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Kurzzusammenfassung 

 

Antigefrierproteine werden in vielen Spezies exprimiert, die in Temperaturen um und unter dem 

Gefrierpunkt leben. Die Proteine erniedrigen den Gefrierpunkt des Wassers und ermöglichen so 

ein Überleben in diesem Temperaturbereich. Eine der Spezies, die Antigefrierproteine exprimiert, 

sind Fische. Trotz der strukturellen Vielfalt der Sekundär- und Tertiärfaltungen ist das α-helikale 

Antigefrierprotein der Winderflunder (WflAFP) das wahrscheinlich am besten untersuchte. Die 

Antigefrieraktivität aller Antigefrierproteine wurde mit der Größe und Ebenheit einer Eis-

bindenden Seite in Zusammenhang gebracht. Bei WflAFP befindet sie sich auf einer Seite der 

α-Helix. Die Bestimmung der notwendigen Größe der Eis-bindenden Seite wurde im Fall des 

WflAFP allerdings dadurch erschwert, dass mit einer Verkürzung der Sequenz auch ein Verlust 

der α-Helizität einhergeht. In dieser Studie wurde deshalb eine C-terminal Capping Unit, die 

Helizes stabilisiert und die Faltung induziert, verwendet – der Trp-cage. Als erstes wurde der 

Effekt der Modifikation auf die Antigefrieraktivität des WflAFP untersucht. Nachdem ein 

negativer Einfluss der C-terminalen Veränderung auf die Proteineigenschaften ausgeschlossen 

wurde, konnte die Abhängigkeit der Antigefrieraktivität von der Größe der Eis-bindenden Seite 

evaluiert werden. Die Verbindung beider Proteine erfolgte dafür nach zwei unterschiedlichen 

Konzepten: Das Fusions-Konzept basiert auf der getrennten Synthese von Antigefrierprotein-

Segment und Trp-cage und der Kombination beider Teile in einem zweiten Schritt. Das Chimeren-

Konzept basiert auf der Tatsache, dass sowohl in der Primärsequenz des Trp-cages als auch des 

Antigefrierprotein-Segments Aminosäuren austauschbar sind. Durch die Überlappung von zwei 

Proteinbereichen entsteht ein insgesamt kürzeres Protein. 

Vier unterschiedlich lange Antigefrierproteinvarianten wurden mit dem Trp-cage stabilisiert. Drei 

der Eis-bindenden Trp-cage Chimeren wurden auch als GFP gelabelte Proteine hergestellt und 

mit UV/vis-, CD- und NMR-Spektroskopie sowie Massenspektrometrie charakterisiert. Die 

Antigefrieraktivität und die Form der Eiskristalle in Gegenwart der einzelnen Eis-bindenden 

Trp-cage Chimeren wurden mikroskopisch untersucht. Alle Proteine, die nach dem Chimeren-

Konzept designt wurden, waren gefaltet, das Protein, das nach dem Fusion-Konzept designt 

wurde, dagegen hatte eine verringerte Faltungsstabilität. Dennoch wurden alle Proteine auf ihre 

Antigefrieraktivität hin untersucht. Die Proteine, die basierend auf WflAFP designt wurden, 

hatten eine vergleichbare Aktivität mit dem Wildtyp, für die anderen konnte keine 

Antigefrieraktivität gemessen werden. Zusammenfassend hat die C-terminale Modifikation die 

Antigefrieraktivität des WflAFP nicht beeinflusst. Allerdings ist eine α-helikale Faltung nicht die 

einzige Voraussetzung für Eis-Aktivität. Da die kürzeren Eis-bindenden Trp-cage Chimeren keine 

Antigefrieraktivität aufweisen, ist die Proteingröße, die notwendig ist für Aktivität, identisch mit 

der von dem Wildtyp des WflAFP. 
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Abstract 

 

Antifreeze proteins are prevalent in many species that experience freezing or close to freezing 

temperatures. The proteins lower the freezing point of water, enabling the species to survive 

subzero temperatures. One of these species is fish, in which antifreeze proteins originally were 

discovered. While antifreeze proteins can be found in a wide variety of secondary and tertiary 

structures, the α-helical antifreeze protein from winter flounder (WflAFP) is probably the most 

extensively studied. The antifreeze activity of all antifreeze proteins has been correlated to size 

and flatness of the ice-binding surface which for WflAFP has been demonstrated to be on one 

side of the α-helix, comprising primarily regularly spaced alanine and threonine side chains. The 

analysis of the size necessary for activity, however, was complicated in the case of WflAFP as a 

shortening of the sequence also lead to a reduction in α-helicity. To overcome this difficulty, in 

this work a C-terminal stabilizing and α-helicity inducing capping unit, the Trp-cage, was 

employed. In a first step, the effect of the C-terminal modification on the wild-type antifreeze 

protein had to be studied to eliminate any interference of the modification on ice activity. In a 

second step, after eliminating any negative influence of the capping unit, the dependence of ice 

activity on the size of the ice-binding surface could be analyzed. The combination of both 

Trp-cage and antifreeze protein segment was pursued using two different approaches: The fusion 

approach was based on the synthesis of both the Trp-cage capping unit and an antifreeze protein 

segment separately and fusing them together in a second step. The chimera approach is based on 

the fact, that in the primary sequence of both Trp-cage and antifreeze protein some amino acids 

are interchangeable leading to an overlapping sequence and overall a shorter protein. 

Four α-helical antifreeze protein variants of different lengths were stabilized using the Trp-cage. 

Of the four ice-binding Trp-cage chimera (IBTC), three were also obtained as GFP labeled variants. 

All IBTC were characterized using NMR-, CD-, and UV/vis-spectroscopy, mass spectrometry and 

their antifreeze activity or ice growth retardation as well as ice shaping abilities were determined. 

All ice-binding Trp-cage chimera designed based on the chimera approach were well folded. The 

IBTC designed based on the fusion approach, on the other hand, had a less pronounced fold 

according to 1H NMR data. All folded IBTC also satisfied the criteria for α-helicity in a chemical 

shift deviation plot and the CD data also indicate α-helicity for all IBTC. The analysis of ice activity 

gave surprising results. The IBTC based on the wild-type antifreeze protein had comparable 

antifreeze activity to WflAFP. However, no antifreeze activity could be observed for the other 

IBTC. As a result, even though the C-terminal capping unit has no influence on the antifreeze 

activity of the IBTC, the induction and stabilization of α-helicity is not the only criteria necessary 

for activity. Rather, the size of the ice-binding surface has to match the one present in nature to 

generate antifreeze activity. 
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1 Introduction and Objectives 

 

1.1 Introduction 

 

“‘When arctic fishes swim about in ice water at -1.7° to -1.8°, why don’t they freeze? Do they 

have twice as high an osmotic concentration as ordinary fishers, or what is the story?’” This 

question from Dr. R. H. Backus to M. S. Gordon does not only show good observation skills and 

scientific interest but marks the beginning of the research area termed nowadays antifreeze or 

ice binding proteins.1 While Scholander and his colleagues set out to find out how teleost fishes 

can survive at water temperatures of -1.9 °C when the freezing point of their blood is around 

-0.7 °C at the coast of Labrador,1 DeVries and Wohlschlag were the ones to identify a serum 

soluble glycoprotein which is responsible for 30% of the freezing-point depression in Trematomus 

borchgrevinki. Their data also showed a larger freezing-point depression than could be expected 

for the number of molecules. Consequently the freezing point depression caused by antifreeze 

proteins is a non-colligative property. The difference between melting and freezing point of 

water is called thermal hysteresis.2 

With the first antifreeze (glyco)protein discovered, several fish in the northern and southern 

hemispheres were tested for antifreeze activity. The teleostei present a high structural diversity 

of antifreeze proteins in primary, secondary and tertiary structure: single alanine-rich α-helices, 

termed Type I,3,4 C-type lectin-like Type II of which some are Ca2+-dependent,5–7 globular proteins 

containing short β-strands comprising a flattened surface Type III,8,9 and the above mentioned 

antifreeze glycoproteins2 (see Fig. 1). 
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Fig. 1: Overview of the different types of antifreeze proteins found in fish.  The secondary structure 
elements of the cartoon representation of AFP type I as well as the AFP hyperactive type I from winter 
flounder (PDB: 1WFA and 4KE2), AFP type II from sea ravens (PDB: 2AFP), AFP type III and the AFP type III 
dimer from eelpout (PDB: 1AME and 1C8A) are colored in cyan for α-helices, red for β-sheets, and magenta 
for loop structures.3,5,10–12 

 

The high structural diversity of antifreeze proteins even between fish of the same taxonomic 

order – although both the sea raven and the sculpin belong to the family cottoidei, they express 

type II and type I antifreeze proteins, respectively – suggest that the evolution of antifreeze 

proteins is a recent event in geological time. The sea-level glaciation event in the southern 

hemisphere during the Eocene-Oligocene transition (~34 million years ago)13 and in the northern 

hemisphere ~2.5 million years ago (Pliocene)14 have been postulated by Scott et al. as driving 

force for the evolution of antifreeze proteins (see Fig. 2).15–17  

Interestingly, the Arctic cod and Antarctic toothfish, two phylogentically distant fish, both 

produce antifreeze glycoproteins consisting of a similar repetitive tripeptide. However, the 

coding sequences of both genes are drastically different and the intron-exon organization of both 

genes is dissimilar hinting to separate genomic origins. Chen et al. concluded that both fish have 

evolved their antifreeze glycoproteins through convergent evolution.17 

However, a comparison between other antifreeze proteins from smelt (omeridae) and herring 

(clupeidea) showed a high sequence similarity not only in the coding region but also in the 
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introns. The additional facts that the smelt antifreeze protein sequence is found just once in the 

genome compared to a usual high copy number and that the differences between different smelt 

of the same genus is of the same order as to herring (different superorder) all point to a lateral 

gene transfer between both fish species as an additional way to acquire antifreeze properties 

(see Fig. 2).18–21  

 

 

Fig. 2: Phylogenic relationship between AFP-producing fish according to Betancur-R et al.16,17,22 Species 
names are colored by AFP type. The scientific names are as follows: herring (Clupea harengus)6, arctic cod 
(Boreogadus saida)17,cunner (Tautogolabrus adspersus)23, eelpout (Zoarces americanus, Lycodichtys 
dearborni, Zoarces viviparus, Zoarces elongates)

9,10,24,25
, poacher (Brachyosis rostratus)

7
, sculpin 

(Myoxocephalus scorpius, Myoxocephalus aenaeus, Myoxocephalus octodecemspinosus, Myoxocephalus 
scorpioides)4,26–28, snailfish (Liparis atlanicus, Liparis gibbus)29, sea raven (Hemitripterus americanus)5, 
Antarctic toothfish (Dissostichus mawsoni)17, flounder (Pseudopleuronectes americanus, Limanda 
ferruginea, Pleuronectes quadritaberulatus)3,30, smelt (Omerus mordax)18. 

 

Even though the antifreeze proteins from fish are probably the most extensively studied, 

antifreeze proteins have also been discovered in bacteria, plants, fungi, and arthropods31–34, 

adding to the structural diversity of antifreeze proteins. The antifreeze proteins form Lolium 

perenne or Tenebrio molitor as well as Marinomonas primoryensis for example are all β-helices 

(see Fig. 3). While some antifreeze proteins show an antifreeze activity3, others inhibit ice 

recrystallization32, have an ice structuring effect35, or act as ice adhesives31.36 
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Fig. 3: Overview over the structural diversity of antifreeze proteins without the fish AFP with the ice active 
side on top. The cartoon representation of LpAFP from Lolium perenne (PDB: 3ULT), TmAFP from Tenebrio 
molitor (PDB: 1EZG), MpAFP from Marinomonas primoryensis (PDB: 3P4G), sfAFP from snow flea (PDB: 
2PNE), IBP-1 fold from snow mold fungus (PDB: 3VN3), CfAFP from Chorisoneura fumiferana (spruce 
budworm) (PDB: 1M8N), and RiAFP from Rhagium inquisitor (PDB:4DT5) are colored according to their 
secondary structure: cyan for α-helices, red for β-sheets, magenta for loop structures, marine for 
polyglycine II helices, and grey spheres for calcium ions.31–34,37–39 

 

The high structural diversity of antifreeze proteins raises the question of their structure-function 

relationship. Raymond and DeVries proposed an adsorption inhibition mechanism by which 

antifreeze proteins bind irreversibly to the surface of ice crystals. After the irreversible binding of 

antifreeze proteins to the ice, a further addition of water molecules to the ice is only possible in 

the gaps between the proteins resulting in a curvature of the ice surface. A further growth on a 

curved front is energetically less favorable and the growth retarded, which is called Kelvin or 

Gibbs-Thompson effect (see Fig. 4).40,41 
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Fig. 4: Schematic view of the binding of antifreeze proteins (purple spheres) to an ice following the 
mattress-button model. The antifreeze proteins are in solution until an ice crystal starts to form (top view). 
The antifreeze proteins bind to the surface of the ice crystal (middle) so that a further growth of the ice 
crystal is only possible in the free space between the proteins leading to an unfavorable curved front 
(bottom view). 

 

The irreversible binding of antifreeze proteins to ice was subject to discussion until Pertaya et al. 

studied the attachment of an antifreeze protein type III fused with green fluorescent protein 

(GFP) to ice using fluorescence recovery after photobleaching (FRAP). They let the fused protein 

accumulate on the surface of an ice crystal and then bleached the proteins bound to the whole or 

part of the ice crystal until the fluorescence was reduced to low levels. Observation for up to 20 h 

showed no recovery of the fluorescence indicating a quasi-permanent attachment.42 Using a 



1 Introduction and Objectives 

 

6 
 

microfluidic device Celik et al. later showed that the antifreeze proteins bound to the ice surface 

are sufficient to stabilize an ice crystal by first letting the antifreeze proteins bind to the ice 

crystal and then exchanging the surrounding solution to buffer. The ice crystal retained its size 

and shape in the cooled buffer solution.43 

Under normal pressure the only stable form of ice at <0 °C is hexagonal ice, Ih (see Fig. 5).44 Ice 

crystal growth in absence of any impurities takes place along each prism face, in Bravais-Miller 

indices {101 0} (see Fig. 5, blue plane).45 With the growth along the a-axes being swifter than 

along the c-axis, flat discs are formed. 

 

 

Fig. 5: Illustration of the different ice crystal surfaces to which an antifreeze protein can bind. The basal 
plane {0001} is perpendicular to the c-axis, the prism plane {𝟏𝟎𝟏 𝟎} is shown in blue, the secondary prism 
plane {𝟏𝟏𝟐 𝟎} in green, and the pyramidal plane {𝟐𝟎𝟐 𝟏} in red.  

 

However, in the presence of antifreeze proteins Raymond and DeVries observed long ice needles 

whose axes where aligned with the ice c-axis.40 The formation of needles aligned with the c-axis 

indicates a reversal in growth speed along the a- and c-axes, with a faster ice crystal growth along 

the c-axis. By binding to a specific plane of ice crystals, like the primary or secondary prism plane 

(Fig. 5, blue and green plane respectively) or the pyramidal plane (red), antifreeze proteins block 

the growth at this plane and cause a change in the observable ice crystal structure. Most fish 

antifreeze proteins bind to only one ice crystal plane. The winter flounder antifreeze protein for 

instance binds to the pyramidal plane.46 As the pyramidal plane is symmetric within the 

hexagonal crystal lattice, the growth along a- and c-axis is hindered, giving hexagonal bipyramidal 

ice crystals. However, as the antifreeze proteins do not bind to the basal plane, upon 

supercooling the ice crystal bursts at the tips. On the other hand, other antifreeze proteins can 

bind to several ice crystal planes. By interacting with the basal and primary prism plane for 
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example, the ice crystal growth is inhibited in both a- and c-axis direction and the ‘hyperactive’ 

antifreeze proteins have a thermal hysteresis activity of several degree Celsius. 39,47,51 

The determination of the crystallographic planes on which antifreeze proteins bind can be done 

using either ice hemisphere etching or a variation of it, the fluorescence-based ice plane affinity 

(FIPA). For ice hemisphere etching a single orientated ice crystal is grown in a dilute solution of 

antifreeze protein and then allowed to evaporate at -10 to -15 °C for several hours. An etching 

pattern appears showing the incorporation of antifreeze proteins into ice and indicating the 

specific adsorption plane (see Fig. 6).48 FIPA analysis is based on ice etching but the antifreeze 

protein is fluorescently labeled. It can either be a fluorescent protein fused to the antifreeze 

protein or a covalently bound fluorescent dye. The experimental set up is the same but in 

contrast to the ice etching method the binding of the antifreeze protein can be monitored during 

the growth of the ice hemisphere using an UV lamp and the determination of the adsorption 

plane doesn’t necessitate the etching step (see Fig. 7).49,50  

 

 

Fig. 6: Photographs of a single-crystal hemisphere grown from winter flounder AFP solution. Bottom view 
of a hemisphere grown with a prism plane oriented normal to the long axis of the cold finger, scraped and 
etched. The bright reflections are portions of the ring light reflected from the mirror-smooth, curved ice 
surface where no antifreeze was incorporated. Reprint with permission by Elsevier.48 
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Fig. 7: Single ice-crystal hemisphere of tetramethylrhodamine-labeled type I AFP. The crystal was mounted 
with a primary prism plane oriented perpendicular to the ice finger. The diameter of the hemisphere is 
approx. 5 cm. Reprint with permission.31 

 

The binding of antifreeze proteins to ice can be explained by a structural match between the 

antifreeze protein fold and the ice crystal lattice as well as a mixture of hydrogen bonding and 

hydrophobic interactions. Additionally, a proposed anchored clathrate model will be discussed. 

With mutagenesis studies on several antifreeze proteins their active ice binding sites could be 

identified.33,49,51,52 Common to all antifreeze proteins is that their ice binding site is flat and 

hydrophobic. Amino acid side chains which were determined to be important for binding are 

spaced evenly apart on the ice binding surface. The hydrophobic but also the hydrophilic 

functional groups are positioned in a good surface match to the ice crystal lattice. The sum of 

hydrophobic interactions and hydrogen bonds resulting through the steric match are both 

important for the irreversible binding to ice.53 The surface complementarity will be further 

explored in the following chapter of the winter flounder antifreeze protein. 

The anchored clathrate model is based on a crystal structure of MpAFP from the bacterium 

Marinomonas primoryensis. For the first time the ice binding sites of an antifreeze protein were not 

oriented towards each other in a protein crystal and hydration water on the ice binding site could 

be observed. The water on the ice-antifreeze protein interface was ordered by the amino acid 

side chains into an ‘anchored clathrate’ motif which is proposed to facilitate binding to ice.31 This 

preordering of the water molecules before binding however could not be proven 

experimentally54 and a recent molecular dynamics simulation shows that in solution the studied 
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antifreeze protein did not show anchored clathrate-like water.55 The direct protein-ice interaction 

today still eludes our direct experimental possibilities and presents a challenging field of scientific 

research. 

 

1.1 Winter Flounder Antifreeze Protein 

The winter flounder antifreeze protein (WflAFP) from Pseudopleuronectus americanus is a 

37 amino acid short peptide with an amidated C-terminus. The amino acid sequence consists of 

three 11-residue repeating segments, T-X2-polar amino acid-X7, with X predominantly alanine. 

Structurally, it folds to an α-helix, has a salt bridge between K18 and E22, and capping structures 

at the N- and C-termini, with the amidated C-terminal arginine forming a 310 helix (see Tab. 1 and 

Fig. 8).56 Both N- and C-terminal caps form hydrogen bonds with the neighboring amino acids and 

neutralize the positive helix dipole moment at the N-terminus and the negative helix dipole 

moment at the C-terminus.57 Its short sequence and simple secondary structure makes it 

probably the most extensively studied antifreeze protein. 

 

Tab. 1: Primary sequence of WflAFP.*  

 1         10         20         30 

WflAFP D TASDAAAAAAL TAANAKAAAEL TAANAAAAAAA TAR-NH2 

 

 

Fig. 8: Backbone representation of the secondary structure of WflAFP. Threonine and alanine side chains 
are shown as sticks in the following color code: carbon is grey, oxygen red and hydrogen white. (PDB: 
1WFA)3 

 

WflAFP binds to the pyramidal plane of ice and shapes ice crystals to hexagonal bipyramids with a 

c- to a-axes ratio of 3.3:1 (see Fig. 9).59 Upon extreme supercooling, the ice crystal bursts at its 

tips, the only two points at which WflAFP cannot bind. 

                                                             
* The amino acid sequence of all proteins is presented in one letter code according to IUPAC.58 
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By mutating several amino acids, the evenly spaced threonines where determined as important 

for binding to ice. Based on the ice etching pattern of WflAFP along  011 2 , a match between the 

16.7 Å repeat spacing of the ice and the spacing of the threonine residues of 16.5 Å was proposed 

(see Fig. 8).48,60,61 

 

 

 

Fig. 9: Shape of an ice crystal in the presence of an antifreeze protein type I as observed under the 
microscope (left) and a schematic representation (right). By binding to the pyramidal plane the antifreeze 
protein hinders a growth along this face and shapes the ice crystal into a hexagonal bipyramid. 

 

A postulated hydrogen bonding to ice lattice oxygen via the hydroxyl groups of the threonines 

was put into question by substituting the threonines with serines or valines. While both mutants 

maintain α-helicity, the serine-analogue showed no interaction with the ice surface in contrast to 

the valine-analogue which showed thermal hysteresis comparable to the wild type.62–64 A 

combination of hydrogen bonds and hydrophobic interactions between antifreeze protein and 

ice seems to be the key for irreversible binding to ice.53 

The influence of the protein fold on activity was studied by several groups. A decrease in helicity 

was always accompanied by a decrease in activity. Then again, restoring the helicity led to 

retrieval of some activity. For instance, Patel et al. analyzed the effect of the C-terminal 

amidation by comparing amidated and nonamidated WflAFP. A reduction of the thermal 

hysteresis activity of nonamidated WflAFP was attributed to an increased flexibility of the 

C-terminus.65 Other groups observed a loss of helicity and antifreeze activity upon shortening of 

the wild-type WflAFP sequence.46,56,59,66 On the other hand, by stabilizing a 15 amino acid short 

segment with an internal lactam bridge the helical content could be increased to 90% and the 

stabilized peptide showed ice shaping properties but could not prevent ice crystal growth.59 

A stable α-helical fold is a prerequisite for WflAFP activity and its shortened variants. Upon 

further consideration that is not surprising as only a correct fold maintains the 16.5 Å distance 
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between the threonines which is important for the surface complementarity to the pyramidal 

plane of ice. 

 

1.2 Trp-cage 

The Trp-cage is a 20 amino acid short peptide designed by Neidigh et al. originating from a 

39 amino acid long exendin-4 from the gila monster salvia, Heloderma suspectum.67,68 By 

shortening the N-terminus and mutating several amino acids, a protein dubbed Tc5b with an 

unusually stable fold under physiological pH was created (see Tab. 2 and Fig. 10).67 

 

Tab. 2: Primary sequence of Exendin-4 and the Trp-cage Tc5b. 

Exendin-4 HGEGTFTSD LSKQMEEEAV RLFIEWLKNG GPSSGAPPPS-NH2 

Tc5b                      NLYIQWLKDG GPSSGRPPPS 

 

 

Fig. 10: Trp-cage Tc5b in cartoon representation. The side chains achieving the hydrophobic encapsulation 
of the tryptophan are shown in stick representation (Y3, W6, P12, P17, P18, P19). The α-helical N-terminus 
is colored cyan in the backbone, the cage loop backbone is grey as are the carbon atoms of the stick 
representation. Nitrogen is blue and oxygen red. (PDB: 1L2Y)67 

 

Structurally, the Trp-cage is comprised of an N-terminal α-helix (residues 1-9), a 310 helix from 

residue 11-14, and a polyproline II helix at the C-terminus (see Fig. 10). The fold is stabilized by 

the hydrophobic burial of a tryptophan by several prolines, π-π interactions between Y3 and W6, 

and a ‘hydrophobic staple’ between Y3 and P19. Other interactions contributing to the fold 

stability are a π-CH interaction of the tryptophan side chain with an arginine side chain and a salt 

bridge between D9 and R16 (both not shown).69,70 
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The combination of all interactions results in an exceptionally well stabilized protein with a 

melting temperature of 42 °C at pH 7.69 The complex and stable fold makes the Trp-cage an ideal 

model protein for experimental and computational studies.71–74 While the folding pathway was 

postulated as a cooperative folding event, it is currently under discussion with some 

experimental evidence pointing to an intermediate for some Trp-cage variants with different 

melting temperatures for the helix and the cage, as supported by MD simulations.70,71,75,76 

The group around N. H. Andersen increased the fold stability of the Trp-cage miniprotein further 

by exchanging amino acids and additionally determined amino acids critical for the fold. 

Replacing the eponymously tryptophan with other aromatic (unnatural) amino acids e.g. is 

detrimental, as is the mutation of P19 to alanine. The Y3 also is important because of its π-π 

interaction with W6 but can be exchanged to phenylalanine or leucine at the cost of decreasing 

fold stability.69,77 

Additionally to fold stabilization via exchange of amino acids, a stabilizing effect through insertion 

of multiple alanines in the helical sequence was investigated by Lin et al.. An elongation of the 

N-terminus by up to six alanines showed an increase in Trp-cage fold stability, as observed by 

melting temperature determined through NMR melting curves, and a propagation of the 

α-helical fold.75 This remarkable stability and propagation of the fold will be employed in this 

work and combined with the activity of antifreeze protein type I variants. 
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1.2 Fusion and Chimera Concept 

 

In this thesis, the biological activity of antifreeze proteins and the structural stability of the 

Trp-cage are combined in newly designed proteins called Ice-Binding Trp-cage Chimera (IBTC). 

The feasibility of the synergistic fusion of both proteins has already been proven by M. Lipfert 

and K. Bamberg (Master thesis) and is shown in Fig. 11 with the Trp-cage colored in grey and the 

antifreeze protein segment in red. The figure clearly visualizes the overlap of both sequences in 

the helical region.78 

 

 

Fig. 11: A chimera protein consisting of the Trp-cage (grey) and a short antifreeze protein type I segment 
(red) in cartoon ribbon style. The Trp-cage side chains tyrosine and tryptophan are shown as sticks. 

 

The fusion of two proteins is well known in literature42,79 for e.g. fluorescent labeling or 

enhancement of protein expression. This approach usually uses a spacer of several amino acids 

between the proteins so as to allow the single proteins to behave independently from another 

and make sure that they are not affected in their fold or activity. The synergistic fusion approach 

in this work however aims to combine the properties of both single proteins in the designed 

protein, i.e. in this study the combination of the stable fold and solubility of the Trp-cage with the 

ice activity of the antifreeze protein. As the N-terminus of the Trp-cage is α-helical and as the fold 

of α-helices is known to be cooperative80 by the formation of hydrogen bonds between the 

peptide amides i,i+4, propagating the α-helix, the Trp-cage functions as a helix nucleation point 

and stabilizing unit. This has been shown previously, by the elongation of the N-terminal 

sequence leading to stable folded α-helices.75,78,81 

The combination of the Trp-cage with the α-helical antifreeze protein can be done following two 

different approaches: a chimera or a fusion approach (see Fig. 12). 
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Fig. 12: Overview over the different combination strategies in cartoon style. The two small peptides can be 
directly fused to another or, by overlapping a short region of both, a shorter chimera protein is formed. In 
red the biological active protein is unfolded before the combination while the Trp-cage in grey is shown 
with the side chains from Y3 and W6 in stick representation. 

 

In the fusion approach presented in Fig. 12, the grey Trp-cage sequence is elongated N-terminally 

with the sequence of the second partner colored in red. The Trp-cage retains its original amino 

acid composition and thus should not be influenced in its tertiary structure. The fusion partner 

also retains its original amino acid composition, but through fusion with the Trp-cage module an 

α-helical folding is induced. One advantage of this approach is that the amino acid composition of 

both fusion partners does not need to be modified. Furthermore, the orientation of the Trp-cage 

fold and the helix towards each other can be controlled by the addition of 1-4 spacer residues 

between the two. An additional advantage is the possibility to create building blocks consisting of 

(1) the Trp-cage and (2) the α-helical peptide separately and fusing them together in a later step. 

In the chimera approach, the helical sequences of the grey Trp-cage and the red active peptide 

overlap, resulting in a reduction of overall protein length. However, the sequences of both 

proteins need to be evaluated carefully concerning the exchange of amino acids. The tryptophan 

in the helical sequence of the Trp-cage e.g. is necessary for its fold and a deletion would prove 

detrimental. An exchange of the tyrosine to phenylalanine, leucine or isoleucine is possible but 

results in a reduction of fold stability.69 All other position can be either the original Trp-cage or 

the peptide sequence, depending on the characteristics of the peptide. 

Proteins designed for either the fusion or chimera approach can be obtained by different 

methods. In this work, the Fluorenylmethyloxycarbonyl solid phase peptide synthesis (Fmoc-

SPPS) and bacterial expression in E. coli were used. The fragment approach via SPPS enables a 
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gradual elongation by the addition of a previously synthesized fragment. Through the addition of 

several fragments it is possible to maintain a library of different proteins (see Fig. 13). 

 

 

Fig. 13: The fusion approach visualized using the Trp-cage – antifreeze protein concept. The gradual 
addition of different fragment enables the synthesis of different proteins. 

 

It also enables labeling with other protein, for example GFP. 

In contrast to the chemical synthesis of proteins with SPPS, the expression of proteins enables 

the production of proteins larger than 50 amino acids. Usually, it is done in bacterial cells like 

E. coli, but among others yeast, human and cell free systems exist too. Depending on the host, 

not all post-translational modifications of the original protein necessarily can be performed. The 

expression of proteins which are toxic or the side specific incorporation of labeled and/or non-

proteinogenic amino acids usually is done using cell free expression systems.82 The labeling of a 

complete protein with 15N or 13C on the other hand can be done using cells and a minimal 

medium containing only the components needed for cellular growth. By supplying nitrogen and 

carbon only as isotopes, usually as 15NH4Cl or 13C-glucose, all cellular components including the 

protein of interest incorporate these isotopes.83 

One further advantage of the bacterial expression of proteins is the possibility of a fusion with 

the green fluorescent protein (GFP). For that spacer residues between the IBTC and GFP are 

employed to make sure that neither activity nor fold of the protein units are influenced by each 

other. 

  



1 Introduction and Objectives 

 

16 
 

1.3 Previous Work 

 

H. Kobarg was the first member of our group who synthesized the α-helical ice binding protein 

WflAFP (HPLC 6) from winter flounder (see Fig. 14). However, synthesis by Fmoc-SPPS yielded low 

peptide amount of less than 20% (H. Kobarg, unpublished). The low yield can be traced back to a 

high alanine content of 62% of the peptide sequence as peptides containing a high proportion of 

alanine tend to form aggregates during Fmoc-SPPS.84,85 H. Kobarg envisioned a postsynthetic 

modification of the WflAFP sequence and therefore mutated two residues to cysteines. This 

decreased the yield even further and, due to the formation of by-products with a similar 

retention time, complicated purification. 

 

 

Fig. 14: The backbone of the winter flounder antifreeze protein is shown in cartoon style. The stick 
representation of all side chains visualizes the high alanine content of the protein with the carbon atoms in 
grey, oxygen in red, and nitrogen in blue. (PDB: 1WFA)28 

 

To overcome low yields and to increase the solubility of the antifreeze protein, M. Lipfert 

pursued a new approach. He envisioned the transfer of helical fold stability to a short segment of 

the antifreeze protein type I. Therefore he fused an antifreeze protein segment with a helix 

stabilizing module, the Trp-cage. 
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Fig. 15: Schematic representation of the chimera approach in cartoon style. The Trp-cage is grey, the short 
sequence in red is unfolded before the fusion. 

