
Evaluating Reasonableness Tests for Longitudinal Measurement 

Invariance in Structural Equation Modeling using Confirmatory 

Factor Analysis 
By 

   

Elizabeth M. Grandfield 

 

Submitted to the Department of Psychology and the Graduate Faculty of the University of 

Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. 

 

Co-Chair: Holger Brandt 

 

Co-Chair: Emily Cramer 

 

Amber Watts 

 

Michael S. Vitevitch 

 

James R. Thompson 

Date Defended: May 7, 2019 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/288849347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 

 

 

 

The dissertation committee for Elizabeth M. Grandfield certifies that this 

is the approved version of the following dissertation: 

Evaluating Reasonableness Tests for Longitudinal Measurement 

Invariance in Structural Equation Modeling using Confirmatory 

Factor Analysis 

 

 

 
 

Co-Chair: Holger Brandt 

 

Co-Chair: Emily Cramer 

 

 

 

 

 

 

 

 

 

 

 

 

Date Approved: May 7, 2019  



iii 

 

Abstract 

Researchers are typically interested in comparing groups of people and/or comparing people 

across time. If researchers are to conclude differences are due to group dynamics or time, we 

must establish that the measure(s) we are using are actually invariant across groups or time. 

Some statistical methods (ANOVA and regression) make this assumption without direct 

evaluation. Conducting analyses in the Structural Equation Modeling (SEM) framework using 

Confirmatory Factor Analysis (CFA) is one way the assumption of measurement invariance can 

be evaluated directly. Many researchers have studied multiple group invariance and current 

invariance testing recommendations are based on multiple group studies and simulations. There 

is a lack of literature on testing invariance in longitudinal designs. Current guidelines 

recommend researchers apply the same guidelines from multiple group to longitudinal designs. 

Longitudinal designs are more complicated and may need different recommendations. The 

current study evaluates measurement invariance in longitudinal CFA in order to ascertain if the 

current guidelines based off the multiple group case are acceptable when applied to the 

longitudinal framework.  
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Chapter 1: Introduction 

Factor analysis has a long history in the social and behavioral sciences. A review of 

research studies shows numerous versions and types of surveys, questionnaires, and scales used 

for measuring a variety of different constructs. Factor analysis has been an essential statistical 

tool for scale development and validation (Brown, 2015). Specifically, confirmatory factor 

analysis (CFA), in which factor structures are hypothesized a priori, in the structural equation 

modeling (SEM) framework has advanced and become more commonly used in the past few 

decades. Brown (2015) and Kline (2016) suggest that the popularity and advancements are due, 

at least in part, to the increased availability and improvement of technology and computing 

power. These improvements have been coupled with the availability of computer software 

developed specifically to analyze more advanced statistical techniques and provided researchers 

with the improved resources to analyze data using these techniques.    

SEM is a latent, sometimes referred to as an unobserved, variable modeling technique 

that is an extension of regression and factor analysis (Bollen, 1989). Latent variables (also called 

latent constructs) are measured by manifest variables; such as items on a scale or questionnaire. 

For example, personality questions on a survey attempt to tap into a latent construct such as 

extraversion. An individual’s level of extraversion is said to give rise to their responses on the 

items. SEM has many benefits as an analytic tool such as: less restrictive and testable 

assumptions compared to classical statistics (e.g. analysis of variance), ability to account for 

measurement error, flexibility, and the ability to evaluate measurement invariance between 

groups and/or across time (Brown, 2015; Kline, 2016; Little, 2013). The current study focuses on 

this last benefit of SEM: measurement invariance (MI) testing in the confirmatory factor analysis 

(CFA) framework with an emphasis on longitudinal CFA.  
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The purpose of this study is to consider the theoretical and practical issues involved in MI 

evaluation of longitudinal data using the currently available guidelines that were developed and 

tested using multiple group cross-sectional studies. Additionally, the present research will 

provide some background on SEM as it pertains to evaluating MI, including current popular 

guidelines and cutoff values implemented in MI testing based on the current literature. I will also 

point out gaps in the literature in regard to utilizing current cut-off criteria in the longitudinal 

CFA framework along with a proposed simulation study to begin testing the tenability of these 

guidelines with longitudinal data.   

The organization of the paper is as follows: First, an overview of key MI concepts using 

longitudinal CFA in an SEM framework will be discussed. Specifically, I will introduce SEM 

concepts that are related to MI and MI evaluation. For a more detailed review of SEM please see 

Kline (2016) and Bollen (1989) as seminal works. This overview will include the most current 

and common steps and guidelines employed in the evaluation of MI. Next, gaps in the literature 

regarding how to apply MI evaluation in longitudinal CFA designs will be identified. Chapter 3 

will outline the methodology and simulation models used to answer the key research questions. 

Chapter 4 outlines the results found regarding the appropriateness of utilizing cross-sectional MI 

guidelines to longitudinal CFAs. Finally, Chapter 5 will elaborate on the implications of these 

findings, discuss limitations and directions for future research. 
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Chapter 2: MI in Longitudinal SEM 

Our world, society, and people undergo constant change and development. In order to 

begin to understand and explain these influences, longitudinal studies are a vital research tool 

that allows investigators to follow participants over time in order to collect data over repeated 

measurement occasions. These longitudinal data provide the ability to evaluate change or 

stability over time (Cole & Maxwell, 2003) which is a ubiquitous research question in many 

areas of study, such as the social sciences, biology, economics, political science, and education 

to name a few (Askildsen, Jirjahn & Smith, 2006; O’Donnell, 2016; Villa, 2017).  

One key consideration that should not be ignored with longitudinal data is the idea that 

the scales or surveys used in these studies should be measuring the same thing at each time point. 

That is to say, the operational definition of the construct of interest should remain the same 

across measurement occasions. If the psychometric properties of the questionnaire differ across 

time or between groups, then this difference is confounded with any other observed differences 

due to time, intervention, or other conditions of the study. Any mean differences cannot be 

interpreted as true mean differences since the change may be due to changes in the measure 

instead of true change among individuals. This bias in measurement is what methodologists refer 

to as a lack of measurement invariance (LMI); although it is also known by other names such as 

factorial invariance, measurement equivalence, and differential item functioning (Millsap & 

Cham, 2012). The idea of MI may seem obvious to the seasoned researcher, however, it is often 

overlooked or simply assumed instead of evaluated when researchers use classical statistical 

techniques such as repeated measures analysis of variance (ANOVA) or other manifest variable 

techniques (i.e. ordinary least squares regression). However, structural equation modeling (SEM) 

is an analytic tool that can evaluate MI. 
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In this chapter I will briefly present some introductory background on CFA in the SEM 

framework that includes the strengths of this technique and a brief review of model fit and 

evaluation in order to familiarize the readers with some terms and definitions related to MI 

evaluation in SEM.  Then, I will define and explain MI including current procedures and 

guidelines involved in MI evaluation. Finally, special considerations for longitudinal research 

will be discussed along with gaps in the literature which will lead to the purpose of this study. 

