to coastal flooding on a global scale (Table 1.2): Gridded 

Population of the world (GPW), Global Rural and Urban Mapping Project (GRUMP), Land-

Scan and History database of the global environment (HYDE). The latter focusses on historic 

population distributions and utilises LandScan data for current population distribution and is 

therefore not introduced in more detail (Klein Goldewijk et al. 2010). The Global Human Set-

tlement Layer (GHS-POP) is another global population dataset, which has so far not been used 

for assessing population exposure to coastal hazards on a global scale but on a continental scale 

(Vousdoukas et al. 2018). All gridded population datasets assume the underlying census data 

to be accurate. However, census data only cover where population is registered, but does not 
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include unregistered population (Leyk et al. 2019). Furthermore, some countries (e.g. Ger-

many) interview only parts of the population for the census and apply statistical methods to 

project these samples to the national level (SBL 2015). 

Table 1.2: Global population dataset used in coastal exposure analysis. 

Data Resolution Year(s) Reference 

GPW v2 2.5’ (~5 km) 1990, 1995 - 

GPW v3 2.5’ (~5 km) 1990, 1995, 2000, 2005*, 2010*, 2015* CIESIN et al. (2005) 

GPW v4 0.5’ (~1 km) 2000, 2005, 2010, 2015*, 2020* CIESIN (2017) 

GRUMP alpha 0.5’ (~1 km) 1990, 1995, 2000 - 

GRUMP v1 0.5’ (~1 km) 1990, 1995, 2000 CIESIN et al. (2011a) 

LandScan 0.5’ (~1 km) 1998, 2000 - 2017 Dobson et al. (2000) 

HYDE 5’ (~10 km) 10.000 BC - 2005 Klein Goldewijk et al. (2010) 

GHS-POP 250 m & 1 km 1975, 1990, 2000, 2015 JRC and CIESN (2015) 

* extrapolations 

GPW, GRUMP and LandScan are based on compilations of census data but apply different 

techniques to redistribute the population within census units. GPW uses areal weighting to 

distribute population on land area, leading to a homogeneous distribution of population on land 

areas within administrative units (Doxsey-Whitfield et al. 2015). GRUMP and LandScan em-

ploy dasymetric mapping to refine the aerial weighting. GRUMP utilises night-time lights sat-

ellite measurements to define urban and rural areas. In the next step of the GRUMP processing 

scheme, the urbanisation level and the total population per administrative unit are used to cal-

culate the total urban and rural population, which are subsequently allocated to urban or rural 

areas (Balk et al. 2006). LandScan employs land cover data, slope, roads, night-time lights and 

settlement points as ancillary data to calculate probability coefficients for disaggregating pop-

ulation within administrative units. Different to GPW or GRUMP that give the number of peo-

ple physically present at the time of the census (de facto population), LandScan provides an 

average of day and night population (ambient population) (Dobson et al. 2000). 

Figure 1.1 visualises the differences between the datasets. For the New York metropolitan 

area, small census units lead to slight differences in the distribution of people between the 

datasets. For the south-western Baltic Sea region, the Nile delta and the Mekong delta, Land-

Scan shows a heterogeneous distribution of population. The differences between GPWv4 and 

GRUMP are relatively small. For the Nile and Mekong deltas, GRUMP allocates the popula-

tion more heterogeneously than GPWv4 does, whereas finer resolved census data lead to a 

more heterogeneous distribution of population for the south-western Baltic Sea region in 

GPWv4 as compared to GRUMP. 

The processing scheme of GHS-POP is comparable to the processing scheme of GRUMP. 

Instead of night-time lights GHS-POP utilises a build-up mask generated based on Sentinel 1 

and Landsat satellite images. Population counts per administrative unit are taken from GPW 

v4. Within administrative units, population is disaggregated based on the density of built-up 

areas (JRC and CIESN 2015). Other population datasets cover continents (e.g. WorldPop pro-

ject for Africa (Linard et al. 2012), Asia (Gaughan et al. 2013) and Latin America (Sorichetta 

et al. 2015); GEOSTAT for Europe (Batista e Silva et al. 2013)) or individual countries. These 

datasets on national scales can provide very detailed information if they are products of the 

national census. However, the quality, frequency and availability of census products can differ 

considerably between countries, which limits the consistency and comparability for global or 

multi-national assessments (Wardrop et al. 2018; Lloyd et al. 2019). 
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Figure 1.1: Allocation of population in GRUMP, GPWv4 and LandScan for four regions. All maps use the same 

scale. 
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For coastal exposure assessments, population located in the LECZ and in the 1 in 100-year 

coastal floodplain are of specific interest (Neumann et al. 2015). The population in the LECZ 

for the year 2000 ranges in most studies from 560 million to 630 million, depending on the 

population dataset and the DEM used to identify the LECZ (Table 1.3). However, Jones and 

O’Neill (2016) estimate 700 million people living in the LECZ based on GPW data for the year 

2000. The population located in the floodplain of 1 in 100-year coastal floods in 2010 between 

different studies ranges from 93 million to 310 million, depending on the elevation, population 

and ESL data. The following paragraphs compare these numbers in more detail. 

Uncertainties in the delimitation of exposed areas also affect the assessment of population 

exposure. The studies of Lichter et al. (2011), and Kulp and Strauss (2019) quantify these un-

certainties by comparing population exposure under different DEMs. Lichter et al. (2011) find 

the LECZ population based on SRTM-EGM is up to ~10 % (~65 million) higher than that 

based on GLOBE. Kulp and Strauss (2019) focus on areas 10 m above mean higher high water 

(MHHW) and identify 25 % (260 million) more population exposed under the CoastalDEM 

than compared to SRTM v2.1. The large difference between SRTM v2.1 and the CoastalDEM 

are due to the different characteristics of the elevation datasets. Whereas SRTM v2.1 is an 

uncorrected DEM that represents the surface (including e.g. vegetation and urban develop-

ment), the CoastalDEM aims to predict and remove deviations between the surface and the 

terrain (Kulp and Strauss 2018). 

Population is not static but changes over time, which makes the reference year a relevant 

parameter to look at. A study by Small and Nicholls (2003) assesses 1200 million people lo-

cated in ‘near coastal’ areas (maximum distance of 100 km to the coast and an altitude of less 

than 100 m) for 1990 (see Table 1.3). Kummu et al. (2016) identify 25 % more people (1500 

million) living in near coastal areas for 1990 than Small and Nicholls (2003) and a total of 1900 

million for the year 2010. These numbers show differences between population datasets 

(HYDE and GPW v2) but also indicate considerable population growth in these areas between 

1990 and 2010. 

The studies of Lichter et al. (2011), Mondal and Tatem (2012) and Hinkel et al. (2014) 

compare different population data to assess exposure to coastal floods. For the LECZ popula-

tion in 2008, Mondal and Tatem (2012) find LandScan to exceed GRUMP v1 by 30.3 million 

people (~4 %). Comparing LandScan year 2006 and GRUMP alpha year 2000 population data, 

Lichter et al. (2011) find LandScan resulting in ~90 million (14 %) to ~110 million (20 %) 

people more in the LECZ than GRUMP alpha. For the floodplain of 1 in 100-year coastal 

floods, Hinkel et al. (2014) find GRUMP v1 population to be 20 million (7 %) to 67 million 

(~70 %) higher than LandScan population. Furthermore, the comparison of the year 2000 

LECZ population based on GPW v3 (2.5 arc-minutes) and LandScan or GRUMP alpha (0.5 

arc-minutes) suggest that coarse resolutions lead to higher estimates of exposure than fine res-

olutions (Table 1.3). These high differences in population exposure based on existing popula-

tion datasets highlights the need for a consistent global population dataset of high spatial reso-

lution that transparently distributes population within census units. 

 



 

Table 1.3: Global population located in areas exposed to coastal hazards. 

Study Hazard Area Population Data Year DEM Exposure (Million) 

Small and Nicholls 2003 Near coastal a) GPW v2 1990 GTOPO30 1200 

Kummu et al. 2016 Near coastal a) HYDE 1990 GTOPO30 1500 

   2010  1900 

Lichter et al. 2011 LECZ Grump alpha 2000 GTOPO30 578.7 

    GLOBE 557.1 

    SRTM-EGM 620.6 

  LandScan 2006 GTOPO30 690.3 

    GLOBE 668.0 

    SRTM-EGM 709.1 

Mondal and Tatem 2012 LECZ GRUMP v1 2008 c) SRTM-EGM 695.7 

  LandScan 2008  726.0 

Kulp and Strauss 2019 MHHW b) + 10 m LandScan 2010 SRTM v2.1 780 

    CoastalDEM 1040 

Jones and O’Neill 2016 LECZ GPW v3 2000 SRTM-EGM 702.2 

McGranahan et al. 2007 LECZ GRUMP alpha 2000 SRTM-EGM 634 

Neumann et al. 2015 LECZ GRUMP alpha 2000 SRTM-EGM 625.2 

 1 in 100-year (DIVA)    189.2 

Muis et al. 2017 1 in 100-year (DIVA) GRUMP v1 2015 d) SRTM v4.1 + GTOPO30 157 h) 

 1 in 100-year (GTSR)    99 h) 

Jongman et al. 2012 1 in 100-year (DIVA) HYDE 2010 e) SRTM v4.1 + GTOPO30 271 

Hinkel et al. 2014 1 in 100-year (DIVA) GRUMP v1 2010 f) SRTM + GLOBE 160 

    GLOBE 310 

  LandScan 2010 g) SRTM + GLOBE 93 

    GLOBE 290 
a) Maximal distance to the coast of 100 km and maximal elevation of 100 m; b) Mean Higher High Water; c) year 2000 data projected to 2008; d) year 2000 projected to 2015; e) year 

2005 projected to 2010; f) year 2000 projected to 2010; g) year 2006 projected to 2010; h) vertical datum referenced to mean seal-level.
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1.4 Future exposure of population 

A number of coastal exposure studies account for changes in physical components (i.e. 

SLR) but keep socioeconomic conditions constant (e.g. Nicholls and Mimura 1998). Other 

studies consider socioeconomic changes but do not account for changes in the frequency or 

intensity of hazards (e.g. Jongman et al. 2012). The value of both types of studies is therefore 

limited, as both physical and socioeconomic conditions change over time. For long term pro-

jections (e.g. year 2100) changes in population and SLR cannot be predicted, as many drivers 

remain uncertain. The use of scenarios helps to overcome this problem (Moss et al. 2010). The 

Special Report on Emissions Scenarios (SRES) have been widely used to represent future 

changes in SLR and population (e.g. Nicholls 2004; Arnell et al. 2004). After the fourth assess-

ment report of the IPCC, the climate change research community initialised the development 

of a new scenario framework (Moss et al. 2010; O’Neill et al. 2017). In contrast to the SRES 

scenarios that aim to represent a wide range of emissions, the new scenario framework aims to 

be useful for adaptation and mitigation analysis by increasing the comparability and interdis-

ciplinarity of studies and by explicitly capturing uncertainties in climate change outcomes 

(O’Neill et al. 2014).  

The core of the new scenario framework is a matrix architecture with the RCPs represent-

ing the increase of the forcing level on one axis and the SSPs representing different socioeco-

nomic developments on the other axis (van Vuuren et al. 2014). Each SSP consists of a quali-

tative narrative describing the respective scenario (O’Neill et al. 2017) and a quantification of 

key elements, such as population (KC and Lutz 2017), economics (Leimbach et al. 2017) and 

urbanisation (Jiang and O’Neill 2017). The SSPs can be extended and refined for the use on 

local scales or for the work on specific sectors or variables (O’Neill et al. 2017; Riahi et al. 

2017). In general, the SSPs describe the ability of society to prepare for and respond to climate 

change impacts, which is represented by the ‘challenge space’ for mitigation and adaptation 

ranging from low to high (Kriegler et al. 2012). RCPs and SSPs represent development path-

ways and only their combination leads to integrated scenarios (van Vuuren et al. 2014). These 

scenarios can be refined by the Shared Policy Assumptions (SPAs), which allow, for example, 

to account for different levels of international cooperation or pricing concepts of carbon emis-

sions (Kriegler et al. 2014). 

A number of studies assesses future exposure of population to coastal hazards (Table 1.4). 

However, the comparability between these studies is limited, as they employ scenarios of dif-

ferent scenario families with different assumptions on global population. For example, Neu-

mann et al. (2015) use four population scenarios developed by the UK Government’s Foresight 

project on Migration and Global Environmental Change (Foresight 2011). Global population 

in these scenarios ranges from 7.9 to 11.3 billion in 2060. Jongman et al. (2012) utilises the 

medium fertility scenario of the 2006 Revision of the United Nations’ World Population Pro-

spects, which projects global population at 9.2 billion people by 2050 (UN 2007). Nicholls 

(2004) employs the SRES scenarios in which global population for 2100 ranges from 7 to 15 

billion (Nakicenovic et al. 2000). Jones and O’Neill (2016) use the population projections of 

the five SSPs, which project global population between 6.9 and 12.6 billion people in 2100 

(KC and Lutz 2017). 
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Table 1.4: Future population located in areas exposed to coastal hazards. 

Study Hazard Area Year 
Population  

Scenario 

Exposure 

(Million) 

Relative  

Exposure* 

Nicholls (2004) 1 in 1000-year 2080s SRES A1FI 314 – 482 ** 5.9 % - 9.1 % 

  SRES A2 564 - 907 ** 4 % - 6.3 % 

   SRES B1 304 - 466 ** 3.8 % - 5.9 %  

   SRES B2 399 - 591 ** 3.9 % - 5.8 %  

Jongman et al. (2012) 1 in 100-year 2050 UN (2006) med 345 3.8 % 

Neumann et al. (2015) 1 in 100-year 

(DIVA) 

2060 Foresight A 393 3.5 % 

 Foresight B 316 4 % 

   Foresight C 411 3.6 % 

   Foresight D 340 3.5 % 

 LECZ 2060 Foresight A 1318 11.9 % 

   Foresight B 1053 13.3 % 

   Foresight C 1388 12.3 % 

   Foresight D 1128 11.8 % 

Jones and O’Neill 

(2016) 

LECZ 2100 SSP1 742 10.8 % 

  SSP2 905 10.1 % 

   SSP3 1146 9.1 % 

   SSP4 793 8.6 % 

   SSP5 798 10.8 % 
* share of global population, ** Nicholls (2004) uses a ‘low growth’ and a ‘high growth’ population scenario. 

Coastal population in the ‘low growth’ scenario changes at the same rates than on national average, whereas in the 

‘high growth’ it increases double the rate on national average and decreases half the rate of national average (in 

case national population decreases) 

Beside the use of different scenario families, studies employ different approaches to ac-

count for future population change in coastal areas. Jongman et al. (2012) and Hinkel et al. 

(2014) assume population in coastal areas to change at the same rate as the national average. 

This approach is easy to apply, as it does not require additional data or computational effort to 

redistribute population. However, this approach does not consider processes on subnational 

levels such as coastal migration or urbanisation, which lead to higher population growth in 

coastal areas (McGranahan et al. 2007; Seto et al. 2012). Nicholls (2004) and Neumann et al. 

(2015) apply correction factors to model higher population growth rates in coastal areas as 

compared to inland areas. Correction factors implicitly account for processes on subnational 

level and require little additional computational effort to determine population growth rates for 

coastal areas. 

In contrast, spatially explicit population projections allow for implementing heterogeneous 

growth characteristics on subnational levels. Grübler et al. (2007) develop gridded projections 

for three out of the four SRES and Jones and O’Neill (2016) develop spatially explicit popula-

tion projections for the SSPs. Both studies consider urbanisation and urban sprawl. However, 

the spatial resolution of the gridded population projections (7.5 arc-minutes; circa 15 km at the 

equator) is too coarse for assessing exposure to coastal flooding as only few locations in the 

floodplain of 1 in 100-year coastal floods extend more than 15 km inland. Furthermore, the 

studies of Grübler et al. (2007) and Jones and O’Neill (2016) do not explicitly account for 

coastal migration, which can underestimate population exposure to coastal hazards. 
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1.5 Research objectives and structure of the thesis 

The aim of this thesis is to improve the spatial population distribution for coastal flood 

impact assessments on a global scale. Following subsections 1.3 and 1.4, this thesis differenti-

ates between current and future population. For current population it aims to improve the allo-

cation of population within census units, and for future population to regionalise population 

growth characteristics. 

The first research question of this thesis is as follows: 

Can satellite derived global settlement extents be used to improve the rep-

resentation of population living in flood prone areas? 

Available global datasets on the current distribution of population either assume homoge-

neous distribution of population on land areas within census districts or follow complex mod-

elling schemes. As stated in subsection 1.3, these complex modelling schemes are either non 

reproducible ‘black boxes’ or utilise a high number of ancillary variables, which are not avail-

able consistently for the entire globe (Lloyd et al. 2019). These restrictions rule out the identi-

fication of relevant processes in population development because a signal identified in the data 

might result from inconsistencies in the input data or from dependences of the variables used 

for modelling. This thesis tests if the use of one ancillary variable (i.e. satellite derived settle-

ment extents) is sufficient to improve the allocation of population within census units. 

Although the focus of this thesis is on improving the representation of coastal population on a 

global scale, the first research question is addressed on a subnational level for the German 

Baltic Sea region. This is due to the availability of gridded census data at high spatial resolution 

(i.e. 100 m) for validation. As the employed settlement extents have a global coverage, the 

transferability to other regions as well as the entire globe is ensured. 

The second research question of this thesis is: 

How does accounting for coastal migration, urbanisation and urban sprawl 

affect the estimates of future population exposure to coastal flooding? 

Jones and O’Neill (2016) provide spatially explicit population projections that account for 

urbanisation and urban sprawl based on the SSPs. As coastal migration affects the population 

growth characteristics in coastal locations (McGranahan et al. 2007; Seto et al. 2012; Neumann 

et al. 2015), it needs to be considered explicitly when downscaling population projections for 

coastal impact assessments. This thesis extends the SSPs for the coastal zone and develops 

spatially explicit population projections for the LECZ at a temporal resolution of 5 years and a 

spatial resolution of 30 arc-seconds (~1 km at the equator), which is 15 times finer than existing 

gridded population projections. This meets the request of Melchiorri et al. (2018), demanding 

for projections at high temporal and spatial resolution. Furthermore, the projections are con-

sistent with the RCP-SSP-scenario framework to ensure comparability to other studies (Moss 

et al. 2010). The developed spatially explicit projections consider coastal migration and urban-

isation. Subsequently, the thesis uses DIVA to assess the exposure of population to 

1 in 100-year coastal floods until 2100 based on the developed population projections, national 

average population growth and the population projections of Jones and O’Neill (2016) that 

account for urbanisation and urban sprawl. 

The remainder of the thesis is structured as follows: Chapter 2 evaluates the performance 

of six approaches to allocate population within census units. A gridded census dataset for the 

German Baltic Sea area is used to evaluate the approaches. While a reference approach assumes 

homogeneous population distribution within each census unit, the other five approaches redis-

tribute population based on settlement extents derived from built-up areas of the Global Urban 
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Footprint (Esch et al. 2017; Esch et al. 2011). Furthermore, the approaches differ in resolution 

of input data and in the complexity of algorithms used to disaggregate population. The Chapter 

is published as Merkens J-L, Vafeidis A (2018) Using Information on Settlement Patterns to 

Improve the Spatial Distribution of Population in Coastal Impact Assessments. Sustainability 

10(9):3170, doi: 10.3390/su10093170. 

Chapter 3 proposes the coastal SSPs, which employ the concept of extending the ‘basic 

SSPs’ for specific applications (O’Neill et al. 2017). The coastal SSPs provide spatially explicit 

population projections with a horizontal resolution of 30 arc-seconds for the five SSPs until 

2100. Based on a literature review, narratives for the coastal zone are developed. Historical 

population growth differences (GDs) between coastal and inland areas are analysed for more 

than 190 countries and GDs are projected for the future using scenario specific modification 

factors. The chapter is published as Merkens J-L, Reimann L, Hinkel J, Vafeidis AT (2016): 

Gridded population projections for the coastal zone under the Shared Socioeconomic Path-

ways. Global and Planetary Change 145:57–66. doi: 10.1016/j.gloplacha.2016.08.009. 

Chapter 4 compares four approaches to regionalise population growth projections. In a 

reference approach population changes uniformly within a country. The second approach ad-

ditionally accounts for urbanisation and allows to quantify implications for exposure analysis. 

The third and fourth approach also consider urban sprawl and coastal migration, respectively. 

