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Abstract

Protein-protein interactions are key in cellular signaling. G-protein-coupled receptors (GPCRs), 

the largest superfamily of human membrane proteins, are able to transduce extracellular signals 

(e.g., hormones and neurotransmitters) to intracellular proteins, in particular the G proteins. Since 

GPCRs serve as primary targets of ~1/3 of currently marketed drugs, it is important to understand 

mechanisms of GPCR signaling in order to design selective and potent drug molecules. This 

chapter focuses on recent advances in computational studies of the GPCR-G protein interactions 

using bioinformatics, protein-protein docking and molecular dynamics simulation approaches.
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1. Introduction

Protein–protein interactions (PPIs) are central to many biological processes, including 

human immune responses and cellular signaling. PPIs have been targeted for developing 

small-molecule modulators as therapeutic drugs (Andreani & Guerois, 2014; Arkin & Wells, 

2004). In particular, the interactions between G-protein-coupled receptors (GPCRs) and 

heterotrimeric guanine nucleotide-binding proteins (G proteins) are one of the most 

important cellular signaling events. Due to critical roles, GPCRs represent primary targets of 

~1/3 of currently marketed drugs (Hopkins & Groom, 2002). The classical function of 

GPCRs is to transmit extracellular signals across the plasma membrane and activate 

intracellular proteins, e.g., the G proteins, which leads to further signaling of downstream 

effector proteins. The G protein (Moreira, 2014; Simon, Strathmann, & Gautam, 1991) 

consists of three structural subunits (Gα, Gβ and Gγ), for which 21, 6 and 12 different 

subtypes have been identified, respectively. There are ~700 unique heterotrimeric G proteins 

in the human genome. Moreover, GPCRs have ~800 different members in the superfamily. 

Interactions of GPCRs and the G proteins could thus involve hundreds of thousands of 

possibilities. However, GPCRs are known to selectively couple with the G proteins (Flock et 

al., 2017). It is important to understand the mechanism of GPCR-G protein coupling 
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specificity, which will greatly facilitate effective drug design (Pardon et al., 2018; Weiss et 

al., 2013).

Recent breakthroughs in structural biology including X-ray crystallography and cryo-

electron microscopy (cryo-EM) have enabled determination of more than ten GPCR-G 

protein complex structures (Carpenter, Nehmé, Warne, Leslie, & Tate, 2016; Chung et al., 

2011; DeVree et al., 2016; Draper-Joyce et al., 2018; García-Nafría, Lee, Bai, Carpenter, & 

Tate, 2018; Huang et al., 2015; Liang et al., 2017; Rasmussen, Choi, et al., 2011; Ring et al., 

2013; Scheerer et al., 2008). As summarized in Table 1, 17 GPCR structures are complexed 

with the G proteins or G protein mimics, including opsin coupled with the C-terminal 

peptide of the Gα subunit (Scheerer et al., 2008), the β2 adrenergic receptor (β2AR) with the 

Gs protein (Rasmussen, DeVree, et al., 2011) or the G-protein mimetic nanobody 

(Rasmussen, Choi, et al., 2011; Ring et al., 2013), rhodopsin coupled with arrestin (X. E. 

Zhou et al., 2017) or the Gi protein (Kang et al., 2018), the adenosine A1 receptor (A1AR) 

bound by the Gi protein (Draper-Joyce et al., 2018), the adenosine A2A receptor (A2AAR) 

bound by the “mini-Gs” (Carpenter et al., 2016) or Gs protein (García-Nafría, Lee, et al., 

2018), the μ-opioid receptor (μOR) bound by the G-protein mimetic nanobody (Huang et al., 

2015) or Gi protein (Koehl et al., 2018), the calcitonin receptor coupled with the Gs protein 

(Liang et al., 2017) and the serotonin 5-HT1B receptor coupled with the Go protein (García-

Nafría, Nehmé, Edwards, & Tate, 2018). These structures provide important insights into 

active conformations of GPCRs and atomic GPCR-G protein interactions. However, the X-

ray and cryo-EM structures are rather static images. It remains largely unknown how GPCRs 

dynamically recognize specific G proteins.

