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Abstract 

A major drawback of currently available stroke diagnosis methods, such as computed 

tomography (CT) and magnetic resonance (MRI), is that they cannot provide timely diagnosis 

within the narrow therapeutic time window of 4.5 h from stroke onset afforded by recombinant 

tissue plasminogen activator treatment. Upon initiation of a stroke event, CD15+ neutrophils 

and CD8+ T cells are recruited and activated in response to the inflammatory stroke event and 

can release into blood extracellular vesicles (EVs) containing mRNA markers with altered ex-

pression profiles indicative of tissue damage. Our previous studies demonstrated that certain 

leukocyte subpopulations and gene expression profiling of these isolated subpopulations could 

be used to diagnose acute ischemic stroke (AIS) within 3 h. Here, our research goal was to 

develop a novel approach for the measurement of mRNA transcripts in EVs rather than cells 

as a possible diagnostic for AIS. To facilitate the development of the AIS diagnostic based on 

EVs, we developed a microfluidic device with a high-density array of antibody-modified mi-

cropillars for the affinity selection of CD8+ or CD15+ EVs with an analysis time less than the 

4.5 h recombinant tissue plasminogen activator effective therapeutic time window. 

We successfully developed a microfluidic device with a high-density array of antibody-

modified micropillars for the affinity selection of CD8+ EVs, which could process 200 µL of 

plasma in <10 min with a recovery >90%. Initial validation of these devices was performed 

using a model cell line Molt-3, which contained CD8+ T-cells. With the aid of fluorescence 

microscopy, we demonstrated that EVs can be affinity selected using the microfluidic device 

with higher specificity compared to other EV isolation techniques, such as ultrancentrifugation 

or PEG-precipitation that can improve the quality of the mRNA expression data. Transmission 

Electron Microscopy (TEM) and Nano Particle Tracking Analysis (NTA) revealed that the 

microfluidic device was capable of capturing and releasing enriched EVs with a short analysis 

time (<25 min). Gene expression analysis performed via droplet digital PCR revealed that for 
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AIS, the genes we selected (PLBD1, MMP9, VCAN, FOS, CA4) produce similar expression 

between the CD8+ T cells and EVs originating from these cells. The analysis of clinical sam-

ples, which used a 7-bed microfluidic device with 10 µm pillars and an interpillar spacing of 

10 µm provided a higher dynamic range compared to a 3-bed device that used larger pillars 

(~90 µm) as well as significantly reduced processing time.  

In a blinded study performed for healthy and AIS patient samples, we were able to 

correctly identify 4/5 stroke patient samples and 4/5 healthy control samples. Although results 

reported here are very encouraging, more extensive studies are needed with a larger cohort of 

patient samples and healthy controls to clearly determine receiver operating characteristics for 

the use of EVs as a source of mRNA for AIS diagnosis.  

The research work I conducted on identification of mutations stabilizing Bacterioferri-

tin associated ferredoxin is included in Appendix. 
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Chapter 1: Introduction 

 Stroke and stroke statistics 

Stroke is considered as a brain attack with brain dysfunction resulting from an underlying 

vascular cause.1 According to the American Stroke Association in 2018, stroke was a leading 

cause of serious long-term disability in the United States. In the United States, stroke is the 4th 

cause of death that kills nearly 1 million people every year. Based on additional statistics from 

the American Stroke Association, someone in the US has a stroke every 40 seconds and strokes 

account for 1 of every 19 deaths. They also stated that 795,000 people experience a new or re-

current stroke, where approximately 610,000 of these are first attacks and about 185,000 are 

recurrent strokes.2 In 2010, medical treatment for stroke cost nearly $54 billion and it is expected 

that it would exceed $1 trillion by 2050.3 The map in Figure 1 illustrates the deaths caused by 

stroke in US (35+ 200-2006, by county) and it clearly shows the “Stroke Belt”, an area in the 

Southeastern US and Mississippi Valley with a high rate of stroke mortality.4 

The problem of stroke is not limited to the United State alone; in 2015, stroke was responsible 

for 11.8% of total deaths worldwide, which makes stroke the second leading global cause of 

death behind heart disease. Although the overall risk of stroke has dropped by about 25% during 

the last decade,5 disability caused by strokes have become one of the major health problems 

worldwide. Thus, stroke is one of the major health issues not only in the United States, but also 

worldwide. Therefore, there is a need to improve healthcare facilities for stroke rehabilitation 

and the early detection of stroke conditions to predict the recurrence of the disease and for the 

primary prevention of stroke. 
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 Stroke types 

The American Stroke Association has identified two major types of stroke, namely ischemic 

stroke (clots) and hemorrhagic stroke (bleeds). The functional changes caused by both of these 

subtypes are different depending on the kind of the lesion that represents the area of damaged 

brain tissue. Thus, it is important that the underlying mechanism involved in these stroke types 

are understood so that the type, diagnosis, and prognosis of stroke can be delineated.  

 Acute ischemic stroke (AIS) 

AIS is the most common type of stroke, which accounts for approximately 87 percent of 

all strokes. AIS occurs when a clot or a mass clogs a blood vessel that supplies blood to the brain 

(Figure 1.2 A). This will obstruct the blood flow to the brain cells and when this happens brain 

cells become deprived of oxygen.6 During an ischemic stroke, brain damage and neuronal death 

happens due the failure of energy producing compounds such as adenosine triphosphate (ATP), 

which in turn results in reduced glucose production and limits oxygen to the brain. As a result of 

this, cellular homeostasis is not supported. Due to the lack of energy, functioning of the ion gra-

dient is also affected by the loss of ions such as potassium resulting in neuronal swelling. Some 

other complex mechanisms are also involved in brain tissue triggering ischemic stroke, such as 

release of glutamate and aspartate neurotransmitters in the brain, dysfunction of the calcium 

A B C 

Figure 1.1: Age-adjusted average (Annual) deaths per 100,000 (A) 35+, 2000-2006, by county. 

(B) Men 35+, 2000-2006, by county (C) Women 35+, 2000-2006, by county. (Reproduced 

from reference 4). 
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channel and production of reactive oxygen species that can activate proteases and lipases that 

can potentially damage cellular and extracellular elements. As a final result of these processes 

immediate death of a section of the brain parenchyma (core) or partial injury (penumbra) with 

the potential recovery with treatments can take place.7-8 The brain damage caused by AIS is de-

termined by many factors such as the duration, severity, and the location of the ischemic stroke. 

The main cause for AIS is fatty deposits on the vessel walls that are called atherosclerosis. These 

fatty deposits cause two types of obstructions called cerebral thrombosis and cerebral embolism 

(See Table 1.1). Cerebral thrombosis is a thrombus or a blood clot that will develop by the fatty 

plaque within the blood vessel while cerebral embolism is a blood clot that forms at another 

location in the blood circulatory system. These are usually formed in heart and large arteries of 

the upper chest and neck. These blood clots can break loose and enter the bloodstream and move 

to the brain’s vessels until it reaches a vessel that is too small to let it pass creating an obstruction 

for the blood flow. Irregular heartbeat, which is called atrial fibrillation, is one of main reasons 

of embolism that causes these clots to form in the heart and move to the brain.9 

Table 1.1: Subtypes of stroke 

Stroke 

Ischemic (87%) Hemorrhagic (16%) 

Embolic (31.5%) Thrombotic (51.5%) Intracerebral (10%) Subarachnoid (6%) 

 

 

 

 

 

 

 

A B 

Figure 1.2: (A) Representation of a blood clot in a blood vessel that supplies blood to the brain.  

(B) Symptoms of stroke (FAST- Face, Arms, Speech, Time). (Reproduced from references 6 

 and 11) 
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Symptoms for AIS includes trouble with speaking and understanding and the person having 

the stroke may experience confusion, and slur of their words. Also, they will develop sudden 

numbness, weakness or paralysis in their face, legs or arms, which normally takes place in only 

one side of the body and one side of the mouth will drop when they try to smile. They will also 

have blurred or blackened vision in one or sometimes both eyes. A sudden, severe headache 

together with vomiting and altered consciousness is another sign of stroke. Regardless of the type 

of stroke the person is experiencing you may notice the following signs (“FAST”): Face, if you 

ask the person to smile, one side of the face will drop; Arms, when you ask the person to raise 

both arms, one arm will drift down or he’ll be unable to raise one arm; Speech, the person will 

be unable to repeat a simple phrase or their speech will be slurred or strange; and Time if you 

see any of these signs it’s time to call 911 immediately or seek immediate medical attention.10-11 

 Hemorrhagic stroke  

Approximately 13% of all the strokes are hemorrhagic strokes. This stroke type is caused 

when a weakened blood vessel ruptures causing leakage of blood to the surrounding brain. Then, 

blood can accumulate and compress the surrounding brain tissue.6 Pressure caused by the blood 

can damage the brain cells, and these damaged areas are unable to function properly. There are 

two major types of hemorrhagic stroke namely, intracerebral hemorrhage and subarachnoid hem-

orrhage. In first type, the bleeding takes place inside of the brain, which is also the main type of 

hemorrhagic stroke. Risk factors for intracerebral hemorrhage include hypertension, which is the 

most common cause, cerebral cavernous malfunctions that occurs when blood vessels do not 

form correctly in the brain, and arteriovenous malfunctions (AVM), which is a genetic condition 

where blood vessels form incorrectly resulting in an abnormally tangled web. AVMs typically 

occur in the brain and spine, but if they are present in the brain vessels can rupture that leads to 

bleeding into the brain. 12-13 However, this is a rare disorder. 
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In subarachnoid hemorrhage the bleeding will occur between the brain and the membranes 

that cover it. Risk factors for subarachnoid hemorrhage are AVMs, bleeding orders, head injury 

and trauma, blood-thinning medication and a bulge in blood vessel wall which is called as aneu-

rysm. 

 

 

 

 

 

Symptoms of a hemorrhagic stroke may change, but the common signs are sudden severe 

headache, loss of balance and inability to coordinate, vision changes, unable to move, numbness 

in an arm or leg, seizures, loss of consciousness, confusion or loss of alertness, nausea and vom-

iting, confusion or loss of alertness. Some additional symptoms of either type of hemorrhagic 

stroke includes, paralysis in any part of the body, inability to look at light, pain in the neck area, 

difficulty in swallowing, hand tremors and fluctuation in heartbeat and breathing more fre-

quently.12 

 Stroke mimics 

Stroke mimics (SMs) are non-stroke conditions (false positives) that have similar symptoms 

as stroke and are often diagnosed as stroke. SMs are expressed as diseases caused by neurologic 

symptoms that resemble a stroke, and the frequency can differ from 1.2 % - 25%.14-15. Most of 

the stroke mimics don’t do any significant brain damage. Complex migraine is a one of the most 

common stroke mimics which can result in hemiparalysis. Vision loss, aphasia, or vertigo are 

Figure 1.3: Representation of hemorrhagic stroke; Subarachnoid hemorrhage and intracerebral 

hemorrhage. (Reproduced from reference 12) 
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some of the symptoms of migraine.16-17 Seizures are another stroke mimic and often cause neu-

ronal dysfunction that may be noticeable as weakness, aphasia, confusion or sensory signs and it 

also affects vision and speech. Some other stroke mimics are demyelinating disease, meningitis, 

glucose level variations, that is metabolic disorders (hypoglycemia), tumors, non-cerebrovascu-

lar diseases such as epilepsy and dementia.16, 18-19 Conditions that are frequently misdiagnosed 

as stroke are summarized in table 1.2 below.16 

Table 1.2: Common stroke mimics 

Condition Misdiagnosed as stroke (%) 

Brain tumor 7-15 

Labyrinthitis 5-6 

Metabolic disorder 3-13 

Migraine 11-47 

Psychiatric disorder 1-40 

Seizures 11-40 

Syncope 5-22 

Transient global amnesia 3-10 

Sepsis 14-17 

Other 11-37 

More information about the misdiagnosis of stroke by current stroke diagnosis techniques 

will be discussed in the following sections. Transient ischemic attacks (TIA), which are also 

called mini-strokes, is a neurologic dysfunction caused as a result of loss of blood flow to the 

brain or spinal cord without acute infarction and since the blockage period in TIA is short there 

is no permanent damage caused. However in people who had a TIA, the occurrence of a follow-

ing stroke is about 11% over the next 7 days and it’s 24-29% over the following 5 years.20-21 

Because the presence of TIA can lead to recurrent stroke conditions, differentiating between 

stroke or TIA versus stroke mimics is necessary.  
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 Stroke assessment scales 

Stroke type needs to be diagnosed quickly and precisely so that treatment can be performed 

quickly as the longer the treatment for stroke is delayed, the lesser the effectiveness of it. Thus, 

the phrase “Time lost is brain lost”. In many cases, due to the lack of knowledge of stroke symp-

toms very few patients with stroke come to the hospitals on time to receive proper treatments. 

Quick and accurate diagnosis of stroke subtypes and excluding stroke mimics is highly important 

to provide proper treatment for stroke patients. 

Stroke scales are normally utilized to get an idea on the severity of the stroke. Depending on 

the type of information that has been collected from the patients these stroke scales are divided 

in to sub-categories as following: i) Global outcome scales (modified Rankin scale, Glasgow 

outcome scale) that provides information on the neurologic disability;  ii) Physical deficit scales 

(National Institutes of Health Stroke Scale (NIHSS)), which are based on the scores given by 

neurologic examination; and iii) Activities of daily living scales (Barthel index) that is based on 

the functional outcome and recovery useful in studies of rehabilitation.22-25The diagnostic accu-

racy of these scales is ~80%, however the clinical specificity and sensitivity can vary.22-24 Table 

1.3 below explains the scale used by the National Institute of Health Stroke Scale (NIHSS), which 

is considered to be the most widely used scale with a numerical scale that can be completed 

within 5-8 min and yields a score from 0-42 (higher the score, more severe the stroke). This scale 

can be easily used by both neurologists and non-neurologists. 

Scales alone cannot be used to decide a treatment method for the stroke conditions. Most of 

these scales are used only to understand the severity of the stroke, but it’s important to understand 

that these scales cannot be used in distinguishing stroke subtypes. These are mostly helpful when 

used together with the brain imaging techniques and biomarkers for diagnosing stroke condi-

tions.26 
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Table 1.3: National Institutes of Health Stroke Scale (NIHSS) 

Item Response score 

1a. Level of consciousness 0= alert 

1=not alert 

2=obtunded 

3=unresponsive 

1b. Level of consciousness ques-

tions 

0=answers both questions correctly 

1= answers one question correctly 

2= answers neither correctly 

1b. Level of consciousness com-

mands 

0=performs both tasks correctly 

1= performs one task correctly 

2= performs neither task correctly 

2. Graze 0=normal 

1=partial gaze palsy 

2=total gaze palsy 

3.Visual fields 0=no visual loss 

1=partial hemianopsia 

2=complete hemianopsia 

3=bilateral hemianopsia 

4. Facial palsy 0=normal 

1=minor paralysis 

2=partial paralysis 

3=complete paralysis 

5. Motor arm 

(a) Left 

(b) Right 

 

0=no drift 

1=drifts before 5s 

2=falls before 10 s 

3=no effort against gravity 

4=no movement 

6. Motor leg 

(a) Left 

(b) Right 

 

0=no drift 

1=drifts before 5s 

2=falls before 10 s 

3=no effort against gravity 

4=no movement 

7.Ataxia 0=Absent 

1=1 limb 

2=2 limbs 

8. Sensory 0=normal 

1=mild loss 

2=severe loss 

9.Language 0=normal 

1=mild aphasia 

2=severe aphasia 
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3=mute or global aphasia 

10. Dysarthria 0=normal 

1=mild  

2=severe  

11. Extinction/inattention 0=normal 

1=mild  

2=severe  

 

 Stroke diagnosis methods: Advantages and disadvantages 

Diagnosing the subtype of stroke quickly and precisely is important to decide the proper 

treatment for patients. The most commonly used stroke diagnosis method available today is neu-

roimaging techniques. Imaging methods basically serve two main purposes, first is to rule out 

the stroke mimics and second is to assess the location and to decide the damage caused by the 

stroke. Currently available neuroimaging techniques and some of the advantages and the disad-

vantages are briefly discussed below. 

 Computed tomography (CT) 

A CT of the brain is a noninvasive diagnostic method that uses X-rays to produce horizon-

tal, or axial images of the brain. CT scanning combines special x-ray equipment with sophisti-

cated computers. During a CT scan the X-ray beam will move in a circle around the body allow-

ing different views of the brain. This X-ray information is then sent to a computer that will inter-

pret the X-ray data and displays it in a two-dimensional (2D) image. The imaging here is based 

on the same principle as regular X-rays. The X-rays are absorbed differently by different parts of 

the body. Bones will absorb most of the X-rays, so the skull will appear white in color in the 

image. Water in the cerebral ventricles or fluid-filled cavities in the middle of the brain absorbs 

less of X-rays thus those areas appear in black. The brain has intermediate density, hence appear 

in grey. Most ischemic strokes are less dense than normal brain thus appear darker.  There are 
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several types of CT available, those are non-contrast head CT (NCCT), CT angiogram of the 

head and neck (CTA), and the perfusion CT (PCT).27 

 

 

 

1.5.1.2 Non contrast computed tomography (NCCT) 

NCCT is widely used to identify the early signs of stroke conditions and to rule out hem-

orrhagic stroke and other lesions, such as a tumor. Its wide availability and the speed of image 

acquisition makes it effective for initial evaluation of suspected stroke patients.28 Some ad-

vantages of NCCT include rapid access, availability of emergency department CT scanner 24 

hours a day in many centers29, and evidence that its use is cost effective.30 

However, there are some drawbacks of CT scans for stroke diagnosis. CT scans do not 

detect chronic hemorrhage including micro-bleeds. Also, NCCT performs poorly in detecting 

acute infarctions, particularly in posterior fossa due to beam hardening artifacts and insufficient 

contrast resolution. Acute posterior ischemia stroke accounts for approximately 20% of ischemic 

stroke. 31 In a study, they have shown that sensitivity for detecting acute stroke on NCCT varied 

from 57% to 71%.32 Early signs of acute infarctions are subtle, especially for the smaller arterial 

blockings and in the hyper acute stage of ischemic stroke, which will result in limited sensitivity 

and reduced inter-observer reliability.33-34 Furthermore, a study reported that within 6 h hours 

after onset of stroke symptoms, inter-observer agreement (median of 30 CT scans and six raters) 

Figure 1.4: Demonstration of multimodal computed tomographic (CT) acquisition, including 

(a) non contrast CT. (b) CT angiography. (c) CT perfusion. The patient is a 91-year-old man 

who presented with acute onset of slurred speech (Reproduced from reference 27). 
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of all early infarction signs was 61%  21 and the inter-observer agreement (kappa statistics) 

ranged from 0.14 to 0.78 for any early infarction signs. In the same study, it was reported that 

the mean sensitivity and the specificity for detection of early infarction signs with CT were 66% 

(range 20-87%) and 87% (range 56%-100%), respectively.35 According to the literature, the 

sensitivity of standard non-contrast CT for ischemic stroke increases after about 24 h.36 

 

 

 

 

 

As shown in Figure 1.5, in some patients it’s difficult to detect the affected area early and 

when its visible in the image it’s too late to start the treatments. This NCCT was taken 2 hours 

after stroke symptoms and no signs of ischemic stroke was visible.37 

Another major disadvantage of NCCT is that the images that are taken will depend on 

the position of the patient inside the CT scanner. Based on a study performed to evaluate physi-

cian accuracy in cranial computed tomography scan interpretation for determining the eligibility 

thrombolytic treatment, they reported that from a sample of 38 emergency physicians, 29 neu-

rologists and 36 general radiologists, physicians did not uniformly attain a level of sensitivity for 

detection of intracerebral hemorrhage adequate to permit safe selection of patients for proper 

treatment. The summarized results obtained from this study are shown in Table 1.4.38 Based on 

Figure 1.5: NCCT images of an Ischemic stroke Ischemic stroke not yet visible after 2 h (Re-

produced from reference 37). 
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the results we can see that the physicians have trouble differentiating between hemorrhage from 

calcification, and differentiating between ischemic stroke from old infarctions. 

As explained in the previous section, stroke mimics is another major drawback in neu-

roimaging techniques. Stroke mimics accounts for 19-30% of suspected stroke presentations. 

The differentiation of stroke mimics from cases of AIS is challenging, given a narrow time win-

dow for the administration of intravenous thrombolysis. Figure 1.6 below illustrates a summary 

of common stroke mimics identified in a systematic review and meta-analysis of case series.39 

This study involved 8839 patients and based on the results they concluded that expertise in the 

differential diagnoses of stroke is required to manage the patients at the point of referral.40 

 

 

 

 

 

Use of high radiation doses is another major drawback of all the CT imaging techniques. 

 

 

Table 1.4: Percent correct by Scan Category 

 

 

Table 1.5: Percent correct by Scan Category 

 

Figure 1.6: Summary of common stroke mimics identified in a systematic review (Reproduced 

from reference 39). 
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1.5.1.1 Computed tomography angiography (CTA) 

In CTA, an iodinated contrast agent is injected intravenously and time-optimized scan-

ning is activated.41 This method is widely used to examine the blood vessels in the brain and 

neck. Literature demonstrates some unique benefits of CTA for AIS diagnosis. CTA may facili-

tate improved pre-procedure planning and allow for quick treatment decisions. Compared to CT 

images, CTA images provide higher resolution. In some patient’s stroke that cannot be detected 

by NCCT, it can be seen in CTA images.42 

There are some drawbacks of CTA as well. The iodinated contrast agent that is given 

before the test can potentially initiate an allergic response or toxic in some people. Thus, if the 

patient is >60 years of age or if they have kidney disease, diabetes, lupus, or multiple myeloma, 

blood test needs to be performed beforehand to make sure that the contrast agent is safe. From a 

practical standpoint, some insurance plans do not cover CTA, and because this test can be very 

expensive, it limits its use broadly. Moreover, CTA imaging depends on correct timing, technical 

planning, and sufficient  cardiac output.41 If these conditions are not met, CTA will yield poor 

images with insufficient diagnostic information. 

1.5.1.2 Computed tomography perfusion (CTP) 

CTP requires a rapid injection of intravenous contrast agent and repeated imaging of the 

brain, based on the total amount (Cerebral Blood volume CBV) and the speed that blood flows 

(Mean Transient time MTT) to different areas of the brain. CPT can help in evaluating the po-

tential areas of salvageable tissue in ischemic penumbra;34, 43 penumbra is defined as the area of 

the scan that has reduced blood flow but an increased blood volume.  

A recent study suggested that CTP studies increase the diagnostic accuracy during for early 

stage stroke detection and it can lead to an increased diagnostic yield compared to CT scans (80% 

vs. 50%, respectively).44 The drawbacks of CTP are: The use of CTP requires a higher level of 

expertise and resources compared to normal CT scans and evaluating the images needs a high 
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level of skill.44 Additionally, CTP images are spatially limited to 2-4 consecutive sections with 

coverage of 20-40 mm thickness; this could underestimate the full extent of brain perfusion.41 

Due to this limitation, CTP is unable to detect small lacunar vessels, but it has shown ~95% 

accuracy in delineation of supratentorial strokes.45-46 Regardless of these drawbacks, CTP re-

mains a worthwhile technique to acquire physiologic information that cannot be obtained through 

NCCT and CTA. 

 Magnetic resonance imaging (MRI) 

MRI provides improved sensitivity compared to CT scans and with the advantage of avoid-

ing exposure to ionizing radiation and iodinated contrast agents. MRI is a non-invasive test and 

during the test the machine creates a magnetic field, which will alter the water molecules in the 

brain cells. A radio signal is turned on in bursts, and the energy is absorbed differently by differ-

ent atoms in the body. Then, the absorbed energy is reflected by the body where it’s detected by 

the MRI scanner and theses reflections are converted into a picture of the brain via a computer.  

Important MRI techniques used in stroke diagnosis are gradient echo (GRE), fluid-attenuated 

inversion recovery imaging (FLARI), MR angiography (MRI), diffusion-weighted imaging 

(DWI) and perfusion weighted imaging (PWI). 

1.5.2.1 Gradient echo (GRE), Fluid-attenuated inversion recovery imaging (FLARI) 

GRE is sensitive for detecting acute hemorrhage and micro-bleeds that cannot be detected 

by NCCT. FLAIR imaging can detect subtle subarachnoid hemorrhages, which can also be un-

detectable through CT imaging.28, 34 

1.5.2.2 Magnetic resonance angiography (MRI) 

MRA is particularly used for evaluating large, proximal arteries. The sensitivity and the 

specificity of MRA in detection of cervical and intracranial stenosis is reported to be in the range 

of 70% to 100%.5 Time-of-flight MRA (TOF-MRA) is another method that is used to assess 

intracranial vasculature. There are many studies that have been conducted to compare MRA and 
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CTA for visualization of occlusion and stenosis of major cerebral vessels. One study showed that 

CTA had higher sensitivity for both stenosis and occlusion of major vessels (98% and 100%, 

respectively) than MRA (70% and 87%, respectively).47 But there are other studies that demon-

strated MRA as a good imaging method to detect occlusion in major vessels.48-50 

1.5.2.3 MR diffusion 

Diffusion weighted imaging depends on the motion of water. The net effect of water that 

is moving from extra- to intra-cellular space is an overall reduction in water mobility due to intra-

cellular structural and molecular components acting as barriers of free motion. This is captured 

as hyper-intensity on DWI and hypo-intensity on apparent diffusion coefficient (ADC) maps.31 

DWI is considered to be the most reliable method for the early detection of cerebral ischemia 

and for detection of many stroke mimics with a reported sensitivity and specificity of 81-100% 

and 86-100%, respectively.51-56 Regardless of these advantages, it is possible that DWI produce 

false positive and false negative results. Non-ischemic lesions including demyelinating diseases 

can cause neurologic symptoms and reduced perfusion, and lead to mistakenly detected infarcts. 

But, if DWI is used together with conventional MR imaging like FLAIR it’s possible to differ-

entiate these conditions from infarcts.55 

If all the MRI techniques are considered together, the major disadvantage is that MRIs 

are not often available under emergency conditions. In a study conducted on availability and 

quality of the MRI equipment in U.S emergency departments, the authors reported that in U.S 

only 13% of hospitals have 24/7 MRI services with on-site technologist and only 26% of the 

hospitals have 24/7 on-call technologist. More results from this study are shown in Table 1.5.29 
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Table 1.6: Imaging equipment among some of U.S hospitals with emergency departments 

 n % (95% CI) 

CT available (n=260) 249 96% (93,98) 

CT hours (n=249) 

24/7 (on-site technologist) 

24/7 (on-call technologist) 

 

235 

12 

 

94% (91,97) 

5% (3,8) 

7 days/week (< 24 hours/day) 2 1% (0,3) 

CT resolution, slices (n=246) 

1 

2-4 

5-16 

>16 

 

35 

33 

81 

97 

 

14% (10,19) 

13% (9,18) 

33% (27,39) 

39% (33,46) 

MRI available (n=260) 

On-site 

Mobile 

 

171 

52 

 

66% (60,72) 

20% (15,25) 

MRI hours (n=223) 

24/7 (on-site technologist) 

24/7 (on-call technologist) 

 

29 

59 

 

13 % (9,17) 

26% (21,32) 

6-7 days/week (< 24 hours/day) 30 13 % (9,18) 

5 days a week 50 22 % (17,28) 

< 5 days a week 55 25 % (19,30) 

  

 Considering all of the imaging techniques as the currently available stroke diagnosis 

methods, the advantages and limitations of each method are summarized in Table 1.6 57. As can 

be seen, due to limitations of these methods patients with stroke are unable to reach for proper 

treatment during the 4.5 h time window for effective treatment of AIS using recombinant tissue 

plasminogen activator. Hence, there is still a need to look for new biomarkers that are capable of 

detecting stroke conditions within a short time interval. Currently, there is not an FDA-approved 

molecular diagnostic test for both stroke types. 
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Table 1.7: Advantages and limitation of currently available neuroimaging technologies 

 

Imaging Characteristics CT MRI 

Availability in the acute setting (0–6 hours) ++ − 

Rapid image acquisition ++ + 

Lack of vulnerability to motion artifacts + − 

Accessibility for patients with monitors and/or ventilators ++ − 

Feasibility and safety for patients with metallic implants (pacemakers, im-

plantable defibrillators) 

++ − 

Low cost + − 

Lack of ionizing radiation − ++ 

Renal toxicity associated with contrast administration + + 

Time for post-processing angiography and perfusion imaging − − 

Sensitivity to lacunar and posterior fossa infarcts − ++ 

Differentiation between acute and chronic ischemia − ++ 

Ability to assess causes of (Intracerebral hemorrhage) ICH or (Subarach-

noid hemorrhage) SAH while in the scanner 

+ + 

Detection of chronic hemorrhage including micro-bleeds − + 

 

 Therapeutics for stroke 

After a stroke, there is a low or limited blood supply to the area of the brain where the 

stroke took place. Thus, neurons in these areas are at greater risk with elapsing time and the final 

result would be neuronal cell death. This is why the time between stroke symptoms, diagnosis, 

and the therapeutic treatment is considered to require a short time window. In the next section, 

therapeutic approaches available for both ischemic and hemorrhagic strokes are explained in de-

tail. 

 Therapeutic approaches for ischemic stroke 

1.6.1.1 recombinant tissue plasminogen activator (rt-PA) 

Recombinant Tissue Plasminogen Activator (rt-PA) is the only FDA (Food and Drug 

Administration) approved drug that is currently available for AIS. Although the proportion of 

patients with ischemic stroke who are treated with rt-TPA has increased since it was first ap-

proved in 1996, the treatment rate is still low and only about 3.4-5.2% of all patients having 
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stroke in the U.S receive rt-PA.58 Reasons for this low rate may be due to delays in the emergency 

medical services, medical contradictions, coupled with the narrow therapeutic time window of 

rt-PA.59 

Tissue plasminogen activator is a  serine protease that consists of ~527 amino acids with 

3 or 4 glycosylation sites and it has 17 disulfide bonds.60 Vascular endothelial cells are considered 

as the main source of plasma tPA that is involved in the breakdown of blood clots (fibrinolysis), 

which is the major physiological function of tPA in blood. Standard dose of tPA approved by 

FDA is 0.9 mg/kg of body weight.61 The major concern in using rt-PA is that it maintains a 

narrow therapeutic window of 3-4 h from the onset of stroke symptoms. Some studies have been 

conducted on increasing the effective time window, but the results have shown that increasing 

the time length from 4-6 h made the rt-PA treatment less beneficial compared treatment within 3 

h.62-63 

While best known role of tPA is its function in fibrinolysis, tPA has also been shown to 

regulate many non-fibrinolytic functions in the central nervous system. tPA can be synthesized 

and released by most of the brain cells and when they are released, they can bind to the same 

cells via different receptors. Interaction with these receptors will result in various effects, that 

can be either beneficial or harmful.64 Under certain circumstances using tPA in delayed times 

after stroke onset, tPA can induce brain hemorrhage and injury.65-66 Many complex mechanisms 

have been proposed for hemorrhagic transformation (HT) including tPA-mediated N-methyl-D-

aspartate excitotoxicity and tPA-mediated microglial inflammation.67-68 

Research performed using experimental models have also suggest the involvement of 

extracellular protease family of MMPs. These studies suggested that MMPs can degrade basal 

lamina and blood-brain barrier substrates, which will eventually lead to edema and vascular rup-

ture.66, 69-70 Some of the potential benefits of rt-PA are that it shows a critical role in inhibiting 

neuronal apoptosis and promote the functional recovery in later phase stroke.71-72 
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1.6.1.2 Mechanical thrombectomy 

Mechanical treatment, an endovascular procedure, which is also called as mechanical 

thrombectomy, is another option to remove a clot in eligible patients with a large vessel occlusion 

(LVO). This method can restore vascular patency of the vessels with a success rate between 41% 

and 54%, which is an alternative method to restore blood flow to the brain.73-74 According to 

guidelines provided, mechanical thrombectomy should be done within 6 h of acute stroke symp-

toms and this can be performed only after the patient receives tPA. Here, the doctor will thread 

a catheter through a blocked artery in the brain. The stent will open and grab the clot, which will 

allow the doctor to remove the stent with the trapped clot as illustrated in Figure 1.7.75  

 

 

 

 

 

 

 Treatments for Hemorrhagic stroke 

The only possible treatment for hemorrhagic stroke is a mechanical treatment to stop the 

blood flow. A catheter is threaded up through a major artery in an arm or leg, which will be 

guided into the brain, allowing the surgeon to use cameras to visualize the bleeding. When the 

catheter is guided to the place of bleeding, it will deposit a mechanical agent like a coil to prevent 

further rupture of the vessel as shown in Figure 1.8. This is an endovascular procedure in which 

the doctor will gain access through the vascular system, which makes it less invasive.76-77 

Figure 1.7: Mechanical removal of the blood clot using a stent retriever (Reproduced from 

reference 75). 
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 Importance of blood brain barrier (BBB) in stroke 

It’s important to properly understand the role of the BBB in order to develop effective 

diagnostic markers for brain diseases such as stroke. BBB’s primary goal is to create a restrictive 

barrier between the central nervous system (CNS) and the rest of the body to prevent the entry 

of unwanted blood borne factors. BBB’s micro-vessels are made of endothelial cells that are 

linked by tight junctions. The neighboring glial cells including astrocytes and microglial are also 

important to BBB function.78 All these components together are known as the neurovascular unit 

(NVU). The cellular composition of the BBB is illustrated in Figure 1.9.79 

 

 

 

 

 

 

 

 

Figure 1.8: A catheter is guided to the place of bleeding, it will deposit a mechanical agent like 

a coil to prevent further rupture of the vessel (Reproduced from reference 76). 
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BBB plays an important role in the immune system of the brain. The tight junctions (TJ) 

between the endothelial cells that restrict the blood borne substances from entering the brain can 

be affected by brain injuries including stroke. Under stroke conditions, the BBB TJ integrity is 

decreased, which results in increased paracellular permeability. This will cause ionic dysregula-

tion, inflammation, oxidative and nitrosative stress, enzymatic activity, and angiogenesis.80 

Breakdown of the BBB also allows for the passage of biomarkers from the neurons and 

the glial cells into the circulating blood.81 Evidence is present that suggests leukocytes can move 

through the BBB to the blood circulation in human 48-72 h after a stroke event and it is hypoth-

esized that the accumulation of these leukocytes is a reason for tissue damage and that will pre-

vent the blood flow after restoration.82 Timing of these events that take place during a ischemic 

stroke event is illustrated in Figure 1.10.83 

 

Figure 1.9: Cellular constituents of the blood-brain barrier (BBB). Cerebral endothelial cells 

form tight junctions which restrict the paracellular pathway. Pericytes are distributed discon-

tinuously along the length of the cerebral capillaries and partially surround the endothelium. 

Both the cerebral endothelial cells and the pericytes are surrounded by a basal lamina. As-

troglial end feet form a complex network surrounding the capillaries and provide the cellular 

link to the neurons. Microglia are CNS-resident immune cells. (Reproduced from reference 

79) 
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Moreover, biomarkers like matrix metalloproteinase-9 (MMP-9) play a biphasic role in 

stroke by disrupting the BBB during the initial phases of the stroke event and promote vascular 

growth during recovery phases. Exact mechanisms and roles of different cells in stroke are still 

unclear. But, better examination of the BBB would provide ways to develop novel therapeutic 

approaches.   

 Currently available biomarkers for stroke, why we need to look for new biomarkers? 

A biomarker can define a broad category of medical signs with objective indications of 

medical state observed by the patient, that can be measured accurately and reproducibly.84 Ex-

amples of biomarkers are genes, cells, enzymes, hormones or any change in biological function 

in response to a disease state. There can be an upregulation or a down regulation of these bi-

omarkers during a disease state. As discussed in the previous sections, current diagnostic tech-

niques for stroke involve neuroimaging techniques, which have many drawbacks.  

Thus, it’s important to look for new peripheral-blood-based biomarkers for stroke diag-

nosis that allow for easy accessibility of the biomarker, appear in blood early following the stroke 

event, and allow for high clinical sensitivity and specificity for diagnosing the two types of 

stroke. However, looking for new biomarkers and developing a new diagnostic test for stroke is 

challenging for several reasons, including the complexity of stroke conditions and the presence 

Figure 1.10: Timing of events after stroke (Reproduced from reference 83). 
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of the BBB, which may delay the appearance of some biomarkers into peripheral blood. Hence 

a rapid and simple diagnostic test will be extremely useful for pre-hospital screening before treat-

ment and provide a higher percentage of eligible patients receiving rt-PA therapy.  

There are many factors that need to be considered when selecting a biomarker for stroke. 

The major challenge is the late release following the stroke event and the inability of most of 

these biomarkers to move through the BBB. Due to these challenges, currently there is no mo-

lecular diagnostic test available for stroke and no biomarker has shown to be either clinically 

sensitive and specific to diagnose any of the stroke types. 85 

In the field of clinical studies, the sensitivity and the specificity are different from the 

analytical sensitivity and specificity. The clinical sensitivity provides information on the positiv-

ity of the clinical test, whereas the clinical specificity provides information about the negativity 

of the test.  

𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑙𝑎𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
      (Eq. 1) 

𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
   (Eq. 2) 

According to the literature, ideal biomarkers or a panel of biomarkers should be able to 

answer the following questions; firstly, does the patient have a stroke (must be able to differen-

tiate stroke from stroke mimics), secondly what type of a stroke is it, ischemic stroke or hemor-

rhagic  stroke, and finally is there a need for thrombolytic treatment and is there a risk of recur-

rence?85 Answers to these questions  can be found by an ideal biomarker that will release to the 

blood stream quickly in detectable quantities using the appropriate analytical technique. 

