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Abstract

Attention is a state of readiness or alertness, associated with behavioral and psychophysiological 

responses, that facilitates learning and memory. Multisensory and dynamic events have been 

shown to elicit more attention and produce greater sustained attention in infants than auditory or 

visual events alone. Such redundant and often temporally synchronous information guides 

selectivity and facilitates perception, learning, and memory of properties of events specified by 

redundancy. In addition, events involving faces or other social stimuli provide an extraordinary 

amount of redundant information that attracts and sustains attention. In the current study, 4- and 8-

month-old infants were shown 2-min multimodal videos featuring social or nonsocial stimuli to 

determine the relative roles of synchrony and stimulus category in inducing attention. Behavioral 

measures included average looking time and peak look duration, and convergent measurement of 

heart rate (HR) allowed for the calculation of HR-defined phases of attention: Orienting (OR), 

sustained attention (SA), and attention termination (AT). The synchronous condition produced an 

earlier onset of SA (less time in OR) and a deeper state of SA than the asynchronous condition. 

Social stimuli attracted and held attention (longer duration of peak looks and lower HR than 

nonsocial stimuli). Effects of synchrony and the social nature of stimuli were additive, suggesting 

independence of their influence on attention. These findings are the first to demonstrate different 

HR-defined phases of attention as a function of intersensory redundancy, suggesting greater 

salience and deeper processing of naturalistic synchronous audiovisual events compared with 

asynchronous ones.
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Introduction

One feature of sensory stimulation that has received growing appreciation for its role in 

guiding attentional allocation in early development is intersensory redundancy (Bahrick & 
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Lickliter, 2000, 2012; Bremner, Lewkowicz, & Spence, 2012). Intersensory redundancy 
refers to the simultaneous availability and temporal synchronization of the same information 

across two or more sensory systems. For example, when the rhythm and tempo of speech 

can be perceived by looking and listening, they are redundantly specified. Only amodal 

properties (properties not specific to a particular sensory system such as tempo, rhythm, 

duration, and intensity) can be redundantly specified across the senses. Natural multimodal 

events typically provide both redundant amodal information and nonredundant modality-

specific information such as color, pitch, and timbre. According to the intersensory 

redundancy hypothesis (IRH; Bahrick & Lickliter, 2000, 2002, 2014), redundant temporally 

synchronous information guides selective attention at the expense of nonredundant 

information in early development, facilitating the perception, learning, and memory of 

amodal properties (e.g., rhythm, tempo, intensity) of events at the expense of unimodally 

specified properties. In addition, events with social stimuli, when compared with events with 

nonsocial stimuli, provide a greater amount of redundant information (across face and voice) 

that attracts and sustains attention (Bahrick, 2010; Bahrick, Todd, Castellanos, & Sorondo, 

2016). The intersensory redundancy provided by events with social stimuli is particularly 

useful for guiding attention during the first year of life, as infant attention shifts from being 

exogenous or event driven during the first 6 months to being more endogenous or internally 

controlled toward the end of the first year (Colombo & Cheatham, 2006; Ruff & Rothbart, 

1996).

Behavioral findings in humans and nonhuman animals support the principles of the IRH (see 

Bahrick & Lickliter, 2012, 2014). However, less is known about how intersensory 

redundancy affects infant neural responses (e.g., event-related potentials) and physiology 

(e.g., heart rate). Despite the established benefits of employing converging methods (e.g., 

Brez & Colombo, 2012; Reynolds, Courage, & Richards, 2010; Reynolds & Richards, 

2008), only a few studies of synchrony have attempted to integrate infant event-related 

potentials (see Hyde, Flom, & Porter, 2016, for a review) and infant heart activity (Pizur-

Barnekow, Kraemer, & Winters, 2008) with behavioral measures. These 

psychophysiological measures of infant attention are necessary for advancing our 

understanding of the role that redundant multimodal stimulation plays in attention, 

perception, and memory of events with nonsocial and social stimuli in early development. 

The current study assessed the effectiveness of synchronous (redundant) and asynchronous 

(nonredundant) events with nonsocial and social stimuli in attracting and sustaining 4- and 

8-month-old infants’ attention using behavioral and physiological indices.