The population totals in the four approaches match the population projections developed as 

part of the SSPs (KC and Lutz 2017) on national levels but differ in the population projections 

for coastal zones. The chapter is published as Merkens J-L, Lincke D, Hinkel J, Brown S, Vafei-

dis AT (2018) Regionalisation of population growth projections in coastal exposure analysis. 

Climatic Change 14(1):3. doi: 10.1007/s10584-018-2334-8. 

Finally, Chapter 5 synthesises the key findings of chapters 2 to 4 and discusses them in 

relation to the research questions of this thesis. Furthermore, the chapter proposes activities of 

future research in this field.
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Abstract 

Broad-scale impact and vulnerability assessments are essential for informing decisions on long-

term adaptation planning at the national, regional, or global level. These assessments rely on 

population data for quantifying exposure to different types of hazards. Existing population da-

tasets covering the entire globe at resolutions of 2.5 arc-minutes to 30 arc-seconds are based 

on information available at administrative-unit level and implicitly assume uniform population 

densities within these units. This assumption can lead to errors in impact assessments and par-

ticularly in coastal areas that are densely populated. This study proposes and compares simple 

approaches to regionalize population within administrative units in the German Baltic Sea re-

gion using solely information on urban extent from the Global Urban Footprint (GUF). Our 

results show that approaches using GUF can reduce the error in predicting population totals of 

municipalities by factor 2 to 3. When assessing exposed population, we find that the assump-

tion of uniform population densities leads to an overestimation of 120 % to 140 %. Using GUF 

to regionalise population within administrative units reduce these errors by up to 50 %. Our 

results suggest that the proposed simple modelling approaches can result in significantly im-

proved distribution of population within administrative units and substantially improve the re-

sults of exposure analyses. 

Keywords 

spatial population; Global Urban Footprint; Dasymetric Mapping; coastal exposure; impact 

assessment; Baltic Sea 

2.1 Introduction 

Coastal areas are highly exposed to natural hazards (Kron 2013) and this exposure will 

increase as a result of climate-change-induced sea-level rise (SLR) and associated impacts such 

as flooding, erosion, permanent inundation, and saltwater intrusion (Nicholls and Cazenave 

2010). Coastal flooding, in particular, will increase in frequency and intensity (Wong et al. 

2014) and is expected to be the most costly impact of SLR (Hinkel et al. 2014). At the same 

time, rapid socioeconomic development (Neumann et al. 2015; Merkens et al. 2016; Jones and 

O’Neill 2016), leading to high concentration of people assets in coastal regions and particularly 

in large urban centres, is expected to further exacerbate flood risk. 
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Adaptation measures, in the form of protection, accommodation or retreat, can reduce the 

impact of coastal flooding by several orders of magnitude (Hinkel et al. 2014). In this context, 

establishing long-term adaptation policies constitutes a key element for the sustainability of 

coastal regions (Brown et al. 2013) and will be necessary for achieving the United Nations 

Sustainable Development Goals (SDG) outlined in the ‘2030 Agenda’ (Neumann et al. 2017). 

In particular, coastal adaptation explicitly relates to SDGs 11 (Sustainable Cities and Commu-

nities), 13 (Climate Action), and 14 (Life below Water) and is indirectly linked to other SDGs. 

To inform decisions on coastal adaptation, assessment of the impact of coastal flooding 

has been carried out at different scales (Vousdoukas et al. 2016; Crowell et al. 2010; Hallegatte 

et al. 2013; Hinkel et al. 2014), from global to local. An essential input, but also one of the 

main sources of uncertainty for these assessments, is the spatial distribution of population. This 

parameter is important for defining exposure to hazards, particularly in global and regional 

studies. However, available global datasets are limited in the way they represent how people 

are distributed in space. Two of the most commonly employed datasets are the Gridded Popu-

lation of the World (GPW) (CIESIN 2017) and the Global Rural Urban Mapping Project 

(GRUMP) (CIESIN et al. 2011a). They cover the entire globe at a spatial resolution of 30 arc-

seconds (approximately 1 km at the equator) and have been widely used in coastal-exposure 

analysis (e.g., Paprotny et al. (2018), Reimann et al. (2018), and Jones and O’Neill (2016) for 

GPW; McGranahan et al. (2007), Merkens et al. (2016) and Neumann et al. (2015) for 

GRUMP). GPW is based on population census tables of administrative units and distributes 

population uniformly on land areas within administrative units (Doxsey-Whitfield et al. 2015). 

GRUMP additionally differentiates between rural and urban areas, which are derived from 

nightlight satellite images. This method performs better in developed regions than in develop-

ing or undeveloped regions due to lack of electricity and less light pollution (Balk et al. 2006). 

The assumption of a uniformly distributed population is, however, rather crude and does not 

necessarily represent the true distribution of population. Dasymetric-mapping approaches aim 

to overcome this limitation by using ancillary data to spatially differentiate population within 

administrative units (Deville et al. 2014). The algorithms used in dasymetric mapping can be-

come very complex and data-demanding. WorldPop, for example, which provides freely avail-

able gridded population data for Latin America (Sorichetta et al. 2015), Asia (Gaughan et al. 

2013) and Africa (Linard et al. 2012), uses about 40 variables to model population densities 

(Stevens et al. 2015). The spatial resolution of these datasets is 30 arc-seconds for data on the 

continental level and 3 arc-seconds (approximately 100 m at the equator) for country-level 

data. For global or continental studies, finer spatial resolution would be desirable, as the use of 

data of higher spatial resolution can result in more detailed impact assessments (Vousdoukas 

et al. 2018). However, collecting data for such large numbers of variables is time- and resource-

intensive, and very difficult to implement on a global scale. 

In this study, we used simple modelling approaches that were based on low data require-

ments, for producing improved estimates of population distribution at high spatial resolution. 

We applied and compared these approaches in the German Baltic Sea coast by assessing expo-

sure of population to coastal flooding. To ensure transferability to other areas of interest, we 

used solely the Global Urban Footprint (GUF) (Esch et al. 2011; Esch et al. 2017) as ancillary 

data for regionalizing population within census units. The GUF is a binary settlement mask 

that covers the entire globe. It is available at spatial resolutions of 2.8 arc-seconds (~84 m at 

the equator) and 0.4 arc-seconds (~12 m at the equator). 

We further investigated which of the two GUF produce result in more realistic spatial 

population patterns, thus providing improved estimates of population exposure to coastal flood-

ing. For evaluating the proposed approaches, we compared the estimates of exposed population 

produced with the use of modelled population distributions to the actual exposed population 
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based on gridded census population data. Although the focus of this study is on coastal impact 

assessment, reliable estimates of the spatial distribution of population have a wide range of 

applications, such as impact assessments of other natural hazards or quantification of exposure 

of population to diseases. 

2.2 Study Area 

We analysed 17 districts (NUTS-3 level) in the federal states of Schleswig-Holstein and 

Mecklenburg-Vorpommern in northern Germany that extend to the Baltic Sea. Ten of the dis-

tricts are rural (see Figure 2.1) and consist of 816 municipalities (LAU-2 level). The seven 

urban districts consist of one municipality each, which leads to 823 municipalities in total. 

 

Figure 2.1: Location, administrative boundaries, and distribution of urban/rural districts for the study area. 

Circa 2.25 million people live in the study area, which encompasses approximately 

17,000 km². With a mean population density of about 130 people per km², the study area is 

predominantly rural. The three cities with the highest population are Kiel (235,000), Lübeck 

(210,000), and Rostock (200,000) (Destatis 2015). Including islands, the coastline has a length 

of approximately 2600 km (MLUV-MV 2009). About a quarter of the coast is protected by 
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dikes, which mostly protect densely populated areas (Sterr 2008). Storm surges constitute the 

primary coastal hazard in the region, with the highest storm surge recorded occurring in 1872 

with a measuring a peak height of 3.30 m in Travemünde (Schleswig-Holstein) (MELUND-

SH 2013) and 2.83 m in Wismar (Mecklenburg-Vorpommern) (MLUV-MV 2009). 

2.3 Data and Methods. 

2.3.1 Data 

2.3.1.1 Population 

We used two products of the 2011 Census. First, we used the regular population grid with 

a horizontal resolution of 100 m (Destatis 2015). The population density (population per hec-

tare) and population count (population per cell) did not differ due to the Lambert Azimuthal 

Equal Area Projection (LAEA-EPSG:3035) used in this study. For the 100 m population grid, 

all cells with population below 3 people per hectare were adjusted for data-protection reasons; 

namely, the values of cells with a population of 2 have been adjusted to 3, and cells with a 

population of 1 have been adjusted to 0 (Destatis 2018b, 2013). To assess the effects of this 

data manipulation on the total population numbers in the study area, we aggregated the popu-

lation in the grid of the entire study area. We compared the totals to the population count re-

ported on the municipality level (Destatis 2018a), which is the finest level of census data and 

the second product of the 2011 Census used in this study. The sum of the gridded population 

exceeded the sum of population reported per administrative unit by 6404 for the entire study 

area. As this was a share of circa 0.3 % on the total population, we considered the 100 m pop-

ulation grid as reliable reference data for evaluating different population regionalization ap-

proaches.  

2.3.1.2 Urban extent 

For the identification of urban areas, we employed the GUF, which is a binary settlement 

mask that has been derived from TanDEM-X and TerraSAR-X radar images collected in 2011 

and 2012 (Esch et al. 2017). It is a global dataset, which is available in two resolutions, namely 

2.8 arc-seconds (hereinafter referred to as GUF2.8), and 0.4 arc-seconds (hereinafter referred 

to as GUF0.4). At the equator, this corresponds to a resolution of approximately 84 m and 

12 m, respectively.  

We projected both GUF2.8 and GUF0.4 to LAEA (see Figure 2.2). For GUF2.8 we used 

the cell positions of the census population raster and assigned the value of the nearest neigh-

bour. For GUF0.4, we also used the cell positions of the census population raster and calculated 

the share of urban GUF0.4 cells assigned to each cell with a spatial resolution of 100 m. For 

the original GUF0.4, we used all cells with an urban share larger than 0 % and classified them 

as urban. Additionally, we created an urban mask (hereinafter referred to as GUF0.4 5 %) that 

employed a threshold of 5 % to classify cells as urban (see subsection 2.4 for discussion on the 

threshold). 
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Figure 2.2: Urban share per municipality for GUF2.8 and GUF0.4 5 %. We defined urban share as the percentage 

of land area classified as urban. 

2.3.1.3 Exposed Area 

We used a Digital Elevation Model (DEM) representing surface heights with a vertical 

accuracy of approximately 15 cm and a horizontal resolution of 1 m (AdV 2017) to assess the 

exposed area (see Figure 2.3). In a first step, we projected the data to the LAEA projection and 

aggregated the data to a spatial resolution of 10 m to reduce processing time. Next, we esti-

mated the coastal floodplain considering 8-sided hydrological connectivity to the sea (Poulter 

and Halpin 2008). We used a threshold of 3 m, which corresponds approximately to the height 

of the 1872 storm surge. As all non-river-induced floodplains were within a distance of 24 km 

to the coastline, we additionally implemented a maximum flow distance of 24 km from the 

Baltic Sea to prevent overestimation of the floodplain due to rivers and channels. In a last step, 

we further aggregated the data to 100 m to match the spatial resolution of the population data. 

In the aggregation process, we calculated the share of cells representing exposure per hectare 

and assessed exposed population by multiplying the calculated share with the population count. 
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Figure 2.3: Exposed areas and population density per municipality. 

2.3.2 Resampling of Population 

We compared 6 approaches to regionalise population within administrative units (Table 

2.1). Approach I served as the baseline approach presenting population distribution in global 

datasets. Approaches II to VI employed the GUF. In this context, we used ‘urban’ as areas 

identified as urban in the GUF, which included cities as well as rural settlements. All ap-

proaches were applied on both the district and municipality level. 
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Table 2.1: Main concept the 6 approaches tested. 

Approach Description 

I 
+ no ancillary data used 

+ uniform population density within administrative units 

II and III 
+ population is only assigned to urban areas 

+ uniform population density within urban areas of an administrative unit 

IV 

+ population is only assigned to urban areas 

+ population is assigned proportionally to the share of urban extent per cell 

+ uniform population density in cells with the same urban share within one admin-

istrative unit  

+ population density across and within settlements of the same administrative unit 

differ if urban share differs 

V and VI 

+ population is only assigned to urban areas 

+ settlements can extend over more than one administrative unit 

+ population density increases with extent of settlements 

+ population density between settlements of an administrative unit differs 

+ uniform population density within a settlement 

In Approach I, we assumed that population is uniformly distributed within each adminis-

trative unit, which means that all cells within an administrative unit had the same population 

count (and density as we used an equal area projection). Between administrative units, popu-

lation density differed. This approach is similar to the one used in GPW (Doxsey-Whitfield et 

al. 2015) but does not account for water bodies. In Approach II, we identified the urban extent 

per administrative unit based on GUF2.8. We assumed that population is solely located in these 

areas and distributed the population uniformly in the urban areas of each administrative unit. 

All settlements within an administrative unit had the same population density. In Approach III, 

we used GUF0.4 5 % instead of GUF2.8 to identify urban extent per administrative unit and 

assumed uniform population densities within these areas. Approaches II and III are comparable 

to dasymetric approaches that distribute population based on land cover or land use (e.g., 

Gallego (2010) and Linard et al. (2011)) but less complex, as they assign population solely to 

urban areas. In Approach IV, we weighted the population count per administrative unit based 

on the share of urban extent per 100 m cell calculated from GUF0.4 5 %. Within an administra-

tive unit, the population count in a cell with an urban share of 80 % was twice as high as in a 

cell with an urban share of 40 %. Between administrative units, the population count of cells 

with the same urban share differed. In Approach V, we assumed that population density in-

creases with the size of urban clusters. To define urban clusters, we first buffered clusters in 

GUF2.8 by 150 m (one cell in all directions) to avoid clusters being divided by rivers and parks. 

Second, we performed an 8-sided connectivity analysis of the buffered GUF2.8 to group cells 

to clusters. Finally, we reduced the extent of the defined clusters to the original extent of 

GUF2.8. Next, we calculated the extent and population count for each cluster. We grouped 

these clusters into small (<10 ha), medium (10 ha to 150 ha), and large (>150 ha) clusters based 

on the extent. We assumed a linear correlation between the log cluster extent (in ha) and mean 

population density per cluster. We used the stats package of R Version 3.3.1 (R Core Team 

2016) to fit linear models for both medium and large clusters. We set the upper threshold to 

150 ha to minimize the offset between the linear fit for medium and large clusters and the lower 

threshold to 10 ha to exclude outliers. For medium clusters, we achieved the best fit with an 

intercept of –0.771 and a slope of 3.607. For large clusters, an intercept of –14.16 and a slope 

of 6.29 led to the best fit. For all small clusters, we applied the modelled population density for 

an extent of 10 ha. Next, we multiplied the modelled mean population density with the cluster 

extent to calculate the modelled population count per cluster. Within a cluster, we assumed 
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uniform population densities. On the administrative level, we adjusted in a final step the mod-

elled population totals to the population totals reported in the census. In Approach VI, we fol-

lowed the scheme described in Approach V but used GUF0.4 5 % instead of GUF2.8. Subse-

quently, we buffered all urban pixels by 150 m. We used the same threshold of 10 ha to differ-

entiate between small and medium clusters but a threshold of 235 ha to differentiate between 

medium and large clusters. For medium clusters, an intercept of –2.85 and a slope of 2.78 led 

to the model with the best fit. For large clusters, we achieved the best fit with an intercept of –

20.8 and a slope of 6.0. Approaches V and VI are described in more detail in subsection 2.6. 

2.4 Results and Discussion 

To assess if the GUF can be used as an estimator for population, we compared the urban 

extents classified in GUF2.8, in GUF0.4 without any threshold, and in GUF0.4 5 %. The latter 

employs an urban coverage threshold of 5 % to the areas that actually are populated in the 

census population raster. Results are presented in Table 2.2. We found that 83 % of the popu-

lation live in areas that are defined as urban in GUF2.8. 44 % of all populated areas are not 

classified as urban (omission error) and 31 % of areas that are classified as urban are not pop-

ulated at all (commission error). GUF0.4 appears to be a better estimator than GUF 2.8, as 

95.3 % of the population live in areas classified as urban in GUF0.4. The commission error of 

46 % is higher as in GUF2.8, but the omission error of 18 % is considerably lower. Using a 

5 % urban coverage threshold reduces the population living in areas classified as urban to 94 % 

and increases the omission error to 22 %, but reduces the commission error to 40 %. Since the 

sum of the omission and commission error is lower in GUF0.4 5 %, we did not use the original 

GUF0.4 for our analyses. 

Table 2.2: Confusion matrix for population and urban settlements. 

Urban Extent GUF2.8 GUF0.4 GUF0.4 5 % 

Area (ha) with Population not Classified as Urban 49,960 20,482 25,074 

Area (ha) without Population Classified as Urban 28,357 79,221 59,183 

Area (ha) with Population Classified as Urban 63,708 93,186 88,594 

Omission Error 1 44.0 % 18.0 % 22.1 % 

Commission Error 2 30.8 % 45.9 % 40.0 % 

Population captured 3 83.1 % 95.3 % 94.1 % 
1 Omission error is defined as the share of cells with population >0 that are not classified as urban in the GUF on 

the total amount of cells with a population greater than zero. 2 Commission error is defined as the share of cells 

that are classified as urban in GUF but with a population of zero on the total amount of cells that are classified as 

urban in GUF. 3 Population captured is the share of the sum of population in cells that are classified as urban in 

the GUF on the total sum of population in the study area. 

As cells with a population of one have a value of zero in the census population raster, the 

‘true’ error of commission is lower than the one reported in Table 2.2. The percent of popula-

tion that overlays with urban cells in GUF is also affected by the fact that the values of cells 

with low population (< 3) have been altered in the original census raster (Destatis 2013). Re-

placing population counts of 1 by 0 (2 by 3) reduces (increases) the proportion of population 

in urban areas. As 97.1 % of the population is located in cells with a population larger three, 

we expect this effect to be negligible.  
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2.4.1 Performance on Municipality Level 

We tested the performance of the six approaches on the district level by comparing the 

predicted population on municipality level to the census population on the municipality level 

(Stevens et al. 2015). The performance metrics of the approaches presented in Table 2.3 are 

only representative for the rural districts, as urban districts consist of only one municipality 

each. In the case that urban districts would consist of more than one municipality, we would 

expect the differences in performance metrics between the tested approaches to be smaller, as 

the proportion of built-up area on the total area in urban districts is larger than in rural districts 

(see Figure 2.1 and Figure 2.2). For Approach I, this would lead to an improvement of the 

performance metrics, as the share of nonurban areas and thus the potential of wrongly allocated 

population would reduce. The performance metrics of the other approaches would depend on 

the actual characteristics of urban areas. We expect all approaches to perform best, if popula-

tion within cities is homogeneously distributed. In case of heterogeneously distributed popula-

tion, e.g., due to multi-storey housing, which the GUF and consequently our approaches do not 

consider, we expect the performance of the proposed approaches to decline, as population den-

sities are underestimated. However, if population data are available for city districts, the ap-

proaches can resolve differences in population density within cities. 

Table 2.3: Performance metrics for the six approaches1. 

Approach I II III IV V VI 

GUF - GUF2.8 GUF0.4 5 % GUF0.4 5 % GUF2.8 GUF0.4 5 % 

Homogenisation admin level urban area urban area - settlement settlement 

Q25
2 0 −73 0 −81 −280 −223 

Q50
2 431 59 173 46 −121 −57 

Q75
2 867 257 377 218 22 89 

MAE3 1278 402 570 376 433 395 

RTAE4 0.467 0.147 0.208 0.137 0.158 0.144 

RMSE5 2572 892 1270 835 940 796 

%RMSE6 94 % 33 % 46 % 31 % 34 % 29 % 
1 Calculations are based on the difference (error) in total population per municipality between predicted population 

by the six approaches adjusted to district level minus the census population. 2 Q25, Q50 and Q75 are the 25th, 

50th, and 75th quantile of the error. 3 MAE is the Mean Absolute Error. 4 RTAE is the Relative Total Absolute 

Error, which is defined as the sum of the deviations between modelled and true population on the municipality 

level divided by the total population (Batista e Silva et al. 2013). 5 RMSE is the Root Mean Square Error. 6 %RMSE 

is defined as the RMSE divided by the mean population of administrative units (Stevens et al. 2015).  

Approach I shows overall the highest differences to the census data. The Mean Average 

Error (MAE) and the Root Mean Square Error (RMSE) are approximately double of the re-

spective ones in Approach III, which has the second-highest differences to the census data. 

