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Abstract 
 

The presence of immune cells within a tumor is often a good prognostic indicator, but in 

breast cancer the presence of tumor-promoting macrophages within the tumor predicts poor 

prognosis. The current model by which macrophages promote tumor progression is that tumor 

cells secrete chemokines to recruit the macrophages to the tumor microenvironment, which then 

promote vascularization and invasion of the tumor cells. The most important chemokine in this 

process is CCL2 (also called monocyte-chemoattract protein 1). CCL2 is a chemotactic cytokine 

secreted by all cell types after injury or inflammation, and by carcinoma cells. Macrophages and 

monocytes express CCR2, the receptor for CCL2, through which they receive this chemotactic 

signal. Expression of CCR2 correlates with poor prognosis and advanced disease in breast 

cancer.  The role CCR2 expression by cancer cells is unclear, as most studies have focused on 

the effects of macrophage CCR2 signaling in breast cancer. These studies show that CCR2 

signaling promotes tumor-cell growth and invasion directly, and indirectly by affecting the tumor 

microenvironment to increase CCL2 levels and decrease levels of an immune-stimulating and 

tumor-suppressing molecule, CD154. CCR2-expressing tumors rely on the suppression of 

CD154 to support the tumor-promoting macrophage phenotype. Inhibiting CCR2 signaling in 

tumor cells significantly alters macrophage recruitment and tumor-promoting phenotype, 

resulting in decreased tumor growth and invasion. Here I present a novel mechanism where 

tumoral CCR2 signaling orchestrates M2 macrophage polarization, angiogenesis, and 

suppression of CD8+ T cells to promote growth and invasion in breast cancers, with potential 

applications to immunotherapeutic regimens. 
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Clinical Overview 
 

Women in the united states have a 1 in 8 chance of developing breast cancer in their lifetime. 

Breast cancer is the most common form of cancer in women, and is second only to lung cancer in 

mortality, or the number of people who die from that disease each year.  Estimates predict 

40,000 women will die of breast cancer in 2019. Despite major advances in breast cancer 

screening and the development of better therapeutic regimens, the survival rate for patients that 

present with distant spread or patients with recurrent breast cancer have only marginally 

improved. One reason for this is that breast cancer is a complex disease, and the mechanisms by 

which it progresses from early to late disease are not similar between all patients. The diverse 

mutational backgrounds of tumor cells and diversity in tumor microenvironments between 

tumors make predicting the behavior of any tumor difficult. Herein lies the major charge of 

cancer researchers today – to understand the various mechanisms by which tumors progress, and 

to utilize those findings to predict patient outcomes, modify current treatment regimes, and 

identify targets for developing new therapies. 

Biology of Breast Cancer 
 

The first known report of a tumor was written on papyrus between 2500 and 1600 BC in 

Ancient Egypt, and is believed to report surgical removal of a breast tumor [1]. Many physicians 

and scientists devoted their careers to understanding and treating cancer, with many paradigm 

shifts and fundamental steps being made along the way. While earlier scientists theorized that 

tumors could be caused by anything from bad humors to remnant blastoceles residing in our 

tissues, we now understand that tumors are derived from mutated normal cells. A brief overview 

of cancer pathogenesis and the terminology utilized in the following manuscript can be found in 

Appendix: Overview of cancer and nomenclature 
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Mechanisms and Measures of Progression 
 
 

Cancer cells resist many of the genomic and systemic protections in place to prevent 

neoplastic growth. A seminal paper highlighted these six fundamental mechanisms by which 

cancer cells circumvent these safeguards which apply to all malignant neoplasms, called the 

hallmarks of cancer [2]. They describe that a neoplastic cell must: proliferate in the absence of 

mitogenic stimuli, be unresponsive to growth suppressive stimuli, prevent pre-programmed 

apoptotic signaling, sustain limitless potential for replication, recruit blood vessels for nutrients, 

and invade beyond their structural boundaries. 

Understanding the cellular and molecular mechanisms by which normal epithelium 

becomes invasive neoplasms is the basis for the field of cancer research. By understanding the 

molecular mechanisms by which tumors form, invade, grow, and spread, we can better 

understand how to prevent those processes through therapeutic intervention. This section will 

describe the cellular and molecular mechanisms of tumor progression and means of interrogating 

them in the laboratory. 

 
 

Proliferation 
 

Tumors grow as most living tissues do, through taking in nutrients, building macromolecules for 

cellular proliferation, and subsequently undergoing cellular division. Signaling pathways that 

promote these functions are called mitogenic pathways, for which the canonical pathway 

mitogen-activated protein kinase (MAPK) pathway. Cellular proliferation can be measured by 

counting the growth of cells over several days, using redox substrates to measure the number of 
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live spectrophotometrically, but more accurate methods involve staining the nuclei for cellular 

markers of proliferation such as proliferating cell nuclear antigen (PCNA) or Ki67. 

 
 

Angiogenesis 
 

During development, intricate vascular networks form to deliver freshly oxygenated blood from 

the great vessels of the heart to the gas-exchanging capillaries present throughout the body. 

Capillaries also allow the diffusion of macromolecular building blocks necessary for energy 

production and protein synthesis, as well as various serum proteins that regulate the growth of 

tissues. With the exception of neonatal and embryonic neoplasms, tumors develop long after this 

vascular network has been established. As a result, tumors must recruit blood vessels through 

various mechanisms. The most commonly used proteins to measure angiogenesis include VEGF 

and PDGF, which are secreted by various cell types to induce endothelial recruitment and 

subsequent vascularization. 

 
 

Migration and invasion 
 

Cellular migration can be measured either individually or collectively as a mass. The 

most common technique to measure migration of cells involves making a uniform wound in a 

confluent monolayer of cells in 2-dimensional culture; an image is captured when the scratch is 

made and serial images are taken at application-specific time intervals thereafter. Migration is 

quantified by the change in the area of the wound or the distance from wound edges along the 

length of the wound. 

Assessing invasion requires a three-dimensional scaffold. The most biologically relevant 

scaffold is in vivo tissue, where tumor tissues are excised and imaged in the same way biopsies 
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are taken and assessed for extent of invasion in human disease. In breast cancer, the MIND 

model most accurately recapitulates the natural barriers to invasion. In vitro models attempt to 

recreate a three-dimensional scaffold that closely resembles the molecular and physical 

characteristics of native tissue. The most commonly used scaffolds for this include mixing 

basement membrane components such as collagen II and collagen IV, fibronectin, laminin, 

entactin, and various proteoglycans at prespecified ratios. By suspending cells in this mixture 

while it is liquid, and quickly curing the protein gel through pH manipulation or heat-induced 

polymerization, the end product is a biologically relevant scaffold that contains uniformly 

interspersed cancer cells. Invasion can be quantified by live cell imaging of cellular movements, 

or by taking images at set end points and quantifying the length of cellular processes extending 

into the tissue. 

 
 

Avoiding Apoptosis and survival 
 

In addition to undergoing autonomous growth, tumor cells must also constantly resist cell death 

as a result of chemotherapy or pro-apoptotic signaling. Normal cells are programmed to self- 

destruct when they sense that DNA damage, organellar damage, or viral infection has occurred. 

If cells sense mitotic damage at either of the cell cycle checkpoints, p53 or Rb will prevent cell 

cycle from progressing. If the damage is too severe, a programmed cell suicide program is 

initiated, in which Bcl2 family proteins recruit caspase enzymes to destabilize the mitochondria, 

flooding the cytoplasm with calcium, leading to activation of multiple proteases and nucleases 

that ultimately cause an organized self-destruction of cell. Cancer cells avoid this by mutating 

the proteins critical for the checkpoints to control proliferation, or by overexpressing 

antiapoptotic proteins. The most common method of examining apoptosis is measurement of 
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cleaved caspase 3, which has benefits over other methods because it stains for a downstream 

product of apoptosis initiation, rather than measuring cell death in general. 

 
 

Stem cell renewal 
 

Cancer stem cells (cancer stem cells) represent a tiny fraction of a tumor population, but are 

responsible for some tumors ability to lay dormant for decades and successfully metastasis 

thereafter. Cancer stem cells (CSCs) are defined as cells that are capable of generating a tumor 

that is phenotypically similar to its parent tumor; has the ability to self-renew by maintaining 

pluripotency even after multiple rounds of cellular division, and generation of daughter cells with 

proliferative capacity but without self-renewal capacity[3]. The search for cancer stem cells in 

breast cancer has focused on identifying cellular markers that enrich populations for self- 

renewing stem cells. One of the earliest stem cell populations in breast cancer is the 

CD44(high)/CD24(low) group, which was identified after phenotypically sorting primary breast 

cancer cells from 10 patients and injecting them into immunocompromised mice[4]. Cells 

isolated from this population show enhanced metastatic and invasive potential [5]. By screening 

for the expression of proteins that are present in both progenitor populations and subsequently 

transplanted populations, ALDH1 was also identified as a marker for stem cell renewal[6]. 

CD24/CD44 staining is often done by flow cytometry, as it allows for high throughput analysis 

and gating of the stem cell population. Aldehyde dehydrogenase activity assays can function 

similarly, where high activity of ALDH1 results in a fluorescent or luminescent product to form 

intracellularly, which can be subsequently imaged. It is thought that by targeting these cancer 

stem cells directly, the ability of a tumor to grow or recur will be greatly diminished. 
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Animal models: Understanding breast cancer 
 

Through the use of various animal models of breast cancer, effects of intervention can be 

analyzed at any step in the disease process. By using immune-compromised mice, studies on 

immune-independent mechanisms can be investigated, and human cell lines can be engrafted 

without rejection. By utilizing immune-competent models, cell lines of the same genetic 

background must be used to avoid rejection, but immune-tumor interactions can be studied. 

Described below are the models used in these studies: 

 
 

Subrenal capsule model - Mammary carcinoma cells grafted in the subrenal capsule form tumors 
 

similarly to orthotopic injection [7, 8]. Unlike injecting into the stroma-rich mammary gland, 

the subrenal capsule space is devoid of fibroblasts and is immunologically privileged, enabling 

us to determine the relative contribution of co-grafted fibroblasts without interference from host 

stroma. 

 
 

Orthotopic injections – As a major goal of animal studies is to recreate as close to a human 
 

model of disease as possible, it is necessary to recreate as close as possible the pathogenesis of 

normal disease. Many mouse models of cancer have been developed with this necessity in mind, 

and attempt to inject cancer cells into their structure of origin. In breast cancer, the most often 

used orthotopic model involves injecting cancer cells directly into the mammary fat pad. While 

this model produces tumors that are located within the mammary gland, as the previous chapter 

alludes, it bypasses formation, transformation, early growth and invasion, and jumps directly to 

invasive disease. For this reason, a superior model that more relevantly mimics breast cancer 

progression was developed. 
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Closer to the clinic: the MIND model - The Mammary Intraductal (MIND) model of breast 
 

cancer was developed in 2009 to more closely the pathogenesis of IDC as an orthotopic model 

than fat pad injection [9]. Fat pad injection bypasses the invasive phase of cancer progression 

and allows the tumor direct access to the stroma and vasculature. Intraductal injection, on the 

other hand, more accurately recapitulates the natural process of invasive disease development, 

where the lesion first fills the lumen of the duct and then may or may not invade past the 

myoepithelial layer into the surrounding stroma. Recent studies have shown that the MIND 

model more accurately replicates the metastatic homing of breast carcinoma cells and maintains 

the molecular subtype of xenografts better than fat pad injections [10]. For these reasons, this 

study will utilize the MIND model to more accurately assay the effects that CCL2/CCR2 

signaling has on tumor progression. 

 
 

Classifying Breast Cancer Subtypes 
 
 

The treatment plan and outcomes for patients with breast cancer can vary widely, with 

some tumors needing nothing more than annual monitoring and others extensive surgical, 

radiologic, and pharmacologic interventions. This clinical variety is a product of the 

heterogeneity of IDC on a molecular level. To better predict the outcome and treatments 

necessary for a patient, classification systems were developed to find subtypes and the behaviors 

and vulnerabilities of those subtypes. Increasingly sophisticated methods have developed over 

the years, and a major research goal in breast cancer research is finding better therapeutic targets 
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and prognostic predictors. to the identification of receptor subtypes by IHC and in-situ 

hybridization, to the more detailed genetic approaches that have developed most recently. 

 
 

Clinicopathologic subtyping – Once diagnosed, breast cancer is subdivided and described by 3 

major measures: the histologic subtype, the grade of the cancer cells, and the clinical stage of the 

cancer. Histologic subtyping is decided by pathologists by microscopic examination of tumor 

tissue. Pathologists classify tumors by their epithelial origin as ductal or lobular, and by whether 

the basement membrane is intact. If the lesions are contained within the basement membrane, it 

is called in situ (in its original place1). If the carcinoma cells have compromised the basement 

membrane and entered the surrounding stroma, they are invasive. Invasive lobular carcinomas 

are less aggressive than IDCs Ductal carcinoma accounts for over 80% of invasive carcinomas 

of the breast, and 85% of in situ breast carcinomas (DCIS). IDC can be subclassified as tubular, 

mucinous, or medullary based on appearance. Ductal carcinoma variants usually predict good 

prognosis, as they are usually more differentiated than other carcinomas. 

The level of differentiation, or how closely the carcinoma cells resemble the cells and 

structures of origin, is what dictates tumor grade. Grading is scored on a scale of I-IV, with I 

being well-differentiated and IV being poorly differentiated. The anatomic characteristics of the 

tumor dictate the TNM staging, which stands for tumor (size and spread), nodal involvement, 

and metastasis. This staging system has been used to document tumors for decades and shows 

has a high value when predicting prognosis. This system does not, however, take into the 

underlying molecular diversity that anatomical observation cannot provide. 

 
 
 
 

1 Merriam Webster Dictionary, s.v. “In situ” 
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Receptor expression subtypes 
 

The existence of receptor status subtypes is due to the development of estrogen- 

antagonizing therapy and Her2 antagonizing therapies. This simple classification scheme is still 

relevant today, and is part of the standard diagnostic workup for breast cancer patients. In order 

for estrogen-targeted or Her2-targeted therapies to have any efficacy, the cancer cells must 

express the receptor corresponding that therapy. The efficacy of these targeted therapies justifies 

the use of this basic subtyping for nearly all patients at diagnosis. Tumors are simply referred to 

as ER-positive, Her2-positive, or triple-negative if they have no receptor expression. For patients 

with triple-negative disease, the only systemic therapy available for all patients is chemotherapy. 

 
 

Intrinsic molecular subtypes 
 

Prior to 2000, prognostic clinical attributes and receptor expression dictated tumor 

treatment and classification. In the last two-decades, however, advances in gene expression 

analysis enabled researchers to classify tumors at the molecular level, revealing intrinsic 

molecular profiles that better predict tumor behavior and treatment response. 