In addition to structural biology, experimental techniques including mutagenesis (Blin, Yun, 

& Wess, 1995; Burstein, Spalding, & Brann, 1998; Chen et al., 2010; Conklin, Farfel, 

Lustig, Julius, & Bourne, 1993; Erlenbach et al., 2001; Kostenis, Conklin, & Wess, 1997; 

Liu, Conklin, Blin, Yun, & Wess, 1995; Marin, Krishna, & Sakmar, 2001; Moro, Lameh, 

Hogger, & Sadee, 1993; Preininger et al., 2009; Schoneberg, Kostenis, Liu, Gudermann, & 

Wess, 1998; Slessareva & Graber, 2003; Valiquette, Parent, Loisel, & Bouvier, 1995; Wacker 

et al., 2008; Xiao et al., 1999), nuclear magnetic resonance (NMR) (Kim et al., 2013), 

hydrogen-deuterium exchange mass spectrometry (HDXMS) (Chung et al., 2011; Orban et 

al., 2012), and double electron-electron resonance spectroscopy (DEER) (Van Eps et al., 

2018) have been utilized to investigate the GPCR-G protein interactions (Mahoney & 

Sunahara, 2016; Moreira, 2014; Preininger, Meiler, & Hamm, 2013). While the C-terminal 

α5 helix in the Gα subunit has been suggested as the primary driver for specific receptor 

recognition (Blin et al., 1995), the Gα αN helix and receptor intracellular loop (ICL) 2 and 

transmembrane (TM) helix 6 further contribute to the GPCR–G protein coupling specificity 

(Burstein et al., 1998; Chen et al., 2010; Neumann, Krause, Claus, & Paschke, 2005; 

Preininger et al., 2013; Timossi et al., 2002; Zhou, Yan, Yamamoto, & Tai, 1999). 

Furthermore, dynamic regions in the complex can be crucial for the coupling through 

allosteric conformational changes (Mahoney & Sunahara, 2016; Preininger et al., 2013). The 

precise conformation of active GPCRs also depends on chemical properties of the binding 

agonist. For example, agonist binding often leads to a change in the receptor conformation 

such as opening of the intracellular G protein binding pocket for coupling to the G proteins 

(Zocher, Fung, Kobilka, & Muller, 2012). The experimental studies have greatly advanced 
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our knowledge in the field, but the exact determinants of specific GPCR-G protein 

interactions remain unclear.

On the other hand, computational modeling has proven useful in studying PPIs (Janin et al., 

2003; Shoemaker & Panchenko, 2007). Here, we review computational studies of GPCR-G 

protein interactions using various techniques, including bioinformatics, protein-protein 

docking and molecular dynamics (MD) simulation.

2. Bioinformatics of GPCR-G protein interactions

Significantly increasing information about the sequences, structures and signaling networks 

of GPCRs and the G proteins has become available in recent years. A number of 

bioinformatics and software tools as listed in Table 2 are useful for exploring GPCR-G 

protein interactions, including the protein data bank (PDB) (Berman et al., 2000), the 

GPCRdb (Munk et al., 2016), gpDB (Theodoropoulou, Bagos, Spyropoulos, & Hamodrakas, 

2008) and human gpDB (Satagopam et al., 2010).

The GPCRdb is a widely used database for studying GPCRs (Munk et al., 2016). It contains 

valuable information about the structures, known mutations, homologues, ligands and 

phylogenetic relationships of GPCRs. Besides, the GPCRdb provides useful functions, such 

as generation of GPCR models and identification of ligand binding sites for virtual 

screening. Systematic analysis of data from the GPCRdb could deepen our understanding of 

GPCRs and the interactions with their G proteins. For example, Suku et al. performed 

systematic analysis of ligand binding pockets for GPCRs collected in the GPCRdb (Suku & 

Giorgetti, 2017). Ten residues including 3.32, 3.33, 3.36, 6.48, 6.51, 6.52, 6.55, 7.35, 7.39 

and 7.43 (Ballesteros-Weinstein numbering of GPCRs (Ballesteros & Weinstein, 1995)) 

were identified to interact with ligands. In addition, these residues were found to be 

conserved and share a common evolutionary history. More recently, a bioinformatics 

approach has been applied to determine a selectivity barcode (patterns of amino acids) of 

GPCR-G protein coupling based on the data obtained from the GPCRdb (Flock et al., 2017). 

While universally conserved residues in the barcode allow GPCRs to bind and activate G 

protein in a similar manner, different receptors recognize unique positions of the G protein 

barcode through distinct residues. In summary, bioinformatics has become highly useful in 

extracting valuable information about GPCR-G protein interactions across the entire family 

of GPCRs and the G proteins.

3. Protein-protein docking on GPCR-G protein interactions

Since experimental structures of GPCR-G protein complexes are still very limited, protein–

protein docking is an efficient computational approach to generate the complex models. It 

has been successfully applied to construct structures of GPCR-G protein complexes 

(Alexander et al., 2014; Pawlowski, Saraswathi, Motawea, Chotani, & Kloczkowski, 2014; 

Shim, Ahn, & Kendall, 2013), in addition to GPCR oligomers (Borroto-Escuela et al., 2018). 