A conceptual design that as modeled to illustrate the relation of a biomarker to a clinical 

end point is shown in Figure 1.11. The model also shows that biomarkers may be useful in the 

assessment of safety and efficacy.86 
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A selected biomarker based on these concepts considered to have following properties 

shown in Table 1.7 to be considered as an ideal biomarker and the five key features are 1) a 

biomarker adds independent clinical information 2) it should account for a large proportion of 

the risk associated with a given disease or condition 3) it should be reproducible 4) if it is to be 

used as a diagnostic test, it should be sensitive  and 5) test should be readily available.86 

Table 1.8: Ideal properties of biologic markers (biomarkers) 

Properties and uses Ideal properties 

Physical properties Stable, not susceptible to generation of artefacts or loss during 

processing or storage, independence od diet or dysmetabolism 

Analytical properties Extremely sensitive, Specific, Reproducible  

Clinical and scientific valid-

ity properties 

Biomarker levels reflect degree of brain injury, Biomarker lev-

els reflect degree of clinical severity, Changes in biomarker lev-

els corresponds closely to changes in patient’s clinical status or 

prognosis, Lack of influence of disease symptoms or signs on 

the marker 

Practical properties Minimal invasiveness or patient discomfort, Low per-usage 

cost, Wide availability at treatment centers in all desired geo-

graphic location   

Uses Drug development, favoring early evaluation of efficiency and 

safety of new drug, Potential tool for predicting individual re-

sponses for the clinical response, If the biomarker level is influ-

enced by the drug dose, it’s use in preclinical trials might im-

prove the dose range definition 

 

 

Figure 1.11: Conceptual model of the relationship of biomarkers, surrogate endpoints, and the 

process of evaluating therapeutic interventions. (Reproduced from reference 86) 
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1.9 Current biomarkers for strokes; Advantages and Disadvantages 

Biomarkers that are available for stroke can be categorized into: 1) Imaging markers that 

measure the changes in the nervous system via brain imaging; 2) molecular biomarkers; and 3) 

pharmacodynamic biomarkers (biomarkers that are indicative of certain pharmacological re-

sponses useful in drug development)87 

At present, no single biomarker with discriminative characteristics is robust enough to be 

clinically used in the diagnosis and management of patients with stroke. Biomarker candidates 

for stroke may be rationally identified to reflect components of the ischemic cascade as illustrated 

in Figure 1.12.88 

 

 

 

 

 

 

 

 

In the next sections, possible molecular biomarkers found in bodily fluids like blood, 

plasma, serum and CSF for stroke are discussed briefly. During any brain disease several bi-

omarkers can be released into the CSF and then enter the blood stream, however all these markers 

Figure 1.12: Potential biomarkers of stroke may be categorized by their role in the ischemic 

cascade. Representative markers for each category (neuronal injury, glial activation, lipid pe-

roxidation, inflammatory, and hemostasis/endothelial dysfunction) are illustrated. IL 5 inter-

leukin; NMDA 5 N-methyl-D-aspartate; PARK 5 Parkinson disease protein; TNF 5 tumor ne-

crosis factor. (Reproduced from reference 88). 
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may not be specific to stroke conditions. Sub groups of these markers (Figure 1.12) will be ex-

plained in briefly in the next section. 

1.9.1 Markers of glial activation, inflammation and oxidative stress 

After a stroke event due to the damage that will happen to the BBB, proteins that are 

released from neurons and glia will enter into the blood stream.89 These proteins and their levels 

in blood could be measured and potentially could be used in diagnosing stroke conditions. Glial 

activation, neuronal injury, oxidative stress, and release of inflammatory mediators are some of 

the early events that take place just after a ischemic stroke event.89 S100B, glial fibrillary acidic 

protein and myelin basic protein are considered to be the markers that are relatively specific to 

glial function and studies have shown that these markers could be used for predicting risk of 

hemorrhagic transformation, prognosis, infarct volume and early stroke diagnosis.90-93 C-reactive 

protein (CRP) , matrix metalloproteinase 9 (MMP9), interleukin 6 (IL6),  adhesion molecules, 

and tumor necrosis factor  alpha (TNF-alpha) are the nonspecific inflammatory markers that are 

released due to the neuro-inflammatory cascade that have been studied for prognosis and diag-

nosis for ischemic stroke.94-99 But due to the limited specificity, these are not used clinically 

useful for stroke diagnosis.100 Among these markers S100B is considered to be a major candidate 

for stroke diagnosis in the research field, but latency in release and lack of specificity to stroke 

conditions limits its use in clinical applcations.101 

Oxidative stress and lipid peroxidation can also take place as a result of neuro-inflamma-

tion as some early events in neuronal injury. Some of the biomarkers related to these are redox 

sensitive molecular chaperone, lipid oxidation products like malondialdehyde and oxidized low-

density lipoprotein.102-104 However many of these oxidative stress markers are not specific to the 

brain, therefore it is better to use lipids that are highly enriched in the brain as potential markers. 

As an example, the F4-neuroprostane, which is a byproduct of free radical-induced oxidation of 
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docosahexaenoic acid, is a fatty acid that is highly enriched in CNS. Thus, this could be a good 

potential candidate as a stroke biomarker.105 

1.9.2 Markers of Neuronal Injury 

After the initial events of glial activation and inflammation that occurs with a stroke 

event, glutamate excitotoxicity and oxidative stress can result and increase in neuronal injury and 

eventually result in neuronal death.88 One of the extensively studied markers of neuronal injury 

is neuron specific enolase (NSE). As shown in Figure 1.13, the release patterns of NSE after a 

stroke event was studied and the authors observed an increment in NSE levels in ischemic stroke 

patients’ serum samples after 48 h of the stroke event, which is out from the 4.5 h therapeutic 

window for effective treatment, which is a disadvantage of this marker as a potential biomarker 

for AIS.106  

 

 

 

 

 

 

 

 

Some other neuron specific markers are N-methyl-D-aspartate receptor (NMDA-R), vis-

inlike protein I, and heart fatty acid binding protein.107-108  

1.9.3 Markers of hemostasis and endothelial dysfunction 

During cerebral ischemia, hypoxic endothelial cells will upregulate cell adhesion mole-

cules and sub-endothelial matrix proteins will be released into blood. Platelets adhere to the ves-

sel wall by binding of the platelet surface receptors to endothelial von Willebrand factor (vWF) 

Figure 1.13: Release of NSE in acute stroke. Data shown as means ± 95% CI. Shaded areas 

indicate the respective reference range (12.5 μg/L) (Reproduced from reference 106). 
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and adhesion of platelets to collagen, which can result in reduction of blood flow and delayed 

injury. Some of the classic hemostatic markers that are identified as potential biomarkers of 

stroke are thrombomodulin, D-dimer, fibrinogen, fibronectin, and vWF.94, 96, 109-111 

Few studies have been conducted with plasminogen activator inhibitor-I (PAI-I), D-di-

mer, and thrombin-activatable fibrinolysis inhibitor (TAFI), where researchers identified patients 

having risk of hemorrhagic transformation after tPA administration.112 Asymmetrical dime-

thylarginine, which is also a marker of dysfunction, has been studied as a potential marker for 

subclinical cerebrovascular injury.113 

1.9.4 Miscellaneous markers 

There are many other biochemical measurements that do not belong to the categories that 

have been explained above but have been shown to be potential biomarkers for stroke in the 

literature. Brain natriuretic peptides (BNP) became elevated after AIS and subarachnoid hemor-

rhage. BNP is also used as a marker for diagnosing congestive heart failures. However, it’s still 

unclear whether the increased levels of BNP are of cardiac or brain origin.26, 114-115 Lipoprotein-

associated phospholipase A2 is an enzyme that has the function of hydrolyzing oxidized phos-

pholipids. This enzyme has also been studied as a biomarker for ischemic stroke.116-117 Free he-

moglobin has also been suggested as a potential marker for stroke because it has shown increased 

levels in ischemic stroke patients compared to healthy controls.118 Calcium levels are also in-

creased after 72 and 96 h of a stroke event, however more experiments need to be performed to 

determine the sensitivity and specificity of using calcium levels as a biomarker for stroke diag-

nosis.119 Table 1.8 below summarizes the currently used biomarkers for stroke and their function. 
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Table 1.9: Currently used biomarkers for stroke and their function 

 

 

 

 

Biomarker Description and function Ref Disadvantages 

Markers of Glial Activation 

1. S100B 

2. Glial fibrillary 

acidic protein 

3. Myelin basic pro-

tein 

 

Calcium binding protein which is 

expressed in astrocytes and oli-

godendrocytes 

Expressed by astrocytes (interme-

diate filament protein) 

Myelin sheath protein 

90 

 

 
120 

 

 
121 

limited specificity, 

latency in release 

Markers of Inflammation 

1. C-reactive protein  

2. IL-6 

3. TNF-alpha 

4. Adhesion mole-

cules 

 

Acute phase protein 

Inflammatory cytokine 

Inflammatory cytokine 

Immunoglobulin super family 

members 

 
95 
122 
123 
124 

latency in release, 

lack of specificity to 

stroke conditions 

Markers of oxidative stress 

1. PARK-7 

2. Malondialdehyde 

3. Oxidized low den-

sity lipo-protein 

 

Redox-sensitive molecular chap-

erone 

Lipid peroxidation product 

Lipid peroxidation product 

 

 
125 
126 
104 

these oxidative 

stress markers are 

not specific to the 

brain 

Markers of neuronal injury 

1. Neuron specific 

enolase 

2. Heart fatty acid 

binding protein 

3. NMDA receptor 

 

Neuronal glycolytic enzyme 

 

Involved in intracellular fatty acid 

transport 

(Cytosolic protein) 

Excitotoxic receptor 

 
106 

 
127 

 
107 

Late response to 

stroke conditions 

Markers of Hemostasis and 

Endothelial dysfunction 

1. Thrombomodulin 

 

2. D-dimer 

3. Von Willebrand 

factor 

 

 

Endothelial cell glycoprotein (an-

ticoagulation properties) 

Fibrin degradation product 

Glycoprotein involved in platelet 

adhesion stabilization 

 

 
109 

 
128 
129 

lack of specificity to 

stroke conditions 

Miscellaneous markers 

1. Natriuretic peptides 

(ANP, BNP) 

2. Lipoprotein associ-

ated phospholipase 

A2 

3. Calcium 

4. Free hemoglobin 

 

Vasoactive peptide hormones 

 

Hydrolytic enzyme 

 

 

Physiologic ion 

Erythrocyte protein 
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117 

 

 
119 
118 

Lack of specificity to 

stroke conditions, 

Late response to 

stroke conditions 
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1.10 Gene expression profiling in peripheral blood as biomarkers of stroke 

Gene expression profiling in peripheral blood for diagnosing many diseases has been a 

developing area of research. Gene expression profiling measures which genes are being ex-

pressed in a cell at any given moment. This method can measure the activity of thousands of 

genes at a time and even the entire genome can be measured at one time.130 

Alterations in the gene expression, that is upregulation and/or downregulation of gene 

activity and monitoring the changes in mRNA expression levels of cells can be studied in re-

sponse to many diseases and this information can be used as biomarkers for disease management. 

Developing biomarkers based on mRNA expression in body fluids, especially in blood, 

has become an emerging and exciting area of research. mRNA biomarkers offer numerous ad-

vantages over protein-based biomarkers, which were discussed in previous sections. mRNA is 

induced more quickly in response to disease when compared to protein expression. In addition, 

mRNA expression analysis can offer high throughput because thousands of genes can be ana-

lyzed at the same time.131 

1.11 Peripheral blood mononuclear cell (PBMC) mRNA markers 

Moore et al. were the first to investigate and publish gene expression profiling in circu-

lating peripheral blood mononuclear cells containing monocytes and lymphocytes were used 

from stroke patients using microarrays.132 They showed that after an ischemic stroke, within 72 

h there was a predominant up regulatory response in PMBCs. They were able to identify 22 genes 

for stroke diagnosis with 78% clinical sensitivity and 80% clinical specificity.132 In another study 

performed by Tang et al., (based on microarray studies), they found that 17 genes were upregu-

lated during an ischemic stroke event.133 

In another study a panel of 30 genes were identified for intracerebral hemorrhage (ICH) 

using reverse transcription PCR (RT PCR) and the investigators were able to obtain >85% accu-

racy for ICH diagnosis.134 Furthermore, they identified that two genes, amphiphysin (AMPH) 
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and IL1R2 were expressed differently in hemorrhagic and ischemic stroke patients, which 

showed that gene profiling could be potentially used for differentiating between the two types of 

stroke.134  

These studies show the utility of gene expression profiling for stroke diagnosis. Due to 

the emerging advances in gene profiling methods, use of gene expression profiling for stroke 

diagnosis has become one of the most valuable research areas. 

1.12 microRNA (miR) markers 

microRNA (miR) are recognized as important post-transcriptional regulators of gene ex-

pression. miR, through a variety of mechanisms like mRNA degradation and regulation of trans-

lation, control the expression for ~30% of all transcripts. Although miRNA was discovered about 

10 years ago, many researches have conducted research to identify and characterize their func-

tions.  

In a recent study, microarrays were utilized for the first time to study the whole blood 

miRNA changes specific to acute stroke.135 Microarray is a tool that is used to detect the expres-

sion of thousands of genes at the same time. DNA microarrays are microscope slides with thou-

sands of tiny spots in defined positions, with each spot containing a known DNA sequence or 

gene. These DNA molecules attached to each slide act as probes to detect gene expression, that 

are also called as transcriptome, or the set of mRNA transcripts expressed by a group of genes. 

In their study, they found that miR-122, miR-148a, let-7i, miR487b were decreased in patients 

with acute stroke while miR-363 and miR-487b were increased in stroke patients. This study 

provided an important extension on the potential application utilizing mRNA and miR for stroke 

diagnosis. 
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1.13 Application of mRNA markers in circulating leukocytes 

In a recent study performed by Adamski et al., high throughput RT-PCR (HT RT-qPCR) 

was used to verify the results of microarray studies. They used circulating leukocytes, which 

contain multiple cellular subsets with highly specific functions.136  

As the innate immune response is known to be the major system involved in AIS, it could 

be hypothesized that the cells of the innate immune response, that is  circulating granulocyte 

(neutrophils) would be the main leukocyte subsets showing altered gene expression.7, 137-138 

The investigators performed density gradient centrifugation with Histopaque 1077 and 

1119 to separate blood mononuclear cells (PMBCs) and granulocytes from whole blood. Then, 

the granulocyte fraction was purified to CD15+ and the PMBC were used to isolate positive 

fractions of CD14+, CD4+, CD20+ and CD8+ leukocyte subsets. RNA was extracted from these 

cells and 40 transcripts identified in previous studies were selected for analysis, which are shown 

in table 1.9. 

Table 1.10: Stroke related transcript panels identified in microarray gene expression studies 

Transcript  

And Study  

Up or down-regu-

lation  

Transcript  

And Study  

Up or down-regu-

lation  

PBMCs  Whole Blood  

MOORE et al 20051  TANG et al, 20062  

CD163  UP  Hox 1.11  UP  

PLBD1  UP  CKAP4  UP  

ADM  UP  S100A9  UP  

KIAA0146  UP  MMP9  UP  

APLP2  UP  S100P  UP  

NPL  UP  F5-1  UP  

FOS  UP  FPR1  UP  

TLR2  UP  S100A12  UP  

NAIP  UP  RNASE2  UP  

CD36  UP  ARG1  DOWN  

DUSP1  UP  CA4  UP  

ENTPD1  UP  LY96  UP  

VCAN  UP  SLC16A6  UP  

CYBB  UP  HIST2H2AA3  UP  

IL13RA1  UP  ETS2  UP  

LTA4H  UP  BCL6  UP  

ETS2  UP  PYGL  UP  
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Based on the HT-RT qPCR results, they found that individual genes were significantly 

upregulated in ischemic stroke patients in 4 leucocyte populations. In CD15+ granulocytes, 14 

genes were upregulated while in CD8+ T-lymphocytes 16 genes were upregulated. Two and 1 

gene were upregulated in  TCR+ cells and CD4+ T lymphocytes, respectively. Figure 1.14 

below illustrates the gene alterations in AIS patients. 

 

 

 

 

 

 

  

 

 

 

CD14-1  UP  NPL  UP  

CD14-2  UP  

BST1  UP  BARR et al, 20103  

CD93  UP  ARG1  DOWN  

PILRA  UP  CA4  UP  

FCGR1A  UP  CCR7  UP  

VCAN  UP  

IQGAP1  UP  

LY96  UP  

MMP9  UP  

ORM1  UP  

S100A12  UP  

Figure 1.14: Hierarchical cluster analysis and heatmap of fold changes in expression of 41 

genes, in 6 leukocyte subsets, between IS (n=18) and control subjects (n=15). (Reproduced 

from reference 136). 
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Furthermore, in hierarchical cluster analysis 43 cluster of transcripts were identified spe-

cific to six subsets that showed a significant discrimination between stroke and healthy controls. 

All these subsets are listed in Table 1.10. 

Table 1.11: Gene expression clusters significantly characteristic for IS identified in hierarchical 

cluster analyses in 4 leukocyte subsets. 

Transcripts P value, of cluster, 

stroke versus con-

trol 

Adjusted p 

value* 

Adjusted p 

value** 

CD15- Cluster 1  

IQGAP1, SLC16A6, NPL, CD93, 

PYGL, PLBD1  

9.4e-6 8.84e-5 4.41e-4 

CD15- Cluster 2  

ADM, CKAP4, FOS, BST1  

2.94e-5 1.73e-4 1.38e-3 

CD15- Cluster 3  

ENTPD1, IL13RA1, LTA4H, S100P  

9.7e-5 3.80e-4 4.56e-3 

CD15- Cluster 5  

DUSP1, HIST2H2AA3, BCL6, PILRA, 

FCGR1A, TLR2  

7.70e-5 3.29e-4 3.62e-3 

CD15- Cluster 7  

LY96, S100A9, FPR1, S100A12, 

RNASE2, CCR7  

0.0012 3.01e-3 5.73e-3 

CD15- Cluster 8  

CA4, MMP9, NAIP  

6.14e-7 9.62e-6 2.88e-5 

CD14- Cluster 4  

PLBD1, BST1, LTA4H, CYBB, SCL16, 

BCL6, VCAN, FCGR1A  

0.00019 6.38e-4 8.93e-3 

CD4- Cluster 3  

IQGAP1, NPL, FOS, PLBD1, BST1, 

VCAN  

0.000146 5.28e-4 6.86e-3 

CD8- Cluster 1  

IL13, APLP2, ENTPD1, ETS2, PYGL, 

DUSP1, KIAA, ADM, S100P, CD36,  

3.64e-7 8.55e-6 1.71e-5 

CD8- Cluster 3  

CYBB, BST1, CD93, NPL, IQGAP1  

0.00021 6.58e-4 9.87e-3 

CD8- Cluster 4  

FOS, VCAN, PLBD1, MMP9, CA4  

1.42e-5 1.11e-4 6.67e-4 

CD8- Cluster 5  

BCL6, SLC16, LTA4H, CKAP4, 

FPR1, FCGR1A  

2.58e-5 1.73e-4 1.21e-3 

γδT- Cluster 1  

IQGAP1, NPL, FOS, DUSP1, CD93, 

CKAP4, PLBD1, BST1, VCAN  

7.52e-6 8.84e-5 3.53e-4 

γδT- Cluster 4  5.19e-5 2.44e-4 2.44e-3 
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ETS2, IL13, ENTPD1, PYGL, ADM, 

KIAA, APLP2, MMP9, CA4  

Wilcoxon rank sum tests were used for the analyses, *- (False discovery rate) FDR, **Bonferroni 

correction (Made for inflated Type I error (the higher the chance for a false positive, rejecting 

the null hypothesis when you should not)) 

They also validated a 3 gene expression cluster for stroke diagnosis from CD15+ granu-

locytes (CA4, MMP9, NAIP). Figure 1.15 shows the validation studies performed on these genes 

and based on the results, the overall accuracy of the 3-gene cluster classified stroke with a clinical 

sensitivity of 89% and a clinical specificity of 67%. Based on the results (clinical sensitivity of 

89% and a clinical specificity of 67%.) we can see that the upregulation of these gene subsets 

could be potentially used as to identify the ischemic stroke conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

A B

C

Figure 1.15: (A) Boxplots demonstrating the threshold values for defining elevated expression 

of each of the transcripts (CA4, NAIP, MMP9). (B) Bar graphs depicting the number of tran-

scripts elevated in the stroke patients and the control subjects. (C) ROC analysis for Cluster 1 

for stroke classification revealed that the AUC was 0.813. Elevation of 3 or more transcripts 

gave the greatest sensitivity and specificity. (Reproduced from reference 136) 
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1.14 Microfluidic device for cell selection with potential applications in clinical applications 

Previous studies have been performed on developing a microfluidic device for the selec-

tion of leukocyte subsets directly from peripheral blood.139 The device developed by Pullagurla 

et al., uses antibodies, which are covalently attached to the surface of the microfluidic that ena-

bles the affinity selection of leukocyte subsets with high efficiency. The device consists of a 

series of sinusoidal channels containing anti CD4 and anti CD66b mAbs that targets specific 

types of cells. This device was designed so that it can simultaneously capture multiple cell types 

in blood. In this study, T cells and neutrophils from whole blood were captured and as shown in 

Figure 1.16 C, CD66b-positive neutrophils expressed higher levels of S100A9 gene that was 

considered to be overexpressed in a stroke event.140 

 

 

 

 

 

 

 

 

 

A B

C

Figure 1.16: A Lab-on-a-Chip device for the selection of leukocyte subsets directly from the 

peripheral blood. (A) SEMs of a cell selection chip containing high-aspect ratio channels with 

a sinusoidal architecture. (B) Parallel arrangement of cell selection microchips for the simul-

taneous isolation of T cells (using anti-CD4 antibodies) and neutrophils (using anti-CD66b 

antibodies). (C) Gene expression profiling of selected genes from T cells and neutrophils. The 

mRNA transcripts were harvested from selected cells and subjected to RT-qPCR. (Reproduced 

from reference 140) 
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For clinical applications, isolation of leukocyte subsets using microfluidics and analyzing 

the molecular content via PCR methods offer many advantages over other gene profiling tech-

niques such as micro array. As discussed in previous sections time is the most critical factor in 

stroke diagnosis. Microarray techniques requires approximately 11 h to obtain the necessary data. 

Also, special instruments are required with experienced personnel to acquire the necessary data, 

which is not conducive to POCT.141 But, microfluidic platforms can be developed for POCT 

easily because they deliver fast analysis times and ease of use with minimum equipment. 

1.15 Challenges in using circulating leukocytes as a source mRNA for stroke diagnosis 

According to the previous studies, using blood samples from stroke patient’s mRNA 

changes in the leukocytes were observed in ~5 h after a stroke event. Only 66% of the patients 

showed a significant change in the gene expression differences after 2.4 h, 87% of the patients 

showed significant differences after 5h, and 100% of the patients showed differences in gene 

expression after 24 h.133 These results reveal that, we must at least wait 5 h before collecting 

blood for gene expression analysis since 87% of the patients showed a significant difference 5 h 

after an ischemic stroke event. But then it can be late for efficient therapeutic treatments. There-

fore, we need to look for new sources of mRNA markers that show a quicker response to ischemic 

stroke conditions. 

1.16 Extracellular vesicles as a potential source of mRNA markers for stroke diagnosis 

The cellular release of various types of molecules have been studied for some time and 

based on the results, it is clear that cells release vesicles of varying sizes through both the endo-

somal pathway and by budding from the plasma membrane. These vesicles are known by differ-

ent names including exosomes, microvesicles, apoptitic bodies and collectively termed as extra-

cellular vesicles (EVs). These subtypes of EVs are based on their biogenesis and release path-

way.142 Most of the cells in the blood including leukocytes, platelets, red blood cells and endo-

thelial cells release EVs.143 
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1.17 EV subtypes 

1.17.1 Microvesicles 

Microvesicles (MVs) are heterogeneous, membrane bound vesicles shed from the surface 

of a myriad of cell types including embryonic stem cells, neurons and astrocytes.144 MVs can 

range from 100 nm to 1 µm in size. In recent years, investigations have been done to analyze 

their important roles in altering the extracellular environment, intracellular signaling and facili-

tating cell invasion through cell-independent matrix proteolysis.144 MVs transfer a valuable cargo 

of bioactive molecules such as proteins, mRNA, and miRNA that is transferred between cells.145 

MVs can be found in a variety of bodily fluids such as blood, urine and saliva, which has in-

creased the interest in research on MVs that reveal their functions in both healthy and diseased 

tissues.146 Mechanism of MV release is illustrated in Figure 1.17.144, 147 MVs are membrane (lipid 

bilayer) enclosed heterogeneous structures. On the surface of MVs there are surface markers such 

as CD63, CD81, CD9 and inside an EV there are lipids, proteins and different types of RNA. 

Almost all of the eukaryotic cell types release MVs under both physiological and disease 

conditions.148 The function of MVs are determined by the vesicle cargo content, which will de-

pend on the cell type from which they are shed. Cargo contained inside MVs participate in a 

variety of biological functions and some of them are listed in Figure 1.18.149 

MV biogenesis takes place through direct outward blebbing and pinching of the plasma 

membrane releasing the MVs into extracellular space.150-151 Membrane blebbing is accompanied 

by other localized changes in plasma membrane protein and lipid components that will result in 

changes in the membrane curvature and rigidity.152 Although MVs have been studied as novel 

means of cell-cell communication the mechanisms of their formation and release  is still not 

understood completely.149  
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a. Biological roles of MVs (Blood cell derived MVs, coagulation, inflammation and 

immunity) 

MVs can be utilized in both pro-inflammatory and anti-inflammatory effects by transferring 

of cytokines and chemokine receptors to the recipient cells, and induce the cells to release cyto-

kines.153-154 MVs could also regulate the inflammatory responses in cytokine independent mech-

anisms, such as apoptotic induction of immune cells via vesicle associated FasL (FasL is a ligand 

involved in the regulation of cell death) signaling.155 Because inflammation itself stimulates co-

agulation, it has been shown that the roles of blood cell-derived microvesicles in coagulation, 

immunity, and inflammation are interconnected.156 Coordination of these physical functions that 

are controlled by MVs has an important role in development of cardiovascular disease.157 Other 

A B

Figure 1.17: MV biogenesis through direct outward blebbing and pinching of the plasma mem-

brane releasing the MVs into extracellular space (Reproduced from references 144). 

 

 

Figure 1.18: Common biological functions of MV protein cargo (Reproduced from reference 

149). 
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than blood cell-derived MVs, there are tumor cell-derived MVs that transfer growth factor re-

ceptors, increase cell motility, induce angiogenesis, and develop drug resistance.158  

Stem cell microvesicles is another type of MVs that are important in crosstalk between stem and 

injured cells. MVs shed from damaged cells may facilitate the differentiation-dependent repair 

associated with the stem cell-based therapies. 

1.17.2 Exosomes  

Exosomes are the smallest of the EV family, which has the size ranging from 30 -150 nm 

and are released to the extracellular environment after the fusion of late endosomes/multivesicu-

lar bodies (MVB) with the plasma membrane. 

Few cellular steps need to be completed in order to release exosomes. Those steps include 

formation of intraluminal vesicles (ILVs) in MVBs, transport of MVBs to the plasma membrane, 

and fusion of MVBs with the plasma membrane. Many molecules as shown in Figure 1.19, are 

involved in the exosome release process but its challenging to distinguish them experimentally. 

A simplified diagram showing the mechanism for exosome release is shown in Figure 1.19.159 

 

 

 

 

 

 

 

a. Exosome biogenesis 

Exosome biogenesis starts within the endosomal system, early endosomes mature into late 

endosomes or MVBs, and during this process endosomal membrane invaginates to form intralu-

minal vesicles (ILVs) in the lumen of the organelles.160 Endosomal sorting complexes required 

Figure 1.19: Molecules involved in exosome release (Reproduced from reference 159). 
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for transport (ESCRT) machinery is shown to be important in this process, which consists of four 

protein complexes ESCRT 0, I, II, III and the associated AAA (ATPase associated with various 

cellular activities) Vps4 complex.161 Some studies have suggested that MVB biogenesis can oc-

cur without ESCRTs. For example, it has been shown that even by silencing of key subunits of 

all ESCRT-complexes, ILVs are still formed in MVBs.162 Expression of the tetraspanins, CD9 

and CD82, have been shown to enhance exosome release of β-catenin from HEK293 cells.163 

Another tetraspanin that has been shown to be involved in exosome biogenesis is Tspan8.163-164   

Other than proteins, lipids are also important in vesicular transport. Both proteins and lipids are 

important in processes such as membrane deformation, fission and fusion and these processes 

are important for vesicular transport.152 Figure 1.20 below shows a structure of an exosome.165 

 

 

 

 

 

 

 

 

b. Packaging of cargo into exosomes  

Exosomes contain different proteins, lipids and nucleic acids. The composition of exosomes 

are cell type dependent and can be influenced by different cellular conditions or treatments.159 

Although several studies have detailed the exosome cargo, less is known about whether and how 

the cargo is selected and subsequently packaged into vesicles. Certain miRs are enriched in exo-

somes relative to the cells from which the exosomes originate, which indicates that miR can be 

Figure 1.20: Structure of an exosome (Reproduced from reference 165). 
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preferentially packaged into exosomes.166 miRs also have been shown to be selectively enriched 

in exosomes. Exosomal mRNA shows enrichment in 3’ UTR (untranslated regions) fragments, 

and these could play a role for mRNA sorting into vesicles.167-169 Lipids are also shown to be 

important for packaging of specific proteins into exosomes. Some studies have shown that exo-

somes are enriched in cholesterol, sphingomyelin, and glycosphingolipids compared to their par-

ent cells.170 This suggests that exosomal membranes may contain lipid rafts and membrane sub-

domains that are enriched in cholesterol and glycosphingolipids, which are important in signal-

ing.  

1.17.3 Apoptotic bodies 

Apoptotic bodies, another type of EVs, are released as a product of apoptotic cell disas-

sembly. Both exosomes and microvesicles are released from healthy cells however dying cells 

can also release a variety of EVs, and apoptotic cell-derived EVs as shown in Figure 1.21.171 

These can range from 500 -1000 nm in size. 

 

 

 

 

 

 

 

 

 

 

Figure 1.21: (A) Formation of apoptotic bodies (B) Apoptotic bodies release signals to attract phag-

ocytotic cells and to promote uptake by phagocytes (C) Antigen representation of apoptotic bodies (D) 

Immune responses of apoptotic bodies (E) Infection inhibition by cell activation (Reproduced from 

reference 171) 
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a. Generation of EVs during apoptosis 

During apoptosis, cells undergo a series of morphological changes that result in the disman-

tling of dying cells.172 Disassembly of cells can be categorized into three steps. The first step is 

the apoptotic membrane blebbing, the second step is thin membrane protrusion formation, and 

the final step is the generation of apoptotic bodies.172-173 Other than apoptotic bodies, cells can 

also release smaller EVs like apoptotic macrovesicles, which have a size <1 µm possibly through 

membrane budding.174-175 

b. Functions of apoptotic bodies 

It has been shown that apoptotic bodies coordinate many intercellular signals to help their 

detection and removal. These signals are important to ensure the immunologically silent charac-

teristic of apoptosis.173 Also, apoptotic bodies can help in the clearance of apoptotic materials. 

For this, phagocytotic cells need to be directed to the site of cell death. According to the literature, 

apoptotic cells can release factors known as “find-me” signals so that they can attract phagocytes. 

There is also evidence supporting that apoptotic body-associated signals are also released from 

apoptotic cells. 

Other than attracting phagocytes, formation of apoptotic bodies by cell fragmentation has 

been suggested to improve release of apoptotic material from cells. This might be due to the 

smaller size of apoptotic bodies, which makes it easy to be engulfed by phagocytes. Evidence 

has shown that dendritic cells can easily and readily engulf smaller apoptotic bodies than whole 

apoptotic cells.176 

Like other types of EVs, apoptotic EVs can also regulate antigen presentation in many disease 

conditions, such as antimicrobial immune responses, autoimmunity and organ/transplant rejec-

tion. Furthermore, apoptotic bodies can protect many different biomolecules that can directly 

control immune cells through vesicle-associated cytokines that can drive inflammation and dic-

tate responses of immune cells. 
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1.18 Why are EVs good biomarkers for stroke? 

As discussed in the previous sections, there is a need to find new biomarkers for stroke 

and here, we propose EVs as a new biomarker for stroke. When a stroke event takes place, EVs 

that originate from leukocytes responding to tissue damage inside the brain could be a good 

source of mRNA markers for stroke diagnosis.  

mRNA biomarkers have been suggested for diagnosing AIS by harvesting mRNAs from 

certain leukocyte subsets that are responding to inflammation in a blood vessel within the brain 

cavity, such as CD8-expressing T cells.136  Thus, CD8-expressing leukocyte-derived EVs could 

be used as a source of AIS mRNA biomarkers due to the success of using CD8+ T-cells,136 which 

are responding to inflammation in brain blood vessels. EVs will be a more abundant source of 

mRNA, which can be then be used for the expression profiling at an earlier time because time is 

the most critical factor in stroke diagnosis and treatment.  

1.19 The molecular composition of EVs 

Understanding the molecular composition of EVs and their functions is important to 

study those as potential biomarkers for various diseases. EV cargo mainly contains various types 

of proteins and RNA. In next sections, EV cargo and their importance is discussed briefly. 

1.19.1 Proteins and protein-associated functions of EVs 

Most commonly found proteins in EVs are cytoskeletal, cytosolic, heat shock, and plasma 

membrane proteins. EVs also contain proteins that show post-translational modifications specif-

ically reflecting the vesicle localization, cellular origin, and mechanism of secretion.177 Charac-

terization of EV protein content is widely conducted by immunoblotting, immuno-gold labelling 

combined with electron microscopy, and antibody-coupled bead flow cytometry analysis. Pro-

teins in EV sub-populations that are used as markers (even though not necessarily specific to EV 

type) include tetraspanins such as CD9, CD63, CD81 and CD82, 14-3-3 proteins, major histo-

compatibility complex (MHC) molecules and cytosolic proteins such as specific stress proteins 
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(heat shock protein , HSPs), Tsg101, and the Endosomal Sorting Complex Required for 

Transport (ESCRT-3) binding protein Alix.178 Previously, tetraspanins CD9, CD63, and CD81 

were considered to be only specific for exosomes, but now it has been shown that these proteins 

are also present in apoptotic bodies and microvesicles.77, 179  The common proteins of different 

types of EVs can be related to their biogenesis and to membrane curvature as shown on Figure 

1.22.180 Curvature-induced packaging of membrane constituents and the direct interactions can 

result in the formation of lateral microdomains with special composition (tetraspanin-enriched 

microdomains, membrane rafts) as shown in Figure 1.22.  

The variable protein content in EVs may determine their functionality in different ways. 

The surface exposed receptors on EVs are responsible for biodistribution and for binding of EVs 

to target cells or to the extracellular matrix. EVs can trigger intracellular signaling pathways via 

a simple interaction with surface receptors or ligands of target cells. Furthermore, EVs can induce 

changes in the cell phenotype by transferring to the target cell active receptors such as CCR5, 

EGFRvIII or MET.181-183 

 

 

 

 

 

 

Biodistribution and targeting of EVs also have been studied recently. Studies have shown 

that half-life of purified exogenous EVs that have been artificially introduced to circulation is 

very short. One study showed that biotinylated rabbit EVs were cleared in rabbit circulation in 

about 10 min.184 In another study, researchers have shown that EVs from splenocyte superna-

tants, red blood cell-derived EVs, and EVs from B16 melanoma cells showed a clearance of 

Figure 1.22: Curvature sorting mechanism of EVs (Reproduced from reference 181). 
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~90% after 30 min.185-187 Human platelet concentrate-derived EVs have been found to be in cir-

culation with a half-life of 5.5 h.188 

In addition to mediating the exchange of intercellular information, EVs have been shown 

to carry important mediators like cytokines. Interleukin 1 beta (IL-) is one of the best-known 

examples of the involvement of EVs in cytokine transport. When IL-1 containing EVs are se-

creted, their cargo is released into the extracellular space upon binding of ATP to P2X7R on the 

EVs. Some other EV associated cytokines are interleukin 1, Interleukin 18, Interleukin 32, In-

terleukin 6 and Interleukin 8.180 

1.19.2 RNA composition 

EV RNA can be found in many different forms. There are RNAs that are contained in 

EVs bound in protein complexes, and some RNAs can exist in freely circulating forms. The 

presence of functional RNA in EVs was first detected and described for murine stem cell derived 

EVs.189 Although the cellular mRNA has a size range of about 400 to 12,000 nucleotides, EV 

RNA show a size of <700 nucleotides.168, 190 EVs also contain intact mRNA, mRNA fragments, 

long non-coding RNA, miRNA, and fragments of tRNA.168, 191-192 Previous studies have also 

shown that the absence of ribosomal 18S and 28S in EVs.179, 192-194 However, some studies show 

the presence of rRNA(~87%) and some studies have shown the presence of rRNA fragments 

based on next-generation sequencing studies.195-196 Studies have also shown the intraluminal lo-

calization of RNAs in EVs by RNase A treatment.179, 197 

According to other studies, EVs show enrichment of 3’ UTR mRNA fragments than in-

tact mRNA molecules. Because 3’ UTR regions contain multiple sites that can bind regulatory 

miRNA, there’s the possibility that EVs may compete with cellular RNA for binding of miRNA 

or RNA-binding protein in recipient cells.168 

Micro RNA also is secreted by EVs, which are about ~21 nt in size. miRNA is transcribed 

as hairpin precursors, cleaved by Dicer, bound by Argonaute proteins, and then loaded to miRNA 
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induced silencing complexes for mRNA target regulation. The loading of miRNA into EVs are 

mostly controlled by heterogeneous nuclear ribonuclear protein A2B1.198 Some studies have 

shown that a sequence present within the 3’ UTR in many mRNAs enriched in EVs can act as a 

“zipcode” sequence that targets mRNA into EVs. This specific sequence is a 25 nt sequence with 

a short CTGCC core domain in a stem-loop structure.169 Studies have also shown that the addi-

tion of non-templated nucleotides to the 3’ end of miRNA may help miRNA packaging into 

EVs.199 

There are many biological functions of EV mRNA. mRNA containing EVs enhance the 

cell survival and repair of tissues under stress conditions.200 mRNA found in human mesenchy-

mal stem cell-derived EVs are involved in cell differentiation, transcription, cell proliferation and 

immune regulation.201  

Previous studies have also revealed that the EV mRNA content is determined by the 

physiological state of the cell and stress conditions. In a study researchers have shown a signifi-

cant difference in the mRNA content between the EVs derived from mast cells grown under 

normal conditions and under oxidative stress conditions.202 Moreover  EVs that are derived from 

large adipocytes have been shown to transfer specific mRNAs that are important in fatty acid 

esterification and lipid droplet biogenesis.203 

Some research has revealed that disposal of some miRNA in EVs to be a quick way of 

regulating gene expression during lymphocyte activation and as a mechanism of tumor suppres-

sor miRNA removal in cancer.204-205 Also, miRNA transferred by EVs have immunological rel-

evance. Some miRNAs from T-cell antigen-presenting cells (APCs) that is mediated by CD63+ 

EVs shown to be occurring during the immune synapse formation and these miRNAs modulate 

the gene expression in recipient cells.166 There are some studies that showed the relevance of 

miRNA transfer in several physiological conditions, for instance miRNA in EVs may function 

as a neuron-to-astrocyte communication pathway in central nervous system.206  
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1.19.3 DNA Content of EVs 

Unlike RNA content of EVs the presence of DNA in EVs less explored. However there 

are some studies showing the presence of oncogenic DNA in apoptotic bodies.207 Few studies 

have shown the presence of mitochondrial DNA (mtDNA), single stranded DNA, double 

stranded DNA, and oncogene amplifications in EVs.208-212 Transport of mtDNA can take place 

by EVs, thus EVs could be an another method of entering altered mtDNA into other cells.209 In 

addition some studies have shown that different EV subgroups carry different DNA cargos.213 

Although these studies reveal that EVs carry DNA the physiological significance of DNA cargo 

in EVs is still unknown. 

