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Abstract

Several methods for optimization of model parameters, uncertainty quantification
and uncertainty reduction by optimal experimental designs are studied and applied to
models with different computational complexity from climate research.

The generalized least squares estimator and its special cases the weighted and the or-
dinary least squares estimator are described in detail together with their statistical prop-
erties. They are applied to several models using the SQP algorithm, a derivative based
local optimization algorithm, in combination with the OQNLP algorithm, a globaliza-
tion algorithm. This combination is proven to find model parameters well fitting to the
measurement data with few function evaluations which is especially important for com-
putationally expensive models.

The uncertainty in the estimated model parameters implied by the uncertainty in the
measurement data as well as the resulting uncertainty in the model output is quantified
in several ways using the first and second derivative of the model with respect to its
parameters. The advantages and disadvantages of the different methods are highlighted.

The reduction of the uncertainty by additional measurements is predicted using op-
timal experimental design methods. It is determined how many measurements are ad-
visable and how their conditions, like time, location and which process to be measured,
should be chosen for an optimal uncertainty reduction. Robustification approaches, like
sequential optimal experimental design and approximate worst case experimental de-
signs are used to mitigate the dependency of predictions on the model parameters esti-
mate.

A detailed statistical description of the measurements is important for the applied
methods. Therefore, a statistical analysis of millions of marine measurement data is car-
ried out. The climatological means, the variabilities, split into climatological and short
scale variabilities, and correlations are estimated from the data. The associated proba-
bility distributions are examined for normality and log-normality using statistical testing
and visual inspection.

To determine the correlations, an algorithm was developed that generates valid cor-
relation matrices, i.e., positive semidefinite matrices with ones as diagonal values, from
estimated correlation matrices. The algorithm tries to keep the changes as small as possi-
ble and to achieve a matrix with a low condition number. Its (worst case) execution time
and memory consumption are asymptotically equal to those of the fastest algorithms to
check positive semidefiniteness, making the algorithm applicable to large matrices. It is
also suitable for sparse matrices because it preserves sparsity patterns. In addition to
statistics, it can also be useful in numerical optimization.

In the context of this thesis, several software packages were developed or extended
which are freely available as open source and extensively tested.

The results obtained from the models and data help to improve the understanding
of the underlying processes. The applied methods are not limited to the application ex-
amples used here and can be applied to many data and models in climate research and
beyond.
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Zusammenfassung

Mehrere Methoden zur Optimierung von Modellparametern, Unsicherheitsquanti-
fizierung und Unsicherheitsreduktion durch optimale Versuchsplanung werden unter-
sucht und auf Modelle mit unterschiedlicher Komplexität aus der Klimaforschung ange-
wandt.

Der verallgemeinerte Kleinste-Quadrate-Schätzer und seine Spezialfälle, der gewich-
tete und der gewöhnliche Kleinste-Quadrate-Schätzer, werden zusammen mit ihren sta-
tistischen Eigenschaften ausführlich beschrieben. Sie werden auf mehrere Modelle unter
Verwendung des SQP-Algorithmus, einem ableitungsbasierten lokalen Optimierungsal-
gorithmus, in Kombination mit dem OQNLP-Algorithmus, einem Globalisierungsalgo-
rithmus, angewendet. Diese Kombination hat sich bewährt, um gut zu den Messdaten
passende Modellparameter mit wenigen Funktionsauswertungen zu finden, was beson-
ders bei rechenintensiven Modellen wichtig ist.

Die Unsicherheit in den geschätzten Modellparametern, die sich aus der Unsicherheit
in den Messdaten ergibt, sowie die daraus resultierende Unsicherheit in der Modellaus-
gabe werden auf verschiedene Weise unter Verwendung der ersten und zweiten Ablei-
tung des Modells bezüglich dessen Parameter quantifiziert. Die Vor- und Nachteile der
verschiedenen Methoden werden aufgezeigt.

Die Reduzierung der Unsicherheit durch zusätzliche Messungen wird mit optimale
Versuchsplanungsmethoden vorhergesagt. Es wird bestimmt, wie viele Messungen sinn-
voll sind und wie deren Bedingungen, wie Zeit, Ort und zu messender Prozess, für eine
optimale Unsicherheitsreduzierung gewählt werden sollten. Robustifizierungsansätze,
wie sequentielle optimalen Versuchsplanung und approximative Worst-Case Versuchs-
planung, werden verwendet, um die Abhängigkeit der Vorhersagen von der Schätzung
der Modellparameter zu verringern.

Eine detaillierte statistische Beschreibung der Messungen ist für die angewandten
Methoden wichtig. Daher wird eine statistische Analyse von Millionen von marinen
Messdaten durchgeführt. Die klimatologischen Mittel, die Variabilitäten, unterteilt in kli-
matologische und kurzskalige Variabilitäten, und Korrelationen werden aus den Daten
geschätzt. Die zugehörigen Wahrscheinlichkeitsverteilungen werden mittels statistischer
Tests und visueller Inspektion auf Normalität und Log-Normalität untersucht.

Um die Korrelationen zu bestimmen, wurde ein Algorithmus entwickelt, der aus ge-
schätzten Korrelationsmatrizen gültige Korrelationsmatrizen erzeugt, d.h. positive semi-
definite Matrizen mit Einsen als Diagonalwerte. Der Algorithmus versucht, die Ände-
rungen so klein wie möglich zu halten und dabei eine Matrix mit einer niedrigen Kondi-
tionszahl zu erzielen. Seine (ungünstigste) Ausführungszeit und Speicherverbrauch sind
asymptotisch gleich zu denen des schnellsten Algorithmus zum Überprüfen von posi-
tiv Semidefinitheit, was den Algorithmus auf große Matrizen anwendbar macht. Er ist
ebenfalls geeignet für dünnbesetzte Matrizen, da er Besetzungsstrukturen bewahrt. Ne-
ben der Statistik kann der Algorithmus auch in der numerischen Optimierung nützlich
sein.

Im Rahmen dieser Arbeit wurden mehrere Softwarepakete entwickelt oder erweitert,
welche als Open Source frei verfügbar sowie umfassend getestet sind.

Die Ergebnisse aus den Modellen und Daten helfen das Verständnis der zugrunde lie-
genden Prozesse zu verbessern. Die angewandten Methoden beschränken sich nicht auf
die hier verwendeten Anwendungsbeispiele und können auf viele Daten und Modelle in
der Klimaforschung und darüber hinaus angewendet werden.
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1 Introduction

1.1 Climate Change and Climate Research

The earth’s climate system is changing dramatically. The IPCC (Intergovernmental Panel
on Climate Change) summarizes the current changes in the clarity needed: "Warming of
the climate system is unequivocal, and since the 1950s, many of the observed changes are
unprecedented over decades to millennia. The atmosphere and ocean have warmed, the
amounts of snow and ice have diminished, and sea level has risen." [28, 1.1]

These changes have a drastic impact on nature and humankind [28, 1.3]. The risk of
extinction increases for a large fraction of species [28, 2.3]. The frequency and intensity
of extreme precipitation, storms and storm surges, inland and coastal flooding, sea level
rise and land loss as well as drought and water scarcity will increase as climate change
progresses [28, 2.3]. Food security will worsen over time and health risks will increase.
[28, 2.3]. Abrupt and irreversible changes become more likely with progressing global
warming [28, 2.4].

Since the world’s well-being is at stake, there is an urgent need for action [28, 3.2].
195 countries have agreed on the Paris Agreement [42] in 2015 to take action to limit
the global warming to 1.5◦C above pre-industrial levels. However, their efforts must be
significantly increased to achieve this objective [29]. More than 11,000 scientists have
pointed this out as well in 2019. They have warned that "planet Earth is facing a climate
emergency" and that effective countermeasures are indispensable [58]. Another 11,000
have joined this warning within a few days [2].

For being able to take effective actions, it is essential to understand the causes and
consequences of the climate change as well as the progress of transition and how it can
be mitigated. Sound knowledge has been gained in this respect in recent decades [23, 24,
25, 26, 28, 51]. However, there are still many uncertainties and open questions [28, 51],
proving that climate research is still a crucial and ongoing research.

This thesis aims to contribute to this research by demonstrating the applicability and
usefulness of selected methods for data analysis, optimization of model parameters, un-
certainty quantification and uncertainty reduction in climate research. For this purpose,
salt marshes and the marine phosphorus cycle, as two parts of the earth system, were
chosen as application examples. In addition to the presented methods and their assess-
ment, the results obtained for these application examples represent another important
contribution of this thesis.

1.2 Marine Phosphate and its Impact on Climate Change

The main reason for global warming is the anthropogenic increase in greenhouse gas
emissions [28, 1.3.1]. Its contribution from 1951 to 2010 is estimated to be between 0.5◦C
to 1.3◦C [28, 1.3.1]. Within the anthropogenic greenhouse gas emissions, CO2 emissions
are the most crucial. They account for 76% of total global warming due to anthropogenic
greenhouse gas emissions in 2010. [28, 1.2.2] The cumulative CO2 emissions will deter-
mine mainly the global warming in the coming decades and eventually even centuries
[28, 2.1].

The CO2 concentration in the atmosphere is strongly influenced by the ocean. The
ocean has already absorbed about 30% of the emitted anthropogenic CO2 [28, 1.2.2], by
exchanging CO2 between the surface ocean and the atmosphere due to CO2 partial pres-
sure differences [27, 6.1.1] [6, 3.2].

The carbon saturation of the surface water, therefore, is crucial for the CO2 absorption
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capacity of the ocean. The amount of dissolved carbon in the surface ocean in turn is in-
fluenced on the carbon transport within the ocean, which is determined by the solubility
pump, the biological pump and the marine carbonate pump [27, 6.1.1].

In the following we focus on the biological pump which is defined as: "The process
of transporting carbon from the ocean’s surface layers to the deep ocean by the primary
production of marine phytoplankton, which converts dissolved inorganic carbon (DIC)
and nutrients into organic matter through photosynthesis. This natural cycle is limited
primarily by the availability of light and nutrients such as phosphate, nitrate and silicic
acid, and micronutrients, such as iron." [27, Glossary]

The phosphate concentrations, especially in the euphotic zone where enough light for
photosynthesis is available, are therefore important for the CO2 uptake of the ocean and
thus also for the atmospheric CO2 concentration and the intensity of global warming [6,
4].

A statistical analysis of millions of phosphate measurements in the ocean is provided
in Section 4. The methods used for the statistical analysis are presented in Subsection
4.2. The results of the analysis of phosphate measurements are illustrated in Subsection
4.3. They are more comprehensive than results from previous statistical analyses and
improve the understanding of phosphate concentrations in the global ocean.

A model describing the phosphate and dissolved organic phosphorus concentrations
as well as the phytoplankton production in the global ocean is the subject of Section 5. A
detailed description of the model is given in Subsection 5.3. More realistic model param-
eters were determined and associated uncertainties quantified. The applied methods are
described in Subsection 5.2 and the results are illustrated in Subsection 5.4. The obtained
results provide a better understanding of the model and the associated uncertainties, and
enable better predictions using this model.

1.3 Salt Marshes and their Role in Climate Change

Another part of the earth system strongly influenced by climate change, but also influ-
encing climate change itself, is salt marshes. Salt marshes are coastal areas which are
flooded and drained by salt water due to tides and mostly covered with salt-tolerant
grasslike plants.

Salt marshes sequester millions of tons of carbon annually. In this respect they are
one of the most effective ecosystems in the world, considering the amount of sequestered
carbon in relation to the area they require [38]. Therefore, they make an important con-
tribution to mitigating climate change. In addition, they offer many other benefits to
humans, like coastal protection and water purification, food and raw materials as well as
a place of recreation and tourism. [4]

However, the accelerating sea level rises [27, 3.7] endangers salt marshes. Due to their
many advantages for humans, it is important to study their chances of survival [34, 32].
This depends on whether or not their gain of elevation by sedimentary deposition can
compensate the sea level rise.

Models describing the change of salt marsh elevations over time are subject to Sec-
tion 2. The models are described in detail in Subsection 2.4. It was investigated how the
parameters of the models can be adapted to the local salt marshes with minimal measur-
ing effort. The results are included in Subsection 2.4 as well. They allow to increase the
forecasting capability of the models with minimal measuring effort. A software package
developed for this purpose is introduced in Subsection 2.3. The applied methods are pre-
sented in Subsection 2.2. The software package as well as the methods are not limited to
these models.
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1.4 Computer Models in Climate Research

Computer models are, in addition to measurements, the primary tools in climate research
[19, 1.1], [20]. They range from simple energy balance models to complex earth system
models [37, 39] [27, 9.1.2], [39, 5.4]. Their complexity depends on the number and ac-
curacy of the modeled processes and their interactions as well as the resolution used to
model the processes [37, 2.1].

A disadvantage of highly complex models is that they can be executed effectively
only on high-performance computers [37, 1.2.1]. Even on these an execution can take
days, weeks or even months.

Due to the limited availability of computing power, simpler models are still frequently
used. They can be sufficient to answer certain problems and provide insights that might
otherwise be hidden by the complexity of more sophisticated models [37, 1.2.1]. Further-
more, they are indispensable for testing and extending the concepts upon which more
complex models are based [37, 1.1].

The two salt marsh models, which are studied in Section 2, are rather simple models
while the model in Section 5, describing the marine phosphorus cycle, is more complex.
The handling of the complexity and the associated long execution time is also addressed
in the context of the methods presented in this Sections.

1.5 Model Parameters and their Optimization

Climate models, regardless of their complexity, often contain parameters whose values
are usually not known exactly [37, 39]. These can be, e.g., constants or averages in bio-
logical or geological processes unable to be measured directly or only very imprecisely
or only with much effort. On top the parameters are often the result of simplifications,
also called parameterization, of processes of too small scale or too high complexity to be
modeled directly [11, 18], [27, 9.1.3.1], [31], [39, 5.3], [37, 2.5].

Values for these parameters are sometimes just guessed by experts. Often a parame-
ter optimization, also called model calibration, fitting, tuning or parameter estimation, is
carried out [27, Box 9.11], [37, 2.5] where the parameter values are determined by numer-
ical optimization methods, or sometimes even by hand, in such a way that the resulting
model output matches measurement results [3, 60].

The resulting optimal model parameters not only depend on the measurement results
but also on the selected numerical optimization algorithm and the metric which quanti-
fies the difference between the model output and the measurement results. Hence the
numerical optimization algorithm [40, 15], [63, 4], [60, 13,14] and the metric [63, 3], [60,
3], [16, 44, 10, 65] should be carefully selected.

An parameter optimization was also carried out for the models considered in this
thesis. The applied methods are summarized in Subsection 2.2 and 5.2. The results for
this models are presented in Subsection 2.4 and 5.4

1.6 Measurement Data and their Importance in Climate Research

Measurement data are the basis of natural science research [64, Preface], [50, Foreword].
They are essential for understanding the underlying processes and are necessary for op-
timizing model parameters and evaluating models.

For some of the climate related processes, millions of measurement data are available.
An example of this is the World Ocean Database [8], established by the Intergovernmental
Oceanographic Commission, where millions of oceanographic measurement data sets are
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gathered. Due to the large amount of data, it is necessary to extract and summarize the
main information regarding the measured process [35, 4].

This was done for the phosphate data of the World Ocean Database 2013 [7] by a
statistical analysis presented in Section 4. The applied methods, which are not limited
to this data, are described in Subsection 4.2. The results of this analysis are presented in
Subsection 4.3. They were also used in the Section 5 in the parameter optimization of the
marine phosphorus model addressed there.

1.7 Uncertainty in Measurement Data

Common scientific sense dictates that the result of a measurement can never be the true
value of the measured quantity [50, 3]. There are always deviations which have several
sources, like the measurement method, the measurement device, human interactions and
environmental conditions [64, 1.2].

The total deviation is called measurement error and is not known either. The mea-
surement uncertainty quantifies, typically in a statistical way, the expected measurement
error. Measurement data without this quantification are useless [50, 3].

Besides the error in the measurement result, there is also an error in the conditions of
the measurements, such as the time and location of the measurements. Usually this error
can be neglected in climate research because climatic processes usually change very little
on small scales.

This statistical analysis in Section 4 also includes quantification of errors in the mea-
surement results. However, errors in the measurement conditions are neglected since
they are very small compared to the resolution of the analysis.

1.8 Uncertainty in Climate Predictions

Climate predictions with climate models contain several uncertainties which originate
from different sources [27, 1.4.2], [61, 1.1].

On the one hand these are model errors due to approximation or imprecise represen-
tation of the underlying real processes. This may be because the real processes are not
understood completely or because processes have been simplified or omitted. If the real
processes would be thoroughly understood, the model error could be quantified by the
difference between the real processes and the model. Since, this is usually not the case in
climate research, quantifying the model error is often very challenging [61, 12].

Other sources are numerical errors which result from the limited accuracy of the nu-
merical algorithms used to solve the model equations and the computer arithmetic in
general. Detailed error analyses, including numerical error bounds, are available for
many numerical algorithms [21].

Model inputs which are not known exactly, like model parameters, initial or boundary
conditions or exogenous forcing, are another source of uncertainty [63, 5],[61, 7]. All
these uncertain model inputs shall be considered as model parameters for uncertainty
quantification.

Uncertainty quantification is subject to Section 2 and 5. It is addressed how to quan-
tify uncertainties in the model parameters resulting from uncertainties in the measure-
ments as well as uncertainties in the model output resulting from uncertainties in the
model parameters. In Subsection 2.2 and 5.2 methods to quantify these uncertainties with
respect to the weighted least squares estimator and the generalized least squares estima-
tor are discussed. Uncertainty quantification for the studied salt marsh models and the
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studied marine phosphorus model are presented in Subsection 2.4 and 5.4, respectively.
Quantification of model errors or numerical errors are not subject of this thesis.

1.9 Uncertainty Reduction by Optimal Experimental Designs

The uncertainty in the model parameters and the model outputs strongly depends on
the measurement data used for the model parameter estimation which can be taken into
account when planning measurements.

The entirety of all controllable conditions specifying the measurements, e.g., the time
and location of the measurements, the applied measurement methods and the measured
processes, are called measurement conditions. Optimal experimental design techniques
[46, 47],[63, 6] allow to determine these measurement conditions in advance in such a
way that the resulting uncertainty is minimized. Achieving a specified uncertainty with
considerably fewer measurements can considerably reduce the effort and cost of mea-
surements.

Depending on the used design criterion [47, 9], uncertainties in the model parameters
or the model output are taken into account. Uncertainties in different model parameters
or model outputs can also be weighted differently or be limited to a subset of the model
parameters or the model outputs.

It can also be predicted how new measurements would reduce uncertainty, making it
possible to determine in advance whether the associated effort and costs are worth it.

Uncertainty reduction by optimizing measurement conditions is one of the main top-
ics in Section 2 and 5. Related methods are described in Subsection 2.2 and 5.2. Related
results for the salt marsh models and the marine phosphorus model are presented in 2.4
and 5.4, respectively. A software toolbox for optimizing experimental designs is intro-
duced in 2.3.

1.10 Correlation Matrices Derived from Measurement Data

Measurement data and their statistical properties are indispensable for the understand-
ing the associated processes and their modeling. One of these statistical properties are
covariances or correlations. E.g., they are taken into account by estimating model param-
eters with the generalized least squares estimator [60, 2.1.4], by corresponding uncer-
tainty quantification and by uncertainty reduction using optimal experimental designs.

However, these correlations are usually not known and are thus estimated from the
data resulting in a correlation matrix estimate. This could be not positive semidefinite,
i.e., an invalid correlation matrix. In this case, the estimate must be replaced by a valid
one which should of course be close to the original one. Special approximation algo-
rithms are available for this purpose [59, 22, 49].

Further, it is important that the estimated correlation matrix is well conditioned for
numerical reasons. E.g., in order to evaluate the generalized least squares estimator, a lin-
ear equation involving the correlation matrix must be solved. So even if the estimate is a
valid correlation matrix, it might be useful to replace the estimate by a better conditioned
correlation matrix which is still sufficiently close to the original one.

Section 3 focuses on algorithms for both of this problems. As pointed out in Sub-
section 3.1, existing approximation algorithms have different drawbacks. Hence, a new
approximation algorithm, particularly suitable for this purpose, is presented in Subsec-
tion 3.2. A software package with an implementation of this algorithm is presented in
Subsection 3.3 as well as results of numerical experiments that demonstrate the advan-
tages of this algorithm.

12



The aim of this algorithm is to calculate a well-conditioned positive semidefinite ap-
proximation with minimal difference to the original matrix. It allows to predefine or
bound the diagonal values of the approximation. Hence, it can be used for correlation
matrices whose diagonal values have to equal one.

During the development of the algorithm, special attention was paid to a low execu-
tion time and a low memory consumption making it particularly suitable for large ma-
trices. In addition, the sparsity pattern of the original matrix is preserved which makes it
suitable for sparse matrices, too.

Besides statistics, numerical optimization might be another field of application for
this algorithm because in some optimization algorithms nonpositive definite matrices
have to be approximated by positive definite matrices [15, 40, 13].
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Abstract. The geosciences are a highly suitable field of ap-

plication for optimizing model parameters and experimental

designs especially because many data are collected.

In this paper, the weighted least squares estimator for

optimizing model parameters is presented together with its

asymptotic properties. A popular approach to optimize ex-

perimental designs called local optimal experimental designs

is described together with a lesser known approach which

takes into account the potential nonlinearity of the model pa-

rameters. These two approaches have been combined with

two methods to solve their underlying discrete optimization

problem.

All presented methods were implemented in an open-

source MATLAB toolbox called the Optimal Experimental

Design Toolbox whose structure and application is described.

In numerical experiments, the model parameters and ex-

perimental design were optimized using this toolbox. Two

existing models for sediment concentration in seawater and

sediment accretion on salt marshes of different complexity

served as an application example. The advantages and disad-

vantages of these approaches were compared based on these

models.

Thanks to optimized experimental designs, the parameters

of these models could be determined very accurately with

significantly fewer measurements compared to unoptimized

experimental designs. The chosen optimization approach

played a minor role for the accuracy; therefore, the approach

with the least computational effort is recommended.

1 Introduction

Mathematical models often contain roughly known model

parameters which are optimized based on measurements. The

resulting accuracy of the model parameters depends on the

conditions, also called experimental setups or experimental

designs, under which these measurements are carried out.

These experimental designs can be optimized so that the re-

sulting accuracy is maximized. Thus, the effort and cost of

measurements can be significantly reduced.

The optimization of experimental designs is therefore par-

ticularly interesting for geosciences, where much money is

spent on data collection. However, few application exam-

ples exist in this field (see Guest and Curtis, 2009, for an

overview). This article aims to promote this approach in geo-

sciences and exemplarily apply it to an existing salt marsh

accretion model (Schuerch et al., 2013).

In optimizing experimental design, the main problem is to

quantify the information content of the measurements to be

planned. In general, this can only be done approximatively.

There are several approaches available. In Sect. 2, four dif-

ferent approaches to optimize experimental designs together

with the weighted least squares estimator for model param-

eters are presented. Each of these four approaches makes a

different trade-off between accuracy and computational ef-

fort.

One approach is based on the linearization of the model

with respect to the parameters and is the most common used

approach called local optimal experimental design. The sec-

ond more robust approach takes into account the potential

Published by Copernicus Publications on behalf of the European Geosciences Union.
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792 J. Reimer et al.: Optimization of model parameters and experimental designs

nonlinearity of the model parameters. Both approaches are

combined with two different approaches of solving the un-

derlying discrete optimization problem.

To the author’s knowledge, there is no open-source soft-

ware available that can apply all four of these approaches.

The only software using this robust approach is a closed-

source software called VPLAN which was introduced in

Körkel (2002). For the local optimal approach, several im-

plementations are available, but there is no open-source soft-

ware written in MATLAB. All four approaches, together

with approaches to optimize model parameters, were imple-

mented in a MATLAB toolbox called the Optimal Experi-

mental Design Toolbox. Its structure and application is de-

scribed in Sect. 3.

We have chosen two models as application examples,

simulating the suspended sediment concentration on salt

marshes during tidal inundation and resulting accretion rates

on these marshes (Krone, 1987; Temmerman et al., 2003;

Schuerch et al., 2013). Both models are zero-dimensional

point models and differ in their complexity and number of

parameters. These models can be used as a basis to predict

the survival capability of salt marshes under the influence of

expected global sea level rise.

To use these models for local salt marshes, their param-

eters have to be adapted to the local environmental condi-

tions. The required measurements are very time-consuming

and costly. Using the presented approaches, these measure-

ments could be carried out much more efficiently. These two

models are described together with the attendant numerical

experiments and the associated results in Sect. 4.

2 Optimization of model parameters and

experimental designs

The first step to the optimization of model parameters is the

choice of the estimator. This maps the measurement results

onto estimated model parameters. These estimated parame-

ters are often defined so that they minimize a so-called misfit

function. The misfit function quantifies the distance between

the measurement results and the model output.

The estimator should be derived from the statistical prop-

erties of the measurement errors, for example, a maximum

likelihood estimator. Often the measurement errors are as-

sumed to be normally distributed; this leads to the least

squares estimators. They are the most widely used class of

estimators since their introduction by Gauss and Legendre

(Stigler, 1981).

Their simplest form is the ordinary least squares estima-

tor. Its misfit function is the sum of the squares of the dif-

ferences between each measurement result and the corre-

sponding model output. A generalization is the weighted

least squares estimator which has advantages in the event

of heteroscedastic measurement errors. This estimator and

its asymptotic properties are presented in the following sub-

section. The generalized least squares estimator is a further

generalization which takes into account the stochastic depen-

dence of the measurement errors.

2.1 The weighted least squares estimator

In the following, the weighted least squares estimator is pre-

sented. For this purpose, some notations and assumptions are

introduced.

The model function is denoted by

f :�x ×�p→ R.

Here, �x ⊆ Rnx is the set of feasible experimental designs,

and �p ⊂ Rnp is the set of feasible model parameters from

which the unknown exact parameter vector p̂ ∈�p is to be

determined. Often these sets are defined by lower and upper

bounds.

The measurement result for every design x ∈�x is consid-

ered as a realization of a random variable ηx . Each random

variable ηx is assumed to be normally distributed with the

expectation f (x, p̂) and standard deviation σx > 0.

A1a. ηx ∼N (f (x, p̂),σ 2
x ) for every x ∈�x .

Furthermore, these random variables are assumed to be

pairwise stochastically independent.

A1b. ηx and ηx′ are stochastically independent for every

x,x′ ∈�x .

If we consider n≥ np measurement results

y = (y1, . . .,yn)
T
∈ Rn with corresponding experimen-

tal designs x1, . . .,xn ∈�x , the weighted least squares

estimation pn and the corresponding estimator Pn are

defined as

pn := Pn(y) := arg min
p∈�p

ψn(y,p), (1)

where the misfit function ψn is defined as

ψn : Rn×�p→ R, (y,p) 7−→
n∑

i=1

(
yi − f (xi,p)

σxi

)2

.

With the following assumptions, the existence of a mini-

mum is ensured.

A2. f (x, · ) is continous for every x ∈�x .

A3. �p is compact (closed and bounded).

If ψn(y, · ) is convex, the minimum is also unique.

The parameter estimation pn in Eq. (1) can be calculated

with an optimization method for continuous optimization

problems. A possible method is the sequential quadratic pro-

gramming (SQP) algorithm which is, for example, described

in Nocedal and Wright (1999, chapter 18).
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2.2 Asymptotic properties

Provided certain regularity conditions are met, the least

squares estimators are consistent, asymptotically normally

distributed and asymptotically efficient.

These asymptotic properties were first proved by Jennrich

(1969) for the ordinary least squares estimator and also dis-

cussed in Malinvaud (1970) and Wu (1981). In White (1980),

these properties were proved for the weighted least squares

estimator and for the generalized least squares estimator in

White and Domowitz (1984). A good summary for all three

can be found in Amemiya (1983).

Consistency means that the estimated parameters converge

in probability to the unknown exact parameters as the number

of measurements goes to infinity; that is,

Pn
p
−→ p̂ as n→∞

for the weighted least squares estimator Pn with the unknown

exact model parameters p̂.

For consistency, the following assumptions are sufficient

in addition to the previous assumptions A1 to A3 (Seber and

Wild, 2003, p. 565).

A4a. n−1Bn converges uniformly with Bn :�p ×�p→

R, (p,p′) 7−→
n∑
i=1

f (xi,p)f (xi,p
′)σ−2

xi
.

A4b. D̄(p, p̂)= 0⇒ p = p̂ for all p ∈�p with

D̄ := lim
n→∞

n−1Dn andDn :�p×�p→ R, (p,p′) 7−→
n∑
i=1

(f (xi,p)− f (xi,p
′))2σ−2

xi
(D̄ is well defined by

assumption A4a).

An estimator is asymptotically efficient if its variance con-

verges to the Cramér–Rao bound as the number of mea-

surements goes to infinity. The Cramér–Rao bound (Cramér,

1946; Rao, 1945) is a lower bound for the variance of any

unbiased estimator.

For asymptotic efficiency, the following assumptions are

sufficient in addition to the previous assumptions A1 to A4

(Seber and Wild, 2003, p. 571).

A5. p̂ is an interior point of �p. Let �̂p ⊆�p be an open

neighborhood of p̂.

A6. f (xi, · ) is twice continuously differentiable in �̂p.

A7. n−1Mn converges uniformly with Mn : �̂p→

Rnp×np ,p 7−→
n∑
i=1

∇pf (xi,p)∇pf (xi,p)
T σ−2

xi
.

A8. n−1Hn converges uniformly with Hn : �̂p→

Rnp×np ,p 7−→
(

n∑
i=1

( ∂2

∂pi∂pj
f (xi,p))

2σ−2
xi

)

i,j=1,...,np

.

A9. M̂(p̂) is invertible with M̂ := lim
n→∞

n−1Mn.

In this case, the Cramér–Rao bound of the weighted least

squares estimator Pn is the inverse of the Fisher information

matrix Mn(p̂).

Under these assumptions, the asymptotic behavior of the

weighted least squares estimator can be summarized by its

convergence in distribution as follows:

√
n(Pn− p̂)

d
−→N (0,Mn(p̂)

−1n) as n→∞ (2)

(see, e.g., Seber and Wild, 2003, chapter 12 and Walter and

Pronzato, 1997, chapter 3).

2.3 Optimal experimental designs

The accuracy of the weighted least square estimator Pn can

be described by its covariance matrix. Due to the asymp-

totic distribution (Eq. 2), this can be approximated by the

inverse of the information matrix Mn(pn), provided the ma-

trix Mn(pn) is nonsingular, that is,

cov(Pn)≈Mn(pn)
−1. (3)

Therefore, the unknown model parameters can be deter-

mined more accurately the smaller the (approximated) co-

variance matrix of the estimator is.