Pawlowski et al. performed protein-protein docking to investigate the binding specificity 

between the human α2C-adrenoreceptor (ADRA2C) and the filamin-2 (FLN2) actin binding 

protein (Pawlowski et al., 2014). There was no experimental structure of the ADRA2C or 

Wang and Miao Page 3

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2020 January 28.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



FLN2. Homology modeling was first performed to obtain their separate structures, which 

were used to build the complex structure with the HADDOCK server (de Vries, van Dijk, & 

Bonvin, 2010). Combining multiple sequence alignments and phylogenetic analysis, the 

authors found that electrostatic interactions between residues R454 and R456 in the 

ADRA2C and negatively charged residues in the FLN2 play an important role in the protein 

coupling. In order to investigate the mechanism of GDP release from the G protein, 

Alexander et al. utilized homology modeling, protein-protein docking and DEER 

experiments to construct a model of the active state of rhodopsin complexed with a 

heterotrimeric Gαiβγ protein (Alexander et al., 2014). With the template X-ray structure of 

the β2AR-Gs complex, a homology model was first built using the Rosetta software. Then 

1,000 independent protein-protein docking calculations were performed, resulting in a pool 

of 739 nonclashing models. Nine structures that could reproduce the DEER distances and 

signal shapes were identified. These structures suggested that the C terminus of the Gα α5 

helix triggers conformational changes in the helical domain, which lead to GDP release. 

Based on the resulting models, energetic analysis was performed to identify residues that 

showed marked changes between the receptor-bound and free forms of the G protein. In 

another study by the same group, the important role of the α5 helix of Gα in the activation 

of the G protein was demonstrated through mutagenesis experiments (Kaya et al., 2014). 

Therefore, protein-protein docking has facilitated building structures and understanding 

protein interactions of the GPCR-G protein complexes. However, due to the flexible nature 

of GPCRs and the G proteins, insufficient accuracy of protein-protein docking has largely 

limited its applications in modeling GPCR-G protein complex (Kaczor, Selent, Sanz, & 

Pastor, 2013).

4. Molecular dynamics simulations of GPCR-G protein interactions

MD is a powerful computational technique for simulating biomolecular dynamics at an 

atomistic level (Karplus & McCammon, 2002). MD is able to provide dynamic information 

about the interactions between GPCRs and the G proteins, which is missing in static 

experimental structures and protein-protein docking. Thus, MD has been applied to 

investigate the GPCR-G protein interactions. Although there have been many MD 

applications on GPCRs or G proteins alone (Grossfield, 2011; Johnston & Filizola, 2011; 

Miao & McCammon, 2016a; Vanni & Rothlisberger, 2012; Yao et al., 2016), here we will 

focus on the GPCR-G protein interactions.

Since GPCRs are membrane proteins, their structural dynamics and function of GPCRs 

(including interactions with the G proteins) could be strongly affected by lipids (Yen et al., 

2018). The orientation and position of GPCRs in the lipid membrane need to be carefully 

modelled. In this regard, the Orientations of Proteins in Membranes (OPM) database 

(Lomize et al., 2012) is useful in the modeling of membrane proteins, including GPCRs. In 

addition, CHARMM-GUI is an online webserver (http://www.charmm-gui.org/) (Jo et al., 

2017; Jo, Kim, Iyer, & Im, 2008), which can be used to generate a simulation-ready system 

for a membrane-embedded protein and input files for various MD software packages, 

including AMBER, NAMD, GROMACS, and so on. It has significantly reduced the effort of 

system preparation for MD simulations.
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Overall, MD simulations have greatly helped us understanding the GPCR-G protein 

interactions. However, due to limited timescales, direct MD simulations often suffer from 

insufficient sampling of the GPCR-G protein interactions. To overcome MD limitations, 

many enhanced sampling methods have been developed during the last several decades 

(Abrams & Bussi, 2014; Christen & van Gunsteren, 2007; Dellago & Bolhuis, 2009; Gao, 

Yang, Fan, & Shao, 2008; Liwo, Czaplewski, Ołdziej, & Scheraga, 2008; Miao & 

McCammon, 2016c; Spiwok, Sucur, & Hosek, 2015). Several enhanced MD methods have 

been successfully applied to study GPCR-G protein interactions, including umbrella 

sampling (Kästner, 2011; Rose et al., 2014; Torrie & Valleau, 1977), metadynamics 

(Alessandro & Francesco, 2008; Laio & Parrinello, 2002; Saleh, Ibrahim, & Clark, 2017; 

Saleh, Ibrahim, Saladino, Gervasio, & Clark, 2017; Saleh, Saladino, Gervasio, & Clark, 

2017) and Gaussian accelerated molecular dynamics (GaMD) (Miao, Feher, & McCammon, 