1.20 Diagnostic potential of EVs 

Due to the valuable cargo of EVs as explained in previous sections, EVs are considered 

to be promising biomarkers for many diseases. Because EVs originate directly from parent cells, 

the content of the EVs are similar to the cells from which they originated. Furthermore, EVs are 

found in many bodily fluids in high abundance (healthy serum is estimated to contain approxi-

mately 3x106 exosomes per microliter).214 In addition, EVs have the potential to be used as drug 

therapy entities that can deliver pharmacologic cargo to a specific target.  

In many diagnostic processes blood samples are being used because it is known that blood 

contains many biomarkers. In line with this, analysis of EVs in the peripheral blood is likely to 

provide an indicator of the systematic health status of people, which could be used in clinical 

settings.  

Another advantage of using EVs as a biomarker over many other soluble molecules in 

the blood like hormones and cytokines is the inherent protection of the EV cargo, such as proteins 

and RNAs, from degradation thus keeping these cargos intact and functional. If not, these could 

rapidly degraded in blood.167, 214 This has proven to be particularly significant for the use of 

mRNA since most of the RNA in blood exists as cargo of EVs.215 Relatively long half-life of 
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EVs in blood is another major advantage of using EVs as a biomarker.214 Hence, EVs can be 

transported from any location of the body to the blood stream making it easily accessible for 

liquid biopsy. Additionally, EV size distribution, phenotype, or cargo content can change during 

various disease states. Analysis of cell-specific and disease-specific EV profiles of their cargo 

will provide a fingerprint for disease diagnosis. 

1.21 Currently used EV isolation methods 

In order to analyze the EV cargo, first EVs of interest must be isolated in high purity and 

high yields from bodily fluids. With the increasing research studies conducted on EVs there are 

many techniques that have been developed to isolate EVs and each method has its own ad-

vantages and disadvantages. Some of the currently used EV isolation methods are discussed be-

low. 

1.21.1 Ultracentrifugation 

Ultracentrifugation is the classical method used for EV isolation, which is based on sep-

aration of particles according to their buoyant density. First, the particles with high buoyant den-

sity like cells, cell debris, apoptotic bodies, and aggregates are sedimented. To decrease the level 

of contamination, this step is divided into sub steps: Centrifugation at 300-400g for 10 min to 

sediment cells; 2000g to sediment cell debris; and then centrifuge at 10,000g to remove the ag-

gregates of biopolymers, apoptotic bodies, and other structures with a density higher than EVs. 

The resulting supernatant with EVs are ultracentrifuged at >100,000g for 2 h, which will yield 

an EV pellet .216-217 Figure 1.23 below illustrates the steps involved in ultracentrifugation of FBS 

to remove EVs prior applying to the cell culture media.218 
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Efficiency of EV isolation by ultracentrifugation depends on many factors like accelera-

tion, type of rotor, and viscosity of the sample. Thus, these parameters need to be considered 

when optimizing the protocol to obtain less contaminated EVs. Long time duration and need of 

expensive equipment limits the use of ultracentrifugation in a clinical setting for diagnostic pur-

poses. Moreover, ultracentrifugation cannot differentiate between subtypes of EVs that are spe-

cific to disease conditions. 

1.21.2 Density gradient Ultracentrifugation  

This technique uses two methods for formation of the gradient, a continuous density gra-

dient or a stepwise gradient based on sucrose. High spin speeds for long times result in concen-

tration of exosome-like vesicles in a band with closer densities (approximately 1.1-1.9 g/mL). 

Because different EV types can have similar densities, the isolation of EVs by density gradient 

does not provide a pure fraction of exosomes depleted of other EV types.219 

1.21.3 Precipitation reagents  

Different types of commercial kits have been developed with precipitation reagents that 

can be used to isolate EVs. These reagents, such as polyethylene glycol reduce the solubility by 

Figure 1.23: Ultracentrifugation to isolate EVs based on density of particles (Reproduced from 

reference 219). 
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lowering the hydration of EVs and lead to precipitation. These commercial kits can be used to 

separate EVs using lower spin speeds with higher yields compared to ultracentrifugation. But the 

disadvantages of these kits are low purity due to co-precipitation of proteins with EVs. This is 

because upon addition of the precipitation reagents, solubility of proteins is also decreased. 220 

Another disadvantage associated with some of these kits is that long incubation times of up to 12 

h are required.221 

1.21.4 Size-based isolation of EVs 

EVs can be separated from cells and large debris by using nano-sized membrane filters. 

Using these filters large debris including large vesicles, sub-cellular fractions, protein aggregates, 

protein-nucleic acid aggregates, and plasma proteins can be removed. Membrane filters with pore 

sizes 0.2, 0.22 and 0.45 m, which are made of polyvinylidene fluoride, are widely used for 

removal of large particles.222 Although these techniques can separate EV from complex samples, 

they cannot isolate EVs specifically. Combination of ultracentrifugation along with filtration has 

been shown to increase the purity of isolated EVs.223 

1.21.5 Affinity-based isolation of EVs 

All the methods that have been explained above isolate all types of EVs present in the 

sample. These methods cannot be used to isolate EVs that are only related to diseases. Thus, to 

isolate EVs that are specific to a disease state, many new isolation techniques utilize antibodies 

directed against certain antigens found in the membrane of the EV including microfluidic de-

vices, immunomagnetic beads, photosensitizer beads have been reported.222, 224 Various micro-

fluidic devices have been developed to selectively isolate EVs. Simplicity of these techniques 

make those well suited for point-of-care (POC) diagnostics. Figure 1.24 (a) illustrates a micro-

fluidic device that uses magnetic beads, which are about 3 m in diameter and coated with anti-

EGER to capture EVs from 100 L of serum and has shown a capture efficiency of ~93%. This 
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device is an integrated device that can perform EV isolation to RNA analysis by qPCR in a single 

chip.225  

In another study, after capturing EVs using anti-CD64-magnetic beads, electric field-in-

duced release and measurement was used for disrupting exosomes and monitoring RNA and 

protein biomarkers.226 

 

  

 

 

 

 

 

There are many devices that have been developed without using magnetic beads, where 

the surface of the device was modified with antibodies to capture EVs. Figure 1.25 A describes 

a device that consists of circular capture chambers to isolate EVs and then fluorescence assays 

were utilized to quantify the captured EVs.227 In another study, an integrated nanostructured coat-

ing was used to reduce nonspecific interactions and this device was used to identify ovarian can-

cer patients from healthy controls (Figure 1.25 B).228 

 

 

 

 

A

B

Figure 1.24: Microfluidic device with magnetic beads used for isolation of EVs. (a) RNA 

analysis using qPCR. (b) RNA and protein analysis using an electrochemical sensor. (Repro-

duced from reference 226, 227). 
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However, many of these microfluidic devices use general affinity-enrichment of bulk 

EVs by targeting the tetraspanins such as CD9, CD63, and CD81.227, 229-230 This is a shortcoming 

because they cannot be used for isolating and analyzing a subset of EVs that are specific to dis-

eased conditions. 

Another drawback of microfluidic devices is the low sample processing speeds they     

possess, which requires long analysis times that can be a challenge when developing assays in 

which time is a critical factor. For example, a recent EV affinity isolation microfluidic device 

was reported, which used 3-dimensional herringbone nanopatterns, and operated at a volume 

flow rate of 0.5 µL min-1, which would require 400 min (6.7 h) to process a volume of 200 µL 

of plasma.13 Some advantages and disadvantages of the currently available EVs isolation tech-

niques briery discussed in Table 1.11 below.219 

 

 

 

 

 

 

Figure 1.25: Microfluidic devices modified with Ab to capture EVs (a) Microfluidic device 

with circular capture chambers. (b) Microfluidic device with pillars to capture the EVs (Re-

produced from references 228 and 229). 
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Table 1.12: Advantages and disadvantages of EV isolation methods 

Method Time Advantages Disadvantages 

Ultracentrifu-

gation, differ-

ential centrifu-

gation: 300 ×g, 

10000 ×g, 

100000–

200000 ×g 

(1.5 h) 

140–

600 min 

Cost (in the case of ultra-

centrifugation) 

isolation from large vol-

umes 

absence of additional 

chemicals 

Equipment, complexity, non-

exosomal impurities, low re-

producibility, low RNA yield, 

damage of exosomes; effi-

ciency is affected by the type 

of rotor, force, sample viscos-

ity; only six samples can be 

concurrently processed in one 

ultracentrifuge 

Density gradi-

ent ultracen-

trifugation, su-

crose or iodix-

anol density 

gradient, dif-

ferential cen-

trifugation 

250 min–2 

days 

Pure preparations; no con-

tamination with viral par-

ticles after iodixanol cen-

trifugation; absence of ad-

ditional chemicals 

Complexity, loss of sample, 

ultracentrifugation; fails to 

separate large vesicles with 

similar sedimentation rates; 

contamination with viral parti-

cles after sucrose density gra-

dient procedure 

Ultrafiltration, 

nanomem-

brane or filters 

with a pore di-

ameter of 0.8–

0.1 µm 

130 min Simple procedure allow-

ing for concurrent pro-

cessing of many samples; 

pure preparations; addi-

tional chemicals; no limi-

tations on sample volume 

Filter plugging, loss of sample, 

contamination (proteins); de-

formation of vesicles; small 

quantity of exosomal proteins 

Size-exclusive 

chromatog-

raphy (SEC), 

columns filled 

with polymers 

with heteroge-

neous pores 

1 ml/min + 

column 

washing 

Reproducibility and pu-

rity; preserves vesicle in-

tegrity; use of the buffers 

with a high ionic strength 

enhances elimination of 

nonspecific impurities; 

high sensitivity, no losses, 

scalability, large amount 

of exosomal proteins; pre-

vents EV aggregation; in-

sensitive to high viscosity 

of samples; no additional 

chemicals 

Limitations on sample volume 

and number of separated peaks 

(necessary difference of the 

components in molecular 

weight, ≥10%); specialized 

equipment; complexity; coiso-

lation of large protein aggre-

gates and lipoproteins; pro-

cessing no more than one sam-

ple in each procedure; cost 

Precipitation 

with polymers, 

polyethylene 

glycol caused 

EV precipita-

tion 

65 min Cost and simplicity of pro-

cedure; preservation of 

EV integrity; no need in 

additional equipment; pH 

close to physiological 

range; high ion concentra-

tions 

Contamination and retention 

of the polymer 
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Commercial 

kits for poly-

mer precipita-

tion 

(ExoQuick, 

TEI, and Nor-

gen), polymer 

precipitates 

EVs 

45–65 min 

(some-

times 

overnight) 

Simple procedure; preser-

vation of EV integrity; no 

need in additional equip-

ment; pH close to physio-

logical range; high ion 

concentrations 

Cost (especially for diluted 

samples, such as urine); poor 

reproducibility; impurities and 

retention of polymer; low con-

tent of exosomal proteins 

Use of antibod-

ies to EV re-

ceptors, in par-

ticular, tetra-

spanins (CD9, 

CD63, CD81), 

TSG101, Ep-

CAM 

about 

240 min 

Purity and high selectivity High selectivity, cost, availa-

bility of antibodies; difficulties 

with detachment of molecules 

and analysis of intact vesicles 

(eluting buffers can damage 

EV functional activity); non-

specific binding 

Microfluidic 

technologies 

1–

14 µl/min 

Rapidness, purity, effi-

ciency 

Complexity of devices and 

need in additional equipment; 

cost 

 

 

As discussed here, most of these isolation methods cannot be used in a clinical setting 

due to their complexity and long analysis time. Hence, efficient methods need to be developed 

to isolate and subsequently analyze EVs with high recovery and purity to be able to use them as 

diagnostic markers, which requires the analysis of their molecular cargo. 

 

1.22 Methods of analyzing EVs 

Once EVs are isolated by one of the methods described above the isolated EVs need to 

be analyzed by downstream assays, such as sizing of the EVs. For this purpose, a combination 

of different optical and non-optical techniques is used. Some of these methods are summarized 

below. 

1.22.1 Size and morphological information 

a. Transmission electron microscopy (TEM) 
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TEM provides structural information of EVs. Here EV suspensions are applied and fixed 

on grids for imaging. Figure 1.26 A shows TEM images of MDA-MB 231 EVs. TEM images 

are used to assess the size, morphology, and the presence of surface markers on EVs. But, the 

concentration of EVs cannot be determined by TEM.223 

b. Atomic Force Microscopy (AFM) 

AFM provides information about the surface characteristics of EVs and have been used to 

study the morphology of EVs. As TEM, AFM cannot be used for determining EV concentra-

tion.230 

c. Nanoparticle tracking analysis (NTA) 

A laser beam scattered by particles in solution and the mean velocity of the particles is deter-

mined based on the Strokes-Einstein equation. Based on the Brownian motion of particles in 

suspension, the software will provide the size distribution and the concentration of particles in 

the samples. However, prior to NTA it is required to remove the particles with similar sizes to 

EVs from the samples. NTA is the most widely used method for EV quantification. Figure 1.26 

B shows a size distribution obtained for EVs.228 

d. Dynamic light scattering (DLS) 

DLS is used to determine the size distribution and zeta potential of EVs (Figure 1.26 C and d). 

This method is also based on the Brownian motion of particles. Particles in solution are illumi-

nated with a laser and the light scattered by the particles at a specific angle is detected and inten-

sity changes are then analyzed to find the size distribution of EVs in the sample.222  

e. Zeta potential measurements 

Zeta potential shows the stability of particles in a solution, which is determined by the veloc-

ity during electrophoresis where charged particles migrate towards the electrode under an applied 

electric field and the speed at which the particle is proportional to the field strength and the zeta 

potential. DLS provides the average size of relatively mono-dispersed population of isolated 
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EVs. Although no size difference was observed between EVs from cancer cells and EVs from 

normal cells, higher zeta potential values were observed for EVs derived from cancer cells. 

f. Western blotting 

This method is widely used to show the presence of EV proteins including surface markers 

like CD9, CD63, and CD81.231 Isolated EVs need to be lysed first and then proteins are separated 

and analyzed. Although western blotting cannot be used alone to show the presence of EVs, it’s 

useful in identifying proteins in already-isolated EVs. Figure 1.26 E shows a western blot analy-

sis of proteins from EVs isolated from a microfluidic device.232 

g. Bradford assay 

This method can be used to quantify the total protein content of purified EVs. But care should 

be taken to remove any other protein contaminants present in the sample before performing the 

assay. Figure 1.26 F shows a result from a Bradford assay where the protein content of EVs 

isolated from non-small-cell lung cancer patients and from healthy donors is compared. Higher 

protein content was found in EVs from cancer patients and they also showed that larger number 

of EVs are present in-patient samples compared to healthy controls .232 

h. Flow cytometry 

Flow cytometry (FC) can be used for both qualitative and quantitative characterization of 

EVs. Standard FC can detect vesicles above 200 nm in size. Thus, EVs are typically fixed onto 

beads that are labeled with fluorophore-conjugated antibodies and then analyzed by FC. This will 

provide information about the surface markers proteins but does not provide quantitative infor-

mation. Figure 1.26 G shows a flow cytometry analysis of surface markers of EVs.233  
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1.23 Molecular Analysis of the EV cargo 

To be able to be used as diagnostic markers in most cases, the molecular content of the EVs 

need to be analyzed after isolation and characterization. Some of the currently used methods for 

molecular analysis of EVs are described below. 

a. Fluorescence imaging  

A recent study demonstrated the use of fluorescence imaging for analyzing EVs. To monitor 

EVs derived from cancer cells a lipophilic dye for capturing a lipid bilayer of EVs or a fluorescent 

probe fused with EV specific protein markers was used in this study. Figure 1.27 a illustrates  

fluorescence images of cells producing EVs GFP labelled EVs and their uptake by the recipient 

cells.234 

b. Molecular Profiling 

Because EVs contain proteins and RNA consisting primarily of short sequences (20-200 nt), 

molecular profiling of these entities has been widely used to examine their relationship with their 

a b c

d e f g

Figure 1.26: Currently used methods for EV characterization (a) Transmission electron mi-

crocopy. (b) Nano particles tracking analysis. (c) Dynamic light scattering. (d) ELISA. (e) 

Western blotting. (f) Bradford assay. (g) Flow cytometry (Reproduced from references 

222,223, 228, 232, 233). 
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cellular origin.222, 225 Quantitative reverse transcription PCR, miRNA analysis, bioanalyzers, and 

mass spectrometry are some of the currently used methods for profiling EV cargo. Figure 1.27 b 

shows the molecular profiling of protein markers performed to detect ovarian cancer patients. 

Using nano plasmonic exosome assay (nPLEX assay, they screened exosomes across different 

ovarian cancer cell lines and showed that exosomes derived from ovarian cancer cells could be 

identified by the expression of CD 24 and EpCAM.222 

 

 

 

1.24 Summary of thesis chapters 

1.24.1 Chapter 2: Design and development of microfluidic devices fabricated in thermo-

plastics for the selective capture of extracellular vesicles and biological cells as a 

source of stroke biomarkers 

This chapter describes the development and characterization of a microfluidic device 

with micropillars that can be surface modified to capture EVs. The modeling of the device and 

the surface modification of the device’s surface for affinity selection of EVs is explained in detail. 

Using a model cell line Molt-3, we showed that the EVs can be affinity selected by the device 

with high specificity. In addition, we demonstrated the release of EVs from the surface with high 

release efficiency. Lastly, using the model cell line, we showed that EV mRNA extracted from 

isolated EVs could be used for gene expression analysis for stroke detection. 

 

a b

Figure 1.27: a) Fluorescence images of cells producing GFP-labelled EVs and their uptake by 

recipient cells. (b) Molecular profiling of protein markers. (Reproduced from references 237, 

223) 
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1.24.2 Chapter 3: Microfluidic device platforms for affinity selection of CD8+ EVs and 

CD8+ T-cells from blood and plasma samples  

The methodology developed in chapter 2 was utilized to analyze plasma samples and 

blood samples from healthy donors to check the applicability of our method to be used in a clin-

ical setting. This chapter describes the use of microfluidic devices for affinity selecting both 

CD8+ EVs and CD8+ T-cells from plasma and blood, respectively. Following isolation, the 

mRNA extracted from both EVs and T-cells were analyzed using droplet digital PCR for gene 

expression analysis.  

1.24.3 Chapter 4: Clinical application of microfluidic devices for stroke diagnosis 

Because stroke diagnosis has to be done rapidly within a short time window of 4.5 h, the 

biomarkers need to be isolated within a short time with high recovery. In this chapter, a high 

capacity microfluidic device is described that can capture EVs within a short processing time 

enabling quick isolation and analysis of EV mRNA markers for stroke diagnosis. The developed 

microfluidic device was then used to analyze both healthy and stroke patient plasma samples 

(blinded study) and we demonstrated that the method developed can be successfully used for 

stroke diagnosis. 

1.24.4 Chapter 5: Conclusions and Future directions 

Additional gene panels and more clinical samples need to be analyzed to determine with 

better confidence the clinical sensitivity and specificity of the developed method. Moreover, an-

imal model studies need to be performed to determine the actual time of appearance of EVs after 

a stroke event. Integrating the system to release the EVs from the device and enumerate them 

before gene expression analysis is another goal of this project. Finally, the system will be used 

in a clinical setting to isolate, release, enumerate and analyze EV mRNA to be used as stroke 

biomarkers for stroke detection. 
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Chapter 2: Design and development of microfluidic devices fabricated in thermoplastics 

for the selective capture of extracellular vesicles and biological cells as a source of stroke                

biomarkers 

2.1 Introduction  

A major drawback of currently available stroke diagnostic methods, such as computed 

tomography (CT) and magnetic resonance imaging (MRI), is that they cannot provide timely 

diagnosis within the narrow therapeutic time window of 4.5 h from stroke onset afforded by 

recombinant tissue plasminogen activator treatment for AIS. In addition to the time constrain, 

these neuroimaging techniques have several other disadvantages including difficulty in identify-

ing small affected areas, inability to differentiate stroke conditions from stroke mimics, need of 

trained personnel to operate complex instrumentation and interpret results, and unavailability of 

service under emergency conditions.1-3 Hence, there is a need to look at alternative diagnostic 

methods for stroke including new assay strategies and the accompany biomarkers that can pro-

vide timely answers with high clinical sensitivity and specificity. In particular, an in vitro diag-

nostic using a liquid biopsy supplying the necessary biomarkers would be attractive. 

However, looking for new biomarkers and developing a new diagnostic test for stroke is 

challenging due to many reasons. Complexity of the stroke conditions and the presence of the 

blood brain barrier are main challenges in finding new biomarkers. Additionally, biomarkers that 

are selected should show a quick response because there is a short time window for effective 

treatment of stroke conditions. Hence, a rapid and simple diagnostic test will be extremely useful 

for pre-hospital screening before treatment.  

Biomarkers that are available for stroke can be categorized into imaging markers that 

measure the changes in the nervous system via brain imaging, and molecular and pharmacody-

namic biomarkers (biomarkers that are indicative of certain pharmacological responses useful in 
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drug development).4 All of the stroke biomarkers that are currently used have their disadvantages 

like latency in appearance in peripheral blood, and lack of specificity to stroke conditions. 

Recently, gene expression profiling in peripheral blood has been successfully used for 

ischemic stroke diagnosis.5 Based on HT-RT qPCR results, researchers found that individual 

genes were significantly dysregulated in ischemic stroke patients when sourced from 4 leukocyte 

subpopulations. In CD15+ granulocytes 14 genes were dysregulated while in CD8+ T-lympho-

cytes 16 genes were dysregulated. Two and one genes were upregulated in TCR+ cells and 

CD4+ T lymphocytes, respectively. Among the 14 genes upregulated, the researchers also vali-

dated a 3 gene expression cluster for stroke diagnosis from CD15+ granulocytes (CA4, MMP9, 

NAIP). Based on the results overall accuracy of the 3-gene cluster classified ischemic stroke with 

a sensitivity of 89% and a specificity of 67%. 

However, according to previous studies using blood samples from stroke patients, mRNA 

changes in the appropriate leukocyte subpopulations were observed in a mean time of 2.4 h after 

the stroke event.6 In this study, only 66% of the patients showed a significant change in gene 

expression after 2.4 h. 87% of the patients showed significant differences after 5 h, and 100% of 

the patients showed differences in gene expression after 24 h.6  

In this study, we propose to use extracellular vesicles (nano-sized vesicles) released by 

most of the cells in to body fluids, as a new source of mRNA biomarkers for ischemic stroke 

diagnosis. mRNA biomarkers have been suggested for diagnosing AIS by harvesting mRNAs 

from certain leukocyte subpopulations that are responding to inflammation in a blood vessel 

within the brain cavity, such as CD8-expressing T cells. In this study, we targeted CD8-express-

ing leukocyte-derived EVs for mRNA profiling to determine if EVs could be used as a source of 

AIS biomarkers due to the success of using CD8+ T cells, which are responding to inflammation 

in a brain blood vessel for diagnosing AIS. EVs could be a more abundant source of mRNA, 

which can then be used for the expression profiling at an earlier time because time is the most 
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critical factor in stroke diagnosis and treatment. In addition, the packaging of mRNA into EVs 

will protect them from RNases to preserve their integrity to allow for expression profiling.  

In order to analyze EV cargo, first EVs of interest must be isolated in high purity and 

high yields from body fluids. Many currently available EV isolation methods like ultracentrifu-

gation, PEG precipitation, and filtration methods cannot be utilized in a clinical setting due to 

their long processing time, contamination with protein, and inability to isolate specific types of 

EVs. 

Thus, to isolate EVs that are specific to a disease state, many new isolation techniques 

utilize antibodies directed against certain antigens found in the membrane of the EV including 

microfluidic devices, immunomagnetic beads, photosensitizer beads have been reported.7-8 How-

ever, many of these microfluidic devices use general affinity-enrichment of bulk EVs by target-

ing the tetraspanins such as CD9, CD63, and CD81.9-11 This is a shortcoming because they cannot 

be used for isolating and analyzing a subset of EVs that are specific to diseased conditions. An-

other drawback of microfluidic devices is the low sample processing speeds they possess, which 

requires long analysis times that can be a challenge when developing assays in which time is a 

critical factor. For example, a recent EV affinity isolation microfluidic device was reported, 

which used 3-dimensional herringbone nanopatterns, and operated at a volume flow rate of 0.5 

µL min-1, which would require 400 min (6.7 h) to process a volume of 200 µL of plasma.12 

Herein, we report a microfluidic device with arrays of micropillars modified with mAb 

that can selectively isolate EVs of interest. Following isolation, the enriched EVs can be released 

from the device surface for downstream analysis. EV-mRNA can also be characterized and stud-

ied as a source of biomarkers for detecting stroke. 
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2.2 Material and Methods 

2.2.1 Cell lines and growth conditions 

Molt 3 T cells (ATCC, Manassas, VA- acute lymphoblastic leukemia T lymphoblast, 

isolated from peripheral blood of a child, 19 yo, male) were grown in Roswell Park Memorial 

Institute medium (RPMI) (Carlsbad, CA) supplemented with 20% fetal bovine serum (FBS) 

(Gibco Laboratories, Gaithersburg, MD). To remove the naturally extracellular vesicles in FBS, 

FBS was ultra-centrifuged at 100,000 xg for 18 h and EV depleted FBS was used in cell culture 

media. Cells were grown in 37 °C in 5% CO2 for 4 days before splitting the cells. Viability of the 

cells were calculated frequently using a LIVE/DEAD cell imaging kit (Thermo Fisher Scientific, 

Waltham, MA).  

2.2.2 Cell line characterization- Flow cytometry  

Expression level of CD8 T cells in cell line was investigated using flowcytometry with a 

BD accuri C6 plus flowcytometer. Calibration beads (Quantum Simply Cellular anti-mouse IgG, 

Bang Laboratories, Fishers, IN) was used for generating calibration curve according to manufac-

turer’s instructions. In brief, procedure is as follows. First, the containers with the calibration 

bead were mixed thoroughly and then two drops of each calibration standard were place in a 2 

ml tube. Then 10 L of APC conjugated mouse IgG2B anti hCD8 Ab (R & D systems, Min-

neapolis, MN) were added each tube and 100 L of 0.5% (w/v) bovine serum albumin in PBS 

was added. Then samples were incubated in dark at room temperature for 40 min. After incuba-

tion they were centrifuged at 300 g for 10 min and pellet was then resuspended in 1 mL of 0.5% 

(w/v) bovine serum albumin in PBS. The samples were centrifuged again for 10 min at 300 g for 

three times and finally the pellet was resuspended in 300 L of 0.5% (w/v) bovine serum albumin 

in PBS before analyzing through the flow cytometry. 

For the preparation of cells for flow cytometry, first cells were collected from Molt 3 cell 

line and then centrifuged at 300 g for 10 min. Then the cells were resuspended in 400 L of 0.5% 
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(w/v) bovine serum albumin in PBS. The cell count in the sample was ~0.5x106 cells/mL. Next, 

the sample was divided in to two aliquots and 10 L of APC conjugated mouse IgG2B anti 

hCD8 Ab (R & D systems, Minneapolis, MN) was added to one aliquot and 10 L APC con-

jugated mouse IgG2B isotype control (R & D systems, Minneapolis, MN) was added to other 

portion. Then the samples were threated in the same way as for the calibration beads. Finally 

bead and the cell samples were analyzed with the BD accuri C6 plus flowcytometer and the data 

were analyzed using software provided by the manufacturer.  

2.2.3 Micro fluidic device for cell isolation 

2.2.3.1 Device fabrication and assembly 

For isolation of CD8+ T cells from cell media the curvilinear channel device was used.13 

The molding master was fabricated in brass mold via high-precision micro milling (HPMM) 

using a commercial milling machine ( KERN 44, KERN Micro- und Feinwerk technik GmbH & 

Co.KG; Murnau, Germany) as previously described.13 In brief, the surface of a 6.3 mm thick, 

120 mm diameter circular brass plate was pre-cut with a 500 m diameter milling bit to confirm 

parallelism between both surfaces of the brass plate and constant height of the final structures. 

Next, rough milling of the microstructures was carried out using a 500 m and 200 m milling 

bits and a finishing cut was performed with a 200 m or 100 m diameter milling bit. Diameter 

of the milling bit will be determined by the smallest distance between milled structures. Micro-

milling was performed at 50,000 rpm at feed rates that were dependent on the size of the milling. 

After fabricating the brass mold devices were replicated into cyclic olefin copolymer 

((Topas 6013) S-04, Topas Advanced Polymers, Florence KY) via hot embossing. The condi-

tions used for hot embossing is as follows: devices were embossed at 155 °C, by applying a force 

of 30kN for 120 s and de-molding was performed at 122 °C. The channel dimensions were ana-

lyzed via non-contact profilometry to confirm proper dimensions of devices. 
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The devices were then cut using a bench top band saw. COC cover plates used for bond-

ing is 100 m in thickness. Both cover plates and the devices were cleaned well before assem-

bling. First, cover plates and devices were sonicated in 10% Micro-90 for 5 min and rinsed with 

isopropanol and deionized (DI) water (>18 MΩ) and dried at 65 °C overnight. After cleaning the 

COC devices, two capillaries (ID 250 μm. 365 μm OD) were assembled as inlet and outlet and 

device was covered with a COC cover plate, placed in between two borosilicate glass plates. 

Then the COC cover plate and device were thermally fusion bonded at 137 oC for 1h (Heratherm 

Oven, ThermoFisher, USA). The places where capillaries connect to the devices were sealed 

with epoxy and dried to prevent any leakages during sample processing. 

2.2.4 Micro fluidic device for extracellular vesicle isolation 

2.2.4.1 Design of the micro fluidic device  

Monte Carlo fluid dynamics simulation of EV isolation device was performed by a cus-

tom code programmed in Fortran 90, compiled with GFortran, and executed on a computer work-

station. All the simulation studies discussed in this chapter were performed by Dr. Matthew Jack-

son. (Dr. Soper’s Lab, The University of Kansas) 

2.2.4.2 Fabrication and assembly 

The EV isolation device was also fabricated using the same method explained in section 

2.2.2.1 section. However, embossing protocol is different from what was used for the channel 

device. Polymer replicas of the mold master were produced using hot embossing into cyclic ole-

fin copolymer (COC) using a Precision Press model P3H-15-PLX (Wabash MPI, IN). The COC 

plaques were dried in an oven at 65 oC overnight prior to hot embossing. The optimized hot 

embossing protocol used in this study is briefly described below. First 150 lb force is applied for 

60 s at 155 oC (closes platens, holds for temperature equilibration), and then 900 lb force is ap-

plied for 30 s at 162 oC during this time the pressure is ramped up. After that, same force was 

applied for 300 s at same temperature before demolding the devices at 145 – 148 oC. The hot 
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embossing was followed by non-contact profilometry to confirm correct pillar dimensions using 

a Keyence Microscope (Keyence, Itasca, IL, USA). Only devices with proper dimensions were 

used for thermal fusion bonding. Cover plates used for the devices were COC which is 75 μm in 

thickness. Both cover plates and devices were cleaned well before assembling. First, cover plates 

and devices were sonicated in 10% Micro-90 for 5 min and rinsed with isopropanol (IPA) and 

deionized (DI) water (>18 MΩ) and dried at 65 oC overnight. After cleaning the COC devices, 

two capillaries (ID 150 μm. 365 μm OD) were assembled as the inlet and the outlet and device 

was covered with a COC cover plate, placed in between two borosilicate glass plates. Then the 

COC cover plate and the device were thermally fusion bonded at 137 oC for 1h (Heratherm Oven, 

ThermoFisher, USA). After thermal fusion bonding the devices were again checked for the pillar 

dimensions using the images captured by a measurer scope and using ImageJ software. Selected 

devices with proper pillar dimension and spacing were used for experiments. The places where 

capillaries connect to the devices were sealed with epoxy and dried to prevent any leakages dur-

ing sample processing. 

2.2.5 Modification of the microfluidic devices for affinity capture of CD8+ T cells and 

CD8+ Extracellular vehicles (EVs) 

Modification of the microfluidic device for affinity selection was carried out as previ-

ously reported with slight modification.14 In brief the procedure is as follows. First, assembled 

devices were UV/O3 modified for 13 min (254 /185 nm, 22 mV/cm2) to create arboxylic groups 

on COC polymer surface. For modifying surface of devices, devices were flooded with a 40 μM 

oiligonucletide solution (Integrated DNA Technologies, Coralville, IA) prepared in 20 mg/ml 

EDC and kept at room temperature for 2 h (or at 4 oC overnight) to attach oligonucleotide to 

device surface via carboxylic group. The sequence of oligo used for the reaction is 5’/5AmMC 

12/TTT TTT TTC CCT TCC TCC TCA CTT CCC TTT/ ideoxyU/TT TTT TTT T/3Thi-

oMC3D/. The molecular weight is 12428.3 g/mol and the melting temperature is Tm=61.2 C. 
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The di-sulfide bond in the oligonucleotide needs to be reduced in order to attach the anti CD8 

antibody. Hence, before immobilizing the antibody, the devices were washed three times with 

300 mM DTT in 0.05 M carbonate buffer pH 10.8 with 10-15 min time intervals. DTT will 

reduce 3’-disulfide group into a reactive sulfhydryl moiety (-S-H) which can react with the -NH2 

group in the Ab. 

To attach the antibody to the device surface through oligo first anti CD8 antibody (1 

mg/ml) was prepared in nanopure water and 50x excess of (5.8 μL of 10 mg/mL diluted in 200 

μL of nanopore water) SMCC (succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carbox-

ylate) was added and kept on a rocker for 40 min. Purification of anti-CD8 antibody was carried 

out using ZebaTM Spin Desalting columns (Thermo scientific, IL, USA). To prepare desalting 

column for binding, first the ZebaTM Spin Desalting column (Sample volume range 200 -700 μl) 

was washed with 700 μL of PBS three times by centrifuging at 1,000 xg for 2 mins. After 40 min 

antibody was purified using desalting column by centrifuging at 1000 xg for 2 min to remove 

excess non-reacted SMCC. Then, the devices were washed with PBS pH 7.4 and purified anti 

body was injected quickly and kept at 4 oC overnight. After that protein stabilizing cocktail 

(Thermo Fisher Scientific, Waltham, MA) was injected to the devices and stored at 4 oC until 

they are used for experiments. 

2.2.6 EV isolation on the microfluidic device 

EVs isolated from Molt-3 cell line was used for initial EV isolation studies. After cultur-

ing cells for 3 days the cell media was centrifuged for 10 min at 300 xg to separate the cells. 

