
Qub: A Resource Aware Functional Programming Language

APOORV INGLE, The University of Kansas, USA

1 PROBLEM ANDMOTIVATION
Managing resources—file handles, database connections, etc.—is a hard problem. Debugging re-

source leaks and runtime errors due to resourcemis-management are difficult in evolving production

code. Programming languages with static type systems are great tools to ensure erroneous code is

detected at compile time. However, modern static type systems do little in the aspect of resource

management as resources are treated as normal values. We propose a type system, Qub, based
on the logic of bunched implications (BI)[14] which models resources as first class citizens. We

distinguish two kinds of program objects—restricted and unrestricted—and two kinds of functions—

sharing and separating. Our approach guarantees resource correctness without compromising

existing functional abstractions.

For a concrete example, we consider the case of file handling. In Haskell, a file being closed twice

or a file not being closed at all may cause run-time errors but it not flagged as a type error. We

represent separating functions, i.e. functions that do not share resources with their arguments

using −∗, and sharing functions i.e. functions that share resources with their arguments using↠.

In Qub, the type signatures of the file handling API explicitly states that they are separating in

nature. This accounts for closing the file handle more than once. Each program object needs to

be explicitly dropped if it has to be treated as a resource, as in linear type systems [1, 2, 11]. This

accounts for failing to close the file handles.

Exception handling in Haskell can be done using MonadError[10]. However, it does not give
a systematic way of cleaning up resources in case of run-time exceptions. We consider the case

where a critical section of the code throws an exception as shown in Fig. 1. The IOF describes

the fact that the computation can throw exceptions, while IO does not. The catch function has a

sharing argument, hence it can access the file handle fh declared in the part of the code that can

throw exceptions and close it before exiting to prevent a memory leak.

openFile :: FilePath −∗ IO FileHandle
closeFile :: FileHandle −∗ IO ()
readFile :: FileHandle

−∗ IOF (String, FileHandle)

writeFile :: String

−∗ FileHandle
−∗ IOF ((), FileHandle)

throw :: Exception −∗ IO a

catch :: IOF a −∗ (Exception −∗ IO a)
↠ IO a

readFromFile :: FilePath

−∗ IO (Either String String)

readFromFile fpath =

do fh ← openFile fpath

((s, fh) ← readLine fh

let l = caps s

closeFile fh

return $ Right l)

`catch` (\e → do closeFile fh

return $

Left "read file error")

Fig. 1. File and Exception Handling inQub

Advisor: J. Garrett Morris.

Author’s address: Apoorv Ingle, ACM ID: 7456710, Information and Telecommunication Technology Center, The University

of Kansas, USA, ani@ku.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/288849583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 BACKGROUND AND RELATEDWORK
Type systems based on linear logic[1–3, 11, 16] provide one technique to solve the resource control

problem. They restrict the structural rules of weakening and contraction to view all values as

resources. This changes the meaning of the connectives as well. Linear implication 𝐴 ⊸ 𝐵 means

“A is consumed to obtain B”. We also get additive and multiplicative fragments of conjunction (𝐴⊗𝐵
means “both A and B” and𝐴&𝐵 means “choose between A and B”). There is, however, an awkward

asymmetry in this system—while ⊸ is the right adjoint of ⊗, & has no such counterpart. Logic

of BI [15] repairs this asymmetry between implication and conjunction. It uses trees as contexts,

where the internal nodes are either comma (,) or semicolon (;) and leaf nodes are the propositions.

The structural rules—weakening and contraction—are prohibited for propositions connected using

(,). Γ;Δ ⊢ Γ but Γ,Δ ⊬ Γ. The multiplicative conjunction ⊗ gets a multiplicative implication −∗ and
the additive conjunction & gets the additive implication ↠ as its right adjoint. The Curry-Howard

interpretation of BI is in terms of sharing in rather than linear logic’s consumption. If the function

does not share resources with its argument −∗ is used, while if the function shares resources with

its arguments,↠ is used instead.

Jones[4, 8] introduces qualified types, a general framework to incorporate predicates for poly-

morphism. The Hindley-Milner type system[12] extended with qualified types[5] can express type

classes with functional dependencies[7], and first class polymorphism[6]. Morris[13] uses qualified

types to design Quill, a functional language with linear calculus. In Quill, the predicate Un 𝜏 specifies
the type 𝜏 is unrestricted i.e. it can be duplicated or dropped at will, or it does not contain any

resources. Proof theoretically, the type is tagged unrestricted whenever weakening and contraction

is admissible. A binary predicate ≥ helps generalize function definition in presence of restricted

types. 𝜏 ≥ 𝜏 ′ specifies that type 𝜏 admits more structural rules than type 𝜏 ′.