2015; Miao & McCammon, 2018; Pang, Miao, Wang, & McCammon, 2017). As 

summarized in Table 3, determinants of coupling selectivity between the GPCR and G 

protein (Kling, Lanig, Clark, & Gmeiner, 2013; Mnpotra et al., 2014; Rose et al., 2014; 

Shim et al., 2013), effects of different ligand binding on the stability of GPCR-G protein 

complexes (Bai, Zhang, Ban, Liu, & Yao, 2013; Feng, Hou, & Li, 2012; Goetz, Lanig, 

Gmeiner, & Clark, 2011; Miao & McCammon, 2016b; Saleh, Ibrahim, & Clark, 2017; 

Saleh, Saladino, et al., 2017; Shirvanyants, Ding, Tsao, Ramachandran, & Dokholyan, 

2012), the G protein activation upon binding of a GPCR (Dror et al., 2015) and spontaneous 

binding of the G-protein mimetic nanobody to a GPCR (Miao & McCammon, 2018) have 

been investigated through MD simulations and will be discussed in the following.

4.1. Determents of GPCR-G protein coupling specificity

MD simulations have been carried out to identify determinants of the GPCR-G protein 

coupling specificity. Kling et al. (Kling et al., 2013) reported microsecond MD simulations 

of ternary GPCR complexes, including the experimentally determined agonist-bound β2AR-

Gs and two homology models of the dopaminergic D2 receptor (D2R) bound by the Gi 

protein. Important residues were located at the receptor intracellular end of the TM5 helix 

and the N-terminal region of the ICL3, which interacted with the α5 helix and α4/β6 loop in 

the Gα protein subunit.

The TM6 helix of GPCRs was identified as an important domain in determining the 

coupling selectivity between the receptors and G proteins (Kang et al., 2018; Rose et al., 

2014; Shim et al., 2013; Van Eps et al., 2018). MD and umbrella sampling simulations were 

performed on the β2AR bound by the C-terminal peptide of the Gα (GαCT) that was used 

as a surrogate of the G protein (Rose et al., 2014). The simulations suggested that distinct 

conformations of the β2AR induced by binding of different G proteins co-existed in the G-

protein free (apo) state of the receptor. Conformational heterogeneity of the TM6 emerged 

when the β2AR was bound by the Gi or Gs protein. The important role of TM6 in the 

coupling selectivity was also demonstrated by Xu et al. (Kang et al., 2018) through 

structural biology and MD simulations. MD simulations were performed on four systems, 

including the Gi protein complexed with the rhodopsin and μOR and the Gs protein bound 

by the β2AR and A2AAR. Results showed that the outward movement of TM6 was less 

pronounced in the Gi-coupled than in the Gs-coupled receptors. This was consistent with 
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model of the rhodopsin-Gi protein complex, which was tested by MD simulation using the 

distance constraints from DEER experiments (Van Eps et al., 2018).

The Gα α5 helix of the G protein has been also shown to be important for specific GPCR-G 

protein coupling. Shim et al. combined MD simulation and mutagenesis experiments to 

identify critical regions for coupling of the CB1 receptor with the Gi protein (Shim et al., 

2013). Guided by the X-ray structure of the β2AR-Gs, a model was built for the CB1-Gi 

ternary complex. Through an 824 ns MD simulation, they found that tight interactions 

between the CB1 and the Gα α5 helix of the Gi protein were crucial for the receptor-G 

protein binding. Mnpotra et al. applied MD simulations to explore the interactions between 

the CB2 and Gi protein (Mnpotra et al., 2014). Results showed that the Gi protein could 

reorient to a different binding mode in comparison with orientation of the Gs protein in the 

β2AR-Gs complex. During reorientation of the Gi protein, two major conformational 

changes occurred. First, the Gα α5 helix of the Gi protein tilted due to outward movement of 

the TM5 helix in CB2. Second, a 25° clockwise rotation of the Gi protein took place, leading 

to interaction of the receptor ICL2 with a hydrophobic pocket formed by residues Val34, 

Leu194, Phe196, Phe336, Thr340, Ile343 and Ile344 in the Gαi. This structural model was 

highly consistent with the data obtained from cross-linking studies (Mnpotra et al., 2014).

In summary, the above MD studies have greatly advanced our knowledge of GPCR-G 

protein interactions. Several important structural motifs that contribute to the GPCR-G 

protein coupling specificity were identified, including the Gα α5 helix of the G protein (Blin 

et al., 1995; Mnpotra et al., 2014; Shim et al., 2013) and the receptor ICL2/ICL3 and TM6 

helix (Kang et al., 2018; Rose et al., 2014; Shim et al., 2013; Van Eps et al., 2018).