Both Approaches I and III overestimate population in three out of four municipalities. Ap-

proaches II, IV, and VI show similar MAEs, with Approach IV leading to the smallest MAE. 

Approach VI has the best performance based on RMSE.  

Comparing our results, in terms of absolute values, to other studies is not straightforward, 

as characteristics of settlements in different study areas can considerably differ. In addition, 

many studies use the RMSE or the MAE to compare model performance within a study area. 

If different study areas are compared, the information value that these indicators provide is 

limited, as study areas with high population counts will lead to higher RMSE than study areas 

with small population counts. To overcome this issue and to provide a first-order comparison, 

we used the relative indices %RMSE and Relative Total Absolute Error (RTAE); %RMSE is 

defined as the RMSE divided by the mean population count of the administrative units (Stevens 
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et al. 2015) and RTAE is defined as the sum of the deviations between modelled and true 

population over all administrative units divided by the total true population (Batista e Silva et 

al. 2013). Stevens et al. (2015) calculated %RMSE for GPW for Cambodia (82 %), Vietnam 

(100 %), and Kenya (146 %). Approach I, which is comparable to the approach used in GPW, 

shows an %RMSE of 94 %, which agrees with the findings of Stevens et al. (2015). The dif-

ferent approaches proposed in this study reduce the %RMSE by a factor of 2 to 3, which is 

comparable to the factor 1.6 to 2 reported by Stevens et al. (2015), who use about 40 variables 

to model population density on the national level. Briggs et al. (2007) tested satellite data on 

light emissions and Corine Land Cover data to spatially distribute population for fourteen Eu-

ropean countries. They validated their results against four sets of population data on the Euro-

pean level, and for Great Britain separately. For Great Britain, the RMSE ranged from 238 to 

346 with reported mean populations of 228 and 370. Based on these reported numbers, we 

calculated the %RMSE to be 105 % and 94 %, respectively. The performance is in the same 

order of magnitude as Approach I in our study, but the error is 2 to 3 times higher than in 

Approaches II to VI that actually employed the GUF. On the European level, the RMSE in the 

study of Briggs et al. (2007) ranged from 240 to 412 with reported mean populations of 228 

and 370. This corresponds to a %RMSE of 105 % and 114 %, respectively. However, Briggs 

et al. (2007) validated their results on cell level (1 km resolution), whereas we validated the 

tested approaches on municipality level. Batista e Silva et al. (2013) used a refined version of 

Corine Land Cover to spatially distribute population data on community level for Europe to a 

spatial resolution of 100 m. They reported RTAE on national level between 0.106 and 0.892. 

For Germany, their approaches led to RTAE between 0.247 and 0.281 (Batista e Silva et al. 

2013). The approaches tested in the present study led to an RTAE of 0.467 for Approach I, and 

a range from 0.137 to 0.208 for the approaches employing GUF data (see Figure 2.3). Based 

on these numbers, the performance metrics suggest that GUF can lead to slightly better results 

than land-cover-based approaches. However, our study analysed a subregion of Germany, 

whereas the model performance presented by Batista e Silva et al. (2013) is evaluated nation-

wide. 

The performance of the proposed approaches on the municipality level varies over the 

study area (Figure 2.4). Approach I overestimates population in municipalities with mean pop-

ulation densities below the average of the respective district. The overestimation is higher the 

more concentrated the population is in urban centres. Approaches II and III show in general 

lower prediction errors than Approach I. However, Approach III considerably overestimates 

population in some municipalities, which also leads to higher RMSE and %RMSE than in Ap-

proach II (Table 2.3). Approach IV seems to perform well all over the study area and shows 

the lowest overall MAE. Approach VI and particularly Approach V underestimate population 

in most municipalities. Furthermore, Approach VI shows overall the lowest RMSE and 

%RMSE but considerably overestimates population in some municipalities. 
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Figure 2.4: Prediction errors (observed minus predicted) as percentage of the observed population per municipal-

ity. Prediction errors bigger than –300 were set to –300 for visualisation. 

Approach VI leads in 27.6 % of all municipalities to the smallest absolute error (Figure 

2.5), followed by Approach IV (20.5 %), Approach V (15.8 %), Approach II (14.6 %), Ap-

proach III (14.2 %), and Approach I (5.7 %). For 1.6 % of the municipalities, at least two ap-

proaches led to the smallest error. Approach I leads for 69.3 % of all municipalities to the 

highest absolute error, followed by Approach V (12.6 %), Approach VI (7.2 %), Approach III 

(4.9 %), Approach II (3.0 %), and Approach IV (2.0 %). For another 1.0 % at least two ap-

proaches lead to the highest error. This is in agreement with the results shown in Table 3, which 

indicate the smallest errors for Approaches VI and IV. 
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Figure 2.5: Approaches with the lowest and highest absolute error in predicting population on municipality level. 

2.4.2 Exposed Population 

We evaluated the six Approaches by assessing the exposure of population to coastal flood-

ing and comparing it to the ‘true’ exposure. We assessed the ‘true’ exposure by analysing the 

population living below 3 m based on the 100 m census grid (Destatis 2015). We found that all 

tested approaches led to a considerable overestimation of exposure in our study area. The re-

sults are shown in Table 2.4. Approach V, in which the population density increases with city 

size, shows the lowest error (overestimation of 72 %) if population is adjusted on municipality 

level. Approach I, which distributes population uniformly on municipality level, shows the 

highest error (overestimation of 143 %). 
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Table 2.4: Exposed population for the six approaches adjusted on the district and municipality level. 

Approach GUF 
Homogenisation 

Level 

Adjustment 

Level 

Exposed 

Population  
Error Error% 

I - admin level district 218,478 119,043 120 

I - admin level municipality 241,293 141,858 143 

II GUF2.8 urban area district 185,517 86,082 87 

II GUF2.8 urban area municipality 174,280 74,856 75 

III GUF0.4 5 % urban area district 188,853 89,418 90 

III GUF0.4 5 % urban area municipality 183,793 84,358 85 

IV GUF0.4 5 % - district 187,490 88,055 89 

IV GUF0.4 5 % - municipality 174,465 75,030 75 

V GUF2.8 settlement district 184,052 84,617 85 

V GUF2.8 settlement municipality 170,623 71,189 72 

VI GUF0.4 5 % settlement district 191,590 92,155 93 

VI GUF0.4 5 % settlement municipality 182,035 82,600 83 

 ‘True’ Exposure 99,435   

For all approaches that employ the GUF, we found that population adjustments on finer 

levels lead to improved estimates in exposure analysis. As population is not distributed uni-

formly within an administrative unit, errors are reduced by adjusting data on finer administra-

tive units. Nevertheless, in Approach I, which is comparable to widely used approaches on 

global and regional scales, the adjustment of the data on finer scale led to considerably higher 

errors in exposed population. This suggests that, in the German Baltic Sea region, people tend 

to live near the coast but not in exposed areas. For example, the population density in coastal 

rural municipalities is 34 % higher than in non-coastal rural municipalities. If the seven mu-

nicipalities of urban districts (which are all coastal) are also considered, population density in 

coastal municipalities is 175 % higher than in non-coastal municipalities.  

We also found that previous studies were likely to have overestimated exposed population, 

although different reference dates for population and the modelled flood heights make a direct 

comparison difficult. For example, Sterr (2008) used population numbers on the municipality 

and district level to estimate the 1995 population living on an elevation of 5 m or lower above 

mean sea level for Mecklenburg-Vorpommern at 319,400. This value is more than three times 

higher than the 2011 exposure of population living on elevations of 3 m or lower above mean 

sea level reported for the entire study area. Considering a decline of population in Mecklen-

burg-Vorpommern of 12 % between 1995 and 2011 (StatA MV 2017), the exposed population 

is in the same magnitude as in Approach I or even higher. 

Our results demonstrate that the use of the GUF reduces the overestimation of exposed 

population by 22 % to 27 % on district level and by 40 % to 50 % on municipality level (Table 

2.4). This shows that by not assigning any population to areas with no urban settlements errors 

in impact assessment can be reduced considerably. We also found that approaches with GUF2.8 

led to better results than approaches with GUF0.4 5 % (see Approach II vs. Approach III, and 

Approach V vs. Approach VI). This may seem surprising, as GUF2.8 covers 83 % and 

GUF0.4 5 % 94 % of the population in the study area. However, according to our findings the 

commission error in GUF0.4 5 % is higher than in GUF2.8 (see Table 2.2), which means that 

more uninhabited areas are classified as urban. One reason for this is that urban uninhabited 

structures, such as industrial areas, secondary housing, or small buildings, are resolved at finer 

spatial resolutions. Approach IV shows that GUF0.4 5 % can lead to improved results, if it is 

used to differentiate population density within settlements.  

We must note that our study is based on census data. This means that the population counts 

represent where the population is registered but not necessarily, where the population resides. 
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This is of particular relevance for exposure analysis. Deville et al. (2014) show for France and 

Portugal, that during the summer holiday period (July and August), coastal areas face a popu-

lation increase of > 60 % compared to the population officially registered in the coastal areas. 

We assume that their findings also hold true for the German Baltic coast. As surges in the study 

area are observed during winter, when few tourists are in the study area, we did not explicitly 

account for tourism. However, as GUF does not differentiate between touristic accommodation 

(e.g., secondary houses and hotels) and houses permanently inhabited, we accounted implicitly 

for tourism. This also led to an overestimation of exposed population in all Approaches II to 

VI, if touristic infrastructure is located in exposed areas and residential population are assigned 

erroneously to these areas. The same effect can be seen in industrial areas. These are also re-

solved in GUF but have very low population density or are uninhabited. In the study area, this 

led to an overestimation of exposure, as harbours and shipyards are typically located on low 

elevated zones close to the coastline. A further limitation is that large agglomerations of people, 

e.g. multi-storey residential buildings, cannot be represented by all tested approaches. This can 

lead to considerable underestimation of population in a small number of cells. This limitation 

does not only apply to this this study but, in general, to dasymetric-mapping approaches (Briggs 

et al. 2007). 

We expect that our findings are transferable to other study regions. Globally, 39 % of the 

population lives within a distance of 100 km from the coast (Kummu et al. 2016). This popu-

lation is also not distributed uniformly within administrative units but gathered in urban clus-

ters (Kummu et al. 2016). As the GUF seems to provide realistic settlement patterns in study 

areas all over the globe (Esch et al. 2017), we expect that the proposed approaches II to IV can 

be applied on regional and global scales to regionalize population within administrative units, 

which could considerably improve the data basis for exposure analysis. Approaches V and VI 

perform well (Approach V lowest overall error for exposure; Approach VI lowest overall 

%RMSE) but rely on highly resolved census data to adjust the thresholds used in the modelling 

process. These are not available all over the globe (Wardrop et al. 2018; Tatem et al. 2011). 

Approach II performs better than Approach III as GUF0.4 5 % has a higher error of commission 

than GUF2.8. However, GUF2.8 does not capture 17 % of the total population within the study 

area. Weighting the population depending on the urban coverage in each cell (Approach IV) 

leads to the smallest errors on municipality level and reduces the error in exposure analysis 

considerable.  

2.5 Conclusion 

Our study shows that using uniform population densities on a municipality level (finer 

scale) can lead to higher errors in exposure analysis compared to using uniform population 

densities on a district level (coarser scale). As new population data tend to be available on ever 

finer scales (Doxsey-Whitfield et al. 2015), the assumption of a uniform spatial distribution of 

population when assessing exposure to coastal flooding may lead to substantial errors in as-

sessing exposure to coastal flooding. By using simple methods that solely employ the GUF as 

ancillary data to regionalise population within administrative units the error in exposed popu-

lation can be reduced by 40 % to 50 %. However, exposure analysis shows that the modelled 

population distributions overestimate the number of people living in the floodplain compared 

to gridded census data. We anticipate that accounting for the height of buildings in order to 

determine the number of floors can lead to improved estimates. Before any of the analysed 

approaches can be applied on global scale, the observations of this study would need to be 

further evaluated in study areas with different settlement characteristics. 



2.6 Appendix: Model Description   47 

Acknowledgments 

This research was funded by the German Research Foundation (DFG) Priority Program (SPP) 

1889 Regional Sea Level Change and Society (SeaLevel). The authors would like to thank the 

Mecklenburg-Vorpommern office of internal administration and the Schleswig-Holstein land 

surveying and geoinformation office for providing elevation data. We would also like to ex-

press our thanks to the editor and the reviewers for their valuable comments. 

2.6 Appendix: Model Description 

We used nine (four urban and five rural) districts to calibrate the model used in Approaches 

V and VI. For validation, we used eight (three urban and five rural) districts. The districts were 

selected randomly, but followed the conditions that two urban and two or three rural districts 

of each state had to be used for calibration. These conditions ensured that cities could be found 

in both calibration and validation data. Furthermore, the conditions allowed accounting for 

possible differences in settlement patterns that developed under different political systems in 

the study area between 1945 and 1989 (Berentsen 1982) and might persist. 

2.6.1 Approach V 

In Approach V, we used 3043 settlements (urban clusters) that were located in the districts 

selected for calibration. Of these, we classified 2352 settlement as small clusters (extent <10 

ha), 653 as medium clusters (extent ≥10 ha and <150 ha), and 38 as large clusters (extent ≥150 

ha). For medium and large clusters, we used a linear model to represent the correlation between 

the logarithm of settlement extent and the mean population density per settlement calculated 

by the stats package in R version 3.3.1 (R Core Team 2016). For small clusters, we used the 

modelled density for a settlement extent of 10 ha, independent from the actual settlement ex-

tent. For medium clusters, we achieved the best fit with an intercept of –0.771 and a slope of 

3.607. For large clusters, an intercept of –14.16 and a slope of 6.29 lead to the best fit. For 

validation, we used 1911 settlements located in the districts selected for validation of which 

we classified 1336 as small clusters, 533 as medium clusters and 42 as large clusters. 

We evaluated the performance of the model by calculating the RMSE and the MAE for 

mean population density within a settlement and the sum of population in a settlement (Table 

2.5).  

Table 2.5: Model performance in Approach V (using GUF2.8). 

Parameter 
Calibration  

Mean Density 

Validation  

Mean Density 

Population Sum 

Calibration 

Population Sum 

Validation 

RMSE 5.6 5.7 1007 854 

MAE 4.7 4.7 84 96 

Figure 2.6 illustrates the model used in Approach V and the settlement characteristics (ex-

tent and mean population density) used for calibration and validation. 
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Figure 2.6: Observed and modelled mean population density and settlement extent for calibration and validation 

in Approach V. 

GUF2.8 captures 83.1 % of the population in the study area. As the model solely used 

GUF2.8 as ancillary data, this led to an underestimation of the total population in the study 

area. Thus, we adjusted the predicted population counts to the census population on the district 

and municipality level (Destatis 2018a). This led to an increase of RMSE and MAE for mean 

population density within a settlement (Table 2.6), because people actually not living in areas 

defined as settlements by GUF2.8 were located to areas defined as settlements. Despite this, 

the RMSE of the population sum per settlement adjusted to municipality level was reduced 

considerably. 

Table 2.6: Model performance of adjusted model in Approach V. 

Parameter 
Calibration  

Mean Density 

Validation  

Mean Density 

Population Sum 

Calibration 

Population Sum 

Validation 

RMSE (d 1) 6.6 6.4 1025 682 

MAE (d 1) 5.7 5.3 95 101 

RMSE (m 2) 11.1 10.7 537 419 

MAE (m 2) 9.1 7.9 85 90 
1 adjusted to total population on district level. 2 adjusted to total population on municipality level. 

Figure 2.7 shows the residuals for the unadjusted model, the model adjusted to match total 

district population and the model adjusted to match total municipality population. The adjusted 

models overestimate (positive residuals) the mean population density for large clusters. Fur-

thermore, the model adjusted to the municipality level shows high residuals for very small 

clusters, which indicates a small number of urban cells in the corresponding municipality. 
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Figure 2.7: Residuals (modelled mean population density minus observed mean population density) and settlement 

extent in Approach V. 

2.6.2 Approach VI 

In Approach VI, we used the same districts for calibration and validation as we did for 

Approach V. Due to different urban extents the number of settlements (urban clusters) differed 

between the approaches. We grouped 3232 settlements in the calibration area to 2057 small 

clusters (below 10 ha settlement extent), 1136 medium clusters (extent ≥10 ha and <235 ha), 

and 39 large clusters (extent ≥235 ha). For medium clusters, a model with an intercept of –2.85 

and a slope of 2.78 showed the best fit. For large clusters, an intercept of –20.8 and a slope of 

6.0 led to the model with the best fit. We used the calculated mean population density for 

clusters with an extent of 10 ha for small clusters independently from the actual cluster extent. 

For validation, we grouped 2047 settlements to 1177 small clusters, 829 medium clusters, and 

41 large clusters. We calculated RMSE and MAE to test the ability of the model to predict 

mean population density per settlement based on the settlement extent (Table 2.7). 

Table 2.7: Model performance for Approach VI (using GUF0.4 5 %). 

Parameter 
Calibration  

Mean Density 

Validation  

Mean Density 

Population Sum 

Calibration 

Population Sum 

Validation 

RMSE 3.2 3.6 918 1077 

MAE 2.4 2.6 87 107 

Figure 2.8 illustrates the model used in Approach VI and the settlement characteristics 

(extent and mean population density) used for calibration and validation. 
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Figure 2.8: Observed and modelled mean population density and settlement extent for calibration and validation 

in Approach VI. 

GUF0.4 5 % captured 94.1 % of the population in the study area, which is clearly more than 

GUF2.8 (see Table 2.2). This required smaller adjustments on district and municipality level 

compared to Approach V, which led to smaller errors in the model performance of the adjusted 

model (Table 2.8). The error indicators for population sum in calibration and validation areas 

were reduced considerably compared to Table 2.7. 

Table 2.8: Model performance of adjusted model in Approach VI. 

Parameter 
Calibration  

Mean Density 

Validation  

Mean Density 

Population Sum 

Calibration 

Population Sum 

Validation 

RMSE (d 1) 3.2 3.6 611 447 

MAE (d 1) 2.5 2.7 71 86 

RMSE (m 2) 3.5 4.2 171 198 

MAE (m 2) 2.7 2.9 43 55 
1 adjusted to total population on district level. 2 adjusted to total population on municipality level. 

Comparable to Approach V (Figure 2.7), the adjusted models overestimated (positive re-

siduals) the actual mean population density in large clusters (Figure 2.9). However, in particu-

lar the adjustment to population totals on the municipality level led to a reduction of residuals 

for large clusters and lowered the RMSE by factor 5 (171 (calibration) and 198 (validation) 

compared to 918 (calibration) and 1077 (validation) in the unadjusted model). 
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Figure 2.9: Residuals (modelled mean population density minus observed mean population density) and settlement 

extent in Approach VI.
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Abstract 

Existing quantifications of the Shared Socioeconomic Pathways (SSP) used for climate impact 

assessment do not account for subnational population dynamics such as coastward- migration 

that can be critical for coastal impact assessment. This paper extends the SSPs by developing 

spatial projections of global coastal population distribution for the five basic SSPs. Based on a 

series of coastal migration drivers we develop coastal narratives for each SSP. These narratives 

account for differences in coastal and inland population developments in urban and rural areas. 

To spatially distribute population, we use the International Institute for Applied Systems Anal-

ysis (IIASA) national population and urbanisation projections and employ country-specific 

growth rates, which differ for coastal and inland as well as for urban and rural regions, to pro-

ject coastal population for each SSP. These rates are derived from spatial analysis of historical 

population data and adjusted for each SSP based on the coastal narratives. Our results show 

that, compared to the year 2000 (638 million), the population living in the Low Elevated 

Coastal Zone (LECZ) increases by 58 % to 71 % until 2050 and exceeds one billion in all SSPs. 

By the end of the 21st century, global coastal population declines to 830-907 million in all SSPs 

except for SSP3, where coastal population growth continues and reaches 1.184 billion. Overall, 

the population living in the LECZ is higher by 85 to 239 million as compared to the original 

IIASA projections. Asia expects the highest absolute growth (238-303 million), Africa the 

highest relative growth (153 % to 218 %). Our results highlight regions where high coastal 

population growth is expected and will therefore face an increased exposure to coastal flooding. 

Keywords 

coastal; Shared Socioeconomic Pathways; scenarios; spatial population projections 

3.1 Introduction 

In coastal areas, flood impact assessments are of high relevance because flooding from 

extreme water levels is considered to be the major climate change related hazard in terms of 

damage (Wong et al. 2014). In addition, the frequency and intensity of flooding are expected 

to increase due to climate-change induced sea-level rise (Hunter 2010), thus leading to higher 

damages (Hinkel et al. 2014). In order to assess future impacts, it is essential to understand the 

spatial distribution of future population exposure for a range of plausible future conditions. 
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Therefore, socioeconomic scenarios for the coastal zone, which consider that population in 

coastal and inland areas develops in different patterns (McGranahan et al. 2007), are needed. 