 

An N-terminal extension of the Trp-cage sequence with amino acids of helical propensity had 

been studied previously by Lin et al. who found that an extension of the sequence with alanine is 

not only possible without affecting the stable Trp-cage fold but that the α-helical properties of 

the N-terminus are propagated and the α-helix elongated.75 This was used by Liu et al. in a 

protein grafting approach to study the binding requirements between the critical residues of the 

E6-binding motif produced by the human papillomavirus with E6-associated protein. The circular 

dichroism spectra of the thus grafted proteins were similar to the original Trp-cage scaffold and 

exhibit characteristic minima at ~207 nm and ~224 nm indicating an α-helix and the nuclear 

magnetic resonance (NMR) data show the characteristic shifts of the Trp-cage (e.g. G11).81 Both 

studies prove that the Trp-cage maintains its fold stability even if the N-terminal α-helix is 

elongated. 

The concept pursued by M. Lipfert in his PhD thesis however represents a new approach. He 

envisioned to stabilize a short unfolded peptide sequence by a C-terminal capping unit. 

Importantly, the capping unit he employed was not one or two amino acids short but rather 

consisted of the Trp-cage sequence. Advantages of the Trp-cage are its high solubility and 

suitability for Fmoc-SPPS. The fusion of both Trp-cage and antifreeze protein segment was done 

without a spacer unit between the two fusion partners but in a chimera approach, coupling the 

structure of the α-helical antifreeze protein type I with the N-terminus of the Trp-cage (see Fig. 

15).78 As part of the Trp-cage helix and antifreeze protein segment sequence overlap, M. Lipfert 

considered each residue in the overlapping helical regions of both single proteins carefully. The 

tryptophan of the Trp-cage as well as the tyrosine are important for folding and have to be 

preserved while the other positions can be changed to the antifreeze sequence. The advantage of 
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his approach is a reduction of the overall protein length when compared to a simple fusion of 

antifreeze protein and Trp-cage. It is however critical to evaluate the orientation of the active site 

of the antifreeze protein relative to the Trp-cage fold. Therefore four model proteins AFP-Tc-4 to 

AFP-Tc-7 were synthesized in which the relative orientation of the active side and Trp-cage are 

varied. While all chimera were folded some exhibited minor forms that were explained by 

negative interactions caused by the close proximity between N- and C-terminus. All proteins 

exhibited ice shaping activity with the most stable folded protein showing the strongest ice 

shaping. He concluded that the ice binding activity is dependent of the fold of the chimera rather 

than on the relative orientation of the active site compared to the Trp-cage tertiary fold.78  
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1.4 Motivation 

 

The aim of this work is the expansion of knowledge about ice binding Trp-cage chimera proteins 

(IBTC) by design, synthesis and evaluation of several different IBTC chimeras. Amongst other 

things the effect of a C-terminal Trp-cage modification on the ice binding properties of WflAFP as 

well as the influence of a fluorescent labeling with green fluorescent protein on ice binding 

activity were of interest. 

To study the influence of the Trp-cage C-terminal extension on a native antifreeze sequence, the 

complete length of the protein has to be obtained rather than a shortened version. An IBTC 

containing the complete WflAFP sequence as well as shortened variants were designed based on 

the original AFP-Tc-5 design synthesized by M. Lipfert. 

Furthermore, the determination of the ice binding plane is of interest as the ice crystals observed 

by M. Lipfert suggest a preferred binding to the (secondary) prism plane of ice as compared to 

the pyramidal plane binding of the wild-type antifreeze protein. For fluorescent based ice-affinity 

assays, labeling the IBTC with a fluorescent marker GFP was envisioned. The corresponding 

proteins were obtained by bacterial expression in E. coli in cooperation with the group of Prof. A. 

Scheidig, Christiana-Albertina-University, Kiel. 

Additionally, the evaluation of a different synthetic approach was pursued. The fusion approach 

enables a separation of the synthesis of the C-terminal Trp-cage segment and the N-terminal 

antifreeze protein segment into two independent synthesis followed by a fusion step. This 

method opens up the possibility of the sequential elongation by active antifreeze segments. 

The experience gathered concerning the fusion approach, the determined influence of the 

C-terminal modification on antifreeze protein type I variants as well as the identified necessary 

protein length for antifreeze activity are presented in the following chapter. 
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2 Ice-Binding Trp-cage Chimera 

 

2.1 The Fusion Approach 

The Fluorenylmethyloxycarbonyl solid phase peptide synthesis (Fmoc-SPPS) is well established 

for the synthesis of short peptides. The synthesis of peptides containing more than 50 amino 

acids is possible, yet the yield and purity of the protein often decreases significantly. A solution to 

this problem is the synthesis of protein fragments and their ligation in a second step. Common 

procedures are e.g. the native chemical ligation or the (traceless) Staudinger ligation.86–88 In this 

work a different method was used: the synthesis of peptide fragments and their combination in a 

second step (see Fig. 16).84 To achieve a specific reaction between the N- and C-termini of both 

fragments the reactive side chains of the amino acids have to be protected orthogonally. The 

synthesis of protected peptide fragments is explained in detail in the experimental section. 

 

 

Fig. 16: The combination of two protein fragments yields a longer peptide. PS is short for polystyrene. 

 

In the case of ice-binding Trp-cage chimera, the combination of two peptide fragments from two 

different proteins was envisioned. The aim was to combine the biological activity of an antifreeze 

protein fragment with the stable fold of the Trp-cage miniprotein (see Fig. 17). 

The winter flounder antifreeze protein (HPLC 6) is an α-helical protein which lowers the freezing 

point of water. Its activity has been correlated with its fold stability. A decrease in activity of 

shortened variants has been explained by a decrease in helicity.65,66 On the other hand, stabilizing 

the helical fold using a lactam bridge restored some activity to a short segment of the antifreeze 

protein.59 The stabilization of α-helices with lactam bridges, hydrogen bond surrogate or cross-

linkers however always requires a chemical modification of the peptide after synthesis.59,89,90 

The Trp-cage has a stable fold under physiological pH but no intrinsic function. Its fold is driven 

by the hydrophobic encapsulation of a tryptophan side chain by the C-terminus and π-π 

interactions between the tryptophan and tyrosine side chains, both located in the N-terminal 
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α-helix of the Trp-cage.67 An elongation of the N-terminal helix through the addition of amino 

acids showed that the helicity is propagated and that the Trp-cage can act as a nucleation 

point.75,78,81 A fusion of both proteins therefore results in a folded protein with antifreeze activity 

as has been shown by M. Lipfert.78 

 

 

Fig. 17: Fusion approach as planned in this work. Structural and biological active elements of each single 
fragment can be transferred to the final protein. 

 

The Trp-cage has been studied extensively towards the importance of almost every amino acid 

for fold stability leading to the characterization of >60 variants.69 Based on the Trp-cage variant 

Tc10b69, which is 99.5% folded at 280 K and pH 7, a further modification of the sequence has 

been conducted in our group by M. Lipfert, so as to chemically modify the Trp-cage after 

synthesis with an organic molecule.78 The variant used by him, Tc10bKKA, but without acetylated 

N-terminus has been chosen as Trp-cage building block for this work (see Tab. 3). 

 

Tab. 3: Primary sequence of Trp-cage variant Tc10b and Tc10bKKA. The differences between both 
sequences are marked in bold. 

    1     6     11    16 

Tc10b    DAYAQ WLKDG GPSSG RPPPS 

Tc10bKKA Ac-DKYAQ WLADG GPSSG RPPPK 
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Fig. 18: 1H NMR spectrum of Tc10bKKA in H2O/D2O, pH 3, at 300 K with enlargement of the indole proton 
region around 10 ppm. 

 

The 1H NMR spectrum of Tc10bKKA (Fig. 18) at pH 3 shows characteristics for a folded Trp-cage 

motif: chemical shift dispersion of aliphatic and aromatic resonances and the separated indole 

proton of the tryptophan side chain (W6Hε). While the good shift dispersion may not be visible 

for the untrained eye, the 2D NMR data enable an assignment of amino acids, with differences in 

the resonance of the same amino acid depending on structural differences. The indole proton 

(see the enlarged region of Fig. 18) at the chemical shift (ẟ) of ẟ = 9.77 ppm is significantly shifted 

from its random coil value of 10.22 ppm91. The upfield shift of W6Hε is caused by its hydrophobic 

encapsulation by, amongst other residues, prolines and is a strong indicator of Trp-cage fold. 

Neighboring to the sharp resonance of the indole proton, multiple small and broad resonances 

above 10 ppm are present. Similar additional signals have also been observed before by other 

groups.70,74,76,78,92  Impurities can be discarded as a possible explanation for the additional signals 

because the purity of the sample has been proven with HPLC-ESI-MS (high performance liquid 

chromatography-electron spray ionization-mass spectrometry). Therefore, the signals must arise 

from the protein and represent different conformations. However, conformation exchange in 

proteins is usually fast.  To give a separate signal during NMR acquisition, the conformational 

exchange transition has to be slow on NMR time scale. The only conformational exchange in 

proteins which is slow on the NMR time scale is the trans/cis isomerisation of the X-Pro bond (see 

Fig. 19).  
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Fig. 19: Schematic representation of the X-Pro bond in trans (right) and cis (left). 

 

The Trp-cage sequence contains four prolines, yielding a possibility of 24 = 16 conformations. A 

probe to study the exchange between the all-trans folded form and the cis conformations of the 

Trp-cage spectroscopically with both transferred nuclear Overhauser effect (tr-NOE) and a 

standard 1H, 1H NOESY clearly showed that both forms interconvert.78 Furthermore, the 2D 

coupling pattern of both W6Hε resonances are each characteristic for the indole proton of a 

tryptophan side chain. The additional signal clearly arises from a second form of the Trp-cage 

with one or more prolines in the cis conformation. The corresponding W6Hε 1H resonances are 

influenced by the fold of the Trp-cage. If the Trp-cage is well folded then the indole side chain of 

the tryptophan is encaged by several prolines.  Due to ring-current effects in the hydrophobic 

core of the Trp-cage, the NMR signal is shifted upfield. The additional signal however does not 

exhibit an upfield shift as compared to the trans conformation, so everything points to an either 

partially or completely unfolded Trp-cage sequence where the indole proton is not influenced by 

the hydrophobic core.  

The integration of both signals in Fig. 18 gives a ratio of folded to unfolded of 75:25 which is in 

good agreement with the literature value of 69:31, as is the resonance of the tryptophan side 

chains indole proton at ẟ = 9.77 ppm which is nearly identical to the literature value of 

ẟ = 9.75 ppm.78 The synthesis of the first building block thus was successful. 

 

The second building block is a fragment of the WflAFP. Of the threefold repeat motif the WflAFP 

is made up of, each 11 amino acid long repetitive sequence qualifies as single building blocks (see  

Tab. 4). However, the first repeat motif was dismissed as it overlaps with the N-terminal capping 

sequence. The synthesis of both other protected fragments was pursued. 
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Tab. 4: Primary sequence of WflAFP and the derived possible fragments. 

 1’        10’        20’        30’ 

WflAFP DT ASDAAAAAALT AANAKAAAELT AANAAAAAAAT AR-NH2 

Capping sequence DT ASD 

    Fragment 3  Fragment 1  Fragment 2 

Name                1repeat     2repeat 

 

The obtained protected fragment 1repeat-pg (pg stand for protection groups) was not soluble in 

either water or acetonitrile. Its low solubility in tetrahydrofuran however made purification with 

a gradient of tetrahydrofuran/acetonitrile using high performance liquid chromatography (HPLC) 

possible (data not shown). Tetrahydrofuran however is toxic, has a low boiling point, tends to 

form peroxides and is not compatible with all HPLC setups. Consequently, an alternative was 

sought. Although 1repeat-pg showed an increased solubility in dimethyl sulfoxide, purification 

with dimethyl sulfoxide as mobile phase during HPLC is not advisable as it damages the stationary 

phase. However, it is possible to dissolve the protein in dimethyl sulfoxide and inject the sample 

onto the column while using a water/acetonitrile gradient. To avoid the precipitation of the 

protected peptide fragment, the acetonitrile concentration has to be ≥50%. Pure 1repeat-pg was 

obtained with a low yield of 14%. However, the crude product was present in a high enough 

purity to perform the condensation of two protected fragments without the HPLC purification 

step.84 

2repeat-pg has a low solubility in dimethyl sulfoxide, probably because of its high alanine content 

and a correlated propensity to form aggregates. While purification was possible, the yield was 

very low (4%) and the low solubility hampered the fusion of the protein fragment to the Trp-cage 

fragment as the reaction takes place in dimethyl sulfoxide. 

The fusion of both protected peptide fragments is dependent on the solubility of both fragments 

in dimethyl sulfoxide. Due to the low solubility of 2repeat-pg a fusion with the Tc10bKKA 

fragment was not possible. The synthesis of a new IBTC consisting of 1repeat-pg and Tc10bKKA 

fragments however was performed successfully and is described in detail in the experimental 

section. After the N-terminal addition of 1repeat-pg to Tc10bKKA over a period of two days, first 

an threonine and then an aspartate residue were coupled at the N-terminus to complete an 

antifreeze motif of two threonines and the N-terminal capping unit, yielding (jg)IBTC-4 (see Tab. 

5).84 The analysis of its fold and antifreeze activity was pursued. The results will be discussed in 

chapter 2.3 and compared with the other IBTC. 
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Tab. 5: Primary sequence of (jg)IBTC-4, WflAFP, and Tc10bKKA. 

WflAFP DT ASDAAAAAALT AANAKAAAELT AANAAAAAAAT AR-NH2 

Tc10bKKA                         Ac-DKYAQWLADGGPSSGRPPPK 

(jg)IBTC-4             DT AANAKAAAELT DKYAQWLADGGPSSGRPPPK 

  



2 Ice-Binding Trp-cage Chimera 

 

27 
 

2.2 The Chimera Approach 

The chimera approach differs from the connection of two proteins with a spacer unit in between 

them. The protein resulting from the connection contains both functions of the single proteins in 

one large protein with both units acting independently. The chimera approach in contrast yields a 

protein which combines the functions of both proteins in a shorter protein and both functions 

are influenced by each other. For that the primary sequence of both proteins as well as their fold 

are evaluated and combined in an overlapping region. Creation of the chimera requires a careful 

assessment of amino acids and determination of which residues can be replaced by amino acids 

from the other sequence and which have to be retained (see Fig. 20).  

 

 

Fig. 20: The chimera approach based on the Trp-cage and a short protein segment. Both the tyrosine and 
tryptophan side chains are shown in stick representation and have to be retained for fold stability. All other 
amino acids in the α-helical region of the Trp-cage can be exchanged. 

 

During his PhD thesis, M. Lipfert created chimera proteins between an antifreeze protein type I 

segment and a stabilizing module, the Trp-cage.78 The synergistic combination of both proteins, 

where the properties of both proteins are combined – the stable fold of the Trp-cage and the ice 

activity of the antifreeze protein - gave four different proteins, AFP-Tc-4 to -7. They differ in the 

location of the ice active side of the antifreeze protein in relative orientation to the Trp-cage 

tertiary fold (see Fig. 21).78 
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Fig. 21: Sequence pattern of the ice binding motif of AFP-Tc-4 to AFP-Tc-7 (left) and view along the helix (N 
to C) with marked orientations of the ice binding site (right). While the protein is represented in cartoon 
style, the tyrosine and tryptophan side chains are shown as red sticks and the aspartate and arginine side 
chains of the salt bridge as green sticks. (Reprinted with permission from M. Lipfert).78 

 

While all four chimera showed ice shaping abilities, the activity seemed to be more dependent on 

the fold than the location of the ice binding site. Antifreeze activity was not observed.78 

Furthermore, the formation of hexagonal discs also gave rise to the question if the ice binding 

plane the chimera interacted with was changed to the prism plane as compared to the pyramidal 

plane to which the wild-type WflAFP binds. 

Based on the chimera AFP-Tc-5, other variants were designed, synthesized and characterized in 

this study. (jg)IBTC-1 is similar to AFP-Tc-5 and only has two additional amino acids at the 

C-terminus. (jg)IBTC-2 contains two repeat motifs of the antifreeze protein motif and (jg)IBTC-3 

three equating it with the wild-type WflAFP. The systematic increase in protein length enables a 

study of both the influence of antifreeze protein length on ice activity and of the C-terminal 

modification of the antifreeze protein on its activity. 

Additionally, of all three IBTC the C-terminal GFP fusion proteins were designed for a later use in 

FIPA analysis. All six IBTC (see Tab. 6) were expressed in E. coli in the group of Prof. Axel Scheidig, 

Christiana-Albertina-University, Kiel. (Information can be found in the Experimental Section and 

the Appendix.)  
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Tab. 6: Primary sequences of all chimera constructs. The extension –GFP refers to a C-terminal fusion with 
green fluorescent protein and is visualized by the symbol •. 

(jg)IBTC-1                       DTASDAAAYAAWTADGGPSSGRPPPSGS 

(jg)IBTC-2            DTASDAAAAAALTAANAAAYAAWTADGGPSSGRPPPSGS 

(jg)IBTC-3 DTASDAAAAAALTAANAKAAAELTAANAAAYAAWTADGGPSSGRPPPSGS 

(jg)IBTC-1-•                       DTASDAAAYAAWTADGGPSSGRPPPSGS• 

(jg)IBTC-2-•            DTASDAAAAAALTAANAAAYAAWTADGGPSSGRPPPSGS• 

(jg)IBTC-3-• DTASDAAAAAALTAANAKAAAELTAANAAAYAAWTADGGPSSGRPPPSGS• 

 

WflAFP is stabilized by a capping unit at the N-terminus comprised of the amino acid sequence 

DTASD, however the expression of proteins always begins with a start codon coding for 

methionine. To nevertheless obtain the desired protein sequence, an N-terminal tag was 

employed – the small ubiquitin modifier (SUMO).79 It can be cleaved side specific behind two 

glycines right before the desired protein sequence using the SUMO protease.79,93 As both the 

SUMO tag and the SUMO protease contain a His-tag, a purification with affinity chromatography 

was possible. 

Furthermore, the bacterial expression of proteins enables the design of large proteins which, due 

to their size, cannot be synthesized by SPPS. In this study, this applies to the GFP labeled IBTC. 
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2.3 Protein Fold and Ice Activity 

The analysis of protein fold and biological activity especially of newly designed and obtained 

proteins is a standard procedure. The aim of this work was to design proteins which combine the 

properties of two single proteins in one. 

The activity of antifreeze proteins is correlated to a flat ice binding side every antifreeze protein 

characterized to date possesses. For the α-helical winter flounder antifreeze protein (HPLC 6) it is 

one side of the α-helix containing alanine and threonine, with the threonines spaced 11 amino 

acids apart in a repetitive motif.56 A Trp-cage C-terminal extension is supposed to stabilize the 

helical fold of antifreeze protein segments. A combination of both proteins (or segments of the 

antifreeze protein) thus should result in a stable folded protein with ice activity. 

To analyze the protein fold, both NMR and CD spectroscopy were performed (see chapter 2.3.1ff 

and 2.3.4, respectively). The obtained NMR data enabled not only the calculation of the chemical 

shift deviation (CSD) and fraction folded values but in consequence the evaluation of the protein 

fold concerning α-helicy and Trp-cage stability. A stable Trp-cage fold is expected to correlate 

with a high percentage of α-helical fold in the N-terminal region of the IBTC. While the NMR data 

give local information about each residue, the CD data give a global overview over the secondary 

structure of the protein fold. 

A stable α-helical fold is expected to result in ice activity which in turn is measured using thermal 

hysteresis measurements. 

Four different IBTC as well as three C-terminal GFP fusion IBTC (see Tab. 7) where characterized 

using the above mentioned methods. 
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Tab. 7: Primary sequences of all constructs and their predecessors. The extension –GFP refers to a 
C-terminal fusion with green fluorescent protein and is visualized in the primary sequence by the symbol •. 

WflAFP DTASDAAAAAALTAANAKAAAELTAANAAAAAAATAR-NH2 

Tc10b                             DAYAQWLKDGGPSSGRPPPA 

Tc10bKKA                          Ac-DKYAQWLADGGPSSGRPPPK 

AFP-Tc-5                       DTASDAAAYAAWTADGGPSSGRPPPS 

(jg)IBTC-1                       DTASDAAAYAAWTADGGPSSGRPPPSGS 

(jg)IBTC-2            DTASDAAAAAALTAANAAAYAAWTADGGPSSGRPPPSGS 

(jg)IBTC-3 DTASDAAAAAALTAANAKAAAELTAANAAAYAAWTADGGPSSGRPPPSGS 

(jg)IBTC-4                DTAANAKAAAELTDKYAQWLADGGPSSGRPPPK   

(jg)IBTC-1-GFP                       DTASDAAAYAAWTADGGPSSGRPPPSGS• 

(jg)IBTC-2-GFP            DTASDAAAAAALTAANAAAYAAWTADGGPSSGRPPPSGS• 

(jg)IBTC-3-GFP DTASDAAAAAALTAANAKAAAELTAANAAAYAAWTADGGPSSGRPPPSGS• 

 

2.3.1 1H-NMR 

 

 

Fig. 22: 1H NMR spectrum of (jg)IBTC-3 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of the 
indole proton region around 10 ppm. 
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Fig. 23: 1H NMR spectrum of (jg)IBTC-2 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of the 
indole proton region around 10 ppm. 

 

 

Fig. 24: 1H NMR spectrum of (jg)IBTC-1 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of the 
indole proton region around 10 ppm. 
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Fig. 25: 1H NMR spectrum of (jg)IBTC-4 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of the 
indole proton region around 10 ppm. 

 

The 1H NMR spectra of all IBTC in buffer at 274 K (Fig. 22-Fig. 25) all show characteristics of the 

Trp-cage fold. For three out of four IBTC the signal of β’ of P18 is visible at around ẟ = 0.45 ppm. 

Additionally, qualitatively very similar sharp spectral resonances of the tryptophan side chain 

(W6Hε) at around ẟ = 9.7 ppm are visible in all four IBTC. The shift of this resonance supports that 

the Trp-cage segment is folded. However, further resonances can be observed above 10 ppm 

that we attribute to additional populations. The amount is <5% for (jg)IBTC-3 and (jg)IBTC-2 as 

determined by integration of the signals. The third construct, (jg)IBTC-1, has a signal ratio of 

17:83 and, surprisingly, for (jg)IBTC-1 a third resonance is observed for the indole proton (Fig. 24). 

The similarity of its shift at ẟ = 9.80 ppm to that of the folded conformation indicates that this is 

also a folded conformation. Again, the separate resonance requires an underlying slow exchange 

process and therefore is cis/trans X-Pro isomerisation.  A comparable observation has been made 

before for AFP-Tc-5. It has been explained by an unfavorable charge-charge interaction between 

the aspartate side chain of residue 5’ and the C-terminal carboxyl group at neutral pH, leading to 

a cis configuration of either the X-P18 or X-P19 peptide bond and as a consequence to a different 

shielding of the tryptophan indole proton resulting in a different chemical shift.78 
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Fig. 26: (jg)IBTC-1 shown in cartoon representation with the side chains of D5, S2, and G21 shown as sticks. 
The nitrogens are colored blue, the oxygen atoms red. The left representation visualizes the short distance 
between the side chain oxygen of D5 and the oxygen atom of the S20-G21 amide bond in trans 
conformation of the X-P19 bond. A cis isomerization of the X-P19 bond leads to an increase in distance 
from 3.9 Å (trans, left) to 9.3 Å (cis, right). 

 

Analysis of (jg)IBTC-1 shows a potentially unfavorable interaction between the carboxyl group of 

D5 and the oxygen of the amide bond between residues 20 and 21 (Fig. 26, left). Upon 

isomerization of the X-P18/19 bond the distance between both charges would increase as is 

shown in Fig. 26. The potential energy of the charge-charge interaction is inversely proportional 

to the distance, an isomerization thus would lead to a reduction of the repulsive effect between 

both negative charges and an increase in the relative stabilization of the cis isoform in 

comparison to the trans isoform. 

This hypothesis is supported by the 1H NMR spectrum at pH 3. As the carboxyl group of D5 is 

mostly protonated (pKa ~3.894), there should be no repulsive interactions with the oxygen of the 

S20-G21 amide bond. Indeed, under these conditions there are no signals of minor forms of 

(jg)IBTC-1 visible (Fig. 27). 
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Fig. 27: 1H NMR spectrum of (jg)IBTC-1 in H2O/D2O, pH 3, at 274 K with enlargement of the indole proton 
region around 10 ppm. 

 

Returning to the analysis of the ratio of folded:unfolded conformation for (jg)IBTC-4, the signal 

for the unfolded fraction is very sharp and the ratio of 71:29 favors the unfolded form. The low 

ratio of folded fraction is surprising as the design is based on the most stable form Tc10b(KKA). 

The elongated protein had been expected to be as stably folded as the Trp-cage variant. As Tc10b 

as single protein is well folded, the destabilizing effect most likely originates in the helical 

extension or its interaction with the Trp-cage sequence. An unfavorable interaction of the 

C-terminus with side chains of amino acids in the helical sequence seems unlikely as none are 

apparent through analysis of the modeled secondary structure of (jg)IBTC-4. Additionally, there is 

no effect of different pH observable as the WH6ε signals of folded and unfolded form at pH 3 and 

7.9 are nearly identical, as is the fold ratio. One notable difference is that the capping sequence 

of (jg)IBTC-4 varies from the other peptides (DTAAN/DTASD). However, the fact that aspartate 

still caps the N-terminus and the helical dipole moment should be most important.95 Thus, the 

reason for the relative low fold stability remains unclear. A possible explanation for the decrease 

in fold stability needs to be studied further. 

 

A comparison of the 1H NMR spectra (jg)IBTC-1 to -4 (Fig. 28) shows an increase in fold stability 

from (jg)IBTC-1 to -2 as the second folded form vanishes. (jg)IBTC-2 and -3 seem to both possess 

the same stability of the Trp-cage fold at 0.1 M NH4HCO3 buffer, pH 7.9, and 274 K. (jg)IBTC-4 is 
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the least stable folded protein in this study as deduced by analysis of the WH6ε signals and 

spectral dispersity. 

 

 

Fig. 28: 1H NMR spectra of (jg)IBTC-4 (black), (jg)IBTC-1 (red), (jg)IBTC-2 (blue), and (jg)IBTC-3 (brown) in 
order of increasing fold stability at 274 K and 0.1 M NH4HCO3 buffer, pH 7.9. 

 

2.3.1.1 (jg)IBTC-1-GFP, (jg)IBTC-2-GFP, (jg)IBTC-3-GFP 

The three chimeras (jg)IBTC-1-GFP, (jg)IBTC-2-GFP, and (jg)IBTC-3-GFP were designed as 

fluorescently labeled variants of (jg)IBTC-1 to -3. The attachment of a green fluorescent protein 

(GFP) tag to the C-terminus of the protein was planned with two spacer residues between both 

proteins (Fig. 29). The as fusion protein designed IBTC-GFP could be obtained via bacterial 

expression in E. coli. 1H NMR spectra of all three IBTC, (jg)IBTC-1-GFP, (jg)IBTC-2-GFP, and 

(jg)IBTC-3-GFP, were obtained. As GFP consists of 238 amino acids, the majority of NMR 

resonances stem from the GFP so that it may be difficult to observe Trp-cage resonances in the 

1D NMR spectrum. 
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Fig. 29: The cartoon style representation of a structural model of (jg)IBTC-3-GFP. The chimera is colored 
grey, the GFP in green. The tryptophan side chain of the chimera is shown as stick representation. (PDB 
GFP: 2Y0G; Trp-cag: PDB: 1L2Y)67,96 

 

 

Fig. 30: 1H NMR spectra of (jg)IBTC-1-GFP (red), (jg)IBTC-2-GFP (blue), and (jg)IBTC-3-GFP (brown) at 274 K 
and 0.1 M NH4HCO3 buffer, pH 7.9. 

 

A comparison of the spectra (Fig. 30) shows the similarities and differences of all IBTC-GFP 

proteins. The intensity of all resonances in the aromatic regions of all spectra are similar, 

probably due to the presence of eleven tyrosines and twelve phenylalanines in the GFP 
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sequence. The prominent signals around ẟ = 3 ppm can be explained by six arginine and 20 lysine 

residues in the GFP sequence. Different is an increase of the signals at ~1.5 ppm, which can be 

attributed to a higher ratio of alanines origination form the increasing number of antifreeze 

repeat motifs in the following order (jg)IBTC-3-GFP > (jg)IBTC-2-GFP > (jg)IBTC-1-GFP.  

 

 

Fig. 31: Expansion of the indole proton region of the 1H NMR spectra of (jg)IBTC-1-GFP (red), (jg)IBTC-2-GFP 
(blue), and (jg)IBTC-3-GFP (brown) at 274 K and 0.1 M NH4HCO3 buffer, pH 7.9. 

 

Expanding the region between 9 – 11 ppm, the patterns appear similar to the corresponding 

chimera without GFP. A signal at ẟ = 9.78 ppm can be ascribed to a W6Hε resonance, indicating a 

Trp-cage fold. (jg)IBTC-1-GFP shows a second folded form just as (jg)IBTC-1. There is also a broad 

signal above 10 ppm in all spectra, which possibly originates from an unfolded Trp-cage.97 This 

hypothesis however needs further support by 2D NMR data as Khan et al. recorded NMR data of 

the GFP at pH 7.2 and 310 K and assigned signals above 10 ppm to NH resonances of A37, 

W57Hε, G127 and R168. Consequently, an unambiguous assignment of the signals in the 

expansion of the indole region of our IBTC is not possible due to a possible signal overlap (Fig. 31).  

 

 

2.3.2 Folded Fraction 

Deducing secondary structure elements of proteins using NMR is possible in multiple ways. The 

simplest method was developed by Wishart et al. by determining reference random coil values 

for H, C and N of every amino acid.98 Depending on secondary structure of the peptide or protein 
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the chemical shift is influenced by the fold. The difference between the observed (ẟobs) and 

reference (ẟref) chemical shift is called chemical shift deviation (CSD) or secondary chemical shift 

𝐶𝑆𝐷 = ẟ𝑜𝑏𝑠 − ẟ𝑟𝑒𝑓  

According to Wishart et al., a Hα CSD <0.1 ppm for a cluster of at least four amino acids out of 

five (if not interrupted by a value >0.1 ppm) is an indication of an α-helical fold. A Hα CSD 

>0.1 ppm for a cluster of at least three amino acids of four (if not interrupted by a value 

<0.1 ppm) on the contrary indicates a β-strand.99 As the proton shifts of Hα’ of G11, Hβ’ of P18 as 

well as Hẟ and Hẟ’ of P19 in the Trp-cage show a strong influence by the ring current of the 

indole, Lin et al. calculated reference random coil values, which are 4.02, 2.29, 3.59 and 

3.74 ppm, respectively.75 

In the following figures, the secondary chemical shifts of the folded conformations are displayed 

to confirm and compare the secondary structures of all constructs with the exception of the GFP 

fused IBTC. 