4.2. Effects of ligand binding on GPCR-G protein interactions

GPCR signaling occurs via ternary complexes formed under cooperative binding between 

the receptor, ligand and an intracellular binding partner (IBP). Ligand binding could lead to 

a conformational change of the receptor (e.g., opening of the intracellular pocket) for 

coupling to the G protein (DeVree et al., 2016). Conversely, binding of the G protein in the 

intracellular binding site could allosterically influence ligand binding in the receptor 

orthosteric site. DeVree et al. demonstrated that binding of the G protein in the β2AR could 

allosterically close the receptor extracellular ligand-binding pocket (DeVree et al., 2016). 

The allosteric interaction between the orthosteric site and the G protein binding pocket is 

thus involved in the GPCR-G protein interactions. MD simulations were performed on the 

agonist-β2AR-Gαs complex system (Feng et al., 2012). Interaction between the β2AR and 

Gs protein was found to be stable when the complex was bound by the Nb35 nanobody. 

Without Nb35, the agonist could trigger conformational changes of β2AR from the 

extracellular to the intracellular domains. The importance of nanobody in stabilizing the 

GPCR-agonist-IBP ternary complex was also demonstrated using GaMD in the simulations 

of the M2 muscarinic receptor (Miao & McCammon, 2016b). The intracellular domain of 

TM6 could remain in its active state when the receptor was bound with the Nb9–8 

nanobody, while removal of Nb9–8 led to inward movement of the TM6 and deactivation of 

the M2 receptor. These simulation findings were consistent with experimental data obtained 

from NMR (Nygaard et al., 2013) and DEER studies (Manglik et al., 2015), which indicated 
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that binding of a G protein or G protein mimic is required to stabilize the active 

conformational state of GPCRs in addition to agonist binding. Metadynamics simulations 

were also performed to investigate the similarities and differences between β2AR-agonists 

bound by different IBPs, including the Gs protein and the G protein mimetic nanobody 

(Saleh, Ibrahim, & Clark, 2017). Important intermediate states were identified for the GPCR 

upon binding of different agonists and IBPs.

Goetz et al. applied MD simulations to determine the effects of different agonist and inverse 

agonist binding on stability of the β2AR complexed with the C terminus of the Gαs subunit 

(GαsCT) (Goetz et al., 2011). The simulations showed that the ligand-binding pocket 

conformation and interaction between the GαsCT and β2AR were different upon binding of 

the isoprenaline agonist and carazolol inverse agonist. Isoprenaline induced an inward 

movement of the TM5 in the orthosteric binding site of the β2AR, whereas carazolol 

blocked rearrangement of the extracellular domains of the receptor. Moreover, the β2AR and 

GαsCT formed stable interaction in the presence of isoprenaline, while the complex was 

destabilized by binding of carazolol. In another study, MD simulations of the β2AR 

complexed with the entire Gs protein were performed by Bai et al. to investigate the binding 

effects of three different ligands (e.g. agonist BI-67107, inverse agonist ICI 118,551 and 

antagonist alprenolol) (Bai et al., 2013). Their results suggested that BI-67107 formed three 

more stable hydrogen bonds with the receptor (residues Ser2035.42, Ser2075.46 and 

Asn2936.55) than ICI 118,551. Thus, BI-67107 was able to stabilize the β2AR in the active 

state. Binding of the ICI 118,551 inverse agonist could change β2AR from the active to the 

inactive state, as well as inducing dissociation of the Gα and Gβγ subunits.

More recently, Saleh et al. applied metadynamics simulations to investigate structural 

dynamics and free energy profiles of the β2AR-arrestin and β2AR-Gs complexes, in the 

absence or presence of different ligands (Saleh, Saladino, et al., 2017). The ligands included 

the full Gs/arrestin agonist isoprenaline, the Gs/arrestin unselective antagonist alprenolol, the 

Gs inverse agonist/arrestin antagonist ICI 118,551 and the Gs inverse agonist/arrestin partial 

agonist carvedilol. The simulations suggested that agonists and partial agonists increased the 

binding affinity of the G protein or arrestin to the β2AR. Antagonists left the binding affinity 

largely unaffected or decreased it slightly. Inverse agonists decreased it significantly. An 

extended ternary complex model was then proposed, in which the ligand bias towards either 

the G-protein or arrestin pathway is regulated by cooperative binding of the receptor, ligand 

and IBP. The free energy changes could be used to characterize the ligand signaling bias, 

which was suggested to be a promising approach for rational design of GPCR biased 

agonists.