Structural Equation Modeling Framework  

SEM centers around a distinction between two types of variables; manifest variables and 

latent variables. Latent variables are unobserved constructs that researchers attempt to measure 

using manifest variables. Manifest variables are the typical questions researchers think of when 

designing a survey for a study, for example, items or questions in a survey that prompt 

participants to respond, complete a task, move a sliding scale, or rate how much they 

agree/disagree with statements (e.g., personality or behavioral measures, cognitive tasks) are 

then used as variables in analyses. These variables are considered observed (manifest) variables 

of a construct (i.e. extraversion, executive function, memory, depression). These manifest 

variables can then be used at indictors of latent constructs. It should be noted that SEM has also 

been referred to as covariance structure analysis, covariance structure modeling, and analysis of 

covariance structures (Kline, 2016). The use of SEM has increased in recent years due to 

advances in computing power, availability of SEM software programs, and the flexibility SEM 

provides compared to other common statistical analyses such as ANOVA and regression (Hox & 

Bechger, 1998). Some advantages of SEM include accounting for measurement error, 

fitting/analyzing complex research questions and hypotheses in a single model, and the ability to 

assess MI (Hoyle, 2012; Kline, 2016; Little, 2013). This paper will focus on the last benefit 
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mentioned, SEM’s ability to evaluate MI. The foundation of an SEM is a confirmatory factor 

analytic (CFA) measurement model. Essentially, CFA is a special case of SEM and a CFA 

measurement model is specified and evaluated prior to testing a hypothesized SEM. It is within 

the CFA measurement model process that MI can be evaluated. 

Introduction to MI  

Over the last decade MI has become a hot research topic in the quantitative literature. 

This may be due to the increased availability and usage of SEM in applied research and the fact 

that researchers who use questionnaires in different subgroups can evaluate MI in this 

framework. Although the use of SEM still requires statistical and distributional assumptions (like 

any statistic) to be met, it is also considered one of the most flexible techniques (Hox & Bechger, 

1998; Little, 2013). Some of the flexibility lies in the fact that some assumptions can be 

evaluated instead of just simply assumed. For example, one of the major strengths of SEM is the 

ability to actually test for MI where as other analytic methods based on the General Linear 

Model (GLM) such as Analysis of Variance (ANOVA) or Regression, researchers must typically 

just assume a measure is equivalent across groups and time.   

Many research questions involve comparing groups, evaluating group differences, and/or 

observing behavior across repeated measurements. For example, researchers may be interested in 

reaction time on a cognitive or physical task, physical attributes, personality, memory, learning, 

behavior, health habits, development, etc. Researchers are also usually interested in comparing 

groups of people and/or comparing people across time. In order to conclude differences are due 

to group dynamics or time and not changes in the measure, we must establish that the 

measurement properties do not vary across groups or time. This is the goal of assessing MI; 

examining MI allows researchers to evaluate whether or not the operational definition of the 
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measure(s) being used differs or changes between groups and/or time (Kline, 2016). Doing so 

will allow researchers to answer the questions: Are the groups different or is it the measure? Do 

people change across time or does the meaning of the measure change across time? SEM allows 

researchers to evaluate MI directly in the CFA framework. If MI is not directly assessed or is not 

found tenable, then the inferences drawn about differences between groups and/or across time 

are likely to be obscured by differences in the measure(s) (Horn & McArdle, 1992). 

Steps of Evaluating MI in CFA 

The most common approach for evaluating MI in the CFA framework requires three or 

four steps: configural, weak, strong, and strict (Dimitrov, 2010). Each of these steps add 

constraints to the model that become progressively restrictive. The models are evaluated along 

the way in order to assess if a certain set of restrictions significantly worsens model fit. Although 

the literature review on MI by Vandenberg and Lance (2000) details that over the last few 

decades various combinations of these steps have been used, this paper will focus on the most 

commonly used procedures currently employed in the social sciences (Schmitt & Kuljanin 2008; 

Kline, 2016; Little, 2013; Dimitrov, 2010). Additionally, the procedures discussed have been 

developed using cross-section or multiple group study designs, but the same procedures are 

applied to longitudinal data (Millsap & Cham, 2012).  

 

Configural Invariance. The first step is by testing what is called the configural 

invariance model (Dimitrov, 2010; Meredith 1993; Millsap & Olivera-Aguilar, 2012). The only 

constraints placed on the configural model are what are needed for scale setting and model 

identification purposes. In order for configural invariance to “pass” the model must have good 

overall model fit and the pattern of free and fixed factor loadings should be the same across 
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groups/time (Horn & McArdle, 1992). If the model fits well and if the pattern of fixed and free 

parameters is equivalent over time and/or between groups, then there is evidence of configural 

invariance. Configural invariance is represented by the following definitional equation from 

Horn and McArdle (1992). 

 

𝑌0 = Τ0 + Λ0η0 + Θ0 

 

Where Y are the scores on the items and subscript o refers to the occasion of measurement and 

can be denoted by a g when referring to multiple groups. When present, these subscripts indicate 

that the estimates for those parameters are allowed to freely vary across time or groups. The Τ 

represent item means vector, Λ are the lambda loadings matrix for the latent construct η 

and Θ represents the residual variance / covariance matrix of the items.  

 Evaluating Model Fit. How do we determine if a CFA model fits well? Many 

researchers agree that there is no single test of model fit that will inform a researcher that a SEM 

or CFA model fits well (Fan & Sivo, 2011; MacCallum, 2003; Millsap & Cham, 2012). They 

suggest that multiple fit indices should be used collectively in order to gather evidence of how a 

particular model fits the observed data (Saris, Satorra, & van der Veld, 2009). In addition to 

these fit indices, researchers should also evaluate the magnitude and direction of parameter 

estimates, and model residuals (West, Taylor, & Wu, 2012). Parameter standard errors to 

determine the plausibility of the estimates and model convergence criteria should also not be 

ignored (Little, 2013).  
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At their core, each of the model fit indices attempt to evaluate the difference between the 

observed covariance matrix S (from the data collected) and the model implied covariance matrix 

𝚺̂ (model derived based on the research hypotheses a researcher is testing).  There are many 

model fit indices; however, here the focus is on the handful of model fit indices that are currently 

available as output from SEM software programs, are commonly reported for CFA models, and 

that have been utilized in evaluating MI (Hox & Bechger, 1998; Kim & Willson, 2014). The 

model chi-square statistic (2), comparative fit index (CFI; Bentler, 1990), and the root mean 

square error of approximation (RMSEA; Steiger, 1990) will be discussed. These fit indices are 

also the most commonly used and reported in the applied literature in regard to CFA models in 

SEM (West, Taylor, & Wu, 2012). Gamma hat (Maiti & Mukherjee, 1990) will also be 

incorporated due to its ability to account for the number of items in a model. 

Model Chi-Square. The 2 in SEM is a statistical fit index that is commonly used by 

researchers as a test of model fit. The 2 statistic is a test of “exact” fit. In SEM, the model 2 

represents the plausibility of the null hypothesis that the observed variance/covariance matrix is 

equal (statistically equivalent) to the model implied variance/covariance matrix (Σ = Σ(𝜃)). The 

research hypothesis, then, is the opposite; the variance/covariance matrices are different. In 

SEM, the goal is to fail to reject the null hypothesis for the model chi-square statistic. 