 

 

Fig. 32: Hα chemical shift deviation of (jg)IBTC-3 at 274 K and pH 3. The dashed line represents the helical 
cutoff value. The vertical solid line separates the different secondary structures: helix (left) and rigid loop 
(right). 
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Fig. 33: Hα chemical shift deviation of (jg)IBTC-2 at 274 K and pH 3 (black squares) and pH 7.9 (red circles). 
The dashed line represents the helical cutoff value. The vertical solid line separates the different secondary 
structures: helix (left) and rigid loop (right). 

 

 

Fig. 34: Hα chemical shift deviation of (jg)IBTC-2 at pH 3 and 274 K (black squares) or 278 K (orange 
triangles). The dashed line represents the helical cutoff value. The vertical solid line separates the different 
secondary structures: helix (left) and rigid loop (right). 
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Fig. 35: Hα chemical shift deviation of (jg)IBTC-1 at 274 K and pH 3 (black squares) and pH 7.9 (red circles). 
The dashed line represents the helical cutoff value. The vertical solid line separates the different secondary 
structures: helix (left) and rigid loop (right). 

 

 

Fig. 36: Hα chemical shift deviation of the folded conformation of (jg)IBTC-4 at 274 K and pH 3. The dashed 
line represents the helical cutoff value. The vertical solid line separates the different secondary structures: 
helix (left) and rigid loop (right). 
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The IBTC structure and in consequence the Hα CSD plot of the IBTC (Fig. 32-Fig. 36) can be divided 

into two parts - the helical region, comprised of the chimera helix and the helical extension, and 

the cage loop. The analysis of (jg)IBTC-3 and -2 was complicated by a relative high amount of 

alanine residues in the primary sequence which complicated the unambiguous assignment of all 

alanine Hα resonances of the helical extension due to signal overlap. By expressing a 15N labeled 

(jg)IBTC-2, 3D NMR spectra were obtained which enabled the assignment of all amino acids 

except for the prolines (Fig. 34). A decrease in temperature also increased the unambiguous 

assignments of residues. 

The CSD data for all IBTC in the region of the helical extension do not show any indication for 

secondary structure according to Wishart et al. as most of the values to not exceed the helical 

limit.98 Neither do the CSD data for the chimera helix region for (jg)IBTC-1 to -3. However, the 

CSD of T7 in the chimera helix of (jg)IBTC-1 to -3 is strongly negative, possibly due to a 

neighboring effect to the ring-current effect of the preceding side chain W6. The negative 

chemical shift of residue 7 is characteristic for a folded Trp-cage. On the other hand, the chemical 

shift deviations of the chimera helix of (jg)IBTC-4 are negative and indicate a helical structure. 

However, it is important to remember that the Hα CSD is just for the folded part of (jg)IBTC-4, 

which represents approximately 29% according to 1H NMR data. 

The cage loop starting at residue 10 and separated in the figures by a vertical line exhibits no 

classical secondary structure, but many absolute CSD values are >0.1 ppm, with the deviations 

being positive and negative. The dispersion pattern of the CSD is typical for a Trp-cage loop, 

indicating structure and absence of conformational flexibility. The most characteristic CSD of the 

cage loop are the strong negative CSDs of G11α’ and P18α. The upfield shift of both protons can 

be explained by their proximity, their position above the tryptophan side chain and their 

experience of the ring current effect. Consequently both protons are good indicators for an intact 

cage fold. According to the CSDs of G11α’ (or G11α) and P18α all IBTC are folded in the cage loop 

region. 

For (jg)IBTC-4 a comparison was also possible with the literature data for Tc10bKKA. The NMR 

data are in good agreement with the NMR data for the Trp-cage sequence.78 A comparison of the 

helical region of (jg)IBTC-4 with the synthesized unprotected fragment 1repeat (AANAKAAAELT) 

shows an increased chemical shift deviation towards a helical fold (Fig. 37). The C-terminal 

Trp-cage fusion thus leads to an α-helical fold of the previously unfolded peptide. 
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Fig. 37: Hα chemical shift deviation of the folded conformation of (jg)IBTC-4 (black squares) at 274 K and 
pH 3 and Tc10bKKA (red circles) and 1repeat (AANAKAAAELT) (blue triangles). The dashed line represents 
the helical cutoff value. 78 

 

To quantify the folding quality of the Trp-cage and the helical region, a conversion of the CSDs 

into folded-fraction estimates can be performed. The division into two parts enables not only the 

separate evaluation of the fold quality of helix and cage within one chimera but also a better 

comparison between the different IBTC. Based on calculations by Lin et al., for the chimera helix 

the sum of Hα CSDs of residue 2 – 8 (if necessary without residue 2 or 5) was taken. For the cage 

loop the CSDs of X7α, G11α’, P18β’ as well as Hẟ and Hẟ’ of P19 were added.75 Both sums were 

compared with a reference, the Trp-cage variant Tc10b from Barua et al. which was shown to be 

99.5% folded at 280 K and pH 3. The  fraction-folded (χF) was calculated according to69 

𝜒𝐹 = 0.995 ∙
𝐶𝑆𝐷𝑜𝑏𝑠

𝐶𝑆𝐷𝑟𝑒𝑓
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Tab. 8: CSDs for selected protons representing the chimera helix or the cage loop of (jg)IBTC-3 at pH3 and 
274 K and 298 K. 

Cage Loop T7α G11α’ P18α Pro18β’ P19δ P19δ’   

 ∆ẟ(ppm) Σ(ppm) χF (%) 

274 K -1.14 -3.01 -2.16 -1.85 -0.53 -0.90 -9.60 96 

298 K -0.86 -2.07 -1.55 -0.81 -0.35 -0.69 -6.34 63 

Chimera Helix Y3α A4α W6α T7α A8α    

 ∆ẟ(ppm) Σ(ppm) χF (%) 

274 K -0.13 -0.03 -0.38 -1.14 -0.12  1.80 72 

298 K -0.14 -0.08 -0.32 -0.86 -0.12  1.52 61 

 

Tab. 9: CSDs for selected protons representing the chimera helix or the cage loop of (jg)IBTC-2 at pH3 and 
pH 7.9 and 274 K, 278 K and 298 K. 

Cage Loop T7α G11α’ P18α Pro18β’ P19δ P19δ’   

 ∆ẟ(ppm) Σ(ppm) χF (%) 

pH 7.9, 274 K -1.13 -3.19 -2.20 -1.94 -0.50 -0.89 -9.85 98 

pH 3, 274 K -1.15 -3.03 -2.16 -1.85 -0.53 -0.90 -9.62 96 

pH 3, 298 K -0.87 -1.89 -1.48 -1.23 -0.36 -0.69 -6.53 65 

Chimera Helix A2α Y3α A4α A5α W6α T7α A8α   

 ∆ẟ(ppm) Σ(ppm) χF (%) 

pH 7.9, 274 K 0.03 -0.45 0.00  -0.43 -1.13 -0.07 -2.05 81 

pH 3, 274 K 0.03 -0.45 -0.01 -0.11 -0.41 -1.15 -0.17 -2.26 76 

pH 3, 278 K 0.02 -0.42 -0.01 -0.06 -0.39 -1.12 -0.17 -2.13 72 

pH 3, 298 K  -0.25 -0.07  -0.30 -0.87 -0.09 -1.57 63 
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Tab. 10: CSDs for selected protons representing the chimera helix or the cage loop of (jg)IBTC-1 at pH3 and 
pH 7.9 and 274 K and 298 K. 

Cage Loop T7α G11α’ P18α Pro18β’ P19δ P19δ’   

 ∆ẟ(ppm) Σ(ppm) χF (%) 

pH 7.9, 274 K -1.10 -3.05 -2.11 -1.81 -0.48 -0.83 -9.38 94 

pH 3, 274 K -1.13 -2.99 -2.13 -1.79 -0.52 -0.88 -9.44 94 

pH 3, 298 K -0.79 -1.89 -1.35 -1.08 -0.30 -0.63 -6.03 60 

Chimera Helix A2α Y3α A4α A5α W6α T7α A8α   

 ∆ẟ(ppm) Σ(ppm) χF (%) 

pH 7.9, 274 K 0.00 -0.43 -0.01 -0.09 -0.37 -1.10 -0.22 -2.22 74 

pH 3, 274 K 0.01 -0.45 -0.01 -0.10 -0.40 -1.13 -0.18 -2.25 76 

pH 3, 298 K -0.11 -0.32 -0.08 -0.05 -0.27 -0.79 -0.18 -1.80 61 

 

Tab. 11: CSDs for selected protons representing the chimera helix or the cage loop of (jg)IBTC-4 at pH3 and 
274 K and 298 K. 

Cage Loop L7α G11α’ P18α Pro18β’ P19δ P19δ’   

 ∆ẟ(ppm) Σ(ppm) χF (%) 

pH 3, 274 K -0.97 -2.82 -1.36 -1.38 0.22 -0.14 -6.45 64 

pH 3, 298 K -0.86 -2.18 -1.24  -0.41 0.75 -3.94 49 

Chimera Helix K2α Y3α Q5α W6α L7α A8α   

 ∆ẟ(ppm) Σ(ppm) χF (%) 

pH 3, 274 K -0.13 -0.43 -0.13 -0.47 -0.96 -0.22 -2.33 85 

pH 3, 298 K -0.10 -0.36 -0.23 -0.39 -0.85 -0.21 -2.14 77 

 

For all IBTC a decrease of the sum of the CSDs (Σ(ppm)) for the cage loop and chimera helix upon 

an increase in temperature can be observed. This can be attributed to an increased amount of 

energy in the system and a correlated partial unfolding (‘melting’) of the protein fold. 

For (jg)IBTC-4 the chimera helix always has a higher fraction-folded value than the cage loop. In 

some cases helix formation before cage formation could be observed as seems to be the case for 

this IBTC.69,71 

Notably however, at 274 K there is a high difference in the fraction-folded values of the cage loop 

to the chimera helix for (jg)IBTC-3 to -1 of more than 15%. The cage loop has a higher fraction-

folded value than the chimera helix, a result which is not consistent with neither previous 
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experimental data nor theoretical considerations. Both values in theory have to be similar or, if 

different, the fraction-folded value of the helix has to be higher than the fraction-folded value of 

the cage loop. This is because a folded N-terminal helix is a prerequisite for the cage formation so 

as to position the tryptophan and tyrosine side chains.69,71 The helical folded-fraction therefore 

cannot be lower than the fraction-folded cage loop.  

The unusual fraction-folded values of (jg)IBTC-1 to-3 thus prompted a further analysis of the data. 

A comparison of the Hα chemical shifts of the helical region of all IBTC to the wild-type WflAFP 

(HPLC 6) was performed. The WflAFP data recorded at pH 7 and 278 K showed a near perfect fit 

within an error of ±0.05 ppm to all IBTC.78,100 Thus (jg)IBTC-1 to -3 must be 100% folded under 

these conditions. The discrepancy between fraction folded values and the comparison of the 

chemical shift with the WflAFP sequence has also been observed by M. Lipfert, who postulated 

that the fraction-folded calculation for the chimera helix underestimates its actual fold.78 

 

Tab. 12: CSDs for selected protons representing the cage loop of at pH3 and 274 K. X represents either the 
amino acid T or L. 

Cage Loop X7α G11α’ P18α Pro18β’ P19δ P19δ’   

 ∆ẟ(ppm) Σ(ppm) χF (%) 

(jg)IBTC-3 -1.14 -3.01 -2.16 -1.85 -0.53 -0.90 -9.60 96 

(jg)IBTC-2 -1.15 -3.03 -2.16 -1.85 -0.53 -0.90 -9.62 96 

(jg)IBTC-1 -1.13 -2.99 -2.13 -1.79 -0.52 -0.88 -9.44 94 

(jg)IBTC-4 -0.97 -2.82 -1.36 -1.38 0.22 -0.14 -6.45 64 

 

A direct comparison of the fraction folded values for the cage loop region gives nearly identical 

values for (jg)IBTC-1 to -3. (jg)IBTC-4 has a lower fraction folded value of 64% and thus is less 

stable folded than the first three proteins. The fraction folded values of 94%/96% indicate a 

stable folded cage loop. However, the chimera helix fraction folded values for (jg)IBTC-1 to -3 

were lower than the cage loop values. As a folded chimera helix is a prerequisite for folding of the 

cage loop, the fraction folded values for the chimera helix cannot be a good representation of the 

helical region in ice binding Trp-cage chimeras. The NMR shifts of (jg)IBTC-1 to -3 are in good 

agreement with previously published data of the wild-type WflAFP.100 As the wild-type antifreeze 

protein is 100% helical under the published conditions, so should the IBTCs. The Hα CSD 

consequently is not a suitable method to determine the helical content of these chimera and 

probably all alanine-rich proteins, so we took a look at the 13C chemical shift deviation.98 
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2.3.3 13C Chemical Shift Deviation and the Helical Fold 

The chemical shift of carbon is influenced by structural elements in the same way as are protons, 

and the CSD is consequently calculated according to  

𝐶𝑆𝐷( 𝐶𝛼13 ) = ẟ𝑜𝑏𝑠 − ẟ𝑟𝑒𝑓  

 

However, the Cα CSD are in the opposite direction as compared to protons and exhibit a larger 

deviation (~10x). Thus, a value of >0.7 ppm is indicative of an α-helix and a CSD of <0.7 ppm a 

β-strand.101 

 

 

Fig. 38: Cα chemical shift deviation of (jg)IBTC-3 at 274 K and pH 3. The dashed line represents the helical 
cutoff value. Overlapping alanine Cα resonances where averaged according to signal intensity. 
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Fig. 39: Cα chemical shift deviation of (jg)IBTC-2 at 274 K and pH 3 (black squares) and pH 7.9 (red circles). 
The dashed line represents the helical cutoff value. Overlapping alanine Cα resonances where averaged 
according to signal intensity. 

 

 

Fig. 40: Cα chemical shift deviation of (jg)IBTC-1 at 274 K and pH 3 (black squares) and pH 7.9 (red circles). 
The dashed line represents the helical cutoff value. 
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Fig. 41: Cα chemical shift deviation of the folded fraction of (jg)IBTC-4 at 274 K and pH 3. The dashed line 
represents the helical cutoff value. Overlapping alanine Cα resonances where averaged according to signal 
intensity. 

 

An unambiguous assignment of all alanine resonances for (jg)IBTC-3, -2, and -4 was not possible 

due to resonance overlap and some of the chemical shift deviations of the alanines had to be 

averaged. 

Importantly, a positive chemical shift deviation can be observed for the helical elongation and 

chimera helix for all IBTC, with all residues exceeding the helical limit indicating an α-helical 

secondary structure. The α-helical fold also includes the N-terminus, with no indication for 

N-terminal fraying which has previously been observed for AFP-Tc-5 at pH 3 with the Cα CSDs of 

the first threonine and the second aspartate being below the helical limit. 

Remarkable are the large downfield shifts of leucine and threonine in the helix of (jg)IBTC-2 

and -3. M. Lipfert hypothesized that the strong CSD of residue 7 is due to an effect of the tertiary 

Trp-cage structure.78 However, as all threonines exhibit the strong CSD, the value of residue 7 

cannot be explained by the fold alone. It rather seems to be an intrinsic property of the 

antifreeze protein. 

The chemical shift deviations of (jg)IBTC-4 are in size lower than for the other chimera. While the 

values indicate a helical secondary structure it is noteworthy that the usually strong chemical 

shift deviations of tryptophan and residue 7 are not as pronounced. 
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To quantify the helical fold and enable a comparison between different chimeras, M. Lipfert 

established the parameter ‘average helical fold’ (∆ẟ    ) by summing up the CSDs and dividing the 

sum by the number of amino acids n.78 

∆ẟ    =
𝛴𝑛(𝐶𝑆𝐷)

𝑛
 

 

Due to the stark difference in protein length, neither a reference against the samples from 

M. Lipfert nor with each other was not performed for the average helical fold. However, a 

separation of the helix in helical extension and chimera helix is possible. The chimera helix always 

contains the same amount of amino acids and a comparison of proteins of different lengths is 

possible. 

 

Tab. 13: Average chemical deviations (∆ẟ    , determined by 13Cα shifts) for all IBTC at 274 K and pH 3 for the 
complete helix, the chimera helix and the helical extension. The values in brackets include the averaged 
alanine Cα shifts. 

 Helix Chimera Helix Helical extension 

 ∆ẟ     (ppm) ∆ẟ     (ppm) ∆ẟ     (ppm) 

(jg)IBTC-3 3.41 (3.30) 3.72 (3.53) 3.32 (3.24) 

(jg)IBTC-2 3.06 (2.93) 3.35 (3.19) 2.91 (2.75) 

(jg)IBTC-1 2.80 2.84 2.75 

(jg)IBTC-4 1.17 (1.23) 1.04 (1.09) 1.26 (1.31) 

 

By comparing the ∆ẟ     of all four ice binding Trp-cage proteins, a clear order of helical fold stability 

can be deducted: (jg)IBTC-3 ≈ (jg)IBTC-2 > (jg)IBTC-1 > (jg)IBTC-4. Principally, upon elongation of 

the helix, a further stabilization can be observed. The high alanine content might be favorable for 

the helical fold 75, as is an additional salt bridge in (jg)IBTC-3. (jg)IBTC-4 is an exception as it is 

longer than (jg)IBTC-1 but exhibits the lowest helical fold values. Even though the helical fold 

appears to be propagated the overall fold stability is not as high as with the other chimera 

proteins as is apparent from the 1H NMR spectra. 
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2.3.4 Circular Dichroism Spectroscopy 

The evaluation of the secondary structure elements of a protein is not restricted to NMR 

spectroscopy. Circular dichroism (CD) spectroscopy is based on the UV absorption of the peptide 

bonds amide. As a protein is a chiral molecule it absorbs left- and right-polarized light differently. 

The difference spectrum shows the predominant fold of the protein, averaged over all residues. 

The global fold is characteristic for α-helices, β-strands, and random coil global structures. A 

α-helical fold has two minima at λ = 222 nm and λ = 208 nm as well as a maximum at λ = 196 nm. 

A n-π* transition is responsible for the first minimum at about λ = 222 nm, at about λ = 208 nm a 

π-π* transition of perpendicular polarized light is visible. The maximum at approximately 

λ = 190 nm is a π-π* transition by parallel polarized light.102,103 

 

 

 

Fig. 42: : CD spectra of (jg)IBTC-4 (black), (jg)IBTC-1 (red), (jg)IBTC-2 (blue), and (jg)IBTC-3 (brown) in order 
of increasing fold stability at 274 K and 0.1 M NH4HCO3 buffer, pH 7.9. 

 

The CD spectra of all four IBTC exhibit helical structure characteristics - the minima at λ ≈ 222 nm 

and λ ≈ 208 nm as well as a maximum to lower wavelength for (jg)IBTC-2 and (jg)IBTC-3. By 

comparing the signal intensity of the spectra and comparing the minima at λ = 222 nm, a trend 

about the α-helical fold is deductable: (jg)IBTC-3 ≥ (jg)IBTC-2 > (jg)IBTC-1 > (jg)IBTC-4. This trend is 

in agreement with the one previously determined using the helical fold ∆ẟ     and the fraction 

folded values of the helical region. 
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To quantify the helical content the mean residue ellipticity [Θ]obs at λ = 222 nm is taken and 

divided by a reference 

𝐻𝑒𝑙𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 100 ∙
 𝛩 𝑜𝑏𝑠

 𝛩 𝑟𝑒𝑓
 

The reference value for each IBTC is a 100% α-helical protein which can be estimated using the 

equation (based on empirical observations)104 

 𝛩 222 =  1 −
1

𝑛
 ∙  −44.000 + 250 ∙ 𝑇  

with n is the number of residues and T the temperature in °C. 

 

Tab. 14: Helical content as determined by CD spectroscopy for (jg)IBTC-1 to -4 at 274 K and pH 7.9. Values 
for pH 3 can be found in the Appendix. 

 (jg)IBTC-3 (jg)IBTC-2 (jg)IBTC-1 (jg)IBTC-4 

[Θ]obs (deg cm2 dmol-1) -36070 -34195 -14871 -5977 

[Θ]ref (deg cm2 dmol-1) -42875 -42628 -42188 -42424 

Helical content (%) 84 80 35 14 

 

For (jg)IBTC-3, a 50 amino acids long peptide, by assuming a 100% stable helix, a helical content 

of 84% implies that 42 residues contribute to the helix. That exceeds the expected amount of 

37 residues by 5. The same applies to (jg)IBTC-2 with 31 residues calculated to contribute to the 

helical fold as to the expected 26. However, the difference can be explained by further 

contributions possibly by the 310 helix in the loop region. An overestimation of the helicity due to 

the contribution of the tryptophan side chain towards the signal at λ = 222 nm also is possible 

and has been observed for Tc5b before but would apply to all IBTC chimeras.67,77,105 In both 

proteins the fraction folded of the cage loop indicates a nearly 100% fold. Thus, according to 

NMR and CD spectroscopy, both proteins exhibit a stable fold at 274 K in 0.1 M NH4HCO3 buffer, 

pH 7.9. 

Both [Θ]obs (-14871 deg cm2 dmol-1) and helical content (35%) of (jg)IBTC-1 are lower than the 

literature values of AFP-Tc-5. The C-terminal elongation by two amino acids however increases 

the size of the peptide without being expected to contribute to the helical fold. Calculating the 

residues in helical conformation gives 10 residues, which is comparable to AFP-Tc-5. As 
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15 residues were expected, the helix seems to be just 66% stable. This is in good agreement with 

the literature.78 

The helical content of (jg)IBTC-4 is the lowest in comparison with the other chimeras. The 

calculated amount of residues in helical conformation is 5 residues, expected are 22. Taking into 

account that according to the 1H NMR spectrum 71% of the cage loop are unfolded and 

correcting for it, 11 residues of the folded fraction are in helical conformation. The helix appears 

to be 50% stable folded. 

 

 

 

Fig. 43: CD spectra of the thermal denaturation upon heating of (jg)IBTC-4 (black), (jg)IBTC-1 (red), 
(jg)IBTC-2 (blue), and (jg)IBTC-3 (brown) in 0.1 M NH4HCO3 buffer, pH 7.9. 

 

Thermal denaturation curves were recorded by observing [Θ]222 while raising the temperature 

from 274 K to 334 K. The unfolding of the IBTC was fully reversible for all four chimeras as heating 

and cooling curves overlap (see Appendix). The melting Temperature (Tm) for (jg)IBTC-4 was 

estimated to be 283 K and for (jg)IBTC-3 285 K. For (jg)IBTC-2 and -3 an unconstrained Boltzmann 

fit gave 292.8±1 K and 291.8±1 K, respectively. 

The thermal melting point for WflAFP has been previously determined to be 294±1 K. 59,62 Both 

chimeras (jg)IBTC-2 and -3 exhibit consequently a fold stability in good agreement with the fold 

stability of the wild-type antifreeze protein. 
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All measured data support a grouping upon fold stability according to 

(jg)IBTC-3 ≈ (jg)IBTC-2 > (jg)IBTC-1 > (jg)IBTC-4. 

 

The CD spectra for (jg)IBTC-1-GFP to (jg)IBTC-3-GFP are not shown as the spectra are 

superimposed by the large β-barrel structure of the green fluorescent protein. 

 

2.3.5 Ice Activity Assay 

A unique feature of antifreeze proteins is their property to lower the freezing point of water non-

colligatively. Though the mechanism by which antifreeze proteins interact with ice still needs to 

be determined definitely, all data point to an absorption inhibition mechanism. The antifreeze 

proteins are postulated to bind to the surface of a small ice crystal and inhibit the further growth 

of the ice crystal at the bound ice plane via the Gibbs-Thompson or Kelvin-Effect. 40,41 Depending 

on the plane of ice the antifreeze protein binds to, the ice crystal develops into a characteristic 

shape. The native winter flounder antifreeze protein (HPLC 6) e.g. binds to the pyramidal plane, 

shaping the ice crystal into a hexagonal bipyramid (see Fig. 9). In buffer, no ice shaping can be 

observed (Fig. 44). 

 

 

Fig. 44: Shape of an ice crystal in 0.1 M NH4HCO3, pH 7.9, upon slight supercooling. 

 

As the goal of this work was to create chimeras that combine the stable fold of the Trp-cage and 

the ice activity of the antifreeze protein, the ice activity of all protein chimeras was tested using a 

Nanoliter Osmometer. A Nanoliter Osmometer enables a precise temperature regulation of a 

sample on a specific sample holder through a Peltier element. The temperature can be tuned as 

finely as in steps of 1 mOs, with 1000 mOs corresponding to 1.6 °C. During this period, the 

sample is observed under the microscope. 
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Fully active antifreeze proteins shape ice crystals into specific forms in the thermal hysteresis gap 

as mentioned above. By constantly reducing the temperature, these metastable ice crystals 

finally burst upon reaching a threshold temperature. The burst point temperature minus the 

melting point temperature gives the TH value. However, not all IBTC studied in this work 

exhibited ice growth inhibition. Especially the shorter IBTC only exhibited ice growth retardation. 

As this has been observed in our group before for other IBTC, K. Bamberg established a method 

which enables an analysis of the ice growth retardation of the less effective IBTC. (Details can be 

found in chapter 4.3.17.) 

 

2.3.5.1 (jg)IBTC-3 

Based on the native winter flounder sequence, (jg)IBTC-3 consists of the three 11 residue long 

repeat motifs and is elongated at its C-terminus with a cage loop sequence from the Trp-cage. As 

the IBTC which resembles the wild-type antifreeze protein the most, it is the best chimera in this 

study to evaluate the influence of the C-terminal capping sequence on the activity of the 

antifreeze protein. 

Three different concentration of (jg)IBTC-3 were tested for ice activity and all three shaped the 

ice crystal into a hexagonal bipyramid and exhibited a freezing point depression. 

 

Tab. 15: Thermal hysteresis and c- to a-axes ratio of (jg)IBTC-3. 

Concentration (mg/mL) Thermal hysteresis (°C) c-:a-axes ratio 

1 0.3 2.8:1 

10 0.6 2.8:1 

80 0.8 3.1:1 

 

(jg)IBTC-3 shows an increase in TH upon increase of the protein concentration. This effect has 

also been observed for the native WflAFP.46 However, the increase in thermal hysteresis is 

limited to the occupation of all ‘binding sites’ of the ice by antifreeze protein. Upon reaching the 

saturation concentration a further increase does not lead to an increase in TH. A concentration-

thermal hysteresis curve has the shape of a saturation curve. Thus it is not surprising, that the 

exceptionally TH measured for the high concentration of (jg)IBTC-3 at 80 mg/mL is in accordance 

with the TH value measured at 23 mg/mL for the WflAFP. The other concentrations fit well with 

the literature data too.46 As a result, the antifreeze activity of the chimera protein does not seem 
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to be affected by the C-terminal cage loop capping structure although further analysis at 

different concentrations are necessary for a definite statement. 

However, the ice crystal morphology varies from the native WflAFP. The hexagonal bipyramid is 

slightly twisted, like a hexagonal trapezohedral (Fig. 45). This has been observed before for 

shortened WflAFP sequences as well as hydrophobic analogues, and other fish AFP.25,50,66,106–108 

Analysis of the ice binding plane for the type III antifreeze protein showed a binding to the 

pyramidal plane like the winter flounder antifreeze protein. However, Kuiper et al. designed an 

α-helical antifreeze protein which shapes ice crystals into hexagonal trapezohedrals and has been 

shown to bind to a different plane of ice by ice etching.109 A determination of the ice binding 

plane of (jg)IBTC-3 consequently remains of interest. 

 

 

Fig. 45: Ice crystals in the presence of (jg)IBTC-3 in 0.1 M NH4HCO3, pH 7.9. The slightly twisted hexagonal 
bipyramidal shape (the upper pyramid is rotated against the lower pyramid) is shown in the side view. The 
black scale is 10 µm. 

 

2.3.5.2 (jg)IBTC-2 

Varying from (jg)IBTC-3 by the deletion of one 11 residue repeat motif of the winter flounder 

antifreeze protein sequence, (jg)IBTC-2 still shapes ice crystals into a twisted hexagonal 

bipyramid over time (Fig. 46). Yet, the ice crystal growth is not stopped, only retarded. The ice 

growth retardation is 0.049 °C at a concentration of 80 mg/mL. 
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Fig. 46: The shape of a ice crystal in the presence of 80 mg/mL (jg)IBTC-2 in 0.1 M NH4HCO3, pH 7.9. The 
hexagonal bipyramidal shape is slightly twisted. The black scale is 10 µm long. The c- to a-axis ratio is 3.0:1. 

 

As the shorter (jg)IBTC-2 is not able to halt the ice crystal growth even though the N-terminal 

helical sequence is 100% helical according to the NMR and CD data, the three repeat motifs of 

the native winter flounder antifreeze protein (HPLC6) with the four threonines seems to be the 

minimal sequence length required to achieve thermal hysteresis activity. 

 

2.3.5.3 (jg)IBTC-1 

Being the shortest IBTC chimera and containing just one repeat motif of the winter flounder, 

(jg)IBTC-1 shapes ice crystals into flat hexagonal (Fig. 47). The ice growth is slowed by 0.039 °C at 

a concentration of 80 mg/mL. 

 

 

Fig. 47: Ice crystals during the growth in the presence of 80 mg/mL (jg)IBTC-1 in 0.1 M NH4HCO3, pH 7.9. 
Left the top view shows the view perpendicular to the basal plane, while on the right the side view of the 
crystal is shown. The black scale in each picture is 10 µm long. 
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The shaping of the ice crystal into a hexagonal disc is due to a higher growth rate along the a-axis 

than the c-axis of the crystal. As can be seen in the side view of Fig. 47, no tilt is observable 

indicating no binding of the IBTC to the pyramidal plane. 

The result is in contrast to the findings of Kun et al., who found thermal hysteresis activity for a 

short segment of following composition: DTASDAAAAAAL.110  In contrast to (jg)IBTC-1 the 

sequence is shorter, lacks the α-helix stabilizing C-terminal Trp-cage, and also contains only one 

threonine, which is postulated to be important for ice binding. As the published CD spectra of 

DTASDAAAAAAL are similar to (jg)IBTC-1 and the ice crystal morphology pictures taken by Zhang 

et al. also show a hexagonal disc111, the stark difference in the thermal hysteresis measurements 

cannot be explained to date.  

 

2.3.5.4 (jg)IBTC-4 

Containing one repeat motif of the winter flounder antifreeze protein like (jg)IBTC-1, (jg)IBTC-4 

was synthesized by fusing two peptides (see Tab. 7). 

 

Tab. 16: Primary sequence of (jg)IBTC-4, WflAFP, and 1repeat. 

1repeat                AANAKAAAELT 

Tc10bKKA                         Ac-DKYAQWLADGGPSSGRPPPK 

(jg)IBTC-4             DT AANAKAAAELT DKYAQWLADGGPSSGRPPPK 

 

As a reference for (jg)IBTC-4, 1repeat – a 11 residue long repeat motif of the winter flounder 

sequence – was also tested. NMR and CD data both show that 1repeat has no secondary 

structure in 0.1 M NH4HCO3 buffer (see chapter 5.3). Also no ice activity could be observed for 

1repeat. (jg)IBTC-4 on the other hand shapes ice crystals into hexagonal discs and retards the ice 

growth by 0.040 °C at a concentration of 80 mg/mL (Fig. 48). 
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Fig. 48: Ice crystals during the growth in the presence of 80 mg/mL (jg)IBTC-4 in 0.1 M NH4HCO3, pH 7.9. 
Left the top view shows the view perpendicular to the basal plane, while on the right the side view of the 
crystal is shown. The black scale in each picture is 10 µm long. 