4.3. Activation of the G protein upon binding of GPCRs

The G proteins are molecular switches that turn on intracellular signaling cascades in 

response to the activation of GPCRs by extracellular stimuli. Their switching function 

depends on the ability of the Gα subunit to cycle between an inactive GDP-bound state and 

an active GTP-bound state. Thus, mechanisms about how the GPCR catalyzes GDP release 

on cognate G protein and how the G protein transits between its different states are 

significantly important in understanding the signal transduction within the GPCR-G protein 
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complex. Both experimental and computational techniques have been utilized to address the 

above questions (Duc, Kim, & Chung, 2015; Mahoney & Sunahara, 2016; Nguyen Minh, 

Hee Ryung, & Ka Young, 2017). Extensive MD simulations performed by Dror et al. 
demonstrated that separation of the Ras and helical domains was necessary but not sufficient 

for GDP release from the G protein (Dror et al., 2015). Conformational changes in the Gα 
α5 helix was concomitant with opening of the helical domain. The repositioned α5 helix 

weakened binding of the GDP, facilitating its release from the Gs protein. These predictions 

were validated by the DEER spectroscopic experiments. Conformational changes in the Gα 
α5 helix and opening of the helical domain in the β2AR-Gs complex were also observed in 

computational modeling by Pachov et al. using a Kino-Geometric Sampling (KGS) method 

(Pachov et al., 2016). This study demonstrated that interactions between the αN helix of the 

Gs protein and the receptor ICL2 facilitate nucleotide exchange by weakening a salt bridge 

between the P-loop and switch 1 in the Gs protein. Despite these advances, we still lack a 

detailed understanding of the mechanisms of the G protein binding to GPCRs, the G protein 

catalyzed hydrolysis of GTP to GDP and allosteric modulation of nucleotide binding in the 

G proteins by GPCRs (Duc et al., 2015; Mahoney & Sunahara, 2016; Nguyen Minh et al., 

2017).

4.4. Mechanism of GPCR-G protein binding

MD simulations of protein-protein binding are challenge, due to the limited simulation 

timescales while slowly evolving protein dynamics. Nevertheless, remarkable advances in 

supercomputing have enabled the D.E Shaw research group to successfully simulate binding 

of five different protein-protein systems through exceptionally long-timescale MD 

simulations (Pan et al., 2018). Hundreds-of-microseconds conventional MD simulations 

captured spontaneous protein-protein binding events. Furthermore, repeated protein 

association and dissociation were observed in enhanced MD simulations using a “tempered 

binding” approach (Pan et al., 2018).

In the context of GPCR-G protein interactions, powerful enhanced MD simulations 

successfully captured spontaneous binding of a G-protein mimetic nanobody to a muscarinic 

GPCR using the GaMD method (Miao & McCammon, 2018). With X-ray structure of the 

agonist-nanobody-M2 receptor complex, the agonist and nanobody were initially displaced 

to >20 Å far away from the active M2 receptor. Five 4.5 μs independent GaMD simulations 

were performed. Although the agonist could not reach the X-ray binding pose in the receptor 

orthosteric binding pocket, the nanobody could successfully bind to the receptor G-protein 

coupling site in one GaMD simulation with a minimum RMSD of 2.48 Å in the nanobody 

core domain compared with the X-ray structure. The GaMD simulations showed significant 

conformational changes in both the orthosteric ligand-binding pocket and intracellular 

domains of the M2 receptor upon nanobody binding. Binding of the nanobody switched the 

orthosteric pocket from the “open” to “closed” conformation and led to activation of the M2 

receptor with an increase in the intracellular TM3–TM6 distance. Moreover, two important 

low-energy intermediate conformational states were identified during binding of the G-

protein mimetic nanobody. The nanobody formed transient electrostatic, hydrogen bonding 

and hydrophobic interactions with the receptor through the binding process. The flexible 

receptor ICLs played a key role in the recognition and binding of the nanobody (Miao & 
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McCammon, 2018). Therefore, GaMD simulations provided important insights into the 

mechanism of the G-protein mimic binding to a GPCR.

5. Discussions and Outlook

Interactions with the intracellular G proteins represent a canonical signaling pathway of 

GPCRs, key membrane proteins that serve as primary targets of ~1/3 currently marketed 

drugs. Structural determination of GPCR-G protein complex has exploded in very recent 

years, due to breakthroughs in X-ray crystallography and cryo-EM (Table 1). Extensive 

research studies have been focused on GPCR-G protein interactions using various 

experimental techniques (e.g. mutagenesis, NMR, HDXMS and DEER) in addition to the 

structural biology. These studies have greatly facilitated our understanding of GPCR-G 

protein interactions. However, the experimental techniques often suffer from limited spatial 

and temporal resolutions, as well as high cost. In this regard, computational modeling has 

proven useful and efficient in studies of GPCR-G protein interactions. Complementary 

experimental and computational techniques have been combined in numerous studies in 

order to obtain a more detailed picture of GPCR-G protein interactions. Here, we have 

focused on reviewing recent studies of GPCR-G protein interactions with computational 

approaches, including bioinformatics, protein-protein docking and MD simulations.