The breakthrough study in this new field of molecular profiling utilized gene expression 

analysis from 65 samples derived from 42 patients. Hierarchical clustering analysis revealed 4 

specific subtypes of breast cancer based on their expression of genes associated with tumor 

phenotypes [11]. These subtypes clustered closely with receptor subtype – luminal epithelial 

ER+, Her2-overexpressing, basal-like (triple-negative), and normal breast (largely grouping with 

ER+ breast cancers). In 2001, these findings were reproduced as 78 additional tumor samples 

also expressed one of these distinct gene sets [12]. This study also identified a subclass for the 

luminal group, termed “luminal A” and “luminal B”. The fidelity of these subtypes was 
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demonstrated in 2003, when independent gene expression data from 117 tumors also found these 

5 distinct subtypes.[13] 

In 2009, a new classification was developed that combined hierarchical expression 

clustering with copy number analysis to identify 10 distinct subtypes by integrative clustering 

[14]. They applied this approach to 1992 tumor samples and found ten distinct subtypes utilizing 

an integrative clustering algorithm; these subtypes were aptly named IntClust 1-10. The 

IntClusts map closely to the expression of hormone receptors, but the complex subtypes allow 

more accurate predictions of prognoses and therapeutic efficacy. 

 
 

Clinical relevance of tumor subtypes 
 

Tumor classification systems are developed to predict tumor behavior and improve 

patient outcomes. Receptor classification dictates whether or not a patient would benefit from 

estrogen antagonizing therapies or Her2-targeted treatments, and combined with 

clinicopathologic data can predict patient prognosis as well. However, intrinsic subtyping 

revealed the range of tumor phenotypes that can exist within ER+, Her2+, or triple-negative 

breast cancers. However, the detailed genetic profiling performed to develop these classification 

systems is not yet clinically feasible. To overcome this barrier, several groups and companies 

have developed truncated gene sets that accurately predict intrinsic subtype. The PAM50 gene 

set, consisting of 50 genes that cluster most strongly with receptor status, has shown clinically 

useful in predicting both patient outcome and response to chemotherapy, and is currently used to 

guide treatment decisions for patients[15]. The clinical utility of molecular subtypes is still being 

realized, but it h and as a result, therapeutic options and goals[16]. 
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Treating breast cancer 
 
 

Surgical interventions – The first therapy for breast cancer (and many other cancers) was 

surgical removal of the tumor, often resulting in complete removal of the breast. Surgical 

options today are still front-line therapy for surgically resectable disease, and the development of 

breast-conserving therapy has decreased the trauma associated with breast disease. 

Radiation therapy– Radiation therapy (RT) is a commonly used modality for more advanced 

breast cancers. For women with positive nodal status, radiation therapy improves survival 

outcomes compared to women who do not receive RT. [17] 

Chemotherapy – The use of chemotherapeutics as an adjuvant therapy in breast cancer has long 

been commonplace for more advanced breast cancer patients. For years it was the only systemic 

medication class available for triple-negative or basal-like breast cancers. Chemotherapeutics 

are cytotoxic agents that target cancer cells based on their increased metabolic needs and 

proliferative rate compared to normal tissues. Recently, the use of chemotherapy + endocrine 

therapy in ER+ breast cancer was shown to be noninferior to endocrine therapy alone in patients 

with node-negative disease. 

Targeted therapies – For patients with ER+ breast cancer, estrogen-antagonizing therapies are 

effective. Estrogen is targeted either by direct competition of estrogen with the site, or through 

aromatase inhibiting drugs that inhibit the peripheral conversion of hormones to estrogen. For 

patients with Her2+ tumors, growth-factor-receptor-targeting antibodies have been a 

breakthrough, providing significant clinical relief compared to chemotherapeutics. 

Immunotherapies – While writing this dissertation, the first targeted immunotherapy has been 

approved for the treatment of advanced triple-negative breast cancer. Based on findings from the 
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Impassion trial (trial NCT02425891), there was a 3 month increase in median progression free 

survival, with a hazard ratio of 0.48 to 0.77 for patients in the anti-PDL1 arm of the trial. This is 

the first immunotherapeutic approved by the FDA for bresat cancer. 

 
 

The Tumor Microenvironment 
 
 
 

Tumor Microenvironment: An overview 
 

Once thought of as a mass of rapidly proliferating cancer cells, the tumor is now known 

to harbor a diverse population of cells. Tumors are a heterogenous mixture of cancer cells, 

fibroblasts, immune cells, endothelial cells forming blood vessels, platelets, erythrocytes, 

adipocytes, and neurons. The phenotype of these various cells dictates tumor behavior and 

disease progression. Non-tumor cells in the microenvironment can produce tumor-promoting 

and tumor-suppressing effects. For example, macrophages express pro-inflammatory cytokines 

and contribute to a cytotoxic response if activated by IFN-γ (termed M1 macrophages). 

However, if activated by IL-4, these same macrophages will express cytokines and growth 

factors to promote wound healing and repair (termed M2 macrophages) [18]. The accumulation 

of M2 macrophages facilitates angiogenesis and metastasis, and predicts poor outcome in breast, 

lung, and ovarian cancer patients [19]. 

Tumor cells are thought to influence their microenvironment through complex 

interactions with stromal cells via cell-surface receptor expression and secretion of proteins such 

as cytokines and growth factors; however, these mechanisms are still poorly understood. 

Understanding the mechanisms by which certain tumor recruit tumor-promoting 
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microenvironments could enable therapies that target the tumor as a whole, rather than the tumor 

cells alone. 

 
 

Lymphocytes 
 

The immune system protects the body’s various organ systems from harm, and can 

remember previously encountered threats. The 2 major classes of lymphocytes are T 

lymphocytes and B-lymphocytes. The most common lymphocytes are CD4+ helper T cells and 

cytotoxic CD8+ cells, though many other cell types do exist. Cytotoxic CD8+ T cells (CTLs) 

and natural killer cells (NK cells) monitor somatic cells for mutations and malignancy by 

scanning for abnormal proteins. T lymphocytes function to survey the circulation and tissues for 

abnormal or foreign proteins via their T cell receptors (TCRs), a protein that is unique for each 

T-lymphocyte and designed to recognize a specific antigen. 

CD4+ T cells are the helpers of the immune system, and more specifically, they assist T 

cells and B cells in receiving the correct signaling required to proliferate, activate, and perform 

their cytotoxic functions. Many of their functions occur in conjunction with antigen-presenting 

cells, such as dendritic cells, to help cytotoxic T cells recognize their antigens being presented. 

CD4+ T cells are classified into Th1 and Th2 subclasses, which are functionally distinct. Th1 

cells promote a cytotoxic T cell response that is important for anti-tumor immunity, whereas Th2 

cells promote a humoral immune response that favors B cell activation and M2 macrophage 

polarization[20]. The Th1 subtype express IL-2 and IFN-gamma. IL-2 stimulates T cell 

activation and can overcome checkpoint inhibition by PDL1, while IFN-gamma stimulates M1 

macrophage activation and antigen presentation [21]. The Th2 subtype expresses IL-4, IL-6, and 
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IL-10 to promote M2 macrophage polarization, inhibit CTL function, and generate T regulatory 

cells. 

CTLs recognize and kill non-self cell types, including bacteria, virally-infected cells, and 

tumor cells, if their TCR recognizes an antigen presented by MHC-I molecules. CTLs must 

receive a co-stimulatory signal from the cell presenting the antigen or a CD4+ T cell in order to 

activate. Of interest, CD40-CD154 is a co-stimulatory pair of molecules. CD154 on the surface 

of CD4+ helper T cells helps maintain the survival of memory cytotoxic T cells. CD154 can be 

cleaved to a soluble form, which is also capable of providing co-stimulation of CTLs 

independently of an antigen-presenting cell or CD4+ T cells[22]. If a T cell both recognizes 

MHC-bound antigens and receives a co-stimulatory signal, they induce cellular death of that 

target cell by forming pores in their membrane and injecting them with hydrolytic enzymes. 

CD19+ B cells secrete immunoglobulins upon recognition of their antigen, which mainly 

function to clear acellular toxins and contaminants from the blood and mucosa. As most durable 

anti-tumor immune responses require recognition of a cytoplasmic antigen, B cells have not been 

as well studied as CTLs in immune surveillance. 

 
 

Macrophages 
 

Macrophages are a highly heterogenous population that are widely distributed throughout the 

body. Macrophages are a critical part of the innate and adaptive immune system. In the innate 

immune response, they phagocytose debris and pathogens non-specifically by recognizing 

bacterial and viral molecular patterns via toll-like receptors. They facilitate adaptive immunity 

by presenting antigens to lymphocytes via their MHC class II molecules. They are recruited to 

sites of inflammation and injury via chemokine receptors including CCR2. At the site of injury 
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or inflammation, they coordinate the recruitment and activity of effector cells. Primary 

deficiencies of macrophages are rare in humans [23]. 

Monocytes, precursor cells to mature macrophages, circulate in the blood. Monocytes 

originate from common myeloid progenitor cells in the bone marrow, which also produce 

dendritic cells and osteoclasts, upon stimulation with granulocyte-macrophage colony 

stimulating factor (GM-CSF), macrophage-colony stimulating factor (M-CSF), and other fate- 

determining cytokines such as IL-3, KIT, and various tumor necrosis family molecules. These 

monocytes then extravasate from circulation throughout the body to become resident 

macrophages, where they respond non-specifically to foreign bodies (such as bacteria) or sterile- 

insult (trauma) to orchestrate an appropriate immune response. Once matured, macrophages 

terminally differentiate depending on the microenvironment of the organ/site of injury. 

The role of macrophages in protecting the few organs for which they have been 

specifically named serve to illustrate their diverse role in regulating inflammation. Alveolar 

macrophages in the lung are primed to produce a strong pro-inflammatory response upon 

activation by foreign bodies[24], whereas in the central nervous system (CNS) their function as 

microglia is to maintain an anti-inflammatory microenvironment to prevent inflammatory 

damage to nerves[25]. Langerhans cells, mature skin macrophages, must first promote 

inflammation to facilitate clearance of damaged or infected tissue, and then switch to turn off the 

immune response and facilitate blood vessel growth and tissue remodeling. 

 
 

Macrophages: a dichotomy revealed 
 

Researchers created the M1/M2 classification scheme after realizing a differential 

arginine metabolism by macrophages activated in a Th1 immune background versus 
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macrophages activated in a Th2 environment. Th1-derived macrophages are “classically 

activated”, and are called M1 macrophages. M1 macrophages utilize arginine to produce nitric 

oxide for killing of phagocytosed pathogens and malignant cells. Th2-derived macrophages are 

“alternatively activated,” and called M2 macrophages. M2 macrpohages express arginase and 

produce ornithine, which is a precursor for various pro-inflammatory leukotrienes and cytokines 

characteristic of M2 macrophages [26]. M2 macrophages also produce a variety of cytokines that 

inhibit M1 phenotype and cytotoxic responses including IL-4 and IL-10. 

The pro-inflammatory phenotype is known as the “classically activated” or M1 

macrophage, and is characterized phenotypically by IFN-gamma receptor activation, and 

expression of the pro-inflammatory cytokines IL-6, TNF, and IL-1. These macrophages engulf 

damaged or foreign contaminants (e.g. bacteria, fungi, silica, etc.), present antigens to T- and B 

cells, and activate a cytotoxic adaptive immune response. Re-education back to an M1 

phenotype has shown promise at both controlling the growth of tumors and increasing immune 

surveillance [27]. M1 macrophages express high levels of major histocompatibility complex 

class II (MHC II), which allows them to present antigens to T cells, as well as iNOS, 

M2 macrophages, on the other hand, act to suppress the immune response and secrete 

pro-inflammatory and angiogenic cytokines. M2 macrophage activation occurs physiologically 

in response to fungal cells, parasitic infections, immune complexes, and the Th2 cytokines IL-4, 

IL-13, IL-10, and TGF-beta. M2 macrophages secrete large amounts of IL-10, which functions 

to suppress NF-kB signaling and cytokine secretion [28]. M2 macrophages also suppress antigen 

presentation and activation of helper T cells by downregulating M1 macrophage polarization and 

from a Th2 immune background[29]. M2 macrophages are the predominant subtype in breast 

cancer, and have been shown to facilitate angiogenesis, facilitate invasive migration thru 
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secretion of matrix-metallo-proteinases, and even initiate malignant invasion [30-32]. Of 

particular interest to the studies presented here, is that CCL2 secreted by tumor cells recruits and 

maintains M2 macrophages [33]. 

Many recent studies illustrate that macrophages do not fall discretely into one of these 

two categories[34]. For example, though classically an M2 macrophage marker, arginase has 

also been found to expressed in M1 macrophages and resident macrophages [35]. The plasticity 

of macrophage function led to more nuanced categorization of macrophage activation, where the 

M1 and M2 subtypes are further divided. In this scheme, M2 macrophages can be divided into 

M2a, M2b, M2c, etc. These different subgroups are defined by which immune cells and markers 

activate the macrophage [36]. However, this has led to significant confusion, as different 

research groups define these macrophages subsets differently, and has led to suggestions that 

macrophages be defined by the activating stimulus, such as M(IL-4) or M(IL-10) [37]. 

Macrophage activation and its effect on human disease is thus as evolving field, and these 

categorizations statuses are beyond the scope of this work (for a contemporary review, see [34]). 

Thus, the studies herein will focus on the most basic categorization of macrophages as M1 or 

M2. 

 
 

Fibroblasts in breast cancer 
 

Present in most epithelial organs of the body, fibroblasts play a major role in tumor 

development and progression. Normally, fibroblasts maintain the architecture of organs by 

secreting extracellular matrix proteins such as collagen and fibronectin, and regulate epithelial 

growth during wound healing and development and are referred to here as normal-associated 

fibroblasts (NAFs). By these same mechanisms, fibroblasts in the tumor microenvironment can 
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promote the growth, invasion, and metastasis of cancer cells. Fibroblasts that promote tumor 

growth and invasiveness are termed tumor-associated fibroblasts (TAFs), and can constitute 80% 

of the fibroblast population within a tumor [38].  NAFs and Cancer-associated fibroblasts 

(CAFs) have opposing roles in tumor initiation. For example, when co-grafted with prostate 

cancer cells, CAFs stimulate cancer cell proliferation and growth, whereas co-grafted NAFs do 

not promote tumor growth[39]., How one cell type can have such diametric roles in tumor 

development is important to understand, because attenuating/reversing tumor-promoting 

phenotypes in the tumor microenvironment could lead to therapeutic responses in cancer 

patients. 