Multimodal synchrony (e.g., simultaneous auditory and visual stimulation) is a fundamental 

attribute used to coordinate multisensory information in early development (Bahrick & 

Lickliter, 2002, 2012; Lewkowicz, 2000). For example, 2-month-old infants can integrate 

auditory and visual information based on synchrony (Bahrick, 1988; Lewkowicz, 1986; 

Spelke, 1979) and detect synchrony changes in audiovisual events (Bahrick & Lickliter, 

2014; Lewkowicz & Kraebel, 2004). Research has consistently demonstrated that infants 

prefer to attend to events presented synchronously compared with events presented 

asynchronously (Bahrick, 1988; Dodd, 1979; Spelke, 1979; Spelke, Born, & Chu, 1983). 

Synchrony has also been shown to facilitate discrimination of rhythm and tempo (Bahrick & 

Lickliter, 2000; Bahrick, Flom, & Lickliter, 2002). Infants presented with a plastic toy 
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hammer hitting a surface could discriminate changes in rhythm (at 5 months of age) and 

tempo (at 3 months) when the information was audiovisual and synchronous (redundant), 

but not when the stimulation was asynchronous or unimodal (Bahrick & Lickliter, 2000). 

Investigations of intersensory facilitation have been extended to events with social stimuli 

(see Bahrick, 2010). For example, Flom and Bahrick (2007) showed that 4-month-old 

infants were able to discriminate affective facial expressions when they were audiovisual and 

presented in synchrony, but not when they were asynchronous or unimodal (voice or face 

alone). Only later in development could infants discriminate affective expressions when they 

were unimodal. In addition to providing further support for the IRH, this work highlights the 

important role of intersensory redundancy, across voice and face, for infant perception of 

social stimuli.

Social stimuli, defined by the presence of people or animate objects, are essential sources of 

stimulation that guide perceptual, cognitive, social, and linguistic development. It is 

proposed that social stimuli provide a greater amount of intersensory redundancy (across 

rapid changes in face, voice, and gesture) compared with nonsocial events (Bahrick & 

Lickliter, 2014). Events with social stimuli have been shown to have an attentional 

advantage over events with nonsocial stimuli during infancy. For example, Courage, 

Reynolds, and Richards (2006) found greater behavioral attention (longer looks) and 

physiological attention (greater changes in heart rate) to silent dynamic events that were 

social (Sesame Street scenes) compared with nonsocial (geometric patterns). Recently, 

Bahrick et al. (2016) extended this work to multisensory naturalistic events by examining 

attention to audiovisual faces and voices, audiovisual objects, silent dynamic faces, and 

silent dynamic objects. They found greater attentional maintenance to speaking faces 

compared with other event types for 4- and 5-month-olds and 6- to 8-month-olds. One likely 

explanation for this attentional advantage is the intersensory redundancy provided by face–

voice synchrony.

Only a few studies have examined the effect of synchronous and asynchronous events on 

infant neural responses (see Hyde et al., 2016, for a review; Hyde, Jones, Flom, & Porter, 

2011; Kopp, 2014; Kopp & Dietrich, 2013; Reynolds, Bahrick, Lickliter, & Guy, 2014). 

Hyde et al. (2011) investigated the neural basis of face–voice synchrony in 5-month-old 

infants. They presented infants with a static face and a voice saying “hi” in synchrony or 

with a 400-ms delay in the appearance of the face (asynchrony). In a second experiment, 

Hyde et al. presented dynamic faces paired with the soundtrack “Oh, hi baby.” In the 

synchronous condition the face matched the soundtrack, but in the asynchronous condition 

the face mouthed the phrase “You’re such a beautiful baby.” In a similar study, Reynolds et 

al. (2014) presented infants with dynamic videos of a woman saying “Come over here by 

me!” or “Where’s the baby going?” in three conditions: unimodal visual, audiovisual 

synchronous (matching soundtrack), and audiovisual asynchronous (mismatched 

soundtrack). Both studies found a difference in the amplitude of the negative central (Nc) 

component (indicative of attentional engagement) for synchrony versus asynchrony—but in 

different directions. Hyde et al. (2011) found a greater amplitude response to asynchrony, 

whereas Reynolds et al. (2014) found a greater amplitude response to synchrony, likely due 

to procedural differences across the studies. Furthermore, both studies found similar effects 

of the late positive slow wave (PSW; indicative of recognition memory), with dynamic 
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synchronous faces and voice processed more deeply than asynchronous faces and voice. 