 

Even though (jg)IBTC-4 appears to be a only 30% folded protein according to NMR and the crystal 

edges are not as sharp as (jg)IBTC-1, the ice growth retardation of (jg)IBTC-4 and -1 is 

comparable. A possible explanation is the high concentration of both samples of 80 mg/mL. In 

the case of (jg)IBTC-4, 70% unfolded sample would still amount to 24 mg/mL of folded protein. As 

ice activity is correlated to concentration and the correlation follows the shape of a saturation 

curve, the plateau of the saturation curve of (jg)IBTC-4 could be reached at 24 mg/mL. 30% 

folded protein at 80 mg/mL thus would be enough for ice growth retardation activity. Another 

possible explanation is an effect of the ice on the structure of the protein by inducing the 

α-helical fold. 

 

2.3.5.5 (jg)IBTC-3-GFP 

Containing a C-terminal GFP, the remainder of (jg)IBTC-3-GFP is made up of the same sequence 

as (jg)IBTC-3 and would be expected to have a comparable ice activity.  

 

Tab. 17: Thermal hysteresis and c- to a-axes ratio of (jg)IBTC-3-GFP. *Ice growth retardation 

Concentration (mg/mL) Thermal hysteresis (°C) c-:a-axes ratio 

0.81 0.029* Not determined 

15 0.4 2.8:1 

80 0.9 3.0:1 

 

The threshold concentration needed for thermal hysteresis activity of WflAFP was determined to 

be 0.06 M.112 As the concentration of 0.81 mg/mL equals 0.03 M, the ice growth retardation is in 

accordance with literature. The thermal hysteresis activity of the other two concentrations 
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however is higher than both (jg)IBTC-3 and the wild type WflAFP. An increase in thermal 

hysteresis activity upon fusing antifreeze proteins with a second (larger) protein has been 

reported before. The enhanced thermal hysteresis activity has been proposed to be due to an 

increased coverage of the ice surface or a steric hindrance of the ice crystal to overgrow the 

larger molecule.113,114 The shape of the ice crystal as shown in Fig. 49 is the same as that of the 

untagged (jg)IBTC-3: a twisted hexagonal bipyramid with the upper pyramid rotated against the 

lower pyramid (see Fig. 49). 

 

 

Fig. 49: The ice crystal shape in the presence of 80 mg/mL (jg)IBTC-3-GFP in 0.1 M NH4HCO3, pH 7.9. The 
slightly twisted hexagonal bipyramidal is best visualized shortly before the burst. The black scale is 10 µm 
long. The dark gray spheres are air bubbles. 

 

Having produced an active WflAFP-IBTC-GFP fusion variant discards the concerns of Pertaya et 

al., who pondered a negative influence of the bulky GFP on binding of the antifreeze moiety to 

the ice surface.42 The structural model of (jg)IBTC-3-GFP visualizes the size ratio of the ice binding 

site (IBS) to the GFP barrel (see Fig. 29). In comparison to the GFP, the length of the IBS is even 

greater than the barrel structure. 

 

2.3.5.6 (jg)IBTC-2-GFP 

A C-terminal GFP fusion protein of (jg)IBTC-2, (jg)IBTC-2-GFP behaves differently from the other 

two GFP fusion proteins as it does not exhibit any enhanced ice activity. Contrary, it only shapes 

ice crystals into hexagonal discs at any measured concentration up to 80 mg/mL. An increase in 

protein concentration leads to a more pronounced hexagonal shape (see Fig. 50). 
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Fig. 50: Ice crystals during the growth in the presence of 4.23 mg/mL (left) and 80 mg/mL (right) (jg)IBTC-2-
GFP in 0.1 M NH4HCO3, pH 7.9. The view is perpendicular to the basal plane. The black scale in each picture 
is 10 µm long. 

 

The fact that (jg)IBTC-2-GFP does not exhibit any ice growth retardation is an exception in 

contrast to all other IBTC proteins and cannot be explained to date as samples from different 

batches and concentrations were tested. All samples were pure according to HPLC and contained 

only the protein of interest according to ESI-MS. 

 

2.3.5.7 (jg)IBTC-1-GFP 

Being a GFP tagged (jg)IBTC-1, (jg)IBTC-1-GFP has a similar ice growth retardation at a lower 

concentration than (jg)IBTC-1 (0.046 °C at 10 mg/mL vs. 0.039 °C at 80 mg/mL). The enhanced ice 

activity is in accordance with literature and (jg)IBTC-3-GFP.113,114 The ice crystal is shaped into a 

hexagonal disc whose edges are well pronounced. In some cases a slight growth into part of a 

hexagonal bipyramid could be observed (see Fig. 51). 

 

 

Fig. 51: Ice crystals during the growth in the presence of 10 mg/mL (jg)IBTC-1-GFP in 0.1 M NH4HCO3, 
pH 7.9. Left the top view shows the view perpendicular to the basal plane, while the middle and the right 
show the side view of the crystal. The black scale in each picture is 10 µm. 
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In summary, (jg)IBTC-3 and (jg)IBTC-3-GFP are the only two chimeras in this study which 

effectively suppress the freezing point of water. Of both, (jg)IBTC-3-GFP has the higher activity 

and represents to our knowledge the first GFP fusion protein with a type I antifreeze protein. 

Additionally to the two chimeras, (jg)IBTC-2 also shapes the ice crystals into hexagonal 

trapezohedrals and some capped and twisted hexagonal bipyramids could be observed in some 

rare cases. The other chimeras shape ice crystals into hexagonal discs. Ordering the IBTC 

according to activity gives following order: 

(jg)IBTC-3-GFP > (jg)IBTC-3 > (jg)IBTC-2 ≈ (jg)IBTC-1-GFP ≈ (jg)IBTC-4 ≈ (jg)IBTC-1 > (jg)IBTC-2-GFP 

The results are not in agreement with our expectations. Our hypothesis was that (jg)IBTC-3 would 

be the most active IBTC, followed by (jg)IBTC-2, then (jg)IBTC-1 and (jg)IBTC-4 in accordance with 

a decrease in antifreeze protein length and not considering the GFP labeled IBTC. However, the 

IBTC 1, 2, and 4 all exhibit a similar ice growth inhibition, especially if one takes the error margins 

into consideration. As the N-terminal helix of (jg)IBTC-2 is 100% folded under the conditions of 

the experimental setup, the only remaining explanation is that a stable fold is not the only 

necessary prerequisite for an active antifreeze protein, but that a critical size or in this case 

protein length is also vital.46,115 A study by Warren et al. of synthetic α-helical antifreeze 

homologues containing two to six repeats showed activity for all except the shortest variant.116 

Additionally, previous studies have mostly correlated a loss of antifreeze activity with a loss in 

α-helicity.65,66 This study however utilized a C-terminal stabilizing module and a loss of antifreeze 

activity consequently cannot be explained by a loss of secondary structure. The critical helix 

length for ice growth inhibition of WflAFP and its analogs thus consists of three repeat motifs. 
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3 Summary and Outlook 

 

3.1 Summary 

In this work, the synthesis and characterization of different ice binding Trp-cage chimera was 

pursued. Mainly two questions were of interest. First, if the C-terminal stabilizing Trp-cage unit 

has any effect on the biological activity of the antifreeze protein part. Second, the required 

antifreeze protein length necessary to achieve antifreeze activity. The proteins were obtained via 

SPPS or bacterial expression in E. coli and characterized amongst other methods with NMR- and 

CD-spectroscopy. Furthermore, their ice activity was measured using a Nanoliter Osmometer. 

To answer the question if the C-terminal stabilizing Trp-cage unit has any effect on the biological 

activity of the antifreeze protein, an IBTC based on the full length wild-type antifreeze protein 

WflAFP and the Trp-cage was studied ((jg)IBTC-3). NMR- and CD-spectroscopy both showed the 

antifreeze part to be 100% helical folded without any N-terminal fraying. The ice activity analysis 

gave a comparable activity to the wild-type WflAFP, indicating no effect of the C-terminal capping 

unit on ice activity. However, the ice crystal formed during the thermal hysteresis gap differed 

slightly from the wild-type crystal. A twisted hexagonal bipyramid with the upper pyramid 

rotated against the lower one was observed. 

The second question concerned the protein size. Therefore, the fold and ice activity of several 

IBTC variants each comprised of a different number of ice binding repeats was studied. Three 

analogs were compared. (jg)IBTC-3 is the largest of all characterized proteins concerning the 

antifreeze part and resembles the wild-type antifreeze protein. The other IBTC, (jg)IBTC-2, was 

one ice binding repeat shorter. (jg)IBTC-1 and (jg)IBTC-4 were each two ice binding repeats 

shorter. While (jg)IBTC-2 and -1 were well folded, especially in the helical region, (jg)IBTC-4 was 

only ~30% folded in buffer at 274 K according to NMR data. However, all three IBTC exhibited no 

antifreeze activity. Only ice growth retardation and ice shaping were observed. As the ice growth 

retardation ability of all is comparable, it was concluded that the minimal protein length 

necessary for antifreeze activity is three ice binding repeat motifs and therefore equal to the 

wild-type WflAFP. 

Additionally to the above mentioned IBTC, some were chosen and labeled C-terminally with GFP. 

The advantage of adding a fluorescent tag to the proteins is that it enables a microscopic 

analysis. The labeled IBTC were (jg)IBTC-3-GFP, (jg)IBTC-2-GFP, and (jg)IBTC-1-GFP. They were 

characterized with particular emphasis of the ice activity studies. IBTC (jg)IBTC-3-GFP and 
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(jg)IBTC-1-GFP behaved as expected and had a greater activity than the IBTC without GFP. 

(jg)IBTC-2-GFP, however, behaved unexpectedly as no ice growth retardation could be recorded 

only ice shaping. The origin of this observation remains unclear and requires further analysis. 

 

3.2 Determination of the Ice Binding Plane 

The ice crystals formed in the presence of (jg)IBTC-2, (jg)IBTC-3, and (jg)IBTC-3-GFP are all twisted 

hexagonal bipyramids, better described as hexagonal trapezohedrals. In contrast, the WflAFP 

forms ice crystals into hexagonal bipyramids. Even though the shaping of ice crystals into 

hexagonal trapezohedrals has been observed before for variants of the WflAFP and a different 

type III antifreeze protein who all bound to the pyramidal plane of ice 25,50,66,106,107, a designed 

α-helical antifreeze protein, which produces a hexagonal trapezohedral ice crystal, shows a 

different ice etching pattern than WflAFP 109. The source of this unusual shape could therefore be 

a difference in the ice binding plane.  

The determination of the ice binding plane can be performed with an ice hemisphere etching 

experiment 48 or alternatively FIPA50 (see Introduction). For FIPA analysis the binding of 

fluorescently labeled antifreeze proteins to a single ice crystal hemisphere is observed. 

Depending on the preferential binding to a specific ice plane a characteristic pattern is formed. 

While the tryptophan of the Trp-cage sequence as an intrinsic fluorescence, it can be quenched 

by electron transfer from the indole ring to neighboring side chains of asparagines or the amide 

backbone and fluorescence yields as low as 0.01 have been reported.117 The covalent attachment 

of a fluorescent dye or tag like green fluorescent protein (GFP) are alternatives. Three of the 

proteins studied in this work are GFP-fusion proteins and thus candidates for FIPA analysis. 

 

3.3 Photo-switchable Ice-Binding Trp-cage Chimeras 

A control of the ice activity by changing the structure of the WflAFP has been of interest in our 

group for some time. Therefore the incorporation of a molecular switch was envisioned. The 

switchable molecule has to be stable in at least two different forms like conformation or 

constitutional isomers.118 Both states need to be convertible into each other, preferably by an 

external stimulus like, in this case, light. Molecules which fulfill these requirements are amongst 

others azobenzenes119, diazocines120, and spiropyranes121 (see Fig. 52). 
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Fig. 52: Azobenzene (a), diazocine (b), and spiropyrane (c) as possible photoswitchable molecules. For the 
azobenzene the two different conformational states are shown: left trans, on the right cis. 

 

The incorporation of the molecular switch into the cage loop is of special interest as by 

influencing the conformation of the photochromic molecule an unfolding of the cage loop and 

the hydrophobic encapsulated tryptophan side chain followed by an unfolding of the chimera 

helix and helical extension is envisioned (see Fig. 53). 

 

 

Fig. 53: Envisioned induced structural change of the folding of Trp-cage module through the 
conformational change of a photochromic molecule. The Trp-cage and selected side chains are colored 
light blue. The azobenzene is colored according to atoms: carbon is grey, oxygen red, and nitrogen blue. 
(PDBs were prepared by N. Preußke based on PDB: 1L2Y)67 

 

The attachment of an azobenzene between two residues of a Trp-cage has been achieved in our 

group successfully.78 The transfer of this concept to IBTC and a subsequent switching of the 

Trp-cage as well as the correlated antifreeze protein segment is currently under investigation by 

K. Bamberg. 
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The advantages of the bacterial expression of IBTC, especially GFP labeled variants, combined 

with a switching of antifreeze activity could facilitate the way to finally elucidate the interaction 

between antifreeze protein and ice crystal surface. Currently the linking reaction is performed 

between an activated N-hydroxysuccinimide (NHS) ester and a primary amine, mostly from the 

amino acid lysine even though shorter unnatural amino acids with a primary amine work, too. 

(N. Preußke, master thesis) However, for IBTC obtained via bacterial expression the cross-linking 

reaction is problematic. Not only is the N-terminus an additional primary amine which can 

interact with the molecular switch and form a hard to separate by-product. In the case of GFP 

labeled IBTC, the molecular switch can also react with any of the lysines of the GFP. Several ways 

to solve the problems are possible. The most promising is a different cross-linking reaction. The 

reaction between the thiol of cystein and iodoacetamide as reactive group of the photoswitch 

has been performed before in our group by H. Kobarg (unpublished work). However, the results 

were unsatisfactory. Another possible cross-linking reaction is between an alkyne and an azide 

(see Fig. 54). For this click-chemistry, unnatural amino acids have to be introduced into the 

sequence.122 The incorporation of unnatural amino acids by SPPS follows the standard protocol 

and for the incorporation of unnatural amino acids during protein expression there are also 

solutions. One is the cell free expression of proteins.123  

 

 

Fig. 54: Comparison of the cross-linking of a) a primary amine with an N-hydroxysuccinimed ester with b) 
the click-chemistry between an alkyne and an azide.

122,124
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3.4 Transfer of the Chimera Concept 

The concept of the synergistic fusion of two proteins is transferable to other proteins as well. 

Both the α-helical stabilizing module and the α-helical biological active protein can be exchanged. 

As α-helical stabilizing peptide module the zinc finger motif 81,125, (avain) pancreatic polypeptide 

(aPP)126–128, protein Z129, or a subdomain of the villin headpiece (HP-35)130 can be employed (see 

Fig. 55). 

 

 

Fig. 55: Structures of zinc finger (a, PDB: 1ZNF)
125

, aPP (b, PDB: 1PPT)
126

, protein Z (c, PDB: 1LP1)
129

, and the 
subdomain of the villin headpiece (d, PDB: 1VII)130. The secondary structure is colored in cyan for α-helices, 
magenta for loop structures, red for β-sheets, and marine for polyproline II helices. In a the zinc ion is 
shown in brown and the side chains for complexation shown. The nitrogens are colored blue and the sulfur 
atoms yellow. 

 

The zinc finger is 25 residues long and consists of an N-terminal antiparallel β-sheet followed by a 

C-terminal α-helix. Two cysteine side chains in the β-sheet and two histidine side chains in the 

α-helical region coordinate a zinc ion, which stabilizes the fold.125 aPP on the other hand consists 

of an N-terminal polyproline II helix followed by a C-terminal α-helical region. The fold is 

stabilized by hydrophobic interactions between the polyproline II helix and the α-helical 

region.126 For a combination with an α-helical protein an elongation at the C-terminus of both the 

zinc finger and aPP is possible. 
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Protein Z is derived from the staphylococcal protein A and is made up of a three helix bundle.129 

The three helices of the thermostable subdomain of the villin headpiece are shorter than the one 

from protein Z.130 While HP-35 is 35 amino acids long, protein Z is made up of 58 residues. An 

elongation at both N- and C-terminus are possible. 

The most promising candidates for the transfer of the concept are both zinc finger and aPP. 

While aPP has several similarities to the Trp-cage, the zinc finger on the other hand coordinates a 

metal ion between four amino acid side chains. As the protonation/deprotonation of both amino 

acid side chains is pH dependent, so is the coordination of the zinc ion. Consequently, this 

stabilizing motif can be switched between folded and unfolded conformation by pH. As the zinc 

finger motif has to be added N-terminally and the Trp-cage, on the other hand, on the 

C-terminus, a combination of both stabilizing units with one α-helical sequence is possible. If the 

Trp-cage additionally is modified with a photoswitch, the structure and biological activity of the 

whole protein could be influenced by two factors – pH and light. 
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4 Experimental Section 

 

4.1 Solid Phase Peptide Synthesis 

The peptides synthesized for the fusion approach were prepared using Fmoc-based solid phase 

peptide synthesis (SPPS) on the semi-automated peptide synthesizer Initiator+ SP Wave by 

Biotage. Solid phase peptide synthesis was developed by Merrifield in 1963131 and describes the 

synthesis of a peptide from C- to N-terminus on a resin using protected amino acids. The amino 

group of the backbone is protected with a base labile Fmoc, the functional groups of the side 

chains by acid labile protecting groups. The orthogonal protecting strategy enables the specific 

and systematical synthesis of proteins. Here a general overview over the methods used to obtain 

either fully deprotected or protected peptides and to condense fragments is given. Details 

concerning the synthesis of each peptide (like the amount of protected amino acid in g) can be 

found in the Appendix. 

 

4.1.1 Preparation of the Resin 

The solid phase on which the peptide synthesis is carried out is a polystyrene-based resin. 

Different surface functionalizations are used to obtain different target proteins. Each resin has a 

special loading capacity of the functional group, i.e. the distribution of functionalizations per 

bead. The loading capacity value is supplied by the manufacturer. For this work the Wang resin, 

enabling the synthesis of fully deprotected peptides, as well as the 2-chlorotrityl chloride resin 

for protected peptide fragments were used. 84 

 

Fig. 56: Used resins for solid phase peptide synthesis. Wang resin (left) and 2-chlorotrityl chloride resin 
(right). PS stands for polystyrene. 

 

Each resin was swollen in dichloromethane for 1 h prior to use, enhancing the volume and thus 

the surface accessibility.  
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4.1.2 Synthesis of Fully Deprotected Peptides 

Before the coupling of the first amino acid the resin was washed with dimethylformamide (DMF). 

The Fmoc-protected amino acid (5 eq), 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo-

[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 4.9 eq) and N,N-diisopropylethylamine 

(DIPEA, 10 eq) were dissolved in dimethylformamide and added to the swollen Wang resin. The 

microwave-assisted coupling of each amino acid was performed at 75 °C for 5 min and with 

600 rpm followed by a washing cycle with dimethylformamide.84 

 

Fig. 57: Schematic representation of the peptide coupling with HATU and DIPEA. 

 

The base DIPEA deprotonates the Fmoc-protected amino acid. The carboxylate anion reacts with 

HATU via an unstable intermediate to form the 1-hydroxy-7-azabenotriazole anion and 

O-acyl(tetramethyl)isouronium cation. The anion attacks the cation and, after release of 
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N,N,N’,N’-tetramethylurea, the activated ester is formed. The addition of a nucleophile like an 

amine results in acylation, in this case the amide peptide bond. (see Fig. 57) 

An additional coupling step was performed for difficult couplings and unpolar amino acids, 

especially alanine, to ease purification and increase the overall yield. In case of a high alanine 

content a capping step with acetic anhydride, pyridine and dimethylformamide (v/v 1/1/2) was 

inserted before the deprotection step to quench unreacted sides using the same reaction 

conditions as for the coupling of amino acids. 

The N-terminal Fmoc protecting group was removed with 25% piperidine in dimethylformamide 

at 75 °C for 30 sec and at 600 rpm followed by a second deprotection step lasting 3 min. For 

difficult deprotection steps an extended deprotection was performed, consisting of three parts 

each at 75 °C. While the first deprotection step lasts 30 sec, the second and third both take 4 min 

to completion. Before the coupling of the next amino acid a washing cycle with 

dimethylformamide was performed. 

 

Fig. 58: Deprotection mechanism for the removal of Fmoc with the base piperidine. 

 

The acidic fluorenyl proton of the Fmoc is removed by the base piperidine leading to a 

β-elimination finally resulting in 9-methylenen-fluorene, carbon dioxide and the free amine. 

9-Methylene-fluorene can react further with piperidine. (Fig. 58)132 

The cleavage from the resin and the deprotection of the peptide ensued after the coupling and 

deprotection of the last amino acid. An acidic solution of 2,2,2-trifluoroacetic acid and the 
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scavengers water and triisopropylsilane (v/v/v 95/2.5/2.5) was added to the dried resin at a ratio 

of 1 mL/100 mg. The mixture was incubated for 2-3 h at room temperature, filtrated and the 

resin washed twice with 2,2,2-trifluoroacetic acid. The combined filtrate was treated with cold 

diethyl ether to precipitate the peptide. The crude peptide was washed with diethyl ether, 

dissolved in water and lyophilized. The purification of the peptides was done using high-

performance liquid chromatography. 

 

4.1.3 Synthesis of Protected Peptides 

The synthesis of protected peptide fragments varies from the one of the fully deprotected 

peptide in the following points: (1) instead of the Wang resin the 2-chlorotrityl chloride resin is 

used, (2) the coupling of the first amino acid, (3) the missing deprotection step of the last amino 

acid, and (4) the cleavage conditions.84 

The coupling of the first amino acid was a double coupling step. A solution consisting of the 

Fmoc-protected first amino acid (2 eq) and N,N-diisopropylethylamine (5 eq) in dichloromethane 

was added to the swollen 2-chlorotrityl chloride resin and incubated at room temperature for 

30 min. The second coupling step had a concentration of 5 eq amino acid and 10 eq 

N,N-diisopropylethylamine. After incubating for 1 h at room temperature the resin was washed 

with dichloromethane. The capping of unreacted functional groups on the resin was done twice 

at room temperature for 10 min and 600 rpm with 15 v/v% methanol and 5 v/v% 

N,N-diisopropylethylamine in dichloromethane. 

The N-terminal Fmoc protecting group was removed with 25% piperidine in dimethylformamide 

at 75 °C for 30 s and at 600 rpm followed by a second deprotection step lasting 3 min. Before the 

coupling of the next amino acid a washing cycle with dimethylformamide was performed. 

For the coupling of the following amino acids the Fmoc-protected amino acid (5 eq), HATU 

(4.9 eq) and N,N-diisopropylethylamine (10 eq) were dissolved in dimethylformamide. The 

microwave-assisted coupling of each amino acid was performed at 75 °C for 5 min and at 

600 rpm followed by a washing cycle with dimethylformamide. 

After the coupling of the last amino acid, the resin washed with methanol, dichloromethane and 

dried, leaving out the deprotection step. 

For the cleavage of protected peptides a cleavage solution of 20% (v/v) 2,2,2-trifluoroethanol in 

dichloromethane was added to the resin. After incubating for 45 min the mixture was filtrated 
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and the resin washed with dichloromethane. The combined filtrate was treated with cold diethyl 

ether to precipitate the peptide. The peptide was solved in water and lyophilized. 

Usually the protected peptide fragment can be used without further purification but a 

purification using high-performance liquid chromatography is possible (see 4.1.5 and Appendix). 

 

4.1.4 Condensation of peptide fragments 

The C-terminal fragment was synthesized like a fully deprotected peptide (see 4.1.2) utilizing 

Wang resin but omitting the cleavage step. The N-terminal protected peptide fragment (2 eq, 

about half the weight of the resin), Benzotriazol-1-ol (2 eq), and N,N’-diisopropylcarbodiimide 

(2 eq) were dissolved in dimethyl sulfoxide added to the resin bound fragment and incubated for 

48 h at room temperature. Subsequently the resin was washed with dimethylformamide and 

capped with acetic anhydride, pyridine and dimethylformamide (v/v/v 1/1/2) at 75 °C for 5 min 

and at 600 rpm. The N-terminal Fmoc protecting group was removed with 25% (v/v) piperidine in 

dimethylformamide at 75 °C for 30 s and 600 rpm followed by a second deprotection step lasting 

3 min. 58,84 

Additional N-terminal amino acids could be coupled using the procedure in chapter 4.1.2. 

The cleavage from the resin and the deprotection of the peptide ensued after the coupling and 

deprotection of the last amino acid. An acidic solution of 2,2,2-trifluoroacetic acid and the 

scavengers water and triisopropylsilane (v/v/v 95/2.5/2.5) was added to the dried resin at a ratio 

of 1 mL/100 mg. The mixture was incubated for 2-3 h at room temperature, filtrated and the 

resin washed twice with 2,2,2-trifluoroacetic acid. The combined filtrate was treated with cold 

diethyl ether to precipitate the peptide. The crude peptide was washed with diethyl ether, 

dissolved in water and lyophilized. The purification of the peptides was done using high-

performance liquid chromatography. 

 

4.1.4 The DG Motif in SPPS 

Aspartimide formation is a well known side reaction during Fmoc SPPS, in which the nitrogen of 

the amide bond of the previous amino acid reacts with the β-carboxy side chain of the aspartate 

to form a five-membered ring. Most commonly the reaction takes place between aspartate and 

glycine and can be either base or acid catalyzed.84,133–135 
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Fig. 59: The aspartimide formation between the aspartate side chain and the amide nitrogen of the 
previous amino acid. 

 

The resulting aspartimide is prone to racemization via base catalysis. Ring opening in the 

presence of piperidine gives a mixture of α-, β-aspartyl peptides and α-, β-piperidides. 

 

 

Fig. 60: By-product formation after ring-opening of an aspartimide by hydrolysis or with piperidine. 

 

To prevent aspartimide formation a backbone protected amino acid was used previous to 

aspartate. For synthetic reasons a dipeptide Fmoc-Asp(OtBu)-(Dmb)Gly-OH was 

employed.84,136,137 

 

4.1.5 HPLC 

The high-performance liquid chromatography consists of a mobile and a stationary phase. While 

the liquid solvent passes over the solid stationary phase each component of the sample interacts 

with the adsorbent material resulting in different retention times (tR). A pumping device can 

generate a gradient between different solvents. 
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For the purification of the above mentioned peptides a stationary phase of poly(styrene-

divinylbenzene) (PLRP-S) and a mobile phase of H2O and acetonitrile was chosen. Both were 

acidified with 0.1% (v/v) 2,2,2-trifluoroacetic acid or formic acid. 

For the purification of fully deprotected peptides first an analytical column was employed (for the 

solvent gradient see Tab. 18). During the linear gradient from 2.5 to 12.5 min the target protein 

elutes. Unpolar species are washed down with a gradient of 95% acetonitrile. Before the storage 

of the column it is reequilibrated with 95% H2O and 5% acetonitrile. 

 

Tab. 18: Solvent gradient of the analytical run. 

time/ min H2O, 0.1% TFA / % acetonitrile, 0.1% TFA/ 

% 

flow rate / mL/min 

0 95 5 1.000 

2.5 95 5 1.000 

12.5 40 60 1.000 

13.5 5 95 1.000 

16 5 95 1.000 

17 95 5 1.000 

18.5 95 5 1.000 

 

Based on the retention time during the analytical run the method for the semi-preparative run 

can be determined: Subtracting the injection time (2.5 min) from tR and determining the 

corresponding H2O and acetonitrile concentrations gave the values for the starting point. For the 

end point 3.5% were added to the acetonitrile concentration (see Tab. 19). During this time 

fractions corresponding to 0.25 – 1 min were collected.138 
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Tab. 19: Solvent gradient of the semi-preparative run. 

time/ min H2O, 0.1% TFA / % acetonitrile, 0.1% TFA/ 

% 

flow rate / mL/min 

0 95 5 6.000 

5 95 5 6.000 

35 Starting point  6.000 

70 End point  6.000 

80 5 95 6.000 

90 5 95 6.000 

95 95 5 6.000 

105 95 5 6.000 

 

The collected fractions were tested for purity using HPLC-ESI-MS, either with the analytical run 

(see Tab. 18) or a longer, 60 min run. 

 

Tab. 20: Solvent gradient of the longer analytical run. 

time/ min H2O, 0.1% TFA / % acetonitrile, 0.1% TFA/ 

% 

flow rate / mL/min 

0 95 5 1.000 

2.5 95 5 1.000 

45 40 60 1.000 

50 5 95 1.000 

53 5 95 1.000 

58 95 5 1.000 

60 95 5 1.000 

 

 Pure fractions were combined and lyophilized. 

 

The purification of protected peptides had an acetonitrile concentration of at least 50% to 

prevent peptide precipitation. As the gradients vary depending on the fragments, details can be 

found in the Appendix (see Tab. 27 and Tab. 32).84 
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4.2 Bacterial Expression in E. coli 

The cloning and bacterial expression of proteins was done in cooperation with the group of Prof. 

Dr. Axel Scheidig. Additional bacterial expression was just carried out in cases where protein was 

depleted.  

Furthermore a protocol for the bacterial expression of labeled proteins in minimal medium was 

adapted from the European Molecular Biology Laboratory, Heidelberg. A general overview over 

the protocols for bacterial expression will be given in the following chapters. 

 

4.2.1 Protein Expression 

Protein expression was induced by adding isopropyl β-D-1-thiogalacto-pyranoside (IPTG) to the 

cells in the culture medium after they reached an optical density at 600 nm (OD600) of 0.6-0.8. 

The plasmids used for cloning all contain the lac operon and lacI next to the origin of replication, 

multiple cloning site, selection marker and other genes. The lac operon encodes for the transport 

of lactose into the cell and its metabolism. In the absence of lactose LacI inhibits the lac operon 

as a repressor. When lactose becomes available it is converted into allolactose which in turn 

inhibits the LacI repressor resulting in the transcription of the genes on the lac operon. IPTG is a 

structural analogue of allolactose which can inhibit the repressor but cannot be metabolized. 

Furthermore, the T7 RNA Polymerase, which is chromosomally encoded in the lacUV5 operon, 

can be regulated by the LacI repressor and is induced with IPTG. 

After induction and incubation, the cells were harvested, disrupted and the proteins purified 

using affinity chromatography. As the proteins were expressed containing an N-terminal Small 

ubiquitin modifier (SUMO) tag, the targeted cleavage of the SUMO tag at the correct position 

before the starting aspartate of the IBTC was performed using SUMO protease (see 

chapter 4.2.2.1) and again purified by affinity chromatography. If necessary an additional 

purification step with high performance liquid chromatography was performed (see chapter 

4.1.5).  

 

4.2.1.1 SUMO Protease 

The bacterial expression of the SUMO protease was done according to literature.93 

4 L of Luria-Bertani (LB) medium (50 µg/mL kanamycin) were equally distributed in two 5 L 

Erlenmeyer flasks with baffles and a suspension of cells added to an OD600 of ~0.1. After 



4 Experimental Section 

 

78 
 

incubation of the cell culture at 37 °C and 80 rpm to an OD600 of 0.6, IPTG was added to a final 

concentration of 0.2 mM. The cells were incubated for another 3 h at 30 °C and then harvested. 

After washing them twice with PBS buffer (10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4, 150 mM 

NaCl), the harvested cells were frozen in liquid nitrogen and stored at -80 °C. 