Criteria φ : Rnp×np → R+ ∪ {∞}, such as the trace or de-

terminant, are used in order to compare these matrices (see,

e.g., El-Monsef et al., 2009, for an overview of various cri-

teria). If the approximation (Eq. 3) is used and Mn(pn) is

singular, the value of φ is set to infinity.

In the context of optimizing experimental designs, we as-

sume n≥ 0 measurements have been carried out and designs

for additional measurements should be selected from m de-

signs x′1, . . .,x
′
m ∈�x . The choice for each design x′i is ex-

pressed by a weight wi ∈ {0,1}, where 1 indicates the selec-

tion and 0 the contrary.

Hence, the resulting information matrix, depending on the

choice w ∈ {0,1}m and the parameter vector pn ∈�p, is de-

fined as

Mn(w,pn) :=Mn(pn)

+

m∑

i=1

wi

∇pf (x
′

i,pn)∇pf (x
′

i,pn)
T

σ 2
x′i

.

If the covariance matrix is approximated by the inverse

of the information matrix, optimal (additional) designs, with

respect to a criterion φ, are expressed by a solution of

arg min
w∈{0,1}m

φ(Mn(w,pn)
−1). (4)

These optimal designs are called local optimal designs be-

cause these designs are only optimal regarding the previous

model parameter estimation pn and not the unknown exact

model parameters p̂.

Potential constraints on the choice of the designs can be

realized by constraints on the weight w. For example, the
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number or the cost of the measurements can be limited by

linear constraints on w. These constraints have to be consid-

ered in the above optimization problem (Eq. 4).

The formulation (Eq. 4) is useful if additional experimen-

tal designs should be chosen from a finite number of experi-

mental designs. Otherwise, the optimization problem can be

reformulated so that the additional optimal design variables

have to be optimized directly.

2.4 Calculation of optimal experimental designs

A straight-forward way to solve the optimization problem

(Eq. 4) is to test all possible values of w. This direct approach

is only practical for small m.

For bigger m, the optimization problem (Eq. 4) is solved

approximately. For this purpose, it is solved in the contin-

uous rather than the discrete setting; that is, the constraint

w ∈ {0,1}m is relaxed to w ∈ [0,1]m. Accordingly, the prob-

lem

arg min
w∈[0,1]m

φ(Mn(w,pn)
−1) (5)

is solved.

A possible algorithm to solve this continuous optimiza-

tion problem is the SQP algorithm which is, for example,

described in Nocedal and Wright (1999, chapter 18).

After the continuous problem (Eq. 5) is solved, its solu-

tion is projected onto integers with heuristics. An easy way

is to round the continuous solution. Another is to sum up all

continuous weights and then to choose as many designs with

the highest continuous weights. Potential constraints on w

still have to be considered by solving the continuous prob-

lem and the following projection onto an integer solution.

The second heuristic, for example, preserves constraints on

the number of designs to choose.

Our numerical experiments with the application examples

in Sect. 4 have shown that the solutions of the continuous

problem (Eq. 5) are already close to integer values. This be-

havior was also observed, for example, in Körkel (2002) and

Körkel et al. (2004).

2.5 Robust optimal experimental designs

The information matrix Mn depends on the estimated pa-

rameters pn if the parameters are nonlinear. This may lead

to suboptimal designs if ∇pf ( · ,pn) differs strongly from

∇pf ( · , p̂).

For this reason, we now consider a method which takes

into account a possible nonlinearity of the parameters. This

robust method was presented in Körkel (2002) and Körkel

et al. (2004).

The main idea of the method is not to optimize the quality

of the covariance matrix for a single parameter vector pn as

in Eq. (4), but to optimize the worst case quality within a

whole domain which contains the unknown exact parameter

vector p̂ with high probability.

For this purpose, a confidence region which contains p̂

with probability α ∈ (0,1) is approximated by

Gn(α) :=
{
p ∈ Rnp | ‖p−pn‖

2
Mn(pn)

−1 ≤ γ (α)
}
. (6)

Here, γ (α) is the α quantile of the χ2 distribution and

‖v‖A :=
√

vTAv denotes the energy norm of the vector v ∈

Rnp with respect to the positive definite matrix A ∈ Rnp×np .

The approximation of the confidence region arises from lin-

earization of the model function f in point pn and the as-

sumption Pn ∼N (p̂,Mn(pn)
−1).

If the worst case quality in the entire region Gn(α) shall

be optimized, the optimization problem (Eq. 4) becomes

arg min
w∈{0,1}m

max
p∈Gn(α)

φ(Mn(w,p)
−1). (7)

This minimum–maximum optimization problem can be

solved only with considerably more computational effort

compared to the optimization problem (Eq. 4). In order to

reduce this effort, the function φ(Mn(w, · )
−1) is linearized

in point pn in the following way:

φ(Mn(w,p)
−1)≈

φ(Mn(w,pn)
−1)+∇p(φ(Mn(w,p)

−1))T (p−pn).

The resulting inner maximization problem can be solved

analytically. It is

max
p∈Gn(α)

φ(Mn(w,pn)
−1)+∇p(φ(Mn(w,p)

−1))T (p−pn)

= φ(Mn(w,pn)
−1)+ γ (α)

1
2 ‖∇p(φ(Mn(w,pn)

−1))‖Mn(pn),

as can be seen, for example, in Körkel (2002). With this ap-

proach the optimization problem (Eq. 7) is replaced by

arg min
w∈{0,1}m

φ(Mn(w,pn)
−1)

+ γ (α)
1
2 ‖∇p(φ(Mn(w,pn)

−1))‖Mn(pn). (8)

This optimization problem again can be solved approxi-

matively by solving the corresponding continuous problem

and projecting this solution onto an integer solution as de-

scribed in the previous subsection.

It should be noted that in this approach (Eq. 8), the first and

second derivatives of the model are used. In contrast, only the

first derivative is used for local optimal designs (Eq. 4).

2.6 Efficiency of experimental designs

A common way to describe the benefit of an experimental

design is its efficiency. The efficiency of an experimental de-

sign w ∈ {0,1}m regarding a criterion φ and with n previous

measurements is defined as follows:

Eφ(w) := min
ŵ∈{0,1}m

φ(Mn(ŵ, p̂)
−1)

φ(Mn(w, p̂)−1)
. (9)
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model_object = model_explicit ( 'p* t ˆ2 ' , 'p ' , ' t ' )
% 1 . input : the model func t i on as symbol ic formula
% 2 . input : the parameter va r i ab l e ( s )
% 3 . input : the exper imenta l des ign va r i ab l e ( s )
% return : a model ob j e c t which implements the model i n t e r f a c e

Listing 1. Create a model with a symbolic model function.

It should be noted that the searched parameter vector p̂ is

used here. If this is not known then the efficiency can not be

calculated.

The efficiency is always between 0 and 1 and is larger the

better the experimental design is.

3 The Optimal Experimental Design Toolbox

We implemented the methods presented in the previous sec-

tion for optimization of model parameters and experimental

designs as a MATLAB toolbox named the Optimal Experi-

mental Design Toolbox.

MATLAB (MathWorks, 2014) was chosen because it sup-

ports vector and matrix operations and provides many nu-

merical algorithms, especially for optimization. Moreover,

MATLAB supports object oriented programming and there-

fore permits a simple structuring, modification and extension

of the implementation. Another advantage of MATLAB is

that it can easily interact with C and Fortran.

The toolbox is available at a Git repository (Reimer, 2015)

under the GNU General Public License (Foundation, 2007).

It includes extensive commented source code, a detailed help

integrated in MATLAB and a user manual.

3.1 Provision of the model function

For the methods described in Sect. 2, the model function and

its first and second derivative with respect to the model pa-

rameters are required.

Actually, the model function is required for the parame-

ter optimization and, depending on the optimization method,

also its first derivative. Its first derivative is also required for

the experimental design optimization. If the robust method is

used its second derivative is also required.

The model interface prescribes how to provide these func-

tions. They need not be written in MATLAB itself, since

MATLAB can call functions in C, C++ or Fortran.

The toolbox has several possibilities to provide the deriva-

tives automatically. The model_fd class, for example, pro-

vides the derivatives by approximation with finite differ-

ences. If the model function is given as an explicit symbolic

function, the model_explicit class can provide the derivatives

by symbolic differentiation with the Symbolic Math Toolbox.

Listing 1 shows, for example, how a model_explicit object is

created.

In the event that the model function is given as a solution

of an initial value problem, the Optimal Experimental De-

sign Toolbox contains the model_ivp class. This class solves

model_object = model_ivp ( '−y+(t+1)*b ' , ' [ a , b ] ' , 'y ' , ' a ' , ' t ' , [ 1 , 1 0 ] )
% 1 . input : the r i gh t hand s i d e o f the d i f f e r e n t i a l equat ion
% 2 . input : the model parameter va r i ab l e ( s )
% 3 . input : the model func t i on va r i ab l e
% 4 . input : the i n i t i a l va lue o f the model func t i on
% 5 . input : the dependent va r i ab l e in the model func t i on
% 6 . input : the i n t e r v a l o f i n t e g r a t i o n
% return : a model ob j e c t which implements the model i n t e r f a c e

Listing 2. Create a model with a model function given as solution

of an initial value problem.

solver_object . set_model ( model_object )
% input : an ob j e c t that implements the model i n t e r f a c e

Listing 3. Set the model.

the parameter dependent initial value problem and calculates

the necessary derivatives. Listing 2 shows how a model_ivp

object is created.

The class takes advantage of the fact that the integration

and differentiation of the differential equation can be inter-

changed if the model function is sufficiently often contin-

uously differentiable. Required derivatives of the differen-

tial equation and initial value are calculated again by sym-

bolic differentiation with the Symbolic Math Toolbox. The

resulting initial value problems are solved with MATLAB’s

ode23s function which can also solve stiff problems. Since

the arising initial value problems for the derivatives are mu-

tually independent, the solutions of the initial value problems

can be calculated in parallel using the Parallel Computing

Toolbox.

3.2 Setup of the solver

Methods for the optimization of model parameters and ex-

perimental designs are provided by the solver class. First, a

solver object has to be created and the necessary information

has to be passed.

On the one hand, this is the model which has to be set by

the set_model method (see Listing 3).

On the other hand, an initial guess of the model parame-

ters have to be set by the set_initial_parameter_estimation

method (see Listing 4).

Potential accomplished measurements can be set via the

set_accomplished_measurements method. These measure-

ments consist of the corresponding experimental designs to-

gether with their variances of the measurement errors. Fur-

thermore, the measurement results themselves have to be

passed for a parameter estimation (see Listing 5).

Finally, if an optimization of experimental designs shall be

performed, the selectable measurements have to be set by the

set_selectable_measurements method (see Listing 6). These

measurements consist of the experimental designs as well as

the variances of the measurement errors.
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solver_object . set_initial_parameter_estimation ( [ 1 , 2 ] )
% input : the i n i t i a l e s t imat ion o f the model parameters

Listing 4. Set the initial parameter estimation.

solver_object . set_accomplished_measurements ( ( 1 : 5 ) ' , 0 .01* ones (5 , 1 ) , −←↩
exp ( ( 1 : 5 ) ' ) )

% 1 . input : the exper imenta l de s i gn s o f accomplished measurements
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s
% 3 . input : the a s s o c i a t ed measurement r e s u l t s

Listing 5. Set accomplished measurements.

3.3 Optimization of experimental designs and

model parameters

Once the solver object is configured as described in the

previous subsection, experimental designs or model param-

eters can be optimized via the get_optimal_measurements

(see Listing 7) or the get_optimal_parameters (see Listing 8)

method, respectively. Constraints on the experimental de-

signs or model parameters can be passed to the correspond-

ing method.

The get_optimal_measurements method can solve the op-

timization problem directly by trying all possible combina-

tions or approximatively.

For the approximative solving, the continuous problem is

solved with the SQP algorithm (see Nocedal and Wright,

1999, Chapter 18) provided by the fmincon function of the

Optimization Toolbox. Its solution is projected onto an inte-

ger solution by the second heuristic described in Sect. 2.4.

The first derivative of the objective function is provided

in analytical form. This saves much of the computing time

compared to derivatives calculated by finite differences. The

Hessian matrix is approximated by the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) update (Broyden, 1970; Fletcher,

1970; Goldfarb, 1970; Shanno, 1970).

MATLAB’s SQP algorithm can recover from infinity. If

an infinite function value is reached during the optimization,

the algorithm attempts to take a smaller step. Thus, if the

optimization is started with a regular design, singular designs

do not make any trouble.

The get_optimal_parameters method uses the trust-

region-reflective (Coleman and Li, 1994, 1996) or the

Levenberg–Marquard algorithm (Levenberg, 1944; Mar-

quardt, 1963; Moré, 1977) provided by the lsqnonlin func-

tion of the Optimization Toolbox to solve the least squares

problem resulting from the parameter estimation. The first

derivative of the objective function is also provided analyti-

cally.

Furthermore, the expected quality of the resulting param-

eter estimation for any selection of experimental designs can

be calculated using the get_quality method of the solver ob-

ject. Thus, for example, the increase in quality by adding or

removing experimental designs can be determined.

solver_object . set_selectable_measurements ( ( 6 : 1 0 ) ' , 0 .01* ones (5 , 1) )
% 1 . input : the s e l e c t a b l e exper imenta l de s i gn s
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s

Listing 6. Set selectable measurements.

optimal_measurements = solver_object . get_optimal_measurements (3 )
% input : the maximum number o f measurements a l lowed
% return : the optimal subset o f the s e l e c t a b l e measurements with a ←↩

number o f measurements l e s s or equal to the r e s t r i c t i o n

Listing 7. Optimize experimental designs.

3.4 Execution time and memory consumption

The total time required for the optimization of the model pa-

rameters or an experimental design depends crucially on the

time required for evaluating the model function and its first

and second derivative with respect to the model parameters.

When optimizing model parameters, the model function

and its first derivative has to be evaluated several times with

different model parameter vectors at the accomplished mea-

suring points. When optimizing experimental designs, the

model function and its first and second derivative has to be

evaluated for one model parameter vector but at the accom-

plished and selectable measuring points.

Generally, the execution time increases with the number of

parameters, the number of selectable measurements and the

number of accomplished measurements.

The implementation of this toolbox favors a low execution

time of a low memory consumption. For this reason, (inter-

mediate) results within a method call and between succes-

sive method calls are saved and reused. An example is mul-

tiple occurring matrix multiplications within a method call.

Another example is a re-optimization of designs with other

constraints, such as another maximum number of allowed

measurements. Here, the derivatives of the model function

calculated in the previous optimization are reused.

Due to the described caching strategy, the total memory

consumption depends linearly on the number of (accom-

plished and selectable) measurements and quadratically on

the number of parameters. Nevertheless, it should be possi-

ble to solve problems with hundreds of parameters and thou-

sands of measurements on a standard computer.

3.5 Changeable options

Many settings for the optimization of experimental designs

or model parameters are changeable. These can be altered by

the set_option method of the solver object (see Listing 9).

The desired options can be set using property-value pairs, as

already known from MATLAB.

Estimation method: The estimation method for the qual-

ity of experimental designs can be selected by the es-

timation_method option. The standard point estimation

method and the robust region estimation method, both
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optimal_parameters = solver_object . get_optimal_parameters ( [ 0 , 0 ] , [ 9 , 9 ] )
% 1 . input : the lower bound o f the model parameters
% 2 . input : the upper bound o f the model parameters
% return : a parameter e s t imat ion r e s u l t i n g from the accomplished ←↩

measurements which takes in to account the passed c on s t r a i n t s

Listing 8. Optimize model parameters.

solver_object . set_option ( ' option name ' , option_value )
% 1 . input : the name o f the opt ion which should be changed
% 2 . input : the new value o f the opt ion

Listing 9. Change an option.

presented in Sect. 2, are supported. The region estima-

tion method is the default setting.

Confidence level: The level of confidence for the confi-

dence region at the region estimation method, repre-

sented by α in Sect. 2.5, can be set by the alpha option.

The default value is 0.95.

Prior parameter estimation: It can be chosen whether a

parameter optimization should be performed before op-

timizing experimental designs. This can be set by the

parameter_estimation option and the values yes or no.

To save computational time no previous parameter opti-

mization is performed by default.

Quality criterion: The quality criterion, which is applied to

the covariance matrix and represented in Sect. 2.1 as

φ, can also be chosen with the criterion option. The

criterion interface prescribes the syntax of the criterion

function and its necessary derivatives. The trace of the

covariance is the default criterion and implemented by

the criterion_A class.

Parameter scaling: It can be chosen whether model pa-

rameter should be scaled before optimizing experi-

mental designs or the model parameters themselves.

Scaling means a uniform impact of all model pa-

rameters and is enabled by default. The options are

edo_scale_parameters and po_scale_parameters with

the values yes and no.

Optimization algorithm for experimental design: The

exact and the approximative approach for the opti-

mization of an experimental design problem can be

chosen with the edo_algorithm option and the values

direct and local_sqp. For time reasons, by default the

experimental design problem is solved by the approxi-

mative approach. Furthermore, the number of function

evaluations and iterations by the SQP algorithm can

be constrained by the options edo_max_fun_evals and

edo_max_iter.

Optimization algorithm for parameter estimation: The

optimization algorithm for the parameter estimation

problem can be chosen with the po_algorithm op-

tion. The trust-region-reflective (Coleman and Li,

1994, 1996) and the Levenberg–Marquard algorithm

(Levenberg, 1944; Marquardt, 1963; Moré, 1977)

can be chosen with the values trust-region-reflective

and Levenberg–Marquardt The trust-region-reflective

algorithm is the default algorithm. Furthermore, the

number of function evaluations and iterations can be

limited through the options po_max_fun_evals and

po_max_iter.

3.6 Help and documentation

The Optimal Experimental Design Toolbox also provides ex-

tensive integrated help. Besides system requirements and

version information, a user’s guide with step-by-step instruc-

tions on how to optimize experimental designs and model

parameters is included. Demos show how to work with the

toolbox in practice. In addition, a detailed description for ev-

ery class and method is available.

The layout of the help for the Optimal Experimental De-

sign Toolbox is based on the design of the help also used by

MATLAB and other toolboxes. Thus, the user does not have

to get reoriented with a new layout.

4 Application examples

In this section, numerical experiments together with their

results regarding the optimization of model parameters and

experimental designs are presented for two models of dif-

ferent complexity. Both models describe the sediment con-

centration in seawater during tidal inundation of coastal salt

marshes.

Coastal salt marshes have an important ecological function

with their diverse flora and as a nursery for migratory birds.

Furthermore, they have the role of dissipating current and

wave energy and therefore reducing erosional forces at dikes

and coastal areas.

With these models, the vertical accretion of coastal salt

marshes can be predicted. When considering expected global

sea level rise (IPCC, 2013), the future ability of coastal salt

marshes to adapt to rising sea levels and thus to survive can

be estimated. Depending on these estimates, measures to pro-

tect these salt marshes can be taken.

Calibration of the model parameters requires measure-

ments of suspended sediment concentration during tidal in-

undation, which are time-consuming and laborious. For this

reason, it is advantageous to know under which conditions

and how many of these measurements should be carried out.

4.1 The models

Both models are zero-dimensional point models, which de-

scribe the sediment concentration in seawater during tidal in-

undation of coastal salt marshes. The first model (C2-model)

has two model parameters, was described in Temmerman

et al. (2003) and was adapted for a salt marsh in the Wadden
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Sea (southeastern North Sea), located near Hoernum in the

southern part of the island of Sylt (Germany), by Schuerch

et al. (2013). The second model (C3-model) has three model

parameters, is an extension of the first model and subject of

current research.

4.1.1 The C2-model

The first model is called the C2-model. Here, the sedi-

ment concentration in kg m−3 is modeled by the function

C : [tS, tE)→ R+. Furthermore, tS is the start time of the in-

undation of the salt marsh and tE the end time. The concen-

trationC is given implicitly as the solution of the initial value

problem

C′(t)=

{
−wSC(t)+(C0−C(t))h

′(t)
h(t)−E

if h′(t) > 0
−wSC(t)
h(t)−E

else

for all t ∈ (tS, tE) and C(tS)= C0. (10)

Here, C0 ≥ 0 is the initial sediment concentration of the

flooding seawater and wS ≥ 0 the settling velocity of the sus-

pended sediment in m s−1. Moreover, the function

h : R→ R, t 7−→
a

1+
(
t−x0

b

)2 +hHW−hMHW

describes the time-dependent water surface elevation and E

the elevation of the marsh both in meters and relative to a

fixed datum. Here, a, b and x0 are constants describing the

change in the water level, hMHW the mean high water level

and hHW the high water level of a certain tidal inundation in

meters. The start tS and end time tE of the inundation are the

points where the height h equals the elevation of the marsh

E.

The sediment concentrationC thus decreases continuously

within a tidal cycle depending on the settling velocity wS

which is described by the term

−
wSC(t)

h(t)−E

in Eq. (10). During the flood phase, the reduced sediment

concentration is partially compensated by new inflowing sea

water. This is described by the term

(C0−C(t))h
′(t)

h(t)−E

in the first case of Eq. (10).

The values used in the water surface elevation function h,

for the local salt marsh, are shown in Table 1. These have

been estimated by nonlinear regression analysis using lo-

cal historic tide gauge data from 1999 to 2009 (at Hoernum

Hafen, Germany). The continuous high-resolution (6 min)

time series has, therefore, been split into the individual tidal

cycles beforehand (Schuerch et al., 2013).

Table 1. Values used for the water surface elevation function h

a b x0 hMHW E

local value 3.7506 19447.1 −1301.0 3.75 m 1.3m

Table 2. Values for the C2-model.

C0 [kg m−3] wS [m s−1]

reference value 0.1 10−5

typical range 0.01–0.2 4× 10−6–4× 10−4

start value 5 2× 10−7

optimization bound 10−4–104 10−8–1

The high water level hHW of the current tidal inundation is

measured or taken from predictions.

The initial sediment concentration C0 and the settling ve-

locity wS are only roughly known and therefore model pa-

rameters. Reference values derived from literature values and

typical ranges can be found in Table 2 (see Bartholdy and Aa-

gaard, 2001, for C0 and Temmerman et al., 2003, for C0 and

wS).

4.1.2 The C3-model

The second model is an extension of the C2-model and is

called the C3-model. Here the model parameters C0 and wS

are substituted by

C0 = k(hHW−E),

wS = r(C0)
s
= rks(hHW−E)

s .

Where k ≥ 0, r ≥ 0 and s ≥ 0 are unknown model parame-

ters. Reference values derived from literature values and typ-

ical ranges (where available) can be found in Table 3 (see

van Leussen, 1999, and Pejrup and Mikkelsen, 2010, for the

settling index s and Temmerman et al., 2004, for k).

In this model, a linear relationship between the initial sed-

iment concentration and the high water level is assumed,

where during heavy flooding a higher sediment concentration

is assumed (Temmerman et al., 2003; Schuerch et al., 2013).

Additionally, a relationship between the initial sediment con-

centration and the settling velocity is assumed (Krone, 1987).

This is an empirical approximation of the so-called floccula-

tion process (Burt, 1986).

4.2 Numerical experiments

We performed several numerical experiments to compare the

benefit of optimized with unoptimized measurement condi-

tions. Also, the benefit of different approaches to optimiza-

tion measurement conditions was compared. Using these re-

sults, an appropriate approach for the optimization of condi-

tions for real measurements was selected.
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Table 3. Values for the C3-model.

k r s

reference value 0.25 10−5 0.5

typical range 0.04–0.2 0.5–3.5

start value 12.5 2× 10−7 3

optimization bound 10−4–104 10−8–1 10−1–5

The approaches introduced in Sect. 2 and implemented

by the Optimal Experimental Design Toolbox described in

Sect. 3 were used for the numerical experiments. For that,

we used the model_ivp class which allows for the calculation

of the solution of an initial value problem and its first and

second derivatives with respect to the model parameters. The

C2-model was implemented by the model_C2 class and the

C3-model by the model_C3 class which is a subclass of the

model_C2 class.

For our numerical experiments, we used the model output

with the reference parameters in Tables 2 and 3 plus an ad-

ditive normally distributed measurement error with zero ex-

pectation as artificial measurement results. As standard de-

viation of the measurement error, we chose 10−2 once and

10−1 once.

In our numerical experiments, we alternately selected a

fixed number of experimental designs and estimated the

model parameters with corresponding measurement results.

We carried out each experiment 10 times and averaged the

results to minimize the influence of randomness.

For the parameter estimation, the start values and bounds

in Tables 2 and 3 were used. The bounds were chosen so that

the typical range of values is covered, but also more extreme

values are possible. The starting values were chosen slightly

outside the typical ranges to represent a poor initial guess.

The experimental designs for these models consist of the

time point of the measurement and the high water level of the

tidal inundation. A set of thirty selectable experimental de-

signs was specified. They were obtained by combining three

different high water levels of the tidal inundation (1.5, 2.0

and 2.5 m) with 10 time points equidistantly spread over the

inundation period.

For choosing the experimental designs, we compared the

standard and the robust approach presented in Sect. 3 with the

trace as quality criterion together with uniformly distributed

experimental designs. In the robust approach, a confidence

level of 95 % was used. The optimization problems for the

experimental designs were once solved exactly and once ap-

proximatively (see Sect. 2.4). To evaluate all these methods,

we compared the resulting parameter estimations with the

reference model parameters.

We further investigated whether the number of measure-

ments after which new experimental designs are optimized

had an impact on the accuracy of the parameter estimation.

For this purpose, different numerical experiments were per-

formed where the parameters and experimental designs have

been optimized after each one, three and five measurements.

Altogether 50 measurements were simulated at each exper-

iment with the C2-model. For the C3-model, 150 measure-

ments were simulated at each experiment since the model is

more complex and therefore a sufficiently accurate estima-

tion of its parameters might be more difficult.

4.3 Accuracy of the parameter estimations

In this subsection, we compare the accuracy of the parameter

estimations resulting from the previously described numeri-

cal experiments. Some results are illustrated in Figs. 1 and

2.

4.3.1 Results for the C2-model

The accuracy of the parameter estimations for the C2-model

only improved marginally after four to twelve measurements

independent of the choice of the experimental designs. The

accuracy improved faster the more frequently the experimen-

tal designs and parameters were optimized. However, the

best achieved accuracy was independent of the frequency.

With uniformly distributed experimental designs the best

achieved accuracy was slightly worse than with optimized

experimental designs. Four to six more measurements were

needed compared to optimized experimental designs in order

to achieve their accuracy.

Although the parameters occur nonlinearly in this model,

it made close to no difference whether the standard or the

robust approach for the optimization of the experimental de-

signs was used.

The approximate solving of the discrete optimization

problem has resulted in slightly worse accuracy at the first it-

erations compared to the exact solving. Thereafter, the differ-

ence was very small. The solutions of the relaxed continuous

optimization problems were almost always nearly integer.

The different standard deviations of the measurement er-

rors only influenced the best achieved accuracy which was of

course worse at a higher standard deviation. This can be ex-

plained by the fact that different constant standard deviations

only mean a different scaling of the objective of the experi-

mental design optimization problem. Thus, different constant

standard deviations do not affect its solution.

4.3.2 Results for the C3-model

After 10–25 measurements, the accuracy of the parameter es-

timations for the C3-model with optimized experimental de-

signs only improved slightly. Again, the fewer measurements

performed per iteration the faster the accuracy improved, and

the best achieved accuracy was independent of the number of

measurements per iteration.

With uniformly distributed experimental designs, the best

accuracy was achieved after 24–60 measurements. Further-
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Figure 1. Averaged error in the parameter estimation from 10 optimization runs with the C2-model and three measurement per iteration with

standard deviation 10−2 of the measurement error.

Figure 2. Averaged error in the parameter estimation from 10 optimization runs with the C3-model and three measurement per iteration with

standard deviation 10−2 of the measurement error.

more, the best achieved accuracy was worse by about a factor

of 10 compared to the best accuracy achieved by (standard)

optimized experimental designs.

The standard approach for optimizing experimental de-

signs resulted in a slightly better accuracy compared to the

robust approach.

For both approaches, the difference between the accuracy

achieved with the exact solutions of the discrete optimization

problem and the accuracy achieved with the approximate so-

lutions was small but recognizable and almost constant over

the iterations. Also in these experiments, the solutions of the

relaxed continuous optimization problems were almost all

nearly integer.

Again, the different standard deviations of the measure-

ment errors only influenced the best achieved accuracy.

4.3.3 Conclusions regarding the approach for

optimizing experimental designs

Optimized experimental designs provided a much more accu-

rate parameter estimation than uniformly distributed experi-

mental designs independent of the chosen optimization ap-

proach. Furthermore, only about half as many measurements

were needed to archive the same accuracy with optimized ex-

perimental designs as with uniformly distributed experimen-

tal designs. In the more complex model, the difference was

even bigger.

The robust approach did not achieved higher accuracy

compared to the standard approach. In the complex model,

the robust approach was even slightly less accurate. This may

indicate that the gain in accuracy by taking into account the

nonlinearity is offset by the additional approximations in the

robust approach. Since a considerably higher computational

effort is associated with the robust approach, the standard ap-

proach should be preferred, at least for these models.

The exact solutions of the discrete optimization problems

yielded only slightly better accuracy gains compared to its

approximate solutions. The fact that the approximate solu-

tions were almost all nearly integer also argues for the ap-

proximate solving. This circumstance was also observed in

Körkel (2002) and Körkel et al. (2004). For these reasons

and because the exact solving requires much more computa-

tional effort, the approximate solving should be preferred, at

least for these models.

4.4 Efficiency for the experimental designs

We also calculated the efficiencies of the used experimental

designs. Some results are illustrated in Figs. 3 and 4.
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Figure 3. Averaged efficiency for the experimental designs from 10 optimization runs with the C2-model and three measurement per iteration

with standard deviation 10−2 of the measurement error.

Figure 4. Averaged efficiency for the experimental designs from 10 optimization runs with the C3-model and three measurement per iteration

with standard deviation 10−2 of the measurement error.

The results emphasized the already seen importance of the

optimization of the experimental designs. In particular, the

advantage in the case of the few measurements carried out so

far was highlighted. Again, the slight advantage of the stan-

dard approach over the robust approach was visible. With

increasing number of accomplished measurements, the se-

lection strategy of new measurements became less important

as the amount and thus the influence of the new measure-

ments compared to those of the accomplished measurements

decreased.

4.5 Distribution of optimal measuring points

In this subsection, we compare the distribution of the mea-

suring points optimized in the previously described numeri-

cal experiments. Graphical representation of the distribution

of the measuring points from some numerical experiments

are shown in Figs. 5 and 6.

4.5.1 Distribution for the C2-model

The optimized measuring points were almost exclusively lo-

cated at the start and end of the inundation periods. At the

start of the inundation period, both approaches in the ex-

act variant favored lower high water levels unlike both ap-

proaches in the approximate variant which favored higher

high water levels. At the end of the inundation period, the

standard approach in both variants favored lower high wa-

ter levels unlike the robust approach in both variants which

favored higher high water levels.