Researchers want the observed information (data) to be approximately equal to the model 

implied information (hypothesized structure). The model implied is the model that is fit to the 

data based on research hypotheses (our hypothesized model). However, many researchers argue 

that the 2 statistic is sensitive to sample size (Brown, 2015; Kline, 2016; Little, 2013; Dimitrov, 

2010; West, Taylor, & Wu, 2012) and minor deviations from exact fit (King-Kallimanis, Oort, & 

Garst, 2010). Additionally, SEM is a large sample technique so most models require larger 
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samples sizes compared to manifest variable frameworks (e.g. ANOVA, OLS regression). 

Therefore, more often than not in practice, the 2 test of statistical fit is significant, which is not 

typically desired in this framework. Larger sample sizes have more power and miniscule 

differences between the variance/covariance matrices may be “statistically” significant which 

can lead to many reasonable models being rejected (West et al., 2012; Little, 2013). This is 

similar to what happens with simple independent samples t-tests with large sample sizes. The 2 

is conceptually appealing, but overly influenced by sample size. Although, the 2 alone should 

not be used to evaluate model fit, it is the basis of other fit indices in SEM and can be used to test 

for nested model comparisons.  

Alternative Fit Indices. Due to the perceived sensitivity to the chi-square test of exact fit 

and the argument that exact fit could be unrealistic in the SEM or modeling framework (“all 

models are wrong, some are useful” Box, 1979, pp. 202), some alternative fit indices (AFIs) have 

been created. One commonly reported AFI is the comparative fit index (CFI) The CFI is 

considered a relative fit indice and it compares a predicted (tested) model with a baseline (null or 

worst fitting) model in order to evaluate how improved the predicted model is compared to the 

null. The CFI (Bentler, 1990) provides a ratio of misfit from the tested model (𝜒𝑇
2) compared to a 

baseline model (𝜒𝐵
2): 

𝐶𝐹𝐼 = 1 −
max(𝜒𝑇

2 − 𝑑𝑓𝑇 , 0)

max⁡(𝜒𝑇
2 − 𝑑𝑓𝑇 , 𝜒𝐵

2 − 𝑑𝑓𝐵, 0)
 

 

where 𝜒𝑇
2 is the tested model’s 𝜒2, 𝑑𝑓𝑇 is the degrees of freedom for the tested model 𝜒2, 𝜒𝐵

2 and 

the 𝑑𝑓𝐵 are 𝜒2 and degrees of freedom for the baseline (typically the default independence or 

null) model. The max operator signifies that the maximum of the values separated by commas 
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will be used. Values of 1.0 are considered perfect fit while less than .90 are considered poor 

fitting models.  

Another AFI commonly reported in the literature is the root mean squared error of 

approximation (RMSEA; Steiger, 1989). The RMSEA is a measure of absolute fit. Absolute fit 

indices compare the predicted model with the perfect fitting model, without reference to a poor 

fitting model. Values closer to zero are interpreted as better fitting models; an RMSEA of zero 

would indicate perfect fit. Given this interpretation, the RMSEA can be considered a badness-of-

fit index (West, Taylor & Wu, 2012). RMSEA values between .05 - .08 are considered 

acceptable while higher values may be evidence of a poor fitting model. Most SEM software also 

provide a Confidence Interval (CI) for the RMSEA; this is unique in that it is the only commonly 

used fit index with a CI. Kenny, Kaniskan, and McCoach (2014) argue that RMSEA cannot be 

trusted (may be biased) in models with small degrees of freedom. Fan & Sivo (2007) also found 

that the RMSEA over performs in larger models (many indicators) indicating good fit for a poor 

fitting model. The RMSEA is calculated as follows: 

  

𝑅𝑀𝑆𝐸𝐴 = √[(𝜒𝑇
2 − 𝑑𝑓𝑇)/(𝑁 − 1)]⁡/⁡(𝑑𝑓𝑇/𝑔)⁡ 

 

Where N is the sample size and g represents the number of groups. 

Another global fit index that might be useful in evaluating fit and MI is Gamma Hat 

(Maiti and Mukherjee, 1990; West, Taylor, & Wu, 2012). Values closer to 1.0 indicate better fit 

(Fan & Sivo, 2007). Although Cheung and Rensvold (2002) included Gamma hat in their MI 

study and recommended a difference of less than .001; it has not been reported in studies 

evaluating MI. One reason for its exclusion could be due to SEM software defaults; Gamma Hat 
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is not one of the fit indices automatically provided in the output but may be calculated using the 

formula: 

gammaHat =
𝑝

𝑝 + 2⁡(
(𝜒𝑇

2
− 𝑑𝑓𝑇)
𝑁 )

 

 

where p is the number of observed variables in the model. 

All of these fit indices should be evaluated in order to determine if the configural model 

fits acceptably well based on the guidelines mentioned. A word of caution should be noted here; 

these cutoffs should be interpreted as rough guidelines as they have also been criticized 

(McDonald & Ho, 2002). Researchers should also make informed decisions based on previous 

literature in their particular field of study. Methodologists have created and/or adjusted many 

more fit indices that can be used to evaluate model fit (e.g. Tucker-Lewis Index, Akaike 

information criterion, and Bayesian information criterion). However, and as previously 

mentioned, this paper will focus on the most commonly used and reported fit indices for nested 

model comparisons that also have a history in MI evaluations.  

Weak Invariance model. Weak invariance is the next step of MI (Widaman & Reise, 

1997). Also referred to as metric invariance (Horn & McArdle, 1992) or pattern invariance 

(Millsap, 2011), weak MI is evident if the corresponding factor loadings (𝜆) are equivalent 

across time/groups. The weak invariance model with the addition of these constraints, imposed 

by the researcher, is nested within the configural model. As such, nested model comparisons can 

be used to evaluate if the constraints are tenable. Two models are said to be nested if one model 

can be transformed into the second model by imposing constraints on the parameters (Chou & 

Bentler, 2002; Chou & Huh, 2012). In order to statistically test each model, fit indices and model 

comparisons are evaluated. Nested models can be compared using the model chi-square 
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difference statistic (Δχ2 and Δdf). However, previous research suggests using the CFI and 

RMSEA as well (Cheung & Rensvold, 2002; Little, 2013). There is evidence to support MI if the 

change in CFI (Δ𝐶𝐹𝐼) does not decrease more than .01 based on a simulation study by Cheung 

and Rensvold (2002). Another study by Meade et al. (2008) recommends a more conservative 

ΔCFI of less than .002, but this recommendation is not as commonly used in the applied 

literature. Little (2013) suggests that the CI of the RMSEA for the nested models can also be 

used to evaluate MI. If the RMSEA indices for the nested model fall within the CIs, then there is 

evidence of MI.  The definitional equation for weak invariance is below. You will note that the 

only minor change to the formula is the absence the subscript after the lambda (Λ) indicating 

that each occasion has been constrained to equality across time or group for those 

parameters. 

 

𝑌0 = Τ0 + Λη0 + Θ0 

 

Strong Invariance. If weak invariance holds, the next step in evaluating MI is the strong 

(Meredith, 1993) or scalar (Steenkamp & Baumgartner, 1998) invariance model. This model 

retains all previous constraints and adds equality constraints of the indicator intercepts, Note that 

the formula below no longer has the subscript for the Tau matrix (Τ). The weak and strong 

models are also nested and can be tested using the nested model comparisons mentioned above. 

Strong MI is required if researchers are interested in mean differences / changes between groups 

or across time.  