 

4.2.1.2 SUMO fusion proteins 

To 2 L of LB medium (50 µg/mL kanamycin) in a 5 L Erlenmeyer flasks with baffles, a suspension 

of cells was added to an OD600 of ~0.1. After incubation of the cell culture at 37 °C and 80 rpm to 

an OD600 of 0.6, IPTG was added to a final concentration of 1 mM to induce protein expression. 

The cells were incubated over night at 25 °C and then harvested. After washing them twice with 

PBS buffer (10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4, 150 mM NaCl), the harvested cells were 

frozen in liquid nitrogen and stored at -80 °C. 139 

 

4.2.1.3 Minimal Medium 

For the expression of 15N labeled proteins the protocol was performed using minimal medium 

instead of LB medium. The composition of the minimal medium was derived from the European 

Molecular Biology Laboratory (EMBL). The ingredients are listed in Tab. 21. 

 

Tab. 21: Composition of minimal medium. 

Medium A (1 L) 10x M9 medium (1 L) 100x trace element solution 

(1 L) 

100 mL 10x M9 medium 60 g Na2HPO4 5 g EDTA 

10 mL 100x trace element  

solution 

30 g KH2PO4 0.83 g FeCl3 x 6 H2O 

20 mL 10% (w/v) glucose 5 g NaCl 84 mg ZnCl2 

1 mL 1 M MgSO4 5 g 15NH4Cl 13 mg CuCl2 x 2 H2O 

0.3 mL 1 M CaCl2  10 mg CoCl2 x 6 H2O 

1 mL 1 mg/mL biotin  10 mg H3BO3 

1 mL 1 mg/mL thiamine  1.6 mg MnCl2 x 6 H2O 

Appropriate antibiotic   
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4.2.1.4 Cell Disruption 

The cell pellets were defrosted and resuspended in buffer (see Tab. 22) at a 1:10 (w/v) ratio. The 

physical cell disruption was done using an Avestin EmulsiFlex C3 at 1000 – 1500 bar and 4 °C. 

After centrifugation at 10 °C and 75600 rpm for 45 min the supernatant was taken and purified 

using affinity chromatography as specified in chapter 4.2.2.1. 

 

Tab. 22: Composition of the resupension buffers. 

Sumo protease SUMO fusion proteins 

50 mM HEPES, pH 7.4 300 mM NaCl 

100 mM NaCl 50 mM NaH2PO4, pH 4.5 

1 mM PMSF 1 mM PMSF 

0.2 µg/mL DNAse 0.2 µg/mL DNAse 

 

4.2.2 Biochemical Methods 

4.2.2.1 Affinity Chromatography 

The purification of the proteins from the supernatant of the physical cell disruption was done 

using Ni2+-nitrilotriacetic acid agarose chromatography. The SUMO protease as well as the SUMO 

fusion proteins contain a His-tag, the later at the N-terminus. Proteins with His-tag bind on the 

column while impurities are washed off. The elution buffer contains a high concentration of 

imidazole which is a structural analog to the histidine side chain and competitively interacts with 

the nickel ions of the stationary phase.  

Before the purification of the proteins with a fast protein liquid chromatography (FPLC) at 8 °C 

and a 5 mL HisTrap HP column the column was equilibrated with buffer until the base line 

absorption at 280 nm was constant. The sample was loaded on the column and, after a washing 

step with equilibration buffer, non-specifically bound impurities were removed with 5% of 

elution buffer. By applying a gradient of 5 - 100% elution buffer the sample was eluted and 

collected in fractions of 2 mL. 

The fractions of SUMO protease were tested for purity via SDS-PAGE (see chapter 4.2.2.3). Pure 

fractions were combined, their concentration determined using a nanophotometer and frozen in 

liquid nitrogen in 200 – 500 µL aliquots. The storage was at -80 °C. 
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The pure fractions of SUMO fusion protein were combined and concentrated using Amicon 

Ultra-15 Centrifugal Filters 10.000 nominal molecular weight limit (NMWL)/3.000 NMWL and 

rebuffered to 50 mM Tris, pH 8, 20 mM NaCl, 5 mM DTT with a 5 mL HiTrap Desalting column. The 

concentration was determined using a nanophotometer. For the proteolytic cleavage of the 

SUMO tag, SUMO protease was added at a ratio of 1:100 and incubated for 1 h at 37 °C and 

600 rpm. The purification via affinity chromatography yields the protein as eluent at the 

beginning as it no longer binds to the column. The fractions were combined and their 

concentration determined using a nanophotometer. 

 

Tab. 23: Equilibration and elution buffers of the different proteins. 

SUMO protease  SUMO fusion proteins  

Equilibration buffer Elution buffer Equilibration buffer Elution buffer 

50 mM HEPES, pH 7.4 50 mM HEPES, 

pH 7.4 

50 mM NaH2PO4, 

pH 4.5 

50 mM NaH2PO4, pH 4.5 

100 mM NaCl 100 mM NaCl 300 mM NaCl 300 mM NaCl 

 500 mM imidazole  500 mM imidazole 

 

4.2.2.2 High performance liquid chromatography (HPLC) 

All proteins with a molecular weight below 5 kDA cannot be concentrated by centrifugation with 

the above mentioned centrifugal filters or analyzed with SDS-PAGE. Thus the proteins were 

tested for purity using HPLC and ESI-MS. If necessary an additional purification step with high 

performance liquid chromatography was performed. 

 

4.2.2.3 SDS-PAGE 

The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) allows the separation 

of proteins by size. Consequently, the presence and purity of a sample can be tested. For the 

analysis 12% SDS-PAGE were prepared (see Tab. 24). 
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Tab. 24: Layout of materials for 12% SDS-PAGE gels. 

Materials 12% separation gel 5% stacking gel 

ddH2O 1.65 mL 690 µL 

1.5 M Tris-HCl, pH 8.8, 0.4% SDS 1.3 mL - 

1 M Tris-HCl, pH 6.8, 0.4% SDS - 20 µL 

10% APS 100 µL 2 µL 

TEMED 4 µL 170 µL 

Rotiphorese-Gel 30 (37,5:1) 2 mL 130 µL 

 

The samples were prepared by mixing 6 µL of sample with 2 µL of 4x Laemmli buffer (40% 

glycerol, 240 mM Tris-HCl, pH 6.8, 8% SDS, 0.04% bromophenol blue, 5% β-mercaptoethanol) and 

heating to 95 °C for 5 min. The gel was loaded with 5 µL sample each and the gel electrophoresis 

performed at 250 V for 25 min in SDS running buffer (25 mM Tris, 0.2 M glycine, 0.1% SDS). 

For the visualization the SDS was removed from the gel by heating in water and incubating 

15 min at room temperature. The staining was done over night with colloidal Coomassie CBB 

G-250 (0.02% CBB G-250, 5% aluminium sulfate octahydrate, 10% of 96% Ethanol, 2% of 85% 

phosphoric acid).36 
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4.2.2.4 Regeneration of the column 

After each purification the 5 mL HisTrap HP column was regenerated by first washing the column 

with bidestilled water (ddH2O) then applying stripping and binding buffer, separated by a second 

washing step, adding Ni2+ as a chloride salt and storing the column in 20% ethanol (see Tab. 25). 

 

Tab. 25: Regeneration of the HisTrap HP column. 

buffer volume 

ddH2O 3 CV 

Stripping Buffer (20 mM NaH2PO4, 0.5 M NaCl, 50 mM EDTA, pH 7.4) 5 CV 

ddH2O 3 CV 

Binding Buffer (20 mM Tris-HCl, 0.5 M NaCl, 20 mM imidazole, pH 7.4) 5 CV 

ddH2O 3 CV 

0.1 M NiCl2 0.5 CV 

ddH2O 3 CV 

Ethanol (20%) 3 CV 

 

4.3 Other used Methods, Materials and Instruments 

4.3.1 Chemicals and Materials  

All chemicals were purchased from abcr, Acros Organics, Alfa Aesar, AppliChem, BCD Chemie, 

Biesterfeld, Cambridge Isotope Laboratories, Carbolution Chemicals, ChemPep, Deutero, 

Eurisotop, Grüssing, Honeywell, Iris, Merck, Nippon Genetics, Novabiochem, Roth, Serva, Sigma-

Aldrich, TCI, Ted Pella Inc., VWR. Solvents for peptide synthesis were purified by distillation 

before use, except for N,N-dimethylformamide which was ordered low in water. Solvents for 

HPLC were purchased as HPLC grade solvents. 

Consumables were purchased from Hassa, Merck Millipore, neolab, Roth, Sarstedt. 
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4.3.2 Peptide Synthesis 

Fmoc-based solid phase peptide synthesis was performed on a microwave-assisted, semi-

automated peptide synthesizer Initiator+ SP Wave by Biotage version 4.1.1. 

 

4.3.3 Lyophilizer 

Lyophilization of the samples was done with a lyophilizer Alpha 2-4 by Martin Christ and a RZ6 

vacuum pump by Vacuubrand and a typical vacuum of 0.1 mbar. 

 

4.3.4 HPLC 

The high performance liquid chromatography was performed with a LaChrom Elite by VWR-

Hitachi with a L2400 UV-detector. Analysis and purification was achieved by reversed phase 

column with a stationary phase of poly(styrene-divinylbenzene) (PLRP-S) with a particle size of 

8 µm and a pore diameter of 30 nm by Agilent Technologies. The dimensions for the analytical 

column are 150 mm x 4.6 mm and for the semi-preparative 325 mm x 30 mm. For detection of 

the molecules, an UV detector at λ = 220 nm was used. An automated fraction collector Foxy® R1 

by Teledyne Isco and an autosampler 717-Plus by Waters are connected to the HPLC. 

The program used to operate the HPLC and fraction auto-collector is EZChrom SI version 3.3.2 

SP2. 

 

4.3.5 Mass Analysis 

The molecular mass of the synthesized proteins was determined by either an electron spray 

ionization mass spectrometer (ESI MS) connected to the HPLC, Expression-L CMS by Advion with 

a hexapol as separator, manually by matrix-assisted laser desorption ionization (MALDI) with a 

time of flight (ToF) mass separator, Biflex III by Bruker, or a hybrid quadrupole-orbitrap mass 

spectrometer, Q Exactive Plus 2.8 by Thermo Scientific. 

As matrix for MALDI-ToF, (E)-2-cyano-3-(4-hydroxyphenyl)prop-2-enoate was employed. 

The program for operation of the directly to the HPLC connected ESI-MS is Advion Mass Express 

version 2.0.50.9 and Advion Data Express version 2.0.45.4 for analysis of the spectra. The 

MALDI-ToF is operated by Bruker Daltonics flexControl version 3.0 and the Q Exactive Plus by 

tune version 2.8 and with licenses Enhanced Resolution Unlimited and Protein Mode Unlimited. 
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4.3.6 Bacterial expression 

For bacterial expression the bacterial strain E. coli BL21 Gold (DE3) with the following genotype B, 

F–, ompT, hsdS(rB
–mB

–), dcm+, Tetr, gal λ(DE3), endA, Hte from Agilent Technologies was used. 

Plasmids from the group of Prof. Dr. Axel Scheidig (based on pETM11-SUMO3GFP by Huseyin 

Besir, EMBL) were used. pET28a-SENP2 (catalytic domain) was a gift from Guy Salvesen (Addgene 

plasmid # 16357 ; http://n2t.net/addgene:16357 ; RRID:Addgene_16357).93 

 

4.3.7 Incubator 

The incubation of cell culture medium was carried out using a Multitron by Infors Hat. For the 

incubation during the proteolytic cleavage a Thermomixer comfort by Eppendorf was used. 

 

4.3.8 Centrifuges 

For cell harvesting or after cell disruption a Heraeus Multifuge 3SR+ centrifuge by Thermo Fisher 

Scientific or an Avanti J-26 XP by Beckman Coulter were used. During SPPS, protein precipitation 

was facilitated by an EBA 20 by Hettich. 

 

4.3.9 Cell disruption 

The cells were physically disrupted using an EmulsiFlex-C3 from Avestin. 

 

4.3.10 ÄKTA 

The purification and desalting of proteins from the bacterial expression was done using an ÄKTA-

FPLC by GE Healthcare. It was operated by the program Unicorn 5.31. 

The columns, HisTrap HP 5 mL and HiTrap Desalting 5 mL, were also from GE Healthcare. 

 

4.3.11 SDS-PAGE 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed with a Mini-PROTEAN 

Tetra System equipped with a voltage unit Power Pac 300 both by Bio-Rad. Documentation of the 

gels was done on a light plate FastGene White Light Plate by Nippon Genetics using a Penta Mix-1 

digital camera by Ricoh Imaging. 
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4.3.12 pH Measurements 

The determination of the pH of samples and for buffer preparation was performed with either a 

pH 526 by WTW for buffers or a pH meter 320 by Corning for protein samples. If necessary, a 

calibration step was performed before the pH measurements. 

 

4.3.13 Protein Concentration Determination 

The concentration of protein samples with an extinction coefficient of ε280 >10000 M-1cm-1 was 

done with a nanophotometer P300 by Implen. All other protein concentrations were determined 

using UV/vis spectroscopy. 

 

4.3.14 UV/vis Spectroscopy 

UV/vis spectra were recorded on a Lambda 14 two channel spectrometer by PerkinElmer. It is 

equipped with a thermostat E100 by Lauda and operated by UV WinLab, 2.80.03. All 

measurements were performed in quartz cuvettes with a path length of 10 mm by Hellma 

Analytics at 25 °C ±0.1 °C. Measurements were performed under the same conditions and with 

the same stock solution as the CD measurements. 

The extinction coefficients for all proteins can be found in Tab. 26. 

 

4.3.15 CD Spectroscopy 

CD spectra were recorded on a Jasco J-720 spectropolarimeter. The temperature was controlled 

with a thermostat WKL 26 by Haake and a PTC-423S Peltier element by Jasco. All measurements 

were performed in quartz cuvettes with a path length of 1 mm by Hellma Analytics. The lower 

limit of the spectra was tested manually as the voltage should not exceed 700 V as the data 

becomes unreliable. Spectra were recorded with protein samples of ~0.1 mg/mL concentration, 

with a data pitch of 2 nm and a scanning speed of 5 nm/min. Accumulation of three repeats and 

subtraction of the background signal gave the final spectrum. The instrument was operated with 

the program Spectra Manager for Windows 95/NT version 1.53.00. 

The resulting signal is converted to mean residue ellipticity [Θ]MR, 

[𝛩]𝑀𝑅 =
100 ∙ 𝛩

𝑐 ∙ 𝑙 ∙ 𝑛
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with Θ the measured CD signal, c the concentration in mol/L, l the path length of the cuvette and 

n the number of residues. 

Calculations were performed with the program OriginPro 2016, version b9.3.206. Curves were 

smoothed using the method Salvitzky-Golay with 5 points of window and a polynomial order of 2. 

Thermal denaturation curves were recorded starting at 1 °C to 61 °C with a temperature slope of 

1 °C/min and a data pitch of 2 °C followed by a reverse temperature scan. The melting point was 

either estimated visually or calculated with the above mentioned program employing an 

unconstrained fitting using a sigmoidal Boltzmann function and a Levenberg-Marquardt iteration 

algorithm. 

The signal at 222 nm is usually taken to quantify the helical content, using the following formula: 

𝐻𝑒𝑙𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 100 ∙
 𝛩 𝑜𝑏𝑠

 𝛩 𝑟𝑒𝑓
 

with [Θ]ref at 222 nm for a 100% folded helix calculated by 

 𝛩 222 =  1 −
1

𝑛
 ∙  −44.000 + 250 ∙ 𝑇  

Where n is the number of residues and T the temperature in °C.104 

 

4.3.16 NMR Spectroscopy 

The NMR spectra were recorded on Fourier transform-NMR (FT-NMR) spectrometers Avance III 

600 with a frequency of 600.1 MHz for 1H-, 150.9 MHz for 13C-, and 60.81 MHz for 15N-nuclei and 

equipped with a triple resonance cryo probe head, as well as a DRX500 spectrometer with a 

frequency of 500.1 MHz for 1H-, and 125.8 MHz for 13C-nuclei by Bruker. Both spectrometers 

have a variable temperature unit. As internal standard 4,4-dimethyl-4-silapentane-1-sulfonic acid 

(DSS) was used for aqueous samples, tetramethylsilane (TMS) with organic solvents. 13C and 15N 

were referenced indirectly using the IUPAC recommendations for the frequency ratio to 1H. 140 

For locking of the aqueous samples 10% D2O was added. 141 

Chemical shifts are given in ppm. Signal assignment was done based on one-dimensional 1H NMR 

and two- or three-dimensional NMR spectroscopy, namely 1H,1H-corelated spectroscopy (COSY), 

1H,1H-total correlation spectroscopy (TOCSY), 1H,1H-nuclear Overhauser enhancement 

spectroscopy (NOESY), 1H,13C-heteronuclear single quantum coherence (HSQC), 1H,15N-HSQC, 
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1H,1H-TOCSY-1H,15N-HSQC and 1H,1H-NOESY-1H,15N-HSQC. Water suppression in the 1H and 

1H,1H-correlation spectra was done using an excitation sculpting with gradient pulses (esgp), 

1H,13C-HSQC had a presaturation of water and 1H,15N-HSQC a flip-back pulse for water.142 

The spectra were processed using TopSpin by Bruker. Peak assignments were performed with 

NMRView version 9.2.0-b11 following the guide of Wüthrich.143 

 

4.3.16.1 Chemical Shift Deviation 

Calculation of the chemical shift deviation (CSD) was performed using random coils values 

derived from Wishart and Sykes.98 The CSD is the difference between the observed (ẟobs) and 

referential random coil (ẟref) chemical shift 

𝐶𝑆𝐷 = ẟ𝑜𝑏𝑠 − ẟ𝑟𝑒𝑓  

The CSD is dependent of the secondary structure of the protein. While a Hα CSD <0.1 ppm for a 

cluster of at least four amino acids of five (if not interrupted by a value >0.1 ppm) is an indication 

of an α-helical fold, a Hα CSD >0.1 ppm for a cluster of at least three amino acids of four (if not 

interrupted by a value <0.1 ppm) is on the contrary indicates a β-strand. For Cα CSD a value of 

>0.7 ppm indicates an α-helix and a CSD of <0.7 ppm a β-strand under the above mentioned 

conditions.99 

The proton shifts of Hα’ of G11, Hβ’ of P18 as well as Hẟ and Hẟ’ of P19 in the Trp-cage are 

sequence corrected random coil values from Lin et al., which are 4.02, 2.29, 3.59 and 3.74 ppm, 

respectively.75,144 

 

4.3.17 Ice Activity Measurements 

Thermal hysteresis and ice growth retardation measurements were performed using a nanoliter 

osmometer by Clifton equipped with a Peltier element cooling station which is cooled to 10 °C 

with glycol as thermal fluid by a Ministat 230 by Huber. The cooling station is mounted on an 

Eclipse NI microscope with a D7000 camera by Nikon. Pictures were recorded with a 50x 

magnification with the Camera Control Pro 2 version 2.23.0 software by Nikon. 

The sample holder’s bores have a diameter of 200 µm. Before loading the sample, the bores were 

filled with high viscosity immersion oil (type B). Utilizing a glass capillary connected to a Hamilton 

syringe, a nanoliter sized drop was placed in the middle of the bore without touching the 
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surrounding metal. The sample was flash frozen to -40 °C. Careful heating gave just one single ice 

crystal. For thermal hysteresis measurements the temperature was decreased constantly at 30 or 

40 mOs/min until the ice crystal burst at the tips. 

For samples which do not show a burst point, ice growth retardation was determined by first 

decreasing the temperature and then measuring the correlating growth rate v (µm/s) of the ice 

crystal over time. For every sample at least 10 different temperatures were evaluated. A plot of 

the crystal growth rate against the temperature shows the ice growth retardation for the first 

several low decreases in temperature and then a rapid rise in crystal growth. By plotting two 

linear regressions through the correlating data points and determining their intersection the ice 

growth retardation was determined. It is important to mention that the observable ice crystals 

show a hexagonal shape thus enabling a measurement from opposing edge-to-edge or tip-to-tip. 

As the antifreeze protein binds to the edge a correction of values derived from tip-to-tip 

measurements by cos(30°) is necessary (see Fig. 61).46,112, (K. Bamberg, Masters thesis) 

 

 

Fig. 61: Schematic representation of the top view of a hexagonal ice crystal. To evaluate its size a 
measurement from tip-to-tip (blue) or edge-to-edge (red) is possible. 

 

The measurements were done with Adobe Photoshop CS6 version 13.0 and the plotting and 

calculations with OriginPro 2016 version b9.3.206. 

As internal reference for the size of the ice crystal, the diameter of the bore was used. A freezing 

point depression of 1000 mOs corresponds to 1.86 °C.22 
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4.3.18 Molecular Modelling 

All structures presented in this work were prepared starting from the first structure of the NMR 

ensembles of Tc10b by Barua et al. (PDB entry: 2JOF).69 They were prepared and extended using 

Schrödingers Maestro version 11.4.011145 while energy minimizations were performed with 

Schrödingers MacroModel.146 As a potential Optimized Potentials For Liquid Simulations (OPLS3) 

with the solvent water was chosen.147–150 The charges were set as in the force field and an 

extended cutoff for the non-bonded interactions. The energy minimization followed the Polak-

Ribiere conjugate gradient (PRCG) method with a maximum of 2500 iterations and a gradient 

convergence.151 

Pictures of proteins and protein models were rendered by PyMol Molecular Graphics System 

version 2.1.1.152 

 

4.3.19 Calculation of Absorption Coefficient and Molecular Weight 

Calculation of the molecular weight and absorption coefficient ε280 was done with ExPASY’s 

ProtParam by the Swiss Institute of Bioinformatics.153 
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Tab. 26: Absorption coefficients and molecular weight of some peptides. 

 MW/Da ε280/ M-1cm-1 

(jg)IBTC-1 2620.68 6990 

(jg)IBTC-1-GFP 29412.96 28880 

(jg)IBTC-2 3517.68 6990 

(jg)IBTC-2-GFP 30309.96 28880 

(jg)-IBTC-3 4529.81 6990 

(jg)IBTC-3-GFP 31322.09 28880 

(jg)IBTC-4 3355.68 6990 

(jg)SUMO-IBTC-1 14968.52 11460 

(jg)SUMO-IBTC-1-GFP 41847.87 33350 

(jg)SUMO-IBTC-2 15865.52 11460 

(jg)SUMO-IBTC-2-GFP 42744.87 33350 

(jg)SUMO-IBTC-3 16877.65 11460 

(jg)SUMO-IBTC-3-GFP 43757.00 33350 

1repeat 1029.55 28200*/9763+ 

SUMO protease 31111.52 41160 

Tc10bKKA 2127.35 6990 

* ε205 154/+ ε214 155 
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5 Appendix 

 

In this chapter, the synthesis, purification (HPLC- and ÄKTA-profiles), mass spectra (MALDI or ESI), 

UV/vis, CD and NMR spectra as well as ice activity data of all substances are presented. Spectra 

presented above are recurring with new numbering to enable a quick and focused overview over 

all experimental data. Additionally, the proton, carbon and nitrogen chemical shifts of all 

peptides as well as the corresponding CSD plots, and Fraction Folded values are listed. 

 

5.1 Tc10bKKA as fragment on Wang resin 

Sequence 78   DKYAQWLADGGPSSGRPPPK 

Molecular weight  2127.32 g/mol 

Absorption coefficient  ε280= 6990 M-1cm-1 

Peptide amount  0.4 g / 0.188 mmol 

Resin type   Wang 

Resin loading capacity  0.85 mmol/g 

Resin amount   220 mg 

Capping   acetic anhydride, pyridine, dimethylformamide (1/1/2) 
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 Double Coupling Single Coupling  

HATU (4.9 eq, g) 0.700 0.350  
DIPEA (10 eq, mL) 0.655 0.328  

Amino acids (5 eq, g)    

K  0.440  
Capping    

P  0.317  
P  0.317  
P  0.317  
R  0.610 Extended 

deprotection 
G 0.559   
S  0.360  
S  0.360  
P  0.317  
G 0.559  Extended 

deprotection 
DG  0.582  

A  0.293  
L 1.329   

W  0.495  
Q  0.574  
A 0.585   
Y  0.432  
K 0.881   
D  0.387  

 

Yield  611.4 mg dry resin with Tc10bKKA fragment 

 



5 Appendix 

 

93 
 

 

Fig. 62: HPLC profile of the analytical run (top), ion chromatogram (2nd panel from top) and MS spectra of 
all signals of purified Tc10bKKA. m/z: [M+2H]2+ calcd 1065, found 1064.8; [M+3H]3+ calcd 710.1, found 
710.1. tR is 10.1 min. 
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Fig. 63: 1H NMR spectrum of Tc10bKKA in H2O/D2O, pH 3, at 300 K with enlargement of the indole proton 
region around 10 ppm. 

 

5.2 2repeat-pg 

Sequence   Fmoc-AAN(Trt)AAAAAAAT(tBu)-OH 

Molecular weight  1393.61 g/mol 

Peptide amount  0.38 g / 0.273 mmol 

Resin type   2-Chlorotrityl chloride 

Resin loading capacity  0.71 mmol/g 

Resin amount   396 mg 

Capping   acetic anhydride, pyridine, dimethylformamide (1/1/2) 
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 Single Coupling  

HATU (4.9 eq, g) 0.508  
DIPEA (10 eq, mL) 0.475  

Amino acids (5 eq, g)   

T (2 eq, g) 0.216 See 4.1, no deprotection 
T 0.540 See 4.1, Capping 
A 0.423 Capping 
A 0.423 Capping 
A 0.423 Capping 
A 0.423 Capping 
A 0.423 Capping 
A 0.423 Capping 
A 0.423 Capping 
N 0.811  
A 0.423 Capping 
A 0.423 No deprotection, capping 

 

Yield  11.4 mg (4%) 

 

Tab. 27: Solvent gradient of the semi-preparative run of 2repeat-pg. Fractions were collected from 65 – 
85 min. 

time/ min H2O, 0.1% TFA / % acetonitrile, 0.1% TFA/ 

% 

flow rate / mL/min 

0 50 50 6.000 

5 50 50 6.000 

90 37 63 6.000 

100 5 95 6.000 

110 5 95 6.000 

115 50 50 6.000 

130 50 50 6.000 
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Fig. 64: HPLC profile of the semi-preparative run of 2repeat-pg. tR is 75 min. 

 

 

Fig. 65: Ion chromatogram of purified 2repeat-pg. m/z: [M+Na]
+
 calcd 1417, found 1416.3. 

 

 

Fig. 66: UV/vis spectrum of 2repeat-pg in dimethyl sulfoxide-d6 at 298 K. The spectrum was measured to 
600 nm, displayed only to 350 nm. 
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Fig. 67: 1H NMR spectrum of 2repeat-pg in dimethyl sulfoxide-d6 at 298 K. 

 

Tab. 28: 1H-chemical shifts of 2repeat-pg in dimethyl sulfoxide-d6 at 298 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1 Ala 7.538 4.087 1.192   

2 Ala 8.003 4.310 1.219   

3 Asn 8.176 4.533 2.672  δ 7.539, 
7.074 

4 Ala 7.891 4.165 1.205   

5 Ala 7.907 4.138 1.076   

6 Ala 7.842 4.223 1.176   

7 Ala 7.907 4.138 1.076   

8 Ala 7.842 4.223 1.176   

9 Ala 7.875 4.259 1.215   

10 Ala 8.051 4.404 1.212   

11 Thr 7.413 4.218 4.118 1.212  
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Tab. 29: 1H-chemical shifts of the protecting groups of 2repeat-pg in dimethyl sulfoxide-d6 at 298 K. 

Residue Chemical shift ẟ (ppm) 

1 Fmoc-Ala 7.887 (d) (2H, H-1), 7.717 (q) (2 H, H-4), 7.410 (m) (2 H, H-2), 7.322 (t) (2 H, H-3) 

3 Asn(Trt) 7.251 (t) (6 Ar-H), 7.178 (t) (9 Ar-H) 

11 Thr(tBu) 1.096 (s) (9 H) 

 

Tab. 30: 15N and 13C-chemical shifts of 2repeat-pg in dimethyl sulfoxide-d6 at 298 K. Shifts marked with an 
asterix are averaged. 

Residue Chemical shift ẟ (ppm) 

  
15N Cα Cβ  

1 Ala   50.33 18.34  

2 Ala 119.16  48.49 18.85  

3 Asn 115.60 δ91.47 50.27 38.58  

4 Ala 118.42*  48.74 18.85  

5 Ala 118.42*  48.85 17.73  

6 Ala 118.42*  48.49 18.34  

7 Ala 118.42*  48.85 17.73  

8 Ala 118.42*  48.49 18.34  

9 Ala 118.42*  48.30 18.85  

10 Ala 119.27  48.23 18.85  

11 Thr 107.64  57.77 67.48 γ 18.85 

 

Tab. 31: 15N and 13C-chemical shifts of the protecting groups of 2repeat-pg in dimethyl sulfoxide-d6 at 
298 K. 

Residue Chemical shift ẟ (ppm) 

1 Fmoc-Ala 120.48 (C-1), 125.74 (C-4), 128.11 (C-2), 127.53 (C-3) 

3 Asn(Trt) 128.92, 127.86, 126.80 

11 Thr(tBu) 28.63 

 

5.3 1repeat-pg 

Sequence   Fmoc-AAN(Trt)AK(Boc)AAAE(OtBu)LT(tBu)-OH 

Molecular weight  1707.05 g/mol 

Peptide amount  0.47 g / 0.275 mmol 

Resin type   2-Chlorotrityl chloride 

Resin loading capacity  0.71 mmol/g 

Resin amount   396 mg 

Capping   acetic anhydride, pyridine, dimethylformamide (1/1/2) 
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 Single Coupling  

HATU (4.9 eq, g) 0.513  
DIPEA (10 eq, mL) 0.479  

Amino acids (5 eq, g)   

T (2 eq, g) 0.219 See 4.1, no deprotection 
T 0.547 See 4.1, Capping 
L 0.487  
E 0.586  
A 0.429 Capping 
A 0.429 Capping 
A 0.429 Capping 
K 0.645  
A 0.429 Capping 
N 0.821  
A 0.429 Capping 
A 0.429 No deprotection, capping 

 

Yield  38 mg (14%) 

 

Tab. 32: Solvent gradient of the semi-preparative run of 1repeat-pg. Fractions were collected from 135-
170 min. 

time/ min H2O, 0.1% TFA / % acetonitrile, 0.1% TFA/ 

% 

flow rate / mL/min 

0 50 50 6.000 

5 50 50 6.000 

140 30 70 6.000 

150 5 95 6.000 

170 5 95 6.000 

180 50 50 6.000 

200 50 50 6.000 
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Fig. 68: HPLC profile of the semi-preparative run of 1repeat-pg. tR is 157 min. 

 

 

Fig. 69: Ion chromatogram of purified 1repeat-pg. m/z: [M+Na]+ calcd 1730, found 1729.8. 
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Fig. 70: UV/vis spectrum of 1repeat-pg in dimethyl sulfoxide-d6 at 298 K. The spectrum was measured to 
600 nm, displayed only to 350 nm. 