4.5.2 Distribution for the C3-model

For the C3-model the optimized measuring points accumu-

lated at the end of the inundation periods. All approaches

favored lower high water levels. With an increasing number

of measurements per iteration, the robust approach in both

variants also preferred measurements in the middle of the in-

undation periods with the highest high water level.

4.5.3 Conclusions regarding the distribution of optimal

measuring points

The numerical experiments showed that measurements at the

start and end of the inundation periods should be preferred

for the C2-model.

Measurements at the start of the inundations can be justi-

fied by the fact that one parameter of the model is the concen-

tration at the start of the inundation. The fact that the settling

velocity as second model parameter most affects the concen-

tration at the end of the inundations justifies measurements

here. This can be confirmed by an examination of the ordi-

nary differential equation of the model derived with respect

to the settling velocity. The derivative of the model with re-
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Figure 5. Averaged frequency of measurements from 10 optimization runs with the C2-model and three measurement per iteration with

standard deviation 10−2 of the measurement error.

Figure 6. Averaged frequency of measurements from 10 optimization runs with the C3-model and three measurement per iteration with

standard deviation 10−2 of the measurement error.

spect to the settling velocity is zero at the start of the inun-

dation and is getting smaller the further the inundation pro-

gresses. Its absolute greatest value it thus reached at the end

of the inundation.

The experiments with the C3-model showed that here mea-

surements at end of the inundation periods should be pre-

ferred. In this model, the concentration at the start is no pa-

rameter but is affected by a parameter that also influences

the settling velocity. For this reason, measurements are not

suggested at the start.

For both models the high water level seemed to play a mi-

nor role for the choice of measuring points.

As a rule of thumb, one can say that measurements should

be carried out at the end of an inundation period and also

some at the start if the C2-model is used.

5 Conclusions

In this paper we presented two different approaches for op-

timizing experimental design for parameter estimations. One

method was based on the linearization of the model with re-

spect to its parameters, the other takes into account a possi-

ble nonlinearity of the model parameters. Both methods were

implemented in our presented Optimal Experimental Design

Toolbox for MATLAB.

By employing the presented approach for two existing salt

marsh models, we showed that model parameters can be de-

termined much more accurately if the corresponding mea-

surement conditions were optimized. In particular for time-

consuming or costly measurements, it is useful to optimize

the measurement conditions with the Optimal Experimental

Design Toolbox.

This gain in accuracy is not limited to the application ex-

amples. In general, using the implemented methods, the ac-

curacy of the parameters of any model can be maximized

while minimizing the measurement cost, provided that the

related assumptions are fulfilled. However, the required ex-

ecution time for the optimization increases with the number

of model parameters and (accomplished and selectable) mea-

surements. Parallelization techniques in the optimization as

well as in the model evaluation itself can counteract this ef-

fect.

In addition to the parallelization, the optimization in the

toolbox could also be extended to techniques of globaliza-

tion, so that the chance of getting into a local minimum is

reduced.

The results concerning the application examples have not

significantly differed despite the various approaches for op-

timizing experimental design. For this reason, the approach

with the least computational effort is recommended. How-

ever, this recommendation can not be applied readily to other

Geosci. Model Dev., 8, 791–804, 2015 www.geosci-model-dev.net/8/791/2015/
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(more complex) models. Here, the performance of the ap-

proaches should be compared again if possible.

Furthermore, it has been found that measurements at the

beginning and end of the inundation period are particularly

important for the application examples. The high water level

of the inundation seemed to play a minor role. These results,

however, can not be applied easily to other models. Usually,

a separate optimization of experimental design makes sense

here.

Code availability

The Optimal Experimental Design Toolbox is available un-

der the GNU General Public License (Foundation, 2007) at

a Git repository (Reimer, 2015). In addition to the toolbox,

including commented source code and a user manual, an im-

plementation of the application examples is also available.
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In this corrigendum, we explain that the images in Figs. 2,
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should actually be Fig. 3; the image of Fig. 3 should actually
be Fig. 5; the image of Fig. 4 should actually be Fig. 2; and
the image of Fig. 5 should actually be Fig. 4.
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2 J. Reimer

1 Introduction

Algorithms for approximating Hermitian matrices by positive semidefinite Her-
mitian matrices are useful in several areas. In stochastics they are needed to
transform nonpositive semidefinite estimations of covariance and correlation
matrices to valid estimations [50,44,27,23]. In optimization they are needed
to deal with nonpositive definite Hessian matrices in Newton type methods
[20,40,8].

The existing algorithms have different disadvantages, which will be outlined
below. A new algorithm without these disadvantages is presented in Section 2
where it is also examined in detail. An implementation is introduced in Section
3 together with numerical experiments and corresponding results. Conclusions
are drawn in Section 4.

1.1 Objectives of approximation algorithms

In order to evaluate the existing algorithms, objectives of an ideal approxima-
tion algorithm are established. For this, let A ∈ Cn×n be an Hermitian matrix
and B ∈ Cn×n its approximation. The first three objectives are the following:

(O1) B is positive semidefinite.

(O2) The approximation error ‖B −A‖ is small.

(O3) The condition number κ(B) = ‖B‖ ‖B−1‖ is small.

In addition to the approximation error, the condition number of the approx-
imation is usually important as well, since, for example, often linear equations
including the approximation have to be solved.

The three objectives (O1), (O2) and (O3) are sometimes contradictory.
Hence, an ideal algorithm would allow to prioritize between (O2) and (O3).
The norm used in (O2) and (O3) may depend on the actual application.
Typical choices are the spectral norm or the Frobenius norm.

Especially for large matrices, the execution time of the algorithm as well as
the needed memory are important. The fastest way to test whether a matrix
is positive definite is to try to calculate its Cholesky decomposition [24]. This
needs 1

3n
3 +O(n2) basic operations in the dense real valued case. The approx-

imation algorithm cannot be expected to be faster but at least asymptotically
as fast. Thus, the next two objectives are:

(O4) The algorithm requires at most O(n2) more basic operations than the
calculation of a Cholesky decomposition of B.

(O5) The algorithm needs to store O(n) numbers besides A and B and allows
to overwrite A with B.

If A is a sparse matrix,B should have the same sparsity pattern. This allows
an effective overwriting and is essential if the corresponding dense matrix
would be to big to store. Thus, the next objective is:
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Approximation of Hermitian Matrices by Positive Semidefinite Matrices 3

(O6) Aij = 0 implies Bij = 0.

For correlation matrices it is crucial that B has only ones as diagonal
values. This is the reason for the last objective:

(O7) The diagonal of B can be predefined.

Similar objectives to (O1), (O2), (O3) and (O4) have been used in [53,
54,7,15]. Here, another objective has been established: If A is ”sufficiently”
positive definite, B should be equal to A. This objective is not explicitly listed
here and should be covered by (O2).

1.2 Existing approximation methods

An overview of existing methods to approximate Hermitian matrices by pos-
itive semidefinite Hermitian matrices is provided next. They are evaluated
using the objectives mentioned above.

The minimal approximation error can be achieved by computing an eigen-
decomposition and replacing negative eigenvalues [24,25]. This was done in
statistics [32,50] as well as in optimization [40, Chapter 3.4], [20, Chapter
4.4.2.1]. However, this does not meet (O4), (O6) and (O7).

It is also possible to calculate approximations with minimal approximation
error and the restriction that all diagonal values are one [27,3,4,28]. These
methods could be extended so that the approximation has arbitrary predefined
(nonnegative) diagonal values. Nevertheless, these methods do not meet (O4)
and (O6).

Another method, especially common in optimization, is to add a predefined
positive definite matrix multiplied by a sufficiently large scalar to the original
matrix. The predefined matrix is usually the identity matrix or a diagonal ma-
trix. The scalar is usually determined by increasing a value until the resulting
approximation can be successfully Cholesky factorized. This method is also
used in a modified Newton’s method [21,8,40] and the Levenberg-Marquardt
method [37,38,8]. However, (O4) and (O7) are not met.

A well-known method, in statistics, is a convex combination with a pre-
defined positive definite matrix. In this context it is based on the concept of
shrinkage estimator [55,14,50]. The positive definite matrix is again usually
the identity matrix or a diagonal matrix. Only the convex combination factor
has to be determined. This is usually done by examining the underlying sta-
tistical problem [6,16,30,35,36,52,58]. However, methods without using any
statistical assumptions exist as well [23]. None of these meet (O4) and (O7).

Other methods used, especially in optimization, are modified Cholesky
algorithms [19,20,53,54,39,7,15]. These compute a variant of a Cholesky de-
composition like a LDLT , a LBLT or a LTLT decomposition. Here L is a
lower triangular matrix, D is a diagonal matrix, B is a block diagonal matrix
with block size smaller of one or two and T is a tridiagonal matrix. During
or after the calculation of these decompositions, their factors are modified so
that they represent a positive definite matrix. The methods based on LBLT
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4 J. Reimer

decomposition [39,7] do not meet (O4), (O6) and (O7), the ones based on
LTLT decomposition [15] do not meet (O6) and (O7) and the ones based on
LDLT decomposition [19,20,53,54,15] do not meet (O7).

Hence, none of the existing methods meet all objectives. However, meth-
ods that do not meet (O7) can be extended to meet this objective. For that
the calculated approximation is multiplied by a suitable chosen diagonal ma-
trix from both sides. This does not affect (O1), (O4), (O5) and (O6). So
the modified Cholesky method based on LDLT decomposition could meet all
objectives if they are extended to meet (O7).

The new method presented in Section 2 is a modified Cholesky method
based on LDLT decomposition as well. Contrary to the already published
methods of this kind, this methods modifies not only the matrix D but also
the matrix L during their calculation. In this way, the algorithm meets all ob-
jectives. Furthermore it better meets (O2) and (O3) than the other extended
methods based on LDLT decomposition as shown in Section 3 by numerical
experiments.

2 The approximation algorithm

The algorithm MATRIX which approximates Hermitian matrices by positive
semidefinite matrices Hermitian is presented and analyzed in this section.

2.1 The MATRIX and the DECOMPOSITION algorithm

Previous modified Cholesky methods based on LDLT decomposition [19,20,
53,54,15] applied to a symmetric matrix A try to calculate its LDLT decompo-
sition. While doing so, they increase some of the values in the diagonal matrix
D. Hence, they result in a decomposition of a positive definite matrix A+∆,
where ∆ is a diagonal matrix with values greater or equal to zero. However, is
this way, the approximation A+∆ cannot have predefined diagonal elements.

The key idea of the new algorithm is to modify the off-diagonal values of A
instead or in addition to its diagonal values. In detail, the Hermitian positive
definite approximation B ∈ Cn×n of an Hermitian A ∈ Cn×n is defined as

Bij := ω̂ijAij if i 6= j and Bii := Aii + δi

where ω̂ij ∈ [0, 1], ω̂ij = ω̂ji and δi ∈ R for all i, j ∈ {1, . . . , n}.
If, for example, ω̂ij = 0 and δi > |Aii| for all i, j ∈ {1, . . . , n}, then B is a

diagonal matrix with only positive values and thus positive definite. If, on the
other hand, ω̂ij = 1 and δi = 0 for all i, j ∈ {1, . . . , n}, then B = A and there
is no approximation error.

The challenge is now to determine the values ω̂ij and δi such that the objec-
tives established in Subsection 1.1 are met. This is where we use a (complex
valued) modified Cholesky method based on LDLH decomposition. During
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Approximation of Hermitian Matrices by Positive Semidefinite Matrices 5

the calculation of a LDLH decomposition of A, we modify L and D if the ma-
trix represented by the decomposition would become not positive definite, its
condition number would become to high or the requirements on the diagonal
values would be violated otherwise.

In detail, the off-diagonal values in the i-th row of L are multiplied by ωi ∈
[0, 1] and δi ∈ R is added to the i-th diagonal value of D. This δi corresponds
to the previously mentioned δi and ω to ω̂ such that ω̂i,j = ωmax{i,j} for all
i, j ∈ {1, . . . , n}. This relationship is discussed in Subsection 2.2. Furthermore
symmetric permutation techniques are used to reduce the approximation error,
the computational effort and the required memory.

The algorithm DECOMPOSITION, which computes the permuted mod-
ified LDLH decomposition and the values ω and δ, is described in detail in
Algorithm 1.

Algorithm 1 DECOMPOSITION

Input:
· A ∈ Cn×n Hermitian, x ∈ (R∪{−∞})n, y ∈ (R∪{∞})n, l ∈ R∪{−∞},
u ∈ R ∪ {∞}, ε > 0
· with max{xi, l} ≤ min{yi, u} for all i ∈ {1, . . . , n}
· with |xi|, |l| ≥ ε or |yi|, |u| ≥ ε for all i ∈ {1, . . . , n}

Output:
· L ∈ Cn×n, d, ω, δ ∈ Rn, p ∈ {1, . . . , n}n

1: function decomposition(A, x, y, l, u, ε)
2: pi ← i for all i ∈ {1, . . . , n}
3: αi ← 0 for all i ∈ {1, . . . , n}
4: for i← 1, . . . , n do
5: select j ∈ {i, . . . , n}
6: swap pi with pj and Lik with Ljk for all k ∈ {1, . . . , i− 1}
7: select di ∈ [l, u], ωpi ∈ [0, 1] with |di| /∈ (0, ε), di+αpiω

2
pi ∈ [xpi , ypi ]

8: Lij ← ωpiLij for all j ∈ {1, . . . , i− 1}
9: δpi ← di + ω2

piαpi −Apipi
10: for j ← i+ 1, . . . , n do
11: if di 6= 0 then

12: Lji ←
(
Apjpi −

i−1∑
k=1

LjkLikdk

)
(di)

−1

13: αpj ← αpj + |Lji|2di
14: else
15: Lji ← 0
16: end if
17: end for
18: end for
19: Lii ← 1 and Lij ← 0 for all i, j ∈ {1, . . . , n} with j > i
20: return (L, d, p, ω, δ)
21: end function
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6 J. Reimer

The algorithm MATRIX, which computes the approximation B, is de-
scribed in detail in Algorithm 2.

Algorithm 2 MATRIX

Input:
· A ∈ Cn×n Hermitian, x ∈ (R∪{−∞})n, y ∈ (R∪{∞})n, l ∈ R∪{−∞},
u ∈ R ∪ {∞}, ε > 0
· with max{xi, l} ≤ min{yi, u} for all i ∈ {1, . . . , n}
· with |xi|, |l| ≥ ε or |yi|, |u| ≥ ε for all i ∈ {1, . . . , n}

Output:
· B ∈ Cn×n

1: function matrix(A, x, y, l, u, ε)
2: (L, d, p, ω, δ)← DECOMPOSITION(A, x, y, l, u, ε)
3: qpi ← i for all i ∈ {1, . . . , n}
4: for i← 1, . . . , n do
5: Bii ← Aii + δi
6: for j ← i+ 1, . . . , n do
7: if qi > qj then
8: a← j, b← i
9: else

10: a← i, b← j
11: end if
12: if dqa 6= 0 or ωb = 0 then
13: Bij ← Aijωb
14: else

15: Bij ←
qa−1∑
k=1

LqikdkLqjk

16: end if
17: end for
18: end for
19: Bji ← Bij for all i, j ∈ {1, . . . , n} with j > i
20: return B
21: end function

The parameters l and u of the algorithms are lower and upper bounds on
the diagonal values of D. The positive definiteness of B can be controlled by
l as pointed out in Subsection 2.3. The parameters x and y are lower and
upper bounds on the diagonal values of B as shown in Subsection 2.4. The
condition number of B and the approximation error ‖B − A‖ are influenced
by x, y, l, u as demonstrated in Subsection 2.5 and 2.6, respectively. Moreover,
they allow to prioritize a low approximation error or a low condition number.
The numerical stability of the algorithms is controlled by ε.

The algorithms can be considered as a whole class of algorithms since there
are many possibilities to choose the permutation and ω and δ as discussed in
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Subsection 2.7 and 2.8. The algorithm is carefully designed, so that the over-
head in computational effort and memory consumption compared to classical
Cholesky decomposition algorithms is negligibly if ω and δ are chosen in a
proper way, as shown in Subsection 2.9.

For the rest of this section, we use the following notation for the analysis
of both algorithms.

Definition 1 Let

B := MATRIX(A, x, y, l, u, ε)

where (A, x, y, l, u, ε) is some valid input for the algorithm with A ∈ Cn×n and

(L, d, p, ω, δ) := DECOMPOSITION(A, x, y, l, u, ε).

Define D := diag(d) the diagonal matrix with d as the diagonal. Define P ∈
Rn×n as the permutation matrix induced by p, which is

Pij :=

{
1 if j = pi

0 else
for all i, j ∈ {1, . . . , n}.

2.2 Representation of the approximation matrix

In this subsection it is shown that B = PTLDLHP . This means that
MATRIX calculates the matrix represented by the decomposition calcu-
lated by DECOMPOSITION. This will be crucial for further investigation
of MATRIX.

First, we prove that p is a permutation vector.

Lemma 1

{pi | i ∈ {1, . . . , n}} = {1, . . . , n}.

Proof: In DECOMPOSITION, the variable p is initiated at line 2 of the
algorithm so that pi = i for all i ∈ {1, . . . , n}. After its initialization, the
variable p is only changed in line 6. Here some of its components are swapped
in each iteration. Thus {pi | i ∈ {1, . . . , n}} = {1, . . . , n} at the end of the
algorithm.

ut

Next it is shown how a corresponding inverse permutation vector can be
defined.

Lemma 2 Define

qpi := i for all i ∈ {1, . . . , n}.
q is well defined and

pqi = i for all i ∈ {1, . . . , n}.
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8 J. Reimer

Proof: q is well defined due to Lemma 1. Let i ∈ {1, . . . , n}. Due to Lemma 1,
a j ∈ {1, . . . , n} exists with pj = i. Furthermore qpj = j due to the definition
of q. Thus, pqi = pqpj = pj = i follows.

ut
A fast way to calculate LDLH , using only A, ω, δ and p, is pointed out in

the next lemma.

Lemma 3

(LDLH)ii = Apipi + δpi

and

(LDLH)ij = Apipjωpmax{i,j} if dmin{i,j} 6= 0 or ωpmax{i,j} = 0

for all i, j ∈ {1, . . . , n} with i 6= j.

Proof: First some properties of the variable p during the execution of the
algorithm are proved. Denote the for loop starting at line 4 of the algorithm
the main for loop. Let p(0) be the value of the variable p directly before the main
for loop and p(i) its value directly after its i-th iteration for each i ∈ {1, . . . , n}.
Its final value is denoted by p.

Let i ∈ {1, . . . , n}. The variable p is initiated so that p
(0)
i = i. After its

initialization, the variable p is only changed in line 6. Here the variables pi
and pj are swapped for some j ∈ {i, . . . , n} in the i-th iteration of the main
for loop. Hence

{p(j)i | i ∈ {1, . . . , n}} = {1, . . . , n} for all j ∈ {1, . . . , n}. (1)

Furthermore the variable pi is not changed anymore after the i-th iteration.
Thus

pi = p
(j)
i for all i, j ∈ {1, . . . , n} with i ≤ j (2)

and hence

p
(i)
i 6= p

(j)
j for all i, j ∈ {1, . . . , n} with i 6= j. (3)

Next it is shown that all entries in the variables d, ω and δ are set once
in the algorithm and are never changed after that. Hence, we do not need an
index indicating the current iteration for this variables. Let d, ω and δ be the
final value of the corresponding variables.

The value of di is set in the i-th iteration of the main for loop at line 7
and nowhere else. The values of ωpi and δpi are set in the i-th iteration of the
main for loop at line 7 and line 9 and due to (3) nowhere else. Furthermore
ωi and δi are set due to equation (2) and Lemma 1. Hence, all entries in the
variables d, ω and δ are set once in the algorithm and are never changed after
that.

Next properties of the variable L in the algorithm are proved which will
lead to the result of this lemma. Denote with L(i) the value of the variable L
directly after the i-th iteration of the main for loop for all i ∈ {1, . . . , n}. L
denotes its final value.
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Let i, j ∈ {1, . . . , n} with j < i. The variable Lij is only changed in the
j-th iteration at line 12 or line 15, in the i-th iteration at line 8 and maybe in
the k-th iteration at line 6 for k ∈ {j + 1, . . . , i}. Thus, after the i-th iteration
it is unchanged which means

Lij = L
(k)
ij for all i, j, k ∈ {1, . . . , n} with j < i ≤ k. (4)

In the i-th iteration, the variable Lij might only be changed in line 6 and
line 8. In line 6 the variable Lij is only changed if it is swapped with the
variable Lkj for some k ∈ {i+1, . . . , n}. This is exactly the case if the variable
pi is swapped with the variable pk. This together with line 8 and equation (1)
implies

L
(i)
ij = ω

p
(i)
i
L
(i−1)
kj if p

(i)
i = p

(i−1)
k

for all i, j, k ∈ {1, . . . , n} with j < i.

This results with equation (2) and (4) in

Lij = ωpiL
(i−1)
kj if pi = p

(i−1)
k

for all i, j, k ∈ {1, . . . , n} with j < i.
(5)

In the k-th iteration for all k ∈ {j + 1, . . . , i − 1}, the variable Lij might
only be changed in line 6 due to a swap with the variable Lkj . This is exactly
the case if the variable pi is swapped with the variable pk. This together with
equation (1) implies

L
(l)
ij = L

(l−1)
kj if p

(l)
i = p

(l−1)
k

for all i, j, k, l ∈ {1, . . . , n} with j < l < i.
(6)

Equation (5) and (6) result in

Lij = ωpiL
(l)
kj if pi = p

(l)
k

for all i, j, k, l ∈ {1, . . . , n} with j ≤ l < i.
(7)

Now with this preparatory work, the main statement of this lemma can be
proved. Ljj = 1 and Ljk = 0 for all k ∈ {j + 1, . . . , n} due to line 19. This
implies

(LDLH)ij =
n∑

k=1

LikLjkdk = Lijdj +

j−1∑

k=1

LikLjkdk.

Due to equation (1), a l ∈ {1, . . . , n} exists with pi = p
(j)
l . Hence, equation

(4) and (7) imply

Lijdj+

j−1∑

k=1

LikLjkdk = Lijdj+

j−1∑

k=1

LikL
(j)

jk dk = ωpi

(
L
(j)
ij dj +

j−1∑

k=1

L
(j)
ik L

(j)

jk dk

)
.
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Thus

(LDLH)ij = ωpi

(
L
(j)
ij dj +

j−1∑

k=1

L
(j)
ik L

(j)

jk dk

)
. (8)

Due to line 12

A
p
(j)
l p

(j)
j

= L
(j)
lj dj +

i−1∑

k=1

L
(j)
lk L

(j)

jk dk if dj 6= 0.

Furthermore pi = p
(j)
l by definition of l and pj = p

(j)
j due to equation (2).

This together with the previous two equations implies

(LDLH)ij = ωpiApipj if dj 6= 0.

Moreover with equation (8) it follows

(LDLH)ij = ωpiApipj if ωpi = 0.

D is a real-valued diagonal matrix and thus Hermitian. Hence, the matrix
LDLH is Hermitian as well. Since A is also Hermitian,

(LDLH)ji = (LDLH)ij = ωpiApipj = ωpiApjpi if dj 6= 0 or ωpi = 0. (9)

The combination of the three previous equations results in

(LDLH)ij = Apipjωpmax{i,j} if ωpmax{i,j} 6= 0 or dmin{i,j} = 0

for all i, j ∈ {1, . . . , n} with i 6= j

which is one part of the statement of this lemma.
Since Lii = 1 and Lik = 0 for all k ∈ {i+ 1, . . . , n} due to line 19,

(LDLH)ii =

n∑

j=1

|Lij |2dj = di +

i−1∑

j=1

|Lij |2dj . (10)

Define for every k ∈ {0, . . . , i− 1} an ik ∈ {1, . . . , n} with pi = p
(k)
ik

which
exists uniquely due to equation (1). Then equation (7) implies

i−1∑

j=1

|Lij |2dj = ω2
pi

i−1∑

k=1

|L(k)
ikk
|2dk. (11)

Denote with α(0) the value of the variable α directly before the main
for loop and with α(i) its value directly after its i-th iteration for each i ∈
{1, . . . , n}.

Define for every k ∈ {0, . . . , i − 1} an ik ∈ {k + 1, . . . , n} with pi = p
(k)
ik

which exists uniquely due to equation (1). Then

α(i)
pi = α

(i−1)
p
(i−1)
ii−1
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and
α
(k)

p
(k)
ik

= α
(k−1)
p
(k)
ik

+ |L(k)
ikk
|2dk for all k ∈ {1, . . . , i− 1}

due to line 13. Furthermore α
(0)
pi0

= 0 due to line 3. Hence

α(i)
pi =

i−1∑

k=1

|L(k)
ikk
|2dk. (12)

The combination of equation (10), (11) and (12) results in

(LDLH)ii = di + ω2
piα

(i)
pi .

Due to line 9 and equation (2), di + ω2
piα

(i)
pi = δpi +Apipi and thus

(LDLH)ii = δpi +Apipi

which is the other part of the statement of this lemma.
ut

The next lemma shows how B can be calculate using only A, δ, ω and p.

Lemma 4
Bii = Aii + δi

and
Bij = Aijωb(i,j) if dqa(i,j)

6= 0 or ωb(i,j) = 0

where

qpi := i, a(i, j) :=

{
j if qi > qj

i else
, b(i, j) :=

{
i if qi > qj

j else

for all i, j ∈ {1, . . . , n} with i 6= j.

Proof: First of all, q is well defined due to Lemma 2. Let i ∈ {1, . . . , n}. In
MATRIX, Bii is set only at line 5 in the i-th iteration of the outer for loop at
line 4. Due to this line Bii = Aii + δi and thus

Bii = Aii + δi for all i ∈ {1, . . . , n}
Let j ∈ {i+1, . . . , n}. In MATRIX, the variable Bij is set only in line 13 or

line 15 in the i-th iteration of the outer for loop at line 4 and the j-th iteration
of the inner for loop at line 6. At this iteration the variables a and b have the
the value a(i, j) and b(i, j), respectively, due to line 8 and line 10. Hence due
to line 13,

Bij = Aijωb(i,j) if dqa(i,j)
6= 0 or ωb(i,j) = 0

for all i, j ∈ {1, . . . , n} with i < j.

The variable Bji is set only in line 19 so that Bji = Bij . Hence, the previous
equation implies

Bji = Bij = Aijωb(i,j) = Aijωb(i,j) = Ajiωb(j,i)

if dqa(j,i)
6= 0 or ωb(j,i) = 0 for all i, j ∈ {1, . . . , n} with i < j.
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ut
Next the main theorem of this subsection emphasizes the connection be-

tween MATRIX and DECOMPOSITION.

Theorem 1
B = PTLDLHP.

Proof: Define
qpi := i for all i ∈ {1, . . . , n}.

Due to Lemma 2, q is well defined and

pqi = i for all i ∈ {1, . . . , n}.
Let i, j ∈ {1, . . . , n} with i < j. Define a and b so that

qa = min{qi, qj} and qb = max{qi, qj}.
This is well defined due to Lemma 1.

Due to line 15 of MATRIX and the definition of the variables a and b in
the algorithm,

Bij =

qa−1∑

k=1

LqikdkLqjk if dqa = 0 and ωb 6= 0.

Since L is a lower triangular matrix and due to the definition of qa,

Lqik = 0 or Lqjk = 0 for all k ∈ {qa + 1, . . . , n}.
Thus,

Bij =
n∑

k=1

LqikdkLqjk = (LDLH)qiqj if dqa = 0 and ωb 6= 0.

Furthermore Lemma 3 and 4 and the definition of q imply

Bij = Aijωb = Apqipqjωpqb = (LDLH)qiqj if dqa 6= 0 or ωb = 0.

Due to line 19 of MATRIX,

Bji = Bij = (LDLH)qiqj = (LDLH)qjqi

Lemma 3 and Lemma 4 imply

Bii = Aii + δi = Apqipqi + δpqi = (LDLH)qiqi .

Thus
Bij = (LDLH)qiqj for all i, j ∈ {1, . . . , n}.

The definition of P implies

Pqii = 1 and Pqji = 0 for all i, j ∈ {1, . . . , n} with i 6= j.

Hence,

(LDLH)qiqj =
n∑

k=0

n∑

j=0

Pki(LDL
H)klPlj = (PTLDLHP )ij

for all i, j ∈ {1, . . . , n}.
ut
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2.3 Positive semidefinite approximation

MATRIX can be forced to calculate positive definite or positive semidefinite
matrices using l > 0 or l ≥ 0, respectively as shown in Theorem 2. Thus,
MATRIX meets objective (O1) if l ≥ 0 is chosen. To prove this theorem, it
is first shown that the values of d are bounded below by l. For subsequent
proofs, it is also shown that the values of d are bounded above by u and y.

Lemma 5

di ∈ [l, u] ∩ R and |di| /∈ (0, ε)

and if l ≥ 0,

di ≤ ypi
for all i ∈ {1, . . . , n}.

Proof: Let i ∈ {1, . . . , n}. In DECOMPOSITION the variable d is only
changed in line 7. Here di is chosen at the i-th iteration of the surrounding for
loop so that di ∈ [l, u]∩R and |di| /∈ (0, ε). Apart from that, the variable di is
not set or changed anymore, so

di ∈ [l, u] ∩ R and |di| /∈ (0, ε) for all i ∈ {1, . . . , n}.

The variable α in DECOMPOSITION is only changed in line 3 and line 13.
Due to this lines and the previous equation,

αi ≥ 0 if l ≥ 0.

In line 7, di is also chosen so that di +ω2
piαpi ≤ ypi . This implies, together

with the previous equation,

di ≤ ypi if l ≥ 0 for all i ∈ {1, . . . , n}.
ut

Theorem 2 B is positive semidefinite if l ≥ 0 and positive definite if l > 0.

Proof: Theorem 1 implies

zHBz = zHPTLDLHPz = (LHPz)HD(LHPz)

for all z ∈ Cn. Moreover L and P are invertible. Hence, B is positive semidef-
inite if Dii = di ≥ 0 and positive definite if Dii = di > 0 for all i ∈ {1, . . . , n}.
Thus, Lemma 5 implies that B is positive semidefinite if l ≥ 0 and positive
definite if l > 0.
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2.4 Diagonal values

MATRIX allows to define lower and upper bounds for the diagonal values of B
using x and y as proved in Theorem 3. This allows to predefined diagonal values
of B by setting both bounds to the desired diagonal values. Thus, MATRIX
meets objective (O7) by appropriately selecting the parameters x and y.

It should be taken into account that the algorithm requires xi ≤ u and
l ≤ yi for all i ∈ {1, . . . , n}. Hence, if positive semidefinite approximations are
required, only nonnegative values can be used as predefined diagonal values.
However, this is not an actual restriction, since positive semidefinite matrices
always have nonnegative diagonal values.

Theorem 3

xi ≤ Bii ≤ yi for all i ∈ {1, . . . , n}.