 
 

Targeting the tumor microenvironment 
 

To stimulate or inhibit tumor development, stromal cells (i.e. fibroblasts, macrophages, 

etc.) must be able to interact with the cancer cells. Stromal cells do so by expressing various 

proteins, both membrane-bound and soluble, which interact with receptors on carcinoma cells. 

These proteins can stimulate or inhibit tumor-cell growth. For example, interferons secreted by 

dendritic cells in the tumor microenvironment induce apoptosis in cancer cells and increase their 

immunogenicity; but factors like FGF7 secreted from TAFs stimulate tumor growth [40, 41]. 

From a therapeutic standpoint, the molecules that are most interesting are those with potent 

effects on both the tumor cells and the microenvironment. To have the greatest anti-tumor effect, 

the ideal molecule would inhibit the growth of the tumor cells, polarize plastic cell types (i.e. 

fibroblasts, macrophages) to be tumor suppressive, and cause a sustained immune response to the 

cancer. A major class of proteins with these characteristics is the cytokine family. 



20 
 

Cytokines, chemokines, and their receptors 
 

The term cytokine describes a broad class of small 5-20kd proteins that act through 

receptors to send immunomodulatory signals between different cells. Within this broad class are 

chemokines, interleukins, tumor-necrosis factors, interferons, and lymphokines. These cytokines 

were classically named for their major function or source, i.e. interleukins are mainly produced 

by leukocytes to signal to other leukocytes; interferons are involved in antiviral responses and 

interfere with viral reproduction. 

The main functions of cytokines are to maintain a balanced immune response through 

migratory, stimulatory, and inhibitory signals between immune cells and other normal cell types. 

A single cytokine can elicit vastly different responses depending on the context, as the functions 

of cytokines often synergize or antagonize other cytokines. The effect of cytokiens on cells are 

redundant, wherein different cytokines can all elicit a particular response (i.e. increase T cell 

activation). Cytokines are also pleiotropic, meaning a single cytokine can produce a diverse 

range of effects on various cell types. All of these characteristics allow the relatively small 

number of cytokines to fine-tune the immune response based on tissue and stimulus, but also 

make them particularly difficult to study. 

Within this broad class, the chemokine subclass is the largest with an estimated 50 

ligands and over 20 receptors. Chemokines are small soluble signaling proteins with conserved 

cysteine residues necessary for their proper folding [42]. Chemokines are structurally named 

based on the location of the first 2 cysteine residues of the 4 chemokine classes: C, CC, CXC, or 

CX3C [43] . The X represents the number of intervening amino acids between the cysteine 

residues; in the case of the C class, there are only 2 residues at C and N-terminal ends of the 

molecule[43, 44]. Most chemokine receptors are G-protein coupled receptors (GPCRs), and 
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demonstrate biased agonism in their downstream signaling, which allows for a single type of 

receptor to activate different signaling mechanisms in a context-dependent manner [45]. The 

diverse outcomes of chemokine signaling is further expanded by the significant overlap in 

binding affinity between receptors and ligands within the class. Furthermore, chemokines can be 

immobilized by extracellular glycosaminoglycans, which can further modulate the intensity and 

character of the downstream signaling[46]. This complex network of possible signaling 

outcomes explains the diverse functional outcomes of chemokine binding 
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Tumor-suppressing microenvironments: the role of CD154 
 
 

CD154 and CD40 structure and function 
 

One molecule with these characteristics is CD154. CD154, also known as CD40L, is a 

39-KD transmembrane glycoprotein in the tumor necrosis factor (TNF) superfamily. Its gene 

generates a 13 kB fragment that shares 80% homology with murine CD154[47, 48]. The gene 

for CD154 encodes a 2.3 kb transcript with 5 exons and 4 introns encoding 261 amino acids 

(aa’s) [49]. The majority of the protein is the C-terminal extracellular portion (215 aa’s), 

accompanied by a small transmembrane (24 aa’s) and N-terminal intracellular portion (22 aa’s) 

[49]. CD154 gene expression has been shown to be regulated by the calcium ionophore and 

nuclear factor of activated T cells (NFAT) in T lymphocytes, however, its regulation in other cell 

types is poorly understood [50] [51]. The membrane bound form of CD154 can also be cleaved 

to form a biologically active soluble form consisting of residues 113-261[52]. Membrane-bound 

CD154 is cleaved by metalloproteases upon activation of platelets and T cells, and cleavage can 

be inhibited by metalloproteinase inhibitor KB8301 [53]. Cleavage can occur intracellularly 

prior to vesicular release, or cleaved from the membrane upon binding its receptor CD40[54, 55]. 

Many truncation products exist for CD154, with a 38, 31, 18 and 14 kDa form being reported 

[56, 57]. 

CD154 binds its primary receptor CD40 with highest affinity, though it has also been 

reported to bind to integrin-family proteins [58], [59]. CD40 is a TNF-family receptor, consisting 

of a 151 amino acid extracellular domain, a small 22 amino acid transmembrane domain, and a 

cytoplasmic signaling domain of 62 amino acids. The extracellular and transmembrane domains 

are highly conserved between CD40 and other TNF-family receptors, but its cytoplasmic 
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signaling domain is unique [57, 60]. Crystal structure shows that CD154 binds to CD40 in a 3:2 

ratio, which induces recruitment of TRAF proteins that facilitate signaling through various 

signaling cascades including p38, Erk, and JNK-dependent signaling [61]. 

CD154 induces apoptosis in carcinoma cells, depletes tumor-promoting stroma, and 

stimulates anti-tumor immune responses.. Its receptor is CD40, a 48-KD transmembrane TNF- 

family receptor [58]. CD154 is normally expressed on the surface of helper T cells, and CD40 is 

expressed highly by antigen-presenting cells (APCs). CD40 is also found on fibroblasts, 

endothelial cells, and epithelial cells throughout the body. When the TCR on a T cell recognizes 

an antigen presented by an APC, membrane-bound CD154 on the T cell engages with CD40 on 

the APC and provides a co-stimulatory signal. This co-stimulatory signal “licenses” the immune 

response, and induces proliferation and activation of the APC. B cells, dendritic cells, and 

macrophages are all APCs [62]. 

In B cells, activation of CD40 by CD154 results in immunoglobulin isotype class- 

switching, a process necessary in the production of monomeric antibodies. Mutations in CD154 

or CD40 results in hyper-IgM syndrome in humans, where B cells are not able to switch from 

IgM to IgD, IgE, or IgG, which immunocompromises hosts and increases susceptibility to 

opportunistic infections [63]. The first hint that CD154 plays a role in cancer came from hyper- 

IgM patients. Indeed, patients with mutations in CD154 or CD40 have increased rates of 

carcinomas and sarcomas relative to the general population [63]. The role of CD154 in cancer 

gained much more interest when it was discovered that CD40 is expressed at high levels on the 

surface of many carcinoma cells[64]. Over the last 20 years, this has led to a whole field of 

research into the role that CD154 plays, both directly and indirectly, on the development and 

progression of cancer. Ongoing research indicates that CD154exerts direct inhibitory effects on 
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carcinoma cells themselves, and reshapes the tumor microenvironment to be more tumor 

suppressive. These findings are discussed below. 

 
 

Direct effects of CD154 on solid carcinoma cells 
 

The presence of CD40 on the surface of many carcinoma cell lines led to investigations 

on the effects of CD154 treatment of these cells. Human breast tumors express CD40 at higher 

levels than normal ductal epithelium, making it a good target to selectively target carcinoma cells 

[65]. Although CD154 causes activation and proliferation of immune cells, CD154 induces 

growth arrest, apoptosis, and decreased motility in CD40-expressing carcinoma cells [66]. Breast 

cancer patients with high mRNA levels of CD154 experience longer survival; this effect is 

strongest in subtypes with higher propensity for metastasis [67]. 

CD154 can decrease the proliferation of cancer cells, and in some cases, induce their 

apoptosis. CD40-expressing breast cancer cells have suppressed proliferation in the presence of 

soluble CD154 and membrane-bound CD154, with the membrane-bound form being more potent 

[68]. Soluble CD154 selectively decreases the proliferation of malignant urothelial carcinoma 

cells, but not normal urothelial epithelium, showing a selective effect of CD154 on malignant 

cells. In addition, membrane-bound CD154 induces apoptosis in malignant cells, once again 

showing that its membrane-bound form is more active than the soluble form [69]. CD154 also 

has growth-inhibitory effects in ovarian, pancreatic, and cervical carcinomas [70-72]. 

In addition to its direct cytotoxic effects, CD154 also makes carcinoma cells more 

susceptible to chemotherapy and apoptosis-inducing agents. Ovarian carcinoma cells undergo 

apoptosis in a caspase eight and caspase-3 dependent manner in the presence of both FasL and 

soluble CD154 [69]. Mouse models of melanoma and neuroblastoma showed that the use of 



25 
 

CD40-agonistic antibodies synergized with chemotherapy in reducing tumor burden [73]. 

Another study found overexpressing CD154 on CD40-positive bladder, ovarian, and cervical 

carcinoma cells potently decreases their proliferation, and amplifies the cytotoxic effects of 5- 

fluoruracil, cisplatin, and mitomycin C [74]. These findings have led to combination therapies 

for human disease. For example, a phase I trial treating pancreatic carcinoma patients with 

agonistic-CD40 antibodies and gemcitabine resulted in a synergistic response. This study showed 

the efficacy of CD154 in treating human disease, along with several other phase I trials in cancer. 

These researchers found that in mouse models of pancreatic carcinoma, CD40-agonism increased 

cytotoxic M1 macrophages, suggesting that CD154 could re-educate resident macrophages from 

tumor-promoting to tumoricidal [75]. Indeed, one study shows CD154-expressing cancer cells 

are attacked by M1 macrophages and cytotoxic T cells [76]. 

 
 

Effects of CD154 on macrophages in the tumor Microenvironment 
 

Indeed, many other studies suggest that CD154 is capable of polarizing macrophages 

toward an M1 phenotype thus creating a hostile microenvironment for cancer cells. Monocytes 

incubated with 3LLSA murine lung cancer cells engineered to overexpress CD154 resulted in the 

production of nitric oxide, TNF-alpha and IL-12 [77]. These cytokines are associated with an 

M1, tumoricidal macrophage phenotype and facilitate strong cytotoxic responses. Additional 

studies in mice indicate that CD154-based therapies result in M1 polarization and tumoricidal 

responses in vivo. Treatment with CD40-agonistic antibodies decreases the function of T cells 

and NK cells in C57BL/6 mice, but prime macrophages for stimulation by LPS and polarized 

tumor-associated macrophages to an M1 phenotype [73]. 
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In an orthotopic model of renal cell carcinoma, co-treatment with IL-2 and agonist anti- 

CD40 reduces metastasis; this is associated with decreased MMP expression in the tumor 

microenvironment, and a substantial polarization toward the M1 phenotype [78]. Moreover, 

CD40-agonistic antibodies work independently of T cells, B cells, and NK cells at delaying the 

progression of NXS2 neuroblastoma lesions in immune-compromised mice. Delivery of anti- 

CD40 increases the survival of tumor-bearing mice, and increases IL-12 expression. B16F10 

melanoma and TS/A mammary adenocarcinoma cells transfected with CD154 induce an immune 

response in cancer cells and complete rejection of tumor cells compared to mock phage controls. 

Over a month later, the mice rejected control cells as well, suggesting that CD154 expression by 

carcinoma cells enables immune memory against that tumor [74]. 

These in vitro and in vivo studies show that CD154, exogenously applied or expressed on 

the surface of carcinoma cells, has profound effects on macrophage phenotype. The mechanism 

for this effect likely involves CD154-induced intratumoral cytokine expression, particularly IL- 

12. IL-12 then polarizes resident macrophages toward an M1 phenotype, resulting in tumor-cell

death and a strong immune response. Although a few studies indicate macrophages alone 

respond sufficiently to affect tumor progression, the strength and durability of this immune 

response suggest that components of the adaptive immune system could play a role as well. 

Effects of CD154 on T cells in Tumor Microenvironment 

Several studies indicate that CD154 is capable of stimulating a durable immune response 

through T cell dependent mechanisms. MB49 bladder carcinoma xenografts engineered to 

overexpress CD154 were rejected in immune-competent mice, but not athymic mice, suggesting 

a role for T cells in CD154-dependent tumor rejection. T cells are necessary for the observed 
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anti-tumor function of CD154, they also found that CD154 overexpression by MB49 cells results 

in less suppressive myeloid cells, defined as CD11b+/Gr-1 high[79]. This study suggests that 

macrophages and T cells work synergistically to eradicate cancer cells when exposed to CD154. 

Whatever the mechanism of initial tumor regression, several studies have shown that long-term 

cancer immunity is through T cell dependent mechanisms. 

Most studies which implicate T cells in CD154-induced immunity have used therapeutic, 

nonreplicating viruses to induce the production of CD154 on cancer cells. One study showed that 

murine CT-26 colon cancer cells transduced with CD154-adenovirus were eliminated in a CD8+ 

T cell-dependent manner from mice. This anti-tumor immunity is systemic, as CD154- 

adenovirus injected in only one tumor site results in rejection of distant tumor sites as well. The 

anti-tumor immunity was durable, as CT-26 cells not overexpressing CD154 when challenged 30 

days later were also rejected [80]. CD154 gene therapy also induced a long-lasting, systemic T 

cell response in rats injected bilaterally with RCN-9 metastatic rat liver cells. Like in the study 

with CT-26 cells in mice, injecting adenovirus vector-expressing CD154 into just one tumor 

resulted in rejection of the contralateral tumor as well [81]. The reason for the immunity 

observed in these tumors is likely due to increased activation of APCs by CD154, combined with 

a flood of tumor-associated antigens from CD154-induced tumor-cell death, resulting in robust 

cytotoxic T cell activation and replication [82]. These findings are promising, because they 

suggest that CD154 is capable of mediating a diverse and sustained immune response to cancer 

cells. 
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Effects of CD154 on other tumor microenvironment cell types 
 

The role of other tumor microenvironment cell types has been studied as well, but to a 

lesser degree than immune cells. In the study on pancreatic cancer in patients and mice 

discussed above, investigators showed that delivery of CD40-agonizing antibodies resulted in 

decreased collagen I content of murine pancreatic tumors [75]. Because tumor-associated 

fibroblasts are the main contributor of collagen type I, it can be conjectured that M1 

macrophages reduce the number of TAFs or repolarize them to NAFs. CD40 is expressed on 

fibroblasts, and treatment of NAFs with CD154 results in increased proliferation and cellular 

adhesion molecule expression [83]. These studies suggest that CD154 can influence the behavior 

of fibroblasts, but no studies have explored how CD154 affects CAFs. More studies are needed 

to understand the role that CAFs play in the CD154-mediated cancer response. 