The SSPs provide a suitable framework for this exercise. As central components of the latest 

scenario framework developed by the climate change research community, Representative 

Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) are flexible tools 

to create scenarios that account for a wide range of possible climatic and socio-economic fu-

tures (Moss et al. 2010; van Vuuren et al. 2011; O’Neill et al. 2014; Ebi et al. 2014). Scenarios 

are used in impact assessment to account for uncertainties in assessing exposure of population 

and assets to natural hazards (Fang et al. 2014). They have been designed to replace the SRES 

scenarios as a standard in climate change IAV research and will increase the comparability of 

studies (Ebi et al. 2014; O’Neill et al. 2014). 

Five basic SSPs have been established by the research community, providing possible 

pathways for society and society-influenced systems to develop in the course of the 21st century 

(O’Neill et al. 2014). They have been developed on global to regional scales based on socio-

economic challenges for mitigation and adaptation. SSP1 describes a sustainable world with 

low challenges for mitigation and adaptation, SSP2 is a ‘Middle of the Road’ pathway with 

intermediate challenges, whereas SSP3 assumes regional rivalry, resulting in high challenges 

for both, mitigation and adaptation. In SSP4, which is characterised by inequality, challenges 

are high for adaptation and low for mitigation. SSP5, the pathway of fossil-fuelled develop-

ment, has low challenges for adaptation and high challenges for mitigation (O’Neill et al. 

2017). Furthermore, the research community has devised and agreed upon four RCPs which 

assume different levels of radiative forcing owing to the emission of greenhouse gases: 

RCP2.6, RCP4.5, RCP6 and RCP8.5 (van Vuuren et al. 2011). Within the new scenario frame-

work, individual SSPs can be combined with different RCPs in order to construct climate 

change scenarios for the 21st century (van Vuuren et al. 2014). 

Each SSP consists of a qualitative narrative and quantifications for e.g. population and 

income projections. The narratives describe socio-economic developments in a broad enough 

fashion as to guarantee their utilisation in a wide range of studies (O’Neill et al. 2017). Several 

quantitative projections of population, urbanisation and gross domestic product (GDP) have 

been developed and published (see KC and Lutz 2017 for population; Jiang and O’Neill 2017 

for urbanisation; and Crespo Cuaresma 2017; Leimbach et al. 2017; Dellink et al. 2017 for 

GDP and income). The data are available in the public database of the International Institute 

for Applied Systems Analysis (IIASA 2015).  

So far, the basic SSPs have been developed on global to national scales without accounting 

for different subnational population dynamics (e.g., different growth rates of coastal and inland 

populations). Due to the lack of this spatial explicitness, their usefulness for regional scale 

analyses of population and asset exposure is limited and previous research has called for re-

gional and sectoral extensions of the basic SSPs, at high spatial resolution (Ebi et al. 2014; van 

Ruijven et al. 2014; O’Neill et al. 2014; O’Neill et al. 2017). For coastal Impact, Adaptation 

and Vulnerability (IAV) research on global to regional scales, gridded population projections 

are of high interest to assess exposure to natural hazards (Moss et al. 2010; Jones et al. 2015). 

This paper addresses this gap by extending the SSP narratives to the coastal zone and by 

downscaling national population projections to subnational gridded population projections. In 

these projections, we employ historical observations of differences between coastal and inland 

population development for each country. So far, studies have combined observations of spe-

cific areas (e.g. China and Bangladesh) with expert judgement and generally assumed future 

population in coastal areas to grow faster than in inland areas (Nicholls et al. 2008; Foresight 

2011; Neumann et al. 2015). However, our approach also accounts for cases with faster growth 
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of inland areas as compared to coastal areas and additionally differentiates between urban and 

rural areas. Based on our coastal narratives, we adjust the observed historical patterns to ac-

count for different pathways of coastal development across the SSPs. 

The remainder of the paper is structured as follows. In subsection 3.2 we describe the data 

and methods employed for developing the coastal SSP narratives and the population projec-

tions. In the results section we provide the coastal SSP narratives along with an explanation of 

how we quantify them for each SSP and show the spatial projections of coastal population on 

global and continental scale for the 21st century. In order to test the sensitivity of the results, 

we compare the world’s future coastal population projections of our approach to alternative 

approaches and discuss the differences. 

3.2 Material and Methods 

3.2.1 Coastal SSP narratives 

The first step in our approach is the development of coastal SSP narratives. Therefore, we 

determine factors of coastal migration based on a literature review (Table 3.1). These factors 

promote settlement at the coast as compared to inland areas. We additionally differentiate be-

tween coastal migration factors for urban versus rural areas. We do not include urbanisation as 

a separate coastal migration factor and adopt the basic urbanisation assumptions from O’Neill 

et al. (2017), since urbanisation processes are already accounted for by differentiating between 

urban and rural migration factors. 

Table 3.1: Factors of coastal migration. 

Coastal migration factors 
Reference 

Urban Rural 

Shipping  Balk et al. 2009; Hugo 2011 

Large-scale fisheries Small-scale fisheries FAO 2014 

Coastal Tourism Scott et al. 2012 

Lifestyle Benson and O'Reilly 2009 

Coastal management 
Balk et al. 2009; Nicholls et al. 

2008; UN 2015; Seto 2011 

We then select a number of basic SSP key elements from O’Neill et al. (2017) which we 

use in two ways. First, we select the basic SSP key elements urbanisation, economic growth 

and technology as a general frame for our coastal SSP narratives and adopt the assumptions for 

these key elements from the narratives of the five SSPs. Second, we choose elements which 

are explanatory variables for the coastal migration factors (Figure 3.1). Based on these ele-

ments, we interpret the characteristics of the coastal migration factors for each coastal SSP. In 

this step, we transform the coastal migration factors into our coastal SSP elements. Specifically, 

we assume that high international trade and globalisation lead to high importance of shipping 

(Balk et al. 2009; Hugo 2011). We further expect that inequality leads to an increase in small-

scale fisheries, because small-scale fisheries currently secure the livelihoods of millions of 

people, in particular in developing countries (FAO 2014). High meat consumption, including 

seafood, also implies growing importance of fisheries (FAO 2014). High agricultural produc-

tivity, however, leads to a decrease in small-scale fisheries. Tourism is another driver of coast-

ward migration, both to rural and urban locations. Since coastal tourism is globally the largest 

tourism segment (Scott et al. 2012), we conclude that tourism in the coastal zone is high if the 

sector’s contribution to the GDP is high. Further, we assume that lifestyle migration to the coast 

due to its natural attractiveness is high if economic growth is high and inequality is low (Benson 



56  Chapter 3 

and O'Reilly 2009). Additionally, we expect coastal zone management to be effective if inter-

national cooperation and institutions are effective (Balk et al. 2009; UN 2015). Coastal man-

agement also depends on the policy orientation. If policies are oriented towards sustainability, 

ecosystems are protected and land use change is restricted (Nicholls et al. 2008). If policies 

focus on economic growth, economic activities at the coast expand since the importance of 

shipping increases (Seto 2011).  

 

Figure 3.1: Basic SSP elements selected from O’Neill et al. 2017 as explanatory variables for the coastal SSP 

elements. 

3.2.2 Coastal population projections 

The population projections are produced in three subsequent steps. First, we utilise 

GRUMP (Global Urban Rural Mapping Project) population count grids (CIESIN et al. 2011a; 

Balk et al. 2006) to analyse the current state of the spatial population distribution. GRUMP 

uses night-time light satellite data to identify urban areas and reallocates census count data 

within administrative boundaries. The datasets have a spatial resolution of 30 arc-seconds (ap-

proximately 1 km at the equator) and represent the population adjusted to UN-national totals 

for the years 1990, 1995 and 2000. Furthermore, we use Urban Extents Grid (CIESIN et al. 

2011b; Balk et al. 2006) to distinguish between urban and rural areas. 

Second, we identify the Low Elevation Coastal Zone (LECZ), which includes all land areas 

up to 10 m elevation connected to the ocean (McGranahan et al. 2007), using the CGIAR-CSI 

SRTM v4.1 elevation data (Jarvis et al. 2008) with a spatial resolution of 3 arc-seconds (ap-

proximately 90 m at the equator) and GTOPO30 elevation data (USGS 1996) for high latitudes, 

not covered by SRTM. We apply an elevation threshold of 10 m to reclassify the elevation data 

and perform a connectivity analysis with eight neighbouring cells to ensure hydrological con-

nectivity to the ocean (Poulter and Halpin 2008; Lichter et al. 2011; Neumann et al. 2015). 

Pixels below or equal to the threshold with a hydrological connection to the ocean are classified 

as coastal areas. Pixels above the threshold or below the threshold with no connection to the 

ocean are classified as inland areas. Finally, we resample the data to a resolution of 30 arc-

seconds to match the spatial resolution of the population datasets. 
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Third, we calculate urban and rural population until 2100 by employing the population 

numbers and projections from the SSP database provided by the IIASA (IIASA 2015). The 

SSP database contains population projections for 193 countries in 5-year increments from 2015 

to 2100 for each SSP (KC and Lutz 2017). Additionally, we incorporate the urbanisation rates 

of the National Center of Atmospheric Research (NCAR). This dataset, which is also available 

from the SSP database, contains projections for 151 countries with a population of more than 

1 million in 2010 and an area of at least 1000 km² in 10-year time steps, from 2020 to 2100 

(Jiang and O’Neill 2015). For small countries with no population or urbanisation projections, 

we assumed the year 2000 data to be constant over time. For the spatial delineation of countries 

and regions we use the Global Administrative Areas (GADM) dataset version 2.0 

(http://www.gadm.org/). 

We adopt the ‘United Nations Method’, which is defined as the difference between urban 

and rural growth rates (UN 2015; Jiang and O’Neill 2017), to differentiate the growth rates of 

coastal urban and inland urban regions (GDU) and coastal rural and inland rural regions (GDR). 

A value > 0 corresponds to a higher growth rate of the coastal region whereas a value < 0 with 

a higher growth rate of the inland region. Our analysis of 177 countries and regions with urban 

areas both inside and outside the LECZ shows that 91 regions (51 %) have a GDU < 0 and 86 

(44 %) out of 197 countries and region that had rural areas inside and outside the LECZ have 

and GDR < 0. These values indicate that neither the coast nor the inland grows faster across all 

countries if urbanisation patterns are treated separately (Figure 3.2). We then implement the 

observed GDs on country level to develop spatially explicit population projections. 

 

Figure 3.2: 5th to 95th percentiles of observed urban and rural growth difference. 

In order to downscale future population to a subnational level, we split each country into 

four zones: coastal-urban (CU), coastal-rural (CR), inland-urban (IU) and inland-rural (IR) 

(Figure 3.3). Landlocked countries have a maximum of two zones (IU and IR). 



58  Chapter 3 

 

Figure 3.3: Flow chart describing the approach used to produce gridded population projections. 

Based on GRUMP population count data, we calculate the population in each of the four 

zones on a country level for the 1990, 1995 and 2000 observations. The population living in 

these zones sums up to the total population of a country (PT). 

𝑃𝑇 = 𝑃𝐶𝑈 + 𝑃𝐶𝑅 + 𝑃𝐼𝑈 + 𝑃𝐼𝑅 (1) 

Subsequently, we calculate the growth rate (gr) between the years 1990 to 1995 and 1995 

to 2000 in each zone: 

𝑔𝑟𝑡
𝑧 =

𝑃𝑡+1
𝑧 − 𝑃𝑡

𝑧

𝑃𝑡
𝑧  (2) 

with P representing the population count in zone z and t the time. In a next step, we use 

the mean of the calculated observed growth difference (GDobs) between coastal and inland 

zones for the 1990 to 1995 and 1995 to 2000 periods. We focus on the growth difference be-

tween the coastal urban and the inland urban zone (𝐺𝐷𝑜𝑏𝑠
𝑈 ) as well as the coastal rural and the 

inland rural zone (𝐺𝐷𝑜𝑏𝑠
𝑅 ). 

𝐺𝐷𝑜𝑏𝑠
𝑈 = 0.5 ∗ (𝑔𝑟1990

𝐶𝑈 −  𝑔𝑟1990
𝐼𝑈 + 𝑔𝑟1995

𝐶𝑈 − 𝑔𝑟1995
𝐼𝑈 ) (3) 

𝐺𝐷𝑜𝑏𝑠
𝑅 = 0.5 ∗ (𝑔𝑟1990

𝐶𝑅 −  𝑔𝑟1990
𝐼𝑅 + 𝑔𝑟1995

𝐶𝑅 − 𝑔𝑟1995
𝐼𝑅 ) (4) 

A value of 0 indicates that the population in both zones grows at the same rate. If the GD 

is positive (negative), the population at the coast grows faster (slower) than in the inland. For 

the projections, we assume the GD to be constant over time but to differ across the SSPs. How-

ever, the growth rates differ over time. In order to make our results consistent with previous 

work in the SSP framework, we use the projected population totals (Pt) produced by KC and 
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Lutz (2017) and the projected urbanisation levels (ut) created by Jiang et al. (2017) to calculate 

future urban (𝑃𝑡
𝑈) and rural population (𝑃𝑡

𝑅) for each SSP. 

𝑃𝑡
𝑈 = 𝑃𝑡 ∗ 𝑢𝑡 (5) 

𝑃𝑡
𝑅 =  𝑃𝑡 ∗  (1 − 𝑢𝑡) (6) 

Based on the coastal SSP narratives, we modify the observed growth difference for each 

SSP (Table 3.2). The modification is based on percentiles of the observed growth difference. 

In order to obtain plausible results, we select percentiles with a small interpercentile range to 

the previous percentile and a high interpercentile range to the following. 

Using the modified growth differences for each SSP (𝐺𝐷𝑆𝑆𝑃
𝑈  and 𝐺𝐷𝑆𝑆𝑃

𝑅 ), we subdivide 

these urban and rural totals into coastal and inland components: 

𝑃𝑡
𝐶𝑈 =

𝑃𝑡−1
𝐶𝑈 (𝑃𝑡

𝑈 + 𝑃𝑡−1
𝐼𝑈 ∗ 𝐺𝐷𝑆𝑆𝑃

𝑈 )

𝑃𝑡−1
𝑈  (7) 

𝑃𝑡
𝐼𝑈 = 𝑃𝑡

𝑈 − 𝑃𝑡
𝐶𝑈 (8) 

𝑃𝑡
𝐶𝑅 =

𝑃𝑡−1
𝐶𝑅 (𝑃𝑡

𝑅 + 𝑃𝑡−1
𝐼𝑅 ∗ 𝐺𝐷𝑆𝑆𝑃

𝑅 )

𝑃𝑡−1
𝑅  (9) 

𝑃𝑡
𝐼𝑅 = 𝑃𝑡

𝑅 − 𝑃𝑡
𝐶𝑅 (10) 

Based on these regionalised population totals we calculate the growth rate for each zone 

and time step (𝑟𝑡
𝑧) by using the population numbers of 2000 as a base year. 

𝑟𝑡
𝑧 =

𝑃𝑡
𝑧 − 𝑃2000

𝑧

𝑃2000
𝑧  (11) 

Assuming that the growth rates are homogeneous within a zone, we multiply them by the 

GRUMP grid population counts representing the year 2000 population. 

3.3 Results 

3.3.1 Coastal SSP narratives 

Table 2 gives an overview of the main elements of the five coastal SSP narratives devel-

oped. The following subsections then present each narrative in more detail. The first paragraph 

of each narrative thereby provides a short overview of the basic key elements of the socioeco-

nomic pathway and its implications for the coastal SSP elements. The second paragraph then 

illustrates the differences of coastal population growth as compared to inland growth, as well 

as those between urban and rural areas.



 

Table 3.2: Coastal SSP elements, quantifications for each SSP and modifications of observed urban (𝐺𝐷𝑆𝑆𝑃
𝑈 ) and rural (𝐺𝐷𝑆𝑆𝑃

𝑅 ) growth differences. 

Coastal SSP element SSP1 

Green Coast 

SSP2 

No Wind of Change 

SSP3 

Troubled Waters 

SSP4 

Fragmented Coast 

SSP5 

Coast Rush 

Shipping  Moderate Moderate Low Moderate-high High 

Fisheries1 Low Moderate High Very high Low 

Coastal tourism Sustainable; low-impact, 

no mass tourism 

Moderate; uneven Very low; no international 

tourism 

High for elites; low for ma-

jority of population 

Very high; mass tourism 

Lifestyle migration Low moderate Low High for elites; low for ma-

jority of population 

Very high 

Coastal management High; towards sustainabil-

ity 

Moderate Weak Towards elite’s benefit; little 

interest in sustainability 

High; towards economic 

growth 

Urban growth difference  

(GDSSP
U ) 

= 0 = GDobs
U  = GDobs

U  * 0.5 = GDobs
U  + (Q.66-Q.50) = GDobs

U  + (Q.83-Q.50) 

Rural growth difference  

(GDSSP
R ) 

= GDobs
R  – (Q.50-Q.25) = GDobs

R  = GDobs
R  * 0.5 = GDobs

R  + (Q.66-Q.50) = GDobs
R  + (Q.75-Q.50) 

1 In our coastal SSP narratives the term fisheries refers to small-scale fisheries since we do not explicitly account for large-scale fisheries as a coastal migration factor.
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SSP1 – Green Coast 

The world’s shift towards a more sustainable pathway results in well-managed coastal 

zones. Global institutions and environmental policies function effectively. Therefore, socioec-

onomic development is highly managed and focuses on the development of compact and sus-

tainable coastal cities without urban sprawl. Economic growth is medium to high and markets 

are globally connected, fostering rapid technological development and transfer. Due to more 

sustainable, regionalised production, international trade is on a moderate level. Therefore, ship-

ping is moderately important. Tourism is practiced in a sustainable way. Lifestyle migration to 

the coast is limited. Reduced inequality, low-meat diets and improvements in farming produc-

tivity lead to decreasing importance of fisheries. The value of ecosystems and their protective 

function in the coastal zone are globally accepted and respected. Policies are oriented towards 

conservation and expansion of coastal ecosystems prevents settlement in the coastal zone. 

The focus on sustainability leads to high urbanization rates and compact cities. As coastal 

cities are regulated by environmental policies and since their economic importance does not 

differ from inland cities, population growth in coastal urban locations does not differ from 

inland urban ones. Coastal ecosystem protection and lower importance of fisheries lead to re-

duction of population growth in coastal rural areas compared to inland rural areas. Conse-

quently, we use a growth difference of 0 for urban areas and reduce the observed growth dif-

ference for rural areas by the difference of the 50th and 25th-percentiles of the observed rural 

growth difference (see Table 3.2). In total, the coastal zone is less attractive for human settle-

ment than the inland. 

SSP2 – No Wind of Change 

Under SSP2, socioeconomic development in the coastal zone does not deviate significantly 

from historical patterns. The management of socioeconomic development in the coastal zone 

is limited due to relatively weak international cooperation, uneven and moderately effective 

institutions, and rather slow implementation of environmental policies. Hence, the urbanisation 

rate is moderate with considerable spatial expansion of cities. Economic growth is, on average, 

medium and continues to be uneven across countries. Technological development is moderate 

and transfer slow. The semi-open global economy is characterised by moderate international 

trade, keeping the importance of shipping at a similar level. Tourism also continues at historical 

rates. Migration to the coast for lifestyle reasons is moderate. Fisheries remain important, ow-

ing to uneven reductions in inequality, material-intensive, medium meat consumption and slow 

improvements in productivity. Ecosystem protection is weak and leads to environmental deg-

radation.  

This pathway shows a fragmented picture. Coastal zones remain as attractive for socioec-

onomic development as in the past, with rapid population growth in some coastal regions and 

slow growth or even declining population numbers in others. Urbanisation and urban sprawl 

continue in coastal as well as inland locations. Similarly, rural coastal and inland populations 

experience the same growth patterns as observed in the past. In total, historical patterns of 

coastal and inland population growth will continue at the same rates. Therefore, we use the 

observed urban and rural growth differences and do not modify them. 