Proof: In the MATRIX, DECOMPOSITION is called first to calculate L, d, p, ω
and δ. Let i ∈ {1, . . . , n}. At the i-th iteration of the outer for loop in
DECOMPOSITION,

di + ω2
piαpi ∈ [xpi , ypi ]

due to line 7 and

δpi = di + ω2
piαpi −Apipi

due to line 9 and thus also

Apipi + δpi ∈ [xpi , ypi ].

The variables pi and δpi are not changed anymore after that. Thus

Apipi + δpi ∈ [xpi , ypi ] for all i ∈ {1, . . . , n}

at the end of the algorithm. Due to Lemma 1,

{pi ∈ {1, . . . , n}} = {1, . . . , n}

and thus

Aii + δi ∈ [xi, yi].

Lemma 4 states that

Bii = Aii + δi

and thus

xi ≤ Bii ≤ yi.
ut
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2.5 Condition number

The condition number of B can be controlled by l, u and y as shown in Theorem
4. Hence, MATRIX meets objective (O3) with suitable chosen parameters.

Theorem 4 Let l > 0. Then

κ2(L) ≤ 2
(a
l

)n
2

, κ2(D) ≤ b

l
and κ2(B) ≤ 4

anb

ln+1

with a :=
1

n

n∑

i=1

yi and b := min{u, max
i=1,...,n

yi}.

Proof: P is a permutation matrix and thus trace(PBPT ) = trace(B). Fur-
thermore, PBPT is positive definite because a permutation matrix is invertible
and B is positive definite due to Theorem 2. Moreover, κ2(PBPT ) = κ2(B)
because a permutation matrix is also orthogonal. Thus, Theorem 3 implies

trace(PBPT )

n
=

trace(B)

n
≤ 1

n

n∑

i=1

yi = a.

Theorem 1 states that

PBPT = LDLH .

Lemma 5 implies

l ≤ Dii ≤ min{u, ypi} ≤ b for all i ∈ {1, . . . , n}

since l ≥ 0. Hence, Theorem 9 in the appendix implies

κ2(L) ≤ 2
(a
l

)n
2

, κ2(D) ≤ b

l
and κ2(B) ≤ 4

anb

ln+1
.

ut

2.6 Approximation error

The approximation error ‖B − A‖ can be expressed using A, δ, ω and p as
shown in the next theorem where it is also proved that the approximation
error is bounded. For that, it is first demonstrated that δ is bounded.

Lemma 6 Let l ≥ 0. Then

|δi| ≤ a+ b for all i ∈ {1, . . . , n}
with a := max

i=1,...,n
yi and b := max

i=1,...,n
|Aii|.
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Proof: Let i ∈ {1, . . . , n}. B is positive semidefinite due to Theorem 2 since
l ≥ 0. Hence,

0 ≤ Bii and Bii ≤ yi ≤ a
due to Theorem 3. Furthermore

Bii = Aii + δi

due to Lemma 4. Thus

|δi| = |Bii −Aii| ≤ |Bii|+ |Aii| ≤ a+ b.
ut

Theorem 5 Let l > 0 or otherwise di = 0 imply ωj = 0 for all i, j ∈
{1, . . . , n} with j ≥ i. Define E := B −A. Then

‖E‖2 ≤ ‖E‖1 = ‖E‖∞

= max
i=1,...,n


|δpi |+ (1− ωpi)

i−1∑

j=1

|Apipj |+
n∑

j=i+1

(1− ωpj )|Apipj |




≤ a+ b+ (n− 1)c

and

‖E‖2F =

n∑

i=1


δ2pi + 2(1− ωpi)2

i−1∑

j=1

|Apipj |2



≤ n((a+ b)2 + (n− 1)c2)

with

a := max
i=1,...,n

yi, b := max
i=1,...,n

|Aii| and c := max
i,j=1,...,n;i6=j

|Aij |.

Proof: Let i, j ∈ {1, . . . , n}. Lemma 3 and Theorem 1 imply

Bpipj =

{
Apipjωpmax{i,j} if i 6= j

Apipi + δpi else
.

Thus,

Epipj =

{
(ωpmax{i,j} − 1)Apipj if i 6= j

δpi else
.

Furthermore

{pi | i ∈ {1, . . . , n}} = {1, . . . , n}
due to Lemma 1. Hence, E is Hermitian because A is Hermitian. Thus, the
properties of the norms imply

‖E‖2 ≤ ‖E‖1 = ‖E‖∞.
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Moreover

‖E‖∞ = max
i=1,...,n

n∑

j=1

|Epipj | = max
i=1,...,n


|Epipi |+

i−1∑

j=1

|Epipj |+
n∑

j=i+1

|Epipj |




= max
i=1,...,n


|δpi |+ (1− ωpi)

i−1∑

j=1

|Apipj |+
n∑

j=i+1

(1− ωpj )|Apipj |




≤ a+ b+ (n− 1)c

because |δi| ≤ a+b and ωi ∈ [0, 1] due to Lemma 6 and line 7 in DECOMPOSITION.
Additionally

‖E‖2F =
n∑

i=1


|Epipi |2 + 2

i−1∑

j=1

|Epipj |2



=
n∑

i=1


δ2pi + 2(1− ωpi)2

i−1∑

j=1

|Apipj |2



≤ n(a+ b)2 + n(n− 1)c2.
ut

2.7 Choice of ω and d

The choice of ω and d in line 7 in DECOMPOSITION is arbitrary apart from
that they must be feasible. However, their choice is crucial for the approxima-
tion error due to Theorem 5 and line 9 of DECOMPOSITION.

Based on this theorem the algorithm MINIMAL CHANGE, presented in
Algorithm 3, is derived which chooses ω and d so that in each iteration the ad-
ditional approximation error in the Frobenius norm is minimized. This does not
guaranteed that the overall approximation error is minimized but still results
in a small approximation error as numerical tests in Subsection 3.2 have shown.
Hence, MATRIX meets objective (O2) when using MINIMAL CHANGE. It
can be incorporated by replacing line 7 in DECOMPOSITION with the code
snippet CHOOSE d ω presented in Algorithm 4.

MINIMAL CHANGE was designed so that its needed number of basic op-
erations and memory is negligible compared to the number of basic operations
and memory needed by MATRIX as discussed in Subsection 2.9. This makes it
possible to meet objectives (O4) and (O5) while using MINIMAL CHANGE.

It also ensures that B = A if A already meets the requirements on B. In
detail, these are xi ≤ Aii ≤ yi and max{l, ε} ≤ Dii ≤ u for all i ∈ {1, . . . , n},
where D is the diagonal matrix of the LDLH decomposition of PAPT .

If several pairs (d, ω) minimize the additional approximation error, the one
with the biggest d is chosen in MINIMAL CHANGE. This results in absolute
smaller values in L which reduces the condition number of B, as shown in
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the proof of Theorem 9. Moreover the numerical stability of the algorithms is
increased because a division by d is part of the algorithms.

Algorithm 3 MINIMAL CHANGE

Input:
· x ∈ R ∪ {−∞}, y, u ∈ R ∪ {∞}, l, ε, α, β, γ ∈ R with l, α, β ≥ 0, ε > 0,

max{l, ε, x} ≤ min{u, y} and β = 0⇒ α = 0
Output:
· d, ω ∈ R

1: function minimal change(x, y, l, u, ε, α, β, γ)
2: if max{l, ε, x− α} ≤ γ − α ≤ min{u, y − α} then
3: return (γ − α, 1)
4: end if
5: C ← ∅
6: if max{l, ε, x− α} ≤ min{u, y − α} then
7: C ← {(min{max{l, ε, x− α, γ − α}, u, y − α}, 1)}
8: end if
9: if α 6= 0 then

10: for d ∈ ({max{l, ε}} ∩ [x− a,∞)) ∪ ({u} ∩ (−∞, y])) do
11: for ω ∈ R with 2α2ω3 + (2α(d− γ) + β)ω − β = 0 do

12: ω ← min{max{ω,
√

max{x−d,0}
α },

√
y−d
α , 1}

13: C ← C ∪ {(d, ω)}
14: end for
15: end for
16: end if
17: if l = 0 and x ≤ 0 and 2γ ≤ ε then
18: C ← C ∪ {(0, 0)}
19: end if
20: return (d, ω) ∈ C with smallest ((d+ω2α− γ)2 + (ω− 1)2β,−d, ω) in

lexicographical order
21: end function

Algorithm 4 CHOOSE d ω

1: for k ← i, . . . , n do
2: if i = 1 then
3: βpk ← 0
4: else
5: βpk ← βpk + 2|Apkpi−1 |2
6: end if
7: end for
8: (dpi , ωpi)←minimal change(xpi , ypi , l, u, ε, αpi , βpi , Apipi)
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The next Theorem stats that MINIMAL CHANGE chooses feasible d and
ω which minimize in each iteration the additional approximation error.

Theorem 6 Let

d, ω := MINIMAL CHANGE(x, y, l, u, ε, α, β, γ)

where (x, y, l, u, ε, α, β, γ) is some valid input for the algorithm. Let

Φ∗ := {(d, ω) | d ∈ [max{l, ε}, u], ω ∈ [0, 1], d+ ω2α ∈ [x, y]},

Φ0 :=

{
{(0, 0)} if max{l, x} ≤ 0

∅ else
, Φ := Φ∗ ∪ Φ0

and
Ψ := {(d, ω) ∈ Φ | f(d, ω) = min

(d̂,ω̂)∈Φ
f(d̂, ω̂)}

with f : R2 → R, (d, ω) 7→ (d+ ω2α− γ)2 + (ω − 1)2β. Then (d, ω) ∈ Ψ .

Proof: Φ is compact and f is continuous. Thus, f has a minimum on Φ due
to Weierstrass’s theorem [51, Theorem 4.16]. Hence, Ψ 6= ∅ and thus,

Ψ ∩ Φ◦∗ 6= ∅ or Ψ ∩ ∂Φ∗ 6= ∅ or Ψ ∩ Φ0 6= ∅ (13)

where Φ◦∗ denotes the interior of Φ∗ and ∂Φ∗ its boundary. Next these three
cases are considered.

First consider the case that Ψ ∩ Φ◦∗ 6= ∅. Then

∇f(d, ω) = 0 for all (d, ω) ∈ Ψ ∩ Φ◦∗
due to [40, Theorem 12.3]. Furthermore

∇f(d, ω) =

(
2(d+ ω2α− γ)

4αω(d+ ω2α− γ) + 2β(ω − 1)

)

for all (d, ω) ∈ Φ◦∗. This implies

ω = 1 and d = γ − α for all (d, ω) ∈ Ψ ∩ Φ◦∗ if β 6= 0.

If β = 0, the algorithm requires α = 0, which implies

(γ − α, 1) ∈ Ψ if Ψ ∩ Φ◦∗ 6= ∅ and β = 0.

Hence,
(γ − α, 1) ∈ Ψ if Ψ ∩ Φ◦∗ 6= ∅.

Thus, Ψ ∩Φ◦∗ 6= ∅ implies (γ − α, 1) ∈ Φ∗. Hence, (γ − α, 1) is returned by the
algorithm in line 3 if Ψ ∩ Φ◦∗ 6= ∅.

If Ψ ∩ Φ◦∗ = ∅, the algorithm constructs a candidate set C and returns a
minimizer of f on C in line 20. Hence, it remains to prove that

C ∩ Ψ 6= ∅ if Ψ ∩ ∂Φ∗ 6= ∅ or Ψ ∩ Φ0 6= ∅.

47



20 J. Reimer

Consider now the case Ψ ∩ ∂Φ∗ 6= ∅. Let (d, ω) ∈ Ψ ∩ ∂Φ∗ and define
a := max{l, ε}. Then

d ∈ {a, u} or d+ ω2α ∈ {x, y} or ω ∈ {0, 1}.

If ω = 1, the definitions of f and Φ∗ imply

max{a, x− α} ≤ min{u, y − α}

and
(d, ω) = (min{max{a, x− α, γ − α}, u, y − α}, 1).

This value is included in C at line 7.
If α = 0, (d, ω) ∈ Ψ implies (d, 1) ∈ Ψ for all (d, ω) ∈ Φ. Hence, the case

α = 0 is covered by the previous case where ω = 1. Thus, assume α 6= 0.

If d+ ω2α = c for c ∈ {x, y}, d ≤ c and ω =
√

c−d
α . Since

f

(
d,
√

c−d
α

)
= (c− γ)2 +

(√
c−d
α − 1

)2

β

and (d, ω) is a minimizer of f on Ψ , it follows

d ∈ {c− α, a, u} if d+ ω2α = c.

d = c−α any d+ω2α = c imply ω = 1. The case ω = 1 was already considered.
The case d ∈ {a, u} is considered now. Then (d, ω) ∈ Φ is equivalent to

ω ∈ [ω̌d, ω̂d] with

ω̌d :=

√
max{x−d,0}

α , ω̂d :=

√
min{y−d,α}

α .

Hence, d = u implies y ≥ u and d = a implies x− α ≤ a. Define

Ωd := {ω ∈ R | ∂
∂ωf(d, ω) = 0}.

ω ∈ (ω̌d, ω̂d) implies ω ∈ Ωd. ω = ω̌d implies minΩd ≤ ω̌d and ω = ω̂d implies
maxΩd ≥ ω̂d. Hence

ω ∈ {min{max{ω, ω̌d}, ω̂d}} | ω ∈ Ωd}

These values are included in C in line 13.
The last case is ω = 0. This implies d = a, because (d, ω) is a minimizer of

f on Φ. The case d = a was already considered.
Hence,

C ∩ Ψ 6= ∅ if Ψ ∩ ∂Φ∗ 6= ∅.
Thus, it remains to show that C ∩ Ψ 6= ∅ if Ψ ∩ Φ0 6= ∅. Hence, consider

now the case Ψ ∩ Φ0 6= ∅. The definition of Φ0 implies then (0, 0) ∈ Ψ and
max{l, x} ≤ 0. This implies ε ≤ u, y due to the requirements of the algorithm.
Thus, (ε, 0) ∈ Φ. Hence, since (0, 0) ∈ Ψ ,

γ2 + β = f(0, 0) ≤ f(ε, 0) = (ε− γ)2 + β = γ2 − 2εγ + ε2 + β.
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Thus, Ψ ∩Φ0 6= ∅ implies 2γ ≤ ε. (0, 0) is included in C in line 18 in this case.
Hence

C ∩ Ψ 6= ∅

and the algorithm returns a value in Ψ in all cases.

ut

2.8 Permutation

Another part of DECOMPOSITION with some flexibility in its design is the
permutation step in line 5 where the row and column for the current iteration
are chosen. This choice drastically affects the output of DECOMPOSITION
and thus of MATRIX, too. Several strategies for the permutation are conceiv-
able.

A strategy to reduce the approximation error is to choose the permutation
that minimizes the additional approximation error. To achieve this, in each
iteration the additional approximation error for all remaining indices is com-
puted and the one with the lowest additional approximation error is chosen. If
this is the same for several indices, a higher value in d is preferred. As already
stated in the previous subsection, this reduces the condition number of the
approximation and increases the numerical stability. If these values are the
same as well, a lower ω and then a lower index is preferred.

Another strategy is to prioritize higher values in d instead of lower ad-
ditional approximation errors. This improves the condition number and the
numerical stability even further and does not necessarily increase the total
approximation error as numerical experiments have shown.

To use this strategy, line 8 in CHOOSE d ω can be replaced by the follow-
ing code snippet CHOOSE p d ω presented in Algorithm 5. Furthermore in
DECOMPOSITION , the swap in line 6 has to be moved after CHOOSE p d ω
and line 5 could be removed.

Algorithm 5 CHOOSE p d ω

1: d̂← −∞
2: for k ← i, . . . , n do
3: (d̃, ω̃)← minimal change(xpk , ypk , l, u, ε, αpk , βpk , Apkpk)

4: f̃ ← (d̃+ ω̃2αpk −Apkpk)2 + (ω̃ − 1)2βpk
5: if (−d̃, f̃ , ω̃, k) < (−d̂, f̂ , ω̂, j) in lexicographical order then

6: j ← k, d̂← d̃, ω̂ ← ω̃, f̂ ← f̃
7: end if
8: end for
9: (dpj , ωpj )← (d̂, ω̂)
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For sparse matrices, the permutation also affects the sparsity pattern of
the matrix L. Hence, it would be beneficial to choose a permutation which
reduces the number of nonzero values in L and thus reduces also the computa-
tional effort and the memory consumption. However, minimizing the number
of nonzero values is a NP-complete problem [60].

However, several heuristic methods exist, which can reduce the number
of nonzero values significantly. These are band reducing permutation algo-
rithms like the CuthillMcKee algorithm [9] and the reverse CuthillMcKee al-
gorithm [17], symmetric approximate minimum degree permutation algorithms
[18], like for example [1], or symmetric nested dissection algorithms. A good
overview is provided by [12, chapter 7] and [13, Chapter 8]. It should be taken
into account that only symmetric permutation methods are applicable in our
context.

2.9 Complexity

In the context of large matrices and limited resources, the needed run time
and memory of MATRIX and DECOMPOSITION are crucial.

The fastest way to check if A ∈ Cn×n is positive definite is to try to
calculate a (classical) Cholesky decomposition of A, that is a lower triangular
matrix L with A = LLH [26, Chapter 10], [22, Chapter 4.2]. This needs at
worst 1

3n
3 +O(n2) basic operations and stores 2n2 +O(n) numbers in the real

valued case. The needed memory can be reduced if only the lower triangles of A
and L are stored. This would result in n2 +O(n) numbers. It can be reduced
even more if A can be overwritten by L. This would result in 1

2n
2 + O(n)

numbers.
MATRIX and DECOMPOSITION using CHOOSE p d ω need at worst

1
3n

3 +O(n2) basic operations and memory for 2n2 +O(n) numbers in the real
valued case, too. For this only a few small modifications are necessary which
are explained below. Hence, both algorithms have asymptotically the same
worst case number of basic operations and memory as an algorithm which
calculates a Cholesky decomposition. Thus, their overhead is negligible and
vanishes asymptotically. With some small modifications, it is also possible
to overwrite the input matrix A with the output matrices L and B. Thus,
MATRIX meets objective (O4) and (O5).

For MINIMAL CHANGE, the number of needed basic operations and
numbers that have to be stored is O(1). Hence, CHOOSE p d ω needs O(n)
basic operations and stores O(1) numbers. If CHOOSE p d ω is used in
DECOMPOSITION to choose the permutation as well as d and ω, O(n2) ad-
ditional basic operations have to be performed and O(n) additional numbers
have to be stored.

In DECOMPOSITION, a crucial part for the number of needed operations
is the calculation of L in line 12. Here the effort can be reduced by calculating
and storing LD

1
2 instead of L first. After that L can be calculated with an

effort of O(n2) basic operations. This approach results in an overall worst case

50



Approximation of Hermitian Matrices by Positive Semidefinite Matrices 23

number of 1
3n

3 +O(n2) basic operations plus the basic operations needed for
the permutation and the choice of d and ω. Furthermore 2n2 +O(n) numbers
have to be stored in DECOMPOSITION despite the memory needed for the
choice of the permutation, d and ω. Hence, if CHOOSE p d ω is used, the
overall worst case number of basic operations is 1

3n
3 +O(n2) and 2n2 +O(n)

numbers have to be stored.

The needed storage can be reduced by storing only one triangle of A and
the lower triangle of L and by overwriting A with L. This would result in
n2 +O(n) and 1

2n
2 +O(n) numbers, respectively. However, the permutation

in DECOMPOSITION must be taken into account here. For this, the indexing
of A in line 12 must be suitably adapted or A must be permuted. However,
these modifications would not influence the 1

3n
3 as the dominant part in the

number of basic operations.

For MATRIX, at most 1
3n

3 + O(n2) basic operations plus the basic op-
erations for choosing the permutation, d and ω are needed as well. This is
because for each execution of line 15 in MATRIX, the execution of line 12 in
DECOMPOSITION is once omitted. Thus, the worst case number of needed
basic operations of MATRIX increases only by O(n2) compared to the worst
case number of needed basic operations of DECOMPOSITION.

At most 2n2 + O(n) numbers have to be stored in MATRIX plus the
numbers that need to be stored for choosing the permutation, d and ω. To
achieve this, B must overwrite L. If the strict lower triangle of L is allowed to
overwrite the strict lower triangle of A, at most n2 + O(n) numbers have to
be stored plus the numbers for the choice of the permutation, d and ω.

Hence, MATRIX, with the small modifications mentioned above, needs at
most 1

3n
3 + O(n2) basic operations and stores at most 2n2 + O(n) numbers

if CHOOSE p d ω is used to choose the permutation, d and ω. It stores only
n2 +O(n) numbers if it is allowed to overwrite the input matrix.

It would also be possible to reduce the needed memory to 1
2n

2 + O(n)
numbers by passing only the lower triangle of the matrices A, L and B. Since
in this case A is then no longer available after the calculation of L, B must be
calculated in the more expensive way shown in Theorem 1. This would result
in 1

3n
3 +O(n2) additional basic operations.

In the complex valued case, the main statement remains the same: The
overhead of MATRIX and DECOMPOSITION using CHOOSE p d ω is neg-
ligible and vanishes asymptotically compared to an algorithm which calculates
a (classical) Cholesky decomposition. In a similar way, an analysis can be car-
ried out for the case where A is a sparse matrix.

3 Implementation and numerical experiments

An implementation of the algorithms MATRIX and DECOMPOSITION is
presented in this section together with the performed numerical experiments.
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3.1 Implementation

The algorithms MATRIX and DECOMPOSITION presented in Section 2
are implemented in a software library written in Python [43] called matrix-
decomposition library [48]. Their implementation uses the MINIMAL CHANGE
algorithm and provides both permutation algorithms described in Subsection
2.8 as well as several fill reducing permutation algorithms for sparse matrices.
In addition, the library provides many more approximation and decomposition
algorithms together with various other useful functions regarding matrices and
its decompositions.

The library is available at github [46]. It is based on NumPy [41], SciPy [33,
59] and scikit-sparse [49]. It was extensively tested using pytest [34] and doc-
umented using Sphinx [5]. The matrix-decomposition library and all required
packages are open-source.

They can be comfortably installed using the cross-platform package man-
ager Conda [2] and the Anaconda Cloud [45]. Here all required packages are
installed during the installation of the matrix-decomposition library. The li-
brary is also available on the Python Package Index [47] and is thus installable
with the standard Python package manager pip [42] as well.

3.2 Comparison with other approximation algorithms

The MATRIX algorithm has been compared with other modified Cholesky al-
gorithms based on LDLT decomposition by the resulting approximation errors
and the condition numbers of the approximations. For the results presented
here, we have use the Frobenius norm. However, the results using the spectral
norm look similar.

The other algorithms are GMW81 [20], which is a refined version of [19],
GMW1 [15] and GMW2 [15] which are based on GMW81, SE90 [53] and its
refined version SE99 [54] as well as SE1 [15] which in turn is based on SE99.
All these algorithms are implemented in the matrix-decomposition library [48].
These algorithms have been extended so that the approximation can have
predefined diagonal values. For this, the calculated approximation was scaled
by multiplying with a suitable diagonal matrix on both sides.

MATRIX has been configured so that the permutation strategy which
prefers high values in D is used and no upper bound on the values in D
is applied.

Different test scenarios were used. The first three scenarios are random
correlation matrices disturbed by some additive unbiased noise which should
be approximated by valid correlation matrices. The random correlation matri-
ces have been generated by the algorithm described in [10]. The off-diagonal
values of the symmetric noise matrices have been drawn from a normal distri-
bution with expectation value zero and 0.1, 0.2 or 0.3 as standard deviation
depending on the scenario. The diagonal values of the noise matrices were zero
in all scenarios.
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Fig. 1: Frequency, how often the algorithm achieved the smallest approxima-
tion error for the four different bounds on the condition number of the ap-
proximation (different colors) and for each of the six test scenarios (different
plots).

The last three scenarios are randomly generated symmetric matrices with
eigenvalues uniformly distributed in [−104, 104], [−104, 1] or [−1, 104], depend-
ing on the scenario, which should be approximated by symmetric positive
semidefinite matrices. Each of these random symmetric matrices has been
generated by multiplying a random orthogonal matrix, generated with the al-
gorithm described in [56], with a diagonal matrix with the chosen eigenvalues
as diagonal values and then multiplying this with the transposed random or-
thogonal matrix. The eigenvalues have been drawn from uniform distributions
and were altered so that each matrix has at least one negative and one positive
eigenvalue.
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Fig. 2: Median of the approximation errors for the four different bounds on
the condition number of the approximation (different colors) and for each of
the six test scenarios (different plots).

For each of the six scenarios, 100 matrices have been generated with di-
mensions evenly distributed between 10, 20, 30, 40 and 50 and each of them
was approximated.

The approximations are assessed according to the approximation error and
their condition number using different objectives. The first one is to minimize
the approximation error without caring about the condition number. The other
three are to minimize the approximation error while getting a condition num-
ber lower or equal to 10n, 5n and 2n, respectively, where n is the dimension of
the matrix. This corresponds to the requirement, that the condition number
should be sufficiently small (but must not be minimal), which often occurs in
application examples. Minimizing only the condition number without taking
the approximation error into account is not useful.
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Each of the algorithms has a parameter, representing a lower bound on
the values of D, allowing to favor a low approximation error or a low con-
dition number. Hence, each algorithm has been executed several times with
different values for this parameter and for each of the four objectives only the
approximation which best meets the objective was taken into account.

Figure 1 shows how many times each algorithm has computed the approx-
imation with the smallest approximation error among all tested algorithms
for the six scenarios and the four objectives. The MATRIX algorithm clearly
outperforms all other tested algorithms in all scenarios.

Figure 2 shows the median of the approximation errors for each of the six
scenarios and the four objectives. The approximation errors are relative to
the minimal possible approximation errors which have been calculated using
the methods described in [24] and [27]. No bar in Figure 2 indicates that the
algorithm was not able to calculate an approximation with the restriction to
the condition number for at least half of the test matrices.

The results show that MATRIX calculates approximations with approx-
imation errors usually close to optimal and still sufficiently small condition
numbers. In addition, it performs better, sometimes very considerably, than
the other tested algorithms.

The numerical tests have also indicated that, for determining di, a varying
lower bound l̂i, defined as

l̂i :=





l if 1
2cpi < l

u if 1
2cpi > u

1
2cpi else

with ci :=





xi if Aii < xi

yi if Aii > yi

Aii else

for each i ∈ {1 . . . , n}, is useful in order to achieve a low approximation error
and a low condition number. This varying lower bound is also choosable in the
matrix-decomposition library.

4 Conclusions

A new algorithm to approximate Hermitian matrices by positive semidefinite
Hermitian matrices was presented. In contrast to existing algorithms, it allows
to specify bounds on the diagonal values of the approximation.

It tries to minimize the approximation error in the Frobenius norm and the
condition number of the approximation. Parameters of the algorithm can be
used to select which of these two objectives is preferred if not both objectives
can be meet equally well. Numerical tests have shown that the algorithms
outperforms existing algorithms regarding the approximation error as well as
the condition number.

The algorithm is suitable for very large matrices, since it needs only 1
3n

3 +
O(n2) basic operations and storage for n2 +O(n) numbers in the real valued
case. This is asymptotically the same number of basic operations as the com-
putation of a Cholesky decomposition would need. Moreover the algorithm is
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also suitable for sparse matrices since it preserves the sparsity pattern of the
original matrix.

The LDLH decomposition of the approximation is calculated as a byprod-
uct. This allows to solve corresponding linear equations or to calculate the
corresponding determinant very quickly. If such a decomposition should be
calculated anyway, the algorithm has no significant overhead.

Two parts in the algorithm are realizable in many different ways. Various
possibilities were presented, more are conceivable.

An open-source implementation of this algorithm is freely available. The
implementation is fully documented and easy to install. Extensive numerical
tests confirm the functionality of the algorithm and its implementation.

Numerical optimization and statistics are two fields of application in which
the algorithm can be of particular interest.

A Appendix

Theorem 7 Let A ∈ Cn×n be a positive semidefinite matrix. A has a LDLH decomposi-
tion. If A is positive definite this decomposition is unique.

Proof: See [29, p. 13].
ut

Theorem 8 Let L ∈ Cn×n be a lower triangular matrix with ones on the diagonal and
D ∈ Rn×n a diagonal matrix. LDLH is

a) invertible if and only if Dii 6= 0 for all i ∈ {1, . . . , n}.
b) positive semidefinite if and only if Dii ≥ 0 for all i ∈ {1, . . . , n}
c) positive definite if and only if Dii > 0 for all i ∈ {1, . . . , n}.

Proof: Sylvester’s law of inertia [57] extended to Hermitian matrices [31] implies that
LDLH and D have the same number of negative, zero, and respectively positive eigen-
values. Since D is a diagonal matrix, the eigenvalues of D are its diagonal values. Hence
LDLH is invertible, positive semidefinite or positive definite if and only if the diagonal
values of D are non-zero, non-negative or positive, respectively.

ut

Theorem 9 Let A ∈ Cn×n be a positive definite matrix. Let L and D be the matrices of
its LDLH decomposition. Then

(
trace(A)

nβ

) n
2(n−1)

≤ κ2(L) ≤ 2

(
trace(A)

nα

)n
2

,

κ2(D) =
β

α
and κ2(A) ≤ 4

β

α

(
trace(A)

nα

)n

with α := min
i=1,...,n

Dii and β := max
i=1,...,n

Dii.

Proof: Define B := LLH . The definition of B implies

κ2(L) =
√
κ2(B)

since κ2(B) = κ2(LLH) = κ2(L)2.
L is a lower triangular matrix with ones on the diagonal. Hence, det(L) = 1 and

det(B) = det(L) det(LH) = det(L)2 = 1.
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Thus, [11] state that

c
− 1

n−1 ≤ κ2(B) ≤ 1 +
√

1− c
1−√1− c with c :=

(
n

trace(B)

)n

. (14)

Besides,

trace(B) = trace(LLH) =
n∑

i,j=1

LijLij =
n∑

i,j=1

|Lij |2 = ‖L‖2F . (15)

and

‖L‖2F =

n∑

i,j=1

|Lij |2 ≥
n∑

i=1

|Lii|2 = n.

Hence 0 ≤ c ≤ 1, which implies

1 +
√

1− c
1−√1− c =

(1 +
√

1− c)2
(1−√1− c)(1 +

√
1− c) =

(1 +
√

1− c)2
c

≤ 22

c
. (16)

Equation (14), (15) and (16) result in

(
‖L‖2F
n

) n
n−1

≤ κ2(B) ≤ 4

(
‖L‖2F
n

)n

and thus (
‖L‖2F
n

) n
2(n−1)

≤ κ2(L) ≤ 2

(
‖L‖2F
n

)n
2

. (17)

Theorem 8 implies 0 < α because A is positive definite. Moreover, α ≤ Dii ≤ β for all
i ∈ {1, . . . , n} by definition of α and β. Thus

trace(A)

β
=

1

β

n∑

i=1

Aii =
1

β

n∑

i=1

n∑

j=1

LijDjjLij =

n∑

i=1

n∑

j=1

|Lij |2
Djj

β

≤
n∑

i=1

n∑

j=1

|Lij |2 = ‖L‖2F =

n∑

i=1

n∑

j=1

|Lij |2

≤
n∑

i=1

n∑

j=1

|Lij |2
Djj

α
=

1

α

n∑

i=1

n∑

j=1

LijDjjLij =
1

α

n∑

i=1

Aii =
trace(A)

α
.