After centrifuging cells, supernatant was used for isolating EVs. First, microfluidic devices were 

connected to a hydrodynamic pump (New Era Pump Systems, Inc., Farmingdale, NY USA) via 

a syringe connector and the pre-rinse of the devices was performed with 500 μL 1 % PVP40, 

0.5% BSA solution at 10 μl/min. Then cell supernatant samples (~ 500 μL) was infused to the 3-

bed device at 5 μL /min. Post-isolation rinse was performed at 10 μl /min with TBS/tween20. All 
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the solutions used for rinsing were filtered using a 0.45 μm polypropylene housing, surfactant 

free cellulose acetate membrane filter (Thermo scientific, IL, USA) prior to use. Then the devices 

were incubated with APC conjugated mouse IgG2B anti hCD8 Ab (R & D systems, Minneap-

olis, MN) for 40 min. As controls the same procedure was carried out for a UV-modified device 

without anti CD8 Ab. Also, isotype control experiment was performed by incubating a device 

with APC conjugated mouse IgG2B anti hCD8 Ab. Next, devices were washed with Tween 20 

in TBS to remove any excess dye-labeled Ab and then washed with PBS prior to visualizing 

through a florescence microscope. The devices were visualized using a 200M inverted micro-

scope (Zeiss) with a 20x objective (0.3 NA, Plan NeoFluar), XBO 75 Xe arc lamp, single band 

Cy5 filter set (Omega optical), Cascade:1K EM-CCD camera (Photometric), and MAC 5000 

stage (Ludl Electronic Products), all of which were computer-controlled via Micro-Manager. Fi-

nally, images were background subtracted and analyzed using Image-J software. 

2.2.7 Release of enriched EVs from device surface 

In order to release captured EVs on device, the device was infused with 2U/10 μl US-

ERTM enzyme (New England Biolabs, Ipswich, MA) and incubated at 37 C. Immediately after 

incubation, the released EVs were washed from the microfluidic device at 10 μL/min and col-

lected to a pre weighed 2 mL centrifuge tube. 

2.2.8 Characterization of released EVs 

2.2.8.1 Transmission electron microscopy 

Samples were vortexed thoroughly and then 5 μL drop of the EV samples that have been 

released from the microfluidic devices were placed on to a grid carbon (Carbon Type-B, 300 

mesh, Copper, TED PELLA, Inc., Redding, CA) film side for 20 min. Then grid was washed in 

a drop of deionized water by setting the grid in each drop for a few seconds before moving to the 

next drop. This step is important to dilute any buffer salts that have been used in sample prepa-

ration process. If not, salt can be precipitated with uranyl acetate stain. Next, grid was placed on 
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2% (w/v) uranyl acetate stain which has been filtered by a 0.22 μm filter (Thermo scientific, IL, 

USA), for 10 seconds and blot dried it. The grids were dried for at least 15 min before viewing 

through the microscope. (FEI TECNAI F20 XT field emission transmission electron Microscope, 

200 kV electron source - Schottky field emitter) 

2.2.8.2 Nanoparticle Tracking Analysis 

EVs that have been released from the microfluidic devices were analyzed via nanoparti-

cle tracking (Nano sight NT 2.3) in order to investigate concentration of nanoparticles in samples. 

The samples were diluted as required and before analyzing they were vortexed thoroughly. In-

strument parameters used for analysis were: camera shutter 1206, camera gain 366, capture du-

ration 90 s. Five videos were taken for each sample and the flow cell was washed five times with 

PBS in between sample analysis. During the final wash with PBS the video was monitored to 

check if there are any particles left in the flow cell. If particles were seen in the video washing 

was continued until no particles are there in the flow cell. 

2.2.9 LPS stimulation of T cells: Optimization of LPS concentration and stimulation time 

To induce stimulation in T cells Lipopolysacchride (LPS) from E. coli (InvivoGen, San 

Diego, CA) was used. The stock solution of LPS was prepared in fresh phosphate buffered saline 

(PBS) (Gibco Laboratories, Gaithersburg, MD). Then cells (started with approximately one mil-

lion cells) were stimulated with 100 ng/ ml, 10 ng/ml of LPS and cells were monitored for any 

morphology changes at time points up to 75 h. A control experiment was carried out without 

stimulating cells with LPS. At each time point cell viability of cells were calculated using a 

LIVE/DEAD viability/cytotoxicity kit for mammalian cells (Thermo Fisher Scientific, Waltham, 

MA). The optimized LPS concentration and stimulation time was used for all the stimulation 

experiments. 
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2.2.10 Sample Processing and Extraction of RNA from CD8+ T cells 

Cell cultures with ~1x106 cells/mL were stimulated with LPS (concentration optimized 

in section 2.2.8), and a control experiment was performed without adding LPS to cell media. 

After 24 h cell media was centrifuged for 10 min at 300 xg to separate cells. Then the cell pellet 

was resuspended in PBS buffer. Before running the sample through curvilinear channel device, 

it was washed with 0.5% BSA/PBS solution using a hydrodynamic pump at 55 μL /min flow rate 

to reduce nonspecific binding. All the solutions were filtered with a 0.45 μm filter (Thermo Fisher 

Scientific, Waltham, MA). Sample was then processed through the device at 25 μL/min. Finally, 

the microfluidic device was washed with 0.5% BSA/PBS to remove any non-specifically bound 

cells on device. Then on-chip lysis was performed inside a hood using Zymo research science 

RNA kit (Zymo Research, Irvine, CA) it’s protocol. In brief, lysis solution was injected into the 

device manually using a syringe and then incubated for 5 mins. Then, another aliquot of the lysis 

solution injected and flow through was collected to a 2 mL centrifuge tube. Next, equal volume 

of 100% ethanol (Molecular Biology Grade, Thermo Fisher Scientific, Waltham, MA) was added 

to tube and loaded to an RNA purification column. Then the column was centrifuged at 16,000 

g for 30s. Next the column was washed with 400 μL of RNA wash buffer by centrifuging at 

16,000 g for 30s. Next on column DNase digestion was carried out by incubating the column 

with 6 U of DNase for 15 min at room temperature. After that the column was washed twice with 

400 μL of RNA pre wash buffer and 700 μL of RNA wash buffer. Finally, purified RNA was 

eluted with 10-15 μL nuclease free water. Then profiles of extracted RNA were analyzed using 

Agilent 2200 Tape Station.  

2.2.11 Sample Processing and Extraction of RNA from CD8+ EVs 

As described in section 2.2.9, the supernatant of the centrifuged cell media was used for 

isolating the EVs. Before processing the sample, microfluidic device (pillars) was washed with 

0.5% BSA/1%PVP40 in PBS at 10 μL/min flow rate. Then the sample was processed at 5 μL/min 
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flow rate. After that the devices were washed with Tween 20 solution to remove any non-specif-

ically attached EVs on to device surface. Then RNA was extracted from EVs using the same 

protocol as for the cells. 

2.2.12 cDNA synthesis from purified RNA 

Complementary DNA from purified RNA were synthesized via reverse transcription 

(RT) reaction. This was accomplished using ProtoScript II First Strand cDNA Synthesis Kit 

(New England BioLabs, Ipswich, MA) according to manufacturer’s instructions. In brief the pro-

cedure is as follows. Up to 1 μg of template was mixed with 2 μL of d(T)23VN, 10 μL ProtoScript 

II reaction mix (2X), 2 μL ProtoScript II Enzyme mix (10X) and nuclease-free water was added 

so that the final volume of the mixture is 20 μL. Then the mixture was incubated at 42 C for 1 

hour using a thermocycler. The enzyme was inactivated by an additional incubation step at 80 

C for 5 min. No-RT negative control reaction was performed in absence of enzyme mixture. 

2.2.13 Droplet digital PCR 

Synthesized cDNA was used in the droplet digital RCR reaction for gene expression 

analysis. Primers (Table 2.1) for the genes MMP9, PLBD1, FOS, CA4 and VCAN was designed 

and purchased from Integrated DNA Technologies (IDT, Coralville, IA).  

Table 2.1: Primer sequences used in gene expression analysis 

 

Gene Primer F 5’-3’ (Tm / °C) Primer R 5’-3’ (Tm / °C ) 

FOS TGC CAG GAA CAC AGT AG (51.4) TTC AGA GAG CTG GTA GTT AG 

(50.7) 

VCAN TCT CAA AGA AAC AGA GTG ATA 

(49.9) 

AGA GCC ACA GAGCAT TT (51.1) 

PLBD1 GTA CTG AGA TGC TAG GTA GAT A 

(50.2) 

CAA GGG AAA GTG ACT GAT AC 

(50.4) 

MMP9 GGG ATT TAC ATG GCA CTG (50.8) ACC GAG AGA AAG CCT ATT 

(50.2) 

CA4 GAA GCC TGG AAC TTG GA (51.7) AGC GCA CGG TGA TAA A (51.4) 
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Droplet digital PCR protocol was carried out using EVAGreen supermix (Bio Rad, Her-

cules, CA) according the manufacturer instructions. The steps are briefly explained below. For 

reaction setup all the samples were thawed to room temperature and the samples were mixed 

thoroughly by vortexing tubes to ensure homogeneity because a concentration gradient may form 

during –20°C storage. Then all samples and reagents were centrifuged briefly to collect contents 

at the bottom of the tube. Depending on the number of reactions reaction mix was prepared ac-

cording to Table 2.1. All the required components were assembled except the sample. Then, 

equal aliquots were dispensed into each reaction tube and the sample (cDNA) was added to each 

reaction tube as the final step. cDNA sample was diluted as required. After that reaction mix was 

vortexed thoroughly and centrifuged briefly to ensure that all components are at the bottom of 

the reaction tube. Reaction tubes were allowed to equilibrate at room temperature for about 3 

minutes.  

Table 2.2:  Preparation of the reaction mix with EvaGreen super mix, primers and DNA tem-

plate  

Component Volume per reaction 

(μl) 

Final Concentra-

tion 

2x QX200TM ddPCRTM EvaGreen® Supermix 10 1x 

Forward primer  variable 100-250 nM 

Reverse primer variable 100-250 nM 

DNA template and RNase-/ DNase-free water variable Up to 100 ng 

Total volume 20 - 

 

Once the reaction mixture is ready, droplet generation was performed. This was done 

using a QX200 droplet generator (Bio Rad, Hercules, CA). First the DG8 cartridge (Bio Rad, 

Hercules, CA) was inserted into the holder and 20 μL of each prepared sample was transferred 

to sample well (middle row) in the cartridge. Then 70 μL of droplet generation oil was dispensed 

to fill each oil well (bottom row). Then the gasket was securely hooked over the cartridge to 

ensure that sufficient pressure required for droplet generation is achieved. Cartridge was then 
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placed in the droplet generator and once the droplet generation is complete, 40 μL of generated 

droplets was transferred into a 96-well PCR plate.  

PCR was carried out in a Bio Rad C1000 touch thermal cycler, with following steps. 98 

°C for 0.30 s followed by 40 cycles of denaturation at 98 °C for 0.15 s; annealing for 0.20 s at 52 

°C and extension at 72 °C for 0.30 s. Final cooling step was carried out at 4 °C.To read droplets a 

Bio Rad QX-200 droplet digital PCR system was used, and data were analyzed using the 

QuantaSoftTM software. Droplet digital results were normalized to ng of RNA before comparing 

the gene profiles. 

2.2.14 Polyethylene glycol precipitation  

First, cell media sample was mixed in 0.5x volume of PBS. And the 0.02 x proteinaseK 

was added and incubated for 20 min at 37 oC to digest protein. The volume of polyethylene glycol 

(PEG) added to the mixture is equal to total volume of the mixture, that is total volume of sample, 

volume of PBS and volume of proteinase K. After adding PEG, tube was inverted and placed in 

4 oC overnight before centrifuging the solution at 4000 g for 1 hour at 4 oC. Collected pellet was 

lysed using Zymo research science RNA kit (Zymo Research, Irvine, CA) according to manu-

facturer protocol. Here, after adding the lysis solution the sample was vortexed thoroughly to 

dissolve the pellet completely before loading to the RNA purification column. After RNA puri-

fication was followed by cDNA synthesis and droplet digital PCR as explained in the previous 

section.15 

2.3 Results and discussion 

2.3.1 Molt-3 cell line  

The Molt-3 cell line contains T lymphoblast cells. This is a hyper tetraploid human cell 

line and cells were grown at 37°C at 5% CO2 atmosphere. Like most mammalian cells, T cells 

are also grown at pH 7.4 and maintaining this pH is critical for maintaining high cell viability. 

At 5% CO2 atmosphere, CO2 gas dissolve into cell culture media and establishes an equilibrium 
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with HCO3
-. Because CO2 is acidic, the pH of the medium will drop. Although salts and amino 

acids in RPMI media provides some buffering capacity, additional buffering compounds are re-

quired to maintain a proper physiological pH. Here, RPMI media was used for cell culture and 

contains HEPES, which is a zwitterionic organic buffer that helps to maintain the physiological 

pH.16 Media was also supplemented with 1 mM glutamine, which is important in facilitating 

storage and transfer of nitrogen to cells in culture. Although glutamine is one of the most readily 

available amino acids for use as an energy source, it is quite unstable when it is dissolved in 

liquid media. At temperatures above 4°C glutamine non-enzymatically degrades into toxic am-

monium and pyroglutamate by-products.17 Due to this short half-life, L-glutamine solutions were 

stored frozen at -20 °C and added to freshly prepared media prior to use. Another important 

supplement used for the cell culture media is fetal bovine serum (FBS). Its major functions are 

providing hormone factors for cell growth and proliferation, promoting cell differentiation, sup-

plying transport proteins, essential nutrients, trace elements, and stabilizing and detoxifying fac-

tors that are required for maintaining favorable cell growth. Among many common animal se-

rums available, FBS is widely used in cell cultures due to its very low level of antibodies and 

high levels of growth factors that allows the propagation of most types of human cells.18-19 Alt-

hough FBS is necessary for cell growth, FBS contains large number of bovine extracellular ves-

icles (EVs), which obstruct analysis of EVs of preference. It can also be problematic in down-

stream analysis because these EVs are morphologically can be similar to EVs released by the 

cultured cells.20-21 Hence, EV depletion of FBS is important prior applying to the media. So, first 

FBS was EV depleted by ultracentrifugation at 100,000g for 18 h. Long centrifugation times 

were selected because shorter centrifugation steps are insufficient for complete FBS EV deple-

tion.22-23 
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Ultracentrifugation is based on separation of particles according to their buoyant density. 

Higher centrifugation speeds such as 100,000g is sufficient to precipitate smaller sized particles 

including extra cellular vesicles which are in the in the range of 30-200 nm. Figure 2.1 A shows 

the EV pellet that was obtained after centrifuging FBS for 18 h. The supernatant was then de-

canted carefully and stored at -20°C, which was then used in the cell culture media. The EV 

pellet was further analyzed via TEM and images. As shown in Figure 2.1B EVs were not seen in 

the images revealing that EVs had been depleted from FBS during ultra-centrifugation.  

NTA was performed to calculate the number of EV in normal media and EV depleted 

media. As shown in Figure 2.1C there was a difference in number of EVs in EV depleted and 

non-depleted media. EV non-depleted media showed a significantly higher number of EVs com-

pared to EVs in depleted media. (p value 0.0291 at 95% confidence level). Before using cells 

grown in EV depleted media for experiments, the cells grown in both EV depleted and non-

depleted media was compared for any difference in morphology and RNA profiles. 
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Figure 2.1: (A) EV depletion of FBS by ultra-centrifugation; the pellet shown in arrow shows 

the depleted EVs. (B) TEM image of depleted EVs after ultra-centrifugation. (C) Concentra-

tion of EVs in normal media and EV depleted media measured by Nanoparticle tracking (n=3).  
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Analysis of RNA profiles is important to see if there’s any change in the cells growing in 

EV depleted media. As shown in Figure 2.2 A the RNA profiles of RNA extracted from cells 

grown in EV depleted and non-depleted media are similar. Moreover, the total RNA (TRNA) 

isolated from T cells grown in both EV-depleted and non-depleted media showed typically ob-

served TRNA profiles for eukaryotic cells with well pronounced ribosomal RNAs larger and 

smaller subunits. Because the ribosomal bands (28S and 18S) are clear and the 28S band was 

approximately twice as intense as the 18S band, it is clear that the TRNA isolated from both cell 

culture conditions are intact.24  

Figure 2.2: (A) Electropherogram for the separation of RNA isolated from T cells grown in 

EV-depleted media (green trace) and in non-depleted media (purple trace). (B) Cells grown 

in EV-depleted media – 20x magnification. (C) Cells grown in EV non depleted media -20x 

magnification, scale bar on the images is 15 m. 
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Furthermore, cell morphology and size of the cells were not affected by EV depletion in 

FBS. Figure 2.2 B and C shows cells grown in EV-depleted and non-depleted media, respec-

tively. Size of cells in cultured in both media are in the range of 5-7 m in diameter, which is the 

typical size of a T cell.  

Cell cultures were maintained by addition or replacement of fresh medium and cells were 

sub-cultured when cell density reached between 1 and 2 x 106 cells/mL (every 3-4 days) and cell 

density of the media was maintained at 5 x 105 cells/mL. To confirm that cells used in the exper-

iments are viable, a cell viability assay was performed frequently, and the calculated cell viability 

was always >90%, which implies that the cell line is healthy. 

2.3.2 Flow cytometry characterization of Molt-3 cell line 

Molt-3 cells show 13.5% level of CD8 antigen expression.25 This cell line shows a higher 

expression of CD1, CD2, CD5 and CD7 antigens, which are 92.7%, 72.9%, 99.2%, and 98.9%, 

respectively.18 In order to analyze the expression level of CD8 in the Molt-3 cell line, flow cy-

tometry was performed. Based on the calibration curve generated using calibration beads, the 

average number of CD8 receptors on the surface of each cell was calculated to be 2484.94 and 

for the isotype control, the calculated value was 1219.90 (Figure 2.3 B).  

 

 

 

 

 

 

 

Figure 2.3: (A) Calibration curve generated with calibration beads. (B) Representative fluo-

rescence histogram data for Molt-3 cells stained with: red trace - APC conjugated IgG2B iso-

type, blue trace - APC conjugated CD8 Ab. 
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2.3.3 Micro fluidic device for cell isolation 

2.3.3.1 Design of the microfluidic device 

The microfluidic device used in this study for cell isolation was developed by our lab for 

circulating tumor cell (CTC) isolation.13 The design of this high throughput - circulating tumor 

cell (HT-CTC) chip is shown in Figure 2.4 A. This device consists of a parallel array of sinusoidal 

microchannels with dimensions of 25 m in width, 150 m in depth and a length of each channel 

being 30 mm. The device consists of 50 such channels and inlet and outlet channels arranged in 

a Z- configuration. By using the sinusoidal channel geometry we can attain a higher recovery 

compared to use of straight channels of same dimensions.26-27 Higher recovery is due to the es-

cape of cells’ travel from flow streamlines associated with fully developed laminar flow and 

Fahraeus-Lindqvist effect which is, cell focusing to channel center, that can be overcome in si-

nusoidal-shaped channel designs because that result in higher probability of cell/wall interac-

tions.26 Optimal linear velocity that supports higher recoveries was found to be 2-2.5 mm/s. At 

higher velocities, short residence time of cell membrane antigens with the surface capture anti-

bodies reduces the cell isolation capacity.26, 28-29 

  

 

 

 

 

A B

C D

Figure 2.4: (A) Schematic representation of the design and the operation of the cell isolation 

device arranged in a Z-configuration. (B) Capture beds filled with blood for the triangular 

configuration. (C) Results of a computer simulations for the distribution of low velocities 

wihtin the CTC isolation bed with Z-configuration or 51 microchannels with triangular inlets 

and outputs. (D) Capture beds filled with blood for the Z-configuration (Reproduced from ref-

erence 13). 
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Previous studies performed have used triangular inlets and outlets for isolating CTC from 

blood (Figure 2.4 B). Critical to device efficiency, flow through the capture channels need to be 

uniform, remaining at a linear velocity of 2 mm/s to optimize CTC recovery.26-28 In previous 

studies, using simulation studies with a numerical tractable model, where triangular inlet and 

outlet regions connected 51 sinusoidal channles, it has been shown that flow is uniformly 

distributed in the previously distributed device (with trangular inlets), where viscous drag along 

the inlet and outlet walls by no-slip conditions reduced flow velocity.(Figure 2.4 C). 26-27 But 

velocity of fluids through these triangular regions is slower, which is about ~0.2 mm/s compared 

to capture channels. The pressure difference within these regions will not be enough to displace 

air bubbles introduced during sample processing. Therefore, in this study a new architecture, 

which is called the Z-configuration was used. Here, fluid will enter the selection bed through a 

single inlet channel composed perpendicular to an array of channels and exits also through a 

single outlet channel, which is also perpendicular to the channels (Figure 2.4 D). Flow of the 

fluid throughout the device is also uniform in the Z-configuration and it has been shown that the 

flow through the inlet/outlet channels are higher than 2 mm/s which creates enough pressure to 

remove any air bubbles introduced during sample processing process.13 

2.3.3.2 Device fabrication and assembly  

Devices used in this study were manufactured as disposable units to minimize any cross-

commination problems that can occur during the sample analysis if multiple clinical blood sam-

ples would be analyzed using a single device. To fulfill this requirement, it is necessary to pro-

duce microfluidic devices at low cost per unit. Micromanufacturing techniques with thermo-

plastic polymers is a method that satisfies this requirement, because polymers are inexpensive 

and there are many low-cost fabrication approaches that are available for the mass production of 

these devices.30-31 Here, we used hot embossing as our device fabrication method, which is con-

sidered to be a medium-scale production tool for microfluidic devices. When requiring higher 
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numbers of devices at an even lower production cost compared to hot embossing, injection mold-

ing can be used.32 

The first step in hot embossing is the production of a molding tool, which in this case was 

made in brass via high-precision micromilling (HPMM). Compared to other molding tool fabri-

cation methods including X-ray-LiGA or UV-LiGA, HPMM has many advantages, such as 

shorter turnover times, low cost, and it is a single step fabrication method.31, 33-34 After producing 

the molding tool (Figure 2.5), hot embossing was used to replicate the necessary devices into 

cyclic olefin copolymer (COC). COC was used due to its many advantages over other thermo-

plastics including low cost, low water absorption, excellent resistant to chemicals, good optical 

transparency in the near UV range, and ease of fabrication are some of the advantages.35 Another 

benefit of using COC is its high carboxylic acid coverage that can be acquired after UV/ozone 

irradiation, which is essential for attaching antibodies to the device surface via an EDC coupling 

reaction. During hot embossing, COC thermoplastic is heated slightly above its glass transition 

temperature (Tg) and the mold, which is also at the same temperature, is pressed into the polymer 

by supplying a high force under partial vacuum for a short period of time. After that, demolding 

is performed by cooling the mold, which will emboss patterns from the brass molding tool into 

the thermoplastic. After hot embossing, the devices were analyzed via non-contact profilometry 

to confirm the correct dimensions of the microchannels in the devices (see Table 2.1). 

Table 2.3: Dimensions of the channels of curvilinear channel device 

Parameter Size /m 

Channel depth 150 m 

Micro channel width 25 m 



 

 

97 

 

 

 

 

 

 

 

Once correct dimensions were confirmed via non-contact profilometry, the next step was 

to enclose the fluidic network with a COC cover plate (100 m thick). For this, we used thermal 

fusion bonding, where device and cover plate are brought into conformal contact under a fixed 

pressure. To accomplish this, we placed the embossed device and cover plate between two boro-

silicate glass plates and used clips to apply a fixed pressure as shown in Figure 2A. Also, two 

capillaries (250 m ID) were placed in inlet and outlet channels. After assembling, the devices 

were slowly heated to a temperature slightly below its glass transition temperature (Tg) using an 

oven. These bonding conditions needed to be selected carefully to preserve structural integrity of 

microchannels as much as possible. For thermal fusion bonding a temperature of 132°C was used 

for 1 h. Figure 2.6 B shows how the final device appears after thermal fusion bonding. 

 

 

 

 

 

 

C D

A B

Figure 2.5: (A) Brass mold used for hot embossing devices. (B) Non-contact profilometry 

images of a device to determine channel dimensions. (C) Curvilinear channels images under a 

microscopy (10x magnification). (D) Channel configuration close to the inlet.  
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2.4 Microfluidic device for extracellular vesicle (EV) isolation  

2.4.1 Device design 

Because the size of EVs (30 nm – 1 m) are smaller than that of cells (~10 m), the 

dimensions of channels within the cell isolation device are not appropriate for EV isolation. It 

has been shown that for efficient isolation using these channels, at least one dimension of the 

microchannel must be close to average diameter of target that we are isolating (i.e., cells, CTC, 

EVs) to help induce cell-wall interactons.26 Even though the sinusoidal geometry can induce 

centrifugal forces to “push” cells toward the wall to induce cell-wall interactions, this would not 

occur for small particles, such as exosomes. Thus, only lateral diffusion would induce EV-wall 

interactions and to increase the number of potential wall interactions, the diffusional distance 

must be reduced. 

Hence, for isolating EVs we designed a microfluidic device that consisted of pillar struc-

tures. This device consisted of 3-beds that are serially connected with capillary ports of 360 m 

OD (Figure 2.7 A). Each bed was 2 mm wide and the length was 40.6 mm. Total length through-

out the serially-connected beds was 122 mm. The entire device had 15,202 circular micropillars 

with each pillar being 92 m in height, 117 m in diameter and a spacing between pillars of 10 

m. Surface area and volume of this 3-bed device was 6.8 cm2 and 6.5 L respectively. 

A B

Figure 2.6: (A) Device and cover plate placed between two borosilicate plates and use of clips 

to apply pressure (capillaries used for inlet and outlet are shown in arrows) (B) Final device 

after thermal fusion bonding. 
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The architecture of the device was carefully designed to maximize recovery of the EVs 

while providing high throughput sample processing. Sample infused into the device will enter 

the affinity bed and EVs will diffuse laterally to interact with the monoclonal antibodies immo-

bilized on micropillar surfaces while at the same time driven hydrodynamically through the bed. 

Narrow inter-pillar spacing (~10 µm) and long bed lengths decrease diffusional distances and 

provide sufficient residence time, respectively, so that the EV recovery is favorable. 

To study the efficiency of the EV diffusion-based EV isolation process, we developed a 

fluid dynamics simulation to model the processes of EV diffusion amidst hydrodynamic 

Poiseuille flow and EV-Ab binding kinetics that could estimate EV recovery (Figure 2.7 B), the 

results of which were used to help in the design of the fluidic device. While COMSOL can sim-

ulate these physics, accurate estimation of EV recovery requires modeling diffusion through the 

entire EV isolation bed’s length, which becomes numerically intractable given the large geomet-

ric size. Accordingly, a Monte Carlo model was developed to track the diffusive and convective 

motions of individual EVs through the EV isolation bed,36 and simulate the probability of Ab-

EV binding based on the Chang-Hammer model.28 Individual EVs were tracked until they were 

either recovered or lost by exiting the device, and the results were averaged over thousands of 

EV events until the simulation converged to an average EV recovery.  

For the device prototype used herein, simulations predict an EV recovery of 80% at 2.1 

µL/min volume flow rate; linear velocity is 1.8 mm/s for 15 µm interpillar spacing). Notably, the 

simulated recovery at various flow rates was not dependent on inter-pillar spacing (Figure 2.7 C) 

because increased diffusional distances were countered by reduced linear velocities given a con-

stant flow rate. Rather, extended bed lengths and the associated increased EV resident times with 

longer isolation bed lengths were critical to enable high recovery at higher linear velocity; reduc-

ing inter-pillar dimensions were more critical to constrain the device’s internal volume (<40 µL) 

so as to be compatible with downstream molecular profiling. The Monte Carlo model used for 
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the simulation studies and the way simulation studies were performed are explained in detail 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: (A) Picture of CAD schematic showing the serial connection of three bed device 

with circular micro pillars. (B) The network of narrow microchannels enable efficient EV re-

covery by reducing the distances required for EVs to diffuse and interact with the Abs coated 

on the 3-bed device. These dynamics were simulated via a custom Monte Carlo model that 

incorporates diffusive and convective EV transfer and Ab-EV binding dynamics. Shown are 

tracks of individual EVs (not to scale) diffusing through a microchannel, where color scales 

with the EV velocity (blue-low, red-high) and “X” indicates a successful EV-Ab binding event 

whereas “O” indicates the EV was not captured. Results are averaged until the predicted EV 

recovery converges. (C) Monte Carlo simulation results for the 3-bed prototype used in this 

study. (Courtesy of Dr. Matthew Jackson) 
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2.4.2 Simulation studies: Diffusional dynamics modeled using the Monte Carlo simula-

tion to predict EV recovery 

The dynamics of EV affinity-selection can be split into two separate events: (1) Delivery 

of EVs from solution to the EV device surface; and (2) binding of the surface-bound Ab to the 

EV. The efficiencies of both processes dictate EV recovery. Thus, we developed a Monte Carlo 

fluid dynamics simulation incorporating chemical physics and fluid dynamics principles to guide 

the design of EV-MAP micropillar isolation beds. Previously, we have outlined renditions of 

these chemical physics for CTC affinity-selection37-38 and diffusion models for the affinity-se-

lection of membrane proteins,39 although the diffusion model presented herein is a significant 

advancement compared to our previous report. 

The delivery of EVs to the antibody-coated EV-MAP surface is limited by diffusion 

through the plasma matrix. As an EV is hydrodynamically pumped through the device, it diffuses 

laterally and longitudinally according to Fick’s Second Law of diffusion. Over a small time, 

increment, 𝛥𝑡, the probability that an EV will diffuse a distance 𝑥𝐷 from its initial position is 

given by a Gaussian distribution, 𝑃(𝑥): 

𝑃(𝑥) =
1

𝜎√2𝜋
𝑒

−
𝑥𝐷

2

2𝜎2 (Eq. 1) 

This Gaussian distribution has a standard deviation given by 𝜎 = √2𝐷𝛥𝑡, where 𝐷 is the 

EV’s diffusion coefficient. Thus, smaller EVs with higher 𝐷 are more likely to diffuse farther in 

time 𝛥𝑡. In additional to diffusive transfer, the EVs experience Poiseuille flow. In a microchannel 

with a width of 𝑊, the EV’s forward velocity at position 𝑥 from the channel’s midline can be 

approximated by: 

𝑉(𝑥) = 1.5 𝑉𝑎𝑣𝑒(1 − (
𝑥

𝑊/2
)

2

 (Eq. 2) 
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In Eq. 2, 𝑉𝑎𝑣𝑒 is simply calculated by dividing the volumetric flow rate by the EV bed’s 

cross-section. The consequences of the parabolic flow profile in Eq. 2 are complex. As EV dif-

fuses closer to surfaces, EV forward motion slows, and more time is given for diffusion to occur. 

Consequently, the residence time of different EVs within the same device will not be the same if 

they take different diffusive, random paths through the Poiseuille flow profile.  

Thus, we use a Monte Carlo simulation to simulate the flow path of individual EVs 

through EV isolation devices. Then, we can repeat this process until the averaged EV isolation 

converges. This model will allow us to test various EV isolation bed lengths, inter-pillar spacings 

(𝑊), and average flow velocities (𝑉𝑎𝑣𝑒) to design EV isolation architectures with high recovery, 

high throughput, and high surface area-to-volume ratios. 

For each EV, the Monte Carlo simulation propagates an EV’s axial position (𝑋 dimen-

sion) and longitudinal position (𝑌 dimension) over finite time steps (𝛥𝑡): 

𝑥(𝑡) = 𝑥(𝑡 − 𝛥𝑡) + 𝑟𝑎𝑛𝑑(𝑃(𝜎(𝐷, 𝛥𝑡))                            (Eq. 3a) 

𝑦(𝑡) = 𝑦(𝑡 − 𝛥𝑡) + 𝑉(𝑥(𝑡 − 𝛥𝑡)) + 𝑟𝑎𝑛𝑑(𝑃(𝜎(𝐷, 𝛥𝑡))  (Eq. 3b) 

In Eq. 3a, the EV’s lateral 𝑥 position changes with axial diffusion over 𝛥𝑡 using 

𝑟𝑎𝑛𝑑(𝑃(𝜎(𝐷, 𝛥𝑡)), which is given by a pseudo-random number generator that moves the EV 

laterally according to a Gaussian 𝑃(𝑥) distribution with standard deviation 𝜎. Longitudinal dif-

fusion is considered in the same manner by Eq. 3b, but the EV has an additional term due to 

Poiseuille flow, namely the 𝑉(𝑥(𝑡 − 𝛥𝑡)) term described in Eq. 2. 

2.4.3 Ab-binding dynamics in the Monte Carlo simulations of EV isolation recovery 

As an EV diffuses to and interacts with the EV device’s surface, successful binding be-

tween the surface-bound Ab and the transient EV is not guaranteed in a single encounter. In 

general, multiple encounters are necessary for successful EV recovery. Herein, we adapt the 

Chang-Hammer model28 to describe this process. 
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The Chang-Hammer model thoroughly describes the binding process between surface-

confined Abs and transient antigens, such as those present on the membrane of an EV. This 

model considers Ab-antigen binding kinetics, the transient motion of the antigen and its associ-

ated residence time in proximity to the surface-confined Ab, and the distance over which the EV 

rolls along the surface. Previously, we reduced the Chang-Hammer model to a few key equa-

tions,38 and herein, we adopt those dynamics. 

Firstly, as the EV rolls along the EV isolation device’s surface, the forward rate constant 

𝑘𝑜 for the encounter of antigens with a surface-confined Ab is: 

𝑘𝑜 = 2𝑎𝑖𝑉𝑒𝑓𝑓             (Eq. 4) 

In Eq. 4, 𝑎𝑖 is the Ab-antigen interaction radius (2 nm), and 𝑉𝑒𝑓𝑓 is the velocity of the 

antigen relative to the surface, which is roughly half (0.47 times) the rolling EV’s velocity due 

to the opposing rotational motion of the EV’s surface. Furthermore, as the antigen encounters the 

Ab, the probability that they complex (𝑃) is a function of both the Ab’s binding kinetics, 𝑘𝑖𝑛, and 

the encounter duration 𝜏 = 8𝑎𝑖/3𝜋𝑉𝑒𝑓𝑓: 

𝑃 =
𝑘𝑖𝑛

𝑘𝑖𝑛+1/𝜏
            (Eq. 5) 

As the EV’s linear velocity increases, 𝜏 decreases yielding less time available for the Ab 

and antigen to complex, and 𝑃 decreases as well. Both the encounter rate, 𝑘𝑜, and the binding 

probability, 𝑃, are weighted against one another to yield an effective forward rate constant, 𝑘𝑓: 

𝑘𝑓 = 𝑘𝑜𝑃 (Eq. 6) 

Lastly, the overall rate of EV adhesion, 𝑘𝑎𝑑, combines 𝑘𝑓 with the EV’s antigen surface density, 

𝐶∞; 

𝑘𝑎𝑑 = 𝑘𝑓𝐶∞ (Eq. 7) 

To review, 𝑘𝑎𝑑 considers the EV’s antigen expression and the velocity of the EV’s anti-

gens, both in terms of how often the antigens encounter Abs and how probable a binding event 



 

 

104 

is given the balance of antigen-Ab interaction time and the Ab’s binding kinetics. To relate 𝑘𝑎𝑑 

to experimental systems, consider an EV rolling along an Ab-coated surface at a linear velocity 

(𝑉) for only a limited distance (𝐿). The percent of EVs that will bind is: 

%𝑏𝑜𝑢𝑛𝑑 = 1 − 1/𝑒
𝑘𝑎𝑑𝐿

𝑉           (Eq. 8) 

Two aspects of Eq. 8 that improve EV recovery are immediately apparent: (i) decrease 

linear velocity; and/or (ii) maximize interaction length between the EV and the surface. Unlike 

CTC dynamics,38 EVs have a relatively high diffusion coefficient, and the dynamics of an EV 

rolling along the micropillar surface are described by a Peclet number <1. Very little can be done 

to enhance lateral diffusion rates and control or manipulate the length of any given EV-micropil-

lar interaction. Further, decreasing bulk flow rate will do little to affect Eq. 8, which only de-

scribes the velocity at the surface, because surface flow velocities are limited to approximately 

zero by the no-slip condition. The velocity in Eq. 8 is more likely to be affected by EV diffusion 

rather than fluid velocity. Thus, the probability of Ab-binding is dictated by the binding dynamics 

of the affinity agent, and external manipulation of the EV-MAP process (decreasing fluid veloc-

ity, decreasing inter-pillar spacings) largely affect the diffusion-based delivery of EVs to the sur-

face. 

The flow profile through an EV isolation bed with length 𝐿𝑏𝑒𝑑 experienced by an EV was 

approximated as a straight microfluidic channel with a width 𝑊 equal to the interpillar spacing 

and length 𝐿 =  𝐿𝑏𝑒𝑑𝐶, where 𝐶 is a correction factor for linked to elongation of the flow path 

due to the pillar’s geometry. For diamond micropillars, 𝐶 = √2 ≈ 1.41, and for circular mi-

cropillars, 𝐶 = 𝜋/2 ≈ 1.57.39 

EVs were initiated at 11 positions along the pseudo-channel’s midline, and the EV’s po-

sition through the channel was propagated by Eq. 3. If the EV encounters the channel’s surfaces 

(𝑥 = ±𝑊/2), the EV is propagated by multiplying 𝑉(𝑥) (Eq. 2) by the simulation’s time step 

(∆𝑡) and the probability of binding was calculated via Eqs. (4-8). The binding probability was 
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turned into an actionable decision (i.e., binding or not) by using a pseudo-random number gen-

erator uniformly distributed between 0 and 1. If the random number was less than Eq. 8’s binding 

probability, the EV was recovered. If not, the EV’s position was propagated further via Eqs. 3. 

This series of events continued until either the EV was recovered or the EV was lost (𝑦 = 𝐿). 