SSP3 – Troubled Waters 

In this pathway, the focus on national and regional issues leads to converging population 

growth rates of coast and inland. International cooperation and global institutions are weak and 
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uneven. National policies focus on security issues, resulting in poorly managed socioeconomic 

development. Therefore, urban areas are unattractive and urbanisation is slow. Due to a de-

globalizing economy oriented towards security, international trade is strongly constrained and 

economic growth is slow. Therefore, technology development and transfer is limited. As a 

consequence, shipping experiences a marked decline. Likewise, international tourism hardly 

exists. Also, coastal lifestyle migration is low. Fisheries become more important because ine-

quality is high, consumption is material-intensive and productivity is low. Further, food secu-

rity needs to be guaranteed on a national level. This development in combination with the ab-

sence of environmental policies leads to serious environmental degradation. 

Under SSP3 the coastal zone loses its importance as a focal point of international trade due 

to the orientation towards national and regional security. Since poorly managed inland urban 

areas also lose attractiveness, neither coastal nor inland urban areas are more attractive for 

human settlement. The same patterns apply to rural areas. Therefore, the population in both 

urban and rural locations changes at converging rates. We consider this convergence by reduc-

ing the observed growth differences for both urban and rural areas by half. 

SSP4 – Fragmented Coast 

SSP4 is characterised by high inequalities within and across countries. This applies to the 

coastal zone as well. International cooperation takes place among elites with effective institu-

tions and policies in place for them. This leads to well-managed economic growth for the elites 

and leaves behind the rest of the population. Therefore, this pathway is characterised by highly 

fragmented socioeconomic development. Technology development is rapid but transfer among 

population groups is low. Economic growth is uneven and international trade is moderate since 

only elites are connected globally. This makes urban areas, especially port cities, very attractive 

because they are regarded as economic engines with abundant job opportunities. Consequently, 

urbanisation is fast with considerable urban sprawl, including high unemployment rates and 

the formation of unplanned peri-urban slums. Tourism plays an important role for elites only. 

Similarly, lifestyle migration to the coast is high for elites. Consumption is high for elites and 

low for the rest of the population, increasing the importance of fisheries for poor population 

groups to secure their livelihoods. Extensive agricultural use and low productivity in rural areas 

leads to environmental degradation, since policies focus on the local environment surrounding 

the elites. 

In this pathway, coastal areas experience fragmented population development, both so-

cially and economically. Coastal urban areas are subject to higher population growth than in-

land urban areas because they are regarded as economic engines. Rural coastal areas are more 

attractive than rural inland areas due to the importance of fisheries. Also, the tourism industry 

fosters coastal development. Overall, the coastal zone experiences higher population growth 

than inland areas. Therefore, we increase the observed coastal to inland growth difference for 

urban and rural areas by the difference of the 66th and the 50th percentile. 

SSP5 – Coast Rush 

In this highly globalised world, the coastal zone is of particular importance. International 

cooperation as well as institutions are effective. Policies focus on competitive, free markets 

and human well-being. This promotes socioeconomic development substantially. Global mar-

kets are highly interconnected with regional specialisation. This leads to high international 

trade and rapid economic growth, which promotes technological development and transfer. As 

a consequence, the importance of shipping increases markedly. That is why urbanisation is 

high and results in large cities with urban sprawl, which is managed more effectively over time. 
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Also, international tourism plays an important role, resulting in extensive development in 

coastal areas. Similarly, lifestyle migration to the coast is very high. Consumption is charac-

terised by materialism and meat-rich diets, leading to increased importance of fisheries. Ine-

quality is strongly reduced and agricultural productivity is high. As a consequence, small-scale 

fisheries are replaced by large-scale fisheries. Environmental policies focus on the local envi-

ronment which is extensively engineered to ensure people’s well-being. Little attention is paid 

to global problems. 

In this pathway, robust economic growth leads to high population growth in the coastal 

zone. This is due to the fact that in a globalised world, port cities are centres of growth and 

urbanisation rates are high. Rural coastal areas also experience higher population growth than 

rural inland ones because coastal tourism is a major driver of rural economic growth. However, 

the difference between rural coastal and rural inland population growth is not as high as be-

tween urban coastal and urban inland population growth. We account for these aspects by in-

creasing the observed urban growth difference by the difference of the 83rd and the 50th per-

centile and by increasing the observed rural growth difference by the difference of the 75th and 

50th percentile. 

3.3.2 Coastal population projections 

We first present global patterns across the different SSPs and then focus to regional pat-

terns using the UN regions definition (UN 2013). 

3.3.2.1 Global 

Our results show that the absolute coastal population grows until 2050 across all SSPs. 

SSP5 shows the highest LECZ population (1.091 billion), SSP2 the lowest LECZ population 

(1.005 billion). The share of coastal population is highest in SSP5 (12.8 %) but lowest in SSP3 

(10.5 %). Compared to the year 2000, the population living in the LECZ increases between 

58 % (SSP2) and 71 % (SSP5). Across all SSPs, the proportion of coastal population increases 

in the first half of the 21st century. 

By the end of the 21st century, the population living in the LECZ ranges from 0.830 billion 

(SSP4) to 1.184 billion in SSP3. The relative share of coastal population ranges from 9.0 % in 

SSP4 to 12.3 % in SSP1 and SSP5. Compared to the year 2000, the population grows by 30 % 

(SSP4) to 86 % (SSP3), whereas the other SSPs show a growth between 33 % and 42 %. 

Coastal growth exceeds inland growth in SSP1 and SSP5. Compared to 2050, coastal popula-

tion rises solely in SSP3 (+13 %). In the other SSPs, the coastal population declines by up to 

0.2 billion (SSP1 and SSP4) in the second half of the 21st century. In line with the population 

projections of KC and Lutz 2017), the range of coastal population across the SSPs by end of 

the 21st century is wider (0.354 billion) than by mid of the century (0.086 billion). 



 

Table 3.3: Absolute and relative population living in the LECZ by UN-region and worldwide for the years 2000, 2050 and 2100. 

 GRUMP SSP1 SSP2 SSP3 SSP4 SSP5 

 Green Coast No Wind of Change Troubled Waters Fragmented Coast Coast Rush 

2000 2050 2100 2050 2100 2050 2100 2050 2100 2050 2100 

Africa Count 54 140 149 144 162 172 265 159 220 137 130 

Share 6.7 % 7.9 % 8.0 % 7.1 % 6.2 % 7.4 % 6.7 % 7.1 % 6.1 % 7.9 % 7.2 % 

growth  159 % 175 % 165 % 200 % 218 % 390 % 194 % 307 % 153 % 141 % 

Asia Count 472 754 555 710 555 732 784 730 487 776 545 

Share 12.8 % 15.9 % 16.9 % 13.8 % 12.6 % 13.0 % 11.7 % 14.7 % 12.0 % 16.4 % 16.5 % 

growth  60 % 18 % 51 % 18 % 55 % 66 % 55 % 3 % 64 % 16 % 

Europe Count 49 60 56 57 57 49 35 55 45 72 96 

Share 6.8 % 7.7 % 8.6 % 7.5 % 8.1 % 7.2 % 6.5 % 7.7 % 8.4 % 8.5 % 10.5 % 

growth  21 % 15 % 16 % 15 % 0 % -28 % 12 % -9 % 46 % 96 % 

Latin America and 

the Caribbean 

Count 34 48 34 50 44 57 69 48 35 50 38 

Share 6.5 % 7.1 % 7.0 % 6.7 % 6.6 % 6.7 % 6.4 % 6.8 % 6.1 % 7.6 % 8.4 % 

growth  42 % 1 % 49 % 31 % 69 % 105 % 42 % 3 % 48 % 12 % 

Northern America Count 25 38 44 37 43 31 25 36 36 49 82 

Share 8.0 % 8.2 % 8.5 % 8.2 % 8.4 % 8.3 % 8.5 % 8.4 % 8.8 % 9.1 % 10.3 % 

growth  50 % 76 % 47 % 72 % 23 % -2 % 41 % 42 % 93 % 228 % 

Oceania Count 3.4 6.6 7.3 7.0 8.9 5.7 5.4 7.0 8.1 9.1 15.4 

Share 11.0 % 11.8 % 12.4 % 12.3 % 13.7 % 11.3 % 10.9 % 12.5 % 13.3 % 14.1 % 17.7 % 

growth  95 % 115 % 108 % 162 % 70 % 60 % 108 % 141 % 170 % 355 % 

World Count 637 1046 845 1005 870 1047 1184 1034 830 1091 907 

Share 10.5 % 12.4 % 12.3 % 11.0 % 9.7 % 10.5 % 9.4 % 11.3 % 9.0 % 12.8 % 12.3 % 

growth  64 % 33 % 58 % 37 % 64 % 86 % 62 % 30 % 71 % 42 % 

Count represents the LECZ population in million. Share is the share of LECZ population on total population in percent. Growth gives the relative growth of LECZ-population in 

percent compared to the year 2000 population as baseline. 
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3.3.2.2 Regional 

On a continent scale, we expect the highest relative changes of coastal population in Af-

rica. Compared to the base year 2000, Africa’s coastal population grows between 1.4 times in 

SSP5 and 3.9 times in SSP3 by the end of the century. The absolute coastal population increases 

from 54 million in 2000 to 137 million (SSP5) and 172 million (SSP3) in 2050. By the end of 

the century, Africa’s coastal population further increases to 265 million (SSP3). Only in SSP5 

Africa’s coastal population decreases from 2050 to 2100 to 130 million. The highest share of 

coastal population is in SSP1 (8 %) and the lowest in SSP4 (6.1 %). In SSP2 and SSP4, the 

inland population is growing faster than the coastal population over the 21st century, while in 

SSP1, SSP3 and SSP5 the coastal population is growing faster than the inland population. 

In Asia, the coastal population by the end of the century grows between 3 % in SSP4 and 

66 % in SSP3 compared to the year 2000 population. The absolute coastal population rises 

from 472 million in 2000 to a range from 710 million (SSP2) to 776 million (SSP5) in 2050. 

By the end of the century the coastal population will decrease from the 2050 peak to a number 

ranging from 487 million (SSP4) to 550 million (SSP1, SSP2 and SSP5). In SSP3, the absolute 

coastal population continues growing in the second half of the century leading to 784 million 

people living in coastal areas in 2100. SSP1 shows the highest relative share of coastal popu-

lation (16.9 %). In SSP2-4, the inland population is growing faster than the coastal population 

over the 21st century, while SSP1 and SSP5 indicate a higher growth rate of coastal regions. 

For Europe, the scenarios show a wide range in the relative change of coastal population 

in the 21st century. In SSP1, SSP2 and SSP5, the population grows by up to 96 % (SSP5) and 

declines in SSP3 (28 %) and SSP4 (9 %). By the mid of the century the absolute coastal popu-

lation rises from 49 million in 2000 to a range of 49 million to 72 million (SSP3 and SSP5 

respectively). In the second half of the century, the coastal population decreases to a range from 

35 million (SSP3) to 57 million (SSP2). Only in SSP5 the coastal population continues to grow 

to 96 million, which is the highest share across all pathways (10.5 %). With the exception of 

SSP3, the coastal population grows faster than the inland population. 

Latin America and the Caribbean face the highest relative coastal population growth in the 

21st century in SSP3 (105 %) and the lowest growth in SSP1 (1 %). The absolute coastal pop-

ulation rises from 34 million in 2000 to a range of 48 million (SSP1 and SSP4) to 57 million 

(SSP3) by 2050. Solely in SSP3 the population continues to grow to 69 million by the end of 

the century while all other pathways show coastal population declining to a range between 34 

million (SSP1) and 44 million (SSP2). SSP5 shows the highest share of coastal population 

(8.4 %). In SSP1, SSP2 and SSP5, coastal population grows faster than inland population. 

For North America, the relative change of coastal population in the 21st century ranges 

from a decrease of 2 % (SSP3) to a growth of up to 228 % (SSP5). Until 2050, the absolute 

coastal population grows from 25 million in 2000 to a range from 31 million (SSP3) to 49 

million (SSP5). The coastal population continues to grow in the second half of the century and 

ranges from 36 million (SSP4) to 82 million (SSP5). Only in SSP3 the population living in the 

coastal zone declines to 25 million. Nevertheless, coastal population is growing faster than 

inland population across all SSPs, as in SSP3 the inland population is declining even more. 

This leads to a higher share of coastal population in all SSPs, with SSP5 showing the highest 

share (10.3 %). 

In Oceania, coastal population grows between 60 % (SSP3) and 360 % (SSP5) in the 21st 

century. The absolute coastal population rises from 3.4 million in 2000 to a range between 5.7 

million (SSP3) and 9.1 million (SSP5) in 2050. Until the end of the 21st century, the coastal 

population continues growing and ranges from 7.3 million (SSP1) to 15.4 million (SSP5). Only 
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in SSP3 the coastal population declines from its 2050 peak to reach 5.4 million in 2100. SSP5 

shows the highest share of coastal population (17.7 %). With the exception of the second half 

of the century in SSP3, coastal population grows faster than inland population. 

 

Figure 3.4: Population projections of each SSP compared to the base year 2000 for Southeast Asia. Pixel size: 

30 arc-seconds (~1 km² at the equator). 
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3.4 Discussion 

In contrast to previous studies, this study uses historical data to account for differences in 

population growth between coastal and inland regions at subnational level. Previous studies 

have either employed a uniform global constant growth rate of coastal population (e.g. Nicholls 

et al. 2008) or have assumed coastal population to grow faster than inland population on a 

national level (e.g. Neumann et al. 2015). These studies also assumed coastal regions to grow 

up to two times faster than inland regions. These assumptions were based on the study of 

McGranahan et al. (2007), who found that coastal population in China and Bangladesh grew 

much faster than the inland population and that the fastest growth was located in urban coastal 

regions. In our study, we determine the growth rate of coastal urban regions based on urbani-

sation and additional factors of coastal migration, for example shipping and tourism. These 

factors either increase or decrease the attractiveness of coastal regions compared to inland re-

gions, thus leading to country-specific migration processes. 

When comparing our results on historic growth rates with other studies, we find that con-

trary to McGranahan et al. (2007) and in line with the database of CIESIN (2013), our findings 

show no clear evidence of population to grow faster at the coast compared to inland (Table 

3.4). Since a direct comparison of absolute population numbers between these studies was not 

possible due to the use of different input data, we compared the relative change of population 

in Bangladesh and China between 1990 and 2000. According to McGranahan et al. (2007), the 

population in the LECZ grew faster than the inland population for these two countries, with 

coastal urban areas showing the highest growth rates. This is neither in agreement with the 

findings of CIESIN (2013) nor our results, which show that in Bangladesh the inland grew 

faster than the coastal zone while in both Bangladesh and China inland urban areas grew faster 

than coastal urban areas. However, due to the high concentration of urban areas in the coastal 

zone of China (Neumann et al. 2015), the growth rate of population in the LECZ was higher 

than in inland areas, despite the growth rates of coastal urban and coastal rural areas being 

smaller than their inland equivalents. This illustrates that urbanisation appears to be the domi-

nant driver of population dynamics, independent of whether areas are coastal or inland. This 

demonstrates that our approach of using country-specific growth rates that also account for 

faster population growth in the inland instead of the general assumption of faster growing pop-

ulation in coastal regions is valid. 

Table 3.4: Relative change of population between 1990 and 2000 for Bangladesh and China [in %]. 

 
Bangladesh China 

McGranahan1 CIESIN2 This study3 McGranahan1 CIESIN2 This study3 

National 12.6 23.9 23.9 10.9 10.8 10.4 

Coastal 23.6 23.1 23.2 20.8 17.8 17.8 

Inland 2.7 24.6 24.5 9.7 10 9.3 

Coastal Urban 32 34.1 33.9 39.6 38.2 40.5 

Coastal Rural 21.1 20.3 20.5 4.1 -10.4 -0.2 

Inland Urban 0.2 34.3 35 23.2 43.6 41.8 

Inland Rural 3.3 22.5 22.5 4.6 -9.6 -0.1 
1) Population data: GRUMPalpha, LECZ: 10 m 2) Population data: GRUMPv1, LECZ: 20 m 3) Population data: 

GRUMPv1, LECZ: 10 m  

Next, we compare the results of our approach to other possible approaches: we (1) use an 

equal growth rate within each country, (2) consider urbanisation projections and use different 

growth rates for urban and rural areas within each country and (3) apply different growth rates 



68  Chapter 3 

for urban and rural areas within each country considering different patterns of coastal and in-

land development and following historical patterns. These approaches may lead to over- or 

underestimation of coastal population (Table 3.5). 

The use of (1) a single growth rate per country is the most straightforward approach and 

applied in a number of studies (e.g. Hinkel et al. (2014)). This approach tends to underestimate 

coastal population because it does not consider urbanisation. 

Enhancing (2) this approach by urbanisation projections and applying different growth 

rates for urban and rural areas, coastal population tends to be overestimated, due to the fact that 

coastal areas show a higher population density than inland areas (Neumann et al. 2015). Ur-

banisation is not the only determining factor of coastal population development but is addition-

ally influenced by processes that may reduce the attractiveness of coastal areas. For example, 

high population density in coastal regions can lead to higher land costs, thus rendering coastal 

areas less attractive. To account for these processes, the use of historical growth differences is 

appropriate. 

Considering (3) urbanisation projections and historical growth differences between coastal 

and inland areas on national level leads to higher coastal population compared to the approach 

using a single growth rate and lower projections compared to the approach enhanced by urban-

isation projections. The approach implementing observed growth differences can be used for a 

pathway where historical patterns continue in the future (as in SSP2 – No Wind of Change). 

Since we account for five different coastal SSPs and coastal migration factors differ across 

these pathways, we refine the approach by modifying the observed growth difference for each 

coastal SSP. 

Table 3.5: Absolute and relative global LECZ-population in 2100 calculated by different spatial approaches for 

the five SSPs. 

 

Single growth 

rate per country 

Urbanisation 

projections 

Historical  

patterns 

This  

approach 

abs. rel. abs. rel. abs. rel. abs. rel. 

SSP1 619 9.0 % 849 12.3 % 712 10.4 % 845 12.3 % 

SSP2 785 8.7 % 1027 11.4 % 870 9.7 % 870 9.7 % 

SSP3 1067 8.5 % 1287 10.2 % 1118 8.9 % 1183 9.4 % 

SSP4 688 7.4 % 985 10.6 % 800 8.6 % 830 9.0 % 

SSP5 668 9.1 % 899 12.2 % 763 10.4 % 907 12.3 % 

abs. represents the global LECZ population in million. rel. represents the relative share of LECZ population on 

total population in percent. 

The population projections (Table 3.3) show a decrease of coastal population in some re-

gions in the second half of the 21st century. The predominant reasons for this decrease are the 

general trends in the population projections that were used as input data. The projections of KC 

and Lutz (2017) show that the global population declines from 2050 to 2100 under SSP1, SSP2 

and SSP5. On a regional scale, this trend depends on the number of countries grouped into high 

fertility, low fertility and rich-OECD and can therefore differ from the global trends. For ex-

ample, KC and Lutz (2017) assume natural population growth (high fertility, low mortality) 

and high migration to rich OECD-countries in SSP5, which leads to population growth in Eu-

rope, North America and Oceania in the second half of the 21st century. In addition, regional 

trends can be distorted by populous countries with a high positive or negative growth differ-

ence. 

Finally, our study exhibits two limitations. First, we assume a static urban extent, which is 

suitable for urbanisation processes in SSP1, where urban sprawl is limited, but less suitable for 
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SSP2 and SSP5, where urban sprawl and urbanisation levels are high. However, since urban 

sprawl affects both coastal and inland regions, the effect on the total number of coastal residents 

on regional and global scales is small. We defined the boundaries of urban areas according to 

the GRUMP Urban Extent data, which are based on a more generic definition of urban extent 

that is not limited to built-up areas but encompasses urban agglomerations and is therefore 

suitable for global and regional scale analyses. However, for local scale analyses, urban sprawl 

processes should be implemented. A second limitation of our approach is that the growth dif-

ference is based on a relatively short observational record (10 years) and is assumed to be 

constant over time. This is due to the absence of global gridded population data whose temporal 

and spatial resolution is high enough for use in coastal analysis. A longer observational record 

would lead to more robust estimates and enable the use of trends in growth difference on coun-

try level over the 21st century. 

The population grids developed can be downloaded at 

(https://figshare.com/s/9a94ae958d6a45684382). They have been produced with a specific fo-

cus on the coastal zone in order to enable coast-related IAV assessments. This should be kept 

in mind when analysing the population projections outside the LECZ. 

3.5 Conclusion 

This study has developed spatially explicit population projections for the five coastal SSPs 

by (i) defining SSP narratives for the coastal zone and (ii) producing gridded population pro-

jections for each coastal SSP at high temporal and spatial resolution. We combined the basic 

SSPs, which serve as boundary conditions, with coastal migration factors to account for differ-

ences in coastal and inland population growth across the coastal SSPs. These coastal SSPs span 

the range of plausible population development at the coast and project the population in a spa-

tially explicit manner until 2100 by using a range of population growth rates at subnational 

level. The range accounts for potential growth but also possible decline of coastal population. 