Hence (
trace(A)

nβ

) n
2(n−1)

≤ κ2(L) ≤ 2

(
trace(A)

nα

)n
2

with (17).
Furthermore

κ2(D) =

max
i=1,...,n

|Dii|

min
i=1,...,n

|Dii|
=
β

α

since D is a diagonal matrix. Thus

κ2(A) = κ2(LDLH) ≤ κ2(L)κ2(D)κ2(LH)

= κ2(L)2κ2(D) ≤ 4
β

α

(
‖L‖2F
n

)n

,

because κ2(AB) ≤ κ2(A)κ2(B) and κ2(A) = κ2(AH) for every invertible matrices A,B ∈
Cn×n.

ut
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Abstract. The phosphate data of the World Ocean Database 2013 are extensively statistically analyzed by splitting the mea-

surement results into a long scale, i.e., climatological, and a short scale part. Means, medians, absolute and relative standard

deviations, interquartile ranges, quartile coefficients of dispersion, correlations and covariances are estimated and analyzed. The

underlying probability distributions are investigated using visual inspection as well as statistical tests. All presented methods

are applicable to other data as long as they satisfy the postulated assumptions.5

1 Introduction

Phosphate is a limiting nutrient for phytoplankton and therefore of central importance for understanding marine ecosystems

(cf. (Bigg, 2003, 4)). In the context of marine biogeochemical and ecosystem modeling, phosphate data play a dominant role

as they are available in a high number and by their good spatial and temporal coverage (cf. Kriest et al. (2010)).

A basic source for freely available and quality-controlled oceanic measurement data is the World Ocean Database, a project10

established by the Intergovernmental Oceanographic Commission of UNESCO. The most recent release is the World Ocean

Database 2013 which is described in Boyer et al. (2013) and Johnson et al. (2013). Therein, millions of measurement data for

phosphate concentrations in the ocean are available.

The World Ocean Atlas, a project by the National Oceanographic Data Center in the U.S., provides analyzed and aggregated

data from the World Ocean Database. The most recent release of their analysis of phosphate data is introduced in Garcia et al.15

(2014) as part of the World Ocean Atlas 2013 version 2. Means, standard deviations and standard errors of the means are

provided there on one and five degree spatial grids at selected depth levels, down to 500 m as monthly and seasonal averages

and down to 5500 m as annual averages. The provided data are climatological data (cf. (Storch and Zwiers, 1999, 1.2.1)), i.e.,

data from different years have been used to calculate these properties of an average year. This has been done only for (space-

time) grid boxes with enough data available. For all other grid boxes, the means (and only these) have been interpolated.20

In this paper, we extended the analysis and aggregation provided in the World Ocean Atlas in several respects. The most

important one is the split of the measurement results into a long scale part, i.e., climatological part, and a short scale part,

i.e., noise part from a climatological perspective. This splitting allows to separately analyze and quantify the noise part in
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measurements and a noise free climatological part. Moreover, the noise part is useful in assessing the spatial and temporal

resolution used in the statistical analysis.

For each grid box, the climatological part is primarily described by its climatological mean, i.e., the average concentration

in an average year, and the climatological variability, i.e., the usual deviation between the average concentration in an actual

year and the climatological mean. The noise part is primarily described for each grid box by the usual deviation between the5

average concentration in an actual year and the result of its measurement, and thus includes the variation of the concentration

inside a grid box as well as measurement errors.

Compared to the World Ocean Atlas, we used a slightly different spatial and temporal resolution. We took a monthly temporal

resolution within each year in all depth layers down to the sea floor, allowing us to capture time-dependent changes in deeper

layers, which can be especially important for fitting time-dependent models to these data. To counteract the sparseness of the10

measurement data, especially in deeper layers, the vertical resolution was decreased. Details are given in Appendix A.

Additionally to monthly means, we provide medians, absolute and relative standard deviations as well as interquartile ranges

and quartile coefficients of dispersion, all of these for the entire ocean. Finally, we quantified the statistical dependencies

using correlations and covariances and investigated the underlying probability distributions using visual inspection as well as

statistical tests.15

We feel confident that the results of this detailed statistical analysis may improve the understanding of the marine phosphate

concentration. They may also be used to increase the accuracy of model fitting procedures (cf. (Walter and Pronzato, 1997,

4) or (Seber and Wild, 2003, 2.1.4)) of marine biogeochemical models, and the information gain through new measurements

(cf. (Walter and Pronzato, 1997, 6) or (Pronzato and Pázman, 2013, 5)). Our approach is also applicable to other marine

concentrations satisfying the assumptions made.20

Our method for the statistical analysis is presented in Section 2, the results obtained for the phosphate concentration are

presented in Section 3 and in Section 4, we draw our conclusion.

2 Methods used in the Statistical Analysis

To lay the foundation of the statistical analysis the statistical model is introduced and statistical assumptions postulated. Meth-

ods to estimate the associated expected values and to quantify the associated variabilities are presented afterwards. Thereafter,25

methods to quantify the statistical dependencies including covariances and correlations are introduced. The section closes with

an investigation of the underlying probability distributions.

2.1 Statistical Model

We conducted our statistical analysis on a space-time grid described in detail in Appendix A and define:

– Xs as the set of all spatial grid boxes, identified e.g. by their center,30

– Xt as the set of all time intervals within one year (which are the same for all years),
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– Xa as the set of years,

for which a statistical analysis should be carried out. We then identify:

– X := Xs×Xt×Xa×N as the set of all possible measurement point ,

where each measurement point (s, t,a,n) ∈ X in the grid box (s, t,a) has an unique index n and define:

– X ⊆X as the set of all points where measurement data are actually available and5

– y(s, t,a,n) as the result of the measurement at (s, t,a,n) ∈X .

For the analysis presented below we use the sets:

– A(s, t) := {a | (s, t,a,n) ∈X} with all years where measurements are available at (s, t) ∈ Xs×Xt,

– N(s, t,a) := {n | (s, t,a,n) ∈X} with all indices of available measurements at (s, t,a) ∈ Xs×Xt×Xa.

Random Fields and Statistical Assumptions10

In the statistical analysis, we use the following main variables, which are considered as random fields:

– the measurement results η, defined on X ,

– the true concentration δ, without noise, averaged in each grid box, defined on Xs×Xt×Xa,

– the noise ε, defined on X , including the variability due to the discretization introduced by the space-time grid as well as

by imperfect measuring instruments and methods.15

Let (s, t,a,n),(ŝ, t̂, â, n̂) ∈ X represent arbitrary measurement points for the rest of this section. It is assumed that the noise is

additive and unbiased:

η(s, t,a,n) = δ(s, t,a)+ ε(s, t,a,n), (1)

E(ε(s, t,a,n)) = 0. (2)

Moreover, there is no interaction assumed between the true concentration and the noise as well as the noise at different points:20

δ(s, t,a) and ε(ŝ, t̂, â, n̂) are independent, (3)

ε(s, t,a,n) and ε(ŝ, t̂, â, n̂) are independent if (s, t,a,n) 6= (ŝ, t̂, â, n̂). (4)

The following additional assumptions were made due to the sparseness of the available data: The noise is assumed to have

equal distributions within the same grid box:

ε(s, t,a,n)
d
= ε(s, t,a, n̂). (5)25
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The true concentration is assumed to have the same distribution at two points where only the year differs:

δ(s, t,a)
d
= δ(s, t, â). (6)

The covariance of the true concentration is assumed to be invariant with respect to annual shifts:

cov(δ(s, t,a), δ(ŝ, t̂, â)) = cov(δ(s, t,a+ z), δ(ŝ, t̂, â+ z)) with a+ z, â+ z ∈ Xa. (7)

The annual periodicity of the climatological process that is described is a justification for the last two assumptions.5

2.2 Climatological Means

The measurement results η and the true concentration δ have the same expected values (cf. (Storch and Zwiers, 1999, 2.6.5))

due to the additivity (1) and unbiasedness (2) of the noise:

E(η(s, t,a,n)) = E(δ(s, t,a))+E(ε(s, t,a,n)) = E(δ(s, t,a)).

Due to the assumed annual periodicity (6) of the true concentration, its expected values do not depend on the year and thus can10

be defined as µ : Xs×Xt→ R with:

µ(s, t) := E(δ(s, t,a)) = E(η(s, t,a,n))

which corresponds to the climatological mean concentration in the grid box (s, t).

The climatological mean µ(s, t) could be estimated using the average of all measurement results available in the grid box

(s, t). However, this could result in a very inaccurate estimate if the number of available measurements varies from year to15

year. An estimate would then tend to the average true concentration in years with the most measurements available which can

be significantly differ from the climatological mean.

As a remedy, we first estimated the average true concentration in the grid box without noise for each year using the average

of the measurement results within the same year:

c(s, t,a) :=
1

|N(s, t,a)|
∑

n∈N(s,t,a)

y(s, t,a,n) if |N(s, t,a)| ≥ 1.20

The climatological mean in a grid box was then estimated by the average, i.e., the sample mean (cf. (Storch and Zwiers, 1999,

4.3.1)), of the estimated true concentrations in the grid box for different years:

µ(s, t)≈m(s, t) :=
1

|A(s, t)|
∑

a∈A(s,t)

c(s, t,a) if |A(s, t)| ≥ 1.

Alternatively, the median (cf. (Storch and Zwiers, 1999, 2.6.4)) instead of the (arithmetic) mean could be used in the previ-

ously described calculations for which the true concentration would be estimated as:25

ĉ(s, t,a) := median
n∈N(s,t,a)

y(s, t,a,n) if |N(s, t,a)| ≥ 1

4
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and the corresponding climatological mean as:

µ(s, t)≈ m̂(s, t) := median
a∈A(s,t)

ĉ(s, t,a) if |A(s, t)| ≥ 1.

In general, the median provides a more accurate estimate in case of outliers, otherwise the mean should be preferred (cf.

(Linacre, 1992, 4)). If the number of measurements in several years is low, both estimates for µ might lack accuracy. Thus,

it is reasonable to choose the required number of years with measurements |A(s, t)| sufficiently high. We decided to require5

measurements for at least two years, preventing one extraordinary year to cause a poor estimate.

At the grid boxes lacking enough measurements, values for the climatological mean were interpolated according to Appendix

B. Without sufficient data to achieve a meaningful interpolation, the average of the estimates could be used instead.

2.3 Variabilities

Due to the assumed independence of δ and ε, see Equation (3), the variances (var) (cf. (Storch and Zwiers, 1999, 2.6.7)) of the10

measurement results η are given by the sum of the variances of the true concentration δ and the measurement noise ε:

var(η(s, t,a,n)) = var(δ(s, t,a))+var(ε(s, t,a,n)).

The variances of the true concentration, describing the climatological variabilities, do not depend on the year due to the

assumed annual periodicity (6). Hence, the standard deviation (sd) (cf. (Storch and Zwiers, 1999, 2.6.7)) of the true concentra-

tion at a grid box was estimated by the sample standard deviation (cf. (Storch and Zwiers, 1999, 4.3.2)) of all estimated true15

concentrations in this grid box and different years:

sd(δ(s, t,a))≈
√√√√ 1

|A(s, t)| − 1

∑

â∈A(s,t)

(c(s, t, â)−m(s, t))2 if |A(s, t)| ≥ 2.

Under the assumption of equal distributions of the noises in a grid box (5), the variance of the noises, describing the short

scale variability, do not depend on the number of measurements. Hence, the standard deviation of the noise for a specific grid

box and a specific year was estimated by the sample standard deviation of all measurement results in this grid box and year:20

sd(ε(s, t,a,n))≈
√√√√ 1

|N(s, t,a)| − 1

∑

n̂∈N(s,t,a)

(y(s, t,a, n̂)− c(s, t,a))2 if |N(s, t,a)| ≥ 2.

The sample interquartile range as an approximation of the interquartile range (iqr) can be used as well to quantify the

variability:

iqr(δ(s, t,a))≈ q75%

â∈A(s,t)

c(s, t, â)− q25%

â∈A(s,t)

c(s, t, â) if |A(s, t)| ≥ 1,

and25

iqr(ε(s, t,a,n))≈ q75%

n̂∈N(s,t,a)

y(s, t,a, n̂)− q25%

n̂∈N(s,t,a)

y(s, t,a, n̂) if |N(s, t,a)| ≥ 1.
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Here, q25% and q75% denote the first and third quartile, respectively. The value of the quartile was linearly interpolated between

two available values if necessary.

When interpreting the variability of a random variable, the variability relative to the expected value is usually more helpful

than just the variability. Therefore, we calculate the relative standard deviations, i.e., the standard deviations divided by the

means, and the quartile coefficients of dispersion, i.e., the interquartile ranges relative to the medians. Relative variabilities of5

the noise ε are meaningless since its expected values were assumed to be zero.

In the presence of outliers, interquartile ranges and quartile coefficients of dispersion perform better, otherwise standard

deviations and relative standard deviations should be preferred.

Estimates of the variabilities in all variants are more accurate if a high number of measurements can be used. We computed

these estimates only where at least three values were available and interpolated otherwise as described in Appendix B. The10

average of the estimates could be used in absence of sufficient data for interpolation.

2.4 Statistical Dependencies

From the additivity of the noise (1), the assumptions (3), (4) and the bilinearity of the covariance, we immediately deduce:

cov(δ(s, t,a), ε(ŝ, t̂, â, n̂)) = cov(ε(s, t,a,n), ε(ŝ, t̂, â, n̂)) = cov(η(s, t,a,n), ε(ŝ, t̂, â, n̂)) = 0,

cov(η(s, t,a,n),η(ŝ, t̂, â, n̂)) = cov(η(s, t,a,n), δ(ŝ, t̂, â, n̂)) = cov(δ(s, t,a), δ(ŝ, t̂, â))



 if (s, t,a,n) 6= (ŝ, t̂, â, n̂).

Thus, only the covariances of the true concentration δ had to be estimated. The corresponding correlations were calculated15

using the estimated standard deviations.

Pointwise Covariances and Correlations

The covariances of δ were assumed to be invariant with respect to annual shifts (7) and its covariance between two specific

grid boxes and years was estimated by the sample covariance (cf. (Storch and Zwiers, 1999, 5.2.7)) of all pairs of estimated

true concentrations in the same grid boxes and with the same difference in the years:20

cov(δ(s, t,a), δ(ŝ, t̂, â))≈ 1

|B| − 1

∑

(b,b̂)∈B

(c(s, t,b)−m)(c(ŝ, t̂, b̂)− m̂), if |B| ≥ 2

with B := {(a+ z, â+ z) | a+ z, â+ z ∈A(s, t)}, m=
1

|B|
∑

(b,b̂)∈B

c(s, t,b) and m̂=
1

|B|
∑

(b,b̂)∈B

c(ŝ, t̂, b̂).

A higher |B| results, as usual, in more accurate estimate. The estimate of cov(δ(s, t,a), δ(s, t,a)) is equal to the estimate of

var(δ(s, t,a)) yielding a consistent estimate.

Covariance and Correlation Matrices

The pointwise covariance estimates were processed into a covariance matrix (cf. (Storch and Zwiers, 1999, 2.8.7)). For very25

large dimension, the covariance matrix can not be stored as a dense matrix due to limited memory. Hence, we used a sparse
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matrix and assumed that the covariance is zero where no estimate was available, to that effect that, the number of stored entries

corresponds to the number of estimated pointwise covariances, which can be controlled by |B|, the number of concentration

estimates required for a covariance estimate. If estimated pointwise covariances close to zero are not stored and are thus

implicitly assumed to be zero, the number of entries to be stored can be reduced even further.

In order to obtain a consistent estimate of a covariance matrix, it is not sufficient to just combine the individual estimates into5

a matrix. The resulting matrix has to be positive semidefinite and usually, even a well-conditioned positive definite estimate is

preferred.

Often, so called shrinking methods are applied for this purpose (cf. Ledoit and Wolf (2004); Chen et al. (2010); Schäfer

and Strimmer (2005)). These tend to pull the most extreme matrix entries towards more central values, achieved by a convex

combination of the covariance matrix estimate and some suitable chosen target matrix. A disadvantage of these methods is the10

alternation of all matrix entries (i.e., pointwise covariances). In extreme cases, one poorly estimated covariance can lead to a

large impact of all other well estimated covariances.

Due to this and other disadvantages of these methods, we used the approach described in Reimer (2019) and implemented

in Reimer (2019a) where single off-diagonal entries are moved closer to zero generating a well-conditioned positive definite

matrix. The LDL> decomposition of the resulting covariance matrix were calculated by this approach as a byproduct and can15

be used to solve corresponding linear equations quickly. Furthermore permutation methods are applied to reduce the number

of entries that must be stored allowing to efficiently process even larger matrices.

If the estimated variances, i.e. the diagonal values of the covariance matrix estimated, are considered sufficiently accurate,

the diagonal values can be left unchanged by the algorithm, or the correlation matrix instead of the covariance matrix can be

approximated by the algorithm. We decided to approximate the correlation matrix.20

To get a well-conditioned matrix, we forced the approximation algorithm to ensure that each entry in the diagonal matrix D

of the LDL> decomposition is at least 0.01. This threshold directly affects the condition number and the approximation error

and can be adjusted to prioritize one of these two.

Correlations Dependencies on Distances

In many applications in natural sciences, the correlations of random fields depend solely on the distance between the associated25

points and this we checked for the true concentration δ.

If the estimated correlations can be described by a function depending only on the distance of the associated points, the

estimated correlations for points with the same distance must be (approximately) the same. Hence, we grouped all estimated

correlations for points with the same distance. For each group, we calculated the interquartile range which must be close to

zero. 0.1 could be a good threshold here, or 0.05 as a more restrictive value.30

Moreover, if the correlations could be described even by a continuous function, the correlations must be close to each

other if the distances of their associated points are close to each other. This can be also checked by grouping and calculating

interquartile ranges.
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Both can also be checked to some extend graphically by plotting the grouped correlations or the calculated interquartile

ranges. To ensure significance of theses checks, the number of involved correlations has to be sufficiently large.

2.5 Probability Distributions

In addition to the estimation of statistical parameters like expectation value or standard deviation, the type of the underlying

probability distribution (cf. (Storch and Zwiers, 1999, 2.6.3)) is of interest too. Visual inspection and statistical tests were used5

to analyze from what probability distribution the data may originate (cf. (Linacre, 1992, 4)). We focused on normal distribution

(cf. (Storch and Zwiers, 1999, 2.7.3)) and log-normal distribution (cf. (Storch and Zwiers, 1999, 2.7.6)).

Histogram (cf. (Storch and Zwiers, 1999, 5.2.1)) and kernel density estimation (cf. Scott (2015)) were used to give an

idea of the underlying probability distribution. Box plots are an alternative which indicate the expected value, the spread, the

skewness and outliers. P-P (probability-probability) and Q-Q (quantile-quantile) plots are useful to study the data with respect10

to a particular probability distribution.

For a particular probability distribution, Usually several statistical tests are available to verify if data originate from a partic-

ular probability distribution. Tests applied in this thesis regarding normal distributions were the Shapiro-Wilk test introduced in

Shapiro and Wilk (1965), the Anderson-Darling test introduced in Anderson and Darling (1952) and the D’Agostino-Pearson

test introduced in D’Agostino (1971) and D’Agostino and Pearson (1973). To check if the data originate from log-normal15

distributions, first the natural logarithm and afterwards the tests for normal distributions were applied to the data.

To check the probability distribution at a particular point, by visual inspection or by statistical tests, all values originating

from random variables with the same probability distribution were used:

– For the measurement results η: all values y(ŝ, t̂, â, n̂) with (ŝ, t̂, â, n̂) ∈N(s, t,a).

– For the true concentration δ: all values c(s, t,a) with a ∈A(s, t).20

– For the noise ε: all values
(
y(ŝ, t̂, â, n̂)− c(s, t,a)

)
with (ŝ, t̂, â, n̂) ∈N(s, t,a).

It should be noted that these statistical tests, as well as the graphical methods, cannot ensure whether data are really realiza-

tions from a normal distribution or not. They just can determine a reasonable certainty.

3 Results of the Statistical Analysis

We now present the results of our statistical analysis of the phosphate concentration data provided by the World Ocean Database25

2013 presented in Boyer et al. (2013) and Johnson et al. (2013), obtained as described in Section 2, using the software men-

tioned in Appendix C and a one degree resolution with 33 depth layers and a monthly time resolution as described in Appendix

A. They are not interpreted in a marine context.

The spatial and temporal distribution of the data is described in Subsection 3.1, the climatological means in Subsection 3.2,

the long and short scale variabilities in Subsection 3.3, the covariances and correlations in Subsection 3.4, and the investigation30

of the probability distributions in Subsection 3.5.
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(a) in all depths (1◦ grid) (b) between 0 and 25 m depth (1◦ grid)

(c) per 50 m depth (d) per year (e) per day in the year

Figure 1. Number of phosphate measurements with respect to space and time.

3.1 Spatial and Temporal Distribution

All data in the World Ocean Database 2013 have been quality checked (cf. (Johnson et al., 2013, Section 3)). We used all

phosphate data that passed quality control, which were more than 4.1 million measurements in total.

Regarding the spatial distribution, the number of measurements decreases with the distance to the coast (Figure 1a, 1b) and

with growing depth (Figure 1c). In time, the measurements range from 1923 to 2012, with the majority between 1963 and 20095

(Figure 1d). Over most of the year, the measurements are uniformly distributed, significantly fewer measurements are only

available in December and January (Figure 1e).

3.2 Climatological Means

The climatological mean concentrations, i.e. the concentrations in an average year, were estimated once using the arithmetic

mean and once using the median, (compare Subsection 2.2). The results using the arithmetic mean are described next and are10

plotted in Figure 2.

The average estimated climatological mean is 2.17 mmolm−3. The time averaged climatological means near the surface are

shown in Figure 2a. Here, the highest values are at the Southern Ocean ranging from 1.5 to 2.2 mmolm−3. Other high values

are at the north of the Pacific Ocean, ranging from 1.0 to 1.5 mmolm−3, and at the southeast of the Pacific Ocean, around 1.0

mmolm−3. Elsewhere, they are usually below 0.5 mmolm−3.15
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(a) water surface
(averaged over time and 0 to 25 m depth)

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean
(averaged over time and between 125◦E and 70◦W)

(e) Atlantic Ocean
(averaged over time and between 70◦W and 20◦E)

(f) Indian Ocean
(averaged over time and between 20◦E and 125◦E)

Figure 2. Climatological mean of phosphate in mmolm−3.

The climatological means averaged over all but the depth are presented in Figure 2b. They strictly increase from 0.6 to 2.5

mmolm−3 with growing depth up to 1200 m. After that they remain constant at approximately 2.25 mmolm−3.

The average absolute change in the climatological means after one month is about 0.05 mmolm−3. The average absolute

monthly changes depending on the depth are plotted in Figure 2c. They strictly increase from 0.09 to 0.15 mmolm−3 with

growing depth up to around 250 m. Afterwards they strictly decrease with growing depth. After a depth of 1500 m they are5

below 0.05 mmolm−3.

The climatological means in the Pacific Ocean depending on depth and latitude and averaged over longitude and time are

shown in Figure 2d. Near the surface they are usually between 0.2 mmolm−3 and 1 mmolm−3. Only south of 50◦S they

are between 1.1 mmolm−3 and 1.7 mmolm−3. After a few hundred meter depth they increase rapidly. After a depth of 500

m, they are above 2 mmolm−3 and between 25◦S and 60◦N they are above 2.5 mmolm−3. Even deeper, they change only10

slightly.

The results for the Atlantic Ocean are shown in Figure 2e. They are similar to the one in the Pacific Ocean at the first few

hundred meters depth as well as south of 50◦S. However between 50◦S and 30◦N the average concentrations decrease from

around 2.2 mmolm−3 to around 1.5 mmolm−3 at a depth of about 1250 m and then increase again slightly near the seafloor.

North of 30◦N, the values remain almost constant at 1.1 mmolm−3 at a depth greater than 1000 m.15

Figure 2f illustrates the climatological means in the Indian Ocean. These are very similar to those in the Pacific Ocean at

corresponding depths and longitudes.
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(a) water surface
(averaged over time and 0 to 25 m depth)

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean
(averaged over time and between 125◦E and 70◦W)

(e) Atlantic Ocean
(averaged over time and between 70◦W and 20◦E)

(f) Indian Ocean
(averaged over time and between 20◦E and 125◦E)

Figure 3. Standard deviation of phosphate measurements (η) in mmolm−3.

The estimated climatological means using the median instead of the arithmetic mean look quite similar. Their average

absolute difference is 0.004 mmolm−3. It is 0.011 mmolm−3 near the surface and decreases with growing depth.

3.3 Variabilities

The estimated variabilities of the measurement results η as well as the short and the long scale variabilities, i.e., the variabilities

of the noise ε and the true concentration δ, are described next using standard deviations and relative standard deviations.5

Standard Deviations

The estimated standard deviations of the measurement results η are plotted in Figure 3. The average estimated standard devia-

tion is 0.11 mmolm−3.

Its time averaged standard deviations near the surface are shown in Figure 3a. Here, the highest standard deviations are

between 0.35 and 0.45 mmolm−3 around the eastern part of Russia, near the west and south of South America and the west10

coastal region of Southern Africa. Elsewhere near the coast or in the Southern Ocean, the standard deviations are between 0.15

and 0.25 mmolm−3. They are between 0.05 and 0.15 mmolm−3 in the remaining areas.

The standard deviations averaged over all but the depth is plotted in Figure 3b. It increases from 0.15 mmolm−3 at the

surface to 0.23 mmolm−3 at around 120 m depth. Afterwards it barely changes up to a depth of 500 m. Then it strictly

decreases to 0.06 mmolm−3 at a depth of 2500 m and hardly changes while going deeper.15
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(a) water surface
(averaged over time and 0 to 25 m depth)

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean
(averaged over time and between 125◦E and 70◦W)

(e) Atlantic Ocean
(averaged over time and between 70◦W and 20◦E)

(f) Indian Ocean
(averaged over time and between 20◦E and 125◦E)

Figure 4. Short scale, i.e. noise, standard deviation of phosphate concentration (ε) in mmolm−3.

The average absolute change in the standard deviation after one month is shown in Figure 3c. Up to a depth of 500 m, the

change is between 0.05 and 0.06 mmolm−3. Then it decreases to around 0.01 mmolm−3 at a depth of 2500 m whereupon it

remains almost constant.

In Figure 3d, 3e and 3f, the standard deviations in the Pacific Ocean, the Atlantic Ocean and the Indian Ocean averaged over

time and longitude are shown. They are between 0.25 and 0.35 mmolm−3 above 1000 m depth in the Pacific, the Indian Ocean5

and the South Atlantic Ocean. Elsewhere they are lower than 0.25 mmolm−3 and deeper than 1500 m even lower than 0.15

mmolm−3. Peaks between 0.40 and 0.45 mmolm−3 are located in the far north of the Pacific as well as in in the south of the

Atlantic and the Southern Ocean.

As explained in Subsection 2.3, the standard deviations of the measurement results η are composed of the standard devia-

tions of the true concentration δ and the noise ε and are plotted in Figure 4 and Figure 5. The standard deviation of the true10

concentration describes the climatological variability. In contrast, the standard deviation of the noise covers the short scale

variabilities which include the variability within the grid boxes in specific years as well as measurement inaccuracies.

The average estimated standard deviation were 0.10 mmolm−3 for the true concentration and 0.05 mmolm−3 for the

noise. Hence, the difference between the measurement results and the climatological mean arose to about two thirds from

climatological variabilities and to about one third from short scale variabilities.15

The standard deviations of the noise usually were below 0.10 mmolm−3 except around the eastern part of Russia, near

the west and south of South America and the west coastal region of Southern Africa, where they were between 0.25 to 0.45

mmolm−3, 0.15 to 0.35 mmolm−3 and 0.10 to 0.30 mmolm−3, respectively, in the upper few hundred meters.
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(a) water surface
(averaged over time and 0 to 25 m depth)

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean
(averaged over time and between 125◦E and 70◦W)

(e) Atlantic Ocean
(averaged over time and between 70◦W and 20◦E)

(f) Indian Ocean
(averaged over time and between 20◦E and 125◦E)

Figure 5. Climatological standard deviation of phosphate concentration (δ) in mmolm−3.

As the standard deviation of the noise includes the variability within a grid box in a specific year, a high standard deviation of

the noise indicates that a finer resolution could provide more accurate climatological information and in contrast a low standard

deviation indicates that the resolution could be reduced without loosing climatological information. A higher resolution thus

seems to make sense for some coastal regions, whereas regions deep in the ocean and far away from coasts could also be

resolved with a lower resolution. This indicates that a more non-uniform resolution may be advantageous and should be5

considered in any further analysis.

The standard deviations averaged over all but the depth are for the noises about half of that for the measurement results. The

average monthly absolute change is usually 0.01 mmolm−3 lower for the noises than for the measurement results. Among the

values for the noise averaged over time and longitude in the Pacific Ocean, the Atlantic Ocean and the Indian Ocean only the

area around the eastern part of Russia stands out.10

Usually the standard deviations of the true concentrations are approximately 0.05 mmolm−3 lower than the standard devi-

ations of the measurement results except for areas where the standard deviations of the noise is high and thus the difference

as well. This relationship arises because the variances of the measurement results are the sum of the variances of the true

concentration and the noise.

We also quantified the variabilities of the true concentration δ and the noise ε by interquartile ranges. However, the plotted15

results look quite similar to the ones of the standard deviation and are therefore not included.
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(a) water surface
(averaged over time and 0 to 25 m depth)

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean
(averaged over time and between 125◦E and 70◦W)

(e) Atlantic Ocean
(averaged over time and between 70◦W and 20◦E)

(f) Indian Ocean
(averaged over time and between 20◦E and 125◦E)

Figure 6. Relative standard deviation of phosphate measurements (η).

Relative Standard Deviations

The relative standard deviation is the standard deviation divided by the expected value and therefore allows to assess the

variability relative to the typical size. Since the expected values of the noise ε are assumed to be zero, it only makes sense to

look at the relative standard deviations of the true concentration δ and the measurement results η. The expected value of these

two is the climatological mean.5

The standard deviations for the true concentrations and the measurement results are quite similar as explained earlier. For

this reason, the relative standard deviations of the true concentration and the measurement results are quite similar, too, as

shown in Figure 6 and 7. The only differ notable near the eastern part of Russia where the standard deviations of the noise are

very high.