Together, these findings confirm behavioral results; multimodal events with social stimuli 

are highly salient and capable of attracting and sustaining infant attention when presented in 

synchrony (e.g., temporally coordinated faces and voices). Furthermore, these studies 

emphasize the value of using psychophysiological measures to further our understanding of 

the attentional processes underlying the effects of intersensory redundancy.

Infant attentional processes might not be directly reflected in behavioral data alone because 

a single measure (i.e., look duration) is often used to represent multiple processes (e.g., Brez 

& Colombo, 2012; Richards, 1985, 1989, 1997, 2003). Supplementing behavioral data with 

psychophysiological measures, such as neural responses and heart rate (HR), allows for a 

better understanding of attentional processes. For example, Richards and Casey (1991, 1992) 

identified three HR-defined phases of looking that correspond to different levels of 

information processing that occur over time when an infant attends to an event. At the onset 

of an event, the infant begins orienting (OR) toward potentially important sources of 

information. If the infant selects a novel or salient event for further exploration and learning, 

OR is followed by sustained attention (SA), which is marked by infant looking accompanied 

by a deceleration of HR. The SA phase often reflects active processing and can indicate that 

the infant has reached an attentional state (Graham & Clifton, 1966; Richards, 1985). This 

phase of decelerated HR is maintained until the infant is no longer in an engaged attentional 

state. The attention termination (AT) phase, defined by the return of HR to prestimulus 

levels even though looking may continue, signifies the disengagement of attention.

Simultaneous measurement of visual behavior and HR is noninvasive, is relatively 

inexpensive, and has been validated across a range of event types (Reynolds & Richards, 

2008). However, to date no studies have explored the effects of synchrony on infant attention 

with HR-defined phases of attention. Pizur-Barnekow et al. (2008) conducted a pilot study 

examining the relationship between infants’ visual attention and cardiac vagal tone (i.e., 

respiratory sinus arrhythmia [RSA]) to synchronous versus asynchronous auditory and 

visual nonsocial stimuli. They presented 5-month-old infants with shapes moving across a 

screen from top to bottom, bottom to top, and left to right. The shapes were each arbitrarily 

paired with a sound (circle–chime, rectangle–camera click, triangle–typewriter click). In the 

synchronous condition there was onset and offset synchrony between the visual image and 

the sound, and in the asynchronous condition there was a 1-s delay between the onset and 

offset of the shape and the sound. Although looking behavior did not differ for synchronous 

and asynchronous stimuli, RSA was significantly higher during the synchronous condition 

compared with the asynchronous condition. These findings suggest that auditory and visual 

images presented in synchrony and out of synchrony with a sound elicit physiological 

changes that may be associated with differing levels of attention in infants.

However, it is not known how findings from studies presenting arbitrarily paired images and 

sounds generalize to naturalistic dynamic audiovisual events. Naturalistic audiovisual events 

provide multiple levels of temporal structure common across sights and sounds (e.g., 

temporal macrostructure and microstructure; Bahrick, 2001; Bahrick & Lickliter, 2012) 

unavailable in images paired with sounds. For example, audiovisual speech not only 

provides synchrony between the onset and offset of the movement of the face and sound of 
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the voice (macrostructure) but also creates a more complex nested level of temporal 

synchrony between the specific movements of the lips and sounds of speech 

(microstructure). This temporal microstructure makes common rhythm, tempo, and intensity 

patterns available across the movements of the face and sounds of the voice, amodal 

properties not available in images paired with sounds. Thus, it is not known whether 

intersensory redundancy (i.e., temporal synchrony) in naturalistic dynamic events elicits 

different HR-defined phases of attention compared with nonredundant (asynchronous) 

stimulation.

The current study was designed to examine the effects of synchrony on behavioral and 

physiological indices of infant attention of 4- and 8-month-olds. These ages are ideal for 

exploring the effects of stimulus events before and after the transition from exogenous 

attention to endogenous attention. The goal was to determine whether dynamic events 

providing synchronous and asynchronous audiovisual stimulation differentially affect infant 

looking, HR (beats per minute [bpm]) changes, and HR-defined phases of attention. We 

were particularly interested in the sustained attention (SA) phase, specifically the 

proportions of time spent in SA and the amount of change in HR from baseline. The 

deceleration in HR during SA was expected to change depending on the level of engagement 

with each condition and stimulus type (Richards & Casey, 1992). We predicted that the 

intersensory redundancy provided by synchronous audiovisual events compared with 

asynchronous ones would produce longer look durations, greater proportions of time spent 

in a state of SA, and greater changes in HR during SA. A second goal of the current study 

was to compare attentional indices for events with social stimuli (e.g., women speaking) and 

nonsocial stimuli (e.g., objects striking a surface). We expected that the saliency of faces and 

voices would provide an attentional advantage for social stimuli over nonsocial stimuli, 

indicated by longer looking, a larger percentage of time spent in SA, and a larger decline in 