 

𝑌0 = Τ + Λη0 + Θ0 
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Strict Invariance. Finally, the last test of MI is strict invariance. Strict invariance is met 

if the corresponding indicator residuals are equivalent (Meredith, 1993), see formula below. 

There is some disagreement in the literature as to whether or not to impose a strict level of 

invariance (Millsap & Olivera-Aguilar, 2012). DeShon (2004) suggests enforcing this level of 

MI since the item specific variance of each indicator should be equivalent across groups and 

could complicate mean differences if not constrained. However, other researchers do not 

recommend such conservative rules at this level because it is a difficult and unrealistic criterion 

to meet with real data (Little, Card, Slegers & Ledford, 2007; Little, 2013; see also Brown, 2015; 

Chan, 1998), deemed less important and/or least interesting in most research (Widaman & Reise, 

1997; Dimitrov, 2010), and overly restrictive (Bentler, 2004; Byrne, 1988). Keep in mind that 

the residual term in SEM contains both item specific variance in addition to random noise/error 

variance (Bollen, 1989; Bollen & Hoyle, 2012). In most (if not all) research it is unreasonable to 

expect that random error variance would be equivalent between groups and/or across time since 

it is situation specific variance and does not belong to the measurement instrument.  

 

𝑌0 = Τ + Λη0 + Θ 

 

Once MI (whether it be across time and/or group) is established, then researchers can 

start to test hypotheses about latent means, variances, and relationships (covariances/regressions) 

of the latent constructs. Kline (2016) considers this level of invariance testing Structural 

Invariance (SI; see also Little, 2013 or Dimitrov; 2010). However, MI must be evaluated before 

moving onto SI. If measurement invariance is not tenable, then differences found in the latent 
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space may be compromised by differences in the measurement instrument instead of the 

differences actually occurring due to time. (Millsap & Olivera-Aguilar, 2012).  

Special Considerations in Longitudinal CFA and MI Evaluation 

Longitudinal studies, also called repeated measurements, enable us to answer important 

questions about change over time. However, researchers generally assume the measures they are 

using at each of these repeated assessments are measuring the same construct each time. 

Anytime we want to examine or compare a measure across groups or across time points we are 

usually assuming that the measure is invariant across time and/or groups. This means that the 

measure is actually measuring the exact same construct across time (Millsap, 2011). This 

assumption is made anytime we do a repeated measure or between groups ANOVA. The 

ANOVA framework does not actually allow us to test this assumption nor do the regression 

frameworks. Whereas, this assumption can be tested (and justifiably relaxed) in SEM. 

Although some applied research evaluated longitudinal MI using guidelines provided by 

multiple sample MI simulation studies (Barclay-Goddard et al., 2009; King-Kallimanis et al., 

2011; Oort, Visser, & Sprangers, 2005; ), others fail to evaluate longitudinal MI at all (Brumley, 

Brumley, & Jaffee, 2019; Burkholder & Harlow, 2003; Spinath & Spinath, 2005; Thompson, 

Sims, Kingree, & Windle, 2008; Vautier, 2004) before testing hypothesized structural relations. 

Even though numerous studies have examined the negative impact of failing MI on parameter 

estimates, model fit, and study conclusions in longitudinal SEM (e.g., Bishop, Geiser, & Cole, 

2015; Ferrer et al., 2008; Leite, 2007; Millsap & Cham, 2012; Olivera-Aguilar, 2013), optimal 

strategies for testing longitudinal MI are unclear and further research is imperative (Millsap & 

Cham, 2012).  
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Longitudinal CFA and SEM models add complexity. One latent construct measured at 

one time point is a very simple model, even if it is measured between two-groups. Figure 1 

provides an example of a single latent construct (𝜂) measured by four variables (V, also called 

items or indicators in the literature). The other aspects of Figure 1 are common diagramming 

conventions used to represent a construct in CFA or SEM. The single headed arrows represent 

regression type parameters and here they represent the factor loadings (𝜆) for each indicator. 

Double headed arrows represent the variance of an indicator (𝜃) or construct (𝛹) with itself or 

covariances / correlations.   

 

Figure 1. Single Latent Construct Example 

 

Adding multiple occasions to this simple single construct increases the complexity. Not 

only is the latent construct now allowed to correlate with itself across time, but each indicator of 

the latent construct is allowed to covary with itself across time as well (see Figure Two for 

example). If we measure across four occasions, that adds six newly estimated parameters. That 
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means if we are measuring self-determination among adolescents using four questions across 

four measurement occasions, we estimate an additional 24 (4 items x 6 covariances) parameters. 

These parameters do not exist if we were examining multiple groups at a single time point.  

 

 

Figure 2. Two Repeated Measurement Occasions 

 

Another consideration in longitudinal CFAs relates to the null model. In order to evaluate 

longitudinal MI, we must start with an appropriate null model. Widaman and Thompson (2003) 

point out that the default null model (also referred to as the independence model) in SEM 

software is not correct. The standard ‘null’ model assumes that all covariances are zero and only 

variances are estimated. In longitudinal and multiple group research, a more appropriate ‘null’ 

model is to assume the variances of each corresponding indicator are equal at each time point 
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and across groups in addition to their means (intercepts) also being equal at each time point and 

between groups. Additionally, any covariances across time should be equated in the null model 

(Widaman & Thompson, 2003).  

In longitudinal SEM, one of the first models to be fit (after the appropriate null model) 

should be a longitudinal CFA that includes each occasion to evaluate the longitudinal model 

(Little, 2013). This model is equivalent to a longitudinal configural CFA model. Longitudinal MI 

is then tested using the same techniques and steps described previously (by testing configural, 

weak, and strong invariance, respectively). 

Current Limitations 

Many researchers have studied multiple group invariance (for a review see French & 

Finch, 2006; Vandenberg & Lance, 2000; Schmitt & Kuljanin, 2008) and although the nested 

models can be compared using Δχ2, many researchers have noted that the chi-square difference 

test is also sensitive to sample size (Brown, 2015; Kline, 2016; Little, 2013; Dimitrov, 2010; 

West, Taylor, & Wu, 2012) especially when testing for MI (Meade & Bauer, 2007; Little, 2013) 

and therefore also rely on changes in AFIs to evaluate MI (Putnick & Bornstein, 2016). 

Reporting multiple pieces of evidence, such as Δχ2, ΔCFI, and the RMSEA point estimate and 

CI, when evaluating MI is becoming a more standard practice (Dimitrov, 2010).  A recent review 

of 126 applied research articles published between May 2013 and April 2014 that evaluated MI 

was conducted by Putnick and Bornstein (2016). Out of the 126 articles reviewed 16.7% reported 

Δ𝜒2 only, 34.1% reported only ΔAFIs, and 45.9% reported both when evaluating MI. The 

remaining 3.3% only reported no change in model fit.   