The average relative standard deviation of the measurement results is 0.07 and that of the true concentration is 0.06. The10

highest values of the relative standard deviations of the measurement results are mostly between 0.4 and 1. This is mainly near

the surface between 40◦S and 45◦N everywhere expect in the east of the Pacific Ocean. Elsewhere near the surface, the relative

standard deviations are usually below 0.4 and in the Southern Ocean even below 0.2. Usually, high relative standard deviations

result from low climatological means as well as low relative standard deviations from high climatological means.

The average relative standard deviation of the measurement results depending on the depth is 0.45 near the surface and15

decreases fast with growing depth. At 500 m depth it is 0.13, and below 2000 m depth it is below 0.05. The average absolute
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(a) water surface
(averaged over time and 0 to 25 m depth)

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean
(averaged over time and between 125◦E and 70◦W)

(e) Atlantic Ocean
(averaged over time and between 70◦W and 20◦E)

(f) Indian Ocean
(averaged over time and between 20◦E and 125◦E)

Figure 7. Relative standard deviation of phosphate measurements (η).

difference after one month is 0.15 near the surface and decreases in a similar way. At 500 m depth it is 0.04, and below 2000

m depth it is below 0.01. Hence, the climatological variability is negligible after a few hundred meters of depth.

In the Pacific Ocean, the Atlantic Ocean and the Indian Ocean the previously mentioned areas between 40◦S and 45◦N and

with a depth up to 200 m stand out with higher values.

The quartile coefficients of dispersion of the true concentration δ and the measurement results η were also used to quantify5

its variabilities as an alternative to its relative standard deviations. However, the results look quite similar and are thus not

illustrated here.

3.4 Statistical Dependencies

We quantified the statistical dependencies regarding δ, ε and η with covariances and correlations. It suffices to estimate the co-

variance or correlation of the true concentration δ. The other covariances and correlations result from these estimates (compare10

Subsection 2.4).

Pointwise Correlations

The calculated estimates depend on the required number of years where measurement results are available. We set up three

estimates: The first covers measurements within at least 35 years, second within at least 40 years and for the final at least 45

years resulting in 1.9×1010, 3.3×109 and 2.2×108 pointwise estimates, respectively. Estimating the correlation, we assumed15
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(a) 35 years required (b) 40 years required (c) 45 years required

Figure 8. Number of estimated correlations. (0.05 used as bin size in the histograms)

the standard deviation of the noise ε to be at least 0.1 mmolm−3, which corresponds to a coarse measurements accuracy.

Otherwise some unrealistic low sample standard deviations would compromise our correlation estimation.

The number of estimated correlation values is shown in Figure 8 where estimates less than 0.01 in absolute value were not

considered. The figure shows clearly that most of the estimated correlations are small in amount supporting our approach to

assume that not estimated correlations are zero. High absolute values in the estimates are rare. Positive estimates are slightly5

more frequent than negative ones. Of course, these results depend on the spatial and temporal distribution of the measurement

points and would possibly look different with a more uniform distribution of the measurement points.

Correlation Matrix

To generate a well-conditioned positive definite correlation matrix, we considered 4.1 million measurement points.

In average, every estimate was reduced in absolute value by 0.078 to generate this matrix. In total 67% of the estimates were10

modified. By saving the LDL> decomposition instead of the generated correlation matrix itself, the amount of entries could

be reduced by 36%. The sparsity pattern of the unmodified correlation matrix and the permuted well-conditioned correlation

matrix are plotted in Figure 9.

(a) unpermuted (b) permuted

Figure 9. Sparsity pattern of correlation matrix.
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Correlations Dependencies on Distances

We analyzed if the estimated correlation depends solely on the distance between the related measurement points (compare

Subsection 2.4).

We sorted all estimated pointwise correlations in groups in which the associated measuring points differ by the same value.

For each of these group with at least ten correlations, we calculated the interquartile range, resulting in more than 3× 1055

values in total. If the estimated correlations would depend only on the distance between the associated measuring points, most

of these interquartile ranges must be close to zero. However, 50% are greater or equal than 0.05, 25% are greater than 0.10, and

5% are even greater than 0.20. Hence, it is unlikely that the estimated correlations can be described by a function depending

only on the distance between the corresponding measurement points when using 0.05 as a threshold or even 0.10 as a less

restrictive threshold.10

The calculated interquartile ranges, associated with measuring points which differ in a single direction, are plotted in Figure

10. They show, especially with regard to depth, a solely distance-related dependence is unlikely.

(a) time (b) longitude (c) latitude (d) depth

Figure 10. Interquartile ranges of estimated correlations associated with measuring points which differ in a single direction.

The means of the groups were plotted in Figure 11 for measuring points which differ in a single direction. They must be close

to each other at points where the associated distances are close to each other, if the estimated correlations can be described by a

continuous function that depends only on the distances. The graphs do not support this assumption, especially for points which15

differ by the depth or by long times.

(a) time (b) longitude (c) latitude (d) depth

Figure 11. Means of estimated correlations associated with measuring points which differ in a single direction.
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It should be noted that considerably less estimates for points that differ only in longitude or only in latitude are available than

for points that differ only in time or only in depth. Hence, the results regarding the longitude and latitude lack significance.

The plots also show that the correlation tend to decrease in terms of absolute value with increasing distance between the

measurement points.

(a) Mar 1951, N33◦-34◦, E136◦-

137◦, 0-25m

(b) Aug 1964, N55◦-56◦, E16-

17◦, 50-85m

(c) Aug 1997, N55◦-56◦, E14-

15◦, 0-25m

(d) Sep 1971, N30◦-31◦, W88-

87◦, 0-25m

(e) Mar 1959, N47◦-48◦, W123◦-

122◦, 0-25m

(f) July 1972, N20◦-21◦, W18◦-

17◦, 0-25m

(g) Apr 1986, N56◦-57◦, E18◦-

19◦, 25-50m

(h) July 1988, N43◦-44◦, E34◦-

35◦, 290-360m

(i) June 1970, N44◦-45◦, W125-

124◦, 0-25m

(j) Apr 1975, N55◦-56◦, E15-

E16◦, 50-85m

(k) June 1982, N47◦-48◦, W125-

124◦, 0-25m

(l) June 1988, N42◦-43◦, E32-

33◦, 220-290m

Figure 12. Selected histograms and kernel density estimations for the measurement results (η). Most of them look like the ones in the first

and second row, i.e., log-normal or normal distributed. A few look like the ones in the last row which do not look like either of the these two

distributions.
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3.5 Probability Distributions

We investigated the underlying probability distributions of the measurement results η, the true concentration δ and the noise ε,

(compare Subsection 2.5).

To assess the probability distributions, we produced histograms and kernel density estimations (KDEs). For the histograms,

the sizes of the bins were determined by the rule of Freedman and Diaconis (1981). For the KDEs, normal kernel were used5

with bandwidths determined by the rule of Scott (2015).

(a) Mar, N55◦-56◦, E15◦-16◦,

85-120m

(b) Apr, N55◦-56◦, E14-15◦, 25-

50m

(c) May, N59◦-60◦, E21-22◦, 0-

25m

(d) Aug, N56◦-57◦, E19-20◦, 0-

25m

(e) Mar, N55◦-56◦, E15◦-16◦,

50-85m

(f) May, N55◦-56◦, E15◦-16◦,

25-50m

(g) Aug, N58◦-59◦, E19◦-20◦,

50-85m

(h) Nov, N57◦-58◦, E20◦-21◦,

50-85m

(i) May, N57◦-58◦, E20-E21◦,

50-85m

(j) Aug, N52◦-53◦, E20-21◦, 0-

25m

(k) Nov, N57◦-58◦, E20-21◦, 85-

120m

(l) Dec, N57◦-58◦, E11-12◦, 0-

25m

Figure 13. Selected histograms and kernel density estimations for the true concentration (δ). Most of them look like the ones in the first and

second row, i.e., log-normal or normal distributed. A few look like the ones in the last row which do not look like either of the these two

distributions.
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Histograms and KDEs with at least hundred values were generated for the measurement results η and with at least forty

values for the true concentration δ, resulting in around eight hundred and four hundred plots, respectively. When most of the

values are close to zero, the plots usually look like log-normal distributions and otherwise usually like normal distributions.

However, there is no clear overall trend and some plots look like neither of these distributions.

A selection of these is presented in Figure 12 and 13. In the first rows typical plots which indicate log-normal distributions5

are presented, in the second rows typical plots which indicate normal distributions and in the third rows some of the rear

obscure distributions.

As stated in Subsection 2.5, the values of the noise ε are just the values of η shifted by a constant. Hence, the histograms and

KDEs for ε look similar to the ones in Figure 12, just with other values on the horizontal axis.

We also applied the statistical tests mentioned in Subsection 2.5 to test against normal and log-normal distributions. We used10

a significance level of 1% and tested only at points where at least 40 values are available.

Regarding the measurement results η, the tests rejected in average the normal distribution assumption for 73% of the cases.

The log-normal distribution assumption was rejected in average for 65% of the cases. For the true concentration δ, the tests

rejected in average the normal distribution assumption for 25% of the cases and the log-normal distribution assumption for

52% of the cases.15

These high number of rejections gave a different impression than the visual inspection, indicating that at some grid boxes the

probability distributions might neither be a normal nor a log-normal one. The high proportion of rejections may be explained

by the fact that the measurement results have at most three significant digits. Thus they represent at best only heavily rounded

realizations of a normal or log-normal distribution. However, these roundings are not taken into account in the tests.

4 Conclusions20

Phosphate is a key component in understanding the marine ecosystem. Millions of measurement data for phosphate are avail-

able at the World Ocean Database but these are not statistically analyzed in such extent as it is done here.

The climatological mean and variability as well as the short scale variability were quantified. The results indicate that it

makes sense to increase the resolution of the analysis in (some) coastal areas to obtain more accurate climatological information

and to decrease the resolution in areas far away from coasts and deep in the ocean without loosing climatological information.25

The correlation of climatological concentrations were estimated as well. They generally decrease with increasing spatial and

temporal distance, but do not solely depend on the distance.

The climatological concentrations and the measurement results seem to be mostly normally or log-normally distributed.

However, there is no clear trend and in some cases they do not seem to belong to either distribution. Hence, they do not seem

to originate from a single type of distribution.30

This extensive analysis is useful in understanding the marine phosphate concentration. It may also be valuable in the cali-

bration of marine biogeochemical models where our estimated standard deviations and correlations could be incorporated to

achieve a more accurate model calibration (cf. (Walter and Pronzato, 1997, 4) or (Seber and Wild, 2003, 2.1.4)).
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The analysis is also helpful in planning new phosphate measurements. A lower short-scale standard deviation would mean

that average concentration in this year could be be determined more accurate compared to a higher one. If the long-scale

standard deviation is small as well the climatological concentration can also be determined more accurate.

If the measurements should be used to estimate parameters of a model or to determine the most realistic one among several

models, optimal experimental design methods (cf. (Walter and Pronzato, 1997, 6) or (Pronzato and Pázman, 2013, 5)), which5

include statistical properties such as standard deviations and correlations, can be used to determine the places and times of

measurements which provide the highest information gain.

The approaches in the statistical analysis are not limited to phosphate but can also be applied to other data which satisfies

the assumptions.

Appendix A: Spatial and Temporal Resolution10

The spatial grid for our calculation was constructed using the one-degree spatial grid of the World Ocean Atlas 2013 (Garcia

et al., 2014, Chapter 3.4), which is based on the global relief model ETOPO2v2 (National Geophysical Data Center (2006)).

The spatial grid of the World Ocean Atlas 2013 has a resolution of one degree and 137 vertical layers with increasing

thickness. The annual data provided by the World Ocean Atlas 2013 are available up to a depth of 5500 meters which represents

102 layers. The seasonal and monthly data are available up to a depth of 500 meters which represents 37 layers.15

We decided to reduce the vertical resolution to 33 layers in order to increase the number of data in each grid box. The new

depth in each grid box was chosen as the highest depth in Table A1b which is less or equal to the depth in the World Ocean

Atlas 2013. The resulting depths are plotted in Figure A1a.

For the temporal resolution one month was used at all layers, allowing to cover time-dependent changes in all layers.

(a) Depths in kilometer.

0 290 1080 2495 4510

25 360 1250 2740 4855

50 455 1420 3010 5200

85 550 1615 3280 6000

120 670 1810 3575 8000

170 790 2030 3870 10000

220 935 2250 4190

(b) Depths possible for grid boxes in meters.

Figure A1. Depths in the spatial grid used for this statistical analysis.
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Appendix B: Interpolation

The data in our calculations were linearly interpolated by triangulating the input data with the method of Qhull (Barber et al.

(1996)) and performing linear barycentric interpolation on each triangle. Values for points outside the convex hull of the data

points were interpolated using the value of the nearest data point. For this purpose, a kd-tree (Maneewongvatana and Mount

(1999)) was used to rapidly look up the nearest neighbor of each point. We used a Python (Python Software Foundation (2018))5

implementation of both algorithms, which is part of the SciPy library (Jones et al. (2019) and Virtanen et al. (2019)).

The annual periodicity and the periodicity with respect to the longitude were included in the interpolation by assuming the

same values for data points plus/minus the period.

Instead of the depth, the number of the corresponding depths level described in Table A1b was used for the interpolation.

Thus, a vertical distance deep down in the ocean is weighted less than near the surface. This takes into account that the changes10

of the values at great depth are smaller than those closer to the surface.

The points were scaled so that the distance between two consecutive depth levels corresponds to a distance of one degree,

and the length of one year corresponds to the circumference of the earth.

Appendix C: Software

The results in Section 3 have been calculated and visualized using the measurements software package (Reimer (2019b))15

which is based on Python (Python Software Foundation (2018)), NumPy (Oliphant et al. (2019)), SciPy (Jones et al. (2019)

and Virtanen et al. (2019)), Matplotlib (Caswell et al. (2019) and Hunter (2007)), utillib (Reimer (2019c)) and the matrix-

decomposition library (Reimer (2019a)).

The measurements software package contains functions for all methods described in Section 2 as well as for visualizing

corresponding result. It is especially suited for data from the World Ocean Database because it provides special functions for20

processing these data. However, it is not limited to these data.
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Abstract. Methods for model parameter estimation, uncertainty quantification and experimental design are summarized in this

paper. They are based on the generalized least squares estimator and different approximations of its covariance matrix using

the first and second derivative of the model regarding its parameters.

The methods have been applied to a model for phosphate and dissolved organic phosphorus concentrations in the global

ocean. As a result, model parameters have been determined which considerably improved the consistency of the model with

measurement results.

The uncertainties regarding the estimated model parameters caused by uncertainties in the measurement results have been

quantified as well as the uncertainties associated with the corresponding model output implied by the uncertainty in the model

parameters. This allows to better assess the model parameters as well as the model output.

Furthermore, it has been determined to what extent new measurements can reduce these uncertainties. For this, the informa-

tion content of new measurements has been predicted depending on the measured process as well as the time and the location

of the measurement. This is very useful for planning new measurements.

1 Introduction

Computer models are a primary tools in natural sciences and contain parameters which are usually insufficiently known (cf.

McGuffie and Henderson-Sellers (2005); Neelin (2010)). These parameters are usually estimated using noisy measurement

data (cf. Aster et al. (2013); Seber and Wild (2003)). This noise implies uncertainty in the estimated parameters as well as in

the corresponding model output. This uncertainty is often not quantified, which, on the contrary, is essential to correctly assess

the model parameters and the model output.

In order to counter this, we are going to summarize some techniques to estimate unknown model parameters and to quan-

tify and reduce associated uncertainties. The presented methods are suited for computational complex models. We are going

to demonstrate this using a model describing the phosphate and dissolved organic phosphorus concentrations in the global

ocean. Phosphate is a limiting nutrient for marine phytoplankton and therefore influences the growth of phytoplankton and the

absorption of atmospheric CO2 by the ocean (cf. (Bigg, 2003, Chapter 4)).
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Only uncertainties resulting from measurements are subject of this article. Model errors, i.e., the discrepancies between

models and their modeled processes, are not captured as well as numerical errors, i.e., discrepancies between mathematical

models and their (discretized) implementations.

The methods, including methods for parameter estimation, uncertainty quantification and experimental design, are presented

in Section 2. The marine model as application example is introduced in Section 3. The results obtained for this model are

presented in Section 4. Finally, a conclusion is drawn in Section 5.

2 Methods for Parameter Estimation, Uncertainty Quantification and Experimental Design

The generalized least squares estimator, as a model parameter estimation method, is summarized in this section together with

its statistical assumptions and properties. Based on this, methods to quantify the uncertainty in the model parameters estimate

and its corresponding model output are presented. They are built on approximations of the covariance matrix of the estimator

and resulting approximate confidence intervals. Finally, optimal experimental design methods, which allow to reduce the

uncertainty by optimally planned additional measurements, are briefly introduced.

2.1 Model Parameter Estimation

An estimate θ̂n of the model parameters is usually obtained as the minimizer of an objective function φn:

θ̂n := argmin
θ∈Ω

φn(θ), (1)

where Ω is some set of feasible model parameters and n is the number of measurements.

By far, the most commonly used estimate is the (ordinary) least squares estimate (cf. (Seber and Wild, 2003, Section 2.1),

(Pronzato and Pázman, 2013, Section 3.1), (Smith, 2013, Section 4.3) and (Walter and Pronzato, 1997, Section 3.1)) where the

objective function is:

φOLSn (θ) := ‖yn− fn(θ)‖22.

Here, yn denotes the vector of the measurement results and fn(θ) the vector of model outputs corresponding to the measure-

ment points and depending on the model parameters θ.

However, we will use the generalized least squares estimate (cf. (Seber and Wild, 2003, Subsection 2.1.4)) with the objective

function:

φn(θ) := (yn− fn(θ))T Cn−1(yn− fn(θ)), (2)

where Cn is some positive definite matrix. If Cn is the identity matrix, this equals the ordinary least squares estimate and thus

can be interpreted as a generalization. If Cn is a diagonal matrix, this corresponds to weighted least squares estimates.

The estimator corresponding to the generalized least squares estimate is the random vector:

Θn := argmin
θ∈Ω

(Yn− fn(θ))T Cn−1(Yn− fn(θ)),
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where Yn is a random vector of which the measurement results yn are a realization.

The estimator has some appealing properties under certain regularity conditions (cf. Jennrich (1969), Amemiya (1983),

(Seber and Wild, 2003, Section 12.2), (Walter and Pronzato, 1997, Subsection 3.3.3) and (Pronzato and Pázman, 2013, Section

3.1)): It is consistent, asymptotically unbiased, asymptotically normal and asymptotically efficient. Hence, the estimator Θn

converges almost surely to the desired model parameters if the number of measurements n goes to infinity, making it the most

accurate estimator among all asymptotically unbiased estimators.

One of the regularity conditions is that the statistical model, which includes the model function f and the measurement

noise, are correctly specified. For the generalized least squares estimator, this means that some true model parameters θ∗ ∈ Ω

exist with:

Yn ∼N (fn(θ∗),σ2Cn), (3)

where σ is some positive scalar. This implies that the model can describe the modeled process with appropriate parameters and

that the measurement noise is unbiased and normally distributed with covariance matrix σ2Cn.

If the assumed statistical model in (3) is correct, the generalized least squares estimator is the maximum likelihood estimator.

The desired model parameters, that should be estimated, are then θ∗ and the consistency means then almost surely convergence

to θ∗.

If the assumed statistical model is incorrect, the generalized least squares estimator Θn is the quasi maximum likelihood

estimator, also known as pseudo maximum likelihood estimator, regarding the set of probability distributions:

Pn := {N (fn(θ),σ2Cn) | θ ∈ Ω}.

This estimator is still consistent, asymptotically unbiased and asymptotically normal under certain regularity conditions (cf.

White (1981) and White (1982)). However, the estimator no longer has to be efficient. Consistency means in this case the

almost sure convergence to some θ∗ ∈ Ω so that N (fn(θ∗),σ2Cn) ∈ Pn has minimal difference to the probability distribution

of Yn among all probability distributions in Pn.

The other regularity conditions vary slightly depending on the reference. They usually includes, that the model function f is

twice continuously differentiable and that Ω is closed and bounded. Furthermore, θ∗ must be uniquely identifiable, implying

the measurement points must be chosen such that the model output at this points differs sufficiently for the model parameters

θ∗ compared to other model parameters θ ∈ Ω.

It should be noted that at some references only the ordinary least squares estimator is considered. However, their statements

can be extended to the generalized least squares estimator by considering:

φn(θ) = ‖ỹn− f̃n(θ)‖22,

as an ordinary least squares estimation with ỹn := Cn−0.5yn and f̃n(θ) := Cn−0.5fn(θ) (cf. (Seber and Wild, 2003, Subsection

2.1.4)).
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2.2 Uncertainty in Parameter Estimation

The uncertainty in the estimated model parameters θn implied by the noise in the measurement results can be described by the

probability distribution of the estimator Θn. Hence, we derive different approximations of this probability distribution in this

subsection and calculate from these approximate confidence intervals for the unknown model parameters θ∗.

In order to approximate the probability distribution of Θn, we assume that:

Θn ∼N (θ∗,Vn) , (4)

where Vn is the covariance matrix of Θn. This is reasonable due to the asymptotically normal distribution and the asymptoti-

cally unbiasedness of the estimator Θn. They are ensured if the previous mentioned regularity conditions are fulfilled regardless

of whether the assumed statistical model (3) is correct or not.

The error made due to assumption (4) is small, if n is sufficiently large. If the model function fn is linear regarding the

model parameters and the statistical model (3) is correct, (4) is a consequence (cf. (Smith, 2013, Section 7.2) and (Tenorio,

2017, Section 2.6)). Thus, even if n is low, the error made due to assumption (4) is small if the second and higher derivatives

of fn are close to zero and the statistical model assumed in (3) is sufficiently close to reality.

To approximate the covariance matrix Vn, we use three different approximations. In order to introduce these, we first define

Jn(θ̂n) as the Jacobian matrix of the model function fn and Hn(θ̂n) as the Hessian matrix of the objective function 1
2φn both

at the estimate θ̂n as well as:

Fn(θ̂n) := Jn(θ̂n)T C−1
n Jn(θ̂n). (5)

Fn(θ̂n), sometimes insteadHn(θ̂n), is called the Fisher information matrix for the model parameter θ̂n (cf. (Pukelsheim, 2006,

Section 3.10)).

The three approximations of Vn are:

V(F )
n (θ̂n) := σ2Fn(θ̂n)−1, (6)

V(H)
n (θ̂n) := σ2Hn(θ̂n)−1, (7)

V(F,H)
n (θ̂n) := σ2Hn(θ̂n)−1Fn(θ̂n)Hn(θ̂n)−1. (8)

V(F )
n (θ̂n) is the most common of these approximations (cf. (Seber and Wild, 2003, Subsection 2.1.2), (Smith, 2013, Section

7.3), (Tenorio, 2017, Section 5.2), (Walter and Pronzato, 1997, Subsection 5.3.1) and Donaldson and Schnabel (1987)). It is

derived by assuming the correctness of the statistical model (3) and applying the linear least squares theory (cf. (Smith, 2013,

Section 7.2) and (Tenorio, 2017, Section 2.6)) to the linearized model ln(θ) := fn(θ̂n) +Jn(θ̂n)(θ− θ̂n).

V(H)
n (θ̂n) is justified by the asymptotic theory for nonlinear least squares estimation (cf. (Seber and Wild, 2003, Subsection

12.2.3)), where under the assumed regularity conditions, 1
nFn(θ̂n) equals 1

nHn(θ̂n) asymptotically if the statistical model (3)

is correct.

V(F,H)
n (θ̂n) is derived by the asymptotic theory of quasi maximum likelihood estimators (cf. White (1982)) where it is not

necessary that the assumed statistical model (3) is correct.

4
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If the statistical model (3) is correct, all three approximations are asymptotically equal and approach asymptotically the

true asymptotic covariance matrix of Θn (cf. White (1982)). Nevertheless, they are usually not equal for a finite number of

measurements, because:

Hn(θ̂n) = Fn(θ̂n) +

n∑

k=1

Hf
k (θ̂n)

(
C−1
n (yn− fn(θ̂n))

)
k
,

where Hf
k (θ̂n) is the Hessian matrix of the model at the k-th measurement point with respect to its parameters evaluated at θ̂n.

However, if f is a linear function, all three approximations are equal, since Hf
k (θ̂n) = 0.

It is not obvious which of these three approximations entails the smallest error if the statistical model (3) is correct and f is

nonlinear. Different recommendations can be found in the literature (cf. Donaldson and Schnabel (1987), Cao and Spall (2012),

Cao and Spall (2009) and Efron and Hinkley (1978)).

However, if the statistical model (3) is not correct, which is the common case, only V(F,H)
n (θ̂n) approaches asymptotically

the true asymptotic covariance matrix of Θn (cf. White (1982)) and, hence, should be preferred.

If σ is unknown, it can be estimated by:

σ̂2
n := 1

nφ(θ̂n). (9)

This is an estimation of a consistent and asymptotically efficient estimator for σ2, if the assumed statistical model in (3) is

correct (cf. (Seber and Wild, 2003, Subsection 2.2.1)). Otherwise σ̂2
n converges almost surely to σ2 + e, where e≥ 0 is the

prediction mean square error, (cf. (Seber and Wild, 2003, Subsection 12.2.4) and (Pazman and Pronzato, 2006, Theorem 1)).

Hence, σ̂2
n usually overestimates σ2 in this case.

After the covariance matrix Vn is approximated by V̂n, approximate confidence intervals for the unknown model parameters

θ∗ can be constructed. For this, we first note that (4) considered component by component implies:

(Θn)i ∼N ((θ∗)i,(Vn)ii) , for all i ∈ {1, . . . ,m},

wherem is the number of model parameters. Thus a confidence interval (In)i for the i-th unknown true model parameter (θ∗)i

with approximate confidence level γ can be constructed as:

(In)i := [(θ̂n)i− (αn)i,(θ̂n)i + (αn)i], with (αn)i := q
(

1+γ
2 ,n−m

)√
(V̂n)ii, (10)

(cf. (Seber and Wild, 2003, Section 5.1) and (Smith, 2013, Section 7.3)) where q(β,k) denotes the β percentile of the t-

distribution with k degrees of freedom. Typical values are listed in Table 1.

γ \ k 10 102 103 104 105

90% 1.812 1.660 1.646 1.645 1.645

95% 2.228 1.984 1.962 1.960 1.960

98% 2.764 2.364 2.330 2.327 2.326

99% 3.169 2.626 2.581 2.576 2.576

Table 1. Typical values for q
(
1+γ
2

,k
)

rounded to three decimal places.
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The justification of (10) is that:

(Θn)i− (θ∗)i√
(Vn)ii

∼ tn−m,

(cf. (Seber and Wild, 2003, Section 5.1)) where tn−m is the t-distribution with n−m degrees of freedom.

The advantage of the previously described approach to quantify the uncertainty is that it is calculable without much compu-

tational effort, provided that the associated derivatives can be evaluated, at least approximately, without too much effort.

Another option to quantify the uncertainty regarding the model parameters are Monte Carlo simulations (cf. (Walter and

Pronzato, 1997, Section 5.2)). Here fictitious measurement data vectors are generated several times and each time the resulting

model parameters are estimated. From these estimates, confidence intervals for the unknown true model parameters p could be

calculated as well as statistical properties, like the expected value or the covariance matrix, of the estimator Θn.

The fictitious measurement data vectors can be generated using sampling methods like random sampling or Latin hypercube

sampling as well as resampling methods like jackknife of bootstrap methods.

This Monte Carlo approach provides more accurate results than the previously described approximations if the number of

fictitious measurement data vectors is large. However, the computational effort using this approach is enormous in comparison

to the described above because a parameter estimation has to be performed several times. Hence, it is not applicable to our

computational expensive model.

2.3 Uncertainty in Model Output

The uncertainty in the model parameters implies an uncertainty in the model output. This can be quantified in the same ways as

the uncertainty in the model parameters. First a probability distribution of the corresponding random vector and then confidence

intervals are approximated.

The uncertainty can be considered on the whole model output or only at some points of interest. Let f̃ denote the function

that maps the model parameters to the model output whose uncertainty should be quantified. This can be the hole model output

or only a subset.

The probability distribution of f̃(Θn) can then be used to describe the uncertainty in the model output due to the uncertainty

in the model parameters. It can be approximated by:

f̃(Θn)∼N (f̃(θ∗),Wn(θ̂n)), (11)

with

Wn(θ̂n) := Jf̃ (θ̂n)Vn(θ̂n)Jf̃ (θ̂n)T . (12)

where Jf̃ (θ̂n) is the Jacobian matrix of f̃ evaluated at θ̂n and Vn(θ̂n) is an approximation of the covariance matrix of Θn.

The approximations (11) and (12) can be derived by assuming Θn ∼N
(
θ∗,Vn(θ̂n)

)
and calculating the probability distri-

bution of l̃(Θn) where l̃ is a linearization of f̃ . Another justification is the delta method (cf. (Tenorio, 2017, Theorem 2.27))
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which allows to calculate the asymptotic probability distribution of f̃(Θn) if the asymptotic probability distribution of Θn is

known.

Several approximations of the covariance matrix of Θn, namely V(F,H)
n (θ̂n), V(F )

n (θ̂n) and V(H)
n (θ̂n), were introduced

in the previous subsection. Define W(F,H)
n (θ̂n), W(F )

n (θ̂n) and W(H)
n (θ̂n) as described in (12) using V(F,H)

n (θ̂n), V(F )
n (θ̂n)

and V(H)
n (θ̂n), respectively.W(F,H)

n (θ̂n) is a good choice if the assumed statistical model might be incorrect.W(F )
n (θ̂n) and

W(H)
n (θ̂n) are also reasonable if the assumed statistical model (3) is correct.

Looking at a single point of interest, (11) implies:

(f̃(Θn))i ∼N
(

(f̃(θ∗))i,(Wn(θ̂n))ii

)
. (13)

Thus a confidence interval Ĩi for (f̃(Θn))i with approximate confidence level γ can be constructed, in the same way as in

the previous subsection, as:

(Ĩn)i := [(f̃(θ̂n))i− (α̃n)i,(f̃(θ̂n))i + (α̃n)i] with (α̃n)i := q
(

1+γ
2 ,n−m

)√
(Wn)ii. (14)

Again, the advantage of these approximation is that they are calculable without much computational effort.

Instead of this approximation, Monte Carlo simulations could again be used to quantify the uncertainty. This time several

model parameter vectors have to be generated from the assumed probability distribution of Θn. For each of this model param-

eter vectors, the model output at the points of interest have to be evaluated. From these model evaluations, confidence intervals

could be calculated as well as statistical properties of f̃(Θn), like its expected value or covariance matrix.

Again, this approach provides more accurate results than the approximation (11) and (12) if the number of generated model

parameter vectors is large but the computational effort is extensive compared to these approximations. Hence, it is not applica-

ble here.