 

 

Fig. 71: 1H NMR spectrum of 1repeat-pg in dimethyl sulfoxide-d6 at 298 K. 
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Tab. 33: 1H-chemical shifts of 1repeat-pg in dimethyl sulfoxide-d6 at 298 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1 Ala 7.517 4.226 1.194   

2 Ala 7.995 4.300 1.214   

3 Asn 8.172 4.555 2.698, 
2.638 

 δ 7.518, 7.016 

4 Ala 7.945 4.146 1.219   

5 Lys 7.748 4.036 1.502, 
1.322 

1.510 δ 1.189 
ε 6.694 

6 Ala 7.864 4.166 1.195   

7 Ala 7.754 4.129 1.146   

8 Ala 7.815 4.210 1.199   

9 Glu 7.768 4.260 1.887, 
1.752 

2.225, 
2.225 

 

10 Leu 7.952 4.407 1.598, 
1.598 

1.472 δ 0.086 

11 Thr 7.516 4.227 4.090 1.034  

 

Tab. 34: 1H-chemical shifts of the protecting groups of 1repeat-pg in dimethyl sulfoxide-d6 at 298 K. 

Residue Chemical shift ẟ (ppm) 

1 Fmoc-Ala 7.889-7.854 (d) (2H, H-1), 7.709 (q) (2 H, H-4), 7.407 (t) (2 H, H-2), 7.316 (t) (2 
H, H-3) 

3 Asn(Trt) 7.247 (t) (6 Ar-H), 7.150 (t) (9 Ar-H) 

5 Lys(Boc) 1.103 (s) (9 H) 

9, 11 Glu(OtBu), 
Thr(tBu) 

1.367 (s) (9 H), 1.357 (s) (9 H) 

 

Tab. 35: 15N and 13C-chemical shifts of 1repeat-pg in dimethyl sulfoxide-d6 at 298 K. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1 Ala 91.41  51.4 21.14  

2 Ala 118.64  51.32   

3 Asn 115.76 δ 33.21 53.19   

4 Ala 120.59  70.23   

5 Lys 115.77 ε 85.66 56.28   

6 Ala 118.50  51.81   

7 Ala 119.70  53.28   

8 Ala 118.57  49.94 20.89  

9 Glu 114.56  54.66   

10 Leu 118.88  

54.01 27.42 

γ 43.42 
δ 26.49, 

24.77 

11 Thr 109.70  60.55  γ 23.48 
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Tab. 36: 15N and 13C-chemical shifts of the protecting groups of 1repeat-pg in dimethyl sulfoxide-d6 at 
298 K. 

Residue Chemical shift ẟ (ppm) 

1 Fmoc-Ala 123.34 (C-1), 128.53 (C-4), 130.94 (C-2), 130.16 (C-3) 

3 Asn(Trt) 130.76, 131.81, 129.68 

5 Lys(Boc) 31.66 

9, 11 Glu(OtBu), 
Thr(tBu) 

31.11, 31.66 

 

5.3 1repeat 

Sequence   AANAKAAAELT 

Molecular weight  1029.55 g/mol 

Absorption coefficient  ε205=28200 M-1cm-1 

ε214=9763 M-1cm-1 

Peptide amount  0.12 g / 0.117 mmol 

Resin type   Wang 

Resin loading capacity  0.86 mmol/g 

Resin amount   139 mg 

Capping   acetic anhydride, pyridine, dimethylformamide (1/1/2) 

 Single Coupling  

HATU (4.9 eq, g) 0.217  
DIPEA (10 eq, mL) 0.203  

Amino acids (5 eq, g)   

T 0.232 Capping 
L 0.412  
E 0.248  
A 0.181 Capping 
A 0.181 Capping 
A 0.181 Capping 
K 0.273  
A 0.181 Capping 
N 0.348  
A 0.181 Capping 
A 0.181 Capping 

 

Yield  8 mg (7%) 
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Fig. 72: HPLC profile of the semi-preparative run of 1repeat. tR is 57 min. 

 

 

Fig. 73: HPLC profile of the analytical run (top), ion chromatogram (2nd panel from top) and MS spectra of 
all signals of purified 1repeat. m/z: [M+H]+ calcd 1031, found 1031.3. tR is 9.1 min 
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Fig. 74: UV/vis spectrum of 1repeat at 298 K in 0.1 M NH4HCO3 buffer, pH 7.9. The spectrum was measured 
to 600 nm, displayed only to 350 nm. 

 

 

Fig. 75: CD spectrum of 1repeat at 274 K in 0.1 M NH4HCO3 buffer, pH 7.9. The scale is different from the 
other CD spectra. 
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Fig. 76: 1H NMR spectrum of 1repeat in H2O/D2O, pH 3, at 278 K. 

 

Tab. 37: 1H-chemical shifts of 1repeat in H2O/D2O, pH 3, at 278 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1 Ala exch. 4.076    

2 Ala 8.782 4.321 1.381   

3 Asn 8.669 4.637 2.838, 
2.780 

 δ 7.748, 
7.037 

4 Ala 8.493 4.273 1.391   

5 Lys 8.428 4.245 1.825, 
1.750 

1.463 δ 1.682 
ε 2.997 
ζ 7.609 

6 Ala 8.373 4.259 1.390   

7 Ala 8.366 4.273 1.301   

8 Ala 8.379 4.252 1.3980   

9 Glu 8.382 4.350 2.212, 
1.987 

2.456  

10 Leu 8.473 4.437 1.708, 
1.656 

1.396 δ 0.949, 
0.887 

11 Thr 7.979 4.272 4.272 1.168  

 

  



5 Appendix 

 

107 
 

Tab. 38: 15N and 13C-chemical shifts of 1repeat in H2O/D2O, pH 3, at 278 K. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1 Ala   51.74   

2 Ala 123.57  52.57 19.12  

3 Asn 118.83 δ 113.34 n.d. 38.48  

4 Ala 125.29  52.58 19.12  

5 Lys 121.04  56.21 32.85 γ 24.75 
δ 29.22 

6 Ala 123.93  52.57 19.12  

7 Ala 123.24  52.58 19.12  

8 Ala 125.89  52.57 19.12  

9 Glu 119.71  55.53 29.16 γ 33.18 

10 Leu 124.18  n.d. 42.36 δ24.94, 
23.21 

11 Thr 117.20  61.79 70.92 γ 21.76 

 

 

Fig. 77: Hα CSD plot of 1repeat at pH 3 and 278 K. The dashed line at y=-0.1 ppm represents the helical 
limit. The scale is different from the other CSD plots. 
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Fig. 78: Cα CSD plot of 1repeat at pH 3 and 278 K. The dashed line at y=0.7 ppm represents the helical limit. 
The scale is different from the other CSD plots. 

 

Antifreeze activity (10 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- No thermal hysteresis 

- No ice shaping 

 

5.4 (jg)IBTC-4 

Sequence   DTAANAKAAAELTDKYAQWLADGGPSSGRPPPK 

Molecular weight  3355.68 g/mol 

Absorption coefficient  ε280= 6990 M-1cm-1 

Peptide amount  0.079 g / 0.023 mmol 

Resin type   with Tc10bKKA preloaded Wang resin 

Resin amount   171 mg 

Capping   acetic anhydride, pyridine, dimethylformamide (1/1/2) 
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 Single Coupling  

HOBT (2 eq, g) 0.009  
DIC (2 eq, mL) 0.010  
HATU (4.9 eq, g) 0.043  
DIPEA (10 eq, mL) 0.040  

Peptide fragment (2 eq, g) 0.080 Capping 

Amino acids (5 eq, g)   

T  Capping 
D  Capping 

 

Yield  8.7 mg (11%) 

 

 

Fig. 79: HPLC profile of the semi-preparative run of (jg)IBTC-4. tR is 46 min. 

 



5 Appendix 

 

110 
 

 

Fig. 80: HPLC profile of a 60 min analytical run (top), ion chromatogram (2nd panel from top) and MS 
spectra of all signals of purified (jg)IBTC-4. m/z: [M+3H]3+ calcd 1119.6, found 1119.9; [M+4H]4+ calcd 839.9, 
found 840.1. tR is 21.8 min. 
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Fig. 81: HPLC profile of the analytical run (top), ion chromatogram (2nd panel from top) and MS spectra of 
all signals of purified (jg)IBTC-4. m/z: [M+3H]3+ calcd 1119.6, found 1119.8; [M+4H]4+ calcd 839.9, found 
840.0. tR is 10.9 min. 
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Fig. 82: UV/vis spectrum of (jg)IBTC-4 at 298 K in 0.1 M NH4HCO3 buffer, pH 7.9. The spectrum was 
measured to 600 nm, displayed only to 350 nm. 

 

 

Fig. 83: UV/vis spectrum of (jg)IBTC-4 at 298 K in water at pH 3. The spectrum was measured to 600 nm, 
displayed only to 350 nm. 
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Fig. 84: CD spectra of (jg)IBTC-4 in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K (black) and 274 K (red). 

 

 

Fig. 85: CD spectra of (jg)IBTC-4 in water, pH 3, at 298 K (black) and 274 K (red). 
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Fig. 86: CD thermal denaturation scans of (jg)IBTC-4 in 0.1 M NH4HCO3 buffer, pH 7.9. The black squares 
show the heating curve, the red circles the cooling curve. The estimated Tm is 10 °C, while the sample 
shows a complete unfolding above 40 °C. 

 

Tab. 39: Helical content of (jg)IBTC-4 at 1 °C and 0.1 M NH4HCO3 buffer, pH 7.9, or water, pH 3. 

 0.1 M NH4HCO3, pH 7.9 pH 3 

[Θ]obs (deg cm2 dmol-1) -5.977 -5.144 

[Θ]ref (deg cm2 dmol-1) -42.424 -42.424 

Helical content (%) 14 12 
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Fig. 87: 1H NMR spectrum of (jg)IBTC-4 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of the 
indole proton region around 10 ppm. 

 

 

Fig. 88: 1H NMR spectrum of (jg)IBTC-4 in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K with enlargement of the 
indole proton region around 10 ppm. 
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Fig. 89: 1H NMR spectrum of (jg)IBTC-4 in H2O/D2O, pH 3, at 274 K with enlargement of the indole proton 
region around 10 ppm. 

 

 

Fig. 90: 1H NMR spectrum of (jg)IBTC-4 in H2O/D2O, pH 3, at 298 K with enlargement of the indole proton 
region around 10 ppm. 
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Tab. 40: 1H-chemical shifts of the folded conformation of (jg)IBTC-4 in H2O/D2O, pH 3, at 274 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp exch. 4.398 2.959   

2‘ Thr 8.900 4.271 4.277 1.272  

3‘ Ala 8.671 4.249 1.445   

4‘ Ala n.d. 4.204 1.417   

5‘ Asn 8.577 4.646 2.878   

6‘ Ala      

7‘ Lys 8.248 4.186 1.887 1.447 δ 1.688 
ε 2.984 
ζ 7.655 

8‘ Ala n.d.     

9‘ Ala n.d.     

10‘ Ala n.d.     

11‘ Glu 8.214 4.228 2.130, 
2.021 

2.487, 
2.407 

 

12‘ Leu 8.028 4.260 1.774, 
1.669 

  

13‘ Thr 8.256 4.118 4.190 1.251  

1 Asp 8.296 4.598 2.902   

2 Lys 8.351 4.194 1.848, 
1.747 

1.454 δ 1.687 
ε 2.981 
ζ 7.728 

3 Tyr n.d. 4.116 3.032  δ 7.098 
ε 6.812 

4 Ala      

5 Gln 8.142 4.213 2.130 2.588, 
2.482 

 

6 Trp 8.022 4.191 3.539, 
3.174 

 δ 7.206 
ε 9.721, 

7.219 
ζ 7.119, 
6.989 

η 7.212 

7 Leu 8.593 3.382 1.838   

8 Ala n.d. 4.102 1.487   

9 Asp 7.762 4.695 3.007, 
2.885 

  

10 Gly 7.648 4.153, 
3.519 

   

11 Gly 8.181 2.972, 
1.197 

   

12 Pro  4.572 2.485 2.119 δ 4.345, 
4.257 

13 Ser 7.855 4.466 3.930   

14 Ser 8.179 4.181 3.892   

15 Gly 8.055 4.261, 
3.849 

   

16 Arg 8.143 4.939 1.663 1.474, δ 3.177 
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1.371 ε 7.237 

17 Pro  4.712 2.340, 
1.989 

2.042 δ 3.727 

18 Pro  n.d. 1.531, 
0.908 

1.678, 
1.588 

δ 3.707, 
3.511 

19 Pro  4.417 2.291, 
2.021 

1.971 δ 3.809, 
3.604 

20 Lys 8.160 4.136 1.865  δ 1.686 
ε 2.926 
ζ 7.586 

 

Tab. 41: 15N and 13C-chemical shifts of the folded conformation of (jg)IBTC-4 in H2O/D2O, pH 3, at 274 K. 
Shifts marked with an asterix are averaged. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1‘ Asp n.d.  52.79 39.50  

2‘ Thr 115.92  63.11 69.62 γ 21.79 

3‘ Ala 126.49  53.98 18.43  

4‘ Ala n.d.  54.04 18.89  

5‘ Asn 125.90  53.46 38.10  

6‘ Ala n.d.  53.91 * 18.45 *  

7‘ Lys 120.69 62.43 57.97 32.58 γ 24.88 
δ 29.18 
ε 42.01 

8‘ Ala n.d.  53.91 * 18.45 *  

9‘ Ala n.d.  53.91 * 18.45 *  

10‘ Ala n.d.  53.91 * 18.45 *  

11‘ Glu 118.85  56.65 28.85 γ 33.82 

12‘ Leu 121.50  56.54 42.19  

13‘ Thr 115.81  63.96 n.d. γ 21.67 

1 Asp 118.26  54.07 39.50  

2 Lys n.d. 62.06 56.75 33.11 γ 24.87 
δ 29.18 
ε 42.01 

3 Tyr n.d.  64.03 38.54 δ 133.08 
ε 118.20 

4 Ala n.d.  53.91 * 18.45 *  

5 Gln 118.26  56.75 28.59 γ 33.29 

6 Trp 121.30 131.43 58.07 41.24 δ 127.22 
ε 120.79 
ζ122.18, 
114.15 

η 124.38 

7 Leu 119.77  57.78 42.07  

8 Ala n.d.  54.04 18.31  

9 Asp 116.55  53.09 38.10  

10 Gly 106.52  49.90   

11 Gly 112.51  42.01   

12 Pro n.d.  n.d. 33.33 γ 27.30 
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δ 52.91 

13 Ser 113.34  58.43 63.83  

14 Ser 121.34  57.97 63.78  

15 Gly 109.98  44.95   

16 Arg 120.12 114.44 n.d. 29.18 γ 24.87 
δ 43.27 

17 Pro n.d.  n.d. 30.64 γ 27.30 
δ 50.27 

18 Pro n.d.  n.d. 27.72 γ26.78 
δ 50.27 

19 Pro n.d.  63.05 32.09 γ 27.30 
δ 50.40 

20 Lys 120.35 62.11 56.82 32.69 δ 29.18 
ε 42.01 

 

Tab. 42: 1H-chemical shifts of the folded conformation of (jg)IBTC-4 in H2O/D2O, pH 3, at 298 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp exch. 4.394 2.919   

2‘ Thr 8.723 4.328 4.163 1.268  

3‘ Ala 8.463 4.285 1.431   

4‘ Ala      

5‘ Asn 8.378 4.623 2.810   

6‘ Ala      

7‘ Lys 8.104 4.219 1.833 1.432 δ 1.704 
ε2.989 
ζ 7.552 

8‘ Ala n.d.     

9‘ Ala n.d.     

10‘ Ala n.d.     

11‘ Glu 8.127 4.143 2.013 6.181  

12‘ Leu 7.952 4.166 1.791, 
1.682 

  

13‘ Thr 8.085 4.078 4.242 1.265  

1 Asp 8.214 4.639 2.867   

2 Lys 8.063 4.219 1.833 1.432 δ 1.682 
ε 2.936 
ζ 7.507 

3 Tyr 8.525 4.192 3.166, 
3.050 

 δ 7.058, 
6.810 

4 Ala      

5 Gln 8.101 4.106 2.058 2.457, 
2.332 

 

6 Trp 7.991 4.270 3.345, 
3.236 

 δ 7.204 
ε 10.132 
ζ 7.460, 
6.943 

η 7.109 

7 Leu 8.395 3.492 1.774   
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8 Ala  4.109 1.467   

9 Asp 7.760 4.714 3.022, 
2.862 

  

10 Gly 7.687 4.116, 
3.598 

   

11 Gly 8.110 3.076, 
1.841 

   

12 Pro  4.423 2.258 1.978 δ 3.769, 
3.588 

13 Ser 7.994 4.486 3.888   

14 Ser 8.094 4.236 4.007, 
3.864 

  

15 Gly 8.010 4.217, 
3.806 

   

16 Arg 8.064 4.895 1.909, 
1.817 

1.724, 
1.695 

δ 3.259 
ε 7.361 

17 Pro  4.677 2.302 2.018 δ 3.800 

18 Pro  3.492 1.569 1.643, 
1.408 

δ 3.669 

19 Pro  4.207 1.831, 
1.689 

1.676 δ 3.182, 
2.993 

20 Lys 8.166 4.219 1.834 1.432 δ 1.684 
ε2.991 
ζ 7.598 

 

Tab. 43: 15N and 13C-chemical shifts of the folded conformation of (jg)IBTC-4 in H2O/D2O, pH 3, at 298 K. 
Shifts marked with an asterix are averaged. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1‘ Asp n.d.  53.15 39.26  

2‘ Thr 115.60  62.57 69.58 γ 21.71 

3‘ Ala 126.65  53.29 18.82  

4‘ Ala n.d.  53.28 * 18.80 *  

5‘ Asn 122.06  n.d. 38.67  

6‘ Ala n.d.  53.28 * 18.80 *  

7‘ Lys 121.98 62.45 56.96 32.81 γ 24.82 
δ 29.12 
ε 39.10 

8‘ Ala n.d.  53.28 * 18.80 *  

9‘ Ala n.d.  53.28 * 18.80 *  

10‘ Ala n.d.  53.28 * 18.80 *  

11‘ Glu 122.08  58.28 28.62 γ 33.84 

12‘ Leu 121.16  57.39 42.32  

13‘ Thr 118.13  n.d. 69.74 γ 21.71 

1 Asp 117.39  n.d. 38.67  

2 Lys 121.96 61.99 56.96 32.81 γ 24.82 
δ 29.12 
ε 38.60 

3 Tyr 123.61  62.55 38.50 δ 133.04 



5 Appendix 

 

121 
 

ε 118.26 

4 Ala n.d.  53.28 * 18.80 *  

5 Gln 118.67  57.72 28.86 γ 33.39 

6 Trp 121.36 129.51 56.44 28.96 δ 127.10 
ζ 114.64, 
122.29 

η 124.42 

7 Leu 120.17  57.57 42.35  

8 Ala n.d.  53.96 18.36  

9 Asp 116.27  n.d. 42.09  

10 Gly 106.85  45.35   

11 Gly 111.59  43.59   

12 Pro n.d.  63.38 31.68 γ 27.23 
δ 50.28 

13 Ser 113.36  58.48 63.80  

14 Ser 116.73  57.04 63.87  

15 Gly 108.61  45.41   

16 Arg 120.30 114.9 n.d. 30.93 γ 26.76 
δ 43.43 

17 Pro n.d.  n.d. 31.14 γ 27.19 
δ 50.62 

18 Pro n.d.  57.57 28.90 γ 26.76 
δ 50.55 

19 Pro n.d.  62.72 30.80 γ 26.76 
δ 50.55 

20 Lys 120.00 61.88 56.96 32.81 γ 24.82 
δ 29.12 
ε 38.46 

 

 

Fig. 91: Hα CSD plots of the folded conformation of (jg)IBTC-4 at pH 3 and 274 K (red circles) and 298 K 
(black squares). The dashed line at y=-0.1 ppm represents the helical limit. 
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Fig. 92: Cα CSD plots of the folded conformation of (jg)IBTC-4 at pH 3 and 274 K (red circles) and 298 K 
(black squares). The dashed line at y=0.7 ppm represents the helical limit. 

 

Tab. 44: CSDs for selected protons of the cage structure representing the cage fold of (jg)IBTC-4 at pH 3 and 
274 K and 298 K, given the fraction folded according to Lin. 75 

χTrp-cage ∆ẟ (ppm) Σ 

 L7α G11α’ P18α Pro18β’ P19δ P19δ’  

pH 3, 

274 K 

-0.968 -2.823 -1.360 -1.382 0.219 -0.136 -6.449 

pH 3, 

298 K 

-0.858 -2.179 -1.238  -0.408 0.747  

 

Tab. 45: CSDs for selected protons in the helical region representing the helix fold of (jg)IBTC-4 at pH 3 and 
274 K and 298 K. 

χHelix ∆ẟ (ppm) Σ 

 K2α Y3α A4α Q5α W6α L7α A8α  

pH 3, 

274 K 

-0.126 -0.434  -0.127 -0.470 -0.958 -0.218  

pH 3, 

298 K 

-0.101 -0.358  -0.234 -0.390 -0.849 -0.211  
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Antifreeze activity (80 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Ice growth retardation: 0.040 °C 

- ice shaping 

 

 

Fig. 93: Ice growth retardation plot of 80 mg/mL (jg)IBTC-4 in 0.1 M NH4HCO3, pH 7.9. The growth 
retardation is 0.040 °C. 

 

 

Fig. 94: Ice crystals during the growth in the presence of 80 mg/mL (jg)IBTC-4 in 0.1 M NH4HCO3, pH 7.9. 
Left the top view shows the view perpendicular to the basal plane, while on the right the side view of the 
crystal is shown. The black scale in each picture is 10 µm long. 
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5.5 SUMO Protease 

Sequence METGSSHHHH HHSSGLVPRG SHMETDLLEL TEDMETEKEI 

SNALGHGPQD EILSSAFKLR ITRGDIQTLK NYHWLNDEVI 

NFYMETNLLV ERNKKQGYPA LHVFSTFFYP KLKSGGYQAV 

KRWTKGVNLF EQEIILVPIH RKVHWSLVVI DLRKKCLKYL 

DSMETGQKGH RICEILLQYL QDESKTKRNS DLNLLEWTHH 

SMETKPHEIP QQLNGSDCGM ETFTCKYADY ISRDKPITFT 

QHQMETPLFR KKMETVWEIL HQQLL 

Molecular weight  31111.52 Da 

Absorption coefficient  ε280= 41160 M-1cm-1 

Yield 2 mg/ L LB medium (500 µL aliquots of 0.89 mg/mL (28.6 µM) 

stored at -80 °C) 

 

 

Fig. 95: Profile of the affinity purification of SUMO protease. The signal was detected at 280 nm (blue) and 
254 nm (red). The gradient of the elution buffer is shown in black. With the injection at 0 mL the 
chromatogram starts. Fractions that were combined and collected are marked in blue. 
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Fig. 96: : Profile of the desalting of SUMO protease. The signal was detected at 280 nm (blue) and 254 nm 
(red). Fractions that were combined and collected are marked in blue. 

 

5.6 (jg)IBTC-1 

Sequence DTASDAAAYAAWTADGGPSSGRPPPSGS 

Molecular weight  2620.68 Da 

Absorption coefficient  ε280= 6990 M-1cm-1 

Yield    1.6 mg/ L LB medium 

 

Fig. 97: Profile of the affinity purification of (jg)SUMO-IBTC-1. The signal was detected at 280 nm (blue) and 
254 nm (red). The gradient of the elution buffer is shown in black. With the injection at 0 mL the 
chromatogram starts. Fractions that were combined and collected are marked in blue. 
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Fig. 98: Profile of the rebuffering of (jg)SUMO-IBTC-1. The signal was detected at 280 nm (blue) and 254 nm 
(red). Fractions that were combined and collected are marked in blue. 

 

 

Fig. 99: Profile of the affinity purification of (jg)IBTC-1. The signal was detected at 280 nm (blue) and 
254 nm (red). The gradient of the elution buffer is shown in black. The injections are dashed pink lines. 
Fractions which were collected and combined are marked in blue. 

 

 

Fig. 100: HPLC profile of the semi-preparative run of (jg)IBTC-1. tR is 46 min. 
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Fig. 101: HPLC profile of the analytical run (top), ion chromatogram (2nd panel from top) and MS spectra of 
all signals of purified (jg)IBTC-1. m/z: [M+2H]2+ calcd 1311, found 1310.5. tR is 10.9 min. 

 

 

Fig. 102: UV/vis spectrum of (jg)IBTC-1 at 298 K in 0.1 M NH4HCO3 buffer, pH 7.9. The spectrum was 
measured to 600 nm, displayed only to 350 nm. 
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Fig. 103: UV/vis spectrum of (jg)IBTC-1 at 298 K in water at pH 3. The spectrum was measured to 600 nm, 
displayed only to 350 nm. 

 

 

Fig. 104: CD spectra of (jg)IBTC-1 in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K (black) and 274 K (red). 
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Fig. 105: CD spectra of (jg)IBTC-1 in water, pH 3, at 298 K (black) and 274 K (red). 

 

 

Fig. 106: CD thermal denaturation scan of (jg)IBTC-1 in 0.1 M NH4HCO3 buffer, pH 7.9. The black squares 
show the heating curve, the red circles the cooling curve. The estimated Tm is 12 °C, while the sample 
shows a complete unfolding above 40 °C. 

 

Tab. 46: Helical content of (jg)IBTC-1 at 1 °C and 0.1 M NH4HCO3 buffer, pH 7.9, or water, pH 3. 

 0.1 M NH4HCO3, pH 7.9 pH 3 

[Θ]obs (deg cm2 dmol-1) -14.871 -18.051 

[Θ]ref (deg cm2 dmol-1) -42.188 -42.188 

Helical content (%) 35 43 
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Fig. 107: 1H NMR spectrum of (jg)IBTC-1 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of the 
indole proton region around 10 ppm. 

 

 

Fig. 108: 1H NMR spectrum of (jg)IBTC-1 in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K with enlargement of the 
indole proton region around 10 ppm. 
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Fig. 109: 1H NMR spectrum of (jg)IBTC-1 in H2O/D2O, pH 3, at 274 K with enlargement of the indole proton 
region around 10 ppm. 

 

 

Fig. 110: 1H NMR spectrum of (jg)IBTC-1 in H2O/D2O, pH 3, at 298 K with enlargement of the indole proton 
region around 10 ppm. 
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Tab. 47: 1H-chemical shifts of (jg)IBTC-1 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K. Residues marked in italic 
belong to the second folded conformation. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp n.d.     

2‘ Thr 8.624 4.228 n.d. 1.444  

3‘ Ala 8.431 4.286 1.474   

4‘ Ser 8.796 4.336 4.048, 
3.938 

  

5‘ Asp 8.546 4.546 2.849, 
2.749 

  

6‘ Ala 8.334 4.338 1.580   

1 Ala 8.317 4.338 1.485   

2 Ala 8.277 4.323 1.554   

3 Tyr 8.544 4.119 3.193  δ7.119 
ε6.799 

 Tyr 8.510 4.145 3.156   

4 Ala 8.518 4.309 1.599   

5 Ala 8.152 4.230 1.535   

6 Trp 7.964 4.289 3.431, 
3.207 

 δ7.022 
ε9.727, 
7.091 

ζ 7.198, 
7.096 

η 7.200 

 Trp 7.999 4.320 3.409, 
3.218 

  

7 Thr 8.639 3.250 4.266 1.172  

8 Ala 8.341 4.101 1.502   

9 Asp 7.626 4.632 2.853, 
2.680 

  

 Asp 7.120 4.616 2.835, 
2.671 

  

10 Gly 7.609 4.140, 
3.507 

   

 Gly 7.699 4.099, 
3.553 

   

11 Gly 8.237 3.213, 
0.972 

   

12 Pro  4.617 2.501, 
2.064 

2.153 δ 3.803, 
3.528 

13 Ser 7.848 4.490 3.926   

14 Ser 8.269 4.173 3.865   

15 Gly 8.073 4.228, 
3.804 

   

16 Arg 8.196 4.998 1.8042, 
1.787 

1.645  

17 Pro  4.740 2.333, 
1.787 

1.992 δ 3.856, 
3.659 

18 Pro  2.623 1.332, 1.693 δ3.520 
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0.476  

19 Pro  4.295 2.221, 
1.975 

1.903, 
1.801 

δ3.113, 
2.909 

20 Ser 8.397 4.356 3.823   

21 Gly 8.540 3.962    

22 Ser 8.117 4.228 3.800   

 

Tab. 48: 15N and 13C-chemical shifts of (jg)IBTC-1 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1‘ Asp n.d.  n.d.   

2‘ Thr 116.41  n.d.   