HR during SA. Finally, because the factors of synchrony and stimulus type were 

manipulated simultaneously, we thought that we would be able to determine whether the 

effects of these factors, if they did exist, were independent of one another or interacted with 

one another in some way.

Method

Participants

A total of 80 4-month-old (n = 38) and 8-month-old (n = 42) infants were recruited from the 

greater Kansas City metropolitan area in the midwestern United States. This sample was 

drawn from a predominantly upper-middle-class population; the sample was 89% White 

non-Hispanic, 6% Asian, 4% Hispanic, and 1% American Indian. Of the original sample, 16 

infants were excluded from the final analyses because of fussiness (n = 7), equipment failure 

(n = 3), or gestation length less than 37 weeks (n = 6). After these exclusions, 64 healthy 

infants with no medical history involving auditory or visual problems comprised the final 

sample. The mean age of the 4-month-olds (20 girls and 12 boys) was 117.97 days (SD = 

10.07). The mean age of the 8-month-olds (15 girls and 17 boys) was 145.72 days (SD = 

14.51).
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Apparatus

During testing, infants were seated in a car seat approximately 112 cm away from a 30-inch 

(76 cm) monitor in a room with black walls and ceiling. All stimuli were presented using 

Windows Media Player at infants’ midline and at approximately 65 dB. A video camera 

placed at the base of the monitor recorded and transmitted an image of infants’ face to an 

adjacent room, where a trained observer coded the direction and duration of infants’ looks to 

the stimulus by pressing a button that timed looks, recorded accumulated time, and 

interfaced with the HR data acquisition system (see below). All sessions were recorded on 

DVD.

Infants’ HR was measured with shielded silver–silver chloride (Ag–AgCl) electrodes placed 

on either side of the chest and grounded with an unshielded electrode just above the navel. 

The electrocardiogram (ECG) was digitized using a data acquisition interface and a second 

computer running software from a commercial data acquisition system (BioPac, Santa 

Barbara, CA, USA) configured for psychophysiological recording, with a sampling rate of 

250 Hz. The data acquisition interface also received input from the button used to record 

looking data and mark stimulus onset, so that the HR file was synchronized with stimulus 

events and the coding of visual fixations.

Procedures

Procedures were conducted in keeping with American Psychological Association (APA) 

standards of ethical treatment of human research participants and were approved by the 

University of Kansas institutional review board. On participants’ arrival at the lab, the 

experimental procedures were explained to parents and informed consent was obtained. 

Parents then completed a demographic and health questionnaire. Electrodes were placed on 

the chest and abdomen of infants to obtain measures of HR prior to and during the session. 

The length of the presession baseline period varied somewhat, but its average was 33.52 s 

(SE = 2.33). Infants were secured in the car seat to reduce motion, the lights were dimmed, 

and the session began. Parents remained with the infants in the testing room but were 

instructed to stand behind the car seat and avoid distracting the infants. Each infant was 

presented with a 2-min multimodal synchronous or asynchronous video involving events 

that featured social or nonsocial stimuli. Condition (synchronous vs. asynchronous) and 

stimulus type (social vs. nonsocial) were randomly assigned between participants within 

each age group.

Stimulus events

The social stimulus event depicted an adult female actress (recorded from the shoulders up) 

reciting three phrases with positive affect (“Look at you!”; “Come over here by me!”; and 

“Where’s the baby going?”) in a continuous loop of infant-directed speech (see Flom & 

Bahrick, 2007). The nonsocial stimulus event was also used in prior studies (Bahrick & 