2.4 Uncertainty Reduction using Optimal Experimental Design Methods

The uncertainty in the model parameters as well as the model output can be reduced by additional measurements. However,

not all measurements reduce the uncertainty equally. The idea of optimal experimental design methods (cf. Pukelsheim (2006),

(Walter and Pronzato, 1997, Chapter 6) and (Seber and Wild, 2003, Subsection 5.13)) is to design the measurements such that

the resulting uncertainty is minimized and, hence, the information gain is maximized.

The design of a measurement includes everything that characterizes the measurement, involving the place and time of the

measurement. If several different processes are modeled, it also includes which process is measured. Furthermore, multiple

measuring techniques might be choosable which might result in different measurement accuracies.

One of the key observations for optimal experimental design methods is that for a given θ̂n, the actual measurement results

are not needed for the calculation of V(F )
n (θ̂n). Hence, it can also be calculated including planned measurements that have not

yet been carried out. The same applies toW(F )
n (θ̂n). Thus the new uncertainty resulting from additional measurements can be

predicted with these values.

Using V(F )
n (θ̂n) and W(F )

n (θ̂n) is justified if the assumed statistical model (3) is correct. Otherwise they may not be con-

sistent estimations of the corresponding covariance matrices. Nevertheless, they can be used under certain regularity condi-
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tions (cf. Pazman and Pronzato (2006)) to assess measurement designs. V(H)
n (θ̂n) and V(F,H)

n (θ̂n) as well as W(F )
n (θ̂n) and

W(F,H)
n (θ̂n) can not be used to predict the uncertainty reduction because they depend on the measurement results.

To compare the uncertainty or the information gain resulting from different measurement designs criteria (cf. (Pukelsheim,

2006, Chapter 5), (Walter and Pronzato, 1997, Section 6.1) and (Pronzato and Pázman, 2013, Chapter 5)) are established. These

criteria quantify the uncertainty with a single value by mapping covariance matrices to scalar values. Typical design criteria

are the sum of the diagonal values, the determinant and the maximal eigenvalue (cf. (Pukelsheim, 2006, Chapter 6), (Walter

and Pronzato, 1997, Section 6.1) and (Pronzato and Pázman, 2013, Subsection 5.1.2)). The lower the values of these criteria

are, the stronger the measurements would reduce the uncertainty.

The choice of an appropriate design criterion depends on the purpose of the additional measurements. In particular, whether

the uncertainty in the model parameters or in the model outputs should be reduced and how much emphasis is placed on the

reduction of individual model parameters or model outputs.

We have used two different design criteria. They are easy to calculate and to interpret. The first one aims at reducing

uncertainty in the model parameters itself and is defined as:

ψ(V(F )
n (θ̂n), θ̂n) :=

1

m

m∑

k=1

√
(V(F )
n (θ̂n))ii

(θ̂n)i
. (15)

This is the average of the relative uncertainty in each model parameter, quantified by the standard deviation of the corresponding

estimator divided by the parameter value. Designs are therefore preferred which evenly reduce the uncertainty in each of the

model parameters. The average of the absolute uncertainties, i.e., the average of the uncertainties not divided by the parameter

values, is less useful, if typical model parameters are of different orders of magnitude.

The second design criteria is:

ψf̃ (W(F )
n (θ̂n), θ̂n) :=

1

l

l∑

k=1

(∑

i∈Ik

√
(W(F )

n (θ̂n))ii

)(∑

i∈Ik
f̃i(θ̂n)

)−1

(16)

where Ik is the set of indices corresponding to the output of the k-th modeled process of the numbered l modeled processes.

This criterion prefers designs which reduce the uncertainty in the model output at the points of interest evenly over all modeled

processes.

Again, the absolute uncertainty might be less useful if the typical total model output for each process and thus its typical

total absolute uncertainty differs by several orders of magnitude. The uncertainty relative to each individual model output is

not useful either if some model outputs are zero or close to zero.

It should be straight forward to modify the criteria to the specific purpose of the additional measurements or to formulate

new ones specially suited. Designs that minimize the criterion among all feasible designs are called (local) optimal designs.

Local refers to the dependency on the parameter estimate θ̂n.

The information gain by additional measurements can be quantified by subtracting the value of the criteria using only the

previous designs with the value of the criteria using the previous and the additional designs.
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Sometimes, it might be useful to assign a cost value to each design that quantifies the financial cost or the time effort

associated with this measurement, so the predicted information gains relative to their costs can be considered. This allows to

define optimal designs in relation to their costs or to choose designs up to a certain cost limit.

After carrying out the chosen additional measurements, their measurement results should be used together with the previous

measurement results to update the estimate of the model parameters. Using this new estimate new measurements could be

designed. This allows to include the information in the previous measurements in the planning of the next measurements. This

iterative process is called sequential optimal experimental design (cf. (Walter and Pronzato, 1997, Subsection 6.4.2) and (Seber

and Wild, 2003, Subsection 5.13.3)) and is particularly suitable if new measurements have to be planned repeatedly.

2.5 Computational Details

Several computational details regarding the estimation of the model parameters, as described in Subsection 2.1, are summarized

in the following subsection.

Optimization Algorithm

A number of optimization algorithms exist which can be used to calculate the model parameter estimate θ̂n by minimizing the

objective function φn. They can basically be divided into two categories: derivative based (cf. Gill et al. (1981) and Nocedal

and Wright (2006)) and derivative free algorithms (cf. Conn et al. (2009) and Rios and Sahinidis (2013)).

Usually derivative based optimization algorithms need fewer function evaluations to find a local minimum compared to

derivative free optimization algorithms. However, they usually have more difficulties finding a global minimum. We try to take

advantage of the rapid convergence of the derivative based optimization algorithm SQP discussed in (Nocedal and Wright,

2006, Chapter 18) and try to avoid its difficulty with finding global minimum by combining it with the globalization algorithm

OQNLP introduced in Ugray et al. (2007).

This OQNLP algorithm finds the minimizer by starting multiple local minimizations from promising start points. To generate

start points, a scatter-search algorithm similar to that described in Glover (1998) is used. Thereafter, iteratively, local minima

are searched by a local optimization algorithm from one of the start points. After each search, unpromising start points are

removed from the set of start points by considering their value of the objective function and their distance to already found

local minima. The algorithm terminates if all start points are used or removed. The local minimum with the lowest objective

value is then identified as global minimum. This OQNLP algorithm is implemented in MATLAB (cf. MathWorks (2015a)) as

GlobalSearch algorithm in the Global Optimization Toolbox (cf. (MathWorks, 2015b, Chapter 3)).

This SQP algorithm iteratively solves the Karush–Kuhn–Tucker (KKT) equations, introduced in Karush (1939) and Kuhn

and Tucker (1951), of the constrained optimization problem. For this purpose, a constrained quadratic subproblem is solved in

each iteration using an active set strategy like described in Gill et al. (1981, 1991). The solution of the quadratic subproblem

is used as search direction for a line search procedure similar to that described in Han (1977), Powell (1978b) and Powell

(1978a). The quadratic subproblem is formulated using the value of the objective function and its first derivative as well as an

approximation of its second derivative. The BFGS method, developed by Broyden (1970), Fletcher (1970), Goldfarb (1970)
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and Shanno (1970), is used as a quasi-Newton update for this approximation together with an correction technique, described

in Powell (1978b), which keeps the approximated Hessian positive define. The SQP algorithm is implemented in MATLAB as

fmincon algorithm in the Optimization Toolbox (cf. (MathWorks, 2015c, Chapter 6)).

Scaling of the Objective Function

Many optimization algorithms, like the one we have used, are not invariant to scaling therefore it is essential to scale the

objective function (cf. (Gill et al., 1981, Section 7.5 and 8.7), (Smith, 2013, Section 7.3), (Nocedal and Wright, 2006, Section

2.2) and (Dennis and Schnabel, 1996, Section 7.1)) for a fast and accurate determination of a minimum.

Hence, for the estimation of the model parameters, the model parameters in the objective function and the objective function

values are scaled, as described in (Gill et al., 1981, Section 7.5 and 8.7). The scaled parameters typically range from -1 to 1

and the objective function values typically be around 1.

Evaluating of the Objective Function

The objective function of the generalized least squares estimator (2) can be evaluated in many different ways. In the following,

we describe a fast and numerically accurate way.

The objective function value that should be evaluated is:

φ(p) = (y− f(p))T C−1(y− f(p)).

We have omitted the index n for the sake of simplicity. Define S := diag(C)0.5 to be the diagonal matrix containing the square

root of the diagonal values of C and B := S−1AS−1.

Decompose B by LDLT representation, meaning a lower triangle matrix L with ones on the diagonal and diagonal matrices

D with positive values. It is important to notice that this has to be done only once and not for every evaluation of the objective

function.

The objective function φ is then evaluated by first evaluating:

ψ(p) :=D−0.5L−1S−1(y− f(p)),

from right to left, where instead of the inverse of L the corresponding linear equation is solved using forward substitution.

Then objective function value is evaluated by:

φ(p) = ψ(p)Tψ(p).

3 Marine Phosphorus Cycle as Application Example

We use a model for the phosphate and dissolved organic phosphorus concentrations in the global ocean as application example

for the parameter estimation, uncertainty quantification and experimental design methods described in Section 2.
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First, the used circulation model and the biogeochemical model are introduced in this section. Then, the model parameters

are described together with different guesses of their values. Next, the calculation of an annual periodic state is explained as

well as a fast way to calculate the derivative of the model output regarding the model parameters. Finally, the measurement

data used for parameter estimation are described.

3.1 Circulation Model

We have used the Transport Matrix Method (TMM) introduced in Khatiwala et al. (2005) to simulate the advection and

diffusion of passive tracers in the ocean (cf. Khatiwala (2007)). This method has already been used in various studies (cf.

Weber and Deutsch (2010); Kriest et al. (2010, 2012); Prieß et al. (2013); Graven et al. (2012)).

The TMM utilizes that the continuous advection-diffusion equation:

∂Yi
∂t

=∇ · (K∇ ·Yi))︸ ︷︷ ︸
diffusion

−∇ · (V Yi)︸ ︷︷ ︸
advection

+Si(Y1, . . . ,Ym,θ)︸ ︷︷ ︸
sources and sinks

for i ∈ 1, . . . ,m, (17)

where Y1, . . . ,Ym denote the concentrations of the m tracers, K the diffusion coefficient, V the velocity and S1, . . . ,Sm the

source-and-sink-terms depending on the model parameters θ, can be written in the discretized form as a matrix equation:

y(n+1) =A
(n)
i (A(n)

e y(n) + s(n)(θ)∆t). (18)

y(n) denotes the vector of all tracer concentrations at all grid points of the circulation model in the discretized form at time

step n, s(n)(θ) the discretized version of the source-and-sink-terms depending on the model parameters θ and ∆t the time step

in the discretization. The matrices A(n)
i and A(n)

e , called transport matrices, result from the discretization of the advection and

diffusion terms where A(n)
i belongs to the implicit part and A(n)

e to the explicit part of the discretization.

The approach of the TMM is to determine the elements of these matrices by utilizing a general circulation model. For this,

the general circulation model is executed several times with different suitable chosen tracer concentrations.

We use monthly averaged transport matrices (cf. Khatiwala et al. (2005); Khatiwala (2007)), calculated with the MIT general

circulation model (cf. Marshall et al. (1997a, b, 1998)). At the middle of each month the corresponding transport matrix has

been used. Elsewhere a linear interpolation of the two transport matrix closest to the point in time were used.

A spatial resolution of 2.8125 degree and 15 vertical layers with increasing depths was used at the construction of the

transport matrices. Hence, this is also the resolution of our circulation model. The resolution corresponds to 64 boxes in

north-south direction and 128 boxes in west-east direction.

For the temporal resolution, ∆t= 2880−1 y has been chosen which corresponds to a time step of roughly three hours.

Hence, daytime dependent processes can be resolved.

3.2 Biogeochemical Model

The biogeochemical model contains phosphate (PO4) and dissolved organic phosphorus (DOP) and is part of the ocean carbon

model, described in Dutkiewicz et al. (2005), of the MIT Integrated Global System Model Version 2 (IGSM2), described in
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Sokolov et al. (2005). This model and some variants are used frequently(cf. Parekh et al. (2005, 2006); Najjar and Orr (1998);

Najjar et al. (2007); Kwon et al. (2009); Kriest et al. (2010, 2012); Prieß et al. (2013)). It is briefly described in the following

where we stick to the notation in Dutkiewicz et al. (2005).

The concentration of PO4 and DOP at layer i are described by the following source-minus-sink terms:

SPO4(i) =−Jprod(i) +κreDOP (i) + ∆F (i), (19)

SDOP (i) = fDOPJprod(i)−κreDOP (i). (20)

Here, Jprod denote the biological production (net community productivity). A fraction fDOP of this biological production

remains suspended as DOP. The remainder (1− fDOP ) becomes particulate organic phosphorus (POP) which sinks to depths

and instantly remineralizes to PO4 which is modeled by ∆F (i). The DOP remineralizes back to PO4 with rate κre. fDOP and

κre are model parameters.

The biological production:

Jprod(i) := α
PO4(i)

PO4(i) +κPO4

I(i)

I(i) +κI
, (21)

is modeled by Michaelis-Menten kinetics depending on the available light I and the nutrient PO4 similar to McKinley et al.

(2004). The corresponding half saturation constants κPO4 and κI are model parameters as well as the maximum community

production rate α.

The available light:

I(i) := fPARQSW e
−kzc(i), (22)

is modeled, as that portion of the short wave radiationQSW that is photo-synthetically available and has not been attenuated by

water. The short wave radiation QSW is calculated by the atmosphere component of the IGSM2 as a function of time, latitude

and ice cover (cf. Paltridge and Platt (1976) and Brock (1981)). The light attenuation coefficient of water k is treated as model

parameter.

The fraction of photo-synthetically available radiation is described by fPAR. It only enters into the biological production

Jprod where only the ratio κI

fPAR
is relevant. Due to this linear dependence, fPAR and κI would not be uniquely identifiable if

fPAR would be a model parameter as well. For this reason, fPAR is set constant to fPAR := 0.4. This values is also used in

the IGSM2.

Let n be the numbers of layers. For each layer i, let zt(i), zc(i) and zb(i) be its top, centered and bottom depth, respectively

and ∆z(i) := zb(i)− zt(i) its thickness.

The portion of the biological production which is exported as POP from layer i to deeper layers is denoted by:

E(i) := (1− fDOP )Jprod(i)∆z(i). (23)

It is assumed that the sinking speed increases with depth following a power law relationship (cf. Najjar and Orr (1998)) and

that the exported POP instantly remineralizes to PO4. The flux F (i) into layer i≥ 2 is then modeled as follows, where ie is the
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last layer in the euphotic zone:

F (i) :=

min(ie,i−1)∑

j=1

E(i)

(
zb(i− 1)

zb(j)

)−are
. (24)

The change of the PO4 concentration in layer 1< i < n due to the flux is then:

∆F (i) :=

min(ie,i−1)∑

j=1

E(i)

((
zb(i− 1)

zb(j)

)−are
−
(
zb(i)

zb(j)

)−are)
(∆z(i))−1. (25)

It is also assumed that no POP is lost to the sediment. This means, all POP that enters the deepest box is instant remineralized:

∆F (n) :=

min(ie,i−1)∑

j=1

E(i)

(
zb(i− 1)

zb(j)

)−are
(∆z(i))−1. (26)

In the topmost layer no PO4 arise from sunk and remineralized POP:

∆F (1) := 0. (27)

3.3 Model Parameters

The seven parameters of the biogeochemical model, described in Subsection 3.2, are considered as unknown model parameters.

Furthermore, the global average phosphorus concentration, which is used to spin-up the model into annual periodic concentra-

tions as described in Section 3.4, is considered as an unknown model parameter as well. All these model parameters are listed

in Table 2 and their values shall be estimated.

Parameter Description Unit

κre remineralization rate of DOP y−1

α maximum community production rate mmolm−3 y−1

fDOP fraction new production going to DOP -

κPO4 half saturation constant of PO4 mmolm−3

κI half saturation constant of light Wm−2

k light attenuation coefficient of water m−1

are power law remineralization coefficient -

p average phosphorus concentration mmolm−3

Table 2. Parameters of the marine phosphorus cycle model.

Our initial guesses and bounds for the unknown model parameters are summarized in Table 3. They are based on values

used in other publications which are outlined next.
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κre α fDOP κPO4 κI k are p

initial guess 0.5 2 0.67 0.5 30 0.02 0.86 2.17

lower bound 0.05 0.2 0.05 0.01 5 0.001 0.5 0.4

upper bound 10 20 0.95 10 200 0.2 2 10

Table 3. Bounds and initial guesses for model parameters.

For κre, 2 y−1 was used in Najjar and Orr (1998) and in Dutkiewicz et al. (2005) based on Najjar and Orr (1998). 0.5 y−1

was used in Parekh et al. (2005) and in Kriest et al. (2010) based on Parekh et al. (2005). In Najjar and Orr (1998) different

studies are summarized which had suggested that κre ∈ [ 10
7 ,5] y−1.

3 mmolm−3 y−1 was used in Dutkiewicz et al. (2005) for α, 2 mmolm−3 y−1 in Kriest et al. (2010) and 6 mmolm−3 y−1 in

Parekh et al. (2005). In McKinley et al. (2004), different values were used for different ocean regions with 2.5 mmolm−3 y−1

as average value.

fDOP ∈ [0,1] by definition of fDOP . 0.67 was used in Dutkiewicz et al. (2005), Kriest et al. (2010), Najjar and Orr (1998)

and Parekh et al. (2005) all based on Yamanaka and Tajika (1997). 0.7 was suggested in Platt et al. (1989). Different studies

are cited in Najjar and Orr (1998) which had estimated fDOP in [0.58,0.77], [0.65,0.95], [0.6,0.7] or [0.4,0.8].

For κPO4 , 0.5 mmolm−3 was used in Dutkiewicz et al. (2005) and Kriest et al. (2010) and 0.01 mmolm−3 in McKinley

et al. (2004).

25 Wm−2 was used in Dutkiewicz et al. (2005) for κI and 30 Wm−2 in Dutkiewicz et al. (2001), Kriest et al. (2010),

McKinley et al. (2004) and Parekh et al. (2005). In Dutkiewicz et al. (2001), it was stated that κI varies from 5 Wm−2 to 100

Wm−2 for different species of phytoplankton based on several cited studies.

For k, 0.02 m−1 was used in Dutkiewicz et al. (2005) and Kriest et al. (2010).

0.9 was used in Dutkiewicz et al. (2005) for are based on Yamanaka and Tajika (1997) and Sarmiento et al. (1990). 0.858

was used in Martin et al. (1987) and in Kriest et al. (2010) based on Martin et al. (1987). Since the choice of are is closely

related to zb(ie), the depth of the euphotic zone, its common values are presented as well. 100 m was chosen in Yamanaka and

Tajika (1997), Martin et al. (1987) and Maier-Reimer (1993) and 75 m in Najjar and Orr (1998). 120 m was used in Kriest

et al. (2010) and 130 m in McKinley et al. (2004). We selected 120 m as well.

2.1701 mmolm−3 was used in Kriest et al. (2010) for p. 2.17 mmolm−3 is also the average phosphorus concentration of

the climatological data provided by the World Ocean Atlas 2013 Garcia et al. (2014) and Reimer (2019b) which are both based

on the data of the World Ocean Database 2013 introduced in Boyer et al. (2013).

3.4 Simulation and Spin-up

The previously described model has been simulated using the simulation package (Reimer (2019c)) which is based on Python

(Python Software Foundation (2018)), NumPy (Oliphant et al. (2019)), SciPy (Jones et al. (2019) and Virtanen et al. (2019)),

Matplotlib (Caswell et al. (2019) and Hunter (2007)), utillib (Reimer (2019d)), the measurements software package (Reimer

14

98



(2019b)) and the matrix-decomposition library (Reimer (2019a) and Reimer (2019a)). The simulation package also includes

many pre- and post-processing functions. For the actual parallelized evaluation of the model, it uses the simulation framework

METOS3D (Piwonski and Slawig (2016), Piwonski and Slawig (2013)) which is based on PETSc (Portable, Extensible Toolkit

for Scientific Computation) (Balay et al. (2019a), Balay et al. (2019b)).

For each model simulation, the model has been spun up from constant concentrations to annual periodic concentrations.

These constant concentrations were chosen so that the average phosphorus concentration p was achieved. To check if an

annual periodicity is reached, the concentrations at the beginning of two consecutive model years were compared. If these are

equal, a periodic state is reached.

Usually, it took 5000 to 7500 model years until roughly annual periodic concentrations were achieved. Sometimes even more

model years were needed. We used at most 10.000 model years. Thereafter, the average difference between concentrations at

two consecutive model years was around 10−7.

A model simulation with a spin-up of 10.000 model years has taken about four hours on four connected computer nodes

with sixteen cores each and a clock rate of 2.1 GHz, respectively.

3.5 Derivative

Besides the model output itself, the derivatives of the model output regarding the model parameters are needed for the esti-

mation of the model parameters as well as the uncertainty quantification and the design of additional measurements. We have

approximated them using finite difference quotients (cf. (Abramowitz and Stegun, 1972, Section 25.3), (Dennis and Schnabel,

1996, Section 4.2), (Nocedal and Wright, 2006, Section 8.1) and (Gill et al., 1981, Section 8.6)). For this, appropriate finite

difference quotients and step sizes must be selected.

Central finite difference quotients ( (Abramowitz and Stegun, 1972, Equation 25.3.21) and (Gill et al., 1981, Subsubsection

8.6.1.2)) have been used for the first order partial derivatives. They have a second order approximation error and are, thus, very

accurate with an appropriate step size. For the second order partial derivatives, finite difference quotients (Abramowitz and

Stegun, 1972, Equation 25.3.23 and Equation 25.3.27), with a second order approximation error as well, have been used.

Two additional function evaluations are needed for each approximation of the first order partial derivative. If the same step

size is used for approximating the second order partial derivatives, two more function evaluations are needed for the second

order partial derivative regarding two different variables and no additional function evaluations are needed for the second order

partial derivative regarding one variable.

To reduce the number of additional function evaluations, finite difference quotients with first order approximation error

(cf. (Dennis and Schnabel, 1996, Section 4.2) and (Gill et al., 1981, Section 8.6)), like forward or backward finite difference

quotients for the first order partial derivatives, could be used. However, in our application example, the additional function

evaluations correspond only to a small part of the total computational effort, as explained below. For that reason, we use the

more accurate finite difference quotients described in the previous paragraphs.

The choice of the step size in the finite difference quotients is always a compromise between a small error in replacing

the derivative by the finite difference quotient and a small error in the floating point arithmetic. Recommended step sizes are
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usually a constant, depending on the used finite difference quotient, multiplied by the typical magnitude of the model parameter

(cf. (Dennis and Schnabel, 1996, Section 5.6) and (Nocedal and Wright, 2006, Section 8.1)). These constants are the third and

the fourth root of the machine precision, for the first order and second order finite difference quotient, respectively (cf. (Gill

et al., 1981, Subsection 8.6.1)). These are roughly 10−5 and 10−4 for 64 bit floating point numbers.

Larger and smaller step sizes were also tested. However, too strong deviation from the recommended step size, usually by

more than two orders of magnitude, result in unrealistic values.

To evaluate the finite difference quotients, we have first spun up the model with the unchanged model parameters. Usually

this spin-up is needed anyway. The spin-ups for the slightly changed model parameters in the finite difference quotients were

then started with the annual periodic concentrations, obtained from the spin-up with the unchanged model parameters, instead

of the usually used constant concentrations. For the derivative regarding the average phosphorus concentration, the annual

periodic concentration were slightly modified to match the average phosphorus concentration.

Using the annual periodic concentrations from the spin-up with the unchanged model parameters accelerates the evaluation

of the derivative significantly because much fewer model years are needed to achieve annual periodic concentrations for the

slightly changed model parameters. Tests with different model parameters have shown that usually only a few hundred model

years are needed. Thus, we have used at most 500 years for the spin-ups for the slightly changed model parameters. Hence, the

complete evaluation of the first derivative with central finite differences needs at most 80% more computational effort than the

evaluation of the model itself.

3.6 Measurement Data

We used the measurement data for phosphate provided by the World Ocean Database 2013, presented in Boyer et al. (2013)

and Johnson et al. (2013), for the model parameter estimation. We limited ourselves to the data that have passed all quality

checks (Johnson et al., 2013, Section 3) and where the measurement points are inside the computational domain. These were

about 2.2 million measurements.

For dissolved organic phosphorus, generally far less measurement data were available. We used almost 400 measurements

obtained from Landolfi (2005), Landolfi et al. (2008) and Yoshimura et al. (2007). These data were quality checked as well and

implausible data were removed together with data outside of the computational domain.

The corresponding standard deviations and the correlation matrix were estimated as described in Reimer (2019b) using the

spatial resolution described in Subsection 3.1 and a monthly temporal resolution.

Here, the standard deviation in each space-time grid box was estimated using the sample standard deviation in each grid

box where at least four values are available. Otherwise the standard deviation was interpolated for phosphate. For dissolved

organic phosphorus, the average of its estimated standard deviations was used, since too few data are available for a meaningful

interpolation. Furthermore, we used 0.1 as a lower bound for the standard deviations. This corresponds to the usual accuracy

of the measurement data and prevents a disproportional weighting of measurement results with a very small sample standard

deviation.
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The correlation between different space-time grid boxes was estimated using the sample correlation where at least thirty-five

value pairs were available. Otherwise the correlation is assumed to be zero. From these individual estimates, a valid correlation

matrix was calculated using the algorithm described in Reimer (2019a).

The objective of the algorithm is to find a valid correlation matrix which is close to the original matrix and has a low condition

number. A low condition number is important because otherwise small inaccuracies by numerical methods or measurements,

are amplified and could dominate the evaluation of the objective function. The algorithm has a parameter which controls the

weighting between a small difference to the original matrix and a small condition number. We have chosen 0.1 as value for this

parameter which makes both objectives quite well achieved. Furthermore, the algorithm calculates the LDLT decomposition

of the correlation matrix as byproduct which was used for a fast and accurate evaluation of the objective function as described

in Subsection 2.5.

4 Results for the Application Example

We applied the methods for parameter estimation, uncertainty quantification and experimental design introduced in Section 2

to the model for phosphate and dissolved organic phosphorus concentrations introduced in Section 3. The results are presented

in the following.

4.1 Model Parameter Estimation

We used the generalized least squares estimator, as described in Subsection 2.1, to estimate the model parameters based on the

measurement data described in Subsection 3.6. For this, the objective function was evaluated over 30.000 times with different

model parameters.

Different model parameters and their objective function values are presented in Table 4. The first row contains the initial

guess of the model parameters presented in Subsection 3.3. The last three rows contain the model parameters which minimize

the objective function of the generalized least squares estimator (GLS), the weighted least squares estimator (WLS) and the

ordinary least squares estimator (OLS), respectively. The objective function values in the table have been divided by the number

of measurements to obtain values easier to interpret.

GLS WLS OLS κre α fDOP κPO4 κI k are p

1.74 4.30 0.22 0.5 2.0 0.67 0.50 30 0.020 0.86 2.17

1.22 2.70 0.20 3.6 11.4 0.83 0.19 154 0.010 1.53 2.17

1.23 2.69 0.20 4.7 10.2 0.88 0.14 100 0.011 1.48 2.19

1.29 2.88 0.19 5.9 18.2 0.89 0.14 200 0.011 1.26 2.20

Table 4. objective function values for different model parameters. (GLS: generalized least squares estimator , WLS: weighted least squares

estimator, OLS: ordinary least squares estimator)
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Depending on the estimator, the optimal model parameters vary. However, all are better than the initial guess regardless of

which estimator is considered.

We focus, as before, on the generalized least squares estimator and the corresponding optimal model parameters. Some of

them differ significantly compared to their initial guess. Most conspicuous is the high value of κI and thus the low value of k.

However, the objective function is rather insensitive to changes in these two parameters. Therefore more plausible values can

be chosen for these parameters without major losses. The value of α seems a bit high as well which and is the consequence of

the high value of κI . The values of the other model parameters seem plausible. κre, fDOP and are are slightly higher than the

initial guess and κPO4 is slightly lower. p is equal to the initial guess which is reasonable since this parameter could already

be estimated very well directly from the measurement data.

The optimization process has also shown that the objective function has many local minima that are not global minima and

that its value in some cases changes very little for changes in the model parameters. This shows that it is very challenging to

find a global minimum and that this may not be unique. Even if the model parameters found represent the measurement results

better than the initial model parameters, they may nevertheless not be a global minimum.

If the statistical assumption (3), on which the generalized least squares estimator is based is correct, the estimator is χ2

distributed with n degrees of freedom, where n is the number of measurements. This implies that the estimator divided by n

has an expected value of one and a variance of 2
n . A confidence interval for this normalized estimator with a confidence level

of 99% is approximately [0.998,1.002]. However, the obtained value is 1.22 indicating that the statistical assumption (3) is not

precisely fulfilled or no global minimum was found. Nevertheless with a value of 1.22, the model parameters might be quite

close to a global minimum.

The model output with the optimal model parameters regarding the generalized least squares estimator (second row in

Table 4) is summarized in Figure 1 and 2. The time averaged output at the water surface is plotted in Figure 1a and 2a. The

average model output depending on the depth is shown in Figure 1b and 2b. The average absolute change after one month is

plotted in Figure 1c and 2c. Figure 1d and 2d, 1e and 2e as well as 1f and 2f show the model output in the Pacific Ocean, the

Atlantic Ocean and the Indian Ocean, respectively, depending on depth and latitude and averaged over time and between the

corresponding longitudes.

The average phosphate concentration at the surface is roughly 0.6 mmolm−3. It increases with growing depth. Deeper than

700 meters the average is approximate constant 2.3 mmolm−3.

The temporal variability decreases with growing depth. The average monthly change of the concentrations is around 0.03

mmolm−3 at the surface. There are almost no changes over time deeper than 700 m.

At the water surface, the highest concentrations are at the Southern Ocean with around 2.2 mmolm−3 and at the north-

eastern part of the Indian Ocean, the northern and middle-east part of the Pacific Ocean as well as the northern part of the

Atlantic Ocean ranging from 1 to 2 mmolm−3.

The phosphate concentration is highest in each of the Pacific Ocean, the Atlantic Ocean and the Indian Ocean around the

equator at a depth between 500 and 1500 meters. The lowest concentrations in each of these oceans is around the equator near

the water surface.
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(a) water surface: averaged over time and 0 to 25 m depth

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean: averaged over time and between 125◦E and 70◦W

(e) Atlantic Ocean: averaged over time and between 70◦W and 20◦E

(f) Indian Ocean: averaged over time and between 20◦W and 125◦E

Figure 1. Model output for phosphate (in mmolm−3) with model parameters estimated by GLS.