Platelets are another contributor to the tumor microenvironment, and are worth 

investigating in the context of CD154-based therapies, because they are possibly the single 

largest reservoir of CD154 in the blood [84]. Upon activation, platelets express membrane-bound 

CD154. If activated for an extended period of time, the CD154 will be cleaved in a MMP- 

dependent manner to produce the less tumoricidal, soluble form of CD154 [85]. However, the 

role of platelet-bound CD154 is unclear, as activation of platelets and thrombosis are generally 

found to be beneficial to tumor cells, protecting them from immune evasion and resulting in 

increased metastasis, among other roles [86, 87]. 
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Tumor-promoting Microenvironment: CCL2/CCR2 Signaling 
 
 
 

CCL2 – overview 
 

CCL2 is the prototypic chemokine of the CC family and the first characterized in its 

subclass. CCL2 is also as monocyte-chemoattractant protein 1, which usefully describes its most 

well-known function [88]. CCL2 has significant amino acid homology to CCL7, CCL8, CCL13, 

and CCL12, all of which have identical location of their cysteine residues [43]. Knockout of 

CCL2 or CCR2 in mice produces viable offspring with normal levels of all immune cells, but 

with near complete inhibition of macrophage recruitment to sites of inflammation [89]. In its 

physiologic role, CCL2 is secreted by many cell types in the body in response to inflammatory 

stimuli, and this secretion creates a chemical gradient that recruits monocytes from circulation 

and activates resident macrophages to initiate the immune response. CCL2 is found to be 

elevated in many inflammatory disorders including lupus nephritis and skin hypersensitivity 

reactions [90]. Though secreted by many cell types in the body, macrophages are the bodies 

largest source of CCL2, which is thought to enhance recruitment of additional effector cells 

when first respond to sites of inflammation. 

 
 
 

Role of tumor-secreted CCL2 in breast cancer 
 

CCL2 is a small soluble cytokine that attracts circulating monocytes to tissues via 

chemical gradient [91]. It interacts with CCR2, a G-protein-coupled receptor, on the surface of 

monocytes and other immune cells. In addition to its expression on monocytes, CCR2 is also 

expressed on prostate and breast carcinoma cells at higher levels than normal epithelium [92, 

93]. In breast cancer, it is known to attract tumor-associated macrophages, increase 
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angiogenesis, enrich cancer stem cells, and increase invasion and metastasis of CCR2-expressing 

carcinomas [94]. 

 
 

Tumor cells secrete CCL2 to recruit tumor-promoting macrophages 
 

Reports describing CCL2 secretion by tumor cells before CCL2 had even been described. 
 

Several papers from the 1980’s describe a tumor-derived chemotactic factor that induced 

migration of monocytes in vitro. Botazi et al first described the chemotactic properties of 

conditioned media from primary human and murine tumor-cell lines, and found a correlation 

between the magnitude of the chemotactic response and the macrophage density in the original 

tumors [95]. These early studies described this unknown entity as tumor-derived chemotactic 

factor (TDCF). The lab of Edward J. Leonard at the National Cancer Institute first cloned full- 

length cDNA for human CCL2 (still called MCP-1 at the time) in 1989, which led to the 

discovery in 1992 that TDCF and CCL2 are the same molecule, derived from the same mRNA 

transcript [96, 97]. 

 
 
 

Tumoral CCL2 enhances angiogenesis through macrophage dependent mechanisms 
 

Early studies investigating the influence of macrophages on tumor progression found 

that the macrophage content of tumors correlated with increased vascularity and significantly 

elevated CCL2 expression by gastric carcinoma tumors [98]. Similar correlational studies on 

human breast tissue revealed that CCL2 is expressed by both tumor cells and macrophages, and 

that CCL2 levels correlated with VEGF expression and tumor vascularity[99, 100]. Ablation of 

macrophages by clodronate therapy has been shown to significantly reduce tumor burden and 

reverse angiogenesis in rhabdomyosarcoma mouse models[101]. 
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Therapeutic potential of CCL2-targeted therapies 
 

While CCL2 remains a therapeutic target of interest, its translation to the bedside remains 

controversial. CCL2 neutralizing antibodies effectively block cancer progression in some animal 

models[102-104], but in other models of breast cancer, where its failure is due to accumulating 

levels of CCL2 protein[105]. Furthermore, cessation of CCL2 antibody neutralization in animal 

models of breast cancers created a rebound effect, enhancing metastatic disease associated with 

increased tumor angiogenesis[106]. Recent studies from our lab suggested that methods to target 

chemokine expression, rather than antibody neutralization may be more effective at inhibiting 

chemokine signaling activity[105, 107]. 

Developing a successful immunotherapy for breast cancers have been challenging, 

relative to the success response rates of immunotherapy for melanomas, lung cancers and acute 

leukemias[108-110]. Recent clinical trials show promise for anti-PD1 or anti-PDL1 treatment 

in triple-negative breast cancers with an objective response rate ranging from 4-19%[111, 112]. 

CTLA4 inhibitors have shown even lower clinical response [113]. Relative to melanomas or lung 

cancers, the immune landscape of breast cancers is unique in several aspects. For one, T cell 

infiltration varies among luminal, HER2+ and basal-like breast cancers [114]. Breast cancers 

show intratumoral heterogeneity in expression of PD-L1 or CTLA4 and expression varies among 

subtypes[115-117], potentially limiting effectiveness of these therapies. Therapeutic vaccines, 

which target tumor-associated antigens such as HER2, MUC1 and carbohydrates are in 

development for breast cancer treatment [118-120]. However, recent clinical trials involving 

vaccination with Sialyl-Tn, a carbohydrate antigen in metastatic breast cancer patients showed 

no clinical benefit [121]. Low T cell activity in breast cancer are attributed to high levels of M2 
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macrophages and T regulatory cells in the local tumor microenvironment[68, 122]. Therapies 

that target M2 macrophage phenotype and T cell regulatory mechanisms could be used to 

sensitize tumors prior to checkpoint blockade. 

 
 

CCR2 and breast cancer 
 

The chemokine receptor for CCL2 is CCR2, a seven-transmembrane G-coupled receptor 

with an extracellular N-terminal motif required to bind CCL2 and a C-terminal intracellular 

signaling domain. Two major isoforms exist in humans that differ by 50 units in their C-terminal 

domain due to alternative splicing, CCR2A and CCR2B[123]. CCR2B accounts for 90% of 

expressed CCR2 in humans, as it is highly expressed by macrophages and NK cells. CCR2A 

contains a cytoplasmic retention signal on its C-terminal domain that sequesters it to the 

cytoplasm[124]. 

CCL2 preferentially binds CCR2, although it can also bind to other receptors such as 

CCR4. Binding of CCL2 to CCR4 can have an immune-stimulatory effect by binding the 

cytotoxic T cells and recruiting them to a site of inflammation, or an immune suppressive 

function by binding CCR4 on regulatory T cells. Due to the conserved cysteine residues between 

CCL2 and its structural homologs, CCR2 can also bind to CCL7, CCL8, CCL12, and CCL13. 

Binding of CCL7 can stimulate monocyte recruitment from the bone marrow to metastatic 

niches, and binding of CCL8 stimulates the migration of colon cancer cells similarly to 

CCL2[125, 126]. 

CCL2 and CCR2 are overexpressed in multiple cancer types including: pancreatic, 

prostate and colon cancers and breast cancer correlating with poor patient prognosis [127, 128]. 

CCL2/CCR2 chemokine signaling is a critical regulator of macrophage recruitment during 
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wound healing and infection [129]. In breast cancer, animal models have demonstrated that 

CCL2 recruits CCR2+ macrophages to promote tumor growth and metastasis [128, 130]. 

Macrophages utilize CCR2 to hone to tumors and influence angiogenesis and tumor suppression, 

however, the role of epithelial CCR2-signaling in tumors is not well understood. We recently 

found that CCR2 is overexpressed in breast cancer cells and regulates CCL2-induced cell 

survival and migration [93]. Tumor-cell expression of CCR2 is associated with M2 macrophage 

recruitment and poor prognosis, suggesting that CCR2 signaling in tumor cells likely contributes 

the immune phenotype observed in CCR2-high tumors, however, few studies investigate the role 

of epithelial CCR2 signaling in breast cancer progression. 

Given the profound contribution of macrophages on tumor progression, their ability to 

secrete massive amounts of CCL2, and the fact that many breast cancer express high levels of 

CCR2, it seems likely that tumoral CCR2 signaling not only affects the tumor cells directly, but 

may also help to shape the tumor-promoting microenvironment around it. As evidenced by the 

failure of many CCL2-targeted therapies, our understanding of how CCL2/CCR2 signaling in 

breast cancer is incomplete. By better understanding the mechanisms by which CCR2 

expression by tumor cells contributes to breast cancer progression, thru both microenvironment- 

independent and microenvironment-dependent mechanisms, we may be able to effectively target 

the CCL2/CCR2 axis in breast cancer. 
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Scientific question 
 
 

How does epithelial CCL2/CCR2 signaling in tumors promote early progression of breast 

cancer? 

 
 
 
 
 

Hypothesis 
 
 

Based on the background information presented, I hypothesized: 
 
 

Tumoral CCL2/CCR2 signaling suppresses CD154 to promote early invasion and growth in 

IDC, thru mechanisms that affect the tumor cells directly and thru indirect mechanisms 

dependent upon stromal and macrophage involvement. 
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Aims 
 
 

To test this hypothesis, I developed these specific aims: 
 
 

Determine the role of tumor-cell-secreted CCL2 in the growth and invasion of breast 

tumors in the context of CD154 suppression. Specifically, characterize how tumoral 

CCL2 expression affects CD154 expression in vitro, and determine which CCL2- 

dependent functions are interdependent on CD154 suppression. 

 
 

Determine how tumor-cell CCR2 expression affects breast cancer progression, and if this 

is reliant on stromal interaction, by generating human cancer cells with variable CCR2 

expression and transplanting them into mouse models with no stromal interactions 

(subrenal grafts), fibroblast-specific interactions (subrenal grafts co-grafted with 

fibroblasts), and myeloid lineages (fat pad and intraductal injections of breast cancer cells 

into immune-compromised mice. 

 
 

Determine how carcinoma CCR2 expression affects the tumor microenvironment and 

immune landscape of that environment. Determine which microenvironment-dependent 

mechanisms of CCR2 require suppression of CD154 through in vitro studies of both 

murine and human cell lines with variable CCR2 expression and rescue experiments with 

exogenous CCL2 supplementation or CD154 ablation by antibody neutralization. 
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Chapter 2: The role of CCL2/CCR2 suppressing CD154 expression on in vitro measures 

of cancer cell progression. 
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Introduction 
 

Major advances in screening and better understanding the underlying molecular 

mechanisms of breast cancer progression have greatly reduced breast cancer mortality in the past 

30 years.  However, the major contributors to this increased survival are enhanced early 

detection and refining of chemotherapeutic combinations and treatment schedules, not because of 

the discovery or adoption of novel therapies. One potential therapeutic target in breast cancer is 

CCL2, as it is significantly overexpressed the majority of invasive ductal carcinomas[96, 98, 99, 

131, 132]. Tumor cells that overexpress CCL2 contribute to tumor progression through 

mechanisms that affect the intrinsic tumor-promoting functions of the tumor cells and indirectly 

by modulating the various host factors that comprise the tumor microenvironment. 

Tumoral CCL2 has been shown to directly promote the proliferation, migration, invasion, 

and stem cell renewal of breast cancer cells in vitro [93, 133]. Ueno et al. discovered that 

tumor-cell levels of CCL2 correlated significantly with intratumoral macrophage levels and 

expression of the angiogenic factors VEGF, IL-8, TNF-alpha, and TP[99]. CCL2 polarizes 

macrophages to an M2 phenotype by activating CCR2 and inhibiting secretion of IL-10 (an M2- 

promoting interleukin), and in doing so block M1 polarization [134]. Neutralization of CCL2 in 

a mouse model of breast cancer metastasis effectively blocked recruitment of macrophages, 

inhibited metastasis, and increased survival. [103] 

Despite these early promising results, systemic ablation of CCL2 incites a rebound surge 

of CCL2 upon therapy withdrawal. A human trial for antiCCL2 therapy in rheumatoid arthritis 

patients was halted prematurely because serum levels of CCL2 rose above pre-treatment levels in 

some patients [135]. In mice, CCL2-neutralization was also observed to paradoxically increase 

serum CCL2 levels, which resulted in increased angiogenesis and metastatic spread compared to 
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untreated mice Another major limitation of systemic CCL2 neutralization is that it is required 

for normal immune functioning, including anti-tumor responses [106, 136]. As CCL2 

expression by tumor cells is responsible for recruiting tumor-promoting macrophages and 

subsequent angiogenesis, targeting expression of CCL2 in tumor cells may be more effective 

than systemic neutralization. 

To test this therapy, our lab recently demonstrated that by using siRNA complexed to 

cell-penetrating TAT nanoparticles, CCL2 was selectively downregulated in tumor cells. 

Targeted delivery of CCL2 siRNA by calcium-TAT nanoparticles (siCCL2) resulted in 

significantly decreased tumor growth and metastatic spread of MDA-231 xenografts in NOD- 

SCID mice, associated with decreased macrophage recruitment, angiogenesis, stem cell renewal, 

and proliferation of breast cancer cells [137]. Additionally, siCCL2-treatment increased necrotic 

cell death but had no effect on apoptosis. Stem cell populations were decreased following 

siCCL2 treatment, as measured by flow cytometry analysis of CD24/CD44 staining and an 

increased expression of ALDH1 in vivo, and decreased mammosphere formation during serial 

passage in vitro. Using an in vitro model of macrophage recruitment, we confirmed the in vivo 

findings that siCCL2 treatment of cancer cells decreases macrophage recruitment. 

Given the broad range of phenotypes observed by modulating CCL2 expression, we next 

addressed the possibility that tumoral CCL2 may regulate other tumor-promoting or tumor- 

suppressing cytokines in the tumor microenvironment. We analyzed supernatants from MDA- 

231 cells treated with CCL2 siRNA or control siRNA complexed with TAT nanoparticles, which 

revealed several cytokines that were up-or-down regulated in the siCCL2 group. Of particular 

interest was the upregulation of CD154 in siCCL2 cells, as CD154 is known to antagonize many 

of the mechanisms by which CCL2 promotes tumor progression. 