Each EV’s track is a binary event, recovered or lost, and thousands of EVs are tracked 

until the simulated recovery converges, defined herein as a <0.01% change in average recovery 

when additional EVs were tracked. An additional convergence criterion was emplaced that stip-

ulated a <10% standard deviation for five repetitive simulations. Lastly, given various 𝑉𝑎𝑣𝑒 were 

tested, the program’s discretization of time into ∆𝑡 time steps was added as a final convergence 

criterion: after halving the ∆𝑡 increment, the averaged solution from five simulations must differ 

by <1%, else the simulations would be repeated after halving ∆𝑡 again. An example of the aver-

age EV isolation recovery converging as addition EV tracks are included in the simulation while 

also converging the simulation’s ∆𝑡 time stepping is shown in Figure 2.8. 

The accuracy of the Monte Carlo program was first tested by removing all recovery ef-

fects and letting EVs freely diffuse through solution; the analytical model of Fick’s Second Law 

(Eq. 1) then becomes fundamentally valid. The results from the Monte Carlo simulation agreed 

well with a Gaussian function produced via Eq. 1. After enabling EV-MAP recovery but without 

Chang-Hammer dynamics, where any surface interaction was considered successful, EVs accu-

mulated along the channel for a total recovery of 64%. The Chang-Hammer dynamics governing 

the probability of Ab-EV binding in Eqs. 4-8 were then activated (axial distribution not shown), 

and the EV isolation recovery dropped substantially to 16% for this set of simulation parameters: 

inter-pillar spacing of 10 µm but short bed length of 2.5 mm and average velocity of 1 mm/s, 

which reduces the overall time available for axial diffusion. Lastly, we compared the Monte 

Carlo model to our previous, less precise model for the set of experimental data in Battle, et al.39 

Our previous simulation, which did not take into account Chang-Hammer dynamics and did not 
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couple diffusion with fluid flow, generated 68% recovery for membrane proteins, while the 

Monte Carlo method predicted 75% recovery, which better approached the experimental values 

of 90 ±2%. Further improvements to the model, namely improving the Poiseuille approximation 

(Eq. 2) to better approximate the flow profile around circular pillars (50 µm spacing in Battle, et 

al.39), would include reduced flow velocities between pillar rows and increase residence time 

available for diffusion and overall recovery in the model. All subsequent simulations used the 

parameters in Table 1.2 for evaluating EV isolation recovery in silico. 

Table 2.4: Parameters used for Chang-Hammer dynamics (Eqs. 4-8) in Monte Carlo EV-MAP 

model. 

 

 

 

 

 

 

 

 

 

 

 

Property Value Reference 

EV diameter 50-150 nm - 

Diffusion coefficient (D) in plasma 5-15 μm2/s - 

Minimum Ab surface density (C∞) 12.31 µm-2 40 

Antibody binding kinetics (kin) 2.5 x 104 M-1 s-1 41 

Ab-antigen encounter radius (ai) 2 nm 28, 42 

Figure 2.8: An example of convergence within the Monte Carlo simulations. More EVs are 

simulated until the accumulated average EV isolation recovery converges to <0.01% difference 

(*). Further, ∆𝑡 is halved until the averaged recovery converges to <1% error change (**). 

Another convergence criterion is not shown, where five sequential simulations conducted with 

the same conditions yield <10% standard deviation. These results were obtained for an EV 

with D = 5 µm2/s, initially centered in a channel with L = 25 mm and W = 10 µm, and infused 

with an average velocity of 1 mm/s. (Courtesy of Dr. Matthew Jackson) 
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2.5 Fabrication and assembly of the device 

The 3-bed device was also fabricated by hot embossing using a COC thermoplastic. Figure 

2.10 A shows the brass mold used for hot embossing. Figure 2.10 B and C shows SEM images 

of the micropillars in each bed. 

 

 

 

 

 

 

 

Figure 2.9: EVs diffused axially amidst Poiseuille flow, and their axial position was tracked 

with respect to the channel’s width (W). Simulations agreed with the analytical solution to 

Fick’s Second Law (hashed bars) when affinity-binding was disregarded in the Monte Carlo 

model (grey bars). When MAP affinity-binding was enacted (blue bars), the EV spatial distri-

bution changes significantly, even within the channel’s width, because Fick’s law becomes 

invalid as EV concentration is no longer constant. Note that D = 5 µm2/s, L = 2.5 mm, W = 10 

µm, Vave = 1. mm/s, and Chang-Hammer dynamics were neglected so that all EV-Ab interac-

tions were successful. (Courtesy of Dr. Matthew Jackson) 

 

Figure 2.10: (A) Brass mold used for hot embossing. (B) SEM image of the device bed with 

the pillar. (C) Circular micropillars in each bed (there are over 15000 such pillars per device). 
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Following embossing it was necessary to confirm pillar dimensions. Thus, pillar dimen-

sions were checked using non-contact profilometry (see Table 2.5 for the results). Calculated 

average pillar dimensions based on the profilometric analyses are shown in Table 2.3. 

 

Table 2.5: Pillar dimensions of the 3- bed device 

 

 

 

 

 

 

 

 

 

Dimension Value 

Pillar height/ µm 92 ± 3 

Pillar diameter/ µm 109 ± 3 

Inter pillar spacing/ µm 10-20 

Figure 2.11: (A) A profile image of the pillars in the 3-bed device (color scale shows the height 

distribution). (B) Profilometry analysis of the pillars.   

Figure 2.12: (A) Pillars of the device closer to the inlet – 10x magnification (before bonding). 

(B) Pillars of device in the middle of bed (before bonding)- 10x magnification. (C) Pillars after 

bonding - 10x magnification. (D) Final device. 
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Devices with correct dimensions were used in experiments for isolating EVs. Next, devices 

were cut and then cleaned well to remove dust particles because the presence of dust particles 

can cause problems in the thermal fusion bonding step. Cleaned devices were dried by keeping 

in an oven before thermal fusion bonding. The method used here is the same as the method we 

used in bonding sinusoidal devices explained previously in this chapter and used for cell isola-

tion. But here, we used capillaries with 150 µm ID and 250 µm OD and bonding was performed 

at 137 °C for 1 h. After bonding, non-contact profilometry was performed again to confirm the 

dimensions of the pillars (Figure 2.12 C). In this step, 9 images of the device were taken at dif-

ferent points of the 3 bed (middle and two corners), which were later analyzed using a custom 

written macro in ImageJ software. Finally, inlet and outlet positions of the devices with the cor-

rect pillar dimensions are sealed with epoxy to prevent any leakages during sample processing. 

Figure 2.12 D shows final device after assembly, which is ready for modification for affinity 

selecting EVs of interest.  

2.6 Modification of the microfluidic devices for affinity capture of CD8+ T cells and CD8+ 

EVs 

Following assembly, the surfaces of the microfluidic devices must be modified to affinity 

select markers of interest. Use of mAb for affinity selection is advantageous due to its exquisite 

target specificity, which is important in isolating markers for clinical applications. However, one 

of the major drawbacks in many microfluidic devices developed recently is the use general af-

finity-enrichment of bulk EVs by targeting the tetraspanins such as CD9, CD63, and CD81.9-11 

These cannot be used for isolating and analyzing subset of EVs that are specific to disease con-

ditions, such as in case of stroke diagnosis. Thus, we used CD8 mAb for specifically affinity 

selecting CD8 T cells and CD8 EVs. When using CD8 mAb for affinity selection we can specif-

ically extract mRNA in CD8 EVs providing more accurate gene expression data for ischemic 
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stroke diagnosis. Both CD8 T cells and CD8 EVs contain CD8 antigen on their surface that allow 

the isolation through affinity selection via an anti CD8 mAb.  

The first step in the antibody surface immobilization process is to generate on the surface of 

the device functional groups for Ab attachment. Most of the thermoplastics used for microfluidics 

including COC does not contain surface functional groups. Therefore, activation protocols are 

employed to create suitable surface functional groups. In this study, we used irradiation method 

to generate functional scaffolds via photo-oxidation reactions. During UV activation process 

UV/O3 treatment is performed using a quartz Hg lamp, which will constantly generate and con-

sumes O3, which results in a steady-state concentration of strongly oxidizing atomic O. At higher 

energy, both UV exposure and oxidative stress will produce radicals within the polymer. Gener-

ated radicals may break or scission polymer chains into smaller fragments, which can result in 

intramolecular rearrangements, crosslinking of polymer chains, and/or react with water or oxi-

dative species to form carboxyl or other O-containing groups.43-47 

Due to formation of carboxylic groups on the polymer surface, it becomes more hydrophilic 

compared to its pristine form, which can be demonstrated by measuring water contact angle. 

Upon UV irradiation, wettability of the surface was increased and water contact angle of COC 

polymer decreased from 85.6 ± 2.52° to 33.68 ± 3.15°. For generating carboxylic groups, devices 

were UV-modified for 13 min (22 mW cm-2). Once the carboxylic acid groups are formed on the 

device surfaces, antibodies can then be immobilized onto the device surface. 

The ability to release affinity-selected biomarkers, including cells and EVs, from the device 

surface following isolation without changing their morphology or molecular content, is essential 

for molecular diagnostics and for further characterization processes. Hence, we used a single-

stranded DNA (ssDNA) that bifunctional linker to link the capture antibody to the surface of the 

microfluidic device.14 ssDNA used here contained a uracil (dU) residue that enables enzymatic 

nicking by USERTM (Uracil-Specific Excision Reagent), thus releasing any biomarker that is 
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affinity selected on the Ab through the ssDNA. High stability and the ability to attach to many 

surfaces are some of the advantages of using ssDNA linkers.14  

The oligonucleotide was designed and modified so that it could be covalently attached to the 

device surface through the -COOH group (5’/5AmMC 12/TTT TTT TTC CCT TCC TCC TCA 

CTT CCC TTT/ ideoxyU/TT TTT TTT T/3ThioMC3D/). The 5’ end of the oligonucleotide con-

tained a NH2 group that made it easy to covalently attach to the device surface via 1-Ethyl-3-

(3dimethylaminopropyl)-carbodiimide (EDC) coupling reaction. The mechanism involving this 

step are shown in Figure 2.13. The time for the reaction was ~2 h at room temperature. 

 

 

 

 

 

The next step was to react the mAb with a sulfo-NHS ester of succinimidyl trans-4 (ma-

leimidylmethyl) cyclohexane-1-carboxylate (SMCC), which will yield a maleimide-labeled 

mAb (SMCC-mAb) through as illustrated in Figure 2.14. Sulfo-SMCC is a heterobifunctional 

crosslinker that contains N- hydroxysuccinimide (NHS) ester and maleimide groups that allow 

the conjugation of amine and sulfhydryl containing molecules. Thus, amine containing mAb can 

be conjugated with sulfo-SMCC. These NHS esters can react with primary amines at pH 7-9 

forming amide bonds, while maleimides react with sulfhydryl groups at pH 6.5-7.5 and form 

stable thioester bonds. The NHS-ester group undergo hydrolytic degradation, whose rate in-

creases at higher pH values. But the maleimide group is considerably more stable than the NHS-

ester group. But it will also hydrolyze and will lose reaction specificity for sulfhydryl at pH val-

ues >7.5. Hence, the reaction is usually performed at pH 7.2-7.5. The cyclohexane ring in the 

Figure 2.13: Mechanism for attachment of oligonucleotide to the device surface through EDC 

coupling reaction. 
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spacer arm in sulfo-SMCC decreases the rate of hydrolysis of the maleimide group compared to 

similar reagents without a ring.48 We started with a mAb concentration of 1 mg/mL (excess) to 

ensure that we have enough Ab concentration after the final purification step. 

 

 

 

 

 

After mAb is conjugated with SMCC, next excess (nonreacted) reagent was removed by a 

desalting column. In order to attach SMCC-mAb to the oligonucleotide, there should be a sulfhy-

dryl group in 3’ end of the oligonucleotide. Thus, dithiothreitol (DTT) (at pH 10) was used to 

reduce the disulfide bond present in the 3’ end to a -SH group. Then, devices were washed with 

PBS (pH 7.4), and the mAb was injected into the devices. The mechanism involved in these steps 

is shown in Figure 2.15. Surface modified devices were kept at 4°C overnight for reaction to take 

place. These mAb modified devices can be stored at 4°C until samples are run by stabilizing the 

Ab using a stabilizing cocktail, which is important when it comes to using these devices for 

clinical applications.  

 

 

 

 

 

2.7 EV isolation using the microfluidic device 

Figure 2.14: Mechanism for Ab conjugation with sulfo-SMCC. 

 

Figure 2.15: Immobilization of Ab on to the device surface via the oligonucleotide. 
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The microfluidic device that we designed and developed needed to be checked to confirm 

whether EVs can be actually captured on the micropillars. For initial experiments, EVs from the 

Molt-3 cell line was used. Cells grown in EV depleted FBS media was centrifuged for 10 min at 

300 g. At this speed EVs in the media will remain in the supernatant, which was then used for 

EV isolation. 

Non-specific binding to polymer surfaces is one of the major problems that needs to be over-

come when processing clinical samples for diagnostic purposes. Non-specific binding is the bind-

ing of material to sites on the polymer surface, which will result in a false positive contribution 

to the result. The main reasons for non-specific binding are, molecular forces, like charge inter-

actions, and hydrophobic interactions between the surface and other solution borne materials.  

Here, a mixture of BSA and PVP was used as a blocking agent to minimize non-specific 

binding. BSA is considered to be a universal blocking reagent. The main reason for using BSA 

is that, BSA does not affect the functions of other proteins (antibodies), which is important be-

cause Abs are used in the microfluidic device.  

Polyvinyl pyrrolidine (PVP) is a non-protein alternative to conventional blocking buffers. 

It is a water-soluble polymer, which can be used in a variety of applications owing to many 

advantageous characteristics. PVP has good solubility in water, shows strong affinity to various 

polymers, has a high hygroscopicity, and good adhesiveness to various substrates. This is com-

monly used with a combination of other blocking solutions. Here, 0.5% BSA/1% PVP solution 

was used as a blocking buffer. Devices were washed with 500 µL (~70 times device volume) of 

blocking buffer at 10 µL/min prior to sample processing. 

Next, sample was processed through the device at 5 µL/min. Flow rate we selected was 

based on results obtained from the simulation studies that was explained previously. Based on 

Monte Carlo simulations, at this flow rate we can obtain a recovery of ~42%. 
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Once the sample was processed, 1% Tween 20 solution was used to prevent non-specific 

interactions. Tween 20 is a nonionic detergent (surfactant) that is widely used as a blocking agent. 

Specific binding is typically more resistant (strong) to this reagent while nonspecifically bound 

substrates with weak interactions can be washed out. 

Fluorescence imaging is a widely used technique to visualize affinity selected markers 

on modified surfaces. Here, an APC conjugated CD8 antibody was used to detect if EVs were 

captured using our device. Allophycocyanin (APC) exhibits far-red fluorescence with high quan-

tum yields and is excited at 594 nm and 633 nm with an absorbance maximum at 650 nm and 

emission wavelength of 660 nm. When APC conjugated Abs are incubated in chip, it will bind 

to the CD8+ EVs that have been already been isolated by the device. Thus, it’s a good way of 

showing that CD8+ EVs have been captured by the Ab-decorated micropillars. As control ex-

periments, we performed a negative control and an isotype control. In the negative control ex-

periment, we did not have the CD 8 Ab. 

As another control, isotype control experiments were also performed. Here, instead of 

CD8 mAb, isotype control was used in the modification step. Isotype controls are also primary 

antibodies, but they lack specificity to the target. They should match the class and type of the 

primary antibody that has been used.  

Isotype of the primary Ab was used mainly to detect non-specific binding. Primary Ab 

background signal could be caused by binding of substrates to receptors on target cells/EVs by 

non-specific interactions with other cells/EVs or due to autofluorescence. Isotype control anti-

bodies act as negative controls to help differentiate non-specific background signal from specific 

antibody signals because they have no relevant specificity to target antigen.49 

After incubating devices with the dye-labeled Ab, devices were washed again with 

Tween 20 solution to get rid of any non-specifically bound Ab. Prior to imaging, devices were 

washed well with PBS since Tween 20 to quench the fluorescence as it is a surfactant. 
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Fluorescence images in Figure 2.16 show the results we obtained for CD8 Ab-modified 

device, isotype IgG2B modified device, and a device without Ab. All the images were back-

ground subtracted and intensity scaled based on the negative control. There was an increase in 

fluorescence intensity in the CD8 Ab modified device compared to the isotype control and neg-

ative control experiments. These results demonstrate that EVs can be isolated using the micro-

fluidic device. Since an increase in the fluorescence was observed in the CD 8 mAb modified 

device compared to the controls, the device we designed can be used for isolating EVs and meth-

odology we used for surface modification for affinity selection gives us the specificity that is 

required for analyzing clinical samples. 

 

2.8 Release of enriched EVs from the device’s surface 

Because successful isolation of EVs is possible by the microfluidic device, the next chal-

lenge is to release the enriched EVs from the device surface without affecting its morphology 

and its’ molecular content. As a releasing method of enriched EVs, we used an enzymatic cleav-

age method, which has been used earlier for releasing affinity selected circulating tumor cells 

from an antibody capture surface.14 

For this purpose, a ssDNA was used that contained a single uracil (dU) residue. 

(5’/5AmMC 12/TTT TTT TTC CCT TCC TCC TCA CTT CCC TTT/ideoxyU/TT TTT TTT 

A B C

Figure 2.16: Fluorescence images after staining the EVs captured on the device surface with 

Cy5 labeled secondary antibody: (A) negative control without CD8 Ab (B) Isotype (IgG2B) 

control (C) CD8+ Ab. 
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T/3ThioMC3D/). The uracil residue in the oligonucleotide enables the enzymatic cleavage using 

USERTM (Uracil-Specific Excision Reagent), releasing EVs that have been affinity selected by 

CD8 mAbs. 

USERTM consists of a mixture of uracil DNA glycosylase (UDG) and DNA glycosylase-lyase 

endonuclease VIII. UDG in the mixture catalyzes excision of dU forming an abasic site and 

endonuclease VIII breaks the phosphodiester bond of the abasic site, cleaving the ssDNA linker, 

which will release the selected EVs from the microfluidic device’s surface. The benefits of using 

USER is that it’s active at physiological temperatures and in a variety of buffers, such as PBS. 

Previous studies have reported that under these release conditions the cells are not affected.14 The 

mechanism of EV release is illustrated in Figure 2.17. 

 

 

 

 

 

 

2.9 Transmission Electron Microscopy (TEM) 

Imaging released EVs is important to determine the size distribution and morphology of EVs. 

Yet, imaging and tracking of EVs can be challenging due to their small sizes. Electron micros-

copy has been considered as a standard imaging method available for visualizing nano-sized 

particles.50 As such, electron microscopy typically has a resolution of approximately 0.5 nm, 

Figure 2.17: EV selection and releasing method (A) mAb immobilized on the device surface 

via oilgonucleotide with a uracil residue. (B) Incubation of isolated EVs and the oligonucleo-

tide with the USER enzyme. (C) Cleavage at the uracil position results om the release of iso-

lated EVs from the device surface. 
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which is smaller than EVs. Therefore, using electron microscopy can provide structural infor-

mation about EVs. Here, we used EVs stained with uranyl acetate stain for imaging. The ad-

vantage of using uranyl acetate is that it produces the highest electron density and thus, good 

image contrast.  

Collected EV samples were stored at -80 °C until use. Before preparing the grids, samples 

were vortexed thoroughly to obtain a homogeneous solution. EV samples were then mounted on 

a carbon coating grid for imaging and samples were air dried on the grid and then stained with 

uranyl acetate. As mentioned earlier, interaction of the electron beam with the sample generates 

contrast in the image. The most common type of staining is negative staining, where the electron 

beam primarily interacts with the stain. The stain surrounds the sample, but it is excluded from 

the volume occupied by the sample and thus, we see sharp dark edges and light color inside the 

EVs. During the drying process, the EVs can collapse resulting in a cup-shaped morphology, 

which is often considered an atypical feature of EVs.51-52 But when quickly frozen, EVs analyzed 

by cryo-electron microscopy will show that EVs have a perfectly rounded shapes.53 The TEM 

images in Figure 2.18 shows EVs secured from the Molt-3 cell line. Since, compared to the con-

trol sample, EVs were observed in the grids with samples released from the devices (plasma 

processed devices), these images reveal that EVs have been successfully isolated on our micro-

fluidic device and those have been released successfully by USER enzyme system.  

However, the size of EVs appear in TEM images could be smaller compared to the actual value 

of EV size due to dehydration of sample during sample preparation step.54-55 
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2.10 Nanoparticle Tracking Analysis (NTA) 

This technique is a combination of laser light scattering microscopy and a charge-coupled 

device (CCD) camera that enables visualization and recording of nanoparticles in suspension 

(Brownian Motion). Particles will move randomly in all directions when they are dispersed in a 

suspension. The liquid is also called the continuous phase, which can be water or any other sol-

vent. Phenomena of random motion is known as diffusion and expressed by the diffusion coef-

ficient (D). Undirected migration of any given particle will be caused by energy transfer from 

the surrounding water molecules to the particle. In the absence of any concentration gradient 

within the dispersion and upon long-term observation, small particles move in any direction and 

will counterbalance each other with time, which will lead to a total movement of almost zero. 

But, during given time periods, diffusing particles move within certain volume elements. Due to 

Brownian motion, in NTA the time (t) between two different observation points is small, which 

is approximately 30 ms. During NTA analysis, the movement of nanoparticles per time interval 

is recorded and quantifies as the mean square displacement <x>2. Depending on the number of 

100 nm

500 nm100 nmA B C

D E

Figure 2.18: TEM images (A) Blank (Buffer and the USER enzyme) (B) and (D) EVs released 

from Molt 3 cell line (C) and (E) Zoomed view of EVs of figure B and figure D.   
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dimensions, the observed mean square displacement and the diffusion coefficient can be calcu-

lated as explained below. 

For one dimension: 𝐷 =
〈𝑥2〉

2𝑡
         (Eq.9a) 

For two dimensions: 𝐷 =
〈𝑥,𝑦2〉

4𝑡
      (Eq. 9b) 

For three dimensions: 𝐷 =
〈𝑥,𝑦,𝑧〉2

6𝑡
  (Eq. 9c) 

For these expressions, D is the diffusion coefficient and t is the time between two differ-

ent observation points. Through the Stokes-Einstein relationship, the diameter of the particle d 

can be calculated as a function of diffusion coefficient D at a given temperature T and a constant 

viscosity  of the liquid.  

𝐷 =
4𝑘𝐵𝑇

3𝜂𝜋𝑑
    (Eq.10) 

where kB is the Boltzmann’s constant. 

In NTA, variability of a single particle is considered in two dimensions, thus combining 

both the Stokes-Einstein relationship and two-dimensional mean square displacement. The fol-

lowing equation can be used to find particle diameter (d); 

𝐷 =
4𝑘𝐵𝑇

3𝜋𝜂𝑡
.

4𝑡

〈𝑥,𝑦〉2 =
16𝑘𝐵𝑇

3𝜋𝜂〈𝑥,𝑦〉2     (Eq. 11) 

By simultaneously tracking particles, their diameters can be calculated. In NTA, the 

smallest detectable particle size is determined by the scattered intensity of the particle and the 

sensitivity of the camera used in the instrument. The refractive indices of biological nanoparti-

cles, like EVs is around 1.37-1.45 which makes a limit of detection of 30-50 nm for NTA.56-57 

Nanoparticle tracking analysis has several advantages over TEM for EV analysis. First 

advantage is the ability to accurately measure small particles with a diameter of approximately 

30 nm. Sample analysis is performed in liquid form thus there’s no hydration taking place during 

sample processing. Furthermore, sample preparation is very fast and easy which is not as com-

plex as in TEM. Also, measurement can be completed within few minutes. Another feature that 
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makes NTA more attractive is that samples can be recovered in its native form after the meas-

urements.55 NTA is precise between particle concentrations are in the range 2x108 and 2x109 

particles/mL. Therefore, samples were diluted whenever necessary.  

Blank (control sample) which consisted of USER enzyme and PBS didn’t show any nano-

particle detected from NTA. Figure 2.19 A shows nanoparticles that have been captured in a 

video during an NTA experiment. After data analysis a size distribution curve (shown in Figure 

2.19 B) can be obtained. The average number of particles that have been released from the de-

vices were (2.94 ± 0.48) x10
9 
particles/mL (n=3, 5 readings per sample) and the average size of 

EVs was (150.4 ± 22.6) nm (n=3, 5 readings per sample). 

2.11 Efficiency of EV release from the microfluidic device 

For counting the number of EVs captured and to provide sufficient material for mRNA ex-

pression profiling, it is important to ensure that all the EVs have been released from the device 

surface. Hence, release efficiency of EVs was determined experimentally. While we have used 

the uridine-containing ssDNA and the USER enzyme system for the release of biological cells,25 

we have not investigated the use of this release system for EVs. The release efficiency was de-

termined by performing a first round of EV release, followed by a second round performed with 

the USER enzyme. Then TEM and NTA were performed for collected EV samples resulting 
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Figure 2.19: (A) Nanoparticles detected by NTA during sample analysis. (B) Size distribution 

and concentration of EVs isolated from Molt-3 cell line. 
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from each release round. Figure 2.20 A and B below show TEM images of EVs collected during 

the first and second release.  

 

 

 

 

 

 

 

 

 

 

According to the NTA results, during the first release (2.94  0.48) x109 particles/mL 

were released and (1.71  0.79) x108 particles/mL were released during the second release. After 

the second release proteinase K digestion was performed to see if any particle is released. But 

only a very little particles were released by proteinase K, which suggest that after second release 

almost all the EVs have been released by the USER enzyme. These values were used to calculate 

the EV release efficiency using the following equation.  

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑦 =  
 𝐸𝑉𝑠 𝑟𝑒𝑙𝑎𝑠𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑙𝑎𝑠𝑒 

 𝐸𝑉𝑠 𝑟𝑒𝑙𝑎𝑠𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑙𝑎𝑠𝑒+𝐸𝑉𝑠 𝑟𝑒𝑙𝑎𝑠𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑒𝑐𝑜𝑛𝑑 𝑟𝑒𝑙𝑎𝑠𝑒
     (Eq. 12) 

The release efficiency was determined to be 96.4 1.8% (n=3, 5 readings per samples), which 

shows that high release efficiencies can be obtained using enzymatic cleavage to release EVs.  

Figure 2.20: (A) TEM image of EVs released during the first release with the USER enzyme. 

(B) TEM image of EVs released during the second release with the USER enzyme. (C) NTA 

analysis showing the concentration of EVs released during first (red trace) and second release 

(blue) with the USER enzyme. (D) Percentage of EVs released during first (red trace) and 

second release (blue) with the USER enzyme. 
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2.12 Stimulation of T cells in Molt-3 cell line 

Inflammatory responses taking place during ischemic strokes can be characterized by rapid 

activation of certain cells, including different subtypes of T cells, macrophages, and neutro-

phils.58-60 Lipopolysaccharide (LPS) is a strong stimulator and can cause antigen presenting cells 

(macrophages and T cells) to release cytokines, such as IFN-I, TNF-α, and IL-12. Even small 

doses of LPS can cause strong activation of CD8+ T cells.61 Thus, the inflammatory responses 

induced by LPS can be related to inflammatory responses that takes place during an ischemic 

stroke event.  

In order to stimulate cells, LPS was used. LPS is a major component of the outer membrane 

of gram-negative bacteria. Intact bacterial LPS are macromolecules with a molecular mass of 

approximately 10-20 kDa. The three major structural components of LPS are shown in Figure 

2.21. Those are O-specific chain that is specific to the bacterial stereotype, a core oligosaccha-

ride, and a lipid component that is termed as lipid A. Lipid A component of LPS determines the 

endotoxic and toxic activities of LPS.62 

 

 

 

 

 

 

 

Figure 2.21: Structure of LPS; O-antigen, the core oligosaccharide, and the lipid component 

(Reproduced from reference Laguri, Sperandeo et al. 2017) 
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LPS can also trigger the production of reactive oxygen species (ROS), such as nitric oxide 

(NO).63-64 Produced ROS can cause toxic effects to cells including DNA or RNA damage, oxi-

dation of polyunsaturated fatty acid in lipids, oxidations of amino acids, and oxidative deactiva-

tion of specific enzymes by oxidation co-factors. All these effects cause cell death.64 Moreover, 

LPS can increase oxidative stress, mitochondrial respiratory dysfunction, and cell death via in-

ducing apoptosis.65  

Thus, LPS stimulation conditions such as concentration and stimulation time need to be 

optimized for Molt-3 cell line so that the cells still viable after LPS stimulation. For this purpose, 

cell cultures were started (~1x106 cells) and the cells were stimulated with different LPS concen-

trations. Changes in cell media, viability of cells, and morphology of cells were monitored at 

different time points up to 72 h. A control experiment was performed without adding LPS to the 

cells. RPMI media contains phenol red indicator, which can be used to monitor pH changes. At 

pH 7 the color of the media is light orange and at higher pH values color changes to purple. 

Yellow color indicates acidic pH. At 1 ng/mL of LPS, the color of the media started to change to 

yellow (media has become acidic) after 48 h, while at higher LPS concentrations (100 ng/mL), 

the color started to change to yellow, after 12 h (Figure 2.22). This pH change might be due to 

cell death caused by apoptosis and release of cell components to the culture media.  

 

 

No LPS

1 ng/mL LPS

100 ng/mL LPS

0 h       1 h      2 h      4 h      6 h       12 h      24 h    36 h    48 h     60 h    72 h 

Figure 2.22: Color change in media indicating the pH change (phenol red indicator in the 

RPMI media was used to monitor the color change). 
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Figure 2.23 shows morphology changes in cells upon stimulation with LPS. In the control sample 

without LPS, there were no visible difference in morphology up to 75 h. However, we did ob-

serve a change in morphology in cells upon stimulating with LPS. For 1 ng/mL of LPS, we didn’t 

observe changes in the cells for up to 60 h. However, at 72 h we observed some morphology 

changes in the cells and these morphology changes (cells were not round in shape) were more 

visible when cells were stimulated with high LPS concentrations. These morphology changes 

may be due to cell apoptosis caused by LPS. There are various morphological changes that can 

occur during apoptosis, such as cell shrinkage and pyknosis.66 Due to cell shrinkage, the orga-

nelles become more tightly packed within the cells. Pyknosis takes place as a result of chromatin 

condensation.67 As a result of these processes, small blebs are formed, and the nucleus starts to 

break apart and DNA breaks into small fragments as well. Finally, the cell can break into apop-

totic bodies as well. These apoptotic bodies are visible in cell media stimulated with 100 ng/mL 

LPS at 48 h and can be seen more clearly in the sample collected at 75 h (shown in arrows in 

Figure 2.23 C right). 
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Figure 2.23: Morphology changes of T cells during LPS stimulation (Left: no LPS, middle:1 

ng/mL of LPS, right: 100 ng/mL) (A) 0 h (B) 48 h (C) 60 h - 40x magnification; scale bar on 

the images is 15 m. 
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Therefore, it’s important that cells remain viable during these experiments to prevent for-

mation of apoptotic bodies while at the same time, provide sufficient stimulation of the cells. 

Thus, cell viability was determined at each time point. For cell viability determinations, 

Live/dead cell assay kit was used, which contains two fluorescent dyes, calcein AM and propid-

ium iodide. Calcein AM is a cell-permeant dye that is widely used to determine cell viability in 

eukaryotic cells. In live cells, the non-fluorescent calcein AM will be converted to a green-fluo-

rescent calcein due to the acetoxymethyl ester hydrolysis by intracellular esterase present in live 

cells. Thus, live cells will appear as green. Because the cell membrane is damaged in dead cells, 

propidium iodide can go inside cells where it intercalates with DNA and results in enhanced red 

fluorescence. Hence, dead cells will appear as red. Calculated cell viability values are shown in 

Figure 2.24. In control samples without LPS and at low LPS concentration (1 ng/mL), a signifi-

cant change in the cell viability was not be observed up to 72 h time period. After 72 h, the cell 

viability for control and for samples stimulated with 1 ng/mL of LPS were 87% and 82%, re-

spectively.  

However, at high LPS concentrations (100 ng/mL), cell viability started to drop after 24 

h. At 24 h, the observed cell viability was ~85% but after 36 h, it dropped to ~76% and reached 

~30% after 72 h. Thus, to stimulate the cells in a minimum stimulation time while preserving 

their cell viability, we selected 100 ng/mL of LPS, and the time of stimulation selected was 24 

h. Another reason for selecting these conditions is that we want to induce a strong stimulation 

within a short time period and analyze the EVs which is similar to what happens during a stroke 

event.  
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2.13 Isolation of CD8+ T cells from media 

Cell cultures were started with ~1x106 cells/mL and stimulated with 100 ng/mL of LPS. After 

24 h, cell viabilities of the control (without LPS) and the sample stimulated with LPS were 96.4 

± 0.37% and 87.3 ± 1.09%, respectively. Cell media was centrifuged to enrich cells and the ob-

tained cell pellet was resuspended in PBS (Figure 2.25 A). Supernatant obtained from this step 

was used for EV isolation as well.  

For isolation, the microfluidic device with sinusoidal channels (explained in section 2.3.3) 

was used. Prior to sample processing, devices were washed with 0.5% BSA to reduce non-spe-

cific binding. Next, the cell suspension was hydrodynamically passed through the microfluidic 

device using a syringe pump (Figure 2.25 B) to capture CD8+ T cells. Post washing was per-

formed with 0.5% BSA to remove any non-specifically bound cells. Figure 2.25 C shows the 

CD8+ T cells that have been captured on the microfluidic device.  

No LPS

1 ng/mL LPS

100 ng/mL LPS

1 h            36 h          72 h

0

20

40

60

80

100

0 20 40 60 80

C
el

l 
V

ia
b

il
it

y
 (

%
)

Time / h

A B

Figure 2.24: (A) Cell viability images for Molt-3 cell line upon stimulating the cells with LPS 

(Live cells are in green and the dead cells are in red). (B) Variation of cell viability during LPS 

stimulation at varying LPS concentration. 
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2.14 Isolation of CD8+ EVs from media 

As described in the previous section, when the cell media was centrifuged at 300g, EVs will 

remain in the supernatant. Therefore, the supernatant was used for isolation of EVs. Sample pro-

cessing protocol was the same as that described in section 2.7.  

2.15 On-chip lysis and extraction of RNA 

Isolated T cells and EVs were in some cases lysed in order to analyze their molecular content. 

In this study, we were interested in analyzing the mRNA of T cells and EVs. To accomplish this, 

RNA was extracted from EVs and T cells using a commercially available RNA extraction kit. 

The kit consisted of a TRIzol reagent, which is a monophasic solution of phenol and guanidinium 

isothiocyanate. TRIzol works by maintaining the RNA integrity during sample homogenization 

at the same time disrupting and breaking down cells and denatures proteins.68 TRIzol solution 

was injected into the microfluidic devices and flow through (lysate) was collected for RNA pu-

rification. Because the quality of the extracted RNA is important for analyzing its molecular 

A B

C D

Figure 2.25: (A) Cell pellet collected after centrifuging the sample at 300 g for 10 min (shown 

by the arrow). (B) Syringe pump set-up used to hydrodynamically flow the samples through 

the devices (C) and (D) Cells captured from Molt 3 cell line: scale bar 25 m. 
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content, the quality of the extracted RNA and the concentration was analyzed by gel electropho-

resis. We did not observe significance differences between the RNA profiles of LPS non-

stimulated and stimulated EVs (Figure 2.26).  

 

 

 

 

 

 

2.16 Complementary DNA synthesis from purified RNA 

Purified RNA needs to be converted to its complementary DNA (cDNA) for performing PCR 

for gene expression analysis. The cDNA synthesis kit used in this study contains reverse tran-

scriptase enzyme and an RNase inhibitor (protects the RNA from Ribonuclease (RNase), which 

is an enzyme that catalyzes the breakdown of RNA into oligonucleotides and smaller molecules). 

The reaction mixture also contains deoxyribonucleotide triphosphate (dNTPs) and an optimized 

buffer, which increases the efficiency of the reaction. There is also an anchored oligo-dT primer 

[d(T)23VN], which forces annealing to the beginning of polyA tail of RNA, thus preventing prim-

ing at internal sites in the polyA tail.69 Use of oligo dT primer ensures that all cDNA copies 

terminate at the 3’ end of the RNA and produces the longest contiguous cDNA of the appropriate 

mRNA template. Control reactions were performed without adding the enzyme to the reaction 

mixture. Any signal obtained from the negative control will indicate the presence of genomic 

DNA contamination in the sample. 

 

Figure 2.26: RNA profiles of LPS stimulated and non-stimulated EVs: Purple trace: Non-

stimulated, Green trace: stimulated with 100 ng/mL of LPS. 
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2.17  Droplet digital PCR for gene expression analysis 

For gene expression analysis, droplet digital PCR (dd PCR) was used. Although quantitative 

PCR (Real time qPCR) is considered the gold standard to measure cDNA levels, results acquired 

from qPCR can be variable.49, 70 In qPCR, control genes (internal control) also called reference 

genes or housekeeping genes, are used to normalize mRNA levels between samples. A house 

keeping gene should be effectively expressed in cells of interest and essentially it should show 

minimal variability in expression between different samples under specific experimental condi-

tions that have been used.71 However, a major problem associated with these housekeeping genes 

is that the expression level of these genes can vary among cells and can vary under certain cir-

cumstances, for example disease states.72-74 For clinical sample analysis, we need a method that 

will acquire mRNA expression results with high precision, high sensitivity and reproducibility, 

irrespective of the physiological state of the cells. Hence, droplet digital (dd PCR) was used in 

this study.  