3 APPROACH AND UNIQUENESS
Qub is an extension of standard call-by-name lambda calculus based on logic of BI . We introduce

two kinds of lambdas associated with the two implications. _−∗𝑥 .𝑀 introduces a separating function

−∗, while _↠𝑥 .𝑀 introduces a sharing arrow↠. We generalize the use of trees as contexts in BI to
graphs of sharing information. We represent sharing graphs as adjacency lists in the environment

context. A triple (𝑥 ®𝑦 : 𝜏) ∈ Γ would mean 𝑥 of type 𝜏 is in sharing with ®𝑦. The sharing relation is a

symmetric, reflexive and non-transitive. We say that the contexts are in complete sharing—Γ�Δ—if
all the variables are shared and they are disjoint—Γ ⊛ Δ—if they are not shared. We formally define

them in Fig. 2, where # means disjoint. The predicates ShFun 𝜙 and SeFun 𝜙 range over sharing

and separating functions respectively. We include predicates Un 𝜏 and 𝜏 ≥ 𝜏 ′ as is from Quill. The

complete type system is shown in Fig. 3.

Vars(Γ, 𝑥 ®𝑦) = Vars(Γ) ∪ {𝑥}
Shared(Γ, 𝑥 ®𝑦) = Shared(Γ) ∪ {®𝑦}

Used(Γ) = Vars(Γ) ∪ Shared(Γ)

(Γ, 𝑥 ®𝑦) [𝑎 ↦→®𝑏] =
{
𝑎 ∉ ®𝑦 (Γ [𝑎 ↦→®𝑏] , 𝑥 ®𝑦 : 𝜏)
𝑎 ∈ ®𝑦 (Γ [𝑎 ↦→®𝑏] , 𝑥 (®𝑦\𝑎)∪®𝑏 : 𝜏)

Γ [®𝑎 ↦→
®𝑏] = (. . . ((Γ [𝑎1 ↦→®𝑏]) [𝑎2 ↦→®𝑏]) ...) [𝑎𝑛 ↦→®𝑏]

Γ ⊛ Γ′ = Γ ⊔ Γ′ if Vars(Γ) # Used(Γ′) ∧ Vars(Γ′) # Used(Γ)
Γ � Γ′ = Γ ⊔ Γ′ if Used(Γ) = Used(Γ′)

Fig. 2. Auxiliary Functions

Γ ⊛ Δ⊛
[ID]

𝑃 | 𝑥 ®𝑦 : 𝜎 ⊢ 𝑥 : 𝜎

𝑃 | Γ ⊛ Δ⊛ Δ ⊢ 𝑀 : 𝜎 𝑃 ⊢ Δ un
[CTR-UN]

𝑃 | Γ ⊛ Δ ⊢ 𝑀 : 𝜎

𝑃 | Γ � Δ � Δ ⊢ 𝑀 : 𝜎
[CTR-SH]

𝑃 | Γ � Δ ⊢ 𝑀 : 𝜎

𝑃 | Γ ⊢ 𝑀 : 𝜎 𝑃 ⊢ Δ un
[WKN-UN]

𝑃 | Γ ⊛ Δ ⊢ 𝑀 : 𝜎

𝑃 | Γ ⊢ 𝑀 : 𝜎
[WKN-SH]

𝑃 | Γ � Δ ⊢ 𝑀 : 𝜎

𝑃 | Γ ⊢ 𝑀 : 𝜎 𝑃 ′ | Γ′𝑥 ⊔ 𝑥 : 𝜎 ⊢ 𝑁 : 𝜏
[LET]

𝑃 ∪ 𝑃 ′ | Γ ⊔ Γ′ ⊢ (let 𝑥 = 𝑀 in 𝑁) : 𝜏
𝑃 | Γ ⊢ 𝑀 : 𝜎 𝑡 ∉ fvs(Γ) ∪ fvs(𝑃)

[∀ I]
𝑃 | Γ ⊢ 𝑀 : ∀𝑡 .𝜎

𝑃 | Γ ⊢ 𝑀 : ∀𝑡 .𝜎
[∀ E]

𝑃 | Γ ⊢ 𝑀 : [𝜏\𝑡]𝜎
𝑃, 𝜋 | Γ ⊢ 𝑀 : 𝜌

[⇒ I]

𝑃 | Γ ⊢ 𝑀 : 𝜋 ⇒ 𝜌

𝑃 | Γ ⊢ 𝑀 : 𝜋 ⇒ 𝜌 𝑃 ⊢ 𝜋
[⇒ E]

𝑃 | Γ ⊢ 𝑀 : 𝜌

𝑃 ⇒ ShFun 𝜙 𝑃 ⊢ Γ ≥ 𝜙

𝑃 | Γ [∅↦→{𝑥 }] , 𝑥Vars(Γ) : 𝜏 ⊢ 𝑀 : 𝜏 ′
[↠ I]