39 
 

The goal of the following studies is to assess the possibility that some of the tumor- 

promoting functions of CCL2 are attributable to decreased CD154 levels. Through various in 

vitro methods described below, a novel regulatory mechanism by which tumor cells inhibit 

tumor-suppressive CD154 thru autocrine production of CCL2. 
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Materials and Methods 
 
 
 

Cell culture 
 

MCF10A and MDA-MB-231 cells were obtained from American Tissue Culture 

Collection. Cancer associated fibroblasts were isolated from invasive breast ductal carcinoma 

and characterized in previous studies [95, 96]. DCIS.com cells were generously provided by 

Fariba Behbod, PharmD, Ph.D. (University of Kansas Medical Center). Raw 264.7 mcherry cells 

were generously provided by George Veilhauer, Ph.D (University of Kansas Medical Center, 

Kansas City, KS). All cell lines were cultured on plastic in DMEM media containing 10% FBS 

with 0.1% amphotericin, 1% penicillin-streptomycin (cat no. 30-004-CI, Cellgro). 

Generation of CD154 shRNA lentivirus – 
 

Knockdown plasmids for CD154 were generated by cloning the following sequences into 

the pSico-Ef1a-mCherry-Puro plasmid (Addgene plasmid #31845). Oligos were ordered from 

ADT using standard desalting in the following manner 

Sequence 1-(5)TxxxxxxxxxxxTTCAAGAGAxxxxxxxxxxxxxxxxxxxTTTTTTG (3) and 

Sequence 2- (5)GATCCAAAAAAxxxxxxxxxxxxxxxTCTCTTGAAxxxxxxxxxxxxxxxxxA (3) 

Using the following shRNA target sequences: 

5-TTGGCAAGTTATCTGCTGT-3 
 

5- GGGTGGGCTTAACCGCTGT-3 
 

5-TCACAAAGCCTTCAAACTG-3 
 

5-AGAACTGACTAGCAACGGC-3 
 

5-GAAGACTCCCAGCGTCAGC-3 

http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R95
http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R96
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Where the shRNA target sequence goes into the 5’ stretch of x’s, and the reverse complement of 

that sequence goes into the second set of x’s of Sequence 1 and 2. This allows a blunt-sticky 

cloning method to be used. pSico was digested by HpaI and BamHI @ 2 units/ug pSico using a 

double digest in NEB Buffer four with 100 ug/ml BSA at 37C for 1 hour. The resulting DNA 

was purified with a silicon column kit from Promega. Oligos were annealed simultaneously with 

PNK enzyme and 10 mM ATP utilizing the following temperature protocol: 37C 30min; 95C 

3min; for 80 cycles decrease temperature by 0.5C with 30s cycle length. Annealed, 

phosphorylated oligos were then individually ligated at a 5:1 ratio of oligomer to HpaI/BamHI 

digested pSico overnight at room temperature. Because HpaI site is destroyed upon successful 

ligation, ten units HpaI were added to the ligation mixture to prevent transformation of bacteria 

by recircularized pSico vector using chemically competent DH5alpha cells and a 45 second 40- 

degree heat shock protocol. Clones were selected from positively inserted dish and resultant 

plasmid was sequenced to ensure proper ligation and sequence fidelity. 

siRNA/plasmid reagents 
 

Sense and anti-sense oligonucleotides were synthesized and annealed by GE Dharmacon. 
 

The following siRNA targeting sequences were designed: enhanced green fluorescent protein 

(eGFP) as a negative control:5’-GCUGACCCUGAAGUUCAUC-3’ [97], huCCL2si1: 5’- 

ACCUGCUGUUAUAACUUCA-3’, huCCL2si2: 5’-CAGCAAGUGUCCC AAAGAA-3’. 
 

Preparation of Ca-TAT complexes 
 

The following formula was used to determine the amount of TAT peptide needed for a 

specific N/P ratio per μg of DNA or siRNA: μg of TAT = 0.446 *(N/P ratio) + 0.116. For 

example, complexing 2.346 μg of TAT per 1 μg of DNA or siRNA would yield N/P=5. To 

prepare complexes, TAT peptides were mixed with siRNA or pDNA in 45 μl sterile deionized 

http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R97
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water containing: 37.5 mM, 75 mM or 112.5 mM CaCl2. The solution was pipetted vigorously 

for 20 times and incubated on ice for 20 minutes. For 2D and 3D cell culture studies and 

mammosphere assays, cells were incubated directly with the complexes for 24 hours before 

media replacement. For in vivo studies, 25 μl of 10 % glucose was added to the complexes, and 

diluted with PBS to a total volume of 100 μl before use. 

3D cell culture 

In each well of a 24 well plate, 100,000 breast cancer cells were embedded in 200 μl rat 

tail collagen (BD Pharmingen) using methods adapted from previous studies [98]. Briefly, the 

pH of 2 mg/ml of stock collagen was adjusted by mixing at a 4:1 ratio with setting solution 

comprised of: 1X EBSS, 75 mM NaOH, and 290 mM NaHCO3. Breast cancer cells were 

detached from the plate by trypnization, quenched, counted by hemocytometer, and pelleted by 

centrifugation. 100,000 cells were mixed thoroughly with 250 μL collagen solution and pipetted 

directly in each well, and incubated at 37C for 30 minutes for polymerization of collagen. Cells 

were incubated in 1 ml of DMEM/10% FBS for 24 hours prior to transfection. 

ELISA 

For each well in a 24 well plate, 40,000 cells were seeded in a monolayer or 100,000 cells 

were seeded in collagen for 24 hours in DMEM/10% FBS. To generate conditioned medium, 

cells were washed in PBS and incubated in serum-free DMEM for 24 hours in 500 μl volume per 

well. Conditioned media generated from indicated cell lines were subject to ELISA specific to 

human CCL2 (cat no.900-M31, Peprotech), VEGF (cat no. 900-K10, Peprotech) or IL-6 (cat no. 

900-K16, Peprotech). Samples were analyzed according to manufacturer protocol. Reactions

were catalyzed using tetramethylbenzidine substrate (cat no. 34028, Pierce) according to 

http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R98
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manufacturer’s instructions. Absorbance was read at OD 450 nM using a BioTek Microplate 

Reader. 

Animal care and surgery 
 

Female athymic Foxn1nu/nu mice, 6-8 weeks old (Balb/c background) were purchased 

from Envigo, Inc. Animals were maintained at the University of Kansas Medical Center, in 

accordance with the Association for Assessment and Accreditation of Laboratory Animal Care 

(AALAC). All animal experiments were performed at the University of Kansas Medical Center 

under an approved IACUC. 250,000 human carcinoma-associated fibroblasts were embedded 

with 100,000 MDA-MB-231 cells in 50 μl of collagen rat tail collagen I (BD Pharmingen), using 

methods previously described [40]. One collagen plugs was transplanted into each mouse, in the 

#4-5 inguinal mammary glands. When the tumors reached 0.5 cm in diameter, 10 μg (100 μl) of 

Ca-TAT/control or Ca-TAT/CCL2 siRNA nanoparticles were injected into the primary tumor in 

four different areas of the tumor, using a 27-gauge needle. Each mouse received a total of three 

injections of Ca-TAT/siRNA complexes. Animals were monitored twice weekly for tumor 

formation by palpation and measurement by caliper. Animals were euthanized 30 days post- 

transplantation, when control tumors reached maximum allowable tumor size, approximately 1.5 

cm3 (Figure 2A). 

Tissue embedding 
 

Tissues were fixed in 10 % neutral formalin buffer for 24 hours. Tissues were embedded 

in wax as described [98]. Briefly, tissues were dehydrated in a series of alcohols: 70, 90, 100% 

ethanols for 1 hour each. Tissues were further dehydrated in isopropanol for 1 hour, 50:50 ratio 

of isopropanol: paraffin wax at 60°C for 1 hour and then in wax at 60°C overnight. Tissues were 

http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R40
http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;F2
http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R98


44 
 

placed into the wax containing molds and allowed to harden at room temperature. Tissues were 

then processed for histological analysis. 

Histology/immunohistochemistry/immunofluorescence 
 

Wax embedded sections were sectioned at five micron thickness onto 1 mm glass slides, 

dewaxed and rehydrated as described [98]. For H&E stain, slides were incubated in Harris’s 

hematoxylin for 2 minutes and eosin for 2 minutes prior to dehydration and mounting in 

Cytoseal. For immunostaining, tissue sections were subjected to antigen retrieval through heating 

in low pressure in sodium citrate buffer pH 6.0 for 2 minutes. Slides were washed in PBS, and 

endogenous peroxidases were quenched in PBS containing 60 % methanol and 3% H2O2. 

Samples were blocked in PBS containing 3% fetal bovine serum for 1 hour, and incubated with 

primary antibodies (1:100) to: cleaved caspase-3 Asp 175 (cat no. 9579, Cell Signaling 

Technology), HMGB1 (cat no.6393, Cell Signaling Technology), LC3B (cat no. L10382, Life 

Technologies), VWF8 (cat no. Ab7356, Millipore), arginase I (cat no. sc20150, Santa Cruz 

Biotechnology) or VEGF (cat no. sc-152, Santa Cruz Biotechnology) overnight at 4°C. Slides 

were washed in PBS 3 times, incubated with secondary rabbit biotinylated antibodies at 1:1000 

dilution (cat no. BA-5000, Vector Labs) for 2 hours, conjugated with streptavidin peroxidase (cat 

no. PK-4000, Vector Labs) and incubated with DAB substrate (cat no. K346711, Dako). For 

detection of PCNA or IL-6 endogenous mouse immunoglobulins were first incubating with 

blocking reagents from the Mouse on Mouse kit (cat no. BMK-2202, Vector Laboratories), 

according to commercial protocol. Slides were incubated with PCNA antibodies (cat no. 

sc25280, Santa Cruz Biotechnology) or IL-6 antibodies (cat no. MAB-2061m RnD Systems) at a 

1:100 for 1 hour and then incubated with secondary mouse biotinylated antibodies from the 

MOM kit at a 1:250 dilution for 1 hour. For detection of CD24, slides were incubated with 

http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R98
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antibodies at a 1:100 (cat no. 561777 BD Pharmingen), and detected with secondary rat- 

biotinylated antibodies (cat no.BA-9401, Vector Laboratories) at a 1:1000 dilution. Sections 

were counterstained with Harris’ hematoxylin for 1 minute, dehydrated and mounted with 

Cytoseal. Because tumor sections were of various sizes, it was determined that four fields could 

be captured consistently among tumor samples, while enabling a good representation of the 

tumor. Therefore, 4 random fields per section, with two sections per sample, were captured at 10 

x magnification using a Motic AE 31 microscope with Infinity2-1c color digital camera. DAB 

staining was quantified by pixel density analysis, normalized to total tumor area, using an Image 

J software protocol (NIH) described in previous studies [98-101]. 

For immunofluorescence, sections were incubated at 1:100 dilution of antibodies to Cytokeratin 

5 (CK5, cat no. XM-26, ThermoFisher ) and Calsequestrin (cat no. SC-28274, Santa Cruz 

Biotechnologies) overnight at 4°C, conjugated with anti-rabbit-Alexa-568 and anti-mouse- 

Alexa-488 at a 1:500 dilution for 2 hours. Sections were washed in PBS, counterstained with 

DAPI and mounted with PBS/glycerol. 

Quantification of tumor-necrosis 
 

To quantify the extent of necrosis in breast tumor xenografts, tumor tissues were 

sectioned at five different depths, approximately 50 microns apart. 3 sections from each depth 

were placed on a slide and stained by H&E. Sections were imaged at 4x magnification, at 2-3 

fields per section to capture the whole tissue section. Software analysis for necrotic areas in 

breast tissues was performed using methods adapted from previous studies [96]. Images were 

first imported into Adobe Photoshop. Color and exposure of images were normalized using auto- 

contrast. Necrotic areas were selected using a lasso tool, copied to a new window and saved a 

separate file. Images were opened in Image J software (NIH), and converted to grey scale. 

http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R98
http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R101
http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R96
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Background pixels resulting from luminosity of bright field images were removed by threshold 

adjustment. Images were the subject to particle analysis. Necrotic areas and total areas were 

expressed as particle area values of arbitrary units. Values representing necrotic areas were 

normalized to values representing total tissue section. 

Scoring of tumor invasion 
 

To quantify the extent of tumor invasion into muscle tissue, tumor tissues were sectioned 

at three different depths approximately 50 microns apart. Three serial sections from each depth 

were placed on each slide and stained by H&E. The muscle tissue was distinguished by a striated 

appearance that was strongly positive for eosin stain. Each section from each sample was scored 

for extent of invasion by analysis of slides at 4x and 10x magnification. Three different 

individuals in blinded studies used a numerical scoring system. 0 indicated no to low invasion, 

characterized by no or a few tumor viable cells present in muscle tissue, or the presence of 

necrotic tumor cells in muscle tissue; the border between muscle and tumor tissue was well- 

defined. 1 indicated some tumor-cell invasion, characterized by viable tumor cells present in 

muscle tissue; the border between muscle and tumor tissue was less defined. 2 indicated high 

invasion characterized by extensive number of tumor cells in muscle tissue; tumor was 

embedded in muscle, and the border between muscle tissue and tumor undefined. 

Quantitation of lung metastases 
 

Metastatic nodules in lung tissues were detected and quantified using hematoxylin 

staining approach of lung tissues, as previously described in previous studies [99]. Briefly, 

tissues were dehydrated a series of alcohols: 70, 90, 100% ethanols for 1 hour each and cleared 

in xylene overnight. Tissues were rehydrated in decreasing series of ethanols, flushed with 

running tap water for 15 minutes and then stained with Gill’s hematoxylin for 10 minutes. Lung 

http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R99
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tissues were flushed with water for 5 minutes, de-stained in 1 % HCl for 20 minutes, and then 

incubated in tap water overnight. Tissues were partially dehydrated in 70% ethanol for 1 hour. 

Metastatic lesions throughout the lung tissue were visually identified by hematoxylin staining as 

round shaped nodules under bright field/phase contrast microscopy using a Motic AE31 inverted 

microscope (Motic AE31). Metastatic nodules were manually scored in the lung tissues. The 

presence of metastases was confirmed by paraffin embedding of whole tissue, and H&E stain of 

lung sections. 