Current commonly used recommendations and guidelines for testing MI are based on 

multiple group studies and simulations. For example, Cheung and Rensvold (2002) evaluated 20 
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different measures of fit in order to determine if change in fit could be used for evaluating 

invariance in a multiple group framework. Out of the 20 fit indices examined, two that were 

recommended are the change in the CFI and change in gamma hat when comparing models. The 

CFI is provided in most modeling software, so it has become a popular way to evaluate MI and 

based on Cheung and Rensvold’s recommendations a decrease in the CFI greater than .01 is an 

indication of failure of invariance (items are variant). These indices were evaluated using only 

two-groups but have been used and recommended with longitudinal MI testing as well (Little, 

2013). Little also recommends reporting the RMSEA point estimate and CI and provides the 

guideline that the RMSEA value should fall within the CI for each nested model. Although, no 

empirical support for this recommendation has been reported in the literature.  

This study builds upon the previous MI research in the following ways. (1) While 

previous research has shown the negative outcomes of failing MI in longitudinal data (e.g., 

Bishop, Geiser, & Cole, 2015; Ferrer et al., 2008; Leite, 2007; Millsap & Cham, 2012; Olivera-

Aguilar, 2013), clear guidance for longitudinal evaluation of MI is lacking (Millsap & Cham, 

2012). This study evaluates MI detection for a latent construct across 2, 4, 6, and 8 repeated 

measurement occasions. (2) While current guidelines exist for testing MI (Cheung & Rensvold, 

2002; Meade, Johnson & Braddy, 2008; Chen, 2007), they were developed in the context of 

multiple-group models even though they have been cited numerously in longitudinal research for 

assessing MI across multiple time points (e.g., Motl & DiStefano, 2002; Obradović, Pardini, 

Long, & Loeber, 2007).  Multiple-group models differ from longitudinal models in a number of 

key aspects, which may influence the determination of MI.  Therefore, this study examines if the 

if the current cut-offs are sufficient in the longitudinal case. (3) Widaman and Thompson (2003) 

proposed that the null model used in the calculation of incremental fit indices (e.g., CFI, Bentler, 
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1990) that is generated by default in software packages is flawed. Evaluation of these cutoffs 

using the appropriate longitudinal null model proposed by Widaman and Thompson (2003) has 

not been considered. The CFI values using both the default null (independence) model and the 

appropriate null are model are evaluated in order to consider the significance of the Widaman 

and Thompson (2003) article for MI.  

Simulation Studies 

Simulation studies are computer generated data experiments. Instead of collecting data 

from participants, data are generated based on specifications laid out by the researcher. 

Simulating (generating) data using specific model and population parameters allows researchers 

to study statistical procedures (Burton et al., 2006). Specifically, researchers are able to 

determine how well a statistical procedure performs under different circumstances experienced 

in applied work. These studies are experimentally designed, and researchers can systematically 

manipulate different variables or parameters of interest in order to evaluate how well a procedure 

works under different conditions (e.g. assumption violations, failing to meet a criterion, 

evaluating different estimators). Data problems can be simulated and tested across hundreds (or 

thousands) of data sets in order to see how trustworthy or biased the results may be since with 

simulated data the true values are known. For an introduction to simulation studies interested 

readers are directed to texts such as Monte Carlo Simulation and Resampling Methods for Social 

Science by Carsey & Harden (2013). Simulations are also used to determine sufficient sample 

sizes before researchers collect data from participants in order to help determine the number of 

participants needed to detect effects (power analyses). Conducting a simulation study allows 

evaluation of the current guidelines as applied in the longitudinal case in order to fill the gap in 

the literature in regards to MI evaluation in longitudinal CFA.  
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Purpose of the Current Study  

The goal of this study is to begin providing researchers with guidance on how the 

alternative fit indices and difference in chi-square perform when used to evaluate MI in the 

longitudinal case.  

Specifically:   

1. How does the Δχ2 perform in evaluating longitudinal MI? 

2. How does the change in CFI guideline hold up in longitudinal MI? 

3. Does the specification of the appropriate null model affect Δ𝐶𝐹𝐼 guidelines for 

evaluating longitudinal MI? 

4. Is the CI for RMSEA able to detect MI under the conditions in the current study? 

5. Will there be any differences in MI detection based on the number of repeated 

occasions of measurement? 
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Chapter 3: Method 

A Monte Carlo simulation study was used to answer the above research questions. This 

section details how the data were generated for the population models, the conditions that were 

manipulated, and which parameters were fixed (non-varying). The outcomes of interest, Type I 

error rates and power of model fit indices, are also described.    

Data Generations 

Invariant models. Invariant data generating models included one latent construct measured 

by seven indicator variables over repeated measurement occasions. The first models for data 

generation did not include LMI, meaning that the factor loadings and item intercepts of each 

indicator were not variant. The no LMI condition models are used to examine how often LMI is 

detected when there is none (Type I error rates). Other fixed population values for each model 

followed common specification from previous research using CFAs (Cheung & Rensvold, 2002; 

French & Finch, 2006; Kim & Wilson, 2014). Factor loadings (𝜆)⁡were set at .7, so the latent 

construct accounts for approximately 49% of the variance in each item, (𝜆2). Residuals (θ) were 

fixed at 0.51 based on the fixed factor loadings (1 −𝜆2) and item intercepts were fixed at zero. 

Latent construct relations and indicator residuals over time followed an auto regressive (AR1) 

simplex structure in which latent correlations at adjacent time points started at .80 while 

indicator residuals started at .30 and then decreased over time (see Figure 3 for the population 

model with two-time points). These longitudinally measurement invariant data generation 

models included two, four, six, and eight-time points across two sample sizes (N = 400, 800) for 

a total of 8 non-variant conditions. 
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Figure 3. Invariant Model with Two Occasions 

 

Variant model simulation conditions. The conditions (32) were manipulated in order to 

evaluate the performance of Δchi-square and ΔAFIs’ ability to accurately detect LMI in 

longitudinal CFA (power) are described below. Table 1 summarizes the manipulated conditions, 

variable names used, and the levels.  

Table 1. Manipulated Variables in Monte Carlo Design 

Manipulated Variables in Monte Carlo Design 

Variable Description Levels 

Type Type of LMI factor loadings or                

item intercepts 

Magnitude Magnitude of LMI small or large 

Time Number of time points 2, 4, 6, or 8 

N Sample size 400 or 800 

 

Type of LMI. Conditions to test for the type of invariance included factor loadings or item 

intercepts. LMI in the factor loadings represents a lack of weak invariance. Weak invariance is 
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the minimal requirement needed in CFA that allows researchers to examine latent variances and 

covariances across groups or time.  LMI in the item intercepts represents a lack of strong 

invariance and strong invariance is required in order to examine latent means.  

Magnitude of LMI. Across the population models, the magnitude of non-invariance varied 

between small amounts of non-invariance and large amounts of non-invariance (2 levels). The 

magnitude for a small amount of non-invariance was 0.15 decrease in factor loadings. Figure 4 

provides the diagram of the population model for two occasions; note that factor loadings for 

variables five, six, and seven for time two are .55. The magnitude for a small amount of non-

invariance in the item intercepts was 0.25 and can be seen in Figure 5. The magnitude for large 

amounts of non-invariance was 0.3 for factor loadings and 0.5 for item intercepts. These 

magnitudes are standardized and in line with Kim and Wilson’s (2014) study on multiple group 

invariance. These magnitudes also relate to small and moderate effect sizes (Cohen, 1992; 

Ferguson, 2009). Previous simulation research has failed to examine methods for evaluating 

longitudinal MI independent of multiple groups, so this study used the current research values as 

a starting point for investigation.  