3‘ Ala 124.78  54.80 17.91  

4‘ Ser 117.79  61.16 62.20  

5‘ Asp 125.71  56.69 40.47  

6‘ Ala 124.43  54.80 17.76  

1 Ala 122.89  54.80 17.77  

2 Ala 122.74  54.80 17.77  

3 Tyr 122.46  62.44 38.27 δ 132.95 
ε 118.42 

4 Ala 123.19  54.80 17.76  

5 Ala 122.40  54.52 17.77  

6 Trp 120.75 131.59 62.45 28.18 δ 127.47 
ε 120.78 
ζ 122.53, 
114.16 

η 123.84 

7 Thr 116.41  66.28 68.83 γ 21.53 

8 Ala 126.41  54.78 17.77  

9 Asp 117.55  54.35 41.28  

10 Gly 106.10  49.70   

11 Gly 113.77  43.42   

12 Pro n.d.  64.69 31.87 γ 27.37 
δ 51.10 

13 Ser 113.39  59.18 63.00  

14 Ser 117.62  60.13 63.98  

15 Gly 110.02  45.05   

16 Arg 120.00  n.d. 27.05 γ 26.83 

17 Pro n.d.  n.d. 30.58 γ 27.11 
δ 50.63 

18 Pro n.d.  n.d. 29.15 γ 26.69 
δ 49.70 

19 Pro n.d.  62.50 31.71 γ 27.22 
δ 49.52 

20 Ser 115.62  58.40 63.98  

21 Gly 111.43  45.96   

22 Ser 121.71  59.96 64.71  
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Tab. 49: 1H-chemical shifts of (jg)IBTC-1 in H2O/D2O, pH 3, at 274 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp exch. 4.322 2.973   

2‘ Thr 8.719 4.115 4.180 1.288  

3‘ Ala 8.478 4.277 1.470   

4‘ Ser 8.829 4.334 4.051, 
3.934 

  

5‘ Asp 8.501 4.588 2.925, 
2.824 

  

6‘ Ala 8.330 4.333 1.577   

1 Ala 8.313 4.333 1.554   

2 Ala 8.319 4.333 1.559   

3 Tyr 8.594 4.103 3.188, 
3.185 

 δ7.128 
ε6.801 

4 Ala 8.534 4.311 1.607   

5 Ala 8.146 4.221 1.535   

6 Trp 7.994 4.265 3.458, 
3.207 

 δ7.041 
ε9.678, 
7.208 

ζ 7.107 

7 Thr 8.708 3.219 4.274 1.180  

8 Ala 8.316 4.138 1.496   

9 Asp 7.600 4.729 3.002, 
2.826 

  

10 Gly 7.612 4.146, 
3.520 

   

11 Gly 8.118 3.084, 
1.035 

   

12 Pro  4.591 2.507, 
2.057 

2.140, 
2.134 

δ 3.765, 
3.431 

13 Ser 7.852 4.465 3.925   

14 Ser 8.222 4.206 3.891, 
3.595 

  

15 Gly 8.049 4.250, 
3.830 

   

16 Arg 8.147 4.933 1.862, 
1.751 

1.669 δ3.264 
ε7.532 

17 Pro  4.714 2.303, 
1.785 

1.996 δ 3.860, 
3.657 

18 Pro  2.600 1.542, 
0.497 

1.709, 
1.687 

δ3.494, 
3.032 

19 Pro  4.291 2.219, 
1.960 

1.866, 
1.789 

δ3.069, 
2.862 

20 Ser 8.415 4.342 3.837, 
3.803 

  

21 Gly 8.551 3.947    

22 Ser 8.150 4.281 3.805, 
3.805 
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Tab. 50: 15N and 13C-chemical shifts of (jg)IBTC-1 in H2O/D2O, pH 3, at 274 K. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1‘ Asp n.d.  55.42 38.93  

2‘ Thr 115.64  65.23 69.31 γ21.90 

3‘ Ala 124.77  54.78 17.93  

4‘ Ser 117.57  60.83 62.93  

5‘ Asp 125.36  57.44 38.81  

6‘ Ala 122.78  54.79 17.67  

1 Ala 122.69  54.79 17.77  

2 Ala 124.41  54.79 17.69  

3 Tyr 122.62  n.d. 38.13 δ 132.96 
ε 118.56 

4 Ala 122.98  54.87 17.67  

5 Ala 122.32  54.53 17.85  

6 Trp 120.80 131.57 61.60 n.d. δ 127.55 
ε 123.99 
ζ 122.69, 
113.95 

7 Thr 116.68  66.58 68.91 γ 21.58 

8 Ala 125.90  54.52 17.73  

9 Asp 116.33  n.d. 39.48  

10 Gly 106.17  49.63   

11 Gly 112.93  43.41   

12 Pro n.d.  n.d. 31.77 γ 27.63 
δ 51.33 

13 Ser 113.50  n.d. 62.78  

14 Ser 117.37  58.70 62.02  

15 Gly 109.98  45.62   

16 Arg 120.19 114.78 n.d. 27.14 γ 26.82 
δ 43.18 

17 Pro n.d.  n.d. 30.38 γ 27.16 
δ 50.70 

18 Pro n.d.  n.d. n.d. γ 26.95 
δ 49.94 

19 Pro n.d.  62.00 31.72 γ 27.16 

20 Ser 115.73  58.16 64.48  

21 Gly 111.57  45.20   

22 Ser 120.16  59.26 64.48  
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Tab. 51: 1H-chemical shifts of (jg)IBTC-1 in H2O/D2O, pH 3, at 298 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp exch. 4.345 2.981   

2‘ Thr 8.645 4.237 4.169 1.262  

3‘ Ala 8.375 4.297 1.446   

4‘ Ser 8.467 4.354 3.981, 
3.889 

  

5‘ Asp 8.323 4.619 2.841, 
2.833 

  

6‘ Ala 8.201 4.267 1.493   

1 Ala 8.149 4.271 1.468   

2 Ala 8.023 4.211 1.468   

3 Tyr 8.291 4.229 3.147, 
3.134 

 δ7.105 
ε6.805 

4 Ala 8.271 4.244 1.492   

5 Ala 8.201 4.267 1.493   

6 Trp 7.979 4.391 3.397, 
3.245 

 δ7.109 
ε9.817, 
7.292 

ζ 7.350, 
7.117 

η 7.214 

7 Thr 8.320 3.557 4.200 1.429  

8 Ala 8.138 4.139 1.450   

9 Asp 7.785 4.699 2.929, 
2.792 

  

10 Gly 7.771 4.068, 
3.665 

   

11 Gly 8.062 3.360, 
2.1339 

   

12 Pro  4.513 2.411, 
2.015 

2.073 δ 3.684, 
3.419 

13 Ser 8.008 4.450 3.902, 
3.896 

  

14 Ser 8.168 4.288 3.903, 
3.702 

  

15 Gly 8.087 4.129, 
3.874 

   

16 Arg 8.053 4.572 1.863, 
1.773 

1.677 δ3.226 
ε7.309 

17 Pro  4.682 2.285, 
1.815 

1.990 δ 3.822, 
3.612 

18 Pro  3.384 1.526, 
1.213 

1.801, 
1.202 

δ3.604, 
3.504 

19 Pro  4.331 2.234, 
1.919 

1.867 δ3.286, 
3.112 

20 Ser 8.278 4.385 3.839, 
3.817 

  

21 Gly 8.409 3.976,    
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3.970 

22 Ser 7.972 4.308 3.823, 
3.817 

  

 

Tab. 52: 15N and 13C-chemical shifts of (jg)IBTC-1 in H2O/D2O, pH 3, at 298 K. 

Residue Chemical shift ẟ (ppm) 

  N  Cα Cβ  

1‘ Asp n.d.  52.67 37.95  

2‘ Thr 115.27  63.52 69.53 γ21.78 

3‘ Ala 125.67  54.19 18.18  

4‘ Ser 115.86  59.78 62.82  

5‘ Asp 123.27  n.d. 39.32  

6‘ Ala 122.34  54.19 17.88  

1 Ala 122.42  53.97 18.43  

2 Ala 122.08  53.94 18.51  

3 Tyr 120.75  60.76 38.20 δ 132.95 
ε 118.44 

4 Ala 123.78  54.02 18.16  

5 Ala 124.09  54.19 17.91  

6 Trp 122.26 130.72 58.19 28.51 δ 127.34 
ε 120.94 
ζ 122.33, 
114.41 

η 124.20 

7 Thr 115.59  64.91 69.34 γ18.43 

8 Ala 125.70  53.97 18.46  

9 Asp 116.60  n.d. 39.20  

10 Gly 107.15  44.83   

11 Gly 111.24  n.d.   

12 Pro n.d.  73.00 32.24 γ 27.36 
δ 50.70 

13 Ser 114.22  n.d. 63.23  

14 Ser 117.19  59.55 64.51  

15 Gly 109.92  45.53   

16 Arg 120.55 114.85 n.d. 30.56 γ 27.03 
δ 43.45 

17 Pro n.d.  n.d. 30.36 γ 27.19 
δ 50.94 

18 Pro n.d.  60.65 29.72 γ 27.06 
δ 50.15 

19 Pro n.d.  59.91 31.70 γ 27.32 
δ 49.90 

20 Ser 115.66  60.14 64.42  

21 Gly 111.31  45.31   

22 Ser 120.19  59.48 64.42  
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Fig. 111: Hα CSD plots of (jg)IBTC-1 at 274 K and 0.1 M NH4HCO3, pH 7.9, (red circles) and H2O/D2O, pH 3, 
(black squares). The dashed line at y=-0.1 ppm represents the helical limit. 

 

 

Fig. 112: Cα CSD plots of (jg)IBTC-1 at 274 K and 0.1 M NH4HCO3, pH 7.9, (red circles) and H2O/D2O, pH 3, 
(black squares). The dashed line at y=0.7 ppm represents the helical limit. 
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Fig. 113: Hα CSD plots of (jg)IBTC-1 at pH 3 and 274 K (red circles) and 298 K (black squares). The dashed 
line at y=-0.1 ppm represents the helical limit. 

 

 

Fig. 114: Cα CSD plots of (jg)IBTC-1 at pH 3 and 274 K (red circles) and 298 K (black squares). The dashed 
line at y=0.7 ppm represents the helical limit. 

 

  



5 Appendix 

 

140 
 

Tab. 53: CSDs for selected protons of the cage structure representing the cage fold of (jg)IBTC-1 at pH 3 and 
pH 7.9 and 274 K and 298 K, given the fraction folded according to Lin et al.75 

χTrp-cage ∆ẟ (ppm) Σ 

 T7α G11α’ P18α Pro18β’ P19δ P19δ’  

pH 7.9, 274 K -1.100 -3.048 -2.107 -1.814 -0.477 -0.831 -9.377 

pH 3, 274 K -1.131 -2.985 -2.130 -1.793 -0.521 -0.878 -9.439 

pH 3, 298 K -0.793 -1.886 -1.346 -1.077 -0.304 -0.628 -6.034 

 

Tab. 54: CSDs for selected protons in the helical region representing the helix fold of (jg)IBTC-1 at pH 3 and 
pH 7.9 and 274 K and 298 K. 

χHelix ∆ẟ (ppm) Σ 

 A2α Y3α A4α A5α W6α T7α A8α  

pH 7.9, 274 K 0.003 -0.431 -0.011 -0.090 -0.371 -1.100 -0.219 -2.219 

pH 3, 274 K 0.013 -0.447 -0.009 -0.099 -0.396 -1.131 -0.182 -2.251 

pH 3, 298 K -0.109 -0.321 -0.076 -0.053 -0.270 -0.793 -0.181 -1.803 

 

Antifreeze activity (80 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Ice growth retardation: 0.039 °C 

- ice shaping 
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Fig. 115: Ice growth retardation plot of 80 mg/mL (jg)IBTC-1 in 0.1 M NH4HCO3, pH 7.9. The growth 
retardation is 0.039 °C. 

 

 

Fig. 116: Ice crystals during the growth in the presence of 80 mg/mL (jg)IBTC-1 in 0.1 M NH4HCO3, pH 7.9. 
Left the top view shows the view perpendicular to the basal plane, while on the right the side view of the 
crystal is shown. The black scale in each picture is 10 µm long. 
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5.7 (jg)IBTC-2 

Sequence DTASDAAAAAALTAANAAAYAAWTADGGPSSGRPPPSGS 

Molecular weight  3517.68 Da 

Absorption coefficient  ε280= 6990 M-1cm-1 

Yield    1.0 mg/ L LB medium 

    0.5 mg/ L minimal medium 

 

 

Fig. 117: Profile of the affinity purification of (jg)SUMO-IBTC-2. The signal was detected at 280 nm (blue) 
and 254 nm (red). The gradient of the elution buffer is shown in black. With the injection at 0 mL the 
chromatogram starts. Fractions that were combined and collected are marked in blue. 
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Fig. 118: Profile of the rebuffering of (jg)SUMO-IBTC-2. The signal was detected at 280 nm (blue) and 
254 nm (red). Fractions that were combined and collected are marked in blue. 

 

 

Fig. 119: Profile of the affinity purification of (jg)IBTC-2. The signal was detected at 280 nm (blue) and 
254 nm (red). The gradient of the elution buffer is shown in black. The injections are dashed pink lines. 
Fractions which were collected and combined are marked in blue. 
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Fig. 120: HPLC profile of the semi-preparative run of (jg)IBTC-2. tR is 47 min. 

 

 

Fig. 121: HPLC profile of the analytical run (top), ion chromatogram (2nd panel from top) and MS spectra of 
all signals of purified (jg)IBTC-2. m/z: [M+3H]3+ calcd 1173.6, found 1172.9. tR is 12.2 min. 
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Fig. 122: and ion chromatograms of all signals of purified 15N labeled (jg)IBTC-2. m/z: [M+3H]3+ calcd 
1188.2, found 1189.7. tR is 12.2 min. 

 

 

Fig. 123: UV/vis spectrum of (jg)IBTC-2 at 298 K in 0.1 M NH4HCO3 buffer, pH 7.9. The spectrum was 
measured to 600 nm, displayed only to 350 nm. 
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Fig. 124: UV/vis spectrum of (jg)IBTC-2 at 298 K in water at pH 3. The spectrum was measured to 600 nm, 
displayed only to 350 nm. 

 

 

Fig. 125: CD spectra of (jg)IBTC-2 in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K (black) and 274 K (red). 
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Fig. 126: CD spectra of (jg)IBTC-2 in water, pH 3, at 274 K. 

 

 

Fig. 127: CD thermal denaturation scan of (jg)IBTC-2 in 0.1 M NH4HCO3 buffer, pH 7.9. The black squares 
show the heating curve, the red circles the cooling curve. 

 

Tabelle 55: Calculated melting points for (jg)IBTC-2 in 0.1 M NH4HCO3 buffer, pH 7.9. 

 heating cooling 

Boltzmann fit 20.5 ±0.5 19.0 ±0.5 
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Tab. 56: Helical content of (jg)IBTC-2 at 1 °C and 0.1 M NH4HCO3 buffer, pH 7.9, or water, pH 3. 

 0.1 M NH4HCO3, pH 7.9 pH 3 

[Θ]obs (deg cm2 dmol-1) -34.195 -24.099 

[Θ]ref (deg cm2 dmol-1) -42.628 -42.628 

Helical content (%) 80 57 

 

 

Fig. 128: 1H NMR spectrum of (jg)IBTC-2 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of the 
indole proton region around 10 ppm. 
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Fig. 129: 1H NMR spectrum of (jg)IBTC-2 in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K with enlargement of the 
indole proton region around 10 ppm. 

 

 

Fig. 130: 1H NMR spectrum of (jg)IBTC-2 in H2O/D2O, pH 3, at 274 K with enlargement of the indole proton 
region around 10 ppm. 
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Fig. 131: 1H NMR spectrum of (jg)IBTC-2 in H2O/D2O, pH 3, at 298 K with enlargement of the indole proton 
region around 10 ppm. 

 

Tab. 57: 1H-chemical shifts of (jg)IBTC-2 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp n.d.     

2‘ Thr n.d.     

3‘ Ala n.d.     

4‘ Ser n.d.     

5‘ Asp n.d.     

6‘ Ala n.d.     

7‘ Ala n.d.     

8‘ Ala n.d.     

9‘ Ala n.d.     

10‘ Ala n.d.     

11‘ Ala n.d.  1.538   

12‘ Leu 7.972 4.304 1.877, 
1.739 

  

13‘ Thr 8.289 4.018 4.264 1.289  

14‘ Ala 8.153 4.243 1.537   

15‘ Ala n.d. 4.295 1.581   

16‘ Asn 8.724 4.627 2.959, 
2.860 

  

17‘ Ala 8.328 4.358 1.600   

1 Ala      

2 Ala 8.353 4.347 1.590   

3 Tyr 8.652 4.100 3.220  δ7.123 
ε6.800 

4 Ala 8.523 4.322 1.621   
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5 Ala n.d.     

6 Trp 7.981 4.229 3.454, 
3.209 

 δ7.009 
ε 9.723, 

7.093 
ζ 7.188, 
7.116 

η7.205 

7 Thr 8.688 3.220 4.284 1.193  

8 Ala 8.336 4.252 1.512   

9 Asp 7.617 4.637 2.870, 
2.680 

  

10 Gly 7.583 4.156, 
3.491 

   

11 Gly 8.259 3.190, 
0.831 

   

12 Pro  4.633 2.528, 
2.074 

2.165 δ3.821, 
3.540 

13 Ser n.d.     

14 Ser 8.241 4.257 4.022   

15 Gly 7.989 4.230, 
3.781 

   

16 Arg 8.195 5.041 1.900, 
1.815 

  

17 Pro  4.761 2.345, 
1.790 

2.000 δ3.870, 
3.672 

18 Pro  2.534 1.298, 
0.349 

1.675 δ3.600, 
3.546 

119 Pro  4.303 2.229, 
1.976 

1.866, 
1.799 

δ3.086, 
2.849 

20 Ser n.d.     

21 Gly n.d.     

22 Ser 8.052 4.291 3.822   
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Tab. 58: 15N and 13C-chemical shifts of (jg)IBTC-2 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K. Shifts marked 
with an asterix are averaged. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1‘ Asp n.d.  n.d.   

2‘ Thr n.d.  n.d.   

3‘ Ala n.d.  54.73* 17.67*  

4‘ Ser n.d.  n.d.   

5‘ Asp n.d.  n.d.   

6‘ Ala n.d.  54.73* 17.67*  

7‘ Ala n.d.  54.73* 17.67*  

8‘ Ala n.d.  54.73* 17.67*  

9‘ Ala n.d.  54.73* 17.67*  

10‘ Ala n.d.  54.73* 17.67*  

11‘ Ala n.d.  54.73* 17.76  

12‘ Leu 122.38  58.49 41.53  

13‘ Thr 116.89  66.25 68.73 γ 21.78 

14‘ Ala 122.32  54.75 17.75  

15‘ Ala n.d.  54.86 17.70  

16‘ Asn 119.72  55.05 37.29  

17‘ Ala 122.78  54.95 17.72  

1 Ala n.d.  54.73* 17.67*  

2 Ala 122.78  54.86 17.65  

3 Tyr n.d.  62.58 38.07 δ 132.86 
ε 118.47 

4 Ala 123.08  54.93 17.72  

5 Ala n.d.  54.73* 17.67*  

6 Trp 120.67 131.61 60.01  δ 127.50 
ε 121.98 
η 123.63 
ζ 114.01, 
122.79 

7 Thr 116.44  66.73 69.06 γ 21.51 

8 Ala 124.56  54.82 17.76  

9 Asp 117.58  54.60 41.40  

10 Gly n.d.  49.49   

11 Gly n.d.  43.52   

12 Pro n.d.  n.d. 31.77 γ 27.31 
δ 49.82 

13 Ser n.d.  n.d.   

14 Ser n.d.  60.45 62.05  

15 Gly n.d.  n.d.   

16 Arg 119.83  n.d. 30.30  

17 Pro n.d.  n.d. 30.47 γ 27.04 
δ 50.70 

18 Pro n.d.  n.d.  γ 26.72 
δ 50.07 

119 Pro n.d.  62.41 31.73 γ 26.96 
δ 49.37 

20 Ser n.d.  n.d.   
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21 Gly n.d.  n.d.   

22 Ser n.d.  58.23 64.00  

 

Tab. 59: 1H-chemical shifts of (jg)IBTC-2 in H2O/D2O, pH 3, at 274 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp exch. 4.319 n.d.   

2‘ Thr 8.736 4.117 4.192 1.298  

3‘ Ala 8.510 4.275 1.468   

4‘ Ser 8.833 4.333 4.045, 
3.937 

  

5‘ Asp 8.510 4.549 2.934, 
2.807 

  

6‘ Ala 8.343 4.276 1.535   

7‘ Ala n.d.     

8‘ Ala n.d.     

9‘ Ala n.d.     

10‘ Ala n.d.     

11‘ Ala 8.139 4.248 1.535   

12‘ Leu 7.969 4.304 1.880, 
1.726 

  

13‘ Thr 8.289 4.009 4.265 1.292  

14‘ Ala 8.152 4.374 1.535   

15‘ Ala 8.431 4.300 1.577   

16‘ Asn 8.734 4.620 2.959, 
2.863 

 δ 7.707, 
7.572 

17‘ Ala 8.330 4.351 1.601   

1 Ala n.d.     

2 Ala 8.349 4.352 1.609   

3 Tyr 8.649 4.100 3.214  δ 7.130 
ε 6.803 

4 Ala 8.530 4.309 1.623   

5 Ala 8.176 4.215 1.534   

6 Trp 8.007 4.254 3.475, 
3.214 

 δ7.041 
ε 9.615 
ζ 7.213, 
6.953 

η 7.111 

7 Thr 8.734 3.204 4.278 1.187  

8 Ala 8.310 4.147 1.500   

9 Asp 7.593 4.749 3.029, 
2.852 

  

10 Gly 7.602 4.150, 
3.518 

   

11 Gly 8.101 3.054, 
0.991 

   

12 Pro  4.593 2.507 2.141, 
2.062 

δ 3.765, 
3.415 



5 Appendix 

 

154 
 

13 Ser 7.833 4.464 3.925, 
3.926 

  

14 Ser 8.213 4.209 3.896   

15 Gly 8.042 4.256, 
3.831 

   

16 Arg 8.138 4.939 1.875, 
1.746 

1.668 δ 3.270 
ε7.534 

17 Pro  4.727 2.308, 
1.787 

1.994 δ 3.873, 
3.663 

18 Pro  2.573 1.300, 
0.437 

1.668 δ3.501 

119 Pro  4.292 2.226, 
1.952 

1.851, 
1.799 

δ3.058, 
2.837 

20 Ser 8.449 4.316 3.820   

21 Gly 8.554 3.942    

22 Ser 8.100 4.304 3.793   

 

Tab. 60: 15N and 13C-chemical shifts of the folded conformation of (jg)IBTC-2 in H2O/D2O, pH 3, at 274 K. 
Shifts marked with an asterix are averaged. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1‘ Asp n.d.  55.06 n.d.  

2‘ Thr 115.72  65.30 69.17 γ 22.20 

3‘ Ala 124.76  54.87 18.16  

4‘ Ser 117.64  60.94 62.18  

5‘ Asp 125.14  n.d. 39.02  

6‘ Ala 122.81  55.01 17.72  

7‘ Ala n.d.  54.87* 17.73*  

8‘ Ala n.d.  54.87* 17.73*  

9‘ Ala n.d.  54.87* 17.73*  

10‘ Ala n.d.  54.87* 17.73*  

11‘ Ala 122.33  54.82 17.66  

12‘ Leu 122.43  58.92 41.69  

13‘ Thr 116.86  66.36 68.85 γ 21.83 

14‘ Ala 123.99  54.99 17.60  

15‘ Ala 123.86  54.84 17.71  

16‘ Asn 119.83 114.36 n.d. 39.14  

17‘ Ala 124.58  55.02 17.84  

1 Ala n.d.  54.87* 17.73*  

2 Ala 122.78  54.96 17.72  

3 Tyr 122.92  62.46 38.22 δ 132.90 
ε 118.47 

4 Ala 122.98  55.03 17.73  

5 Ala 121.56  54.78 17.83  

6 Trp 120.89 131.62 n.d. 28.09 δ 127.36 
ε 124.04 
η 122.60 
ζ 121.08, 
114.16 
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7 Thr 116.70  66.74 68.64 21.62 

8 Ala 125.75  54.65 17.83  

9 Asp 116.08  n.d. 38.51  

10 Gly 110.53  49.59   

11 Gly 112.88  43.42   

12 Pro n.d.  n.d. 31.85 γ 27.31 
δ 51.10 

13 Ser 113.42  59.50 62.94  

14 Ser 117.43  60.18 63.22  

15 Gly 109.98  n.d.   

16 Arg 120.01 114.72 n.d. 27.15 γ 26.87 
δ 43.48 

17 Pro n.d.  n.d. 30.50 γ 27.15 
δ 50.69 

18 Pro n.d.  60.21 29.07 γ 26.81 
δ 49.62 

119 Pro n.d.  62.54 31.62 γ 27.13 
δ 49.56 

20 Ser 116.00  58.74 63.86  

21 Gly 111.39  45.13   

22 Ser 119.25  58.92 64.35  
 

Tab. 61: 1H-chemical shifts of (jg)IBTC-2 in H2O/D2O, pH 3, at 278 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp exch.     

2‘ Thr 8.751 4.244 4.244 1.297  

3‘ Ala 8.636 4.296 1.455   

4‘ Ser 8.661 4.374 3.973   

5‘ Asp 8.452 4.645 2.984   

6‘ Ala 8.380 4.247 1.508   

7‘ Ala 8.183 4.247 1.529   

8‘ Ala 8.341 4.320 1.588   

9‘ Ala 8.137 4.235 1.525   

10‘ Ala 8.170 4.217 1.519   

11‘ Ala 8.138 4.247 1.506   

12‘ Leu 7.966 4.320 1.767  δ0.921 

13‘ Thr 8.269 4.037 4.298 1.292  

14‘ Ala 8.183 4.290 1.524   

15‘ Ala 8.406 4.284 1.571   

16‘ Asn 8.652 4.651 2.938   

17‘ Ala 8.316 4.327 1.588   

1 Ala 8.333 4.269 1.540   

2 Ala 8.319 4.338 1.596   

3 Tyr 8.634 4.132 3.209   

4 Ala 8.507 4.312 1.623   

5 Ala 8.103 4.265 1.518   

6 Trp 8.013 4.274 3.483  δ7.053 



5 Appendix 

 

156 
 

ε9.680 

7 Thr 8.713 3.233 4.267 1.185  

8 Ala 8.278 4.155 1.497   

9 Asp 7.598 4.798 3.060, 
2.883 

  

10 Gly 7.612 4.155, 
3.551 

   

11 Gly 8.065 3.032, 
1.115 

   

12 Pro n.d.     

13 Ser 7.845 4.471 3.935   

14 Ser 8.200 4.256 3.826   

15 Gly 8.037 4.257, 
3.854 

   

16 Arg 8.117 4.969 1.846  δ3.285 

17 Pro n.d.     

18 Pro n.d.     

119 Pro n.d.     

20 Ser 8.435 4.320 3.828   

21 Gly 8.540 3.967    

22 Ser 8.203 4.392 3.765   

 

Tab. 62: 15N-chemical shifts of (jg)IBTC-2 in H2O/D2O, pH 3, at 278 K. 

Residue Chemical shift ẟ (ppm) 

  N    

1‘ Asp n.d.     

2‘ Thr 115.71     

3‘ Ala 125.86     

4‘ Ser 116.47     

5‘ Asp 123.54     

6‘ Ala 124.70     

7‘ Ala 122.85     

8‘ Ala 122.67     

9‘ Ala 122.13     

10‘ Ala 121.71     

11‘ Ala 122.38     

12‘ Leu 122.24     

13‘ Thr 116.68     

14‘ Ala 124.21     

15‘ Ala 123.48     

16‘ Asn 119.50     

17‘ Ala 124.47     

1 Ala 122.67     

2 Ala 122.87     

3 Tyr 122.54     

4 Ala 123.04     

5 Ala 122.05     

6 Trp 120.83 131.46    
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7 Thr 116.59     

8 Ala 125.65     

9 Asp 115.80     

10 Gly 106.27     

11 Gly 112.51     

12 Pro n.d.     

13 Ser 113.48 

 
 

   

14 Ser 117.30     

15 Gly 109.98     

16 Arg 120.16     

17 Pro n.d.     

18 Pro n.d.     

119 Pro n.d.     

20 Ser 116.09     

21 Gly 111.22     

22 Ser 117.05     
 

Tab. 63: 1H-chemical shifts of (jg)IBTC-2 in H2O/D2O, pH 3, at 298 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp exch. 4.360 2.982   

2‘ Thr 8.653 4.254 4.254 1.269  

3‘ Ala 8.406 4.431 1.461   

4‘ Ser 8.465 4.364 3.983, 
3.899 

  

5‘ Asp 8.323 4.616 2.859   

6‘ Ala 8.238 4.245 1.488   

7‘ Ala n.d.     

8‘ Ala n.d.     

9‘ Ala n.d.     

10‘ Ala n.d.     

11‘ Ala n.d. 4.222 1.473   

12‘ Leu 7.925 4.302 1.723   

13‘ Thr 8.107 4.139 4.285 1.253  

14‘ Ala 8.140 4.187 1.475   

15‘ Ala n.d.     

16‘ Asn 8.344 4.639 2.873  δ 7.629 

17‘ Ala 8.212 4.260 1.529   

1 Ala n.d.     

2 Ala n.d.     

3 Tyr 8.396 4.300 3.151, 
3.101 

 δ7.101 
ε6.798 

4 Ala 8.306 4.249 1.530   

5 Ala n.d.     

6 Trp 7.993 4.363 3.417, 
3.249 

 δ7.106 
ε9.784, 
7.254 

ζ 7.264, 
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6.876 
η 7.224 

7 Thr 8.404 3.483 4.200 1.446  

8 Ala 8.137 4.232 1.453   

9 Asp 7.740 4.724 2.973, 
2.827 

  

10 Gly 7.724 4.082, 
3.639 

   

11 Gly 8.044 3.282, 
2.126 

   

12 Pro  4.519 2.435, 
2.026 

2.075 δ3.694, 
3.395 

13 Ser 7.955 4.451 3.909   

14 Ser 8.156 4.274 3.909, 
3.694 

  

15 Gly 8.060 4.142, 
3.867 

   

16 Arg 8.055 4.569 1.894, 
1.783 

1.683 δ3.237 
ε7.324 

17 Pro  4.690 2.295, 
1.818 

1.995 δ3.836, 
3.623 

18 Pro  3.249 1.464 
1.059 

1.776 δ3.595, 
3.498 

119 Pro  4.324 2.230, 
1.905, 

1.854 δ3.232, 
3.046 

20 Ser 8.289 4.368 3.839   

21 Gly 8.411 3.968, 
3.956 

   

22 Ser 7.972 4.332 3.819, 
3.805 
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Tab. 64: 15N and 13C-chemical shifts of the folded conformation of (jg)IBTC-2 in H2O/D2O, pH 3, at 298 K. 
Shifts marked with an asterix are averaged. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1‘ Asp n.d.  54.60 39.81  

2‘ Thr 115.31  63.83 69.77 γ22.06 

3‘ Ala 125.82  54.61 18.81  

4‘ Ser 115.84  59.92 63.31  

5‘ Asp 122.98  n.d. 39.47  

6‘ Ala 122.36  53.76 18.45  

7‘ Ala n.d.  54.43* 18.58*  

8‘ Ala n.d.  54.43* 18.58*  

9‘ Ala n.d.  54.43* 18.58*  

10‘ Ala n.d.  54.43* 18.58*  

11‘ Ala n.d.  54.25 18.59  

12‘ Leu 121.42  57.17 42.29  

13‘ Thr 115.16  64.71 69.73 γ22.05 

14‘ Ala 124.65  54.43 18.57  

15‘ Ala n.d.  54.43* 18.58*  

16‘ Asn 118.23 111.69 n.d. 38.62  

17‘ Ala 124.21  54.52 18.48  

1 Ala n.d.  54.43* 18.58*  

2 Ala n.d.  54.43* 18.58*  

3 Tyr 121.04  59.75 38.69 δ 133.31 
ε 118.76 

4 Ala 123.58  54.10 18.42  

5 Ala n.d.  54.43* 18.58*  

6 Trp 120.24 130.84 58.76 28.92 δ 127.65 
ε 121.19 
ζ 122.69, 
114.61 
η 124.55 

7 Thr 115.57  65.60 69.62 γ18.46 

8 Ala 122.37  54.42 18.59  

9 Asp 116.25  n.d. 38.90  

10 Gly 106.78  45.03   

11 Gly 111.37  44.02   

12 Pro n.d.  n.d. 32.23 γ 27.58 
δ50.98 

13 Ser 113.94  59.55 63.49  

14 Ser 117.12  59.99 64.96  

15 Gly 109.91  45.73   

16 Arg 120.40 114.85 n.d. 30.89 γ27.17 
δ 43.81 

17 Pro n.d.  n.d. 30.85 γ 27.47 
δ 50.88 

18 Pro n.d.  60.88 29.98 γ 27.21 
δ50.23 

119 Pro n.d.  63.17 32.04 γ27.54 
δ 50.09 
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20 Ser 115.79  59.66 64.24  

21 Gly 111.18  45.60   

22 Ser 119.37  59.61 64.86  
 

 

Fig. 132: Hα CSD plots of (jg)IBTC-2 at 274 K and 0.1 M NH4HCO3, pH 7.9, (red circles) and H2O/D2O, pH 3, 
(black squares). The dashed line at y=-0.1 ppm represents the helical limit. 

 

 

Fig. 133: Cα CSD plots of (jg)IBTC-2 at 274 K and 0.1 M NH4HCO3, pH 7.9, (red circles) and H2O/D2O, pH 3, 
(black squares). The dashed line at y=0.7 ppm represents the helical limit. 
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Fig. 134: Hα CSD plots of (jg)IBTC-2 at pH 3 and 274 K (red circles), 278 K (blue triangles) and 298 K (black 
squares). The dashed line at y=-0.1 ppm represents the helical limit. 

 

 

Fig. 135: Cα CSD plots of (jg)IBTC-2 at pH 3 and 274 K (red circles) and 298 K (black squares). The dashed 
line at y=0.7 ppm represents the helical limit. 
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Tab. 65: CSDs for selected protons of the cage structure representing the cage fold of (jg)IBTC-2 at pH 3 and 
pH 7.9 and 274 K and 298 K, given the fraction folded according to Lin 75. 