Flow cytometry 
 

For adherent cells in culture, cells were first detached from plastic by washing in PBS 

twice, and incubation in 3 mM EDTA at 37°C for 10-15 minutes. Cells were washed with 10 ml 

of complete medium twice, fixed in 10 % neutral formalin buffer for 10 minutes at room 

temperature and washed with PBS twice to remove traces of formalin. For tumor tissues, tissues 

were washed in PBS, and digested into single cell suspensions with collagenase I and trypsin for 

4 hours at 37°C, as described in previous studies [21, 102-104]. Tumor-cell suspensions were 

fixed in 10% NBF for overnight at 4C, and then washed with PBS twice to remove traces of 

formalin. Cells were permeabilized with 0.1 % Triton-X 100 in a 37°C water bath for 15 

minutes, and washed in PBS twice. Samples were incubated with the following antibodies at 1: 

50 dilutions, overnight on ice in PBS containing 2% BSA: CD24- PE (cat no.555428, BD 

Pharmingen), CD11b-APC-Cy7 (cat. no 557657, BD Pharmingen), murine CCL2 (cat no. 1784, 

Santa Cruz Biotechnology), human CCL2 (cat no. sc1304, Santa Cruz Biotechnology) Ki67 (cat 

no. Sc15402, Santa Cruz Biotechnology), HMGB1 (cat no. 6893, Cell Signaling Technology) or 

LC3B (cat no. L10382, Invitrogen). Samples were incubated with anti-Fsp1 at a dilution of 1:3 

(cat no. ab75550, Abcam). Murine CCL2 and human CCL2 were detected by secondary goat 

http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R21
http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R102
http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R104
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antibodies conjugated to Alexa-488 (1:500) in PBS for 1 hour on ice, covered in foil. Fsp1, Ki67, 

HMGB1, LC3B were detected by secondary rabbit antibodies conjugated to Alexa-647 at a 

1:500 dilution on ice for 1 hour. Cells were washed with PBS three times prior to analysis. 

Samples were analyzed on a LSRII flow cytometer, normalized to secondary antibody only 

controls. 

Mammosphere assay 
 

30,000 cells were seeded in low-attachment six well plates (Corning) in 3 ml of 

DMEM/10% FBS. 48 hours after plating, cells were transfected with Ca-TAT complexed to 

three ug of control, huCCL2si1 or huCCLsi2 siRNAs. After an additional 5 days in culture, 

mammospheres were collected in 15 ml conical tubes, pelleted, and disassociated using 20 mM 

Trypsin/2 mm EDTA solution for 7 minutes at 37C. Cells were pelleted and replated for 48 

hours before re-transfection with Ca-TAT/siRNA complexes. Images were captured using the 

EVOS FL auto-every 7 days of plating. Mammospheres were counted using Image J software. 

3D macrophage infiltration assay 

MMD fluidic devices were fabricated by MetaBioscience LLC (Overland Park, KS). For each 

chamber device, 100,000 breast cancer cells were embedded in 250 μl rat tail collagen (BD 

Pharmingen), as described for 3D cultures. Devices were placed in six well dishes. 1 ml of 

DMEM/10% FBS was pipetted into the device and incubated overnight. After overnight 

incubation of the devices, 500,000 Raw 264.7 mcherry cells were counted and resuspended into 

2.5 ml of DMEM/10% FBS for each device. Devices were twisted open and cells were pipetted 

into each well, outside of the device. Devices were imaged daily at 10x magnification using an 

EVOS FL Auto-Imaging System (Invitrogen) for up to 48 hours. The number of macrophages 

were measured by quantification of fluorescence using methods previously described [98]. 

http://www.oncotarget.com/index.php?journal=oncotarget&amp;page=article&amp;op=view&amp;path%5B%5D=9885&amp;path%5B%5D=31958&amp;R98
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Statistical analysis 
 

All experiments were repeated a minimum of three times. Data are expressed as mean+ 

standard error of the mean (SEM) Statistical analysis was determined using Two-Tailed T-test or 

ANOVA with Bonferonni’s post-hoc comparisons using GraphPad Software. Significance was 

determined by p<0.05. *p<0.05, **p<0.01, ***p<0.0001, n.s=not significant or p>0.05. 
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Results 
 

To ensure that the in vitro results were replicable in vivo, siCCL2 and control tumors 

were immunostained for CD154. Immunohistochemical staining for CD154 confirmed that 

siCCL2 treatment increases CD154 expression compared to siCTRL-treated tumors (Figure 1). 

CD154 expression appeared to be both membranous and cytoplasmic, but not nuclear. 

 
 
 

 
 

Figure 1 - Delivery of CCL2 siRNA via TAT nanoparticles significantly decreases the 
invasiveness of MDA-231 tumors in NOD-SCID mice. Top – quantification of positive 
staining, scale bar in arbitrary units of pixels of DAB normalized to total tumor area. Lower – 
representative images from each group. Scale bar = 200 um. N= 6 tumors per group. 
Significance determined by student’s T test, * p<0.05. 
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To further confirm the cytokine array results, I generated stable knockdown of CCL2 in 

MDA-231, DCIS.com, and CA1D cells. ELISA analysis revealed significantly reduced CCL2 

expression in MDA-231 ( - Figure 2A), DCIS.com (Figure 2B), and CA1D cells (not shown) 

with CCL2 KD compared to control shRNA expressing cells. CCL2 depletion increases CD154 

expression in CCL2 KD cell lines by Western blot and ELISA ( - C-E). MDA-231 cells express 

nearly undetectable levels of CD154, and addition of CCL2 to either parental or control shRNA 

cell lines has no significant effect (data not shown). However, CCL2 KD significantly 

upregulates CD154 expression in MDA-231 cells, and exogenous CCL2 brings CD154 levels 

back to undetectable levels ( - E). These data suggest that CCL2 suppresses CD154 in a number 

of human cell lines, both in vitro and in an immune-compromised model of breast cancer. 
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Figure 2 - CCL2 knockdown leads to increased CD154 expression in multiple human cell lines. 
A&B) CCL2 expression of 24 hour-conditioned media from MDA-231 and DCIS.com cells by 
ELISA. C&D) Western blot analysis of CD154 expression by MDA-231 and CA1D cells with 
CCL2 KD. E) Expression of soluble CD154 by ELISA in MDA-231 cells.  breSignificance 
determined by student’s T test, * p<0.05. 
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To investigate whether any known tumor-promoting phenotype promoted by CCL2 was 

dependent on the suppression of CD154, I next cloned three shRNA sequences against CD154 

into a pSico vector tagged with mCherry. The pGipz vector used to generate CCL2 KD cells 

contain a ribosomal entry site and GFP tag, and by using an mCherry vector for CD154 KD, 

successful dual transfectants could be visualized by two-channel fluorescent microscopy (Figure 

3A). The CD154_3 and CD154_5 shRNA sequences most effectively reduced CD154 

expression; CD154 knockdown did not affect CCL2 levels of either control or CCL2 KD cells 

(Figure 3B). 
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Figure 3 - Efficiency of knockdown of CCL2 and CD154 by enzyme-linked immunosorbant 
assay of conditioned media from MDA-231 cells. A) Representative image showing dual- 
transfection of cells (yellow), CCL2 KD cells (green), and CD154 KD cells (red). B) 
Knockdown efficiencies for CD154 and CCL2 KD cells. CCL2 levels expressed on left axis 
and CD154 levels expressed on right axis. 
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Enhanced migration of tumor cells is one of the most robust direct effects of CCL2 

secreted by tumor cells. Though CD154 has been shown to decrease the migration of colon 

cancer cells, no studies have investigated the ability of CD154 to inhibit migration or invasion in 

breast cancer cells. Consistent with earlier findings, CCL2 KD decreases migration of MDA- 

231 cells by wound closure, and suppression of CD154 levels by antibody neutralization or 

shRNA knockdown rescues the migratory phenotype (Figure 4A). There were no significant 

effects of either CCL2 KD or antiCD154 on proliferation (Figure 4B). These data suggest that 

CCL2 enhances the migration of tumor cells in a CD154-dependent manner, and that neither 

have an effect on proliferation in MDA231 cells. 
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Figure 4 - The effect of CD154 on proliferation and migration of MDA-231 CCL2 KD cells. 
A) Migration of MDA-231 cells in the context of CCL2 KD and CD154 suppression as 
measured by wound closure assay. B) Proliferation of MDA-231 cells with CCL2 KD treated 
with varying levels of CD154 neutralizing antibodies. Number represent cell counts after 24 
hours from a starting population of 1000 cells. 
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Previous studies show CCL2 increases the survival of 4T1, PyVmT, and MDA-231 cells 

in the presence of chemotherapeutics [93]. Using the dual CCL2/CD154 knockdown cells, we 

found that CD154 knockdown increases the survival of CCL2 KD MDA-231 cells at both a high 

and low dose of doxorubicin, a chemotherapeutic commonly used to treat breast cancer (Figure 

5). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 5 - CD154 knockdown increases the survival of MDA-MB-231 cells in the presence of 
both 1 and 10 uM doses of doxorubicin over 24 hours. 
Viability measured by MTS assay relative to untreated parental MDA-MB-231 cells. N=3 
experiments with duplicate readings, * denotes p<0.05. 
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Treatment of MDA-231 tumors with siCCL2 significantly reduced stem cell population 

markers CD24, CD44, and ALDH1 in vivo, and siCCL2 treated MDA-231 cells decreased stem 

cell renewal as measured by serial mammosphere formation assay in vitro. We investigated the 

role of CD154 suppression in these CCL2-mediated processes through serial mammosphere 

formation assay, which quantifies changes in the percentage of a cellular population that are self- 

renewing stem cells. We found that CD154 neutralization of CCL2 KD cells rescues the self- 

renewing stem cell population after two generations of serial passage (Figure 6). To further 

investigate this phenotype, we knocked down CD154 in MCF10A cells, a normal breast 

epithelial cell line that expresses low levels of CCL2 and CCR2 at basal levels. Immunoblot 

showed significant reduction in CD154 expression relative to actin (Figure 7A). CD154 KD 

significantly increased the number of mammospheres formed after 2 passages (Figure 7B). 

Interestingly, due loss of vector expression or incomplete cell sorting, a small population of 

untransfected cells persisted and formed mammospheres in the three knockdown lines (denoted 

by small black arrows, Figure 7C). Overlay of mCherry revealed that both control and 

untransfected MCF10A cells formed compact, nearly perfectly spherical mammospheres, 

whereas the CD154 KD cells displayed undefined borders, irregular shape, and high variation in 

size, consistent with the morphology observed in the mammospheres of more aggressive cancer 

cell lines. 
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Figure 6 - CD154 levels correlate with mammosphere formation in MDA-231 cells. CCL2 KD 
MDA231 cells with stable CD154 KD were produced with two unique shRNA sequences 
lentivirally. A) Expression of CD154 was determined by Western blot and quantified in ImageJ. 
B) MDA231 CD154 KD cells were serially passaged in low-attachment plates to quantify 
number of self-renewing stem cells. Mammospheres counted after second generation. ** 
p<0.005 by Student’s two-tailed T.test. 
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Figure 7 - Effect of CD154 knockdown on formation of MCF10A mammospheres. Top – 
Western blot showing the efficacy of CD154 KD in MCF10A cells by three different shRNA 
sequences against CD154. Bottom – representative images of mammospheres formed in 24 
well plates, as well as 200x magnification of mammospheres. Red structures are transfected 
cells, black arrows point to untransfected mammospheres. 
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Discussion 

In this aim I provide evidence that CD154 has tumor-suppressive effects and that CCL2 

secretion by tumor cells is inversely correlated with CD154 expression. These findings suggest 

that CD154 negatively regulates stem cell renewal, survival, and migration of cancer cells, and 

that CCL2 promotes these processes in part by suppressing expression of CD154. CD154 does 

not have an effect on proliferation, and though CCL2 KD did not significantly diminish 

proliferation, its effect was trending toward suppressing proliferation. Additionally, studies that 

myself and others conducted have shown that blocking expression of CCL2 in vivo suppresses 

tumor-cell proliferation, expression of cancer stem cell marker ADLH1, invasion, and 

metastasis, and enhances apoptosis, necrosis, and autophagy. Tumors treated with CCL2 siRNA 

also expressed higher levels of CD154, consistent with the in vitro cytokine array and studies 

showing increased CD154 in CCL2 KD cells. This novel mechanism by which CCL2 promotes 

tumor progression increases our understanding of the CCL2/CCR2 axis in breast cancer, and 

suggests that increasing the levels of CD154 in tumors could be especially effective in CCL2- 

secreting tumors. 

Much work has been done to characterize the effects of CCL2 secretion by tumor cells, 

particularly as it relates to the recruitment of an inflammatory stroma. Some of the first studies 

identifying a tumor-derived chemotactic factor noted that it increased the movement of 

monocytes. Subsequent studies found significant correlation between CCL2 expression by 

tumor cells, macrophage infiltration, and blood vessel density in human breast cancers [102, 

138]. Only recently has the role of autocrine/paracrine effect of CCL2 secretion been 

investigated, as tumor cells often express higher levels of the receptor for CCL2, CCR2. The 

findings here on the function of CCL2 in directly promoting tumor-cell functions is consistent 
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with previous studies showing that CCL2 promotes the proliferation, migration, survival and 

stem cell renewal of CCR2-expressing tumor cells[72, 93].   The novel finding that CCL2 and 

the effects it has on tumor cells is antagonized by CD154 is also consistent with known effects of 

CD154 on tumor cells proliferation and migration[68]. 

Cd154 is a well-documented immunomodulatory molecule, although its role in breast 

cancer progression is limited to a few studies showing that it inhibits the proliferation of CD40- 

expressing cancer cells by enhancing apoptotic pathways [68, 69]. Interestingly, although MDA- 

231 cells express CD40, we did not observe any changes in proliferation after CCL2 KD or 

neutralization of CD154. The original study showing this effect, showed that fixed membrane- 

bound CD154 and trimeric soluble CD154 was the most effective at inhibiting proliferation and 

inducing growth arrest. It is known that the trimeric form of CD154 is more potent in eliciting B 

cell activation and inhibiting tumor growth, so it is possible that the major form of CD154 

expressed in MDA-231 cells as a result of CCL2 KD is the less effective monomeric form. It is 

also possible that CCL2 KD affects the tumor-cell expression of CD40, though studies in our lab 

have found that among cell lines that produce high levels of CCL2, CD40 expression is highly 

variable, suggesting that CD40 expression is not regulated by CCL2 levels. 

The negative effect of CD154 expression on cancer stem cell renewal was significant. In 

both CCL2 KD MDA231 cells and MCF10A cells, both of which express low levels of CCL2 

and high levels of CD154, we found that CD154 inhibition increased mammosphere formation in 

vitro. No studies to date have described the effect of CD154 on stem cell renewal of carcinoma 

cells. It is possible that CD154 suppression enhances survival and chemotherapeutic resistance 

by increasing the proportion of cells that are stem cells, which are known to be more resistant to 

chemotherapeutics than non-stem cancer cells, though our data does not directly support this. 
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Further studies should be conducted to elucidate the mechanism by which CD154 enhances stem 

cell renewal, and the extent to which the increased ratio of stem: non-stem cells contributes to 

cancer cell survival. 