The population grids can be used in coastal IAV research to assess exposure of population 

to climate-change impacts and natural hazards on global to regional scale. Further, they can be 

summarised readily to policy-relevant administrative units for planning, decision-making or 

resource allocation. For studies on a local scale, the produced grids are less suitable and results 

should be interpreted with caution. This is due to the fact that the population grids presented 

here are not demographic projections, but rather aim to account for uncertainties in the future 

distribution of the population living in the coastal zone under different scenarios. 

Future work can extend the proposed coastal SSPs and regionalise them. In this context, 

further differentiation in coastal population development between countries could be useful for 

better representing regional development trends. At local to regional scales, further criteria 

other than fertility and income can be considered to cluster countries and differentiate between 

country groups. At subnational level, the gridded population projections can be further refined 

with dasymetric modelling approaches to account for changes in land cover and urban extents. 
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Abstract 

Large-area coastal exposure and impact analysis has focussed on using sea-level rise (SLR) 

scenarios and has placed little emphasis on socioeconomic scenarios, while neglecting spatial 

variations of population dynamics. We use the Dynamic Interactive Vulnerability Assessment 

(DIVA) Framework to assess the population exposed to 1 in 100-year coastal flood events un-

der different population scenarios, that are consistent with the Shared Socioeconomic Pathways 

(SSPs); and different SLR scenarios, derived from the Representative Concentration Pathways 

(RCPs); and analyse the effect of accounting for regionalised population dynamics on popula-

tion exposure until 2100. In a reference approach, we use homogeneous population growth on 

national level. In the regionalisation approaches, we test existing spatially explicit projections 

that also account for urbanisation, coastal migration and urban sprawl. Our results show that 

projected global exposure in 2100 ranges from 100 million to 260 million, depending on the 

combination of SLR and population scenarios and method used for regionalising the population 

projections. The assessed exposure based on the regionalised approaches is higher than that 

derived from the reference approach by up to 60 million people (39 %). Accounting for urban-

isation and coastal migration leads to an increase in exposure, whereas considering urban 

sprawl leads to lower exposure. Differences between the reference and the regionalised ap-

proaches increase with higher SLR. The regionalised approaches show highest exposure under 

SSP5 over most of the 21st century, although total population in SSP5 is the second lowest 

overall. All methods project the largest absolute growth in exposure for Asia and relative 

growth for Africa. 

Keywords 

sea-level rise, Shared Socioeconomic Pathways, coastal population dynamics, coastal flooding 

exposure 
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4.1 Introduction 

A large number of studies have assessed future coastal exposure to sea-level rise (SLR) 

and respective impacts on a global scale (e.g. Hanson et al. 2011; Hallegatte et al. 2013; Neu-

mann et al. 2015). These studies rely on SLR and socio-economic scenarios, because future 

climate and socio-economic change cannot be forecasted over decades due to deep uncertain-

ties and alternating pathways of development involved. While a lot of emphasis has been placed 

on developing adequate SLR scenarios that account for uncertainties in future SLR, much less 

emphasis has been placed on socio-economic scenarios, even though both uncertainties are 

roughly at equal footing in terms of their influence on future coastal exposure and impacts 

(Hinkel et al. 2014).  

The implementation of population changes in global coastal impact assessments has gen-

erally improved since the 1990s, as at that time studies assumed socioeconomic conditions to 

remain constant (e.g. Nicholls and Mimura 1998) and were therefore unrealistic for future con-

ditions. In recent years multiple scenarios of socioeconomic development on global, continen-

tal or national level have been employed in global coastal impact assessment in order to account 

for uncertainties in socioeconomic development and lead to plausible estimates on future ex-

posure (see e.g. Nicholls (2004) and Arnell et al. (2004) for the Intergovernmental Panel on 

Climate Change (IPCC) Special Report on Emission Scenarios (SRES) and e.g. Hinkel et al. 

(2014) for the Shared Socioeconomic Pathways (SSPs)). However, these approaches used pop-

ulation projections on national level and did not account for different population change rates 

in coastal and inland areas. As coastal zones typically face different challenges compared to 

inland areas, including differing rates of economic growth and a higher density of cities 

(McGranahan et al. 2007; Seto 2011; Kummu et al. 2016), coastal population was underesti-

mated.  

For this reason, some recent studies of global coastal exposure have used higher growth 

rates for coastal population than for inland population. Nicholls et al. (2008) assumed coastal 

population to grow up to 2 times faster than the national average. Neumann et al. (2015) refined 

the approach of Nicholls et al. (2008) and differentiated between coastal and inland population 

development for urban and non-urban areas by using correction factors. These corrections fac-

tors allowed coastal population to remain constant if inland population was projected to de-

crease and grew 1.7 to 2 times faster than the inland population if the inland population was 

projected to increase. These approaches have the limitations of assuming first, arbitrary cor-

rection factors, and second that coastal population develop faster than inland population for all 

countries, which is, not always the case. Merkens et al. (2016), for example, tested this assump-

tion against historical population data for coastal countries between 1990 and 2000 and found 

that for 40-50 % of all countries inland urban and rural locations grow faster than their coastal 

counterparts. 

Spatially explicit population projections provide a more realistic basis for coastal exposure 

analysis. Gaffin et al. (2004) developed population projections until 2100 consistent with the 

SRES with a horizontal resolution of 15 arc-minutes (~30 km at the equator). Grübler et al. 

(2007) produced gridded population projections with a horizontal resolution of 7.5 arc-minutes 

(~15 km at the equator) for three of four SRES scenarios. Their work was refined by Jones and 

O’Neill (2016), who created gridded population projection for all five SSPs at an initial hori-

zontal resolution of 7.5 arc-minutes. Their projections were downscaled to 0.5 arc-minutes 

(~1 km at the equator) by Gao (2017). Jones and O’Neill (2016) analysed historical trends of 

population development and used a gravity-based downscaling model to simulate urban and 

rural population changes. For all five SSPs an index of potential attractiveness for each grid 
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cell was used to allocate population, which indirectly leads to different growth rates on subna-

tional level for coastal and inland areas. Merkens et al. (2016) created gridded population pro-

jections with a horizontal resolution of 0.5’ for all five SSPs that focused on coastal areas and 

analysed historical growth differences of coastal urban and coastal rural areas compared to the 

inland counterparts. Their method is described in more detail in subsection 4.2.2. In addition, 

they expanded the qualitative narratives of the SSPs to the coastal zone and assumed scenario-

specific modifications of the observed growth differences that are based on the narratives. Both 

studies, Jones and O’Neill (2016) and Merkens et al. (2016), are consistent with the population 

projections (KC and Lutz 2017) and urbanisation projections (Jiang and O’Neill 2017) on na-

tional level that are used in the SSP framework (O’Neill et al. 2017).  

In this study we assess the sensitivity of outcomes in coastal exposure analysis to inclusion 

of subnational heterogeneity in population projections. We compare (i) homogeneous popula-

tion change on national level (hereinafter referred to as the basic approach) to (ii) the population 

projections of Merkens et al. (2016) that also account for urbanisation and coastal migration 

are have been specifically developed for coastal exposure analysis (hereinafter referred to as 

the coastal approach) and to (iii) the downscaled spatial projections of Jones and O’Neill (2016) 

by (Gao 2017) that account for urbanisation and urban sprawl (referred to as dynamic ap-

proach)). We further analyse (iv) the extent to which urbanisation can explain the differences 

in exposure between the basic and coastal approach (referred to as urban approach) (see Figure 

4.1). 

 

Figure 4.1: Regionalisation approaches. The basic approach assumes homogeneous population dynamics within a 

country. The coastal approach differentiates population dynamics between coastal urban, coastal rural, inland ur-

ban and inland rural areas. The dynamic approach uses dynamic urban extents to account for urban sprawl. The 

urban approach differentiates urban and rural population dynamics with static urban extents 
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4.2 Data and Methods 

4.2.1 DIVA database 

For our analysis, we employ the Dynamic Interactive Vulnerability Assessment (DIVA) 

modelling framework, which has been used in a wide range of applications in coastal risk as-

sessments (see Hinkel et al. 2013 for erosion, Hinkel et al. 2010 and Hinkel et al. 2014 for 

adaptation, Hinkel et al. 2012 for adaptation and mitigation, Spencer et al. 2016 for wetlands). 

The results presented in this study are based on version 30 of the DIVA database and model 

version 1.7. 

The DIVA database breaks the world’s coasts (excluding Antarctica) into 12,148 seg-

ments. Each coastal segment provides information on administrative, bio-physical and socio-

ecological attributes. In the context of this study, we focus on the population living in the 

1 in 100-year floodplain, which is a well-established measure of coastal exposure analysis (e.g. 

Hanson et al. 2011; Vousdoukas et al. 2016; Muis et al. 2017). The 1 in 100-year coastal flood 

heights are taken from Muis et al. (2016). We use the DIVA flood module to calculate the 

number of people living in the floodplain without considering dikes. A detailed description of 

this approach can be found in Hinkel et al. (2014). As we account for isostatic adjustment and 

subsidence (see subsection 4.2.3), DIVA provides relative sea-level for all segments.  

To define the floodplain, we use a global elevation dataset which is based on SRTM (Jarvis 

et al. 2008) and GTOPO30 (USGS 1996) data for high latitudes (>60°  N and >54° S). For all 

elevation steps from 1 m to 16 m, we calculate the extent of the area that is hydrologically 

connected to the ocean and smaller or equal to the respective elevation threshold (see Poulter 

and Halpin 2008). Intermediate values are linearly interpolated (Hinkel et al. 2014). We utilise 

the GRUMPv1 grid (CIESIN et al. 2011a) to analyse the population located in each of these 

elevation increments for the year 2000. The coastal SSPs of Merkens et al. (2016) use the 

GRUMP urban extent grid, which uses census population counts, settlement points and night-

time lights, to define urban areas (CIESIN et al. 2011b) and assume these to be static. GRUMP 

tends to underestimate the extent of settlements with none or little light at night, e.g. in parts 

of Africa (Balk et al. 2006), which also affects the estimates on exposed population. The esti-

mates on exposed population also depend on the elevation model used for the analysis. Lichter 

et al. (2011) analysed the land area of the LECZ derived from three different elevation datasets 

with the same vertical and horizontal resolution of 1 m and 0.5 arc-minutes (~1 km at the equa-

tor). On a continental scale, they found differences of up to 40 %. In the same study, Lichter et 

al. (2011) compared two commonly used population datasets (GRUMP alpha and LandScan 

2006) and analysed the population located in the LECZ. On a global scale, the LECZ popula-

tion differed by ~10 %, on a continental scale by up to 28 %. They stated the combined uncer-

tainty of elevation and population data at 20 % on a global scale and at up to 67 % on a conti-

nental scale. Mondal and Tatem (2012) compared the LECZ population for GRUMP version 1 

(the same version that was used in this study) and LandScan 2008 and found differences of 4 % 

on a global scale and of up to 39 % on a continental scale. GRUMP’s underlying assumption 

of homogeneous population distribution within urban and rural areas in the same administrative 

unit can in addition lead to an over- or underestimation of the ‘true’ exposure (Merkens and 

Vafeidis 2018). As this study uses the same population and elevation datasets throughout the 

analysis, we expect the relative differences between the approaches to be independent from the 

elevation or population data, whereas the absolute numbers are likely to be different if other 

population or elevation data are used. 
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4.2.2 Socioeconomic scenarios 

We initially calculate exposure of population based on two approaches to account for fu-

ture population development in coastal areas (see Figure 4.1). In the basic approach, we use 

national population projections taken from KC and Lutz (2017) and apply these to the baseline 

(i.e., year 2000) spatial population data. This approach assumes homogeneous growth rates 

within each country, i.e. population in coastal areas grows at the same rate than in inland areas. 

In the coastal approach, we use the coastal SSPs of Merkens et al. (2016). These are based on 

the national population projections of KC and Lutz (2017) as well, but consider urbanisation 

projections (Jiang and O’Neill 2017), historical growth differences and scenario-dependent 

modifications of growth differences. For each country, Merkens et al. (2016) analysed the pop-

ulation growth for coastal urban (rural) areas and inland urban (rural) areas over a 10-year 

period from 1990 to 2000. If coastal areas had a higher population growth rate than inland 

areas, the growth difference (GD) was positive and vice versa. The GD allows for negative 

(positive) population growth in the coast or inland even if national population growth is posi-

tive (negative). It also allows for higher population change rates in coastal areas compared to 

inland areas. For SSP2 Merkens et al. (2016) assumed the GD to keep constant over time for 

each location. For the other four SSPs they modified the GDs based on the interpretation of the 

coastal SSP narratives, which are introduced in the same study. They quantified the modifica-

tion of the GDs based on the difference between percentiles in the distribution of the observed 

urban and rural GDs for all coastal countries. In SSP1 they assume no differences in growth 

for coastal and inland urban areas and a reduced rural GD (translates to relatively higher rural 

growth in inland). In SSP3 they assume that the GD to reduce by 50 % for both, urban and 

rural areas. In SSP4 and SSP5 they increased the GD (translates to relatively higher relative 

growth at the coast), whereby the increase was bigger in SSP5. Based on the scenario specific 

GDs and the population and urbanisation projections they calculated population counts for 

coastal urban, costal rural, inland urban and inland rural for each country in 5 year increments 

until 2100. This leads to heterogeneous growth rates within countries because urban areas de-

velop differently to rural areas and coastal areas differently to inland areas. We then calculate 

the mean coastal population growth rate for each country and apply it on each coastline segment 

of this country. We must note that the definitions of ‘urban’ between GRUMP (used in Merkens 

et al. (2016) and Gao (2017)) and Jiang and O’Neill (2017) differ, which results in an offset in 

the data for the years 2005 and 2010 (see subsection 4.4 for a discussion of the implications on 

exposure analysis). 

4.2.3 Sea-level rise scenarios 

We use the projected changes in global mean sea level and the likely ranges reported in 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Church et al. 

2013). For each of the four RCPs, we use the ensemble median as medium SLR scenario. The 

83rd percentile serves as high SLR scenario and the 17th percentile as low SLR scenario (see 

Table 4.1). We do not consider regional patterns of SLR due to ocean dynamics and regionally 

differential changes in thermal expansion and rotational and gravitational effects of the mass 

loss of ice sheet. Church et al. (2013) show that these regional effects are below 10 % for most 

of the populated coastal zone with the exception of the East Coast of the US. Hence the global 

effects of these regional SLR variations are expected to be much smaller than those of human-

induced subsidence in densely populated river deltas, which we consider here together with 

isostatic adjustment. Furthermore, uncertainties in regional sea level projections are large, with 

different models producing different patterns and the highest deviations of regional SLR due 

to dynamic variability coinciding with those regions for which model uncertainties are largest 

(Church et al. 2013). We assume that water levels during coastal floods increase by the same 
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amount as the projected global sea-level and do not account for non-linear interactions between 

the water level and SLR (Arns et al. 2017) as the focus of this paper is the comparison of 

population distribution approaches. 

Table 4.1: Sea-level rise projections for 2100 referenced to the 1986-2005 period [in m] 1. 

 low medium high 

RCP2.6 0.28 0.44 0.61 

RCP4.5 0.36 0.53 0.71 

RCP6.0 0.38 0.55 0.73 

RCP8.5 0.53 0.74 0.98 
1 Values are taken from Prather et al. (2013). 

In this study, we use the 12 SLR scenarios from Table 4.1 (four RCPs, for each high, 

medium and low SLR projections). These are combined with the five SSPs. Taking into ac-

count the two regionalisation approaches (plus another two for testing our assumption) in each 

SSP, we end up with 240 model runs. This number could be reduced by ignoring scenario 

combinations that are not plausible. For example, the combination of an environmentally 

friendly socioeconomic scenario (SSP1) and a physical scenario with high radiative forcing 

(RCP8.5) would in general be inconsistent (van Vuuren et al. 2014; Engström et al. 2016). 

Nevertheless, we decided to analyse all scenario combinations, as this study aims to analyse 

and understand the effect that regionalisation approaches of socioeconomic scenarios have for 

impact assessment. 

4.3 Results 

We compare future coastal exposure to 1 in 100-year coastal floods based on the different 

regionalisation approaches. We define the absolute difference in exposure as the difference in 

the tested approach (i.e. coastal, urban or dynamic) minus the exposure in the basic approach. 

The relative difference is defined as the absolute difference in exposure divided by the exposure 

in the basic approach. 

4.3.1 Global 

Our first main finding is that accounting for urbanisation and coastal migration has signif-

icant implications for assessing coastal exposure. The exposure based on the coastal approach 

exceeds the one based on the basic approach in all scenarios over the 21st century (see Figure 

4.2). This finding is consistent for all SLR scenarios (see Figure 4.3). For SSP1, 4 and 5 we 

find the exposure in the basic approach with high SLR in all RCPs to be lower than the respec-

tive low SLR variant in the coastal approach. In other words, in these scenarios the difference 

between the population distribution approaches is larger than the difference between high and 

low SLR. To investigate which of the two (urbanisation and coastal migration) is the dominant 

process leading to the difference between basic and coastal approach, we added the ‘urban 

approach’ to our modelling scheme (see Figure 4.1). The urban approach is based on population 

and urbanisation projections that are modelled in the same way as in the coastal SSPs, but uses 

a GD of zero, which means that the population in urban and rural zones for each SSP grows at 

rates consistent with projections on national level and does not differ between coastal and in-

land areas. We assume that the difference between the urban approach and the basic approach 

represents the impact of changing urbanisation levels, without considering urban sprawl. The 

difference between the urban approach and the coastal approach can result from differences in 

fertility, mortality, international migration or internal migration, of which we assume internal 

migration from or to the coast to have the highest impact. We find that, independently of SLR, 
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urbanisation explains 61 % of the difference between the coastal and basic approach in SSP1, 

96 % in SSP2, 54 % in SSP3, 76 % in SSP4 and 45 % in SSP5 (see Figure 4.8). This means 

that SSP5 is the only scenario where urbanisation appears not to be the dominant process. This 

can be explained by the underlying assumptions of intense coastward migration for SSP5 in 

the coastal approach (Merkens et al. 2016). In general, the projected increase in urbanisation 

levels leads to higher population growth rates in the coastal zone compared to inland areas, as 

coastal areas show a higher density of cities than inland areas, and population is projected to 

move into these cities. In the basic approach, the population in all areas within a country grows 

at the same rate, which leads to lower population numbers at the coast compared to the coastal 

approach. We therefore conclude that the higher exposure in the coastal approach compared to 

the basic approach is due to a combination of increasing urbanisation levels in all SSPs and 

migration to coastal areas, of which urbanisation is the dominant process for SSPs 1-4 and 

coastal migration for SSP5. 

 

Figure 4.2: Exposure of population to 1 in 100-year coastal floods under medium SLR in RCP6.0 in the tested 

approaches. 

Our second main finding is that the implementation of urban sprawl has a considerable 

impact on the estimates on exposure. We compare the urban approach to a ‘dynamic approach’, 

which is based on the population projections of Jones and O’Neill (2016) that were downscaled 

by Gao (2017). Unlike the urban (and coastal) approach, that assume urban extent to be static, 

the dynamic approach considers urban sprawl, which leads to wider city extents and lower 

population densities within cities. We assume that differences between the urban and dynamic 

approach are mainly due to urban sprawl, as the approaches use the same population projections 

of KC and Lutz (2017) and the same urbanisation projections of Jiang and O’Neill (2017). 