Lickliter, 2000; Bahrick et al., 2002; Pickens & Bahrick, 1995), and depicted a red hammer 

moving up and down, tapping on a wooden surface at 240 beats per minute. The rhythm was 

x o xx x, where x is a whole-beat impact, o is a whole-beat rest, and xx is two half-beat 

impacts (Pickens & Bahrick, 1995). The synchronous condition consisted of dynamic videos 

with temporally matching soundtracks, whereas the asynchronous condition consisted of 
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dynamic videos with mismatching soundtracks. In the asynchronous condition, the 

soundtracks were delayed with respect to the videos. For the social events, they were 

delayed by approximately 7 s such that the video depicting one phrase was heard with the 

soundtrack from a different phrase. For the nonsocial events, the soundtrack was delayed by 

approximately 0.5 s such that the visual impacts of the hammer did not coincide with the 

auditory impacts. Thus, the synchronous videos provided amodal temporal macrostructure 

and microstructure, whereas the asynchronous videos provided neither.

Behavioral and heart rate measures of attention

Infant attention, often characterized by state of readiness or alertness, is associated with 

behavioral and psychophysiological responses (Colombo, 2001; Colombo, Richman, 

Shaddy, Greenhoot, & Maikranz, 2001; Richards & Cameron, 1989). Attention was 

evaluated across the 2-min viewing session using behavioral and HR measures as described. 

Behavioral data, look onsets and offsets, were coded in real time during the session by a 

trained observer, not blind to condition and stimulus type, and integrated into the HR files. A 

second observer, blind to condition and stimulus type, rescored 25% of the sessions from 

recordings of the live sessions. Interobserver reliability was calculated by a Pearson 

product–moment correlation. We analyzed two dependent variables of behavior: average 

look duration and peak look duration. Average look duration was the average or mean length 

of looks during the 2-min viewing session, whereas peak look duration was the duration of 

the longest look during the session. The interobserver reliability for duration of average look 

was .96 and for duration of peak look was .99.

Infants’ ECG was converted from graphical representation into a numerical data file for 

analysis using BioPac software that stored the time code of the R waves from the digitized 

ECG. The time codes from stimulus event onsets and infant behaviors (look onsets and 

offsets) were interleaved among the R-wave time stamps to provide a complete sequential 

record of infants’ viewing session. Using custom software, infants’ looking was parsed into 

three HR-defined phases of attention: Orienting (OR), sustained attention (SA), and 

attention termination (AT) (Richards, 1985). Orienting was defined as the period of looking 

before significant HR decelerations. Sustained attention was defined as looking 

accompanied by HR decelerations of at least 5 consecutive beats below the median HR 

obtained during presession or preattention baseline (Richards, 1997). Each time infants 

looked away from the screen, preattention baseline HR was recalculated using median HR 

during the entire look away; HR-defined phases of attention for each look were calculated 

using the preattention baseline HR established during the previous look away. Attention 

termination was defined as looking that continued after SA but during which HR returned to 

at least the median preattention baseline level. Given that behavior might not be directly 

related to attention, we expected changes in HR and the proportion of time spent in the HR-

defined phases to provide measures of attentional engagement with each condition and 

stimulus type. Dependent HR measures included (a) median HR (in bpm) before and during 

the viewing session, (b) proportion of time spent in the three HR-defined phases of attention 

across the viewing session, and (c) mean HR decelerations during SA, defined as mean 

change in HR from preattention baseline.
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Results

Behavioral measures of attention

Behavioral measures of attention, average and peak look duration during the viewing 

session, were analyzed to examine the effects of condition and stimulus type. Analyses were 

2 (Age: 4 vs. 8 months) × 2 (Condition: synchronous vs. asynchronous) × 2 (Stimulus Type: 

social vs. nonsocial) univariate analyses of variance (ANOVAs). Looking time data were 

positively skewed; therefore, data were log transformed prior to the analyses (means 

reported are based on raw data). ANOVAs based on raw data revealed the same patterns of 

significance. There was a main effect of stimulus type for average look duration, F(1, 56) = 

17.10, p < .001, ηp
2 = .23; infants spent more time looking, on average, during events with 

social stimuli (M = 16.84, SD = 18.50) than during events with nonsocial stimuli (M = 5.62, 

SD = 4.50). There were no main effects or interactions involving age or condition for 

average look duration. There was also a significant main effect of stimulus type for peak 

look duration, F(1, 56) = 12.43, p = .001, ηp
2 = .18. Consistent with the main effect of 

stimulus type for total look duration, infants had longer peak looks to events with social 

stimuli (M = 39.16, SD = 27.88) compared with events with nonsocial stimuli (M = 21.99, 

SD = 18.84). No other significant main effects or interactions emerged for peak look 

duration. The lack of age effects was unexpected; however, previous research has 

demonstrated that developmental effects on attention vary depending on stimulus 

characteristics (Reynolds, Zhang, & Guy, 2013; Shaddy & Colombo, 2004).