The data presented here support a model whereby CCL2 blockade in cancer cells inhibits 

tumor growth and invasiveness in a CD154-depenedent manner. The mechanism by which 

CCL2 regulates CD154 is not explored. Although MDA-231 cells express CCR2 at high levels, 

we cannot say with certainty that CCR2 signaling is responsible for suppressing CD154, as 

CCL2 can bind to other chemokine receptors, notably CCR4 and CCR5. It is possible that CCL2 

negatively regulates CD154 by signaling through one of these lower-affinity receptors. Future 

studies are planned that will examine the role of epithelial CCR2 in regulating CD154 and 

tumor-promoting cellular processes. This will further elucidate whether CCL2 KD produces the 

findings reported here by decreasing tumoral CCR2 signaling, or some other mechanism not yet 

explored. 

In sum, CCL2 promotes tumor progression through both direct signaling to cancer cells 

and by inhibiting expression of a tumor-suppressive molecule, CD154. These findings suggest 

that CD154-enhancing therapies could be particularly useful in CCL2-secreting tumors. Tumor 

secretion of CCL2 directly correlates with advanced disease and poor prognosis, meaning that 

CD154-based therapies could be particularly useful in the population of breast cancer patients 

most in need of novel therapies. 
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Chapter 3: Chemokine Signaling Facilitates Early-stage Breast Cancer Survival and Invasion 

through Fibroblast-dependent Mechanisms 

Previously published as an open access article as: Brummer, G., D. S. Acevedo, Q. Hu, M. 

Portsche, W. B. Fang, M. Yao, B. Zinda, M. Myers, N. Alvarez, P. Fields, Y. Hong, F. 

Behbod and N. Cheng (2018). "Chemokine Signaling Facilitates Early-Stage Breast Cancer 

Survival and Invasion through Fibroblast-Dependent Mechanisms." Mol Cancer Res 16(2): 

296-308. Creative Commons License 

https://creativecommons.org/licenses/by/4.0/legalcode. 
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Introduction 
 

DCIS is the most common form of pre-invasive breast cancer in the US, with over 

50,000 cases diagnosed every year. Standard treatment for DCIS involves a combination of 

lumpectomy and RT [139, 140]. Yet, 10 to 35% of patients experience disease recurrence, often 

accompanied by IDC [141, 142], indicating that under-treatment and over-treatment remain 

significant concerns in patient care. Few approaches exist to evaluate prognosis of DCIS. 

Compared to IDC, the use of biomarkers in DCIS has not been well studied. Small or low grade 

lesions may still become invasive [142, 143]. ER, Her2, Ki67, p16 and Cox2 are associated with 

disease recurrence but not with development of invasive breast cancer [144]. Identifying key 

mechanisms associated with DCIS progression could lead to better prognostic factors and 

tailored treatments for patients with DCIS. 

Chemokines are small soluble molecules (8kda), which form molecular gradients to 

mediate homing of immune cells to tissues during inflammation. Chemokines signal to seven- 

transmembrane receptors that couple to G-protein dependent and independent pathways to 

promote cell migration [145, 146]. CCL2/CCR2 chemokine signaling is a critical regulator of 

macrophage recruitment during wound healing and infection [129]. CCL2 and CCR2 are 

overexpressed in multiple cancer types including: pancreatic, prostate and colon cancers and 

breast cancer correlating with poor patient prognosis [127, 128]. In breast cancer, animal models 

have demonstrated that CCL2 recruits CCR2+ macrophages to promote tumor growth and 

metastasis [128, 130]. The CCL2/CCR2 pathway is a current therapeutic target of interest [128], 

but little is known about mechanisms of this pathway in cancer beyond signaling in immune 

cells. 
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We recently found that CCR2 is overexpressed in breast cancer cells and regulates 

CCL2-induced cell survival and migration [93], indicating a macrophage-independent role for 

CCL2 in breast cancer. Using a novel Mammary Intraductal injection (MIND) model of DCIS, 

we demonstrate that CCR2 overexpression in DCIS lesions enhances invasive progression 

associated with accumulation of CCL2-expressing fibroblasts. Using the subrenal capsule model, 

we demonstrate that fibroblasts derived from DCIS promote breast cancer survival and invasion 

through CCL2 dependent mechanisms. Furthermore, increased CCL2/CCR2 signaling in DCIS is 

associated with increased expression of ALDH1, a pro-invasive factor, and decreased expression 

of HTRA2, a pro-apoptotic serine protease, factors associated with poor prognosis of breast 

cancer patients. These studies identify a key mechanism of DCIS progression involving 

CCL2/CCR2 signaling between fibroblasts and breast epithelial cells, with important clinical 

implications. 
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Materials and Methods 

Cell culture 

Human fibroblasts were isolated from reduction mammoplasty or DCIS tissues obtained 

from the Biospecimen Core Facility at the University of Kansas Medical Center (KUMC), and 

immortalized by expression of human telomerase reverse transcriptase as described (16). 

Fibroblasts were authenticated by expression of: platelet-derived growth factor receptor-α 

(PDGFR-α), fibroblast-specific protein 1 (Fsp1), and α-smooth muscle actin (α-sma) and absence 

of pan-cytokeratin. DCIS.com cells originated from Dr. Fred Miller's laboratory (17). These cell 

lines were cultured in DMEM containing 10% FBS (Atlas Biologicals, catalog no. FR-0500-A), 

2 mmol/L L-glutamine (Cellgro, catalog no. 25-005-CI), 100 IU/mL penicillin, and 100 μg/mL 

streptomycin (Cellgro, catalog no. 10-080). SUM225 cells originated from Dr. Steven Ethier's 

laboratory, Medical University of South Carolina, Charleston, SC (18), and were cultured in 

Ham F12 media containing 10% FBS, 5 μg/mL insulin, 1 μg/mL cortisone, and antibiotics. Cells 

were passaged no longer than 6 months, and tested for mycoplasma after thawing using the 

MycoAlert Plus Kit (Lonza, catalog no. LT07-701). 

Lentiviral transduction 

For CCR2 overexpression, full-length CCR2 cDNA was obtained from University of 

Missouri-Rolla cDNA Resource Center (clone ID no. CCR200000), and subcloned into 

pHAGE–CMV-MCS-IRES-zsgreen lentiviral plasmid (PLASMID, Harvard University) 

using NHEI and XbaI restriction sites. pHAGE empty vector was used as a vehicle control. 

CCR2 and nonsilencing control shRNAs in pGFP-c-shlenti lentivirus vectors were purchased 

from OriGene (Catalog No. TL321181). The CCR2 targeting sequence was: 5′- 

http://mcr.aacrjournals.org/content/16/2/296.long#ref-16
http://mcr.aacrjournals.org/content/16/2/296.long#ref-17
http://mcr.aacrjournals.org/content/16/2/296.long#ref-18
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TATTGTCATTCTCCTGAACACCTTCCAGG-3′. CCL2 and nonsilencing control shRNAs in 

pGFP-c-shlenti lentivirus vectors were obtained from OriGene (catalog no. TL316716). 

The CCL2 targeting sequence (OriGene) was: 5′- 

ACTTCACCAATAGGAAGATCTCAGTGCAG-3′. CCL2 and nonsilencing control shRNAs in 

GIPZ shRNA lentivirus vectors were obtained from Dharmacon (catalog no. V2LHS31298). 

The CCL2targeting sequence was: 5′-TAAGTTAGCTGCAGATTCT-3′. 
 

To generate lentivirus, 3.33 μg of PMD2G (Addgene catalog no.12260), 6.66 μg PDPAX2 

(Addgene catalog no. 12259), and 10 μg target vectors were cotransfected in HEK-293T cells 

using Lipofectamine 2000 (Thermo Fisher Scientific catalog no. 11668027). Medium was 

removed 48 hours later and used to transduce cells, which were sorted for GFP expression by 

FACS. 

Gene deletion by clustered regularly interspaced short palindromic repeats 
 

The CCR2 guide RNA was cloned into the pSpCAs9(BB)-2A-GFP(PX458) vector 

(Addgene catalog no. 48318) using BsmBI enzyme. The CCR2 guide RNA sequence was: 5′- 

TTCACAGGGCTGTATCACATCGG-3′, which targeted the exon encoding the extracellular 

loop between the second and third transmembrane domains of human CCR2. The vector was 

transfected into DCIS.com breast cancer cells using jetPei transfection reagent (Polyplus, catalog 

no. 101-01), with N/P 7.5. Forty-eight hours later, GFP-positive cells were FACS sorted, 

cultured as single-cell clones in 96-well plates, and expanded into 6-well plates. Genomic DNA 

of individual colonies was screened by PCR to detect mutant colonies. The detection primer pair 

spanning the CCR2 targeting site was: 5′-ACATGCTGGTCGTCCTCATC, 3′- 

AAACCAGCCGAGACTTCCTG. The PCR product of the wild-type (WT) gene was 901 bp, 

and contained one DdeI enzyme digestion site to yield 231- and 670-bp fragments. Exon 
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excision introduced an additional DdeI restriction site resulting in fragment sizes of 181, 231, 

and 468 bp upon DdeI digestion. 

ELISA 
 

A total of 40,000 cells/well were seeded in 24-well plates in DMEM/10% FBS for 24 

hours, washed in PBS, and incubated in serum-free DMEM for 24 hours in 500 μL/well. 

Conditioned media were assayed for human CCL2 by ELISA (PeproTech, catalog no. 900-M31). 

Reactions were catalyzed using tetramethylbenzidine substrate (catalog no. 34028, Pierce). 

Absorbance was read at OD450nmol/L using a BioTek Microplate Reader. 
 

MIND model 
 

NOD-SCID IL receptor-γ2 null female mice 8 to 10 weeks of age were purchased from 

The Jackson Laboratory. MIND injections were performed as described (19). Briefly, 4,000 

cells/μL breast epithelial cells were prepared in 50 μL PBS containing 0.1% Trypan blue. A Y 

incision was made on the abdomen of mice anesthetized with ketamine/xylazine [100 mg/kg / 10 

mg/kg ] to expose the 4–5 and 9–10 inguinal glands. The inguinal nipples were snipped. A 30- 

gauge Hamilton syringe with a blunt-ended 0.5-inch needle was used to deliver 5 μL (20,000) 

cells/nipple. Skin flaps were closed with wound clips. Mice were palpated for lesions twice 

weekly. SUM225 injected mice were sacrificed 7 weeks post-injection. DCIS.com-injected mice 

were sacrificed 4 weeks post-injection. 

Subrenal graft 
 

Transplantation into subrenal capsules of NOD-SCID female mice (6–8 weeks old) was 

performed as described (20). Briefly, 250,000 fibroblasts were resuspended with 100,000 

DCIS.com cells in 50 μL rat tail collagen I (BD Pharmingen), and cultured in DMEM/10% FBS 

for 24 hours. Mice were anesthetized by ketamine/xylazine, a 1 to 1.5 cm midline incision was 

http://mcr.aacrjournals.org/content/16/2/296.long#ref-19
http://mcr.aacrjournals.org/content/16/2/296.long#ref-20
http://mcr.aacrjournals.org/content/16/2/296.long#ref-20
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made in the back 3 cm from the base of the tail, and the lateral or contralateral kidney was 

exposed. A small incision was made in the capsule layer using forceps and small spring-loaded 

scissors. The graft was inserted using a glass pipette. The body wall was closed with gut 

absorbable sutures and the skin was closed with wound clips. Mice were monitored twice weekly 

and sacrificed 3 weeks post-transplantation. 

DAB immunostaining 
 

Tissues were fixed in 10% neutral formalin buffer and embedded in wax as described 

(21). For DAB immunostaining, 5 μm sections were dewaxed and heated in ten mmol/L sodium 

citrate buffer pH 6.0 for 2 minutes. Endogenous peroxidases were quenched in PBS/60% 

methanol/3% H2O2, blocked in PBS/3% FBS, and incubated with primary antibodies (1:100) 

overnight at 4°C: collagen IV (Novus Biologicals NB120-6586SS), cleaved caspase-3 Asp175 

(Cell Signaling Technology, catalog no. 9579), Von Willebrand Factor 8 (VWF8; Millipore, 

catalog no. Ab7356), PDGFR-α (Cell Signaling Technology, catalog no. 5241), KI67 (Santa 

Cruz Biotechnology, catalog no. 1307), HTRA2 (Cell Signaling Technology, catalog no. 2176), 

CCL2 (Santa Cruz Biotechnology, catalog no. 1304), or F4/80 (Abcam, catalog no. ab6640). 

Fsp1 antibodies (Abcam, catalog no. 27427) were diluted 1:3. Slides were incubated for 2 hours 

at 1:1,000 with: anti-rabbit-biotinylated (Vector Laboratories, catalog no. BA-5000), anti-goat 

biotinylated (Vector Laboratories, catalog no. BA-5000), or anti-rat-biotinylated (catalog no. 

BA-9401, Vector Laboratories). For laminin staining, slides were treated with 20 μg/mL 

Proteinase K for 1 hour at 37°C prior to incubation with 1:100 pan-specific antibodies (Novus 

Biologicals, catalog no. NB300-144AF700). Slides were incubated with streptavidin peroxidase 

(Vector Laboratories, catalog no. PK-4000), developed with 3,3'-diaminobenzidine (DAB) 

substrate (Dako, catalog no. K346711), counterstained with Mayer hematoxylin and mounted 

http://mcr.aacrjournals.org/content/16/2/296.long#ref-21
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with Cytoseal. PCNA (catalog no. sc25280, Santa Cruz Biotechnology) and ALDH1A1 (R & D 

Systems, catalog no. MAB5869) proteins were detected using the Mouse on Mouse (MOM) Kit 

(Vector Laboratories, catalog no. BMK-2202). 

Immunofluorescence 
 

For CK/α-sma costaining, slides were heated in ten mmol/L sodium citrate buffer pH 6.0 

for 2 minutes. Slides were incubated with antibodies 1:100 overnight at 4°C to: α-sma (Spring 

Biosciences, catalog no. SP171) and CK5 (Thermo Fisher Scientific, catalog no. MA5-12596) or 

CK19 (Thermo Fisher Scientific, catalog no. MS198). Slides were incubated for 2 hours at 1:200 

with anti-rabbit-IgG-Alexa Fluor 568 (Thermo Fisher Scientific, catalog no. A10042) and anti- 

mouse IgG-Alexa Fluor 488 (Thermo Fisher Scientific, catalog no. A-11001). For pan- 

cytokeratin/phalloidin costaining, slides were heated in ten mmol/L sodium citrate pH 6.8 for 5 

minutes. Slides were incubated with 1:100 Alexa Fluor 488-phalloidin (Thermo Fisher, catalog 

no. A12379) and anti-pan-cytokeratin (Santa Cruz Biotechnology, catalog no. 8018) overnight at 

4°C, and incubated with secondary anti-mouse-Alexa Fluor 647 (Thermo Fisher Scientific, 

catalog no. 31571) using the MOM kit. Sections were counterstained with 4′,6-diamidino-2- 

phenylindole, dihydrochloride (DAPI) and mounted with PBS/glycerol. 