With dramatically increasing information that is collected about GPCR-G protein 

interactions, bioinformatics has been applied to determine major determinants of coupling 

selectivity between GPCRs and the G proteins (Flock et al., 2017). Bioinformatics is useful 

in providing an overview of protein-protein interactions for the entire family of GPCRs and 

the G proteins. On the other hand, docking and MD simulation are able to generate a more 

detailed picture of target GPCR-G protein interactions of interest. There are several 

advantages for protein-protein docking. It is highly efficient. The docking software tools and 

webservers are mostly user friendly. Docking calculations are usually fast without the need 

of expensive computational resources. They are able to generate computational models of 

protein complex, e.g. GPCR-G protein complex structures. These models could provide 

valuable information about overall conformations of the GPCR-G protein complexes. 

However, applications of protein-protein docking in modeling GPCR-G protein interactions 

are still limited due to low accuracy. Limited capability to account for protein flexibility and 

inaccuracy of docking scores often require the use of protein-protein docking in combination 

with experiments (Alexander et al., 2014) and/or MD simulations for further validation 

(Shim et al., 2013).

Applications of MD simulations in molecular biology and drug discovery have dramatically 

increased in recent years especially in the research field of GPCRs (Hollingsworth & Dror, 

2018; Latorraca, Venkatakrishnan, & Dror, 2017; Miao & McCammon, 2016a). Remarkable 

developments in both the computing hardware (e.g. the Anton specialized super computer 

and fast GPUs) and software tools have enabled long-timescale MD simulations. MD 

simulations have been performed over microseconds to milliseconds. The MD simulations 

have provided important insights into the dynamic mechanism of GPCR-G protein 

interactions at an atomistic level (Latorraca et al., 2017). Nevertheless, binding of 

intracellular G proteins to GPCRs is challenging for conventional MD simulations. In this 
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regard, enhanced MD simulations are useful to help address the challenge. Notably, 

enhanced simulations using the GaMD method captured spontaneous binding of the G-

protein mimetic nanobody to a GPCR (Miao & McCammon, 2018). Pan et al. simulated 

both binding and unbinding of five different protein-protein systems using a “tempered 

binding” approach (Pan et al., 2018), although the GPCR-G protein was not included in their 

simulated systems. Therefore, innovations in both computing hardware and enhanced 

sampling methods have opened a new era in MD simulations of protein-protein binding. 

Continued developments are expected to enable simulations of binding processes between 

GPCRs and the cognate G proteins in the near future. Such studies will potentially reveal 

mechanisms of the GPCR-G protein interactions and the cooperative activation of GPCRs 

and G proteins at an atomistic level.

In summary, bioinformatics, protein-protein docking and MD simulation have proven useful 

for exploring the GPCR-G protein interactions. Combination of computational and 

experimental modeling and complementary experiments will help us to obtain a detailed 

understanding of the GPCR-G protein interactions and GPCR signaling mechanism. This 

will greatly facilitate more effective computer-aided drug design of GPCRs (Huang et al., 

2015; Korczynska et al., 2018; Miao et al., 2016; Miao & McCammon, 2016a).
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Table 1.

Structures of GPCRs complexed with the G proteins or G protein mimics

GPCR G protein or mimetic 
nanobody PDB ID (resolution) Method Reference

Opsin
C-terminal peptide of Gα 

transducin
3DQB (3.2Å) X-ray (Scheerer et al., 2008)

β2AR Gs and nanobody Nb35 3SN6 (3.2Å) X-ray (Rasmussen, DeVree, et al., 2011)

β2AR Nanobody Nb80 3P0G (3.5Å) X-ray (Rasmussen, Choi, et al., 2011)

M2 Nanobody Nb9–8 4MQS (3.5Å) X-ray (Kruse et al., 2013)

β2AR Nanobody Nb6B9 4LDE (2.7Å), 4LDL (3.1Å), 
4LDO (3.2Å) X-ray (Ring et al., 2013)

μOR Nanobody Nb39 5C1M (2.1Å) X-ray (Huang et al., 2015)

A2AAR Mini-Gs 5G53 (3.4Å) X-ray (Carpenter et al., 2016)

GLP-1R Gs 5VAI (4.1Å) Cryo-EM (Zhang et al., 2017)

Calcitonin receptor Gs 5UZ7 (4.1Å) Cryo-EM (Liang et al., 2017)

Rhodopsin Arrestin 5W0P (3.0Å) X-ray (Zhou et al., 2017)

GLP1 Gs 6B3J (3.3Å) Cryo-EM (Liang et al., 2018)

KOR Nanobody Nb39 6B73 (3.1Å) X-ray (Che et al., 2018)

μOR Gi 6DDE (3.5Å), 6DDF (3.5Å) Cryo-EM (Koehl et al., 2018)

A1AR Gi 6D9H (3.6Å) Cryo-EM (Draper-Joyce et al., 2018)

A2AAR Gs and nanobody Nb35 6GDG (4.1Å) Cryo-EM (García-Nafría, Lee, et al., 2018)

Rhodopsin Gi 6CMO (4.5Å) Cryo-EM (Kang et al., 2018)

5-HT1B Go 6G79 (3.8Å) Cryo-EM (García-Nafría, Nehmé, et al., 2018)
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Table 2.