Heart rate measures

We examined the effects of age, condition, and stimulus type on median HR during the 

viewing session, relative to baseline, with a 2 (Age) × 2 (Condition) × 2 (Stimulus Type) × 2 

(HR: presession vs. during session) mixed-design ANOVA, with repeated measures on the 

final variable. Mauchly’s test of the violation of the assumption of sphericity was conducted 

for all mixed ANOVAs. Where applicable, the Huynh–Feldt correction was employed. There 

were significant main effects of age, F(1, 55) = 21.21, p < .001, ηp
2 = .28, and stimulus type, 

F(1, 55) = 5.43, p = .023, ηp
2 = .09. Older infants had lower HR (M = 134.60, SD = 10.46) 

than younger infants (M = 146.07, SD = 12.64). In addition, HR was lower for events with 

social stimuli (M = 136.55, SD = 12.25) compared with events with nonsocial stimuli (M = 

144.31, SD = 12.47). This main effect was qualified by a significant Stimulus × Type HR 

interaction, F(1, 55) = 10.25, p = .002, ηp
2 = .16 (see Fig. 1). Subsequent pairwise 

comparisons using Bonferroni-corrected t tests revealed that although HR was similar during 

baseline (p = .23), it was significantly lower for infants who viewed social stimuli compared 

with those who viewed nonsocial stimuli (p = .003). In addition, whereas HR decreased 

marginally during the task for the social stimulus event (p = .071), it increased during the 

nonsocial stimulus event (p = .01). There were no other significant main effects or 

interactions.
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Heart-rate-defined measures of attention

Looking behavior across the viewing session was parsed into HR-defined phases of attention 

(i.e., OR, SA, and AT). Proportion of time spent in the HR phases was analyzed with a 2 

(Age) × 2 (Condition) × 2 (Stimulus Type) × 3 (HR-Defined Phase: OR vs. SA vs. AT) 

mixed-design ANOVA, with repeated measures on the final variable. There were no main 

effects of age, condition, or stimulus type. There was a significant main effect of HR-defined 

phase, F(1.44, 80.49) = 90.67, p < .001, ηp
2 = .62. All infants spent significantly more time in 

SA compared with OR and AT (ps < .01). This effect was qualified by a significant 

Condition × HR-Defined Phase interaction, F(1.44, 80.49) = 5.14, p = .015, ηp
2 = .08 (see 

Fig. 2). Subsequent pairwise comparisons using Bonferroni-corrected t tests revealed that 

infants spent less time in OR during the synchronous condition compared with the 

asynchronous condition (p = .009). In addition, infants spent marginally more time in an SA 

and AT in the synchronous condition than in the asynchronous condition (ps = .073 and .

051, respectively). Because AT data were positively skewed, we conducted an additional t 

test using 20% trimmed means (robust to violations of normality; Wilcox, 2017). Results 

indicated that infants in the synchronous condition did spend significantly more time in AT 

compared with those in the asynchronous condition (p = .009). There were no significant 

interactions with regard to stimulus type.

A 2 (Age) × 2 (Condition) × 2 (Stimulus Type) ANOVA was conducted on mean HR 

change, from baseline, during SA to determine the effects of condition and stimulus type on 

the amplitude of SA HR decelerations. There was a significant main effect of condition, F(1, 

56) = 4.37, p = .041, ηp
2 = .07; the synchronous condition resulted in deeper HR decelerations 

during SA (M = 9.11, SD = 4.32) than the asynchronous condition (M = 6.79, SD = 4.10). 

Mean HR during preattention baseline, OR, SA, and AT is presented in Fig. 3.