 

 

Figure 4.3: Population exposed to 1 in 100-year coastal floods under different regionalisation approaches and SLR projections. 
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Compared to the dynamic approach, we find exposure to 1 in 100-year coastal floods to 

be higher in the urban approach for all combinations of SSPs and RCPs (Figure 4.3). They 

differ between 15 million in SSP1 (RCP 2.6 and low SLR) and 26 million in SSP4 (RCP 8.5 

and high SLR). Differences in SSP1 are lowest, as cities in the dynamic approach are assumed 

to be concentrated (Jones and O’Neill 2016) and urban extents to be static in the urban (and 

coastal) approach. However, the difference of 15 million in SSP1 is considerable and suggests 

that the definition of urban areas (and population) between the urban and the dynamic approach 

differs, as urbanisation levels and total population do not differ and cities are assumed to be 

concentrated (dynamic approach) or static (urban approach). For SSPs 2-5 differences between 

the urban approach and dynamic approach are higher, as only the dynamic approach considers 

urban sprawl. This suggests that urban sprawl can lead to a reduction of exposure as cities seem 

to expand towards less flood-prone areas. The differences between the basic and the dynamic 

approach are rather small (Figure 4.2). Global exposure in the dynamic approach under SSP3 

for 2100 is up to 7.5 million lower than one in the basic approach. In the other SSPs, exposure 

based on the dynamic approach exceeds the basic approach by 1 million in SSP4, 2 million in 

SSP2, 5 million in SSP5 and 6 million in SSP1 (see Figure 4.9). These SSPs are also projected 

to have a high increase in urbanisation levels, whereas urbanisation levels in SSP3 are projected 

to increase little (Jiang and O’Neill 2017). This supports our first finding that neglecting ur-

banisation patterns would lead to an underestimation of coastal exposure. The differences be-

tween the dynamic and the coastal approach are larger than the differences between the dy-

namic and the urban approach (between 17 million is SSP2 under RCP 2.6 with low SLR and 

54 million in SSP5 under RCP 8.5 and high SLR), as coastal migration is additionally consid-

ered in the coastal approach. Overall, we believe that the coastal approach overestimates expo-

sure, as it does not consider urban sprawl, which appears to reduce exposure; and that the dy-

namic approach underestimates exposure, as it does not explicitly consider coastal migration, 

which appears to increase exposure to coastal flooding. We must note that this study does not 

aim to test the underlying quantifications on coastal migration in Merkens et al. (2016) and the 

quantification of urban sprawl in Jones and O’Neill (2016), but rather to investigate the impli-

cations for coastal exposure analysis when accounting or neglecting of processes actually tak-

ing place in coastal areas. 

We also find that the population distribution approach is important in determining which 

SSP leads to the highest exposure to coastal flooding. Though all approaches agree on SSP3 

having the highest exposure in 2100, only the basic approach shows SSP3 to lead to the highest 

exposure throughout the century. The other approaches agree on SSP5 leading to the highest 

exposure until 2060 (dynamic approach), 2075 (urban approach) and 2090 (coastal approach) 

(see Figure 4.2). This holds true for all SLR scenarios. This is noteworthy as SSP5 and SSP1 

are projected to have considerably lower total populations than the other SSPs (KC and Lutz 

2017). We identify two factors leading to this observation. The behaviour in the basic approach 

can be explained by the underlying global population projections that project population to be 

highest in SSP3 (KC and Lutz 2017). The higher exposure in SSP5 in the other approaches is 

due to high urbanisation levels (Jiang and O’Neill 2017). Exposure rises in the coastal approach 

as coastal areas are assumed to be more attractive than inland areas and decreases in the dy-

namic approach as high urban sprawl leads to cities expanding to flood proof areas. 

Results also show that the absolute difference in exposed population between the basic and 

the other approaches increases with SLR (see Figure 4.9). We find the highest differences under 

the high SLR projections in RCP8.5 and the smallest differences under the low SLR projections 

in RCP2.6. Compared to the basic approach, SSP1, SSP4 and SSP5 show the highest difference 

and SSP2 and SSP3 the lowest. Different to the urban and the coastal approach, the dynamic 

approach shows a reduced exposure for SSP3 and a higher difference for SSP2 than for SSP4 
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for 2090 to 2100, when the basic approach is used as reference. Again, this observation high-

lights the significance of urbanisation, coastal migration and urban sprawl. As cities are con-

centrated in coastal areas, the overall population growth in coastal areas is higher than the na-

tional average (represented by the basic approach). 

Figure 4.4 illustrates the relevance of using socioeconomic scenarios in coastal impact 

assessments. It shows the share of population exposed to flooding for all SSPs based on the 

four tested approaches and additionally for a scenario where population remains constant at the 

year 2000 levels. In this scenario, the share of population exposed to 1 in 100-year coastal 

floods under medium SLR in RCP 6.0 increases steadily from ~1.6 % in 2000 to ~2.1 % in 

2100. In the basic approach, the share decreases or remains constant until 2040 in all scenarios, 

although the absolute exposed population increases (compare to Figure 4.2). In 2100 the share 

of population exposed ranges from ~1.2 % in SSP4 to 1.7 % in SSP5. In the coastal approach, 

the share of exposed population does increase only in SSP1 and SSP5 continuously until 2100 

and exceeds the constant scenario. The other SSPs remain at their year 2000 level or decrease. 

The share of population exposed ranges from 1.5 % in SSP3 to 2.4 % in SSP5. The general 

patterns of the dynamic approach follow the ones described for the basic approach but the share 

of exposed population is ~0.05 % higher. The general patterns of the urban approach follow 

the ones described for the coastal approach but are considerable lower for SSPs 1 and 5.Alt-

hough the population is not changing in the constant scenario at all, the SLR-related increase 

of the floodplain leads to an increase in exposure to 1 in 100-year coastal floods. 

 

Figure 4.4: Percentage of global population exposed to 1 in 100-year coastal floods for medium SLR projections 

in RCP 6.0. Constant represents the year 2000 baseline population. 
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4.3.2 Regional 

In this subsection, we focus on the comparison between the basic and the coastal approach, 

as the coastal approach explicitly considers coastal migration. Exposure under all approaches 

are shown in Figure 4.5 and the absolute difference to the basic approach in Figure 4.10. 

Different to the global patterns, Europe, Northern America and Oceania face the highest 

exposure under SSP5 for both coastal and basic SSPs. Exposure increases continuously until 

2100 under this SSP. For Africa and Latin America and the Caribbean (LAatC), SSP3 shows 

the highest exposure throughout the century, which also increases continuously with time. This 

is in line with the underlying national projections of KC and Lutz (2017) that project highest 

population under SSP5 for the most developed countries and under SSP3 for developing coun-

tries. For Asia, we find a notable difference between the coastal and basic approach. In the 

basic approach, exposure is highest under SSP3 throughout the 21st century. In the coastal ap-

proach, exposure is highest under SSP5 until 2075 and under SSP3 afterwards. Asia’s high 

exposure under SSP5 in the coastal approach reflects the high increase of urbanisation levels 

in the underlying urbanisation projections (Jiang and O’Neill 2017) and the coastward migra-

tion in the coastal SSPs. The decrease in Asia’s exposure projected after 2050 is due to the 

decreasing population after 2050 in the underlying population projections (KC and Lutz 2017). 

This also can also be seen in the basic approach and holds true for all SSPs except SSP3, where 

the Asia’s population is projected to grow after 2050. 

The absolute difference in exposure to 1 in 100-year coastal floods on a continental scale 

follows global patterns and becomes larger with SLR in all SSPs (see Figure 4.10). Accord-

ingly, we find the highest differences in RCP8.5 with high SLR and the smallest differences in 

RCP2.6 with low SLR. The difference between the coastal and basic approach is highest in 

SSP5 in all continents except Africa, where SSP4 shows the highest differences. We observe 

the lowest differences in SSP1 for Africa, LAatC, Northern America and Oceania. For Europe 

and Asia, we find the lowest differences between the coastal and basic approach in SSP3. 

The relative difference in exposed population is heterogeneous and does not follow the 

global patterns. For Africa, which shows overall the highest values, we find the relative differ-

ence to decrease with rising sea levels (see Table 4.2). The highest difference in exposure is in 

SSP4 (coastal approach is up to 64 % higher than the basic approach) and lowest in SSP2 and 

SSP3 (coastal approach 24 % higher than basic approach). For Asia, we find the highest rela-

tive differences between coastal and basic approach in SSP5 (48 %) and the lowest in SSP3 

(~12 %). For Europe, which shows overall the closest agreement between coastal and basic 

approach, the relative difference in exposure increases slightly with SLR. SSP5 exhibits the 

highest relative difference in exposure (~20 %) and SSP3 the lowest (<1 %). For Northern 

America, the relative difference in exposure increases with SLR in SSP1 and decreases in 

SSP2-5 while the opposite is the case in Asia. For LAatC and Oceania we do not find a relation 

between SLR and relative difference in exposure based on the basic and coastal SSPs. 



 

 

Figure 4.5: Population exposed to 1 in 100-year coastal floods per continent based on different regionalisation approaches under medium SLR in RCP 6.0
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Table 4.2: Relative difference in population exposed to 1 in 100-year coastal floods in 2100 between coastal and 

basic approach per continent [in %]. 

  RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 
 SLR low med hig low med hig low med hig low med hig 

Africa 

SSP1 40.7 38.3 36.1 39.5 37.2 34.8 39.2 36.9 34.6 37.2 34.4 32.0 

SSP2 35.4 33.2 30.5 34.4 32.0 28.6 34.0 31.7 28.2 32.0 28.0 24.3 

SSP3 31.0 30.6 30.1 30.8 30.4 29.6 30.8 30.4 29.5 30.4 29.4 28.4 

SSP4 64.3 61.9 58.7 63.2 60.6 56.0 62.9 60.2 55.5 60.6 55.2 49.8 

SSP5 57.5 54.1 50.2 55.9 52.3 47.4 55.4 51.8 46.9 52.3 46.7 41.4 

Asia 

SSP1 45.7 45.7 45.7 45.7 45.7 45.6 45.7 45.7 45.6 45.7 45.6 45.5 

SSP2 16.6 16.7 16.8 16.6 16.7 16.8 16.6 16.7 16.8 16.7 16.8 17.0 

SSP3 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.9 

SSP4 24.4 24.5 24.7 24.5 24.6 24.8 24.5 24.6 24.8 24.6 24.8 25.0 

SSP5 47.7 47.7 47.8 47.7 47.8 47.9 47.7 47.8 47.9 47.8 47.9 48.0 

Europe 

SSP1 3.6 3.7 3.7 3.6 3.7 3.8 3.6 3.7 3.8 3.7 3.8 3.8 

SSP2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.4 

SSP3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 

SSP4 7.0 7.0 7.0 7.0 7.0 7.1 7.0 7.0 7.1 7.0 7.1 7.2 

SSP5 19.8 19.9 20.1 19.8 20.0 20.2 19.9 20.0 20.2 20.0 20.2 20.4 

Latin America  

and the  

Caribbean 

SSP1 18.3 18.0 17.7 18.1 17.9 17.6 18.1 17.8 17.6 17.9 17.5 17.2 

SSP2 16.3 16.8 17.1 16.6 17.0 17.2 16.6 17.1 17.2 17.0 17.1 16.6 

SSP3 12.7 12.8 12.8 12.7 12.8 12.7 12.7 12.8 12.7 12.8 12.7 12.2 

SSP4 21.4 21.8 22.1 21.6 22.0 22.1 21.7 22.0 22.0 22.0 22.0 21.3 

SSP5 45.0 45.5 45.9 45.3 45.8 46.0 45.3 45.8 45.9 45.8 45.9 45.2 

Northern  

America 

SSP1 4.3 4.3 4.4 4.3 4.4 4.4 4.3 4.4 4.4 4.4 4.4 4.5 

SSP2 12.9 12.6 12.4 12.7 12.5 12.3 12.7 12.5 12.3 12.5 12.3 12.0 

SSP3 8.3 8.3 8.2 8.3 8.2 8.2 8.3 8.2 8.1 8.2 8.1 8.0 

SSP4 17.2 16.9 16.7 17.0 16.8 16.6 17.0 16.8 16.6 16.8 16.5 16.2 

SSP5 37.9 37.6 37.3 37.7 37.5 37.2 37.6 37.4 37.1 37.5 37.1 36.8 

Oceania 

SSP1 11.3 11.4 11.6 11.3 11.5 11.6 11.4 11.5 11.6 11.5 11.6 11.4 

SSP2 28.2 28.2 28.2 28.3 28.3 28.2 28.3 28.3 28.2 28.3 28.2 28.2 

SSP3 13.6 13.7 13.7 13.7 13.7 13.8 13.7 13.7 13.8 13.7 13.8 13.9 

SSP4 39.0 39.1 39.0 39.1 39.1 39.0 39.1 39.1 39.0 39.1 39.0 38.7 

SSP5 57.0 57.0 57.0 57.0 57.0 56.9 57.0 57.0 56.9 57.0 56.9 56.8 

4.3.3 National 

Urbanisation projections, costal migration and data inconsistencies have a considerable 

influence on exposure. To demonstrate this, we analyse the difference in exposure between 

approaches on national level for the United States of America, India, China and Cote d’Ivoire. 

The differences in these four countries result from distinct patterns across three continents. 

For the United States of America the difference between the approaches in SSPs 1-4 is < 

350,000 (6.5% relative difference) (see Figure 4.6 for absolute numbers on exposure and Figure 

4.11 for differences to the basic approach). In SSP5 the absolute difference between the ap-

proaches is up to 2 million, which translates into a relative difference of 25%. These high dif-

ferences in SSP5 result from the assumption in the coastal approach of coastal areas being more 
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attractive than inland areas thus attracting more population (Merkens et al. 2016). The good 

agreement in exposure between the  approaches for the other SSPs results from a high urbani-

sation level of 80% in the base year (UN 2015) and a low urbanisation gain of 17%  until 2100 

in all SSPs (Jiang and O’Neill 2017), which also leads to relatively small urban sprawl (differ-

ence between dynamic and urban approach). 

 

Figure 4.6: National population exposed to 1 in 100-year coastal floods based on different regionalisation ap-

proaches under medium SLR in RCP 6.0. 

For India, exposure in 2100 is projected to be highest under SSP3 for all approaches with 

~20 to 27 million people. Different to the United States of America, we find the urban approach 

leading to higher estimates in exposure than the coastal approach. This is due to a negative 

observed GD, which means that for India coastal areas were less attractive than inland areas. 

In the coastal approach, this observation is assumed to persist. The high difference between the 

urban and the dynamic approach illustrate that urban sprawl leads to a considerable reduction 
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of exposure compared to the assumption of static urban extents. As both, urban sprawl and 

migration to the inland lead to a reduction of exposure; we expect all regionalised approaches 

to overestimate exposure, whereas we assume that the dynamic approach leads to the best es-

timates in this case. 

The opposite applies to Cote d’Ivoire. The exposure in 2100 based on the coastal approach 

is up to 5.5 time higher than based on the other approaches. We find the highest absolute dif-

ferences in SSP4 (~5 million). This is partly due to the high gain in urbanisation level (increase 

from 43% in 2000 to 94% in 2100) and a high projected increase of population from 16.5 

million in 2000 to 53 million in 2100 (Jiang and O’Neill 2017; UN 2015). We suspect a high 

positive observed GD to be the major driver of the considerably higher exposure in the coastal 

approach (high difference between coastal and urban approach), which is maintained for SSPs 

2-5. In SSP1 the urban GD for coastal and inland areas is set to zero, which implies no differ-

ences in growth rates for cities and leads to the lowest difference to the other approaches.  We 

consider that in the coastal approach overestimates the exposed population for Cote d’Ivoire. 

Although other studies project the population of Abidjan (a coastal city) to grow by 4.7 times 

between 2010 and 2100 (Hoornweg and Pope 2016), the comparison between the dynamic and 

the urban suggests, that the city will extent to less flood prone areas. 

For China, we find the highest differences between the coastal and basic approach in 2100 

with ~25 million (up to 80% relative difference) under SSP5. This is due to an increase in 

urbanisation level (35% in the base year to 94% in 2100) and, as already discussed for the 

United States of America, the assumption of a high attractiveness of coastal areas in the coastal 

approach. The difference between the urban and dynamic approach of ~8 million suggests that 

cities expand to less flood prone areas, what leads to a considerable reduction of exposure 

compared to static urban extents. The difference of ~5 million in exposure for 2005 is due to 

inconsistencies in the UN (2015) and CIESIN et al. (2011b) data used to determine base year 

urbanisation in the coastal SSPs. However, even if the absolute differences in exposure for 

years later than 2010 were reduced by 5 million, the differences between the coastal and the 

other approaches would still be notable. 

4.4 Discussion 

One of our key findings is that under all scenarios the coastal approach projects higher 

population located in the floodplain of 1 in 100-year coastal floods than the basic approach. In 

agreement with previous studies that identified urbanisation as a key component in coastal 

population development, we explain most of the differences with the projected growing urban-

isation levels in the coastal approach (see Figure 4.7 and Figure 4.8). Coastal areas today show 

a higher concentration of cities than inland areas. Kummu et al. (2016) show that 105 out of 

256 cities with a population of more than 1 million are located in the near coast zone (proximity 

to coast < 100 km and altitude < 100 m). According to Brown et al. (2013), in 2010 20 out of 

31 megacities (cities with more than 8 million inhabitants) were located in the low-elevation 

coastal zone (LECZ; altitude ≤ 10 m and hydrological connection to the ocean). Neumann et 

al. (2015) assume that the number of megacities in the LECZ will increase to 25 until 2025. 

Hoornweg and Pope (2016) project the population development of the 101 largest cities under 

three SSPs. They show that the percentage of population living in these cities will increase 

from 11 % in 2010 to 15 % in SSP3, 20 % in SSP2 and 23 % in SSP1 until 2100. As the coastal 

approach accounts for urbanisation (Merkens et al. 2016) and the basic approach does not, 

coastal population tends to be underestimated in the basic approach. 
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Figure 4.7: Components of the absolute difference between the coastal and basic approach in population exposed 

to 1 in 100-year coastal floods under medium SLR in RCP 6.0 (in million). 

The basic approach shows similar results to the study of Jongman et al. (2012) that also 

used a homogeneous population growth approach on national level. They found an increase in 

population exposure to 1 in 100-year coastal floods between 2010 and 2050 of 25 % on a global 

scale. In the basic approach, we find an increase of population’s exposure to 1 in 100-year 

coastal floods between 19 % in SSP4 and 28 % in SSP3. The exposure based on the coastal 

approach grows from 2010 to 2050 between 33 % in SSP3 and 50 % in SSP5 and exceeds the 

projections of Jongman et al. (2012). In agreement with Jongman et al. (2012), both approaches 

analysed in context of this paper project the highest absolute growth in exposed population 

until 2050 for Asia and the highest relative growth for Africa. However, the comparison of 

results to other studies proofs difficult, as the underlying population projections are different. 

For example, Jongman et al. (2012) used the medium Fertility projection of the 2006 Revision 

by the UN Population Division while this study is based on the work of KC and Lutz (2017). 

The differences in population exposure between the approaches for the years 2005 and 

2010 are due to using differing definitions of ‘urban’ in the underlying data. The urbanisation 

projections rely on Jiang and O’Neill (2017), which used the world urbanisation prospects (UN 

2015) as input data that retains the urban definitions used by each country. Across countries, 

the definitions are inconsistent. The coastal SSPs of Merkens et al. (2016) used the GRUMP 

urban extents grid, which tends to underestimate urban extents in developing regions (see sub-

section 4.2.1). Hence, urban population is concentrated in the remaining settlements with night-

lights, leading to higher estimated population counts in these areas. As coastal areas in eastern 

and northern Africa are heavily populated (Hinkel et al. 2012) and western Africa hosts im-

portant port cities with growing population (Hanson et al. 2011), the inconsistencies in data 

trigger an offset in the initial exposure. In SSP4, which shows the highest relative differences 

between the coastal and basic approach for Africa, the African population grows more than 

threefold (KC and Lutz 2017) and the urbanisation level almost doubles until 2100 (Jiang and 

O’Neill 2017). This leads presumably to an overestimation of exposure in the coastal approach. 

With SLR, the effects of the initial inconsistencies in the data decrease, leading to a reduction 

of the relative differences of exposed population.  

This study has focused on the differences in exposure that arise from using different ap-

proaches to regionalise population projections. We interpret the differences in exposure be-

tween the approaches as uncertainty that is related to regionalisation, as the underlying popu-

lation projections on national level do not differ between the approaches. Other uncertainties 
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arise from elevation data and the base year population datasets used to assess the exposure to 

1 in 100-year coastal floods. Elevation and population datasets can potentially be improved if 

data availability improves and the need for modelling decreases. The uncertainties that arise 

from the downscaling approach can be reduced to some extent, if the differences between re-

ported urbanisation level and the urbanisation levels based on remote sensing products find a 

better agreement. Other parts of the uncertainty cannot be removed, as the projections are made 

for long timeframes and human behaviour cannot be predicted.  

4.5 Conclusion 

This study compared different approaches to account for population change in coastal im-

pact assessment in order to assess the exposure of population to 1 in 100-year coastal floods 

under different SLR and socioeconomic scenarios. All approaches were based on the same 

population projections on national level. We found that urbanisation and coastal migration lead 

to increased exposure whereas urban sprawl leads to reduced exposure. This emphasises the 

need for taking into account population dynamics on subnational level in exposure assessments. 