χTrp-cage ∆ẟ (ppm) Σ 

 T7α G11α’ P18α Pro18β’ P19δ P19δ’  

pH 7.9, 274 K -1.130 -3.189 -2.196 -1.941 -0.504 -0.891 -9.851 

pH 3, 274 K -1.146 -3.029 -2.1566 -1.853 -0.532 -0.903 -9.619 

pH 3, 298 K -0.867 -1.894 -1.481 -1.231 -0.358 -0.694 -6.525 

 

Tab. 66: CSDs for selected protons in the helical region representing the helix fold of (jg)IBTC-2 at pH 3 and 
pH 7.9 and 274 K, 278 K and 298 K. 

χHelix ∆ẟ (ppm) Σ 

 A2α Y3α A4α A5α W6α T7α A8α  

pH 7.9, 274 K 0.027 -0.45 0.002  -0.431 -1.130 -0.068  

pH 3, 274 K 0.032 -0.450 -0.011 -0.106 -0.406 -1.146 -0.173 -2.259 

pH 3, 278 K 0.018 -0.418 -0.009 -0.055 -0.386 -1.117 -0.165 -2.132 

pH 3, 298 K  -0.250 -0.071  -0.297 -0.867 -0.088  

 

Antifreeze activity (80 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Ice growth retardation: 0.049 °C 

- ice shaping 

 

Fig. 136: Ice growth retardation plot of 80 mg/mL (jg)IBTC-2 in 0.1 M NH4HCO3, pH 7.9. The growth 
retardation is 0.049 °C. The hollow square was neglected during the calculations. 
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Fig. 137: The shape of metastable ice crystals in the presence of 80 mg/mL (jg)IBTC-2 in 0.1 M NH4HCO3, 
pH 7.9. The hexagonal bipyramidal shape is slightly twisted. The black scale in each picture is 10 µm long. 
The c- to a-axis ratio is 3.0:1. 

 

5.8 (jg)IBTC-3 

Sequence DTASDAAAAAALTAANAKAAAELTAANAAAYAAWTAD 

GGPSSGRPPPSGS 

Molecular weight  4529.81 Da 

Absorption coefficient  ε280= 6990 M-1cm-1 

Yield    0.4 mg/ L LB medium 

 

 

Fig. 138: Profile of the affinity purification of (jg)SUMO-IBTC-3. The signal was detected at 280 nm (blue). 
The gradient of the elution buffer is shown in black. With the injection at 0 mL the chromatogram starts. 
Fractions that were combined and collected are marked in blue. 
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Fig. 139: Profile of the rebuffering of (jg)SUMO-IBTC-3. The signal was detected at 280 nm (blue) and 
254 nm (red). Fractions that were combined and collected are marked in blue. 

 

 

Fig. 140: Profile of the affinity purification of (jg)IBTC-3. The signal was detected at 280 nm (blue) and 
254 nm (red). The gradient of the elution buffer is shown in black. The injections are dashed pink lines. 
Fractions which were collected and combined are marked in blue. 

 

 

Fig. 141: HPLC profile of the semi-preparative run of (jg)IBTC-3. tR is 61 min. 
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Fig. 142: HPLC profile of the analytical run (top), ion chromatogram (2nd panel from top) and MS spectra of 
all signals of purified (jg)IBTC-3. m/z: [M+3H]3+ calcd 1510.9, found 1510.1. tR is 12.2 min. 

 

 

Fig. 143: UV/vis spectrum of (jg)IBTC-3 at 298 K in 0.1 M NH4HCO3 buffer, pH 7.9. The spectrum was 
measured to 600 nm, displayed only to 350 nm. 
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Fig. 144: UV/vis spectrum of (jg)IBTC-3 at 298 K in water at pH 3. The spectrum was measured to 600 nm, 
displayed only to 350 nm. 

 

 

Fig. 145: CD spectra of (jg)IBTC-3 in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K (black) and 274 K (red). 
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Fig. 146: CD spectra of (jg)IBTC-3 in water, pH 3, at 274 K. 

 

 

Fig. 147: CD thermal denaturation scan of (jg)IBTC-3 in 0.1 M NH4HCO3 buffer, pH 7.9. The black squares 
show the heating curve, the red circles the cooling curve. 

 

Tabelle 67: Calculated melting points for (jg)IBTC-3 in 0.1 M NH4HCO3 buffer, pH 7.9. 

 heating cooling 

Boltzmann fit 19.0 ±0.5 18.5 ±0.5 
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Tab. 68: Helical content of (jg)IBTC-2 at 1 °C and 0.1 M NH4HCO3 buffer, pH 7.9, or water, pH 3. 

 0.1 M NH4HCO3, pH 7.9 pH 3 

[Θ]obs (deg cm2 dmol-1) -36.070 -23.649 

[Θ]ref (deg cm2 dmol-1) -42.875 -42.875 

Helical content (%) 84 55 

 

 

Fig. 148: 1H NMR spectrum of (jg)IBTC-3 in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of the 
indole proton region around 10 ppm. 
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Fig. 149: 1H NMR spectrum of (jg)IBTC-3 in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K with enlargement of the 
indole proton region around 10 ppm. 

 

 

Fig. 150: 1H NMR spectrum of (jg)IBTC-3 in H2O/D2O, pH 3, at 274 K with enlargement of the indole proton 
region around 10 ppm. 
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Fig. 151: 1H NMR spectrum of (jg)IBTC-3 in H2O/D2O, pH 3, at 298 K with enlargement of the indole proton 
region around 10 ppm. 

 

Tab. 69: 1H-chemical shifts of (jg)IBTC-3 in H2O/D2O, pH 3, at 274 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp n.d.     

2‘ Thr 8.743 4.123 4.193 1.301  

3‘ Ala 8.521 4.278 1.471   

4‘ Ser 8.841 4.333 4.053, 
3.939 

  

5‘ Asp 8.512 4.553 2.950, 
2.813 

  

6‘ Ala 8.352 4.284 1.542   

7‘ Ala n.d.     

8‘ Ala n.d.     

9‘ Ala n.d.     

10‘ Ala n.d.     

11‘ Ala n.d.     

12‘ Leu 8.000 4.309 1.909, 
1.746 

n.d. δ0.946 

13‘ Thr 8.309 3.977 4.273 1.295  

14‘ Ala n.d.     

15‘ Ala n.d.  1.584   

16‘ Asn 8.734 4.627 2.992, 
2.854 

  

17‘ Ala 8.320 4.301 1.501   

18‘ Lys 8.209 4.203 1.704 1.403 δ1.547 
ε2.989 
ζ 7.659 
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19‘ Ala n.d.     

20‘ Ala n.d.     

21‘ Ala n.d.     

22‘ Glu 8.267 4.165 2.272, 
2.174 

2.715, 
2.514 

 

23‘ Leu 8.018 4.267 1.887, 
1.757 

n.d. δ0.946 

24‘ Thr 8.313 3.990 4.294 1.295  

25‘ Ala n.d.     

26‘ Ala n.d.  1.568   

27‘ Asn 8.817 4.591 2.994, 
2.859 

  

28‘ Ala 8.259 4.297 1.558   

1 Ala n.d.     

2 Ala 8.330 4.359 1.607   

3 Tyr 8.655 4.418 3.216  δ7.121 
ε6.802 

4 Ala 8.532 4.292 1.625   

5 Ala n.d.     

6 Trp 8.005 4.278 3.475, 
3.215 

 δ7.046 
ε9.673 
ζ 7.197, 
7.099 

η 7.203 

7 Thr 8.731 3.208 4.345   

8 Ala 8.308 4.203 1.503   

9 Asp 7.595 4.760 3.043, 
2.862 

  

10 Gly 7.601 4.154, 
3.521 

   

11 Gly 8.095 3.055, 
1.012 

   

12 Pro  4.586 2.489, 
2.045 

2.127 δ3.759, 
3.408 

13 Ser 7.836 4.461 3.929   

14 Ser 8.204 4.216 3.886   

15 Gly 8.040 4.248, 
3.831 

   

16 Arg 8.135 4.930 1.897 1.771, 
1.666 

δ3.270 
ε7.522 

17 Pro  4.721 2.314, 
1.794 

2.003 δ3.846, 
3.642 

18 Pro  2.572 0.436 n.d. δ3.497 

19 Pro  4.301 2.231, 
1.948 

1.891, 
1.805 

δ3.056, 
2.837 

20 Ser 8.456 4.314 3.822   

21 Gly 8.561 3.946    

22 Ser 8.123 4.320 3.794   
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Tab. 70: 15N and 13C-chemical shifts of the folded conformation of (jg)IBTC-3 in H2O/D2O, pH 3, at 274 K. 
Shifts marked with an asterix are averaged. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1‘ Asp n.d.  n.d. n.d.  

2‘ Thr 115.63  66.01 69.88 γ22.54 

3‘ Ala n.d.  55.64 18.76  

4‘ Ser 117.55  59.18 62.99  

5‘ Asp 124.98  57.04 42.66  

6‘ Ala 122.81  55.57 18.51  

7‘ Ala n.d.  55.66* 18.52*  

8‘ Ala n.d.  55.66* 18.52*  

9‘ Ala n.d.  55.66* 18.52*  

10‘ Ala n.d.  55.66* 18.52*  

11‘ Ala n.d.  55.66* 18.52*  

12‘ Leu 122.75  59.16 42.37 δ24.62 

13‘ Thr 117.02  67.04 69.64 γ22.54 

14‘ Ala n.d.  55.66* 18.52*  

15‘ Ala n.d.  55.66* 18.43  

16‘ Asn 119.76  n.d. 42.71  

17‘ Ala 124.57  55.82 18.55  

18‘ Lys n.d.  57.18 30.20 γ 25.65 
δ 25.62 
ε 42.71 

19‘ Ala n.d.  55.66* 18.52*  

20‘ Ala n.d.  55.66* 18.52*  

21‘ Ala n.d.  55.66* 18.52*  

22‘ Glu 119.42  59.44 28.32 γ34.43 

23‘ Leu 114.02  59.27 42.41 δ24.62 

24‘ Thr 116.67  66.94 70.33 γ 22.54 

25‘ Ala n.d.  55.66* 18.52*  

26‘ Ala n.d.  55.66* 18.43  

27‘ Asn 119.61  n.d. 42.71  

28‘ Ala 124.76  55.71 18.49  

1 Ala n.d.  55.66* 18.52*  

2 Ala 122.87  55.76 18.43  

3 Tyr 122.81  n.d. 39.20 δ 133.66 
ε119.12 

4 Ala 122.99  55.66 18.39  

5 Ala n.d.  55.66* 18.52*  

6 Trp 121.63 131.48 n.d. n.d. δ 128.24 
ζ 121.81, 
114.88 

η 124.99 

7 Thr 116.65  67.41 n.d.  

8 Ala 125.73  55.33 18.49  

9 Asp 115.91  n.d. 38.04  

10 Gly n.d.  n.d.   

11 Gly 112.73  42.74   

12 Pro n.d.  n.d. 32.67 γ28.10 
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13 Ser 113.42  n.d. 63.82  

14 Ser 117.35  59.29 64.24  

15 Gly 109.78  n.d.   

16 Arg 120.07 114.84 n.d. 27.92 γ 27.59 
δ 44.26 

17 Pro n.d.  n.d. 31.29 γ27.93 
δ51.34 

18 Pro n.d.  60.73 n.d. δ50.52 

19 Pro n.d.  61.68 32.45 γ 27.84 
δ 50.21 

20 Ser 115.92  59.55 64.57  

21 Gly 111.39  45.84   

22 Ser 119.09  59.37 64.97  

 

Tab. 71: 1H-chemical shifts of (jg)IBTC-3 in H2O/D2O, pH 3, at 298 K. 

Residue Chemical shift ẟ (ppm) 

  NH α β γ  

1‘ Asp exch. 4.375 2.993   

2‘ Thr 8.657 4.267 4.267 1.272  

3‘ Ala 8.429 4.306 1.444   

4‘ Ser 8.458 4.369 3.982, 
3.896 

  

5‘ Asp 8.385 4.618 2.883   

6‘ Ala n.d.     

7‘ Ala n.d.     

8‘ Ala n.d.     

9‘ Ala n.d.     

10‘ Ala n.d.     

11‘ Ala n.d. 4.221 1.482   

12‘ Leu 7.947 4.303 1.747   

13‘ Thr 8.093 4.118 4.257 1.266  

14‘ Ala n.d.     

15‘ Ala n.d.     

16‘ Asn 8.324 4.638 2.885   

17‘ Ala n.d.     

18‘ Lys 8.076 4.211 1.889  δ1.690 
ε2.990 
ζ 7.547 

19‘ Ala n.d.     

20‘ Ala n.d.     

21‘ Ala n.d.     

22‘ Glu 8.086 4.246 2.144 2.593, 
2.493 

 

23‘ Leu 7.988 4.311 1.712   

24‘ Thr 8.127 4.168 4.279 1.251  

25‘ Ala n.d.     

26‘ Ala n.d.     

27‘ Asn 8.324 4.638 2.885   

28‘ Ala n.d.     
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1 Ala n.d.     

2 Ala n.d.  1.501   

3 Tyr 8.393 4.413 3.153  δ7.105 
ε6.799 

4 Ala 8.301 4.244 1.529   

5 Ala n.d.     

6 Trp 7.995 4.341 3.418, 
3.256 

 δ7.106 
ε9.789, 
7.260 

ζ 7.279, 
6.887 

η 7.220 

7 Thr 8.396 3.486 4.202   

8 Ala 8.129 4.197 1.464   

9 Asp 7.743 4.736 2.990, 
2.844 

  

10 Gly 7.729 4.082, 
3.644 

   

11 Gly 8.031 3.275, 
1.953 

   

12 Pro  4.512 2.427, 
2.027 

2.058 δ3.685, 
3.379 

13 Ser 7.955 4.449 3.906   

14 Ser 8.154 4.276 3.911, 
3.702 

  

15 Gly 8.062 4.154, 
3.870 

   

16 Arg 8.049 4.811 1.888, 
1.779 

1.681 δ3.237 
ε7.312 

17 Pro  4.685 2.284, 
1.818 

1.993 δ3.834, 
3.620 

18 Pro  3.177 1.480 1.759, 
1.272 

δ3.5845, 
3.489 

19 Pro  4.324 2.226, 
1.898 

1.848 δ3.237, 
3.049 

20 Ser 8.293 4.365 3.840   

21 Gly 8.414 3.970    

22 Ser 8.004 4.359 3.827   

 

Tab. 72: 15N and 13C-chemical shifts of the folded conformation of (jg)IBTC-3 in H2O/D2O, pH 3, at 298 K. 
Shifts marked with an asterix are averaged. 

Residue Chemical shift ẟ (ppm) 

  N Cα Cβ  

1‘ Asp n.d.  54.61 39.64  

2‘ Thr 115.31  63.69 69.93 γ22.05 

3‘ Ala 125.89  54.49 18.72  

4‘ Ser 115.67  59.26 63.38  

5‘ Asp 121.17  n.d. 39.44  

6‘ Ala n.d.  54.50* 18.61*  
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7‘ Ala n.d.  54.50* 18.61*  

8‘ Ala n.d.  54.50* 18.61*  

9‘ Ala n.d.  54.50* 18.61*  

10‘ Ala n.d.  54.50* 18.61*  

11‘ Ala n.d.  54.27 18.54  

12‘ Leu 121.18  57.47 42.31  

13‘ Thr 115.15  64.90 69.97 γ 22.05 

14‘ Ala n.d.  54.50* 18.61*  

15‘ Ala n.d.  54.50* 18.61*  

16‘ Asn 122.69  n.d. 38.66  

17‘ Ala n.d.  54.50* 18.61*  

18‘ Lys 120.17  57.66 32.78 δ 29.52 
ε39.71 

19‘ Ala n.d.  54.50* 18.61*  

20‘ Ala n.d.  54.50* 18.61*  

21‘ Ala n.d.  54.50* 18.61*  

22‘ Glu 121.82  57.65 28.62 γ 33.58 

23‘ Leu 121.36  57.14 42.31  

24‘ Thr 114.82  64.24 69.97 γ 22.05 

25‘ Ala n.d.  54.50* 18.61*  

26‘ Ala n.d.  54.50* 18.61*  

27‘ Asn 122.69  n.d. 38.66  

28‘ Ala n.d.  54.50* 18.61*  

1 Ala n.d.  54.50* 18.61*  

2 Ala n.d.  54.50* 18.60  

3 Tyr 118.02  59.34 38.64 δ 133.29 
ε 118.77 

4 Ala 122.46  54.49 18.41  

5 Ala n.d.  54.50* 18.61*  

6 Trp 121.83 130.84 59.31 29.18 δ 127.65 
ε 121.32 
ζ122.67, 
114.54 

η 124.52 

7 Thr 115.58  65.49 69.85  

8 Ala 125.60  54.49 18.64  

9 Asp 116.04  n.d. 38.66  

10 Gly 106.91  n.d.   

11 Gly 111.20  43.78   

12 Pro n.d.  59.43 32.20 γ 27.50 
δ 51.08 

13 Ser 114.01  59.43 63.54  

14 Ser 117.06  59.45 63.54  

15 Gly 109.81  45.83   

16 Arg 120.63 114.91 n.d. 30.94 γ 27.18 
δ 43.78 

17 Pro n.d.  n.d. 30.81 γ 27.50 
δ 50.64 

18 Pro n.d.  n.d. 30.19 γ 27.16 
δ 50.25 
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19 Pro n.d.  59.38 32.06 γ 27.58 
δ 50.21 

20 Ser 115.77  59.26 64.67  

21 Gly 111.16  45.63   

22 Ser 120.24  59.35 64.67  

 

 

Fig. 152: Hα CSD plots of (jg)IBTC-3 at pH 3 and 274 K (red circles) and 298 K (black squares). The dashed 
line at y=-0.1 ppm represents the helical limit. 

 

 

Fig. 153: Cα CSD plots of (jg)IBTC-3 at pH 3 and 274 K (red circles) and 298 K (black squares). The dashed 
line at y=0.7 ppm represents the helical limit. 
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Tab. 73: CSDs for selected protons of the cage structure representing the cage fold of (jg)IBTC-3 at pH 3 and 
274 K and 298 K, given the fraction folded according to Lin. 75 

χTrp-cage ∆ẟ (ppm) Σ 

 T7α G11α’ P18α Pro18β’ P19δ P19δ’  

pH 3, 274 K -1.142 -3.008 -2.158 -1.854 -0.534 -0.903 -9.601 

pH 3, 298 K -0.864 -2.067 -1.553 -0.810 -0.354 -0.691 -6.339 

 

Tab. 74: CSDs for selected protons in the helical region representing the helix fold of (jg)IBTC-3 at pH 3 and 
274 K and 298 K. 

χHelix ∆ẟ (ppm) Σ 

 A2α Y3α A4α A5α W6α T7α A8α  

pH 3, 274 K 0.039 -0.132 -0.028  -0.382 -1.143 -0.117  

pH 3, 298 K  -0.137 -0.076  -0.320 -0.864 -0.123  

 

Antifreeze activity (1 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Thermal hysteresis: 0.3±0.1 °C 

- Ice shaping 

 

 

Fig. 154: The shape of metastable ice crystals in the presence of 1 mg/mL (jg)IBTC-3 in 0.1 M NH4HCO3, 
pH 7.9, during the thermal hysteresis gap. The thermal hysteris is 0.3 °C. The pictures on the left show the 
slightly twisted hexagonal bipyramidal shape in the side view, on the right is the view perpendicular to the 
basal plane. The black scale in each picture is 10 µm. The c- to a-axis ratio is 2.8:1. 

 

Antifreeze activity (10 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Thermal hysteresis: 0.6±0.1 °C 

- Ice shaping 
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Fig. 155: The shape of metastable ice crystals in the presence of 10 mg/mL (jg)IBTC-3 in 0.1 M NH4HCO3, 
pH 7.9, during the thermal hysteresis gap. The thermal hysteris is 0.6 °C. The hexagonal bipyramidal shape 
is slightly twisted. The black scale in each picture is 10 µm long. The c- to a-axis ratio is 2.8:1. 

 

Antifreeze activity (80 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Thermal hysteresis: 0.8±0.1 °C 

- Ice shaping 

 

 

Fig. 156: The shape of metastable ice crystals in the presence of 80 mg/mL (jg)IBTC-3 in 0.1 M NH4HCO3, 
pH 7.9, during the thermal hysteresis gap. The thermal hysteris is 0.8 °C. The hexagonal bipyramidal shape 
is slightly twisted. The black scale in each picture is 10 µm long. The c- to a-axis ratio is 3.1:1. The dark gray 
spheres are air bubbles. 
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5.9 (jg)IBTC-1-GFP 

Sequence DTASDAAAYAAWTADGGPSSGRPPPSGSVSKGEELFT GVVPILVELD 

GDVNGHKFSV SGEGEGDATY GKLTLKFICT TGKLPVPWPT 

LVTTLTYGVQ CFSRYPDHMK QHDFFKSAMP EGYVQERTIF 

FKDDGNYKTR AEVKFEGDTL VNRIELKGID FKEDGNILGH 

KLEYNYNSHN VYIMADKQKN GIKVNFKIRH NIEDGSVQLA 

DHYQQNTPIG DGPVLLPDNH YLSTQSALSK DPNEKRDHMV 

LLEFVTAAGI TLGMDELYK 

Molecular weight  29730.26 Da 

Absorption coefficient  ε280= 28880 M-1cm-1 

Yield    3.2 mg/ L LB medium 

 

 

 

Fig. 157: Profile of the affinity purification of (jg)SUMO-IBTC-1-GFP. The signal was detected at 280 nm 
(blue) and 254 nm (red). The gradient of the elution buffer is shown in black. With the injection at 0 mL the 
chromatogram starts. Fractions that were combined and collected are marked in blue. 

 



5 Appendix 

 

180 
 

 

Fig. 158: Profile of the rebuffering of (jg)SUMO-IBTC-1-GFP. The signal was detected at 280 nm (blue) and 
254 nm (red). Fractions that were combined and collected are marked in blue. 

 

 

Fig. 159: Profile of the affinity purification of (jg)IBTC-1-GFP. The signal was detected at 280 nm (blue) and 
254 nm (red). The gradient of the elution buffer is shown in black. The injections are dashed pink lines. 
Fractions which were collected and combined are marked in blue. 
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Fig. 160: HPLC profile of the analytical run (top), ion chromatogram (2nd panel from top) and MS spectra of 
all signals of purified (jg)IBTC-1-GFP. m/z: [M+18H]18+ calcd 1635.05, found 1633.1. tR is 13.2 min. 

 

 

Fig. 161: UV/vis spectrum of (jg)IBTC-1-GFP at 298 K in 0.1 M NH4HCO3 buffer, pH 7.9. The spectrum was 
measured to 600 nm, displayed only to 350 nm. 
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Fig. 162: CD spectra of (jg)IBTC-1-GFP in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K (black) and 274 K (red). 

 

 

Fig. 163: 1H NMR spectrum of (jg)IBTC-1-GFP in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of 
the indole proton region around 10 ppm. 

 

Antifreeze activity (1.09 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- No thermal hysteresis 

- No ice shaping 
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Antifreeze activity (10 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Ice growth retardation: 0.046 °C 

- Ice shaping 

 

Fig. 164: Ice growth retardation plot of 10 mg/mL (jg)IBTC-1-GFP in 0.1 M NH4HCO3, pH 7.9. The growth 
retardation is 0.046 °C. 

 

 

Fig. 165: Ice crystals during the growth in the presence of 10 mg/mL (jg)IBTC-1-GFP in 0.1 M NH4HCO3, 
pH 7.9. Left the top view shows the view perpendicular to the basal plane, while the middle and the right 
show the side view of the crystal. The black scale in each picture is 10 µm. 
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5.10 (jg)IBTC-2-GFP 

Sequence DTASDAAAAAALTAANAAAYAAWTADGGPSSGRPPPSGSVSKGEELFT 

GVVPILVELD GDVNGHKFSV SGEGEGDATY GKLTLKFICT 

TGKLPVPWPT LVTTLTYGVQ CFSRYPDHMK QHDFFKSAMP 

EGYVQERTIF FKDDGNYKTR AEVKFEGDTL VNRIELKGID 

FKEDGNILGH KLEYNYNSHN VYIMADKQKN GIKVNFKIRH 

NIEDGSVQLA DHYQQNTPIG DGPVLLPDNH YLSTQSALSK 

DPNEKRDHMV LLEFVTAAGI TLGMDELYK 

Molecular weight  30627.26 Da 

Absorption coefficient  ε280= 28880 M-1cm-1 

Yield    9.0 mg/ L LB medium 

 

 

Fig. 166: Profile of the affinity purification of (jg)SUMO-IBTC-2-GFP. The signal was detected at 280 nm 
(blue) and 254 nm (red). The gradient of the elution buffer is shown in black. With the injection at 0 mL the 
chromatogram starts. Fractions that were combined and collected are marked in blue. 
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Fig. 167: Profile of the rebuffering of (jg)SUMO-IBTC-2-GFP. The signal was detected at 280 nm (blue) and 
254 nm (red). Fractions that were combined and collected are marked in blue. 

 

 

Fig. 168: Profile of the affinity purification of (jg)IBTC-2-GFP. The signal was detected at 280 nm (blue) and 
254 nm (red). The gradient of the elution buffer is shown in black. The injections are dashed pink lines. 
Fractions which were collected and combined are marked in blue. 
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Fig. 169: HPLC profile of the analytical run (top), ion chromatogram (2nd panel from top) and MS spectra of 
all signals of purified (jg)IBTC-2-GFP. m/z: [M+18H]

18+
 calcd 1684.9, found 1683.0. tR is 13.2 min. 

 

 

Fig. 170: UV/vis spectrum of (jg)IBTC-2-GFP at 298 K in 0.1 M NH4HCO3 buffer, pH 7.9. The spectrum was 
measured to 600 nm, displayed only to 350 nm. 
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Fig. 171: CD spectra of (jg)IBTC-2-GFP in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K (black) and 274 K (red). 

 

 

Fig. 172: 1H NMR spectrum of (jg)IBTC-2-GFP in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of 
the indole proton region around 10 ppm. 

 

Antifreeze activity (1.06 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- No thermal hysteresis 

- No ice shaping 
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Antifreeze activity (4.23 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- No thermal hysteresis 

-  ice shaping 

 

Fig. 173: Ice crystals during the growth in the presence of 4.23 mg/mL (jg)IBTC-2-GFP in 0.1 M NH4HCO3, 
pH 7.9. Left the top view shows the view perpendicular to the basal plane, while on the right the side view 
of the crystal is shown. The black scale in each picture is 10 µm long. 

 

Antifreeze activity (80 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- No thermal hysteresis 

- Ice shaping 

 

 

Fig. 174: Ice crystals during the growth in the presence of 80 mg/mL (jg)IBTC-2-GFP in 0.1 M NH4HCO3, 
pH 7.9. The top view shows the view perpendicular to the basal plane. The black scale in each picture is 
10 µm long. 
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5.11 (jg)IBTC-3-GFP 

Sequence

 DTASDAAAAAALTAANAKAAAELTAANAAAYAAWTADGGPSSGRPPPS

GS 

VSKGEELFT GVVPILVELD GDVNGHKFSV SGEGEGDATY GKLTLKFICT 

TGKLPVPWPT LVTTLTYGVQ CFSRYPDHMK QHDFFKSAMP 

EGYVQERTIF FKDDGNYKTR AEVKFEGDTL VNRIELKGID 

FKEDGNILGH KLEYNYNSHN VYIMADKQKN GIKVNFKIRH 

NIEDGSVQLA DHYQQNTPIG DGPVLLPDNH YLSTQSALSK 

DPNEKRDHMV LLEFVTAAGI TLGMDELYK 

Molecular weight  31639.39 Da 

Absorption coefficient  ε280= 28880 M-1cm-1 

Yield    3.0 mg/ L LB medium 

 

 

Fig. 175: Profile of the affinity purification of (jg)SUMO-IBTC-3-GFP. The signal was detected at 280 nm 
(blue) and 254 nm (red). The gradient of the elution buffer is shown in black. With the injection at 0 mL the 
chromatogram starts. Fractions that were combined and collected are marked in blue. 
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Fig. 176: Profile of the rebuffering of (jg)SUMO-IBTC-3-GFP. The signal was detected at 280 nm (blue) and 
254 nm (red). Fractions that were combined and collected are marked in blue. 

 

 

Fig. 177: Profile of the affinity purification of (jg)IBTC-3-GFP. The signal was detected at 280 nm (blue) and 
254 nm (red). The gradient of the elution buffer is shown in black. The injections are dashed pink lines. 
Fractions which were collected and combined are marked in blue. 
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Fig. 178: HPLC profile of the analytical run (top), ion chromatogram (2nd panel from top) and MS spectra of 
all signals of purified (jg)IBTC-3-GFP. m/z: [M+19H]19+ calcd 1649.5, found 1647.7. tR is 13.3 min. 

 

 

Fig. 179: UV/vis spectrum of (jg)IBTC-3-GFP at 298 K in 0.1 M NH4HCO3 buffer, pH 7.9. The spectrum was 
measured to 600 nm, displayed only to 350 nm. 
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Fig. 180: CD spectra of (jg)IBTC-3-GFP in 0.1 M NH4HCO3 buffer, pH 7.9, at 298 K (black) and 274 K (red). 

 

 

Fig. 181: 1H NMR spectrum of (jg)IBTC-3-GFP in 0.1 M NH4HCO3 buffer, pH 7.9, at 274 K with enlargement of 
the indole proton region around 10 ppm. 
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Antifreeze activity (0.81 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Ice growth retardation: 0.029 °C 

- ice shaping 

 

 

Fig. 182: Ice growth retardation plot of 0.81 mg/mL (jg)IBTC-3-GFP in 0.1 M NH4HCO3, pH 7.9. The growth 
retardation is 0.029 °C. 

 

 

 

Fig. 183: Ice crystals during the growth in the presence of 0.81 mg/mL (jg)IBTC-3-GFP in 0.1 M NH4HCO3, 
pH 7.9. The top row shows the view perpendicular to the basal plane, while in the bottom row the side 
view of the crystal is shown. The black scale in each picture is 10 µm long. 
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Antifreeze activity (15.0 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Thermal hysteresis: 0.4±0.1 °C 

- ice shaping 

 

 

Fig. 184: The shape of metastable ice crystals in the presence of 15 mg/mL (jg)IBTC-3-GFP in 0.1 M 
NH4HCO3, pH 7.9, during the thermal hysteresis gap. The thermal hysteris is 0.4 °C. The left shows the 
slightly twisted hexagonal bipyramidal shape in the side view, on the right is the view perpendicular to the 
basal plane. The black scale in each picture is 10 µm. The c- to a-axis ratio is 2.8:1. 

 

Antifreeze activity (80 mg/mL, 0.1 M NH4HCO3, pH 7.9): 

- Thermal hysteresis: 0.9±0.1 °C 

- ice shaping 

 

 

Fig. 185: The shape of metastable ice crystals in the presence of 80 mg/mL (jg)IBTC-3-GFP in 0.1 M 
NH4HCO3, pH 7.9. The thermal hysteresis is 0.9 °C. The top shows the slightly twisted hexagonal 
bipyramidal shape in the side view during the thermal hysteresis gap, the bottom shortly before the burst. 
The black scale in each picture is 10 µm long. The c- to a-axis ratio is 3.0:1. The dark gray spheres are air 
bubbles. 
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