Discussion

The current study investigated the effects intersensory redundancy on infant attention. Our 

primary goal was to examine the effects of synchronous (redundant) and asynchronous 

(nonredundant) events on behavioral and physiological indices of infant attention. We 

hypothesized that the presentation of a multimodal synchronous event would attract and hold 

infants’ attention and induce an attentional state more effectively than a temporally 

asynchronous event. Our physiological results lent support to this hypothesis. Infants in the 

synchronous condition spent less time in OR (HR decelerated to SA more quickly) and more 

time in AT compared with infants in the asynchronous condition. Although the difference in 

the proportion of time spent in SA for the synchronous condition compared with the 

asynchronous condition did not reach significance, the synchronous condition did elicit more 

attentional engagement than the asynchronous condition, as indicated by greater HR 

decelerations. Given the saliency of speaking faces and infants’ preference for social stimuli 

compared with nonsocial stimuli (e.g., Courage et al., 2006; Reynolds et al., 2014), our 

second goal was to compare behavioral and physiological indices of attention for events with 

social and nonsocial stimuli. We found the predicted attentional advantage for social stimuli; 

events with social stimuli produced longer duration of average and peak looks and lower HR 
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compared with events with nonsocial stimuli. Interestingly, the influence of synchrony and 

the social nature of stimuli on attention were additive, suggesting independent underlying 

processes.

Effects of multimodal synchrony

Behavioral measures did not support our hypothesis that intersensory redundancy would 

facilitate attention to a greater extent than nonredundant stimulation. Infant look durations 

were not different during the synchronous and asynchronous conditions. One explanation for 

this finding is that the viewing session used in the current study was not as sensitive to 

changes in synchrony as the habituation or selective attention procedures used in previous 

studies that reported behavioral differences (e.g., Bahrick & Lickliter, 2000; Flom & 

Bahrick, 2007). Indeed, null behavioral results were obtained in similar studies using 

accumulated looking procedures (Reynolds et al., 2014) and slideshow presentations (2-min 

viewing sessions; Pizur-Barnekow et al., 2008). Reynolds et al. (2013) found no differences 

in look duration (i.e., average and peak) to synchronous and asynchronous stimuli during 20 

s of accumulated looking. Furthermore, Pizur-Barnekow et al. (2008) found that look 

duration (i.e., total and frequency) did not differ during synchronous and asynchronous 

slideshows (2-min viewing sessions). Despite finding no behavioral differences, Pizur-

Barnekow et al. (2008) reported physiological differences; cardiac vagal tone (i.e., RSA) 

was greater during the synchronous session compared with the asynchronous session. In 

addition, a number of studies report neural differences in the effects of synchrony on infant 

attention (Hyde et al., 2011; Kopp & Dietrich, 2013; Kopp, 2014; Reynolds et al., 2014). 

Thus, psychophysiological measures appear to be more sensitive to the effects of synchrony 

than behavioral measures. In particular, parsing looking behavior into HR-defined phases of 

attention provides a more sensitive measure of attentional engagement than using behavior 

alone (Brez & Colombo, 2012).

Findings from the current study are the first to provide support for the IRH at the 

physiological level using HR-defined phases of attentional engagement. The proportions of 

time that infants spent in the HR-defined phases varied as a function of condition regardless 

of age and stimulus type. The primary phase of interest was SA. Although the proportions of 

time spent in SA during the synchronous and asynchronous conditions were only marginally 

different, they were accompanied by a significantly greater decline in HR during SA in the 

synchronous condition. Infants in the synchronous condition spent less time in OR, 

indicating that they began to process and engage with the events more quickly than infants in 

the asynchronous condition. In addition, when events were shown synchronously as opposed 

to asynchronously, infants spent more time in AT, suggesting that they had more difficulty in 

disengaging from the synchronous stimulus. These results mirror those of behavioral and 

neural studies; redundant synchronous events elicited more attentional engagement and 

active stimulus processing compared with events that are asynchronous (see Bahrick & 

Lickliter, 2012, 2014; Hyde et al., 2016). These findings are also consistent with the view 

that the enhancing effect of intersensory redundancy on infant perception, learning, and 

memory for amodal properties of stimulation is in part based on attentional salience of 

amodal information.
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Regarding psychophysiological findings, Reynolds et al. (2014) found a greater amplitude of 

the Nc component, indicative of attentional engagement, following synchronous audiovisual 

presentations compared with asynchronous ones. In addition, Hyde et al. (2011) and 

Reynolds et al. (2014) obtained similar effects of face–voice synchrony on late PSW 

associated with greater recognition memory, suggesting that synchronous stimuli were 

processed more deeply than asynchronous stimuli. The lack of convergence between 

behavioral and physiological responses in the current study and others (Brez & Colombo, 

2012; Pizur-Barnekow et al., 2008) highlight the importance of evaluating infant attention 

with multiple indices (e.g., behavior and psychophysiology).