In droplet digital PCR, target DNA molecules in the sample are distributed in multiple reac-

tion containers (droplets). Some droplets do not have template (mRNA) and other droplets do 

have the template. After amplification, droplets with template will yield positive end-points, 

whereas the droplets without template will yield a negative end-point. Droplet digital PCR is 

based on a water-oil emulsion system. Number of target molecules with positive end point is 

calculated based on Poisson statistics according to the equation below. 

 = −ln (1 − 𝑝) (Eq. 13) 

In this equation,  is the average number of target molecules per replicate reaction and p 

is the fraction of reactions with positive end-point. An approximation of the absolute target con-

centration is calculated based on , together with the volume of each replicate PCR and the total 

number of replicates (droplets) analyzed.75 The dynamic range of target quantification largely 

depends on the number of replicates (number of droplets in each reaction mixture). An order of 
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magnitude increase in the number of droplets will yield nearly an order of magnitude increase in 

dynamic range. Moreover, increasing the number of droplets will also improve the precision 

enabling the detection of small concentration differences.76 For the ddPCR experiment, total 

droplet number were always >12,000. (If we have 12,000 droplets and 430 positive endpoints 

the average number of target molecules per replicate reaction would be 0.035). 

In droplet digital PCR, EVA green dye was used. This is constructed of two monomeric 

DNA-binding dyes that are linked by a flexible cationic linker. In the absence of a double 

stranded DNA molecule, dye forms a looped conformation that is inactive in DNA binding. But 

in the presence of double stranded DNA, loop confirmation shifts via an equilibrium to a random 

conformation, which is capable of binding DNA and thus, emitting fluorescence.  

DNA samples, primers and the dye were mixed within each droplet using the droplet 

generator, which consisted of an oil with stabilizing surfactants. This mixture was used to gen-

erate mono-dispersed droplets at a rate of ~1,000 per second. The surfactant stabilized droplets 

were collected and transferred to a 96-well PCR thermal cycler and amplified to an end point. 

Then, the reaction plate was transferred to the droplet reader where droplets from each well were 

aspirated and streamed toward the detector for two color detection system, with each color serv-

ing as a negative or a positive control.75  Figure 2.27 A below illustrates a representative result 

we obtained from the droplet reader. 

 

 

Figure 2.27: (A) Final result from droplet reader. (B) Creating the threshold for determining 

the positive droplets; red line shows the thresh hold. 
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Blue droplets are positive droplets in which target cDNA was present. To determine ac-

tual positive droplet results, the negative reverse transcription reaction was used. As shown in 

Figure 2.27 B, a threshold was created (red line) and then, the number of positive droplets were 

determined for each reaction. Because the input RNA concentration was different for each reac-

tion, final results were normalized to the input total RNA concentration using the equation below. 

All the dilution factors were taken in to account in calculating the final result. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑝𝑖𝑒𝑠

𝑅𝑁𝐴 𝑖𝑛𝑝𝑢𝑡
=

𝐶𝑜𝑝𝑖𝑒𝑠

𝐿
 𝑥 20 𝐿 𝑥 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑛𝑔

𝐿
 𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑑𝑑 𝑃𝐶𝑅

      (Eq.13) 

Here, 20 L was considered since it was the volume used for the ddPCR reaction and the 

concentration of RNA in ng/L was determined from the TapeStation as explained previously. 

Results obtained after normalization were directly used for generating heat maps for showing 

gene expression. For evaluating gene expression for diagnosing AIS, we selected gene cluster 

“4” identified by Adamski, et. al, which consisted of 5 genes: FOS, VCAN, PLBD1, MMP9, and 

CA4. This gene panel showed statistically significant difference (p = 1.42 x 10-5) between AIS 

patients and control samples. Upon stimulation with LPS, PLBD1, FOS, MMP9, CA4 and VCAN 

genes will be upregulated because LPS has a strong stimulation effect on CD8+ T cells. All these 

genes respond to inflammation and brief explanation about each gene is given below. 

Protein synthesized from PLBD1 gene has a selective expression in alveolar macro-

phages, broad expression in bone marrow and in some of the immune cells in different tissues. 

Protein coded from this gene is considered to be an intracellular protein.77-78 FOS gene encodes 

for a leucine zipper protein that can dimerize with proteins of the JUN family and form transcrip-

tion factor complex AP-1. These FOS proteins are considered to be important as regulators of 

cell proliferation, differentiation and transformation. Moreover, expression of FOS gene has also 

been associated with apoptotic cell death.79 Studies have also shown that FOS is induced by a 

variety of stimuli in various cell types and can suppress systematic inflammatory response to 
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endotoxin.80 Proteins of the MMP family are involved in breakdown of the extracellular matrix 

in normal physiological processes like embryonic development, reproduction, tissue modelling 

as well as in disease processes. Most MMPs are inactive when they are secreted but are activated 

when cleaved by extracellular proteinases.81 According to the literature, MMP9 is considered to 

be another gene that shows inflammatory responses. Previous studies have shown that inflam-

matory macrophage migration requires MMP9 activation.82 CAs are a family of zinc metalloen-

zymes, which catalyzes the reversible hydration of carbon dioxide. These are involved in biolog-

ical functions like respiration, calcification, and acid-base balance and it’s also shown that CA4 

regulates cell-mediated inflammation.83-84 It is reported that VCAN interacts with myeloid and 

lymphoid cells promoting their adhesion and productions of inflammatory cytokines and VCAN 

shows significant increase in inflammation.85  

Among the 5 genes profiled in CD8+ Molt-3 cells, 3 genes, PLBD1, FOS, and VCAN 

were upregulated upon LPS stimulation (p values of 0.0165, 0.0259, and 0.0401, respectively). 

In CD8+ EVs, two genes were upregulated, PLBD1 and FOS with p values of 0.0469 and 0.0150, 

respectively (see Figure 2.28). 
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Figure 2 28: mRNA gene expression profiles of (A) CD8 T cells (B) CD 8 EVs ; Yellow : 

non-stimulated conditions (without LPS) , Red : Stimulated conditions (with LPS) conditions. 
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Heat maps generated for gene expression data showed that gene expression patterns of 

CD8+ T cells and CD8+ EVs were very similar (Figure 2.29). For non-stimulated conditions, 

there was no significant difference in gene expression observed between T cells and EVs for 

PLBD1, FOS, MMP9 and CA4 at the 95% confidence interval with p values of 0.509, 0.911, 

0.943 and 0.094 respectively. For stimulated conditions, no significance difference in gene ex-

pression was observed between T cells and EVs for PLBD1, MMP9 and CA4 genes with p values 

of 0.132, 0.136 and 0.503 respectively. These results agree with the fact that, the gene expression 

of EVs are similar to those of cells which they originated from. Thus, EVs could potentially be 

used as a potential source of AIS biomarkers. 

 

 

 

 

 

  

 

 

 

 

2.18  TEM images of EVs isolated from stimulated and non-stimulated conditions 

To analyze if there was any morphology change or size variation in stimulated versus non-

stimulated EVs, TEM images were analyzed and are shown in Figure 2.30. Under these condi-

tions, we did not see any change in size or morphology in EVs collected under LPS stimulated 

versus non-stimulated conditions. 

340                                       7300

Copies/ng of RNA
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Without LPS Without LPSWith LPS With LPSA B

Figure 2.29: Heat maps illustrating the gene expression changes in (A) CD8 T cells (B) CD8 

EVs isolated from Molt-3 cell line under stimulated and non-stimulated conditions. 
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2.19  Poly ethylene glycol (PEG) precipitation to isolate EVs 

The same samples used for EV isolation via microfluidic devices were also analyzed using 

PEG precipitation. Figure 2.31 briefly shows the steps involved in PEG precipitation. After add-

ing PEG to the sample, we can see a cloudiness because the EVs start to coagulate. In Figure 

2.31 B, we can see that EVs are pelleted by centrifugation. This pellet was resuspended in PBS. 
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B

Figure 2.30: TEM images of (A) EVs released from non-stimulated cells. (B) EVs released 

from stimulated cells from Molt-3 cell line. 

Figure 2.31: (A) After adding PEG to the cell media sample. (B) After keeping the sample 

over night at 4 oC and centrifuging the sample at 4000 g for 1 h (EV pellet is shown by the 

arrow).  
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2.19.1 TEM analysis of the EVs isolated by PEG precipitation 

The TEM images shown in Figure 2.32 indicate that EVs of a wide size range have been 

precipitated by PEG. EVs released under non stimulated and stimulated conditions are shown in 

Figure 2.32 (A) and Figure 2.32 (B) respectively. We didn’t observe any size difference EVs 

released under stimulated and non-stimulated conditions. 

 

 

 

 

 

 

 

 

2.20  Droplet digital PCR for gene expression analysis of EV RNA isolated from PEG pre-

cipitation 

After obtaining the EV pellet, it was dissolved in Trizol reagent and RNA was extracted, 

which was then used for cDNA synthesis and ddPCR. For the EVs’ RNA isolated from PEG, 

ddPCR results, did not show a significant difference (based on the calculated p values at 95% 

confidence limit) between the stimulated and non-stimulated conditions (Figure 2.33). However, 

from gene expression results that we obtained from affinity selection using the microfluidic de-

vice we were able to see an expression difference in some of the genes between LPS stimulated 

and non-stimulated cells. It’s clear that affinity selection was capable of differentiating between 

the stimulated and non-stimulated conditions with these conditions used to model stroke versus 

100 nm 100 nm 100 nm

100 nm 100 nm 100 nm

A

B

Figure 2.32: TEM images of EV isolated from PEG precipitation (A) EVs released from non-

stimulated cells. (B) EVs released from LPS stimulated cells. 
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non-stroke conditions. Thus, isolation of CD8+ expressing EVs instead of using a non-discrimi-

nate isolation method could provide more accurate results.  

 

 

 

 

 

 

 

 

 

2.21 Conclusions 

With the aid of fluorescence microcopy, we demonstrated that the microfluidic fluidic device 

with arrays of micropillars can be used to affinity select CD8+ EVs from cell culture media with 

high specificity. EVs enriched on this device can be released from the capture surface via enzy-

matic cleavage with high efficiency >95% which can be used for downstream analysis. NTA 

analysis revealed that released particles have an average size of ~ 150 nm. LPS stimulation of T 

cells was used to model inflammatory responses taking place during an ischemic stroke event in 

order to analyze the gene expression of CD8 T cells and CD 8 EVs after an inflammatory re-

sponse. Both stimulated and non-stimulated T cells and EVs were successfully isolated on mi-

crofluidic devices and TRNA was extracted from cells as well as from EVs. Following TRNA 

isolation, the RNA was reverse transcribed and via ddPCR, we demonstrated that gene expres-

sion of 5 genes we analyzed (PLBD1, FOS, VCAN, CA4 and MMP9) of EV-RNA is similar to 

Without LPS With LPS

PLBD1

FOS

MMP9

CA4

VCAN

0

1000

2000

3000

4000

5000

6000

7000

PLBD1 FOS MMP9 CA4 VCAN

C
op

ie
s/

n
g 

of
 R

N
A

Copies/ng of RNA

A B

Figure 2.33: (A) Gene expression of stimulated and non-stimulated conditions for RNA ex-

tracted from PEG precipitated EVs. (B) Heat map comparing the gene expression of PEG EVs 

under stimulated and non-stimulated conditions.   
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that of T cells. Since PEG precipitation did not specifically isolate CD8 EVs, no difference was 

observed between gene expression between non-stimulated and stimulated conditions for EV 

RNA isolated from PEG precipitation. 
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Chapter 3: Microfluidic affinity selection of CD8+ EVs from plasma samples and CD8+ T-

cells from blood samples for acute ischemic stroke diagnosis   

3.1 Introduction 

Liquid biopsies are generating a significant amount of interest in the medical and bio-

logical communities due to the minimally invasive nature of acquiring biomarkers and the fact 

that they can enable precision decisions on managing a variety of diseases, including oncology 

and non-oncology-related diseases.1-2 Blood is the most widely used bodily fluid for liquid bi-

opsy tests as it contains various molecules including EVs, proteins, circulating tumor cells, and 

cell free DNA that are good candidates as biomarkers for many diseases.3-5  

EV isolation from plasma and gene expression analysis represents a novel idea for the 

development of a diagnostic test for AIS. EVs are present in high abundance in plasma (Healthy 

plasma contains ~107-108 EVs/ mL of plasma). Moreover, the number of EVs that are released 

by the cells can be increased during a stroke event.6 Additionally, many disadvantages of current 

stroke diagnosis methods like long analysis time, complexity of the instruments, and use of high 

radiation dose could be overcome by developing a simple liquid biopsy assay for AIS. 

Various microfluidic devices have been developed to selectively isolate EVs. Simplicity 

of these techniques make those well suited for point-of-care (POC) diagnostics. Recently, many 

microfluidic devices been developed and studied for isolating EVs from plasma. Many micro-

fluidic methods, including paper microfluidic devices, immunomagnetic beads, photo sensitizer 

beads have been developed, based on immune affinity capturing using antibodies.7-8 Some of 

those are briefly discussed below. In a previous study, magnetic beads (which are about 3 m in 

diameter) were coated with anti-EGER to capture EVs from 100 L of serum and has shown a 

capture efficiency of ~93%. This device is an integrated device that can perform EV isolation to 

RNA analysis by qPCR in a single chip.9 In another study, after capturing EVs using anti-CD64-
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magnetic beads, electric field-induced release and measurement was used for disrupting exo-

somes and monitoring RNA and protein biomarkers.10 There are many devices that have been 

developed without using magnetic beads, where the surface of the device was modified with 

antibodies to capture EVs. In a previous study, an integrated nanostructured coating was used to 

reduce nonspecific interactions and this device was used to identify ovarian cancer patients from 

healthy controls.11 

However, most of these methods use general affinity-enrichment of bulk EVs by tar-

geting the tetraspanins such as CD9, CD63, and CD81.12-14 By these methods we cannot isolate 

specific subpopulations of EVs. Thus, we have developed a method for affinity selection of a 

specific EVs subpopulation by targeting specific antigens that may be more related to disease 

onset, such as CD8 and CD15 antigens with AIS.15  

In this chapter, the microfluidic devices that have been developed for isolating cells and 

EV (explained in chapter 1) will be used to analyze blood and plasma samples from healthy 

donors. Following T cell isolation, the selectivity of devices will be determined through immune-

phenotyping using fluorescently labeled (APC conjugated) CD 8 and CD 45 antibodies. The 

enriched CD8+ T cells and CD8+ EVs will be enumerated by releasing the enriched materials 

from the device surfaces via enzymatic cleavage. TEM analysis will be performed to inspect the 

morphology of the released EVs. After characterization, gene expression of CD8+ T cells and 

EVs will be analyzed using droplet digital PCR (ddPCR).  

3.2 Material and Methods 

3.2.1 Expression of CD8+ T cells in blood  

The blood sample was placed on top of equal volume of Histopaque 1077 (Sigma-Al-

drich, St.Louis, MO) without mixing. The solution was centrifuged at 400 g for 30 min. Then, 

the buffy coat, which is in between red blood cells and plasma layers, was separated carefully 
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using a pipette. Next, buffy coat was centrifuged at 300 g for 10 min and the pellet was resus-

pended in PBS and centrifuged again. The pellet was resuspended in 400 L of 0.5% (w/v) bo-

vine serum albumin in PBS with the sample divided into two aliquots. Twenty L of APC con-

jugated mouse IgG2B anti hCD8 Ab (R & D systems, Minneapolis, MN) was added to one 

aliquot and 20 L APC conjugated mouse IgG2B isotype control (R & D systems, Minneapolis, 

MN) was added to the other portion. The samples were then incubated at room temperature for 

40 min and centrifuged at 300 g for 10 min. Finally, the pellet was resuspended in 1 mL of 0.5% 

(w/v) bovine serum albumin in PBS. A washing step was repeated for two more times before 

analyzing the sample with BD accuri C6 plus flow cytometer.  

3.2.2 Blood processing for CD8+ T cell isolation 

The initial studies were done using healthy donor blood samples. Healthy donor samples 

were obtained from the University of Kansas Medical Center, Kansas City. Blood samples were 

collected into EDTA tubes to prevent blood coagulation and analyzed on the same day the blood 

was collected. For CD8+ T cells isolation from blood, sinusoidal channel microfluidic devices 

modified with CD8 mAb was used. The devices were modified using the same protocol as ex-

plained in Chapter 2, section 2.2.5. Surface modified devices were then washed with 0.5% 

BSA/PBS solution at 55 L/min. Next, 2 mL of blood was processed through the devices at 25 

L/min. Finally, the devices were washed with 0.5% BSA/PBS to remove non-specifically 

bound cells on the device surface. Captured cells were then imaged.  

3.2.3 Release cells from the device, staining and counting the number of cells 

The affinity selected cells using the microfluidic device possessing sinusoidal channels, 

twere released from the device’s surface by infusing 2U/10 μL USERTM enzyme (New England 

Biolabs, Ipswich, MA) followed by incubation at 37C. Immediately after incubation, released 

cells were washed from the microfluidic device and collected into a 96 well plate. For enumer-
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ating, released cells were fixed with 2% paraformaldehyde (PFA) and stained with 4′,6-dia-

midino-2-phenylindole (DAPI) in triton. After staining the cells for 10 min, the plate was centri-

fuged at 300 g for 10 min. The plate was then visualized using a 200M inverted microscope 

(Zeiss) with a 40x objective (0.3 NA, Plan NeoFluar), XBO 75 Xe arc lamp, single band DAPI 

filter (Omega optical), Cascade:1K EM-CCD camera (Photometric), and MAC 5000 stage (Ludl 

Electronic Products), all of which were computer-controlled via Micro-Manager. Final images 

were background subtracted, analyzed using Image-J software using a custom macro (program) 

to calculate the number of cells. 

3.2.4 Staining the cells with CD8 and CD45 

Cells isolated using the sinusoidal microfluidic device were released with USER enzyme 

and collected into a 96 well plate. Then they were immunostained with Cy5-labeled anti-hCD8α 

mAb and FITC-labeled anti-CD45 mAb. The cells were centrifuged at 300 g for 10 min, and 

washed again before imaging with 200M inverted microscope (Zeiss) using a 10x objective (0.3 

NA, Plan NeoFluar), XBO 75 Xe arc lamp, single band Cy5 and Cy3 filter set (Omega optical), 

Cascade 1K EM-CCD camera (Photometric), and MAC 5000 stage (Ludl Electronic Products), 

all of which were computer-controlled via Micro-Manager. Final images were background sub-

tracted and analyzed using Image-J software.  

3.2.5 Cell lysis, RNA extraction and cDNA synthesis  

Cell lysis was performed inside a hood using a Zymo Research Science RNA kit (Zymo 

Research, Irvine, CA) according to manufacturer’s protocol as explained in Chapter 2. Comple-

mentary DNA (cDNA) from purified RNA was synthesized via reverse transcription (RT). This 

was accomplished using a ProtoScript II First Strand cDNA Synthesis Kit (New England Bi-

oLabs, Ipswich, MA) according to the manufacturer’s instructions and explained in Chapter 2 

(section 2.2.9).  
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3.2.6 Separation of plasma from blood 

For EV isolation, first plasma was separated from blood cells. Therefore, whole blood 

samples were first centrifuged at 300 g for 10 min to isolate the plasma followed by centrifuging 

at 1000 g for 10 min. The supernatant was used to isolate the CD8+ EVs. 

3.2.7 Isolation of CD8+ EVs from plasma 

Isolation of EVs from plasma was performed using the same protocol used for isolating 

EVs from Molt-3 cell line. 

3.2.8 Release of enriched EVs from device surface 

In order to release captured EVs from the device, the device was infused with 2U/10 μL 

USERTM enzyme (New England Biolabs, Ipswich, MA) and incubated at 37C. Immediately 

after incubation, released EVs were washed from the microfluidic device and collected into a 

pre-weighed centrifuge tube. TEM, NTA and ddPCR were performed using the same protocols 

as explained in Chapter 2 (Section 2.2.7.1 and 2.2.7.2). 

3.3 Results and Discussion 

3.3.1 Analyzing expression of CD8+ T cells in blood by flow cytometry 

Blood is a suspension of elements. About 45% of total blood consists of erythrocytes and 

leukocytes, and platelets are <1% of total blood. About 55% of total blood is plasma. The formed 

elements of blood need to be separated from the plasma in order to enrich the leukocyte fraction 

from the whole blood. Therefore, we used density gradient centrifugation (Histopaque) to isolate 

leukocytes, which is also known as the buffy coat that contains most of white blood cells. 

Histopaque 1077 is a sterile solution consisting of polysucrose (57 g/L) and sodium di-

atrizoate (90 g/L) adjusted to a density of 1.077 g/mL. It’s important that the solution is at room 

temperature, because use of a cold solution can typically cause clumping of the cells. Red blood 

cell contamination can also result if cold histopaque is used. 
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Equal volume of anticoagulated blood was layered onto Histopaque 1077 carefully with-

out mixing. During centrifugation erythrocytes are aggregated by polysucrose and sediment rap-

idly. Granulocytes become slightly hypertonic, increasing their sedimentation rate, that result in 

pelleting at the bottom of the tube as well. Under these conditions, lymphocytes and other mon-

onuclear cells will remain at plasma/ histopaque interface as shown in Figure 3.1. Erythrocyte 

contamination is negligible under these conditions. 

 

 

  

 

 

The separated buffy coat was further centrifuged at 300 g to pellet the cells. Then, the 

same procedure delineated in Chapter 2 was followed to analyze the expression of CD8 antigen 

in T cells. Figure 3.2 shows the calibration plot and the data obtained for the buffy coat stained 

with anti-human mCD8 and IgG2B isotype control. 

 

 

 

 

 

Figure 3.1: Buffy coat (shown by arrow) separated from healthy blood using histopaque den-

sity gradient. 
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In healthy blood 2-11% of leukocytes are CD8 T cells.16 According to the flowcytometry 

results we obtained the percentage of CD8 T cell in leukocytes as 9.78%. Based on flow cytom-

etry results, we obtained average of 6595.7 receptors for CD8 and the average value we obtained 

for isotype was 510.8. 

3.3.2 Blood processing for CD8+ T cell enrichment 

In order to analyze the gene expression of T cells, first T cells needed to be isolated from 

blood with high purity.  Centrifugation methods like buffy coat separation, which was discussed 

previously will isolate all types of white blood cells. But affinity selection using CD8 mAb will 

allow to specifically isolate CD8 T cells from blood. For the initial studies healthy donor blood 

samples were used. For each sinusoidal channeled device ~ 2 mL of blood was used. Blood 

samples were processed at 25 µL/min flow rate. Figure 3.3 below illustrates the how blood is 

processed inside the sinusoidal channeled device, where blood enters the channels via inlet 

shown by an arrow in Figure 3.3 A. A zoomed in view of the inlet is shown in Figure 3.3 B. 

Figure 3.2: (A) Calibration curve generated with calibration beads. (B) Representative fluo-

rescence histogram data for buffy coat isolated from blood stained with APC conjugated 

IgG2B isotype (red trace), APC conjugated CD8 Ab (blue trace).  
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Blood will move through the channels and then move out from the device through the capillary 

as shown in Figure 3.3A. 

The architecture of the design is called the Z-configuration. Here, fluid will enter the selection 

bed through a single inlet channel composed perpendicular to an array of channels and exits also 

through a single outlet channel, which is also perpendicular to the channels. Previous studies 

have shown that, flow of the fluid throughout the device is also uniform in the Z-configuration 

and it has been shown that the flow through the inlet/outlet channels are higher than 2 mm/s 

which creates enough pressure to remove any air bubbles introduced during sample processing 

process.17 

Blood flow closer to the exit channel is shown in Figure 3.3 D. These microfluidic de-

vices are capable of processing blood samples quickly with 1 ml of blood processed in ~40 min. 

 

 

 

 

 

 

 

Images of the captured cells in the microfluidic device is shown in Figure 3.4. Cells iso-

lated on these devices could be used for cell enumeration and molecular analysis. Also, we 

stained the cells with Hoechst nucleic acid stain. Hoechst is a popular cell-permeant nuclear 

A B

C D

Figure 3.3: (A) Experimental setup for blood processing experiment, inlet and the out let are 

shown in arrows. (B) Zoomed in view of the blood inlet of the device. (C) Sample processing 

through the device (Close to the inlet). (D) Samples processing through the device close to the 

outlet.   
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counterstain that emits blue fluorescence when bound to dsDNA. Figure 3.4 (D)-(G) show 

images of stained cells that have been captured in the device.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Cell enumeration and staining    

Because Ab attachment was performed via the oligonucleotide with uridine residue, 

USER enzyme could be used to release cells from the device surface. The released cells were 

collected into a single well in a 96 well plate and the cells were stained with three different fluo-

rescent markers. Due to high affinity of DAPI (4′,6-diamidino-2-phenylindole) for DNA, cells 

stained with DAPI was used for cell enumeration. DAPI is a highly specific DNA stain that 

preferentially binds to AT regions of the DNA molecules. It is a blue fluorescent DNA stain that 

exhibits ~20-fold enhancement of fluorescence upon binding to AT regions of dsDNA. After 

A B C

D E

F G

Figure 3.4: Brightfield images of CD8+ T cells captured in the microfluidic device (A). Closer 

to the inlet. (B) Inside the sinusoidal channels (C) Closer to the outlet channels. (D)-(G) Flo-

rescent images of the Hoechst stained cells in the device.   
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staining, cells in the 96-well plate were imaged using fluorescence microscopy and finally the 

images were analyzed using ImageJ software with a custom written macro for cell enumeration. 

Many images are taken that covers all the areas of the well and later using a custom written 

macro in ImageJ (See Appendix 3) image of the complete well is created Figure 3.5 B). The 

cell enumeration was also performed using ImageJ software. 

 

 

 

 

 

 

The average number of cells counted from the macro was ~24,000 from ~2 mL of blood. 

(Based on DAPI staining). Two more dyes CD45 and CD8, were used to stain the released cells. 

CD45 is a transmembrane glycoprotein that is expressed on most nucleated cells of hematopoi-

etic origin. It has several isoforms, and hematopoietic cells express one or more of these 

A B

A CB

Figure 3.5: Cells released (and collected to a single well in a 96 well plate) from the microflu-

idic device after staining with (A) DAPI, (B) anti-human CD45 antibody, (C) anti-human CD8 

antibody (40x magnification). 

 

Figure 3 6: (A) DAPI stained cells imaged under (40x magnification). (B) DAPI stained cells 

in a well of a 96-well plate after processing all the images taken from ImageJ software for 

enumeration (All the cells were released to a single cell in the 96 well plate). 
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isoforms.18 The presence of CD45 distinguishes leukocytes from non-hematopoietic cells. Figure 

3.6 B shows the cells stained with CD45, which shows that leukocytes have been isolated on our 

microfluidic device.  

To further demonstrate the selectivity of the device, we stained released cells with CD8 

stain. Purity of cell isolation was calculated based on DAPI staining and CD8 staining. Calculated 

purity was 81.3 ±11.5%.  

3.3.4 Extra cellular vesicle (EV) isolation from plasma 

EVs are present in high abundance in body fluids, especially in plasma. Thus, plasma is 

a good source for isolating EVs. Use of plasma for the EV isolation has many advantages. Blood 

can be drawn via a minimally invasive liquid biopsy. Blood sample draws can be performed 

quickly, which is an important factor in a clinical situation especially in ischemic stroke diagnosis 

where time is the most critical factor.  

3.3.5 Plasma separation from blood 

First plasma was separated from blood by centrifugation. Blood was centrifuged at 300 

g for 10 min to remove cells from the supernatant. Next, the plasma sample was centrifuged 

again for 10 min at 1000 g to remove any insoluble material present. Figure 3.7 below shows 

steps involved in separating plasma from the formed components of blood. The plasma can be 

directly injected into the microfluidic device without any additional sample processing steps.  

 

 

 

 

 

A B

A

C

Figure 3.7: (A) Blood sample collected in a EDTA treated tube. (B) Plasma separation after 

centrfuging 300 g for 10 min. (C) After centrfuging the seperated plasma for 1000 g for 10 

min. 
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3.3.6 Fluorescent imaging of the captured EVs from plasma 

Because the size of EVs (30 nm – 1 m) are smaller than that of cells (~10 m), the 

dimensions of channels within the cell isolation device are not appropriate for EV isolation. It 

has been shown that for efficient isolation using these channels, at least one dimension of the 

microchannel must be close to average diameter of target that we are isolating (i.e., cells, CTC, 

EVs) to help induce cell-wall interactons.19 Even though the sinusoidal geometry can induce 

centrifugal forces to “push” cells toward the wall to induce cell-wall interactions, this would not 

occur for small particles, such as exosomes. Thus, only lateral diffusion would induce EV-wall 

interactions and to increase the number of potential wall interactions, the diffusional distance 

must be reduced. 

Hence, for isolating EVs we designed a microfluidic device that consisted of pillar struc-

tures. This device consisted of 3-beds that are serially connected with capillary ports of 360 m 

OD. Each bed was 2 mm wide and the length was 40.6 mm. Total length throughout the serially-

connected beds was 122 mm. The entire device had 15,202 circular micropillars with each pillar 

being 92 m in height, 117 m in diameter and a spacing between pillars of 10 m. Surface area 

and volume of this 3-bed device was 6.8 cm2 and 6.5 L respectively. Figure 3.8 shows the 

design of the microfluidic device we used for isolation of EVs from plasma. 

The architecture of the device was carefully designed to maximize recovery of the EVs 

while providing high throughput sample processing. Sample infused into the device will enter 

the affinity bed and EVs will diffuse laterally to interact with the monoclonal antibodies immo-

bilized on micropillar surfaces while at the same time driven hydrodynamically through the bed. 

Narrow inter-pillar spacing (~10 µm) and long bed lengths decrease diffusional distances and 

provide sufficient residence time, respectively, so that the EV recovery is favorable. 
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To check if the EVs can be actually captured on the modified devices, fluorescent mi-

croscopy was performed by staining EVs with Cy5 labeled CD8 Ab. Figure 3.9 below shows 

intensity scaled fluorescence images. Increase in fluorescence intensity was observed in the de-

vice modified with anti-CD8 mAb compared to the control, (device without anti-CD8 mAb), 

which reveals that CD8+ EVs have been captured on the microfluidic device.  

 

 

Figure 3.8: (A) Picture of CAD schematic showing the serial connection of three bed device 

with circular micro pillars. (B) Pillars of the device closer to the inlet – 10x magnification. (C) 

Pillars of device in the middle of bed 10x magnification. (D) Final device after assembly. 
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3.3.7 Releasing captured EVs from the device surface; TEM and NTA analysis  

TEM images of plasma isolated EVs are shown in Figure 3.10. These images reveal that 

EVs from plasma can be isolated on our microfluidic device that we designed. The same samples 

used for TEM analysis were analyzed via NTA to obtain the size distribution of EVs. However, 

the refractive index of the particles and the medium can influence the NTA detection limit.20 EVs 

typically have a refractive index of 1.37-1.39.21 Depending on the refractive index of the material 

the lower detection limit of  NTA might be ~10 nm for metal particles, around 30 nm for poly-

mers and ~40 nm for EVs. 

 

 

 

Figure 3.9: (A) Schematic diagram showing the steps involved in visualizing isolated EVs on 

the device. EVs isolated on a microfluidic device; EVs that has been affinity selected on the 

device stained with Cy5 labeled CD 8 secondary antibody. (B) Negative control (without CD8 

mAb on the surface). (C) Zoomed view of negative control (without CD8 mAb on the surface). 

(D) CD8 EVs captured from cell media. (E) Zoomed view of CD8 EVs captured from plasma. 
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3.3.8 NTA analysis of released EVs 

Released EVs were diluted appropriately and analyzed using NTA. Average size of EVs 

calculated by NTA was (115.3 ±13.9). Based on NTA results the total number EVs released from 

the 3-bed microfluidic device was (7.36 ±0.86) x 109/mL. As explained in Chapter 2, the release 

efficiency of EVs determined by releasing the EVs twice from the device using the USER en-

zyme. Calculated release efficiency (Figure 3.11) of EVs was (96.5 ±1.4) % (n = 5 readings per 

sample). Figure 3.11 B and C shows the TEM images of the EVs that are released during first 

and second release by incubating with the USER enzyme.  

 

 

 

 

 

 

97 nm

50 nm 200 nm

100 nm B C

D E F

A

Figure 3.10: (A) TEM image of the USER enzyme and the buffer used for the release. (B)-(F) 

TEM images of the EVs captured (via CD8 mAb) and released from the healthy donor plasma 

samples. 
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3.3.9 Sample processing and extraction of RNA 

Healthy donor blood samples and the plasma samples were processed via sinusoidal 

channel device and pillar device (Both devices modified with CD 8 mAb) to isolated CD 8 T 

cells and CD8 EVs, respectively. Once the samples were processed, on-chip lysis was performed 

to extract the RNA from isolated T cells and EVs as explained in Chapter 2. (From both on-chip 

lysis method and USER release we can acquire same amount of RNA, On-chip lysis yielded 340 

pg of RNA per chip and USER release yielded 317 pg) Figure 3.12 shows RNA profiles of total 

RNA (TRNA) isolated from cells and EVs. TRNA isolated from CD8+ T cells separated in gel 

electrophoresis showed typically observed TRNA profiles for eukaryotic cells with well pro-

nounced ribosomal RNAs larger and smaller subunits. Because the ribosomal bands (28S and 

Figure 3.11: (A) NTA results showing the number of particles released during first and second 

release. (B) TEM image of a first released sample. (Affinity selected on CD8 mAb modified 

device and released with USER enzyme). (C) TEM image of a second released sample (Affin-

ity selected on CD8 mAb modified device and released with USER enzyme). (D) Percentage 

of EVs released during the first and second release (n=3 and 5 readings per sample). 
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18S) are clear and the 28S band was approximately twice as intense as the 18S band, it is clear 

that the TRNA isolated from cells isolated on the devices are intact.  

Although the cellular mRNA has a size range of about 400 to 12,000 nucleotides, EV RNA show 

a size of <700 nucleotides.22-23 The RNA profiles that we obtained for EV also show these spe-

cific characteristics as shown in Figure 3.12. On average we isolated 5.5 ng of TRNA from cells 

from 2mL of blood and 3.3 ng from EVs from ~400 µL plasma. 

 

 

 

 

 

 

 

 

 

3.3.10 Droplet digital PCR (ddPCR)  

For evaluating gene expression for diagnosing AIS, we selected gene cluster “4” identi-

fied by Adamski, et. al, which consisted of 5 genes: FOS, VCAN, PLBD1, MMP9, and CA4. This 

gene panel showed statistically significant difference (p = 1.42 x 10-5) between AIS patients and 

control samples. As shown in Figure 3.12 below, we can see that even within healthy donors, 

there are differences between the gene expression profiles between these 5 genes.  

From healthy donor plasma the average RNA extracted was 3.3 ng. As stated in litera-

ture in EVs, 10% of RAN present in EVs are non-rRNA, and from this 25% of non-rRNA is 

long RNA which are > 100 nt. Approximately 10% of long RNA is coding RNA.24 Considering 

Figure 3.12: RNA profile of T cells (grey trace) isolated from blood and RNA profile (red) of 

EVs isolated from healthy donor plasma samples. 
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all these factors the amount of mRNA that could be isolated is ~8.25 pg. In the reverse tran-

scription reaction (cDNA synthesis using Protoscript II kit from NEB), 2 ul of RNA will be 

taken from 10 ul which yield 1.65 pg of cDNA. (Assumption: cDNA synthesis is 100% effi-

cient). This is ~6,022,000 mRNA molecules, assuming average length of mRNA in EV is 500 

nt with a molar mass of 330 g/mol. In the final step, that is dd PCR, 2 ul of cDNA is taken from 

20 ul of the reverse transcription reaction. Thus 602,200 mRNA molecules are used in the dd 

PCR reaction. Considering the 21,306 protein-coding genes in human genome25 (assuming all 

genes are equally expressed) from the RNA we extracted from EV, we will obtain ~ 28 copies.  

(The detection level for dd PCR which is ~0.2 copies /µL)26-27. 

  When designing the primes (Primer information are shown in Table 2.1) they were 

specifically designed close to poly-A tail and span the length of two exons, reducing the risk 

of amplifying genomic DNA through the intron.  

Although there are no studies comparing the mRNA of T cells and EVs, recent studies 

have indicated that EVs enriched with specific RNAs compared to the originating cells sug-

gestive of an active sorting mechanism.28-29 To study the correlation between mRNA profiles 

of T cells and EVs, dd PCR was performed. Figure 3.13 below illustrates the changes in the 

gene expression between EV and T cells based on dd PCR results. When correlation between 

the gene expression in EVs and T cells was studied in separate individual healthy donors, two 

samples showed a moderate positive correlation with Pearson correlation coefficients of 0.62 

and 0.56, another sample showed a poor correlation, while others showed a negative correla-

tion. Although we can see a correlation between the mRNA profiles between T cells and EVs, 
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(by only considering the 5 genes, PLBD1, FOS, MMP9, VCAN and CA4) more samples needed 

to be analyzed to study the correlation between T cell mRNA and EV mRNA.  
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Figure 3.13: (A) Heat map of gene expression in EVs isolated from healthy donor plasma 

samples based on dd PCR (Number of copies obtained from dd PCR were normalized to total 

RNA values. All the dilution factors were considered for normalizing the data to generate heat 

maps) (B) Heat map of gene expression in T cells isolated from healthy donor blood samples. 
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Figure 3.14: Box plots comparing the gene expression between T cells and EVs (A) PLBD1 

(B) FOS (C) MMP9 (D) CA4 (E) VCAN. 
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3.4 Conclusions 

CD8+ T cells and their EVs were successfully isolated from healthy donor blood and plasma, 

respectively. Sinusoidal cell isolation device was used for cell isolation,30 while pillared 3-bed 

device was used to affinity select EVs. The released cells stained with DAPI were enumerated 

and on average ~24,000 cells/mL of blood were isolated. Based on fluorescence images of CD45 

and CD8+ stained cells (immunophenotyping), the purity of isolated cells was 81.3 ±11.5%. 