We believe that the exposure estimates obtained from approaches accounting for regional var-

iations in population distribution, such as urbanisation, coastal migration and urban sprawl, are 

more reliable than the approaches not accounting for such variations. As coastal areas host a 

disproportionately large number of cities, sub-national population dynamics are of particular 

relevance for coastal exposure studies and should not be ignored. With rapidly growing cities 

in developing countries, the need to provide improved assessments of population exposure to 

coastal flooding is important for global and national planning, both in terms of allocating hu-

man and financial resources on national level and climate change adaptation funding on inter-

national level. 
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Figure 4.8: Share of urbanisation and coastal migration on the relative difference between the coastal and basic 

approach in population exposed to 1 in 100-year coastal floods under medium SLR in RCP 6.0. 
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Figure 4.9: Absolute Difference (respective approach minus basic approach) in population exposed to 

1 in 100-year coastal floods under the lowest and highest SLR variant (in million). Note the different scales of the 

y-axis. 
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Figure 4.10: Absolute difference (respective approach minus basic approach) in population exposed to 

1 in 100-year coastal floods per continent under low and high SLR projections. 
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Figure 4.11: Absolute difference (respective approach minus basic approach) in population exposed to 

1 in 100-year coastal floods for four countries under low and high SLR projections. 
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5 Synthesis 

The synthesis summarises the findings of chapters 2 to 4 with regard to improving the 

distribution of current population (subsection 5.1.1) and population growth projections (sub-

section 5.1.2) for coastal impact and vulnerability assessments. Subsection 5.2 takes up the 

main findings to answer the research questions of this thesis. Finally, subsection 5.3 points out 

limitations and discusses approaches to enhance the proposed methods for distributing current 

and future population. 

5.1 Summary and main achievements 

5.1.1 Allocation of population within census units 

Chapter 2 addresses the limitation of homogeneously distributed population within census 

units by using satellite derived settlement extents to heterogeneously allocate population within 

these units. Population per census unit is the most detailed source of information that global 

population datasets use as input data (Doxsey-Whitfield et al. 2015). As more detailed spatial 

information is not available, the population is assumed to be homogeneously distributed within 

a respective census unit. Hence, the size of census units is the determining factor which affects 

the usability of the population data in exposure analysis. Some countries, e.g. the member states 

of the European Union, use administrative boundaries to define census units, whereas other 

countries, such as the United States of America, define census blocks, which are usually smaller 

than the finest administrative unit (municipalities). The uncertainty of the actual distribution of 

population increases with the size of census units. Ancillary data can be used to reduce this 

uncertainty by a) defining areas that cannot be populated (e.g. water bodies) or by b) defining 

areas that are suitable for human settlement. Unlike other studies that use several ancillary 

datasets to redistribute population within census units (e.g. Stevens et al. 2015; Dobson et al. 

2000), the approaches tested in Chapter 2 are exclusively based on GUF settlement extents. 

These have spatial resolutions of 0.4 arc-seconds (approximately 12 m at the equator) and 2.8 

arc-seconds (approximately 84 m at the equator) and cover the entire globe, which is why the 

approaches can also be applied in other study areas as well as globally. This work evaluates 

the usability of the GUF for regionalising population in three ways: (i), by calculating a confu-

sion matrix comparing the presence of settlement extents and population, (ii), by downscaling 

population information from district level to municipality level and (iii), by assessing the pop-

ulation living in flood prone areas. 

First, the confusion matrix compares the actual location of population, which is extracted 

from a population raster with a spatial resolution of 100 m provided by the German Census, to 

the settlement extents provided by the GUF. These are aggregated to a spatial resolution of 

100 m to match the spatial resolution of the population raster. GUF0.4 captures ~95 % of the 

population in the study area, overestimates populated areas by ~46 % and fails to capture 

~18 % of all populated areas. GUF2.8 captures ~83 % of the population, overestimates popu-

lated areas by ~31 % and fails to capture ~44 % of all populated areas. Second, the performance 

of the regionalisation approaches is tested on municipality level. In a reference approach, the 

population within districts is homogenously resampled, leading to the same population density 

in all municipalities located in the respective district. This approach leads to a RTAE of ~0.5 

and a %RMSE of ~100 % (see Table 2.3), indicating the limitations of assuming a homogenous 
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population distribution. Employing the GUF in resampling population reduces the error metrics 

(RTAE ranging from 0.14 to 0.21 and %RMSE ranging from 29 % to 46 %), suggesting that 

both, GUF0.4 and GUF2.8, lead to a considerable improvement in allocating population within 

administrative units. Third, the German Census raster is used to validate and quantify the per-

formance of the regionalisation approaches in assessing the exposure of population living in 

flood prone areas (elevation below 3 m). Again, the reference approach leads to the highest 

errors and overestimates exposure by 120 % to 140 %. All tested approaches reduce the over-

estimation of population exposure, ranging from 23 % to 29 %. Furthermore, the comparison 

between the approaches indicates that GUF2.8 leads to slightly lower errors than GUF0.4. 

5.1.2 Regionalisation of population growth projections 

Riahi et al. (2017) state sectoral extensions of the SSPs to be one of the critical next steps 

for the climate change research community. This thesis addresses this call by presenting the 

coastal SSPs, which extend the SSPs to the coastal zone (see Chapter 3). Based on a literature 

review, this work identifies factors affecting coastal migration and develops qualitative narra-

tives for five coastal SSPs while ensuring consistency with the global SSPs. Besides the narra-

tives, the coastal SSPs involve the quantification of future coastal population and its regional-

isation to a spatially explicit level. This quantitative component of the coastal SSPs utilises 

existing population and urbanisation projections on a national level. Furthermore, the quanti-

tative component modifies observed population GD between coastal and inland areas based on 

the interpretation of the qualitative costal SSP narratives. The regionalisation of the population 

projections is based on the initial distribution of population in the year 2000 and on the derived 

growth rates for coastal urban, coastal rural, inland urban and inland rural areas for each coun-

try and SSP. The spatial resolution of the coastal SSPs (0.5 arc-minutes; ~1 km at the equator) 

is 15 times finer than the existing spatially explicit population projections of Jones and O’Neill 

(2016) (7.5 arc-minutes; ~15 km at the equator). Their resolution is suitable for both climate 

modellers and global scale land use modellers (Riahi et al. 2017). However, the usability in 

coastal exposure analysis is limited as many floodplains do not expand 15 km inland and are 

not resolved at a spatial resolution of 7.5 arc-minutes. 

This work assesses 637 million people living in the LECZ for the year 2000 (Table 3.3), 

which is comparable to the findings of previous studies ranging from 557 million to 702 million 

(Table 1.3). Until 2050, the five coastal SSPs indicate a considerable increase in exposure (Ta-

ble 3.3), which ranges from 58 % (SSP2) to 71 % (SSP5) compared to the year 2000. Between 

2050 and 2100, the LECZ population increases under SSP3 and decreases in the other four 

SSPs. Its share on the total population between 2000 (10.5 %) and 2100 increases in SSP1 

(12.3 %) and SSP5 (12.3 %) and decreases in SSP2 (9.7 %), SSP3 (9.4 %) and SSP4 (9.0 %). 

In absolute numbers, the LECZ population increases from 637 million (year 2000) to 830 mil-

lion in SSP4 (lowest 2100 LECZ population) and 1184 million in SSP3 (highest LECZ popu-

lation). The LECZ population based on the coastal SSPs is 85 million (SSP2) to 239 million 

(SSP5) higher than based on national average growth rates (Table 3.5). 

Exposure based on regionalised population growth in the coastal SSPs provides more plau-

sible estimates than exposure based on national average growth rates. Urbanisation levels have 

considerably increased since 1950, when 30 % of the population worldwide lived in urban ar-

eas. In 2010, more than 50 % of the global population lived in urban areas (UN 2015). This 

trend is projected to continue und also considered in the urbanisation projections of the SSPs 

(Jiang and O’Neill 2017). Urbanisation is a highly relevant process in coastal areas, as the 

density of cities at the coast is much higher compared to inland areas (Kummu et al. 2016). In 

2010, 20 out of 31 mega-cities were located in the LECZ (Brown et al. 2013). The population 

of large cities is expected to increase under the SSPs (Hoornweg and Pope 2016), which will 
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also result in an increase of mega-cities in the LECZ (Brown et al. 2013). National average 

population growth projections do not represent these urbanisation trends (McGranahan et al. 

2007), leading to an underestimation of future population in the LECZ. Furthermore, the 

coastal SSPs differentiate between coastal and non-coastal areas. The population growth rates 

at the coast differ from the population growth rates in inland areas in most countries (Figure 

3.2). This affects future population if the observed GD hold true under future conditions. For 

countries in which population in coastal areas grows faster than in inland areas, national aver-

age growth rates underestimate future population in the LECZ. In contrast, for countries in 

which coastal urban or coastal rural population grows more slowly than in inland areas, future 

population exposure is overestimated. The regionalised population growth projections over-

come this limitation, as they differentiate between growth rates for urban and rural as well as 

coastal and inland population. 

Chapter 4 investigates to which extent coastal migration, urbanisation and urban sprawl 

affect future exposure to coastal flooding by assessing the exposure to 1 in 100-year coastal 

floods in DIVA. It compares four regionalisation approaches: (i), a basic approach that does 

not differentiate population growth on national level, (ii), an urban approach that accounts for 

different population growth in urban and rural areas on a national level, (iii), a dynamic ap-

proach that is based on the spatially explicit population projections of Jones and O’Neill (2016) 

and (iv), a coastal approach that utilises the coastal SSPs (Figure 4.1). The dynamic approach 

considers changes in urbanisation levels and urban extents whereas the coastal approach in-

cludes changes in urbanisation levels and coastal migration. The national population totals 

across the four approaches do not differ. Differences between the basic and the urban approach 

result from changes in the urbanisation level being the only difference in the input data. Simi-

larly, differences between the urban approach and the coastal approach are due to coastal mi-

gration. Lastly, the difference between the urban approach and the dynamic approach results 

from urban sprawl. 

For the year 2000, this work estimates 100 million people living in areas exposed to 

1 in 100-year coastal floods (Figure 4.1). Previous studies assessed considerably higher expo-

sure of up to 190 million for the year 2000 and 290 million for 2010 (Table 1.3). As those 

studies used different data on population, elevation or ESL, the information value of this com-

parison is limited. For 2100, the coastal approach shows the highest exposure to coastal flood-

ing under all SSPs, ranging from 145 million under SSP4 to 190 million under SSP3 (Figure 

4.2). In SSP3, the dynamic approach shows the smallest exposure (~160 million), whereas the 

basic approach leads to the smallest exposure for the other four SSPs with a minimum of 112 

million people exposed under SSP1. The differences between the basic and the dynamic ap-

proach are small, with the basic approach exceeding the dynamic approach by ~7 million under 

SSP3 and the dynamic approach exceeding the basic approach by not more than 5 million under 

the other four SSPs. For individual countries, these differences are higher (Figure 4.11). In 

SSP3, exposure in the urban approach is about 12 million people higher than in the basic ap-

proach and between 20 million and 25 million people higher than under the other four SSPs. 

The coastal approach exceeds exposure based on the urban approach in all SSPs ranging from 

1 million under SSP2 to 28 million people under SSP5. 

5.2 Answers to research questions 

Chapter 2 assesses the usability of settlement extents for allocating population within cen-

sus units for the German Baltic Sea region. Different to previous studies that developed ap-

proaches requiring a large number of input datasets to redistribute population, the presented 
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approaches use solely the GUF settlement extents for redistributing population. This addresses 

the first research question: 

Can satellite derived global settlement extents be used to improve the rep-

resentation of population living in flood prone areas? 

In the German Baltic Sea region, GUF0.4 successfully identifies 95 % of the population 

and 82 % of inhabited areas, whereas GUF2.8 identifies 83 % of the population and 56 % of 

populated areas. These numbers suggest that the finer resolved GUF0.4 identifies populated 

areas with a notably higher accuracy than the coarser resolved GUF2.8. Both, GUF0.4 and 

GUF2.8, do not differentiate between inhabited and uninhabited buildings, such as industrial 

plants or barns, leadings to an overestimation of populated areas by 46 % (GUF0.4) and 31 % 

(GUF2.8). Although GUF does not capture all population or all populated areas in the study 

area, it considerably improves the redistribution of population within census units. If GUF is 

used to regionalise population from district to municipality level instead of distributing popu-

lation homogenously within districts, errors on municipality level are reduced by 50 % to 70 %. 

This also affects the estimates of population living in areas exposed to coastal flooding. As-

suming a homogenous population distribution on district level leads to an overestimation of 

exposure by 120 %. If GUF is used to regionalise population on a district level, the overesti-

mation is reduced by 23 % to 29 %, with GUF2.8 showing slightly smaller errors than GUF0.4. 

Assuming homogeneous population distribution on municipality levels overestimates the ex-

posure of population to coastal flooding by 143 %. Employing GUF to redistribute population 

on municipality levels reduces the error by 40 % to 50 %. All tested approaches that use GUF 

to allocate population within census units lead to a considerable reduction of errors compared 

to approaches distributing population homogeneously. In summary, employing satellite de-

rived settlement extents to allocate population both improves the representation of population 

within census units and reduces the error in assessing the population living in flood prone areas. 

Chapter 4 compares different approaches to regionalise population growth projections and 

utilises the coastal SSPs (Chapter 2) that account for urbanisation and coastal migration and 

the population projections of Jones and O’Neill (2016) that consider urbanisation and urban 

sprawl. This addresses the second research question: 

How does accounting for coastal migration, urbanisation and urban sprawl 

affect the estimates of future population exposure to coastal flooding? 

Population growth and SLR lead to increasing exposure of population to coastal flooding. 

Urbanisation and coastal migration intensify this trend. Until 2100 coastal migration leads to 

increasing exposure in all SSPs, ranging from 1 % (SSP2) to 22 % (SSP5). In the same period 

of time, urbanisation increases exposure between 7 % (SSP3) and 20 % (SSP1, SSP4 and 

SSP5). This is consistent with the urbanisation projections of the SSPs that project the highest 

urbanisation levels for SSP1, SSP4 and SSP5 (>90 %), followed by SSP2 (~80 %) and SSP3 

(~55 %) (Jiang and O’Neill 2017). Compared to coastal migration, urbanisation is the dominant 

process for SSPs 1-4, whereas coastal migration is the dominant process in SSP5. In contrast, 

urban sprawl leads to a reduction of exposed population to coastal flooding ranging from 12 % 

(SSP3) to 20 % (SSP4). The net effect of urbanisation and urban sprawl (without coastal mi-

gration) leads to a reduction of exposure under SSP3 and to an increase of exposure under the 

other four SSPs. The number of coastal cities in relation to inland cities, the magnitude of the 

projected increase in urbanisation levels and the observed GD between coastal and inland areas 

can lead to deviations compared to these global findings on a national level. To summarise, 

accounting for urbanisation, and coastal migration leads to higher estimates of population ex-

posure to coastal flooding compared to national average growth rates, whereas considering 

urban sprawl leads to lower estimates of population exposure. 
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5.3 Conclusions and future challenges 

This thesis demonstrates that considering heterogeneity in the spatial distribution of pop-

ulation improves the estimates of exposure to coastal flooding. Within census units, spatial 

information of settlement extents can be used to create a more heterogeneous distribution of 

population, which reduces the error in assessing the number of people currently living in flood 

prone areas. For assessing future exposure of population, the developed coastal SSPs provide 

more plausible estimates than non-regionalised population projections, as they account for ur-

banisation and coastal migration. 

The projection method developed for the quantitative component of the coastal SSPs is 

flexible and can be applied on updated base year population data or utilise updated population 

or urbanisation projections. Reimann et al. (2018) adopt the method and develop regionalised 

coastal SSPs for the Mediterranean. They use GPW v4 as base year population (2010) and 

define coastal areas by combining the LECZ with a 20 km coastal buffer. 

However, some components of the coastal SSPs show limitations and need to be enhanced. 

First, the observed GD that differentiate population growth between coastal and inland areas 

are derived from a relatively short period of 10 years (1990 to 2000) compared to the 100-year 

period they predict. Shocks in the observation period, such as wars, diseases or economic cri-

ses, can lead to a bias in the observed GD for individual countries. A longer and more recent 

observation period would be more robust and allow to account for trends on national and sub-

national level instead of using static GD. Furthermore, the observed GD are modified based on 

expert judgement (Table 3.2), which would also benefit from more comprehensive baseline 

data. 

Second, the heterogeneous definition of ‘urban’ across countries but also across datasets 

is a data related limitation. Among others, national statistical offices use administrative or eco-

nomic criteria, the presence of infrastructure or minimum population thresholds to define urban 

population (UN 2015). The minimum population threshold across countries varies considera-

bly and ranges from 200 to 50,000 inhabitants (UN 2015). The urban mask of GRUMP defines 

urban areas based on population counts, settlement points and night-time lights (CIESIN et al. 

2011b). For regions with limited coverage or access to electricity, this can lead to a mismatch 

between reported and modelled urban population (Balk et al. 2006). This limitation is difficult 

to resolve, unless the UN introduces a clear definition of urban population that has to be 

adopted by all countries. 

Third, Chapter 4 shows that urban sprawl is a relevant process in coastal areas, which is 

not considered in the coastal SSPs. This limitation can be addressed by combining the coastal 

SSPs with the work of Jones and O’Neill (2016), who propose a gravity-based approach to 

distribute population based on the distance to existing urban areas and current population den-

sities. This combination could lead to more plausible estimates of future exposure to coastal 

flooding as the processes of urbanisation, urban sprawl and coastal migration would be in-

cluded. 

Fourth, the assessed population of the LECZ in Chapter 2 and the population in the 

1 in 100-year floodplain in Chapter 4 are based on the assumption of homogeneous population 

distribution within census units. A homogeneous distribution of population can lead to an over- 

or underestimation of exposure as demonstrated in Chapter 2. This limitation applies to all 

global studies using GRUMP or GPW as input data for population. Other datasets that utilise 

more complex dasymetric approaches to allocate population within census units, are either not 

reproducible (LandScan) or do not cover the full globe consistently (Worldpop), restricting 

their usability in impact assessment on a global scale (Lloyd et al. 2019). 
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The coastal SSPs and also the gravity-based approach of Jones and O’Neill (2016) would 

benefit from a globally consistent dataset allocating population heterogeneously within census 

units, as existing urban areas are used for both approaches. Employing the GUF settlement 

extents to allocate population has the potential to address this demand, as it proves to work 

well for the German Baltic Sea region. The study site has predominantly rural characteristics. 

Before the GUF can be applied to the entire globe, it needs to be validated in other regions with 

different settlement patterns or building structures (e.g. areas with high urban sprawl or areas 

with apartment blocks). 

The tested approaches in Chapter 2 can be refined by adding data on building heights and 

building structures, once these are available for the entire globe. Building heights help to dif-

ferentiate population densities within settlements whereas building structures serve to identify 

industrial or commercial districts that reduce population density. This can contribute to create 

a globally consistent population dataset of high spatial resolution as demanded by Lloyd et al. 

(2019), which allows more robust estimates of the exposure to natural hazards and diseases. 

However, accounting for building heights and building structures increases the complexity of 

the dasymetric mapping approach. 

An interesting aspect that future coastal flood assessments could account for are seasonal 

differences in the number of people located on flood prone areas. Both, ESL (Dangendorf et 

al. 2013) and population are not evenly distributed throughout the year. Coastal areas are pop-

ular for touristic activities (Scott et al. 2012). The actual number of people located in flood 

prone areas is thus the sum of domestic population and tourists. Domestic population is repre-

sented in census data, whereas no official data on tourism with sufficient spatial and temporal 

resolution exist. Deville et al. (2014) show that mobile phone data have the potential to fill this 

gap. The location of cell phones can be used to develop population grids of high spatial and 

temporal resolution, which could allow to differentiate exposure of population for seasons, 

working days and weekends or even over a day independently from census data. If these pop-

ulation grids can be processed in real time, or near real time, they can be used to assess the 

number of people that need to be evacuated in case of ESL. 

The aim of this thesis was to improve the representation of population for coastal exposure 

analysis. For risk assessments, it could be useful to divide ‘population’ in more detailed groups. 

Besides exposure to hazards, risk assessments also need to account for vulnerability, which is 

determined by the adaptive capacity of population (Cardona et al. 2012). Among others, adap-

tive capacity depends on age, economic income and education of population (Koerth et al. 

2017). Hauer (2019) shows that the regionalisation of age-structures is not limited to assessing 

current risk but can also be used to assess future risk. The study downscales the SSP population 

projections to county-level for the United States of America, providing regionalised infor-

mation on the age-structure of population. Thus, population grids differentiating ‘population’ 

in more detail can contribute to improved estimates of the risk associated to coastal flooding.
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