Effects of social stimuli

In the current study, we found an attentional advantage for events with social stimuli relative 

to those with nonsocial stimuli; this was consistent with our predictions. Infants’ average 

and peak look durations were longer to the dynamic multimodal speaking face compared 

with the tapping hammer regardless of age or condition. These results support the well-

established social preference that infants develop by 4 or 5 months of age (Bahrick et al., 

2016; Bahrick, 2010; Courage et al., 2006). In addition to behavioral differences, infants’ 

HR was significantly lower during the session for the social stimulus compared with the 

nonsocial stimulus; lower HR is often associated with more active engagement and stimulus 

processing. Although HRs were similar prior to the session, we found an interesting pattern 

of HR changes during the session—the social stimulus elicited a decrease in HR that was 

only marginally significant, whereas the nonsocial stimulus produced a significant increase 

in HR. The differences in the direction of HR changes following the presession may indicate 

varying levels of engagement and sustained attention during the session. Accelerations in 

HR, much like those observed for infants who were presented with the nonsocial stimulus, 

are usually associated with increased arousal. Although the exact interpretation of this 

increase is unclear, it certainly is not consistent with improved levels of processing or 

engagement. Our hypothesis that social and nonsocial stimuli would differentially influence 

HR-defined phases of attention was not supported. Results showed that the proportion of 

time spent in each of the phases did not vary as a function of stimulus type. Courage et al. 

(2006) found that when infants viewed silent dynamic events that were social compared with 

nonsocial, they spent a larger proportion of time in SA. Although we did not find the same 

increases in SA during the social stimulus or any other differences in the pattern of HR-

defined phases based on stimulus type, the overall HR results indicate that infants were more 

engaged during the social stimulus compared with the nonsocial stimulus. One important 

difference between the studies is that Courage et al.’s (2006) stimuli were silent, whereas the 

stimuli used in the current study were multimodal.

Independent effects of multimodal synchrony and social stimuli

In the current study, there were no interactions between condition and stimulus type, 

indicating that the influences of synchrony and the social nature of the stimulus event were 

additive. Synchrony had a similar impact on HR-defined phases and HR decelerations 

during SA regardless of stimulus type (social or nonsocial). In addition, the advantage for 

events with social stimuli, longer look duration, and lower HR, were not affected by 

synchrony. The finding of parallel effects of synchrony on attention to social and nonsocial 
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events is not surprising given that stimulation from social events is similar to that from 

nonsocial events (providing amodal temporal macrostructure and microstructure); however, 

social events may be more engaging because they provide a greater amount of stimulation 

and variability (Bahrick & Lickliter, 2012, 2014).

Summary and conclusions

Findings from the current study provide new information about the effects of intersensory 

redundancy at the physiological level using HR-defined phases of infant attention. When 

stimuli were redundant, with auditory and visual stimulation presented synchronously 

compared with asynchronously, infants had faster (less OR) and deeper (during SA) HR 

decelerations and more difficulty in disengaging their attention (more AT). These findings 

reveal the attentional salience of intersensory redundancy at the physiological level and are 

consistent with predictions of the IRH—temporally synchronous (redundant) information 

guides selectivity at the expense of nonredundant information and facilitates perception, 

learning, and memory of amodal properties of events. We also assessed the influence of 

naturalistic social (face–voice) stimuli compared with nonsocial (objects) stimuli on 

behavioral and physiological indices of infant attention. The findings were consistent with 

the hypothesis that social stimuli provide infants with an attentional advantage, longer 

average and peak look durations, and lower HR compared with nonsocial stimuli. In 

conclusion, this study shows that synchronous and social stimuli that are dynamic and 

multimodal independently enhance infant attention.
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Fig. 1. 
Heart rate with standard error bars as a function of data collection period for events with 

social and nonsocial stimuli.
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Fig. 2. 
Proportion of looking time with standard error bars as a function of heart rate (HR)-defined 

phase of attention—Orienting (OR), Sustained Attention (SA), or Attention Termination 

(AT)—for the synchronous and asynchronous conditions.
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Fig. 3. 
Heart rate as a function of data collection period—Preattention Baseline, Orienting (OR), 

Sustained Attention (SA), or Attention Termination (AT)—for the synchronous and 

asynchronous conditions.
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