𝑃 | Γ ⊢ _↠𝑥 .𝑀 : 𝜙𝜏𝜏 ′

𝑃 ⇒ ShFun 𝜙
𝑃 | Γ ⊢ 𝑀 : 𝜙𝜏𝜏 ′ 𝑃 | Δ ⊢ 𝑁 : 𝜏 ′

[↠ E]

𝑃 | Γ � Δ ⊢ 𝑀𝑁 : 𝜏 ′

𝑃 ⇒ SeFun 𝜙 𝑃 ⊢ Γ ≥ 𝜙

𝑃 | Γ, 𝑥 ∅ : 𝜏 ⊢ 𝑀 : 𝜏 ′
[−∗ I]

𝑃 | Γ ⊢ _−∗𝑥 .𝑀 : 𝜙𝜏𝜏 ′

𝑃 ⇒ SeFun 𝜙
𝑃 | Γ ⊢ 𝑀 : 𝜙𝜏𝜏 ′ 𝑃 | Δ ⊢ 𝑁 : 𝜏

[−∗ E]
𝑃 | Γ ⊛ Δ ⊢ 𝑀𝑁 : 𝜏 ′

Fig. 3. Qub Type System

4 RESULTS AND CONTRIBUTIONS
Qub is a novel sub-structural _-calculus that generalizes Curry-Howard Interpretation of BI . We

have developed a sound and complete syntax directed Qub type system and designed a type

inference algorithm based on AlgorithmM[9]. We have extended our system to support kinds

with user defined type constructors allowing programmers to define data types with sharing and

separating fields. The use of monads with sharing and separating functions can statically detect

resource errors, while expressing patterns like exceptions and non-determinism that are difficult to

capture in linear languages as described in previous section.

REFERENCES
[1] Ahmed, A., Fluet, M., and Morrisett, G. L

3
: A linear language with locations. Fundamenta Informaticae 77, 4 (2007),

397–449.

[2] Bernardy, J.-P., Boespflug, M., Newton, R. R., Peyton Jones, S., and Spiwack, A. Linear haskell: Practical linearity

in a higher-order polymorphic language. Proc. ACM Program. Lang. 2 (2017), 5:1–5:29.
[3] Girard, J.-Y. Linear logic. Theoretical Computer Science 50, 1 (1987), 1–101.
[4] Jones, M. P. A theory of qualified types. Science of Computer Programming 22, 3 (1994), 231 – 256.

[5] Jones, M. P. Simplifying and improving qualified types. In Proceedings of the Seventh International Conference on
Functional Programming Languages and Computer Architecture (1995), FPCA ’95, ACM, pp. 160–169.

[6] Jones, M. P. First-class polymorphismwith type inference. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (1997), POPL ’97, ACM, pp. 483–496.

[7] Jones, M. P. Type classes with functional dependencies. In Proceedings of the 9th European Symposium on Programming
(2000), Springer-Verlag LNCS 1782.

[8] Jones, M. P. Qualified Types: Theory and Practice. Cambridge University Press, 2003.

[9] Lee, O., and Yi, K. Proofs about a folklore let-polymorphic type inference algorithm. ACM Trans. Program. Lang. Syst.
20, 4 (1998), 707–723.

[10] Liang, S., Hudak, P., and Jones, M. Monad transformers and modular interpreters. In Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (1995), POPL ’95, ACM, pp. 333–343.

[11] Mazurak, K., Zhao, J., and Zdancewic, S. Lightweight linear types in system F
◦
. In Proceedings of the 5th ACM

SIGPLAN Workshop on Types in Language Design and Implementation (2010), TLDI ’10, ACM, pp. 77–88.

[12] Milner, R. A theory of type polymorphism in programming. Journal of Computer and System Sciences 17, 3 (1978),
348–375.

[13] Morris, J. G. The best of both worlds: Linear functional programming without compromise. In Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming (2016), ICFP 2016, ACM, pp. 448–461.

[14] O’Hearn, P. W., and Pym, D. J. The logic of bunched implications. The Bulletin of Symbolic Logic 5, 2 (Jan. 1999),
215–244.

[15] Pym, D. J. The Semantics and Proof Theory of the Logic of Bunched Implications. Applied Logic Series. Springer

Netherlands, 2002.

[16] Wadler, P. A taste of linear logic. InMathematical Foundations of Computer Science 1993: 18th International Symposium,
MFCS’93 Gdańsk, Poland, August 30–September 3, 1993 Proceedings, A. M. Borzyszkowski and S. Sokolowski, Eds.

Springer Berlin Heidelberg, 1993, pp. 185–210.

	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	4 Results and Contributions
	References