 

 

Figure 4. Small Loading LMI 
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Figure 5. Small Intercept LMI 

 

Time points. The number of time point conditions ranged from two to eight measurement 

occasions by a factor of 2 (2,4,6,8). LMI occurred on the last three indicators (variables/items 

five, six, and seven) at the second, third, fourth, and fifth time point, respectively, and remained 

variant from initial values until the final time point in the model. LMI of this form can be seen in 

applied research that depicts evidence of developmental or response shift (Ahmed et al., 2005; 

Fokkema, Smits, Kelderman, & Cuijpers, 2013; King-Kallimanis, Oort, & Garst, 2010; Schwartz 

& Sprangers, 1999; Schwartz, Sprangers, Carey, & Reed, 2004) in which once an item is found 

to be invariant, it remains invariant at future measurement occasions.  

As previously mentioned, correlations across time followed an AR1 simplex structure. 

Specifically, latent correlations started at .80 for adjacent timepoints, and decreased over time so 

that time 1 correlated at .64 (.80 *.80), .51, .41, .33, .21, and .17 with occasions three through 

eight, respectively. A similar pattern was set for the item residuals and correlations across time 

started at .30 for adjacent timepoints. 
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Sample size. The sample size condition has 2 levels (N = 400 and N = 800) in order to have 

sufficient sample sizes for the models in this study (Maxwell, 2004; Singer & Willett, 2003; 

Wall, Guo, & Amemiya, 2012).  

Implementation of data generation. Complete multivariate normal data were generated in 

R (R Core Team, 2018) using the simsem package (Pornprasertmanit, Miller, & Schoemann, 

2016). Symmetric, equally spaced, categories in line with Rhemtulla et al., (2012) were created 

to mimic 7-point Likert type response items (thresholds = -2.5 -1.5 -0.5  0.5  1.5  2.5). One 

thousand replications were generated in each condition (R = 40,000). 

Data Analysis Models  

Alternative null model. In addition to using the software default independence model (i.e., 

constrain all covariances to zero, but freely estimate all variances and means), to calculate the 

CFI,  the alternative longitudinal null model in which variances and means are also constrained 

to equality across time (Widaman & Thompson, 2003) was fit to each data generation model in 

order to use the alternative baseline chi-square to calculate the CFIa
1 for each analysis model.  

Measurement invariance analysis models. Analysis models included the CFA models 

described previously that are used to evaluate MI (configural, weak, and strong invariant 

models). The configural invariance analysis model for each condition were estimated to have the 

same pattern of free and fixed parameters. The variance of the latent construct was fixed to 1.0 

and the latent mean was fixed at zero to set the scale. All other parameters were freely estimated 

                                                 

 

 

1 The subscript “a” is used to denote that the fit index was calculated using information from the 

alternative null model. 
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including latent correlations over time, factor loadings, item intercepts, and item residuals. Item 

residual correlations among the same items over time were also freely estimated.  

The weak invariance analysis models followed the same structure except the factor loading 

for each item was constrained with the same item over time. Additionally, once these constraints 

are added to test for MI, the restrictions to set the scale are only needed for the first timepoint 

and the following timepoints are freely estimated. 

Strong invariant analysis models for each condition added equality constraints on the item 

intercepts over time and latent means are freely estimated. All other parameter estimation 

matched the previous (weak) model specifications. The strict invariant model was also estimated 

for the invariant conditions. The strict model imposes additional equality constraints on the 

residuals over time.    

Model fit information (the scaled chi-square, CFI, CFIa, RMSEA with CI, and gamma hat) 

was saved from all replicated analyses in order to calculate the model difference tests. These 

model fit indices were used to calculate Δchi-square and ΔAFIs by comparing the configural 

versus weak models and the weak versus strong models and the strong versus strict models in 

order to evaluate invariance detection.        

Implementation in R. All conditions analyzed with the four models were implemented in 

lavaan (version 0.5; Rosseel, 2012). The scales of the latent factors were identified by using the 

fixed factor method of scaling (latent factor variance fixed to one and the latent mean to zero). A 

robust ML estimator (Bentler & Satorra, 2010) was used to account for the nonnormality induced 

by the Likert-type data. Due to the use of the robust estimator, the scaled chi-square was used in 

model evaluations and comparisons. 
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Outcomes 

Type I error and power are the outcomes of interest in most simulation studies. In this study, 

Type I error rates (false positives) were evaluated for the Δχ2 and ΔAFIs in line with Cheung and 

Rensvold (2002). In order to determine Type I error, data were simulated that follows the null 

hypothesis of invariance. In this study, Type I error is an indication of a false identification of 

non-invariance (items are found to be variant when they are not). Power to detect longitudinal 

MI with the Δχ2 and ΔAFIs was evaluated in conditions where LMI was present. Power for the 

Δ𝐴𝐹𝐼𝑠⁡was computed by taking the number of replications in which LMI was detected using the 

current guidelines previously discussed divided by the number of replications for each condition 

(Bandalos & Gagné, 2012). 
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Chapter 4: Results 

The outcomes of interest in this study are the type I error rates when MI holds (no variant 

items) and power to detect LMI when present by examining the difference in the chi-square 

statistic and the AFI’s based on guidelines provided in the literature. The proportion of the 1,000 

replications in which a given test returned a false rejection represents the Type I error rate per 

condition. In conditions where MI does not hold, this value represents the Power of each test to 

detect LMI. All replications converged in this simulation study. 

Type I Error Rates of the scaled 𝚫𝛘𝟐 and 𝚫𝑨𝑭𝑰′𝒔 

The scaled chi-squared difference test has Type I error rates of zero for the configural 

versus weak model comparisons. Type error increase to expected rates ranging between .05 to 

.07 when comparing weak versus strong and strong versus strict models (see Table 2.). Sample 

size did not seem to influence the scaled chi-square difference test in this study. Meade et al., 

(2008) suggestion of the CFI change of less than .002 guideline had Type I error rates that 

ranged from .02 to .07 for sample size of 400 and were lower for the larger sample size (N=800; 

range 0 - .02). The change in CFI (.002) using the alternative null model proposed by Widaman 

and Thompson were almost identical to the default independence null provided by the software. 

The error rates were the highest for the change in Gamma hat and ranged from .12 to .20 in the 

smaller sample condition (N= 400) but were lower (range .01 to .09) and closer to acceptable 

Type I error ranges in the larger sample size conditions (N = 800).  The lowest error rates for the 

change in Gamma hat were found in the eight occasion conditions. 
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Table 2. Type I Error Rates 

Type I Error Rates                 

    N = 400 N = 800 

    

T = 

2 

 T = 

4 

 T = 

6 

T = 

8 

T = 

2 

 T = 

4 

 T = 

6 

T = 

8 

 Chi-

square 

Configural vs 

Weak 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Weak vs Strong   0.06 0.06 0.07 0.06 0.04 0.05 0.05 0.07 