The average dissolved organic phosphorus concentration is almost 0.3 mmolm−3 at the water surface and decreases quickly

with growing depth. It is close to zero below 500 m.

The temporal variability decreases rapidly as well with growing depth. The average monthly change of the concentrations is

around 0.02 mmolm−3 at the surface and there are almost no changes over time below 500 m.

The highest dissolved organic phosphorus concentrations of almost 0.6 mmolm−3 are at the surface around the equator.

Other high values with around 0.4 mmolm−3 are in areas around 45◦S and 45◦N.

The previously described behavior applies to the Pacific Ocean, the Atlantic Ocean as well as the Indian Ocean.

4.2 Uncertainty in Parameter Estimation

The uncertainty in the parameter estimation has been quantified as described in Subsection 2.2. For this, we have approximated

the covariance matrix of the parameter estimator and confidence intervals with a confidence level of 99% using Equation (8)

and (10).

For each model parameter, the length of its confidence interval relative to its estimated value is plotted in Figure 3. The

estimates with the greatest uncertainty are those for κre and κPO4 with six to seven percent. These are followed by α and

κI with around three percent. A lower uncertainty of about one percent is associated with fDOP , k and are. The slightest

uncertainty of one per mill is associated with p.
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(a) water surface: averaged over time and 0 to 25 m depth

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean: averaged over time and between 125◦E and 70◦W

(e) Atlantic Ocean: averaged over time and between 70◦W and 20◦E

(f) Indian Ocean: averaged over time and between 20◦W and 125◦E

Figure 2. Model output for dissolved organic phosphorus (in mmolm−3) with model parameters estimated by GLS.

These values are consistent with our experience with the model. Its output is sensitive to changes in the parameters fDOP , k

and are and very sensitive to changes in p. Hence, it is reasonable that these parameter could be estimated quite accurately.

Figure 3. Confidence intervals length relative to estimated model pa-

rameters with 99 % confidence level.

Figure 4. Correlation matrix of the model parameter estimator (gen-

eralized least squares estimator).
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(a) water surface: averaged over time and 0 to 25 m depth

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean: averaged over time and between 125◦E and 70◦W

(e) Atlantic Ocean: averaged over time and between 70◦W and 20◦E

(f) Indian Ocean: averaged over time and between 20◦W and 125◦E

Figure 5. Confidence intervals length for phosphate model output (in mmolm−3) with 99 % confidence level.

The correlation matrix of the parameters estimator is plotted in Figure 4. Here strong positive correlations between κre,

α and fDOP are conspicuous. They imply that if the true value of one of these model parameters is higher or lower than its

estimate, it is very likely that the same applies to the other two parameters. Especially κre and fDOP have a correlation close

to one.

A strong negative correlation close to minus one is between k and are. This means that if the true value of one of these

parameters is greater than its estimate, then it is very likely that the other is smaller and vice versa.

We also compared the different approaches to approximated the covariance matrix of the parameter estimator described in

Equation (6), (7) and (8). All three approximations provide similar results. They differ in each component usually at most by a

factor between one half and two. The similarity of the three approximations indicates that the statistical assumption (3) might

be not far from reality.

4.3 Uncertainty in Model Output

The uncertainty in the model parameters implies uncertainty in the model output. This has been quantified as described in

Subsection 2.3. For each model output the uncertainty is quantified by the length of corresponding confidence intervals with

confidence level of approximately 99 %. Their lengths are plotted in Figure 5 and 6.

The average uncertainty at the water surface is 6× 10−3 mmolm−3 for phosphate and 5× 10−3 mmolm−3 for dissolved

organic phosphorus. This corresponds to an uncertainty relative to the average model output of around 1 % for phosphate and
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(a) water surface: averaged over time and 0 to 25 m depth

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean: averaged over time and between 125◦E and 70◦W

(e) Atlantic Ocean: averaged over time and between 70◦W and 20◦E

(f) Indian Ocean: averaged over time and between 20◦W and 125◦E

Figure 6. Confidence intervals length for dissolved organic phosphorus model output (in mmolm−3) with 99 % confidence level.

around 2 % for dissolved organic phosphorus. The uncertainty at the surface is high for both tracers right there where the

dissolved organic phosphorus concentration itself is high.

With growing depth, the average uncertainty for phosphate decreases strictly monotonically. It is close to zero after roughly

700 m. In contrast, the uncertainty for dissolved organic phosphorus is almost constant over all depths.

The uncertainties near the surface change on average by 7% per month for both tracers. The temporal variations regarding

the uncertainties decrease with growing depth. There is almost no change over time deeper than 700 m for phosphate and

deeper than 450 m for dissolved organic phosphorus. This corresponds to the model output itself which is almost constant over

time from these depths on.

The absolute difference in climatological mean concentration of phosphate as described by the model and the one estimated

directly from measurement data as described in Reimer (2019b) are shown in Figure 7. The differences are very high at the

northeast of the Indian Ocean and at the north and east coast of the Pacific Ocean with values close to one.

These differences are significantly higher than the uncertainty in the model output resulting from the uncertainty in model

parameters. This indicates that a significant model error occurs at these regions or that the estimated model parameters are not

optimal, at least for these regions. Here the model should be improved or maybe model parameters specially suited for these

regions should be estimated. The model error can originate in the biogeochemical model or the circulation model or both.

From a depth of around 1000 meters on, the differences relative to the concentrations are small, but still high compared

to the uncertainties resulting from the uncertainties in the model parameters. Since the parameters of the biogeochemical
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(a) water surface: averaged over time and 0 to 25 m depth

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean: averaged over time and between 125◦E and 70◦W

(e) Atlantic Ocean: averaged over time and between 70◦W and 20◦E

(f) Indian Ocean: averaged over time and between 20◦W and 125◦E

Figure 7. Absolute difference in phosphate model output and climatological mean estimated from measurement data (in mmolm−3).

model influence the concentration only very slightly at these depths, this indicates that the transport model is also erroneous.

Nevertheless, the model reflects the climatological concentrations quite well in many regions.

Due to the small number of dissolved organic phosphorus measurements, a corresponding comparison is not possible.

4.4 Uncertainty Reduction by Additional Measurements

The uncertainty regarding the model parameters as well as the model outputs can be reduced by additional measurements as

described in Subsection 2.4.

In order to find out which measurement design significantly reduce the uncertainties and which result only in a slight

information gain, we have analyzed the average model uncertainty equally weighted for both tracers as described in Equation

(16) resulting for one additional measurement. Figure 8 and 9 show by what proportion the average model uncertainty is

reduced by one additional measurement at this point.

The most informative measurements are located at the water surface. The information content decreases rapidly with growing

depth. Compared to the the information content at the surface, it is below one third for phosphate measurements deeper than 150

m and for dissolved organic phosphorus measurements deeper than 80 m. Deeper than 400 m it is close to zero for phosphate

measurements and deeper than 200 m it is approximately constant one sixth for dissolved organic phosphorus measurements.

The time of the measurement seems to have little effect on their information content.
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(a) water surface: averaged over time and 0 to 25 m depth

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean: averaged over time and between 125◦E and 70◦W

(e) Atlantic Ocean: averaged over time and between 70◦W and 20◦E

(f) Indian Ocean: averaged over time and between 20◦W and 125◦E

Figure 8. Uncertainty reduction by one phosphate measurement at this location (in mmolm−3).

Phosphate measurements have the highest information content at the north-eastern part of the Indian Ocean and at the

middle-east part of the Pacific Ocean. This indicates that measurements in areas where the concentration of dissolved organic

phosphorus is high are especially worthwhile for phosphate measurements.

The highest information content of dissolved organic phosphorus measurements is at the surface of the north-eastern part

of the Indian Ocean and the middle of the Pacific Ocean both around the equator. This indicates that measurements in areas

where the concentration of dissolved organic phosphorus is high but that of phosphorus is low are especially worthwhile for

dissolved organic phosphorus measurements.

A dissolved organic phosphorus measurement contains usually twice as much information as a phosphate measurements.

However, carrying out a dissolved organic phosphorus measurement is many times more complex and expensive than carrying

out a phosphate measurement. This means that carrying out dissolved organic phosphorus measurements is not worthwhile for

reducing the model uncertainty.

A single additional measurement can reduce the average model uncertainty at most by roughly a twenty thousandth part.

Hence, for a significant reduction, many additional measurements are required. This is plausible, since more than four million

measurements have already been carried out and result in the current uncertainty.

As described in the previous subsection, the model appears to be erroneous in the northeast of the Indian Ocean and the

north and east coast of the Pacific Ocean which speaks in favor of carrying out additional measurements there as well. These

could then help to improve the model.
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(a) water surface: averaged over time and 0 to 25 m depth

(b) averaged over all but depth (c) average monthly change

(d) Pacific Ocean: averaged over time and between 125◦E and 70◦W

(e) Atlantic Ocean: averaged over time and between 70◦W and 20◦E

(f) Indian Ocean: averaged over time and between 20◦W and 125◦E

Figure 9. Uncertainty reduction by one dissolved organic phosphorus measurement at this location (in mmolm−3).

5 Conclusions

In this article we have presented several methods for model parameter estimation and uncertainty quantification. They are

based on the generalized least squares estimator which has been described together with its statistical properties.

Several approximations of the covariance matrix of the estimator of the model parameters as well as the corresponding

model output have been introduced. They are based on the first and second derivative of the model regarding its parameters.

Their advantages and disadvantages have been emphasized. Approximate confidence intervals were provided as another way

to quantify uncertainties.

Optimal experimental design methods have been briefly introduced which allow to predict the uncertainty reduction by

additional measurements and to design new measurements in such a way that the information gain is maximized.

We have applied all these methods to a model for phosphate and dissolved organic phosphorus concentrations in the global

ocean. For this, we have introduced the model briefly as well as its evaluation and corresponding measurement data.

We were able to find model parameters which are significantly more consistent with the measurement data compared to our

initial guess. The individual model parameters of the model are subject to very diverse uncertainties. The uncertainties vary

from 0.1 % to 7 % of the parameter values.

The uncertainties in the associated model output vary greatly as well, depending on location, time and tracer. The largest

uncertainties are at the water surface, where, they are in average around 1 % of the phosphate concentrations and around 2 % of
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the dissolved organic phosphorus concentrations. Usually, they are high where the dissolved organic phosphorus concentration

is high. With increasing depth the uncertainty for phosphate decreases rapidly while remaining more or less constant for

dissolved organic phosphorus.

In the northeast of the Indian Ocean and near the north and east coast of the Pacific Ocean, the difference between the

climatological phosphate concentration described by the model and calculated from measurement data are much higher than

the uncertainty implied by the uncertainty in the model parameters. This indicates that the model is erroneous here.

New measurements are most informative if they are close to the water surface. Phosphate measurements are especially

worthwhile where the concentration of dissolved organic phosphorus is high. Taking into account the additional effort and

costs associated with dissolved organic phosphorus measurements they are not worthwhile. If dissolved organic phosphorus

measurements should be carried out nevertheless, they should be carried out where the dissolved organic phosphorus concen-

tration is high and the phosphorus concentration is low.

The results obtained for this model help to better assess its parameters and output as well as to plan new measurements. The

applicability and usefulness of the presented methods has been shown with this application example and are applicable to a

wide range of models.
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6 Conclusions and Outlooks

Methods for optimization of model parameters, uncertainty quantification and uncer-
tainty reduction by optimal experimental designs were successfully applied in this thesis
to application examples in climate research of varying complexity. The methods were
presented in detail and have proven be well applicable even for more complex models.

The optimized model parameters allow more realistic forecasts. The performed un-
certainty quantifications are extremely useful in assessing the model outputs and the
measurement data. Optimal experimental design methods were used to predict the un-
certainty reduction by additional measurements allowing to predict whether and how
many additional measurements are useful and how these measurements should be car-
ried out. The results of the uncertainty quantification and optimal experimental design
methods provide a good insight how the measurement data affects the estimated model
parameters and the corresponding model output.

We presented a statistical analysis method for climate data which splits the effects into
a climatological and a short scale part. In addition to the climatological mean, short and
long scale variations and correlations were quantified. A new algorithm was developed
to determine valid correlation matrices. The analysis method and the algorithm could be
successfully applied to large sets of marine phosphate data resulting in a more detailed
insight into the climatological phosphate concentration in the ocean.

For each topic covered, more detailed conclusions and an outlook for further research
is presented in the following.

6.1 Marine Phosphate Data and their Statistical Analysis

Conclusions

A detailed statistical analysis of the phosphate measurement data provided by the World
Ocean Database 2013 has been carried out in Section 4 providing further insights in phos-
phate concentrations in the global ocean, in particular from a climatological point of view.

In this analysis, the phosphate concentrations in the global ocean were estimated for
a climatological, i.e., average, year. The variability around this climatological year has
been quantified and was split into the climatological variability, i.e., the usual deviation
between the average concentration in a specific year and the concentration in a clima-
tological year as well as the short scale variability, i.e., the usual deviation between the
measured concentration and the average concentration in this year.

The climatological variability is usually the one of interest in climate research. Nev-
ertheless, the short scale variability contains useful information in allowing to assess the
resolution of the statistical analysis. A high short scale variability indicates that the res-
olution should be increased to incorporate further details, where a low short scale vari-
ability indicates that the resolution could be decreased without losing much information.
Further, it shows the amount of measurements necessary to determine the average con-
centration and thus could prove useful when planning new measurements.

Correlations, which are often neglected in climate research, were analyzed. Especially
between points that are close to each other, significant correlations were identified.

The probability distributions were examined with regard to whether they are normal
or log-normal. Unfortunately no clear trend was found and some distributions seemed
to be neither.

The methods applied in this statistical analysis are not limited to phosphate data and
can be used for other marine climate data as well. A software package was provided for
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this purpose.

Outlooks

The information obtained by this analysis about appropriate resolutions can be used for
new analyses. The best way to do this is to use an adaptive resolution where strongly
variable regions are resolved more precisely and less variable regions less precisely.

The World Ocean Database 2018 is going to be published soon which is going to con-
tain further phosphate measurements which could be included in a new analysis and are
expected to provide more accurate results.

To discover climatological changes, the measurement data could be grouped over cer-
tain periods of time, e.g., decades, and each of these groups could be analyzed separately.
Significant differences between the groups would indicate climatological changes.

Other interpolation methods, like splines [43], could be used to estimate values where
not enough data is available. This could result in a smoother values.

The analysis regarding the probability distribution can be extended to other kinds. It
seems, however, that the values do not originate from a single type of probability distri-
butions.

The basis of the analysis is the assumption that the measurement results are the sum
of a long scale and a shot scale component. A less common alternative is the assumption
that the relationship is multiplicative instead of additive. It could be investigated if an
analysis based on this assumption would provide significantly different results.

6.2 Marine Phosphorus Model

Conclusions

A model describing the phosphate, the dissolved organic phosphorus concentrations and
the biological production in the global ocean is subject of Section 5. The model param-
eters have been estimated using the generalized least squares estimator, the phosphate
data from the World Ocean Database 2013 and the results presented in Section 4.

The parameters could be determined in such a way that the resulting model output
fits the measurement results significantly better. The model reproduce the climatological
phosphate concentrations calculated from measurement data, as described in Section 4,
quite well in most regions. However, the model seams to be erroneous at the northeast
of the Indian Ocean and some regions near the north and east coast of the Pacific Ocean.

The uncertainty in the parameters implied by the uncertainty in the measurement
results have been quantified. The average uncertainty is around three percent of the
parameters value and range from seven percent to one permille. The uncertainties in the
corresponding model output range from 0.012 to 0 mmol m−3. Averaged over all but
the depth, they are 0.006 mmol m−3 near the water surface and decrease with growing
depth for phosphate and are almost constant 0.005 mmol m−3 at all depths for dissolved
organic phosphorus. This results in an uncertainty relative to the model output of 1 %
and 2% for phosphate and dissolved organic phosphorus, respectively, near the surface.
The relative uncertainty decreases with growing depth for phosphate and increases for
dissolved organic phosphorus.

Overall we consider this uncertainty as realistic since solely uncertainties in the data
were taken into account and uncertainties from model structure and numerical errors
were not quantified. The total uncertainty, including these as well, is higher than the
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the calculated uncertainty which can thus be considered as lower bound for the total
uncertainty.

The predicted reduction of the uncertainty by additional measurements revealed that
additional measurements further reduce the uncertainty the closer they are to the water
surface, where data can be collected with less effort than at great depths. Moreover an
additional dissolved organic phosphorus measurement usually reduces the uncertainty
twice as much as an additional phosphate measurement. It should be noted that dis-
solved organic phosphorus measurements are considerably more expensive and there-
fore additional measurements should be limited to phosphate measurements. The re-
duction varies strongly at different measuring locations as opposed to different measure-
ment times. One additional measurement reduces the average uncertainty at most by
a ten thousandth part of its value and hence, a significant improvement requires many
additional measurements. However, the effort to achieve reductions can be considerably
reduced by well chosen additional measurements.

Outlooks

Several other models for the marine phosphorus cycle exist [33] to which the methods
presented in this thesis could be applied as well. After the model parameter optimization,
it could be examined how realistic those models are and whether the higher complexity in
some models is justified. Optimal experimental design methods for model discrimination
[63, 6.6.3] can be used for this purpose as outlined in Subsection 6.6.

If a climatological change in the marine phosphorus cycle would exist, it would be
helpful to determine the model parameters once before and once after the change. This
would allow more accurate forecasts for each of these two periods. Further, it could
help to understand this change and contribute to the model development. It may also
be useful to determine separate model parameters for those regions where the model is
erroneous with the current model parameters.

Due to many numerical experiments, model outputs for more than thirty thousand
different sets of model parameters have been accumulated. These could be used directly
to quantify the uncertainty in the model output. This could be based on ranges, where the
uncertainty in the model output is quantified by the range of the existing model outputs
with model parameters in a reasonable predefined range. Or it could be done based on
probability distributions, where the uncertainty is quantified by a probability distribution
based on the existing model outputs for a reasonable predefined probability distribution
of the model parameters.

6.3 Salt Marsh Models

Conclusions

For the two presented models for salt marshes, measurement conditions have been opti-
mized in such a way that a minimum number of measurements are required to determine
the model parameters. Thus, it is possible to adapt the models to local salt marshes with
minimal measuring effort.

It turned out that for the model with two parameters, about ten measurements would
suffice and three of them should be carried out at the beginning, and the remaining at the
end of the flooding of the salt marsh. For the model with three parameters, about twenty
to twenty five measurements should be carried out at the end of the flooding.
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Outlooks

Possible correlations of the measurement noise were neglected in the parameter estima-
tion and optimization of measurement conditions. It might be justified in this case, how-
ever, it is recommended to confirm this assumption by measuring experiments. If corre-
lations should be included after all, the generalized least squares estimator can be used
as it was realized for the marine phosphorus model.

Since we have two competing models, it would make sense to compare their close-
ness to reality. For this purpose, measurement conditions can be optimized according to
Subsection 6.6.

6.4 Optimization of Model Parameters

Conclusions

The parameters of the salt marsh models were estimated using the weighted least squares
estimator and the SQP algorithm, a derivative based local optimization algorithm (see
Subsection 2.2). The generalized least squares estimator and the SQP algorithm combined
with OQNLP (see Subsection 5.2), a globalization algorithm, were used to estimate the
parameters of the marine phosphorus model.

The weighted least squares estimator is reasonable if the measurement noises are un-
correlated, which is assumed for the salt marsh measurements. For marine phosphate
measurements, the statistical analysis (see Section 4) revealed correlations for which the
generalized least squares estimator should be preferred.

The SQP algorithm required only few function evaluations to determine (local) min-
ima. However, depending on the application example, local minima might not be global
minima. The SQP algorithm had reliably found global minima for the salt marsh models
but not for the marine phosphorus model which resulted in the use of the globalization
algorithm for the marine phosphorus model.

The applied methods, especially with the globalization algorithm, have been proven
to be well applicable even for more complex models, although, the first derivative of the
model with respect to its parameters is needed, which, however, is needed anyway for
the uncertainty quantification. If necessary, the derivative can be calculated by algorith-
mic differentiation [17] or finite differences [1, 25.3], whereby algorithmic differentiation
should be preferred over finite differences which are associated with longer execution
time and lower accuracy.

The parameter estimate of the marine phosphorus model obtained by the generalized
least squares estimator were compared with the estimates obtained by the weighted and
ordinary least squares estimators. As expected, the estimates differ considerably. This
shows the importance of including standard deviations and correlations in the parameter
estimation as done by the generalized least squares estimator.

Outlooks

There exists a huge number of other estimators based on different assumptions, pro-
viding other advantages and disadvantages. A comparison of the discussed parameter
estimates with the results from other methods, like total least squares methods [14, 8],
Bayesian estimation methods [3, 11], [60, 2.7], maximum likelihood estimation methods
[60, 2.2] based on, e.g., log-normal probability distributions, and finally regularization
methods [14, 6-9], [12, 5], [60, 3.4], would be helpful.
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6.5 Uncertainty Quantification

Conclusions

Several methods to quantify uncertainties in the model parameters as well as uncertain-
ties in the model output were used in this thesis (see Section 5). They are based on the
first and second derivative of the model with respect to its parameters.

The method based only on the first derivative, is easier to apply but is less accurate if
the model massively simplifies the modeled process. In this case, the method which uses
the first as well as the second derivative should be preferred.

An advantage of the presented methods is that they can be applied with relative small
computational effort and are, thus, applicable to more complex models like the marine
phosphorus model. The resulting uncertainties differ slightly depending on the used
method.

A drawback is that the first and, depending on the method, also the second derivative
is required. If they are not available, they can be approximated by algorithmic differen-
tiation [17] or finite differences [1, 25.3]. Finite differences with some model specific
accelerations were used for the marine phosphorus model.

Only uncertainties implied by the measurement data and the model parameters were
quantified. Hence, the quantified uncertainty is lower than the total uncertainty and can
thus be be considered as a lower bound.

Outlooks

Derivatives calculated by algorithmic differentiation are more accurate than derivatives
calculated by finite differences. Hence, it would be of interest to check if the results for
the marine phosphorus model change significantly if algorithmic differentiation would
be used instead of finite differences. However, applying algorithmic differentiation, es-
pecially on complex models, is challenging and it is unclear whether it is worth the effort.

There are several robustification approaches reducing the dependency of the uncer-
tainty quantification on the estimated model parameters, e.g., averaging uncertainties
([63, 6.4.3], [46, 8.1]) and worst case uncertainties ([63, 6.4.4], [46, 8.2]). These approaches
could be applied to the application examples discussed here. However, robustification
approaches considerably increase the computational effort and, therefore, may not be
worth the additional computational effort if the uncertainty is quite insensitive with re-
spect to the parameter estimate.

The approximation of the worst uncertainty, as it was done in Subsection 2.2 in the
context of experimental design, is computational less expensive. However, this approach
needs the derivatives in the next higher order. Numerical experiments have revealed that
this robustification approach does not significantly influence the resulting uncertainty for
the salt marsh models. For the marine phosphorus model, numerical experiments have
shown that its uncertainties are quite insensitive to small changes in the model parameter
estimate. This makes robustification needless for our application examples.

It would be interesting to apply other methods for uncertainty quantification, e.g.,
Monte Carlo based methods, to this application example and compare the result with
the results already obtained. However, Monte Carlo based methods imply considerably
more computational effort making a less complex application example like the salt marsh
models more appropriate for a comparison.

A further step in quantifying the total uncertainty in our application examples would
be to quantify the model error [61, 12], i.e., the uncertainty in the model function itself,
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and the numerical error [21], i.e., the uncertainty introduced by numerical imprecisions.
The model parameter estimation, as intermediate step for quantifying the model error,
has already been completed.

6.6 Uncertainty Reduction by Optimal Experimental Designs

Conclusions

Conditions of additional measurements, such as time and location, were determined for
the salt marsh models and the marine phosphorus model in such a way that the uncer-
tainty reduction would be maximal when their results are incorporated. Optimal exper-
imental design techniques were used for this purpose which allow to predict the uncer-
tainty reduction by additional measurements without carrying them out. The details are
described in Subsection 2.2 and 5.2.

By choosing an appropriate design criterion, it can be decided which uncertainty
should be minimized. The average uncertainty in the model parameters and in the model
output, in relative and absolute terms, were used in this thesis.

A robustification approach, which reduces the dependency on the previously esti-
mated model parameters, was applied for the salt marsh models. However, the results
did not significantly deviate from the results without robustification. For the marine
phosphorus model, numerical experiments showed only small changes in the uncertainty
for small changes in the model parameters estimate. Hence, the robustification approach,
which is computationally more expensive and needs a derivative of additional order, was
not used for the marine phosphorus model.

Moreover, sequential optimal experimental design ([46, 8.5], [63, 6.4.2]) where used
for the salt marsh models. This is an iterative process where in each iteration only few
optimal measurements are determined and carried out and afterwards the model param-
eters are estimated with the measurements made so far. The advantage of this is that
the information from previous measurements is already included in the planning of later
measurements. In general, this seems to be a very effective approach. However, for the
salt marsh models, it turned out not to be crucial, since the optimal experimental designs
are mostly independent of the model parameter estimates. For the marine phosphorus
models it was unnecessary as well due to the vast amount of already available measure-
ments.

Outlooks

The applied methods for optimizing measurement conditions all aimed to reduce the
uncertainty in the model parameters and the model output. However, there are opti-
mal experimental design methods for model discrimination [63, 6.6.3]. They optimize
measurement conditions such that the most realistic one in a selection of models can be
identified, allowing to reduce the model error, i.e., the uncertainty regarding the model
itself. These methods could be very useful for the application examples discussed here
since for the salt marshes as well as the marine phosphorus several competing models
exist.
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6.7 Approximation Algorithm for Correlation Matrices

Conclusions

An algorithm has been developed which allows to approximate Hermitian matrices by
positive semidefinite Hermitian matrices. Two objectives of the algorithm are to min-
imize the approximation error as well as the condition number of the approximation.
As it is usually not possible to achieve both objectives in an optimal way, one of them
can be prioritized. Numerical tests have shown that the algorithm outperforms existing
algorithms with regard to these two objectives.

The algorithm has asymptotically the same (worst case) execution time and memory
consumption as the fastest algorithm to verify positive definiteness. Hence, it is usable
for very large matrices. Moreover, it preserves the sparsity pattern of sparse matrices and
is thus suitable for sparse matrices as well.

The unique feature of the algorithm is that diagonal values of the approximation can
be bounded in advance. This makes it possible to obtain correlation matrices with this
algorithm and makes it relevant for statistics. The algorithm may also be of interest in
numerical optimization where often Hessian matrices must be approximated by positive
definite matrices.

A decomposition of the approximation is calculated as a by-product and can be used,
e.g., to solve associated linear equations in a fast and numerically stable way. An ex-
tensively tested, well documented and easy to install implementation of the algorithm is
freely available.

The algorithm has already been used successfully in the statistical analysis of marine
phosphate data where correlation matrices with billions of entries have been generated.
It can certainly be useful in determining correlation matrices of other (climate) data and
therefore help to understand the measured processes.

Outlooks

The permutation step in the algorithm offers many more ways of realization. It is yet
not obvious which performs best and others could be developed and compared with
those presented. In addition, one could try to merge different permutation strategies,
e.g., a permutation method that reduces the approximation error and one that reduces
the memory consumption for sparse matrices.

The algorithm allows to determine the modification of the original matrix in several
ways. An iterative approach, which in each iteration modifies a part of the original matrix
so that this modification is minimal in the Frobenius norm, was presented. This approach
results usually in a small approximation error, however, not in the smallest possible.
Other strategies may also be conceivable, especially when another norm, such as the
spectral norm, is considered.

For lower restrictions on execution time and memory consumption, it would be pos-
sible to develop further strategies for permutation and modification. They could provide
lower approximation errors and lower condition numbers, however, at the expense of
execution time and memory consumption.

Besides, it certainly seems worth the effort to incorporate the algorithm into numeri-
cal optimization algorithms [15, 4.4] and benchmark the resulting optimization algorithm
with a suitable selection of optimization problems.
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6.8 Developed Software Packages

Conclusions

Several software packages were developed or extended in conjunction with this thesis.
They are all available under open source licenses, were extensively tested and most of
them are fully documented. Their source code and documentation meet the style conven-
tions of the particular programming language. This allows to use the language specific
help and documentation features and makes it easier to get familiar with the program
and its source code.

The Optimal Experimental Design Toolbox [56] was developed to easily optimize
model parameters and experimental designs in MATLAB [36]. Its documentation in-
cludes a step by step introduction based on application examples.

The matrix-decomposition library [52] provides several approximation and decom-
position algorithms for dense and sparse matrices in Python [48] including the presented
algorithms to approximate Hermitian matrices by positive semidefinite Hermitian matri-
ces.

The measurements package [53] allows to process, analyze and visualize marine mea-
surement data in Python. It is especially suited, but not limited, to data from the World
Ocean Database.

The simulation package [54] allows to simulate marine models on high performance
clusters. It provides an easy to use interface to run simulations and handles all necessary
interactions with the cluster and the underlying simulation software METOS3D [45]. It
allows to spin up models into an annual periodic state, approximate derivatives, estimate
model parameters, quantify uncertainties, optimize experimental designs and visualize
results.

The utillib package [55] is used in the measurements and the simulation package. It
offers many utility functions that simplify, e.g., plotting, working with the file system
and caching values. Using this package, computationally intensive results in the mea-
surements and the simulation package are stored automatically in a database and are
thus accessible any time without additional computational effort.

Significant contributions have also been made to the SciPy [62, 30] and scikit-sparse
[57] packages. SciPy is an extensive and by far the most popular library for scientific com-
puting in Python. The contributions were mainly related to sparse matrix handling. Ex-
isting functions have been considerably accelerated and new functions, e.g., for writing
and reading sparse matrices to and from files, have been added. The software package
scikit-sparse allows to decompose sparse matrices. Its functionality has been consider-
ably extended by adding several new features.

In total, the self-written source code includes thirty-five thousand lines by now. This
corresponds to about one thousand pages. Since parts of the source code were rewritten
during the development of these packages, the total amount of written source code is
considerably higher.

Outlooks

The Optimal Experimental Design Toolbox currently supports only the ordinary and the
weighted least squares estimator so it might be useful to extend the toolbox by the gen-
eralized least squares estimator.

Although the implementation of the approximation algorithm described in Subsec-
tion 3.2, which is part of the matrix-decomposition library, was carefully tweaked for
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computational efficiency, it could be accelerated even further by converting time con-
suming parts to a faster programming language like C or Fortran and embedding this
code in the matrix-decomposition library using Cython [5, 9] or F2PY [41].

The globalization method used to find global minima in the model parameter estima-
tion has turned out to be very beneficial. However it is only available in a closed source
MATLAB toolbox. Since the algorithm itself is freely available, it would certainly be valu-
able to implement it in Python and make it freely available to the scientific community
within the numerical optimization subpackage of SciPy.
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