TRNA isolated from CD8 T cells separated in gel electrophoresis showed typically observed 

TRNA profiles for eukaryotic cells with well pronounced ribosomal RNAs larger and smaller 

subunits. Based on RNA size markers, we concluded the RNA isolated from EVs ranged in size 

between 50 nt and 2,000 nt.  On average we isolated 5.5 ng of TRNA from cells from 2 mL of 

blood and 3.3 ng from EVs from ~500 µL plasma. We collected gene expression profiles for 

both CD8 T cells and EVs using ddPCR. Although we can see a correlation between the mRNA 

profiles between T cells and EVs, (by only considering the 5 genes, PLBD1, FOS, MMP9, 

VCAN and CA4) more samples needed to be analyzed to study the correlation between T cell 

mRNA and EV mRNA.  
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Chapter 4: Clinical application of microfluidic devices for stroke diagnosis 

4.1 Introduction 

Thermoplastics such as COP, COC, PMMA and PC have been widely used to produce 

microfluidic devices due to their low cost. Microfluidic devices used in previous sections for 

isolating EVs and cells were fabricated on COC thermoplastic via hot embossing. Cyclic olefinic 

copolymer (COP) is another thermoplastic that is increasingly used as a substrate material for 

microfluidics. This is due to the promising properties of COP including high chemical resistance, 

low water absorption, and ease of fabrication. COPs are based on cyclic olefin monomers and 

ethene.1 

The 3-bed microfluidic device, we used for previous studies, has a relatively narrow inter-

pillar spacing (~20 µm) and long bed length (122 mm total) but relatively large micropillars (100 

µm). At 5 µL/min, the 5.7 mm/s linear velocity results in a 41% simulated recovery. In order to 

process samples in a short time period with higher recovery, we used a 7-bed microfluidic device 

with high capacity. Short sample processing time will help to greatly reduce assay time, which 

is an important factor in developing ischemic stroke diagnosis assays. 

The 7-bed device shortens the bed length (23 mm) but decreases pillar size to 10 µm, 

yielding a 97% EV recovery at the same volume flow rate. This enables higher throughput for 

processing clinical samples with the 7-bed chip (10 µL/min and ~90% recovery) and timely sam-

ple processing that is critical for meeting the time constraints placed on AIS diagnosis. The 7-

bed chip provided an additional advantage that the surface area is ~6 times greater, enabling the 

capacity to enrich a high load of EVs (theoretical load of 2 x1011 hexagonally packed EVs with 

150 nm diameter).  
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Since high capacity device was fabricated on COP thermoplastic, properties of COC and 

COP were compared. For this purpose, 3-bed device was fabricated in COP and properties in-

cluding contact angle, UV absorbance, carboxylic acid density and ability to modify surface for 

affinity selection were studied.  

In order to check the applicability of developed method for detecting stroke patients, 

clinical samples (both healthy and ischemic stroke patient plasma samples) were analyzed using 

the 7-bed device and RNA was extracted for gene profiling. In addition to RNA profiling, TEM 

and NTA analysis were performed to determine any differences between EVs in ischemic stroke 

plasma samples and healthy controls. Finally, statistical analysis was performed to differentiate 

between the stroke patients and healthy controls from the analyzed clinical samples. 

4.2 Experimental 

4.2.1 3-bed device fabrication in COP thermoplastic 

The molding master was fabricated in brass mold via high-precision micro milling 

(HPMM) using a commercial milling machine. Polymer replicas of the mold master were pro-

duced using hot embossing into cyclic olefin polymer (COP) (Zeonor 1060R) using a Precision 

Press model P3H-15-PLX (Wabash MPI, IN). Polymer plaques were dried in an oven at 65 oC 

overnight prior to hot embossing. The optimized hot embossing protocol used in this study is 

briefly described below. The embossing fixture was heated to 145 oC and top and bottom platens 

of the precision press model are heated to 145 oC and 120 oC respectively. Next a force of ~3000 

lb is applied for 120 s before demolding the embossed device at 90 oC. COP cover plates which 

used for the devices were 1.2 mm in thickness.  

4.2.2 Optimization of thermal fusion bonding protocol for COP devices 

After hot embossing devices into COP thermoplastic, non-contact profilometry was per-

formed to confirm the correct pillar dimensions of the microfluidic devices. Then, thermal fusion 

bonding protocol was optimized. Varying bonding temperatures and bonding times were tested 
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to find out the best conditions for an optimum bonding. After bonding, non-contact profilometry 

was performed to determine pillar dimensions. This was performed by using ImageJ software 

via a custom macro. Optimized bonding conditions were used for subsequent experiments.  

4.2.3 Comparison of cyclic olefinic copolymer (COC) and cyclic olefinic polymer (COP) 

thermoplastics  

4.2.3.1 Contact angle variation  

Both COC and COP thermoplastics were used for the study. Small pieces of (2 cm x 2 

cm) thermoplastic were cleaned by sonicating in 10% Micro-90 for 5 min and then rinsed with 

IPA and nano-pure water. These pieces of thermoplastics were dried at 65 C overnight before 

measuring contact angle. Both pristine and UV-modified COC and COP were used for contact 

angle measurements which was performed using a VCA Optima instrument (AST products). A 

volume of 2 L nanopore water (18.2 M.cm at 25 C) was dispensed onto thermoplastic sur-

faces and an image of each droplet was captured immediately. Then the images were analyzed 

using the software provided by the manufacturer. The measurements were repeated three times 

at different positions. 

4.2.3.2 Carboxylic acid density measurements 

Carboxylic acid density of COC and COP thermoplastics were measured as reported pre-

viously.2 In brief, an in-situ incubation chamber (Bio Rad, Hercules, CA) was attached to sub-

strate’s surface and filled with 0.1% (w/v) Toluidene Blue O (TBO) in carbonate buffer (50 mM, 

pH =10.5). After 15 min, substrate was submerged in the same buffer for 15 min and then air 

dried. This step will remove any TBO molecules that are non-specifically attached to the sub-

strate surface. To desorb TBO molecules that were attached through the carboxylic groups, 40% 

acetic acid (d= 1.0196 g mL-1) was used. The volumes used for the desorption were collected to 

pre-weighed tubes and analyzed with a UV/vis spectrophotometer (Ultrospec 4000, Pharmacia 

Biotech) against a 40% acetic acid blank at TBO’s absorption maximum, which is 630 nm. A 
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calibration curve was generated using TBO standards in 40% acetic acid. For calibration curve, 

known amounts of TBO were directly added to the buffer solution. 

 

4.2.3.3 Optimization of UV activation protocol 

3-bed microfluidic devices made out of COP were bonded using the optimized protocol. 

For some COP devices, the cover plate and the microfluidic devices were UV/O3 modified before 

bonding. Other devices were first bonded and then UV/O3 modified for 13 min (254 /185 nm, 22 

mV/cm2). To verify the effectiveness of carboxylic group formation for different UV modifying 

protocols used, (first UV-modifying and bonding and first bonding and then UV-modifying) a 

fluorescently tagged oligo nucleotide was used. A 5’-amino, 3’-Cy5 oligonucleotide linker 

(5’NH2-C12-T8CCCTTCCTCACTTCCCTTTUT9-Cy5, HPLC purified, 1 mM stock in nuclease 

free water; Integrated DNA Technologies) was used for this purpose. First, oligonucleotide was 

diluted to 10 M in 20 mg/mL EDC in PBS and injected to microfluidic devices. Then the de-

vices were kept 2 h at room temperature before rinsing with 1% Tween20 solution, which was 

then replaced with 500 L PBS for imaging. The devices were then visualized using an inverted 

microscope (Zeiss 200 M) with a 10x objective (0.3 NA, Plan NeoFluar) equipped with XBO 75 

Xe arc lamp, single band Cy5 filter set (Omega optical), Cascade:1K EM-CCD camera (Photo-

metric), and an automated stage (MAC 5000 ,Ludl Electronic Products), all of which were com-

puter-controlled via Micro-Manager. Final images were background subtracted and analyzed us-

ing Image-J software. 

4.2.3.4 RNA extraction from COC and COP devices 

To compare the amount of RNA extracted from both COP and COC thermoplastics, 

plasma samples were processed through both devices and the extracted RNA was quantified by 

Tape station. 
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4.2.4 7-bed device stimulation studies 

A custom code for this model was programmed in Fortran 90, compiled with GFortran, 

and executed on a computer workstation. All the simulation studies explained in this chapter 

were performed by Dr. Matthew Jackson (Dr. Soper’s Lab, The University of Kansas). 

4.2.5 High capacity microfluidic device (7-bed microfluidic device) 

The 7-bed microfluidic devices used in this study were provided by Biofluidica, Inc. (San 

Diego, CA). Devices were fabricated in cyclic olefin polymer (COP) via injection molding 

(Stratec, Austria). COP cover plates of 1.25 mm thickness were used for these devices and for 

inlet and outlets, peek tubing was used. These tubing were attached to devices using epoxy glue 

to prevent any leakages during sample processing. 

4.2.6 7-bed device modification for affinity selection 

For modification of device surface for affinity selection of EVs same protocol was used 

as for 3-ded devices. Since the surface area of the device is higher than that of 3-bed device 

higher mass of the CD8 mAb was used for 7-bed device (considering the loss of Ab during the 

purification step). Thus, starting Ab concentration for the 7-bed device was calculated as 2 

mg/mL. 

4.2.7 Analyzing clinical samples with the 7-bed device, RNA extraction and droplet digital 

PCR 

Clinical samples (plasma samples) analyzed in this study was provided by Dr. Alison 

Baird at SUNY Downstate Medical Center. We obtained 10 clinical samples (5 samples were 

stroke patient samples and 5 were healthy controls). We performed a blinded study on these 

samples. These clinical samples were stored in the -80 C after separating plasma from collected 

blood. The devices were treated in the same way as we did for the 3-bed devices. To release the 

captured EVs for TEM and NTA analysis USER enzyme was used as described in previous 
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chapters. As described in the previous sections, PEG precipitation was performed for some clin-

ical samples. 

4.2.8 Statistical analysis 

We performed a statistical analysis using R-Studio software to find out the patient sam-

ples for this one-sided blinded study. Heat maps were generated and the Principle Component 

Analysis (PCA) was performed for the 10 clinical samples. 

4.3 Results and Discussion  

4.3.1 COP vs COP 

Cyclic olefin copolymer (COC) and cyclic olefinic polymer (COP) are two main thermo-

plastics that have been widely used for developing microfluidic devices. COC is a polymer that 

consist of ethylene and norbornene. As shown in Figure 4.1 COCs are obtained via copolymeri-

zation of cycloolefin with ethylene or -olefin.3 

 

 

 

Through its characteristic molecular structure COC offers wide range of grade variations 

in terms of flow properties and heat resistance.4 Thus, there are many COC thermoplastics avail-

able with different glass transition temperatures (Tg = 78 °C, 130 °C, 160 °C and 130 °C). There-

fore, depending on the application, appropriate material can be selected. Most importantly, COC 

is easier to emboss. COC has a lower density compared to PMMA.4 The water absorption of 

COC is <0.01% and that is 10 times lower than PMMA. Hence, the relative humidity changes in 

environment will not significantly affect devices that are embossed on COC.  

Figure 4.1: COC structure and synthesis pathway via copolymerization of cycloolefin with 

ethylene or -olefin. 
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Cyclic olefinic polymer (COP) is another thermoplastic that is increasingly used as a 

substrate material for microfluidics. This is due to the promising properties of COP including 

high chemical resistance, low water absorption, and ease of fabrication. COPs are based on cyclic 

olefin monomers and ethene.1 Slightly different materials are obtained depending on the cyclic 

monomer and the polymerization process used.5 Mechanism involved in synthesis of COP is 

called as ring-opening metathesis polymerization of cyclic monomers followed by hydrogenation 

which is shown in Figure 4.2.5 Low water absorption of COP provides stability in changing en-

vironmental conditions.6  

 

 

 

4.3.2 Optimization of annealing protocol for COP devices 

As explained in Chapter 2, embossed devices and cover plates are bonded by thermally 

fusion bonding. Considering the Tg of 99 °C, we tried different protocols for bonding. Initially 

bonding was performed at 103 °C for 30 min using a high pressure (provided by the clips). Alt-

hough perfect bonding was obtained by this protocol, there was no pillar spacing due to the high 

pressure as shown in Figure 4.3 A. Next, bonding was performed at 99 °C for 30 min, but there 

were many unbonded pillars under these conditions (shown by arrows in Figure 4.4 B). There 

were still some unbonded pillar regions, even the bonding was continued for another 30 min. 

(Figure 4.4 C). Next, bonding was performed at 103 °C for 30 min, but with lower pressure and 

these conditions yielded good bonding with good pillar spacing as shown in Figure 4.3 D. Thus, 

the optimum bonding conditions were concluded as annealing at 103 °C for 30 min with lower 

pressure. 

Figure 4.2: COP structure and synthesis pathway (ring-opening metathesis polymerization). 
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4.3.3 Contact angle variation 

Wettability of the thermoplastics is a measure of its hydrophobicity. The hydrophobicity 

of these thermoplastics can be problematic in microfluidic devices. To decrease surface hydro-

phobicity several techniques can be utilized. Low-pressure plasma7, oxygen plasma, UV/O3 and 

chemical treatment are some of those.8-11 We used UV/O3 treatment to increase the hydrophilicity 

of thermoplastics by creating carboxylic acid groups on the surface. In order to compare water 

contact angle of COC and COP, well cleaned thermoplastic pieces were used. Based on the con-

tact angle measurements, pristine COC and COP were hydrophobic. Upon UV/O3 treatment the 

contact angles decreased, indicating the increased hydrophilicity. Variation of contact angles of 

COC and COP before and after UV/O3 treatment are shown in Figure 4.4 and Table 4.1. 

Figure 4.3: Microscope images of the devices bond at (A) 103 °C for 30 min with high pres-

sure. (B) 99 °C for 30 min with high pressure – arrows show the non-bonded pillars. (C) 99 °C 

for additional 30 min with high pressure – arrows show the non-bonded pillars. (D) 103 °C for 

30 min with less pressure. 
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Table 4.1: Contact angle variation for COC and COP  

Thermoplastic Contact Angle (o) 

Pristine (n=5) UV/O3 modified (22 mW/cm2 for 13 min; n = 5) 

COC 85.60 ± 2.52 33.68 ± 3.15 

COP 79.73 ± 1.44 35.55 ± 3.89 

 

4.3.4 Carboxylic acid density measurements 

Since EDC/NHS coupling reaction was utilized to modify device surfaces, carboxylic 

acid density on the surface is an important factor that need to be tested. To determine carboxylic 

acid density on the COP and COC surface Toluidene Blue O (TBO) assay was performed. TBO 

is a dye that electrostatically binds to aliphatic or aromatic carboxylic acid due to the charge 

when deprotonated at high pH values like 10.5.12-13  

The mechanism taking place during the TBO assay is shown in Figure 4.5. After incuba-

tion with TBO, polymer substrates were thoroughly rinsed in carbonate buffer to remove any 

excess dye molecules on the surfaces. TBO molecules that are attached to carboxylic groups on 

surface are released by 40% acetic acid. Here 40% acetic acid was selected since higher concen-

trations of acetic acid may cause dissolution of thermoplastics. However, 40% acetic acid can 

remove any photo-fragments generated by scissoring of the polymer backbone that can take place 

during UV/O3 treatment.2, 14-15 

COC pristine COP pristineA COC UV/ozone C COP UV/ozoneB D

Figure 4.4: Contact angle variation of COC and COP thermoplastics; (A) COC pristine (B) 

COC UV/O3 modified. (C)COP pristine. (D) COP UV/O3 modified.  
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After releasing surface-bound TBO, UV-Vis spectroscopy was used to determine TBO 

molecules bound to surface using a calibration curve (considering factors including volume, sur-

face area and densities of solutions used). For both pristine COC and COP, TBO assay back-

ground values showed 0.69 ± 0.06 nmol/cm2 and 0.97 ± 0.17 nmol/cm2, respectively. After 13 

min of UV/O3 modification, carboxylic acid densities were 34.88 ± 7.10 nmol/cm2 and 34.39 ± 

8.21 nmol/cm2 for COC and COP, respectively. Repeated UV/O3 modification of the COP ther-

moplastic for an additional 13 min showed no significant increase in COOH groups as shown in 

Figure 4.6. Based on the results we can see that the carboxylic acid densities of both COC and 

COP thermoplastics are same. Thus, same number of mAbs can be immobilized on both thermo-

plastics. 

 

 

 

Figure 4.5: Schematic representation of steps involved in TBO assay for determination of 

carboxylic acid densities on COP and COC surfaces. 
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4.3.5 Optimization of UV activation protocol 

Since carboxylic group formation on the device surface is performed via UV/O3 treat-

ment it’s important to compare the optical properties such as UV absorbance and transmittance 

in the 254 nm range (Since it is the wavelength that we use for UV/O3 treatment). Moreover, 

COC (75 m) and COP (1250 m) cover plates we used in these studies are different in thick-

nesses which can also affect the UV absorbance and transparency. Thus, UV absorbance meas-

urements were performed using two cover plates that we used in assembling the devices. Figure 

4.7 shows the absorbance of COC and COP cover plates. 

 

 

 

 

 

 

 

Figure 4.6: (A) Calibration curve for TBO in 40% acetic acid measured at TBO’s absorption 

maximum, 630 nm. For the calibration curve, known amounts of TBO were directly added to 

the buffer solution (B). Carboxylic acid densities calculated from TBO for COC and COP 

thermoplastics; red- COC, yellow-COP. 

Figure 4.7: UV absorbance of COP and COC cover plates used for device assembly; red trace 

- COP, blue trace- COC. 
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The UV absorbance of COP cover plate is higher than that of COC cover plate which can 

be problematic in carboxylic acid group formation via UV/O3 treatment. We used fluorescently 

tagged oligo nucleotide to check the UV modification efficiencies of both COC and COP devices. 

This 5’-amino, 3’-Cy5 oligonucleotide will attach to the carboxylic acid groups on the device 

surface via EDC coupling reaction, which is similar to what’s taking place during mAb attach-

ment. Thus, the fluorescent intensity will represent the efficiency of immobilization of the device 

surface. 

 First, COP devices were thermally bonded, and UV/O3 modified, and efficiency was 

determined. Next, devices and cover plates were UV/O3 treated separately and then thermally 

boned. Figure 4.8 shows the results obtained for COC and COP UV modification efficiencies. A 

negative control was performed without EDC coupling reagent. 

Based on the results, for COC there is a significant difference between negative control 

and devices that were thermally bonded first and then UV/O3 treated. However, for COP the 

devices, that were thermally bonded and then UV/O3 treated showed a less intensity compared 

to devices that were UV modified first and then thermally bonded. Lower efficiency in thermally 

bonded and UV modified devices may be due to the high UV absorption of COP cover plates. 

Hence, for subsequent experiments COP cover plates and devices were first UV/O3 treated and 

then thermally bonded. The devices were surface modified on the same day.  
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4.3.6 RNA extraction from COC and COP devices 

Once the COC and COP 3-bed devices are assembled and modified using the CD8 mAb, 

plasma samples were processed through these devices separately and RNA was extracted via on-

chip lysis to quantify the RNA isolated on these two types of thermoplastics. The quantity of 

isolated RNA from both thermoplastics did not show any statistical difference with a p-value of 

0.84357 (at 95% confidence limit). This result is also supported by the fact that the carboxylic 

acid densities of both thermoplastics are similar to each other. 
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Figure 4.8: (A) Back ground corrected florescence images for COC and COP devices. (B) 

Calculated florescence intensities of the images (red - negative control without EDC, yellow 

with EDC, average of 2 devices, 9 measurements per device). 

Figure 4.9: Quantification of RNA isolated on COC and COP devices (n=5). 
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4.3.7 7-bed device stimulation studies 

One of the major drawbacks of microfluidic devices is the low sample processing speeds 

which takes long analysis time. This is a major disadvantage when developing assays in which 

time is a critical factor. For example, a recently EV affinity isolation microfluidic device was 

reported, which used 3-dimensional herringbone nanopatterns, operated at a volume flow rate of 

0.5 µL min-1, which would require 400 min (6.7 h) to process a volume of 200 µL of plasma.16 

As discussed previously, since there is a short time window of ~4 h for ischemic stroke 

treatment sample processing has to be quick. The 3- bed device that was used in the initial eval-

uation of our method yield higher recoveries at low flow rates, (the recovery is ~80% at 2.1 

l/min) which means long time periods are required for sample processing. To overcome this 

problem and process the samples in a short time with higher recoveries we developed a high 

throughput microfluidic device. Once the device was designed simulation studies were per-

formed to evaluate EV recovery as a function of flow rate. 

Initial simulation analysis performed on this 7- bed device design is shown in Figure 4.10. 

Based on simulation studies, performed on 3-bed device at 5 µL/min the predicted EV recovery 

is 42%. But the new 7 bed device can process samples at 20 µL/min, which is 4 times faster than 

the flow rate of 3-bed device and still can give a recovery of ~65%. Figure 4.11 B below com-

pares the calculated samples processing time for 3- bed and 7-bed device. As shown in Figure 

4.11 B, compared to 3-bed device the sample processing time can be greatly reduced by using 

the new design with 7-bed device. Thus, in this study, 7-bed devices were used for stroke patient 

sample analysis.  
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4.3.8 Device design of 7-bed device  

 The device contained 7 beds with diamond shaped pillars. Pillars are 50 µm in height 

and 50 µm in width. The spacing between the pillars is 10 µm. Each bed is 23.3 mm long and 

3.6. mm in width, which is shorter compared to the bed length of 3-bed device (122 nm). The 

longer bed length but relatively larger micropillars (100 µm) and narrow inter-pillar spacing (10-

20 µm) of 3-bed device results in relatively low EV recovery (~42%) at 5 µL/min (5.7 mm/s). 

But 7-bed device shortens the bed length (23 mm) but decreases pillar size to 10 µm, yielding 

only 0.19 mm/s at the same flow rate and 97% EV recovery. This enables higher throughput for 

processing clinical samples with the 7-bed chip (10 µL/min and ~90% recovery) and timely sam-

ple processing that is critical for AIS diagnosis. The 7-bed device provides an additional ad-

vantage that the surface area is ~6 times greater, enabling the capacity to enrich a high load EVs 

(theoretical load of 4.4 x 1011 hexagonally packed EVs with 100 nm diameter). High load of EVs 

in these 7-bed devices will help to increase the total EV mRNA that can be isolated from the 

devices. Table 4.2 below compares some parameters of 3-bed and 7-bed device. 

Figure 4.10: Stimulation studies on 7- bed device - EV recovery as a function of flow rate (A) 

Monte Carlo simulation results for the 7-bed device. Courtesy of Dr. Matt Jackson (B) Calcu-

lated sample processing time for 3 bed device – blue trace (5 µL/min) and 7 bed device- red 

trace (20 µL/min).  
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Table 4.2: Comparison between 3-bed device and 7-bed device 

 

7-bed device design and SEM images of the pillars are shown in Figure 4.12. There are 

inlet and outlet ports where we connect the PEEK tubing to inject the samples. The inlet channel 

is further directed into 7 channels that are connected to each bed separately as shown in Figure 

4.12 B. This device is made of COP and was purchased from BioFluidica Inc. which was already 

assembled.  

An additional advantage of this device design is that it can be manufactured in a high 

production mode at low cost using injection molding. Injection molding is another commonly 

used fabrication technique which is popular due to its short fabrication cycle times.17 In injection 

molding, pellets of COP are put into the hopper of the injection molding machine and are trans-

ported in the mold direction where they are simultaneously melted at a high temperature. The 

melted polymer is then injected with a high pressure against the mold that is maintained at de-

molding temperature. After that a constant pressure is applied to COP and then sample is cooled 

down and de-moulded.1 Figure 4.11 E shows the injected molded device after assembly. 

 

 

 

 

 

Metric 3-bed device 7-bed device 

Number of pillars 15,202 1,475,712 

Surface area (bed with pillars) /cm2 6.8 38.5 

Internal volume / µL 6.5 22.4 

EV capacity (Considering average size of 100 nm) 7.8 x 1010 4.4 x 1011 
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4.3.9 7-bed device surface modification 

A fluorescently tagged oligo nucleotide was used to check the surface modification effi-

ciency of the 7-bed device. This 5’-amino, 3’-Cy5 oligonucleotide will attach to the carboxylic 

acid groups on the device surface via EDC coupling reaction, which is similar to what’s taking 

place during mAb attachment. Thus, the fluorescent intensity will represent the efficiency of 

immobilization of the device surface. As the negative control, a reaction was performed without 

EDC coupling reagent to compare the fluorescent intensities, the devices were imaged via fluo-

rescence microscopy and then intensity scaled (based on the blank) using ImageJ software before 

comparing the fluorescent intensities. 

Results obtained are shown in Figure 4.12. We observed an increase in the fluorescent 

intensity in the device with EDC coupling reagent compared to the negative control (Figure 4.12 

A and Figure 4.12 B) which indicates that the EDC coupling reaction can be successfully per-

formed on the 7-bed device surface. 

Figure 4.11: 7-bed microfluidic device design (A) Picture of 7-bed device showing the distri-

bution channels and the diamond shaped micro pillars on the device surface. (B) Distribution 

channels to each bed. (C) SEM images of the mold: Distribution channels. (D) Micro pillars 

in the beds. (E) Final assembled device with PEEK tubing. 
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4.3.10 Analyzing clinical samples with the 7-bed device 

For the initial studies we received 10 clinical samples (5 ischemic stroke patient samples 

and 5 healthy controls) from SUNY Downstate Medical center. (Information on the clinical sam-

ples are shown in Appendix 4). We performed a blinded study for these 10 samples. EVs were 

isolated using the 7-bed devices which were surface modified with CD8 mAb. After processing 

samples RNA was extracted from isolated EVs. For randomly selected 4 samples, NTA and TEM 

analysis were performed. Figure 4.13 below shows the TEM images of EVs isolated from clinical 

samples. Based on the TEM results no size difference in EVs was observed in these four samples. 

A B

Figure 4.12: Surface modification test for 7-bed device with Fluorescently tagged oligo nu-

cleotide; Background subtracted fluorescent images processed via ImageJ software (A) Nega-

tive control without EDC. (B) With EDC coupling reagents.  
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4.3.11 NTA analysis of clinical samples 

To quantify the number of EVs in each sample NTA was performed and the results ob-

tained are shown in Figure 4.14. In a recent study performed by Yvonne Couch et.al, they showed 

that the EV number, but not size is significantly increased in acute stroke patients when compared 

to age-matched controls (n=38, p<0.05).18 Figure 4.14 below shows the results they observed 

from NTA. 

 

 

 

 

 

 

100 nm
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100 nmA B

C
D

Figure 4.13: TEM images of clinical samples (A) Sample 1 (B) Sample 4 (C) Sample 6 (D) 

Sample 8. 

 

Figure 4.14: (A) Average distribution of vesicle size and number in the sera of stroke patients 

<24 h post stroke compared to age-matched controls (Detected by NTA). (B) NTA revealed 

an increase in number of vesicles per milliliter (Reproduced from reference 18). 
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According to NTA results, sample 4 and 6 showed higher number of particles compared 

to other two samples. EV numbers in sample 4 and 6 were 50.8 x 109 particles/mL and 17.1 x 

109 particles/mL respectively and sample 1 and 8 contained 5.41 x 109 particles/mL and 4.35 x 

109 particles/mL respectively (Figure 4.15). Thus, sample 4 and 6 may be stroke patient samples.  

The average sizes observed were 281.4 nm, 157.7 nm, 151.1 nm and 200.9 nm for samples 1,4,6 

and 8 respectively.  Moreover, if we consider the EV numbers we released from 3-bed device 

(2.94 ± 0.48) x10
9 
particles/mL), more EVs can be isolated using the 7-bed device. 

 

 

 

 

 

 

 

 

4.3.12 PEG precipitation vs. affinity selection 

PEG precipitation is a currently used method for EV isolation. However, inability to iso-

late specific type of EVs is a major disadvantage of PEG precipitation over affinity-based isola-

tion of EVs using microfluidic devices. In order to compare EVs isolated by PEG and affinity 

based microfluidic device, sample 4 was selected and PEG precipitation and affinity selection 

were performed. Isolated EVs were analyzed via TEM and the results obtained are shown in 

Figure 4.16. 
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Figure 4.15: Number of EVs detected from NTA for clinical samples 1,4,6 and 8. (EVs were 

affinity selected by CD8 mAb and released with the USER enzyme). 
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TEM results show the difference between the EVs that have been isolated from two meth-

ods. PEG precipitation showed a wide size range of EVs in the images. But EVs that isolated 

from affinity selection showed a narrow size range. NTA analysis of the EVs isolated from these 

two methods also supported this fact. As shown on Figure 4.16 A, for PEG EVs we can see a 

wide size distribution with an average EV size of 230.4 ± 109.8 nm, while for affinity selected 

EVs a homogeneous size distribution was observed with an average size of 157.8 ± 10.3 nm.  

 

 

 

 

 

 

 

A B C

E FD

Figure 4.16: TEM images of EVs isolated from (A), (B) and (C) Microfluidic device via af-

finity selection; (D), (E) and (F) via PEG precipitation. 

 

Figure 4.17: NTA results showing the different size distribution of EV isolated from: (A) Red 

trace- PEG precipitation, Blue trace- Affinity selection (B) Number of EVs isolated from Red 

trace- PEG precipitation, Blue trace- Affinity selection.  
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Total number of EVs isolated from PEG precipitation was (13.5 ± 1.7) x1010 particles/mL 

while from affinity selection (5.08 ± 0.4) x1010 as shown in Figure 4.16 B. Higher number of 

EVs isolated from PEG precipitation is due to non-specificity of PEG precipitation compared to 

the affinity-based isolation of EVs. PEG will precipitate all types of EVs present in plasma sam-

ples while affinity isolation only selects a sub population of EVs (In this study only CD8 EVs 

will be isolated). Furthermore, PEG precipitation yielded more TRNA than anti-CD8 microflu-

idic enrichment. 

 

 

 

 

 

 

 

 

RNA extracted from both methods were reverse transcribed and then analyzed via droplet 

digital PCR for gene expression analysis and the results are shown in Figure 4.17 B. Gene ex-

pression profiling of RNA extracted from these two methods were different from each other. The 

combination of wider EV size distributions, heterogenous EV morphology, and different mRNA 

profiles for PEG precipitation bolsters the premise of microfluidic affinity-enrichment, which 

targets a unique EV subpopulation rather than an ensemble average of all EVs in plasma. This is 

particularly critical for AIS diagnosis as the mRNA profiles outlined by Adamski, et al. are 

unique to specific leukocyte subpopulations (i.e., CD8 T-cells).19 

A B

Figure 4.18: (A) RNA profiles of EV isolated from PEG precipitation and affinity selection. 

(B) Heat map showing the gene expression of EVs isolated from PEG precipitation and affinity 

selection. 
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4.3.13 Gene expression profiling of clinical samples 

The foremost purpose of developing the affinity based microfluidic device for isolating 

CD8+ EVs from plasma is to analyze the EV mRNA as a biomarker for ischemic stroke diagno-

sis. Thus, the RNA extracted from 10 clinical samples were analyzed via droplet digital PCR 

after reverse transcription of RNA to cDNA. 

For evaluating gene expression for diagnosing AIS, we selected gene cluster “4” identi-

fied by Adamski, et. al, which consisted of 5 genes: FOS, VCAN, PLBD1, MMP9, and CA4. This 

gene panel showed statistically significant difference (p = 1.42 x 10-5) between AIS patients and 

control samples. Figure 4.19 shows the heat map created for gene expression for the 10 clinical 

samples that we analyzed in this study.  

But only based on this heat map, it’s hard to identify the stroke patient samples. Statistical 

analysis was then performed to differentiate the stroke patient samples from healthy controls. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Heat map showing the gene expression of 10 clinical samples and average of 

the healthy donor plasma samples.  
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4.3.14 Statistical analysis 

Principle Component Analysis (PCA) was used to differentiate the stroke patient samples 

from healthy controls. PCA is a statistical method that is used to summarize the information in a 

data set described by multiple variables. PCA is mainly performed to identify the hidden pattern 

in a data set, to reduce the dimensionality of the data set and to identify the correlated variables. 

PCA reduces the dimensionality of data with a large set of variations which is achieved by trans-

forming the original data set into a new small set of variables without losing the most important 

information in the original data set and these new variables are called as principle components.20  

When PCA results is represented graphically, if there’s correlation between the data sets those 

data points would be grouped together in the plot while the data points with less correlation will 

be grouped away. R studio software was used in this study for statistical data analysis. Figure 

4.20 shows the results of the statistical analysis we performed on the clinical samples. All clinical 

samples together with 6 known healthy controls were analyzed together. 

Based on the PCA results, samples grouped with known healthy donors were categorized 

as healthy controls, and samples grouped away from healthy samples were classified as AIS 

patient samples. Hence, samples 1, 3, 5, 8 and 9 identified as healthy, while 2, 4, 6, 7, and 10 

were identified as AIS.  

These results showed 80% success in correctly identifying patient status, where samples 

number 7 and 8 were misidentified. While these obtained results are promising, a larger pool of 

samples clearly must be analyzed to obtain clinical sensitivity and specificity for this assay. By 

analyzing more stroke patient samples and more gene panels based on CD 15 neutrophils more 

accurate results could be obtained from this assay. But as an initial study we were successful in 

developing a point-of-care test which only need few mililiters of blood to accurately identify 

ischemic stroke patients based on gene expression of EVs. Since, currently there is no molecular 

diagnostic test for ischemic stroke our method would be well suited to be utilized in clinical setup 
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that provide results quickly, within a short time window for effective treatment of ischemic 

stroke. 

Sample size required in this diagnostic test was analyzed by Dr. Alision Baird at SUNY 

Downstate medical Center at New York. Based on their studies, the required sample size for the 

stroke and controls groups for detecting an effect of 0.07 with 95% confidence and 80% power 

for an AUC of 0.80 is 199 subjects.21 Thus, by analyzing more samples we can increase the 

accuracy of this assay. 

4.2.15 Assay modification 

Analysis time for all the steps involved in the assay was ~3h, including plasma prepara-

tion, EV affinity-enrichment, mRNA extraction, RT, and preparation and execution of ddPCR. 

This timeline is shorter than the 4.5 h therapeutic window and could allow for rtPA administra-

tion to the patient and ultimately improving patient recovery after AIS. However, we started to 

look at modifications to reduce the total assay time. Modifications that we’re suggesting for re-

ducing the assay time will be discussed in detail the future directions section (Chapter 5). 
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4.4 Conclusions 

EVs from clinical plasma samples were affinity isolated on an CD8 mAb modified sur-

face of a 7-bed device owing to the high capacity of the bed and ability to provide high sample 

processing speed. The NTA results show much wider size range of PEG precipitated EVs when 

compared with affinity selected EVs. The amount of isolated TRNA was 4.5 ng and 15.1 ng for 

CD8 EV and PEG isolated EVs, respectively. The mRNA profiles obtained from CD8 EV 
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Figure 4.20: (A) Heat map analalysis of clinical samples (marked with numbers) and healthy 

donors (identified with letters). (B) principal component analysis for clinical samples 

(identified with numbers) and healthy donors (identified with letters). 
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showed gene expression that is unique to the CD8 T-cell population, which according to Ad-

amski, et al. is the subpopulation of leukocytes representing gene expression profile informative 

of AIS event.  

The healthy samples previously analyzed were used as a control sample to differentiate 

between the stroke and healthy samples from clinical cohort. Normalized to ng RNA results from 

ddPCR were used to generate heat maps of gene copy number. Based on PCA, samples that are 

grouped together with the known healthy donor samples were categorized as healthy controls 

and the samples that are grouped away from the healthy samples were identified as ischemic 

stroke patient samples. Healthy controls were identified as sample# 1, 3, 5, 8 and 9 while sample 

# 2,4,6,7, and 10 were identified as coming from stroke patients. We were able to identify 80% 

samples correctly. Sample #7 and #8 were misidentified. It is clear that larger pool of samples 

must be analyzed; however, obtained results are very promising. 
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Chapter 5: Summary and future directions 

5.1 Summary 

Liquid biopsies are generating a significant amount of interest in the medical and biological 

communities due to the minimally invasive nature of acquiring these biomarkers and the fact 

that they can enable precision decisions on managing a variety of diseases, including the on-

cology and non-oncology-related diseases.1-2 EV isolation from plasma and gene expression 

analysis represents a novel idea for the development of a diagnostic test for AIS.  The micro-

fluidic platform presented here could serve as an attractive tool to assist in developing such a 

diagnostic test for AIS in a point-of-care format due to the fact that it has the capacity to isolate 

the disease-associated EVs in a short time period to allow for subsequent expression profiling 

of their mRNA cargo. The assay based on mRNA expression profiling offers benefits of shorter 

latency time than for proteins. Therefore, AIS can be detected shortly after the stroke event 

allowing for more patients to receive therapy, including tissue plasminogen activator therapy.  

We successfully developed a microfluidic device that is capable of affinity selecting CD8+ 

EVs and efficiently releasing the EVs for downstream applications. Our results indicated that 

there are similarities in expression profiles between cells and the EVs they produce. Compared 

to PEG precipitation isolation methods of EVs, our methodology is more advantageous because 

the affinity selected CD8+ EVs represent the population of interest and molecular data are not 

obscured by mRNA from background EVs. Isolation of all EVs using ultracentrifugation for 

applications where molecular analysis is a part of the diagnostic assay, (i.e., profiling of EVs 

mRNA) can be compromised as the abundance of background EVs in plasma can confound 

detection of the targets of interest. 