Strong vs Strict   0.05 0.05 0.05 0.05 0.04 0.06 0.06 0.06 

CFI 

.002 

change  

Configural vs 

Weak   0.05 0.04 0.02 0.03 0.00 0.00 0.00 0.00 

Weak vs Strong   0.06 0.04 0.04 0.03 0.01 0.00 0.00 0.00 

Strong vs Strict   0.07 0.05 0.03 0.03 0.02 0.00 0.00 0.00 

CFIa 

.002 

change 

Configural vs 

Weak   0.05 0.04 0.02 0.03 0.02 0.00 0.00 0.00 

Weak vs Strong   0.06 0.04 0.04 0.03 0.01 0.00 0.00 0.00 

Strong vs Strict   0.07 0.05 0.03 0.03 0.02 0.00 0.00 0.00 

Gamma 

hat 

.001 

change 

Configural vs 

Weak   0.18 0.17 0.14 0.12 0.09 0.05 0.02 0.01 

Weak vs Strong   0.19 0.16 0.16 0.14 0.06 0.05 0.03 0.02 

Strong vs Strict   0.20 0.20 0.16 0.14 0.07 0.07 0.04 0.03 

Note: Scaled chi-square used. N = sample size. T = number of repeated occasions 

 

The model level Type I error rate was zero for both the RMSEA C.I. assessment and the 

CFI change of less than .01 between all nested models, and across all timepoints (2, 4, 6, 8) and 

sample sizes (400, 800). The alternative null model proposed by Widaman and Thompson (2003) 

did not influence the Type I error rate for the change in CFI.   

 

Power of the scaled 𝚫𝛘𝟐 and 𝚫𝑨𝑭𝑰′𝒔 

 
The large LMI conditions for the loadings and intercepts were large enough that all 

evaluation methods had sufficient power (ranging from 95 – 100%) to detect non-invariance 
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regardless of number occasions or sample size. Additionally, the alternative null model did not 

influence power to detect change in CFI.   

Small LMI in Factor Loadings. The small LMI condition was a decrease in factor 

loadings from .70 to .55 (a change of .15). The configural versus weak invariance model 

comparisons were tested for all conditions. The power for the difference in the scaled chi-square 

ranged between .78 and .91 for the sample size of 400. The range was higher (.99 - 1.00) for the 

larger sample condition (N=800). The change in CFI using .01 cutoff for evaluation was not able 

to detect the LMI in any of the occasion conditions nor sample sizes and reached zero after by 

the sixth time point condition. However, the Mead at al., (2008) cutoff for the CFI change of 

.002 did have sufficient power across time points and sample sizes (see Figure 6). Gamma hat 

was also sufficiently powered to detect LMI in all conditions with power ranging from 93 to 100 

percent. Power was not sufficient using the RMSEA’s C.I. for evaluation and although power 

increased in the larger sample condition, it was only 53% for two occasions and decreased down 

to 10% in the eight-occasion condition (see Table 3).  

Large LMI in Factor Loadings. The large LMI condition was a decrease in factor 

loadings from .70 to .40 (a change of .30). Power for the difference in the scaled chi-square, the 

drop of .002 in CFI, and the change in gamma hat were all one. Power was lowest for the change 

of .01 in CFI guideline and the RMSEA CI recommendation and seems to decrease slightly over 

time when N = 400, but power still ranged from .93 to .98 for these AFIs. Almost all tests had 

perfect power in when N = 800 with the slight exception that the change in CFI of .01 had power 

of .98 for the 6th and 8th occasion of measurement condition (see Table 3). 
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Figure 6. Change in CFI for Loadings 
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to Detect LMI 

Table 3. Power to Detect LMI in Loadings 

Power to Detect LMI in Loadings             

  N = 400 N = 800 

   T = 2  T = 4  T = 6 T = 8 T = 2  T = 4  T = 6 T = 8 

Small 

loading 

condition 

(0.15) 

Delta 

Chi SQ 
0.78 0.91 0.87 0.90 0.99 0.99 1.00 1.00 

Delta 

.01 CFI  
0.13 0.04 0.00 0.00 0.07 0.01 0.00 0.00 

Delta 

.002 

CFI 

0.71 0.80 0.80 0.83 0.90 0.89 0.82 0.89 

Delta 

.001 

Gamma 

hat 

0.93 0.97 0.95 0.95 0.99 1.00 0.99 1.00 

RMSEA 

CI 
0.09 0.03 0.00 0.00 0.53 0.49 0.17 0.10 

Large 

loading 

condition 

(0.30) 

Delta 

Chi SQ 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Delta 

.01 CFI  
0.98 0.97 0.95 0.95 1.00 1.00 0.98 0.98 

Delta 

.002 

CFI 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Delta 

.001 

Gamma 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RMSEA 

CI 
0.96 0.99 0.93 0.93 1.00 1.00 1.00 1.00 

Note: Scaled chi-square used. N = sample size. T = number of repeated occasions 

Power to detect lack of measurement invariance in loadings 
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Small LMI in Item Intercepts. The small LMI condition for the intercepts was a change 

of .25 in the last three indicators. The weak versus strong invariance model comparisons were 

tested across all conditions. The scaled chi-square difference test and the change in both Gamma 

hat and the CFI (.002) all had power of 100% to detect LMI (see Table 4). The RMSEA C.I. 

method of MI evaluation only had sufficient power to detect LMI in the smaller sample (N = 

400) condition for two and four occasions of measurement. Power decreased below general 

guidelines (<80%) for the six and eight occasion conditions. Power was 100% for the RMSEA 

C.I. in the larger sample size condition (N = 800). Power for the CFI change using the .01 criteria 

ranged from 53 to 99% with lower power in conditions with more occasions. Although the larger 

sample size condition had slightly higher power compared to the smaller sample condition, 

power fell below 80% at the four and six occasion conditions for the smaller and larger sample 

size conditions, respectively (see Figure 7).    

 

 Large LMI in Item Intercepts. The large LMI condition for the intercepts was a change 

of .50 in the last three indicators. The weak versus strong invariance model comparisons were 

again tested across all conditions. Power was 100% for all fit indices evaluated under this 

condition regardless of number of occasions or sample size. The large LMI in the intercepts 

condition was not able to distinguish any differences amongst power and all indices were 

overpowered.    
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Table 4. Power to Detect LMI in Intercepts 

Power to Detect LMI in Intercepts             

  N = 400 N = 800 

   T = 2  T = 4  T = 6 T = 8 T = 2  T = 4  T = 6 T = 8 

Small 

intercept 

condition 

(0.25) 

Delta 

Chi SQ 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Delta 

.01 CFI  
0.91 0.72 0.61 0.53 0.99 0.86 0.68 0.52 

Delta 

.002 

CFI 

1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

Delta 

.001 

Gamma 

hat 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RMSEA 

CI 
0.92 0.84 0.74 0.65 1.00 1.00 1.00 1.00 

Large 

intercept 

condition 

(0.50) 

Delta 

Chi SQ 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Delta 

.01 CFI  
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Delta 

.002 

CFI 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Delta 

.001 

Gamma 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RMSEA 

CI 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Note: Scaled chi-square used. N = sample size. T = number of repeated occasions 
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Figure 7. Small Intercept CFI Change 
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Chapter 5: Discussion 

The goal of this simulation study was to examine the performance of what are currently 

the most common guidelines found in both simulation studies and applied research for evaluating 

MI using longitudinal CFA. There is a stark gap in the literature in this area and current 

suggestions stem from a small set of simulations evaluating limited cross-sectional designs. 