Databases and software tools for modeling GPCR-G protein interactions

Database/
Software

Description Reference and website

PDB A database contains biological macromolecular structures 
determined by experiments.

(Berman et al., 2000) https://www.rcsb.org/

GPCRdb A database contains structures, diagrams and web tools of GPCRs. (Munk et al., 2016) http://gpcrdb.org/

gpPDB A database contains information about GPCRs, effectors of 
GPCRs and their known interactions.

(Theodoropoulou et al., 2008) http://
bioinformatics.biol.uoa.gr/gpDB/

Human gpDB A database contains information about 713 human GPCRs, 36 
human G-proteins and 99 human effectors.

(Satagopam et al., 2010) http://
bioinformatics.biol.uoa.gr/human_gpdb/

OMP A database provides information about structural classification of 
membrane proteins, topology, spatial positions in the lipid bilayer, 
and intracellular localization.

(Lomize, Pogozheva, Joo, Mosberg, & Lomize, 
2012) https://opm.phar.umich.edu/

CHARMM-GUI A web-based graphical user interface that helps preparation of 
biomolecular systems (including GPCRs and the G proteins) for 
molecular dynamics simulations.

(Jo et al., 2017) http://www.charmm-gui.org/
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Table 3.

A summary of MD simulation studies on GPCR-G protein interactions.

System Method Major findings Reference

β2AR-GαCT MD Interactions between the β2AR and GαCT are ligand dependent. (Goetz et al., 2011)

β2AR-Gs MD
Nanobody plays an important role in stabilizing the β2AR-Gs 

complex.
(Feng et al., 2012)

β2AR-Gs MD
Binding of different ligands affects stability of the β2AR-Gs 

complex.
(Bai et al., 2013)

β2AR-Gs D2R-Gi MD Receptor ICL3 and the α5-helix of Gα play an important role 
in GPCR-G protein coupling. (Kling et al., 2013)

CB1-Gi MD, Ala mutation The Gα α5 helix of the G protein plays an important role in the 
CB1-Gi coupling. (Shim et al., 2013)

CB2-Gi MD, cross-linking
The ICL2 in CB2 and the Gα α5 helix of the G protein play an 
important role in the CB2-Gi coupling. (Mnpotra et al., 2014)

β2AR-Gi/Gs MD
The TM6 helix in the β2AR plays an important role in binding 
selectivity of Gi and Gs proteins. (Rose et al., 2014)

β2AR-Gs
MD, DEER 
spectroscopy

Separation of the Ras and helical domain of the Gα subunit is 
necessary but not sufficient for rapid nucleotide release. (Dror et al., 2015)

β2AR-Gs
Kino-Geometric 

Sampling
Interaction between the αN helix of the G protein and the 
receptor ICL2 is important for nucleotide release.

(Pachov, Fonseca, Arnol, 
Bernauer, & van den 
Bedem, 2016)

M2-nanobody GaMD Nanobody is important in stabilizing the active conformational 
state of the M2 receptor.

(Miao & McCammon, 
2016b)

β2AR-Gs M2R-
nanobody μOR-Gs/

nanobody
Metadynamic The binding of intracellular binding partners alters agonist 

binding modes.
(Saleh, Ibrahim, & Clark, 
2017)

β2AR-Gs β2AR-
arrestin

Metadynamics The structure and dynamics of GPCR-G protein complexes 
depend strongly on the nature of small-molecule ligands.

(Saleh, Saladino, et al., 
2017)

Rhodopsin–Gi MD, DEER A model of rhodopsin-Gi is presented. (Van Eps et al., 2018)

M2-nanobody GaMD GaMD captured spontaneously binding the G protein mimic 
nanobody to a muscarinic GPCR.

(Miao & McCammon, 
2018)

Rhodopsin-arrestin MD, Fluorescence 
spectroscopy

GPCRs could stimulate arrestin through interactions mediated 
by the receptor phosphorylated cytoplasmic tail (RP tail) only, 
the receptor core only, or both the receptor core and RP tail.

(Latorraca et al., 2018)
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