The mRNA extracted from the isolated CD8+ EVs was successfully used in molecular 

profiling via ddPCR in which 5 genes were used aiding in the development of the diagnostic 

assay for AIS. In the future, we will introduce a larger gene panel in the testing as identified 
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by Adamski et al. Also, to improve test positivity (i.e., clinical sensitivity) analysis of CD15+ 

EVs released by CD15+ neutrophils will be performed following gene expression as these 

granulocytes were also identified to be another major source of markers in response to AIS.3 

Presented data illustrate the advantages of affinity selection of the desired EVs by targeting 

specific antigens, such as CD8 on their surface as opposed to general affinity selection targeting 

the tetraspanin protein family such as CD9, CD63, CD81 markers.  

Technologies, such as microfluidics, that can isolate EVs employing affinity-purification 

methods hold promise of being adaptable to clinically relevant applications. Microfluidics offer 

the potential for high EV recovery at high throughput for a wide range of sample volumes (a 

few µL to several mL of plasma) with the additional benefit of automation and system integra-

tion. 

On average 1.94x1010 particles/mL were detected following EV isolation and release from 

the microchip from stroke patients’ plasma samples. An average size of the CD8+ EVs isolated 

was 157.8 ±10.3 nm. Gene expression analysis performed via droplet digital PCR revealed that 

for the selected gene panel (PLBD1, MMP9, VCAN, FOS, CA4), there was no difference in 

mRNA expression profiles between cells and the EVs they generate when both were isolated 

either from cell culture and medium, respectively, or blood and plasma of healthy donors, re-

spectively.  

In a blinded study performed for healthy and AIS patient samples, we correctly identified 

80% stroke patient samples and healthy samples. Processing 100 µL of the plasma sample took 

20 min for the high capacity 7-bed device while achieving a ~97% recovery when operated at 

5 µL/min, but a 20 µL/min flow rate, while reducing recovery to around 80%, will reduce the 

processing time to 5 min for the enrichment step. Analysis time for all the steps involved in the 

assay was ~3 h. The assay consisted of plasma preparation, EV affinity isolation and release, 

mRNA extraction, RT, and preparation and execution of ddPCR. The assay time was shorter 
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than the 4.5 h effective therapeutic time window for recombinant tissue plasminogen activator 

administration to the patient and ultimately providing high chance of recovery. 

To further refine our assay, in the future we envision normalization of the gene expression 

data to the EV count. For that to be accomplished, EVs can be isolated and released from the 

surface using mAb that is immobilized to the surface via a coumarin-based photocleavable 

linker enabling release of EVs within 2 min by exposing to LED light4 and counted in a label-

free fashion using an in-plane nanopore sensor. The coumarin-based photocleavable linker 

yielded ~90 % of release efficiency of EVs from 2 min LED light exposure with minimal per-

turbation on the mRNA EV cargo. 

5.2 Future directions 

Although results reported here are very encouraging, more extensive studies are needed 

with a larger cohort of patients’ samples and healthy donors to clearly determine receiver op-

erating characteristics for the assay using EV derived mRNA expression. With larger sample 

numbers clinical sensitivity and specificity of the assay can be determined with higher confi-

dence.  

Determining the time of appearance of EV mRNA markers in plasma samples follow-

ing the stroke event is another important factor that still needs to be analyzed as well. For this 

purpose, an animal model (pre-clinical model) could be used, which will be performed in col-

laboration with Dr. Frank C. Barone at SUNY Downstate Medical Center at New York. Using 

mice as an animal model, and following middle cerebral artery occlusion or photochemically 

induced stroke (Photo thrombosis model), blood from mice can be withdrawn at different time 

points following event onset.5-7 EVs could be isolated via the microfluidic device we developed 

and mRNA analysis performed to determine kinetics of the EVs release to the blood in refer-

ence to stroke event. We will specifically look at the volume of plasma required at each time 

point and perform mRNA expression profiling to determine mass requirements for the gene 
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expression profiling and if there is a latency time for marker appearance that is gene dependent, 

respectively. 

In addition to these 5 gene panel used in this study there are many other genes in the 

CD8 cells/EVs that could be used to increase assay accuracy in detecting stroke patients.3 Fur-

thermore, CD15 granulocytes have also been found to be a major source of expression changes 

in ischemic stroke. In a study performed by Adamski et al., they showed that 14 genes in CD 

15 granulocytes were upregulated and a CD15 + granulocyte-derived 3 gene cluster consisting 

of CA4, MMP9, and NAIP showed high accuracy for ischemic stroke detection with AUC of 

0.813 and was 100% sensitive in a validation cohort. Thus, use of a CD15+ gene panel together 

with the CD8+ gene panel used in this study could yield a highly sensitive and accurate assay 

for ischemic stroke detection. Additionally, this assay can be utilized to differentiation is-

chemic stroke from hemorrhagic stroke if the gene expression changes taking place during a 

hemorrhagic stroke is known. 

Initial studies have been performed on developing a heterobifunctional 7-aminocouma-

rin photocleavable (PC) linker for immobilizing Abs to surfaces that enables biomarker release 

using visible light (400-450 nm) with in 2 min (Figure 5.1). By immobilizing the mAb through 

this linker we can release the captured EV and then analyze the EV mRNA for gene profiling. 

This will further reduce processing time associated with the assay. Currently, we are using out 

hetero-bifunctional linker, which releases EVs via an enzymatic reaction. The reduction of re-

lease time from 1 h to 2 min will further reduce assay processing time. Release of intact EVs 

and enumerating them will provide a simple method to normalize our mRNA expression data.  
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Gene expression data normalized to the total EV count rather than normalizing to quan-

tified TRNA would eliminate the need for the TRNA quantification step using gel electropho-

resis performed by the Tapestation. The EV counting can be done online in conjunction with 

the EV release from the capture surface. For that to be accomplished, EVs must be released 

from the device with the EVs counted electrically with an integrated nanopore sensor,8 which 

can also be mass produced at low cost in thermoplastic substrates and integrated directly to the 

A B 

Figure 5.1: (a) Process flow chart showing the steps and time required for our EV mRNA 

expression profiling assay that uses a microfluidic for EV isolation and subsequent ddPCR 

quantification of the 5 genes used for AIS diagnostics. (b) Design and reaction scheme of the 

heterobifunctional, photocleavable (PC) linker. The linker’s terminal primary amine attaches 

to COOH groups on UV/O3-activated COC devices via EDC/NHS coupling. Any remaining, 

free NHS esters are quenched with tris buffer. The PC linker’s COOH group is then activated 

with EDC/NHS reagents for antibody coupling, yielding a covalent linkage of the affinity-

selection Ab to the surface through the PC linker. After affinity selection, isolated biomarkers 

(EVs or CTCs) are released by exposing the linker to blue light (400-450 nm), thereby cleaving 

the coumarin derivative at the meta carbon via a carbocation intermediate. (Figure 5.1 B Cour-

tesy of Thilanga Nandana) 
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EV affinity enrichment microfluidic. This would reduce the total processing time by another 

30 min, taking the estimated EV mRNA expression analysis to < 2 h.  

Finally, we will also look to transitioning the ddPCR step to a fully integrated microfluidic-

based assay (right now, only the droplets are generated using a microfluidic). Thus, all of the 

processing steps can be carried out on task-specific microfluidic chips that are integrated to a 

fluidic motherboard, which is shown in Figure 5.1. This will allow for fully automated sample 

preparation and measurement in a small form-factor instrument, potentially at the point-of-care 

as well.  
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Appendix 1: Bfd, a New Class of [2Fe-2S] Protein That Functions in Bacterial Iron Ho-

meostasis, Requires a Structural Anion Binding Site 

1.1 Introduction 

Iron sulfur clusters are versatile prosthetic groups present in a wide range of proteins 

and enzymes ubiquitous in all kingdoms of life. These proteins support many important phys-

iological functions including respiration, photosynthesis, DNA repair, and gene regulation.1-2 

The most common type of iron sulfur cluster are [2Fe-2S], [3Fe-4S] and [4Fe-4S], where Fe 

ions are coordinated to different protein ligands that are connected to one another  

by bridging sulfide ions.3-4 Among these, [2Fe-2S] clusters consist of two iron atoms, which 

are coordinated in a distorted tetrahedral geometry by two inorganic sulfurs and four ligands 

from the protein. These ligands can be cysteine thiolates or a combination of cysteines and 

histidines.5 The [2Fe-2S] cluster are further classified into four main groups as shown in Table 

6.1 based on the amino acid sequences, structural alignments and position of the iron coordi-

nating ligands in the protein sequence.5-10 The four subgroups of [2Fe-2S] proteins are plant-, 

vertebrate-, and bacterial-ferredoxins, the [2Fe-2S] thioredoxin-like ferredoxins, the [2Fe-2S] 

Rieske proteins, and the more recently discovered [2Fe-2S] NEET proteins.  

The main functions of plant-type ferredoxins are photosynthesis by shuttling electrons 

between photosystem I and several enzymes. The bacterial and vertebrate [2Fe-2S] clusters 

function by transferring electrons to hydroxylating enzymes. 
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Table 1.1: Classes of [2Fe-2S] Proteins  

[2Fe-2S]-protein class Protein provided lig-

ands 

Ligand arrangement 

Plant/vertebrate ferredoxin 4Cys C-X4-5-C-X2-C-X30-37-C 

Thioredoxin-like ferredoxin 4Cys C-X10-12-C-X29-34-C-X3-C 

Rieske centers 2Cys and 2His C-X-H-X15-17-C-X2-H 

NEET proteins 3Cys and 1His C-X-C-X2-(S/T)-X3-P-X-CDG-

S/A/T)-H 
Bfd 4 Cys C-X2-C-X31-32-C-X2-C 

 

The thioredoxin-like [2Fe-2S] proteins have been observed mostly in nitrogen fixing 

bacteria, and they mainly are involved in nitrogen metabolism. The [2Fe-2S] Rieske proteins 

function as subunits of photosynthetic and respiratory electron transfer complexes, as well as 

subunits or domains in water soluble oxidases. The [2Fe-2S] NEET proteins function in cluster 

transfer to other proteins and as regulators of iron and ROS homeostasis.10 

Figure 1.1 A shows a spinach ferredoxin (PDB 1A70). Plant and vertebrate [2Fe-2S] 

ferredoxins have a common β-grasp fold, where a four stranded β-sheet is covered by an α-

helix. Here, the [2Fe-2S] cluster is located near the surface coordinated by 4 Cys ligands ar-

ranged in a conserved sequence motif (see Table 1.1).6-7 In thioredoxin-like ferredoxins the 

[2Fe-2S] cluster located between two loop regions as shown in Figure 1.1 B where the cluster 

is coordinated by four Cys ligands arranged in a conserved motif. 
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 The [2Fe-2S] Rieske proteins have a highly conserved fold as shown in Figure 1.1 C. 

In these proteins [2Fe-2S] cluster is held between two loops, which are coordinated by 2Cys 

and 2 His ligands arranged in a conserved sequence as shown in Table 1.1. In NEET proteins, 

there’s a fold that consists of four-stranded β-cap residing above a structured loop and a turn 

of a helix. This helix harbors the [2Fe-2S] cluster and here the iron ions are coordinated by 

3Cys and 1His ligands as shown in Figure 1.1D. 

In 1989 Andrews et al. discovered the presence of a hypothetical 64-residue protein 

located upstream of bfr gene in E. coli K-12.11 This small gene predicted a protein with four 

Cys residues arranged in a C-X-C-X32-C-X2-C motif, which is similar to the arrangement of 

Cys ligands in NifU in Azinetobacter vinelandii that binds the [2Fe-2S] cluster.12  

This gene, which is called bfd, was cloned and then overexpressed. The resulted mon-

omeric protein (Bfd) consisted of a [2Fe-2S] cluster that is capable of managing two oxidation 

states [2Fe-2S]2+/+1.12-13 Based on the results from affinity chromatography, it has been shown 

Figure 1.1: Crystal structures of A) spinach ferredoxin (PDB 1A70), B) thioredoxin-like fer-

redoxin from Aquifex aeolicus (PDB 1F37), C) Rieske protein from Rhodobacter sphaeroides 

(PDB 2NVE), D) Human mitochondrial inner NEET protein MiNT (PDB 6AVJ), and E) Bfd 

from the complex with BfrB (PDB 4E6K). The structures are colored by secondary structure 

showing the α-helices (green) and β-sheets (magenta). The 2Fe-2S atoms are rendered as 

spheres (Fe-coral and S-yellow) and coordinating residues are drawn as cylinders. (Repro-

duced with permission from reference Wijerathne et al) 
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that Bfd binds to bacterioferritin (Bfr). This result suggested that Bfd may function either as 

electron acceptor for the oxidation of Fe2+ and subsequent storage of Fe3+ in Bfr, or as electron 

donor to Fe3+ stored in Bfr for subsequent mobilization of Fe2+.12 Considering all these results 

a new function for [2Fe-2S] was appointed, namely electron transfer in bacterial iron metabo-

lism.  

We investigated this issue in the opportunistic pathogen Pseudomonas aeruginosa by 

capitalizing from the previously reported genetic response of P. aeruginosa to iron limiting 

conditions.14 Although there are 118 genes that are upregulated during iron starvation only two 

of them code for electron transfer protein namely bfd and fpr (ferredoxin NADP reductase). 

We suggested that Bfd and Fpr function in the mobilization of Fe3+ stored in bacterioferritin B 

(BfrB) and proposed the model schematically illustrated in Figure 1.2, where electrons from 

Fpr are shuttled to the Fe3+ core in BfrB to promote the mobilization of Fe2+.15 

 

 

 

 

 

 

 Furthermore, the bfd, bfrB and fpr genes from P. aeruginosa were cloned and the re-

combinant proteins characterized 16-17 and it was demonstrated that the [2Fe-2S] cluster of Bfd 

is required to deliver electrons to the heme in BfrB, which in turn relays the electrons to the 

Fe3+ mineral in the bacterioferritin core, as shown in Figure 1.2.15, 18-19 Thus, this evidence 

corroborates the participation of a [2Fe-2S] Bfd protein in bacterial iron metabolism. 

Figure 1.2: Schematic representation of the model for iron mobilization from BfrB, where 

electrons originating in NADPH are delivered to the Fe3+ mineral in the core of BfrB. (Repro-

duced with permission from Wijerathne et .al) 
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Due to the relatively small size of Bfd, which is approximately 40 residues shorter than 

other structurally characterized [2Fe-2S] proteins, and the unique arrangement of its Cys lig-

ands as shown on Table 1.1, the Bfd structure may exhibit a fold distinct from those of known 

[2Fe-2S] proteins. In agreement with these expectations, the first example of a Bfd structure, 

which was obtained in complex with BfrB,15 revealed a different helix-turn-helix fold which is 

shown in Figure 1.1E. In fact, the Bfd fold revealed in the structure of the Bfd:BfrB complex 

had not been previously observed in a single domain protein, although close matches had been 

observed in portions of domains incorporated into proteins and enzymes with diverse function 

belonging to the Fer2_Bfd Pfam family (PF04324).19 

Based on the information obtained from the BfrB:Bfd complex interface, evidence 

showed that the key residues from each protein participating at the protein-protein interface are 

conserved in Bfd and Bfr proteins from a number of pathogenic bacteria. These observations 

suggested that the protein-protein interaction is likely conserved in many pathogenic bacte-

ria.18-19 

Additionally, the structural information at the protein-protein interface was also used 

to identify the hot spot residues responsible for the stability of the BfrB-Bfd protein complex. 

Using this information, we also demonstrated that a double mutation in BfrB (L68A/E81A) is 

sufficient to block the BfrB:Bfd interaction and inhibit iron mobilization from BfrB.20  

Based on results from in vitro experiments, it was shown that BfrB to be the main iron storage 

protein in P. aeruginosa cells. It was also demonstrated that Bfd is essential for the mobiliza-

tion of iron from BfrB in the bacterial cytosol. 

Whenever Bfd is absent or when the BfrB:Bfd interaction is blocked, iron will be irre-

versibly accumulated in BfrB, resulting iron deficiency in the P. aeruginosa cytosol.21 All these 

findings together strongly agreed with the fact that electron transfer from Bfd to be the only 
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mechanism in P. aeruginosa that enables mobilization of iron stored in BfrB. Thus, Bfd plays 

a major role for Bfd in bacterial iron homeostasis. 

Although Bfd protein plays a key role in bacterial iron metabolism, the structural infor-

mation of this novel protein is still not studied completely. For example, studies performed on 

the 3 Bfd molecules in the asymmetric unit of the BfrB:Bfd complex led to the hypothesis that 

the stability of the Bfd protein and associated [2Fe-2S] cluster is dependent on the coordination 

of a phosphate ion by three positively charged residues R26, R29 and K46.  

Moreover, the studies performed on BfrB:Bfd structure revealed that small rearrange-

ments are taking place in BfrB upon binding to Bfd. However, it is not known whether Bfd 

also undergoes any special structural changes upon binding, in order to enable the electron 

transfer between its [2Fe-2S] cluster and heme in BfrB. 

In this study, we investigated the Bfd fold using site-directed mutagenesis, X-ray crys-

tallography, and biochemistry in solution BfrB:Bfd complex, which will help to understand the 

important structural changes in Bfd that might help for the electron transfer between its [2Fe-

2S] cluster and heme in BfrB. 

1.2 Conclusions and future directions 

We showed that the structure of Bfd is nearly identical to that in the BfrB:Bfd complex. 

These results revealed that Bfd does not undergo structural reorganization upon binding to 

BfrB.  

We also showed that the stability of Bfd and it’s [2Fe-2S] cluster is influenced by a 

conserved anion binding site. In the absence of an anion or at low ionic strengths Bfd loses its 

[2Fe-2S] cluster and starts to unfold. Site-directed mutagenesis and X-ray crystallography were 

also utilized to show the influence of the anion binding site on the structural stability of Bfd. 
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These mutant proteins are structurally nearly identical to Bfd, but where the stabilizing inter-

actions conferred by anion binding are replaced by intramolecular hydrogen bonding and pack-

ing interactions.  

In this study we showed that the stability of P. aeruginosa Bfd and the integrity of its 

[2Fe-2S] cluster depends on an anion binding site composed of the side chains of Arg26, 

Arg29, and Lys46, whose function is most likely to stabilize the two-turn helix α-2.  

When a suitable anion is not present helix α-2 probably experiences folding and un-

folding excursions, which will also affect the stability of loop L3. This loop L3 harbors the Fe 

ligands Cys38 and Cys41. Here we suggest that the anion binding site on Bfd recognizes and 

offer the following observations in support. Amino acid sequence alignments show that the 

anion binding site in P. aeruginosa Bfd is conserved in many Bfd structures from different 

organisms which is shown in Figure 6.3. Residues at positions 29 and 46 are invariably Lys or 

Arg and residue 26 is either Lys, Arg or Gln. 
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Figure 1.3: Sequence alignment of Bfd with Bfd-like molecules from different organisms. 

Conserved cysteine residues coordinating iron in the [2Fe-2S] cluster are highlighted by an 

arrow (↓), residues buried at the BfrB:Bfd interface are denoted by (^), hot spot residues at the 

BfrB:Bfd interface are denoted by (*), and residues in the phosphate binding site are indicated 

by an up arrow (). Conserved residues across the alignment are in red, conservative substitu-

tions in green and semi-conservative substitutions in blue, sequence numbering according to 

Bfd (Reproduced with permission from Wijerathne, Yao et al. 2018) 

 

Previous studies performed to investigate the phosphate recognition by protein show 

that phosphate binding site residues are more conserved than other residues in the alignment, 

with Arg and Lys having the largest occurrence when the site recognizes phosphate via side 
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chains.22-23 Hence, these characteristics of phosphate binding sites are consistent with the ex-

clusive presence of Arg, Lys, or Asn at positions 26, 29, and 40 in the sequence alignment of 

Bfd proteins.  

Moreover, other important facts to note are: the core iron mineral of bacterioferritins 

isolated from natural sources contain high levels of phosphate (Fe:P ~ 1:1); 24 and iron uptake 

and mobilization from bacterioferritin is accompanied by a corresponding flux of phosphate 

across the Bfr shell.18, 25 
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1.3 Macro used for measuring the pillar dimensions 

 

macro "PillarAnalysis_10X [s]" { 

 

dir = getDirectory("Choose a Directory "); 

list = getFileList(dir); 

 

setBatchMode(true); 

 

Roi_AverageFeret = newArray(list.length); 

Roi_StDevFeret = newArray(list.length); 

Roi_AverageInterpillar = newArray(list.length); 

Roi_StDevInterpillar = newArray(list.length); 

 

for (k = 0; k < list.length; k++) { 

 open(list[k]); 

 selectWindow(list[k]); 

 

scale = 0.351; //um/pixel, 10XImage 

 

if(roiManager("count") != 0){ 

roiManager("deselect"); 

roiManager("delete"); 

} 

 

if (isOpen("Mask") == true) { 

 close("Mask"); 

} 

 

run("Duplicate...", "title=Mask"); 

 

setAutoThreshold("Default dark"); 

run("Convert to Mask"); 

//run("Dilate"); //Dilation included to match Keyence measurements 

run("Analyze Particles...", "size=30000-Infinity circularity=0.10-1.00 exclude add"); 

RoiN = roiManager("count"); 

 

Roi_X = newArray(RoiN); 

Roi_Y = newArray(RoiN); 

Roi_Feret = newArray(RoiN); 

Roi_Interpillar_Ave = newArray(RoiN); 

 

for (i=0; i<RoiN; i++){ 
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 roiManager("select",i); 

 List.setMeasurements; 

 Roi_X[i]=List.getValue("X"); 

 

 roiManager("select",i); 

 List.setMeasurements; 

 Roi_Y[i]=List.getValue("Y"); 

 

 roiManager("select",i); 

 List.setMeasurements; 

 Roi_Feret[i]=List.getValue("Feret"); 

} 

 

//For each ROI: 

//Find nearest ROI and distance -- Output: Roi_Nearest[i], Roi_NearestDistance[i] 

for (i = 0; i < RoiN; i++) { 

 interpillar_count = 0; 

 interpillar_sum = 0; 

 

 for (j = 0; j < RoiN; j++) { 

  distance = sqrt((Roi_X[i]-Roi_X[j])*(Roi_X[i]-Roi_X[j])+(Roi_Y[i]-

Roi_Y[j])*(Roi_Y[i]-Roi_Y[j])); 

 

  if (distance != 0) { 

   if (distance < Roi_Feret[i]*1.75) { 

    interpillar = distance - Roi_Feret[i]/2 - Roi_Feret[j]/2; 

    interpillar_count = interpillar_count + 1; 

    interpillar_sum = interpillar_sum + interpillar; 

   } 

  } 

 } 

 Roi_Interpillar_Ave[i] = interpillar_sum/interpillar_count; 

} 

 

//print("Roi Feret Interpillar_Average"); 

print(list[k]); 

for (i=0; i<RoiN; i++){ 

 print(i, Roi_Feret[i]*scale, Roi_Interpillar_Ave[i]*scale); 

} 

print(""); 

 

Roi_AverageFeret[k] = 0; 

Roi_AverageInterpillar[k] = 0; 

for (i=0; i < RoiN; i++){ 
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 Roi_AverageFeret[k] = Roi_AverageFeret[k] + Roi_Feret[i]; 

 Roi_AverageInterpillar[k] = Roi_AverageInterpillar[k] + Roi_Interpillar_Ave[i]; 

} 

Roi_AverageFeret[k] = Roi_AverageFeret[k]/RoiN; 

Roi_AverageInterpillar[k] = Roi_AverageInterpillar[k]/RoiN; 

 

Roi_StDevFeret[k] = 0; 

Roi_StDevInterpillar[k] = 0; 

for (i=0; i < RoiN; i++){ 

 Roi_StDevFeret[k] = Roi_StDevFeret[k] + (Roi_Feret[i]-Roi_Aver-

ageFeret[k])*(Roi_Feret[i]-Roi_AverageFeret[k]); 

 Roi_StDevInterpillar[k] = Roi_StDevInterpillar[k] + (Roi_Interpillar_Ave[i]-Roi_Av-

erageInterpillar[k])*(Roi_Interpillar_Ave[i]-Roi_AverageInterpillar[k]); 

} 

Roi_StDevFeret[k] = sqrt(Roi_StDevFeret[k]/(RoiN-1)); 

Roi_StDevInterpillar[k] = sqrt(Roi_StDevInterpillar[k]/(RoiN-1)); 

 

 

close(list[k]); 

} 

 

for (k=0; k < list.length; k++) { 

 print(list[k], Roi_AverageFeret[k]*scale, Roi_StDevFeret[k]*scale, Roi_AverageIn-

terpillar[k]*scale, Roi_StDevInterpillar[k]*scale); 

} 

 

setBatchMode(false); 

 

} 

 

 

1.4 Macro used for determining the fluorescence intensity 

 

 

macro "ChannelIntensity [s]" { 

 

roiManager("reset"); 

 

Name=getTitle; 

NameDup = "Duplicate"; 

 

selectWindow(Name); 
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run("Subtract Background...", "rolling=50"); 

run("Duplicate...", "title="+NameDup); 

 

selectWindow(NameDup); 

getStatistics(area, mean, min, max, std); 

 

setAutoThreshold("Default dark"); 

//setThreshold(250, max); 

setThreshold(400, max); 

setOption("BlackBackground", false); 

run("Convert to Mask"); 

run("Create Selection"); 

roiManager("Add"); 

 

roiManager("Select", 0); 

selectWindow(Name); 

roiManager("Measure"); 

 

selectWindow(NameDup); 

close (); 

} 

 

 

 

1.5 Stitching Macro used for enumerating cells 

 

macro StitcherAnalyzer 

{ 

 

Overlap = 36; //Percent 

 

//Open the directory for processing 

dir = getDirectory("Choose a Directory "); 

list = getFileList(dir); 

 

print("Processing nuclear channel: Rotating, flipping, and saving individual images..."); 

 

//Reorient images in preparation for stitching 

dirout = dir + "Processed\\"; 

File.makeDirectory(dirout); 

 

setBatchMode(true); 
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open(list[0]); 

getDimensions(dummy, dummy, channels, dummy, frames); 

close(); 

 

setBatchMode(false); 

 

if (channels > 1){ 

 Dialog.create("Choose nuclear channel"); 

 Dialog.addMessage("On which channel are nuclei labeled?"); 

  

 if (channels == 2){ 

  dialoglabels = newArray("Channel 1","Channel 2"); 

 } 

 if (channels == 3){ 

  dialoglabels = newArray("Channel 1","Channel 2","Channel 3"); 

 } 

 if (channels == 4){ 

  dialoglabels = newArray("Channel 1","Channel 2","Channel 3","Channel 4"); 

 } 

 if (channels == 5){ 

  dialoglabels = newArray("Channel 1","Channel 2","Channel 3","Channel 

4","Channel 5"); 

 } 

 

 Dialog.addRadioButtonGroup("Nuclear Channel",dialoglabels,channels,1,"Channel 

1"); 

 Dialog.show; 

 nuclear = Dialog.getRadioButton(); 

 

 if(nuclear == "Channel 1"){ 

  NuclearChannel = 0; 

 } 

 if(nuclear == "Channel 2"){ 

  NuclearChannel = 1; 

 } 

 if(nuclear == "Channel 3"){ 

  NuclearChannel = 2; 

 } 

 if(nuclear == "Channel 4"){ 

  NuclearChannel = 3; 

 } 

 if(nuclear == "Channel 5"){ 

  NuclearChannel = 4; 

 } 
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} else { 

 NuclearChannel = 0; 

} 

 

setBatchMode(true); 

 

j=NuclearChannel; 

for (i=0; i < list.length; i++) { 

 open(list[i]); 

 run("Duplicate...", "  channels="+j+" title=Channel.tif"); 

 

 selectWindow(list[i]); 

 close(); 

 

 File.rename("Channel.tif",list[i]); 

 pathout = dirout+list[i]; 

 

 run("Rotate 90 Degrees Right"); 

 run("Flip Vertically","stack"); 

 

 run("Subtract Background...", "rolling=50"); 

 run("Gaussian Blur...", "sigma=2"); 

  

 pathout = dirout+list[i]; 

 saveAs("tiff",pathout); 

 close(); 

} 

 

print("Parameterizing and running the stitching program for nuclear channel..."); 

 

//Parameterize file naming system for stitching 

XYtemplate = replace(list[0],"000_000","{xxx}_{yyy}"); 

 

//Parameterize number of X images and Y images for stitching 

indX = indexOf(XYtemplate,"{xxx}"); 

indY = indexOf(XYtemplate,"{yyy}"); 

Xmax = 0; 

Ymax = 0; 

for (i = 0; i < list.length; i++) { 

 Xcurr = substring(list[i],indX,indX+3); 

 Ycurr = substring(list[i],indY-2,indY+1); 

 Xcurrint = parseInt(Xcurr); 

 Ycurrint = parseInt(Ycurr); 



 

 

221 

 if (Xcurrint > Xmax) { 

  Xmax = Xcurrint; 

 } 

 if (Ycurrint > Ymax) { 

  Ymax = Ycurrint; 

 } 

} 

Xmax = Xmax+1; 

Ymax = Ymax+1; 

 

setBatchMode(false); 

 

//Stitch the nuclear image, computing overlap 

run("Grid/Collection stitching", "type=[Filename defined position] order=[Defined by file-

name         ] grid_size_x="+Xmax+" grid_size_y="+Ymax+" tile_overlap="+Overlap+" 

first_file_index_x=000 first_file_index_y=000 directory="+dirout+" file_names="+XYtem-

plate+" output_textfile_name=TileConfiguration.txt fusion_method=[Linear Blending] re-

gression_threshold=0.05 max/avg_displacement_threshold=2.50 absolute_displace-

ment_threshold=3.50 compute_overlap subpixel_accuracy display_fusion  computation_pa-

rameters=[Save computation time (but use more RAM)] image_output=[Fuse and display]"); 

 

if (channels == 1){ 

 selectWindow("Fused"); 

 run("Cyan Hot"); 

 AutoContrast(); 

 pathout = dirout + "Stitched"; 

 saveAs("tiff",pathout); 

 

 //Delete the unstitched images in the processed folder 

 for (i = 0; i < list.length; i++) { 

  File.delete(dirout + list[i]); 

 } 

  

} else { 

 selectWindow("Fused"); 

 close(); 

 

 setBatchMode(true); 

 

 //Modify tile configuration file for multi-dimensional stitching 

 Tile = "TileConfiguration.registered.txt"; 

 TileMod = "TileConfiguration.modified.txt"; 

 string=File.openAsString(dirout+Tile); 

 string = replace(string,"dim = 2","dim = 3"); 
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 string = replace(string,"\\)",", 0.0\\)"); 

 File.saveString(string,dirout+TileMod); 

 

 //Delete single channel processed images 

 for (i = 0; i < list.length; i++) { 

  File.delete(dirout+list[i]); 

 } 

 

 //Prepare multi-channel images for stitching 

 for (i = 0; i < list.length; i++) { 

  open(list[i]); 

  getDimensions(dummy, dummy, channels, dummy, frames); 

  if (channels > frames) { 

   run("Re-order Hyperstack ...", "channels=[Frames (t)] slices=[Slices 

(z)] frames=[Channels (c)]"); 

  } 

 

  //Split up stack, adjust each frame, reassemble in stack 

  selectWindow(list[i]); 

  run("Stack to Images"); 

 

  ROOT = replace(list[i],".tif","-"); 

  for (j = 0; j<channels; j++){ 

   if (j==0){ 

    DAPI = replace(list[i],".tif","-0001"); 

   } 

   if (j==1){ 

    FITC = replace(list[i],".tif","-0002"); 

   } 

   if (j==2){ 

    CY3 = replace(list[i],".tif","-0003"); 

   } 

   if (j==3){ 

    CY5 = replace(list[i],".tif","-0004"); 

   } 

   if (j==4){ 

    CY7 = replace(list[i],".tif","-0005"); 

   } 

  } 

  run("Images to Stack", "name="+list[i]+" title="+ROOT+" use"); 

 

 //Rotate and flip the images in prep for stitching, save to the processed folder 

  run("Rotate 90 Degrees Right"); 

  run("Flip Vertically","stack"); 
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  run("Subtract Background...", "rolling=50 stack"); 

  run("Gaussian Blur...", "sigma=2 stack"); 

  

  pathout = dirout+list[i]; 

  saveAs("tiff",pathout); 

  close(); 

 } 

 

 setBatchMode(false); 

 

 print("Stitching multidimensional images..."); 

 

 //Parameterize file naming system for stitching 

 XYtemplate = replace(list[0],"000_000","{xxx}_{yyy}"); 

 

 //Parameterize number of X images and Y images for stitching 

 indX = indexOf(XYtemplate,"{xxx}"); 

 indY = indexOf(XYtemplate,"{yyy}"); 

 Xmax = 0; 

 Ymax = 0; 

 for (i = 0; i < list.length; i++) { 

  Xcurr = substring(list[i],indX,indX+3); 

  Ycurr = substring(list[i],indY-2,indY+1); 

  Xcurrint = parseInt(Xcurr); 

  Ycurrint = parseInt(Ycurr); 

  if (Xcurrint > Xmax) { 

   Xmax = Xcurrint; 

  } 

  if (Ycurrint > Ymax) { 

   Ymax = Ycurrint; 

  } 

 } 

 Xmax = Xmax+1; 

 Ymax = Ymax+1; 

 

 run("Grid/Collection stitching", "type=[Positions from file] order=[Defined by Tile-

Configuration] directory="+dirout+" layout_file="+TileMod+" fusion_method=[Linear 

Blending] regression_threshold=0.05 max/avg_displacement_threshold=2.50 absolute_dis-

placement_threshold=3.50 subpixel_accuracy display_fusion computation_parameters=[Save 

computation time (but use more RAM)] image_output=[Fuse and display]"); 

 

 //Save stitched image 

 pathout = dirout + "Stitched"; 
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 saveAs("tiff",pathout); 

  

 //Delete the unstitched images in the processed folder 

 for (i = 0; i < list.length; i++) { 

  File.delete(dirout + list[i]); 

 } 

 

 //Split up the stitched stack. Apply LUT, autocontrast and save all channels. 

 selectWindow("Stitched.tif"); 

 run("Stack to Images"); 

 

 print("Applying LUTs and saving stitched images..."); 

 

 //Delete the extra image from stitching 

 selectWindow("Stitched-000"+channels+1); 

 close(); 

 

 selectWindow("Stitched-0001"); 

 run("Cyan Hot"); 

 AutoContrast(); 

 pathout = dirout + "Stitched_DAPI"; 

 saveAs("tiff",pathout); 

 run("Tile"); 

 

 if(isOpen("Stitched-0002")){ 

 selectWindow("Stitched-0002"); 

 run("Green"); 

 AutoContrast(); 

 pathout = dirout + "Stitched_FITC"; 

 saveAs("tiff",pathout); 

 run("Tile"); 

 } 

 

 if(isOpen("Stitched-0003")){ 

 selectWindow("Stitched-0003"); 

 run("Orange Hot"); 

 AutoContrast(); 

 pathout = dirout + "Stitched_Cy3"; 

 saveAs("tiff",pathout); 

 run("Tile"); 

 } 

 

 if(isOpen("Stitched-0004")){ 

 selectWindow("Stitched-0004"); 
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 run("Red"); 

 AutoContrast();  

 pathout = dirout + "Stitched_Cy5"; 

 saveAs("tiff",pathout); 

 run("Tile"); 

 } 

 

 if(isOpen("Stitched-0005")){ 

 selectWindow("Stitched-0005"); 

 run("Magenta Hot"); 

 AutoContrast();  

 pathout = dirout + "Stitched_BF"; 

 saveAs("tiff",pathout); 

 run("Tile"); 

 } 

 

} 

} 

 

 

function AutoContrast() { 

AUTO_THRESHOLD = 5000; 

 getRawStatistics(pixcount); 

 limit = pixcount/10; 

 threshold = pixcount/AUTO_THRESHOLD; 

 nBins = 256; 

 getHistogram(values, histA, nBins); 

 i = -1; 

 found = false; 

 do { 

         counts = histA[++i]; 

         if (counts > limit) counts = 0; 

         found = counts > threshold; 

 }while ((!found) && (i < histA.length-1)) 

 hmin = values[i]; 

  

 i = histA.length; 

 do { 

         counts = histA[--i]; 

         if (counts > limit) counts = 0;  

         found = counts > threshold; 

 } while ((!found) && (i > 0)) 

 hmax = values[i]; 
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 setMinAndMax(hmin, hmax); 

 //print(hmin, hmax); 

} 

 

 

1.6 Stroke clinical data (Stroke patients and healthy controls) 

 

 

 

 

 

 

 

Patient ID Patient 

age/gender 

Diagnosis Single blinded 

patient code # 

Blood draw 

date 

HCS 006 59/F Control 1 3/10/2011 

HCS 007 61/F Control 3 6/3/2011 

HCS 008 83/F Control 5 5/27/2011 

HCS 009 61/M Control 7 6/15/2011 

HCS 010 53/M Control 9 7/19/2011 

sp036 66/M AIS patient 2 7/22/2011 

sp039 72/M AIS patient 4 8/4/2011 

sp041 67/M AIS patient 6 8/18/2011 

sp045 95/F AIS patient 8 11/7/2011 

sp052 85/F AIS patient 10 12/12/2011 