Longitudinal CFAs have some unique properties (such as, large correlations at adjacent 

occasions, correlated residuals for repeated items, and an exponential increase in the number of 

indicators in the model as number of occasions increase) compared to its cross-sectional 

counterparts. This chapter discusses the results based on the initial research questions followed 

by some ideas for future research and conclusion. 

Research Questions 

Performance of Chi-square difference. Type I error rates were within a range from zero 

to 7 percent in the invariant conditions across time, sample size, and for each MI model 

comparison. This is expected since there are no model misspecifications in these simulation 

conditions. Additionally, the scaled chi-square difference did have enough power to detect LMI 

in all variant conditions. Power was stronger in the variant loading condition with the larger 

sample size (N=800) and was essentially 100% even in the small intercept variant conditions. 

Since the chi-square is a test of exact fit, it is sensitive to minor misspecifications such as 

parsimony error. Parsimony error was not included in the current simulation, but is an area for 

future research.  

Performance of the Change in AFI’s. Type I error rates for all conditions were in the 

standard range around 5% with the exception of Gamma hat in the sample size of 400 condition. 
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The higher Type I error rates for gamma hat may partly explain why it is not commonly used or 

reported in the literature. Type I error was within range and improved at the larger sample size 

condition and as the number of occasions increased, so it shouldn’t be abandoned completely and 

should be evaluated further for LMI in longitudinal CFA.  

Power was over 95% for all AFI’s in both the large factor loading and large intercept 

LMI conditions. This is an indication that the values chosen may have been too large and any 

method a researcher chooses to use would easily detect a failure of MI this extreme.  

Interestingly, the most commonly used methods for evaluating MI, besides the difference 

in chi-square, did not perform well. The decrease of greater than .01 in the CFI between models 

and the RMSEA C.I. criteria severely lacked power to detect LMI in the small loading LMI 

conditions. Specifically, power was 13% for the CFI at two time points and decreased to 0% by 

the sixth when N = 400. Power was lower for the larger N condition (N = 800). The RMSEA 

also fared poorly when N = 400 and although larger sample size increased power, it still fell well 

below the 80% recommendation and again decreased as measurement occasions increased. Here 

we have evidence that power does not always increase as repeated measurements increase.  

  For the small intercept conditions power was sufficient for two occasions of 

measurement using the CFI of .01, however, power decreased below 80% at the fourth 

measurement occasion and beyond. Once the number of indicators in the model were more than 

28 and 42 for the small and large sample size conditions, respectively, there was not enough 

power to detect LMI. The more conservative change in CFI of .002 retained sufficient power 

across conditions.  The RMSEA CI also had sufficient power until the sixth occasion at the 

smaller sample size.  
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Appropriate Null Model. The use of Widaman and Thompsons appropriate null model 

did not influence the evaluation of MI models using either of the CFI change criteria (.01 or 

.002). It does, however, influence the calculation of the CFI for a given model and may influence 

whether or not an initial model that is tested before evaluating MI is retained or rejected. 

Number of Occasions. Type I error for the change in Gamma hat decreased as number 

of timepoints increased and this pattern was apparent in both sample size conditions (see Table 

2). For the two most common AFIs cited in MI literature (CFI change and RMSEA C.I. 

comparisons) Table 2 shows the power to detect the small level of variant factor loadings 

decrease as occasion conditions increased for the CFI change of .01 and the RMSEA C.I. 

criteria. However, both of these AFIs has very low power across all conditions.  

Power to detect the small level of variant intercepts dropped below 80% after the fourth 

occasion (N= 400) for the RMSEA C.I. criterion and after the second occasion for the change in 

CFI of .01 criterion. In the larger sample conditions (N = 800) the power of the CFI dropped at 

the sixth occasion condition. Number of time points did not seem to influence the power of the 

chi-square difference, change in gamma hat, nor the change in CFI of .002 criteria for intercepts 

or loading conditions.  

Fan and Sivo (2007) found that the RMSEA and to a lesser extent the CFI both are 

influenced by different types of models. Specifically, the number of indicators in a model 

positively influences these indices. They also determined that Gamma hat was not influenced by 

the number of indicators since the formula accounts for number of items. The number of 

indicators increases exponentially in longitudinal CFA which may account for the drop in power 
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to detect LMI in this study after the fourth occasion. Although the CFI of .002 criterion was 

sufficiently powered.   

Limitations 

 Perhaps the biggest limitation to the present study was the values used for large LMI 

conditions in both the loadings and the intercepts. Although a previous study was used as 

guidance, a range of values could provide more enlightenment on sizes of LMI. Additionally, 

significant LMI and practical LMI must be evaluated and may depend based on the measurement 

tool used and should also be considered.  

 An additional limitation is the relatively small number of conditions evaluated and the 

small number of items used to measure the latent construct. If a researcher is evaluating MI on a 

construct with over 20 or more items, power may not be sufficient for even two or three 

occasions using the CFI or RMSEA criteria since there is evidence that the number of indicators 

influence these AFIs. Essentially, once there are a certain number of indicators in a model, these 

AFIs do not move much and show undeserving good model fit. 

 As with any study, these findings only generalize to the limited conditions and population 

parameters laid out. Generalization or extrapolation beyond these is not recommended and 

further research and replication should be evaluated. However, what has been provided is 

evidence that researchers should not utilize rigid cutoffs for all types of CFA measurement 

models while evaluating MI.  
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Future Directions 

The number of items for each latent construct (7 items) and values for small and large 

non-invariance were taken from Kim and Wilson (2014) since the first goal is to mimic those 

conditions. Future simulation studies can implement a range of values and additional conditions. 

Additionally, only up to eight repeated measurement occasions were examined in this study. 

Current technology allows researchers to collect many more occasions with a simple smart 

phone application leading to more occasions than CFA or SEM may be able to manage. 

Evaluation of MI in these scenarios will need to be investigated. 

Parsimony error is common in CFA and SEM since the goal of these techniques is to find 

the most parsimonious (simplest) model to answer the research question of interest. The current 

study did not include any model misspecifications for parsimony error, which is why the chi-

square difference tests performed so well. Future research should include parsimony error along 

with other potential model misspecifications in order to ascertain the affects on the AFIs ability 

to still detect LMI. 

Asparouhov and Muthén (2014) developed the alignment method for simplifying MI 

testing in multiple-group CFA. However, it is only available in Mplus and cannot currently be 

specified for longitudinal CFA. There are other potential methods for testing MI such as 

determining appropriate effect sizes based on areas of study, or other approaches to hypothesis 

testing such as Bayesian or Neyman-Pearson. To my knowledge, none of these methods have 

been applied to longitudinal MI evaluation.  

Conclusion 

If researchers are interested in studying people overtime and conducting longitudinal 

studies, then this work is imperative. It is essential that researchers evaluate latent longitudinal 
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models for MI. Further research on how to evaluate longitudinal MI is needed. This study has 

shown the dangers of utilizing criteria based on cross-sectional to evaluate longitudinal MI by 

demonstrating that the most commonly used AFIs may not have adequate power to detect variant 

items. Therefore, even when researchers test for MI they may conclude that the measure is 

invariant over time. Thus, they will find differences over time and attribute them to true 

differences, rather than measurement invariance These misinterpretations could lead researchers 

to conclude differences over time exist when actually the psychometric properties of the 

measurement tool differ but was not detected. 
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