Image quantification 
 

Five random fields/section were captured at 10× magnification using the FL-Auto-EVOS 

System (Invitrogen). DAB staining was quantified as described previously (10). Briefly, images 

were imported into Adobe Photoshop, DAB staining was selected using the Magic Wand tool, 

copied, and saved a separate file. Images were opened in ImageJ (NIH, Bethesda, MD), and 

converted to grayscale. Background pixels were removed by threshold adjustment. Images were 

subject to particle analysis. Positive DAB values were normalized to total area values, expressed 

http://mcr.aacrjournals.org/content/16/2/296.long#ref-10
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as arbitrary units. To quantify stromal staining, epithelial tissues were cropped out in Adobe 

Photoshop. DAB staining was selected in stroma, copied to a new window and saved as a 

separate file. Images were opened in Image J and quantified. Stromal DAB values were 

normalized to total stromal values. 

Scoring of tumor invasion 
 

Tissues were sectioned at 3 depths approximately 50 μm apart. Two to 3 serial sections 

per depth were stained. Images were captured at 4× and 10× magnification and scored in a 

blinded fashion: 1 (non-invasive), 2 (lowly-invasive), or 3 (highly-invasive). For CK/α-sma CO- 

IF, one indicated no invasion, with intact α-sma+ myoepithelium and confinement of epithelial 

cells within the duct; 2 indicated 50% or less disappearance of the α-sma surrounding the duct 

and/or appearance of 3 or fewer cells invading through the duct; 3 indicated more than 50% α- 

sma disappearance, with appearance of more than 3 cells invaded through the duct and making 

contact with the periductal stroma. For collagen IV and laminin immunostaining: 1 indicated 

well-defined expression in the basement membrane; two indicated additional low-level 

expression in lesion; three indicated higher expression in epithelium, with poor definition 

between epithelium and stroma. For phalloidin/pan-cytokeratin staining, one indicated a well- 

defined border between tumor and kidney, with a few tumor cells invaded into kidney tissue; two 

indicated some tumor-cell invasion, characterized by viable tumor cells present in kidney tissue; 

the border between kidney and tumor tissue was less defined; and three indicated high invasion 

characterized by extensive number of tumor cells in kidney tissue; tumor was embedded in 

kidney, and the border between kidney tissue and tumor were undefined. 
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Flow cytometry 

Flow cytometry staining for CCR2 expression was conducted as described (13). Briefly, 

adherent cells were detached from plastic by Accutase (Thermo Fisher Scientific, catalog no. 

A1110501), washed in PBS, and incubated with anti-CCR2-PE for 1 hour on ice. Samples were 

washed in PBS three times and analyzed on a LSRII flow cytometer, normalized to unstained 

controls. 

Fibroblast proliferation assay 

Fibroblasts were seeded 30,000/well in 24-well plates overnight. DCIS.com cells 

(500,000) were seeded in 10-cm dishes, and incubated with 5-mL serum-free DMEM for 24 

hours. Fibroblasts were treated with 500 μL of DMEM or tumor conditioned medium for 24 or 

48 hours. Fibroblasts were detached through trypsinization, quenched in DMEM/10% FBS and 

pelleted by microcentrifugation. Fibroblasts were resuspended in 50-μL PBS and counted by 

hemocytometer. 

Statistical analysis 

Cell culture experiments were repeated a minimum of 3 times. Data are expressed as 

mean ± SEM. Statistical analysis was determined using two-tailed t test or ANOVA with 

Bonferroni post hoc comparisons for normal distributions and Kruskall–Wallis test with 

Dunn post hoc comparison for non-Gaussian distributions. Statistical analysis was performed 

using GraphPad Software. Significance was determined by P < 0.05 (*, P < 0.05; **, P < 0.01; 

***, P < 0.0001; n.s., not significant or P > 0.05). 

Ethics approval and consent to participate 

All animal experiments were performed at KUMC according to guidelines from the 

Association for AALAC. Experiments were approved by the Institutional Animal Care and Use 

http://mcr.aacrjournals.org/content/16/2/296.long#ref-13
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Committee. Patient samples were collected under approval by Institutional Review Board (IRB) 

at KUMC. All samples were de-identified by the Biospecimen Core, an IRB-approved facility, 

prior to distribution 
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Results 

CCR2 overexpression in SUM225 cells enhances DCIS progression 

In DCIS, cancer cells grow, but remain within the boundaries of ducts and lobules, which 

are lined by α-sma+ myoepithelial cells and basement membrane, structural barriers between the 

stroma and duct. Progression from DCIS to IDC is characterized by disappearance of the 

myoepithelium and appearance of invading ductal carcinoma cells into the surrounding stroma 

[147]. To clarify the role of epithelial CCR2 expression in DCIS progression, we utilized MIND 

models established through injection of SUM225 and DCIS.com breast cancer cells. SUM225 

breast cancer cells are lowly-invasive, of a luminal/Her2+ subtype [148]. DCIS.com breast 

cancer cells, a basal-like subtype, are more highly-invasive [9]. By flow cytometry, CCR2 

expression was significantly lower in SUM225 cells compared to DCIS.com breast cancer cells 

(Figure 8A). We first examined the effects of CCR2 overexpression on progression of SUM225 

lesions. By lentivirus transduction, 2 different SUM225 cell lines were generated to overexpress 

CCR2 (CCR2-L and CCR2-H), and compared with SUM225 cells expressing pHAGE vehicle 

control (Figure 8A). These cells were MIND injected into NOD-SCID mice, and examined 7 

weeks post-injection, when lesions were palpable. CCR2-overexpressing xenografts showed no 

significant changes in mammary tissue mass compared to pHAGE control (Figure 8B). 

Extent of epithelial invasion in the mammary gland or breast tissue has been determined 

by evaluating myoepithelial integrity through α-sma expression, and examining for presence of 

carcinoma cells contacting the surrounding stroma [9, 149-151]. To evaluate the effects of 

CCR2 overexpression on ductal invasion, we co-stained for α-sma to define ductal 

myoepithelium, and for human specific CK19 to define SUM225 cells. Lesions were scored for 
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invasiveness. Non-invasive lesions had intact α-sma+ myoepithelium, lowly-invasive lesions 

showed reduced -sma expression, lining the breast duct, and a few invasive cancers. Highly- 

invasive lesions showed minimal α-sma expression and multiple invasive cancer cells. In the 

pHAGE controls, 21 % were non-invasive, 51% were lowly-invasive and 28% were highly- 

invasive. Of CCR2-L MIND lesions, 12% were non-invasive, 57% were lowly-invasive and 

31% were highly-invasive. Of CCR2-H MIND lesions, 8% were non-invasive, 66% were lowly- 

invasive and 26% were highly-invasive (Figure 8C). The decrease in lowly-invasive lesions and 

increase in lowly-invasive lesions indicate a shift toward invasion. 

To further characterize basement membrane invasion, mammary tissues were stained for 

laminin and collagen IV, which are basement membrane proteins associated with invasiveness in 

breast cancer [152, 153]. In non-invasive lesions, laminin and collagen IV were expressed in the 

basement membrane and surrounding stroma. In lowly-invasive lesions, laminin and collagen IV 

were also detected in the epithelium, correlating with a few invading epithelial cells. In highly- 

invasive lesions, laminin and collagen IV expression in lesions resulted in poorly-defined 

borders between stroma and epithelium. Consistent with CCR2 overexpression in SUM225 cells 

decreased the number of lowly-invasive lesions and increased the number of highly-invasive 

lesions (Figure 8). CCR2 overexpression was also associated with increased cell proliferation 

and decreased apoptosis as indicated by Ki67 and cleaved caspase-3 staining (Figure 8D-E). 

These data indicate that CCR2 overexpression in SUM225 cells enhances the progression of 

MIND xenografts. 
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Figure 8 - CCR2 overexpression in SUM225 breast cancer cells enhances invasive progression 
A. Flow cytometry analysis for CCR2 expression in parental DCIS.com or SUM225 parental
cells or SUM225 cells expressing vehicle pHAGE control or CCR2 (CCR2-L, CCR2-H).
Histogram analysis shown on left. Graph shows percentages of positive cells. B. Tissue mass of
SUM225 MIND injected mammary glands C. SUM225 lesions were co-stained for CK-19 (red)
and α-sma (green), and scored for the number of invasive lesions n=252 lesions for control
pHAGE, 272 lesions for CCR2-L, and 231 for CCR2-H group. Representative images are
shown with secondary antibody control panel of anti-rabbit-Alexa-fluor488/anti-mouse-Alexa- 
fluor-568/DAPI overlay. Arrows indicate invasive foci. D-E. Image J quantification of
immunostaining for Ki67 (D) or cleaved caspase-3 (E) in SUM225 lesions (arbitrary units).
Arrows point to examples of positive staining. Statistical analysis was performed using One
way ANOVA with Bonferonni post-hoc comparison (B, D, E) or Chi square test (C). Statistical
significance was determined by p<0.05. *p<0.05. ns= not significant. Mean±SEM values are
shown. Scale bar=200 microns.
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Knockdown or knockout of CCR2 in DCIS.com cells inhibits DCIS progression 

We next examined the effects of CCR2 deficiency on progression of DCIS.com lesions. 

Of the four shRNA sequences tested, one induced significant knockdown of CCR2 expression in 

DCIS.com cells (A). MIND injection of DCIS.com cells in NOD-SCID mice resulted in 

palpable mammary lesions at 4 weeks. CCR2 knockdown (CCR2-KD) decreased mammary 

tissue tumor growth compared to control shRNA expressing xenografts (Figure 9B). To examine 

for changes in ductal invasion, sections were CO-IF stained for α-sma to identify the basement 

membrane and human specific CK5 to identify DCIS.com cells, and scored. These data indicate 

a shift toward less-invasive lesions in tumors with CCR2-KD (Figure 9C). CCR2 KD was also 

associated with decreased tumor-cell proliferation and increased apoptosis (Figure 9D-E). 
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Figure 9 - shRNA mediated CCR2 knockdown in DCIS.com breast cancer cells inhibits 
invasive progression. A. Flow cytometry analysis for CCR2 expression in Parental (Par) or 
DCIS.com cells expressing control (Con) or CCR2 shRNA (CCR2-KD). B. Tissue mass of 
DCIS.com MIND injected mammary glands C. DCIS.com MIND lesions were co-stained for 
CK5 (red) and α-sma (green) and counterstained with DAPI (blue). Representative images are 
shown with arrows pointing to invading tumor cells. Lesions were scored for invasiveness. 
n=152 lesions for control shRNA group, 193 lesions for CCR2-KD group. n=8 mice/group. D- 
E. Image J quantification of Ki67 (D) or cleaved caspase-3 (E) immunostaining in DCIS.com 
lesions. Arbitrary units are shown. Arrows point to examples of positive staining. Statistical 
analysis was performed using one-way ANOVA with Bonferonni post-hoc comparison (B, D, 
E) or Chi square test (C). Statistical significance was determined by p<0.05. *p<0.05, **p<0.01. 
Scale bar=200 microns. 
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To confirm this invasive phenotype, we stained for 2 basement membrane proteins, collagen IV 

and laminin. These studies also revealed that there was decreased invasiveness in the CCR2 KD 

DCIS.com tumors compared to control (Figure 10A&B). 

 
 
 

Figure 10 - Collagen and laminin expression in DCIS.com MIND lesions. CCR2 or control 
shRNA expressing DCIS.com MIND lesions were immunostained for A. collagen IV or B. 
laminin expression. Total sample size per group (N) are shown below graphs. Arrows point to 
areas of invasiveness. Scale bar= 200 microns. Statistical analysis was performed using Chi 
Square test. Statistical significance was determined by p<0.05. 
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To validate the effects of CCR2-KD on DCIS.com progression, the CCR2 gene was 

knocked out by CRISPR. Two wild-type clones and one homozygous knockout clone (CCR2- 

KO) were identified from 70 clones. By flow cytometry, wild-type clones showed similar CCR2 

expression levels to parental cells, while CCR2-KO cells showed a significant reduction in 

CCR2 expression (Figure 11A). MIND injection of CCR2-KO cells resulted in a significant 

reduction in mammary tissue mass and fewer invasive lesions (Figure 11B&C), compared to WT 

xenografts. These data show that CCR2 KD or KO inhibits the progression from DCIS to IDC in 

DCIS.com breast cancer xenografts. 

Figure 11 - Knockout of CCR2 in DCIS.com cells significantly decreases tumor growth and 
invasion in the MIND model. A. Flow cytometry analysis of WT and KO cells in comparison 
with parental (Par) cells. B&C. MIND model injection of WT1 or KO cells were examined for 
changes in mammary gland weight (B) or invasion (C). Statistical analysis was performed using 
One-way ANOVA with Bonferonni post-hoc comparison (A), Two-Tailed-test (B), or Chi 
square test (C). Statistical significance was determined by p <0.05. *p<0.05. Mean+SEM values 
are shown. 
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Increased angiogenesis, fibrosis and macrophage recruitment are associated with invasive 

breast cancer [147]. To determine how epithelial CCR2 expression affected the surrounding 

mammary stroma, immunostaining was performed to analyze expression of biomarkers for 

macrophages (F4/80) and endothelial cells (VWF8). To account for fibroblast heterogeneity, we 

immunostained for 2 different markers: Fsp1 and PDGFR-Α [154, 155]. DAB expression of 

stromal biomarkers was quantified by pixel density analysis and normalized to total stromal area, 

using an Image J protocol described previously [127]. There were no significant changes in 

VWF8 or F4/80 expression with CCR2 overexpression or knockdown (Figure 12A&B). Fsp1 

and PDGR- were expressed in fibroblastic stroma and in epithelial cells, consistent with studies 

showing mesenchymal marker expression in breast cancer cells [127, 156]. 
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Figure 12 - Effect of CCR2 overexpression and knockdown on stromal reactivity. 
Immunostaining for VWF8 or F4/80 expression was performed in A. SUM225 MIND lesions or 
B. DCIS.com MIND lesions. Secondary rabbit biotinylated antibody staining shown as a
control. Scale bar=200 microns. Statistical analysis was determined using One Way ANOVA
with Bonferonni post-hoc comparisons to all groups. Statistical significance was determined by
p<0.05. n.s=not significant. Values shown as mean+SEM.
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CCR2 overexpressing SUM225 xenografts showed increased stromal expression of Fsp1 

and PDGFR-Α (Figure 13A-B), associated with stromal CCL2 expression (Figure 13C). 

Conversely, CCR2 deficient DCIS.com MIND xenografts showed a significant decrease in 

fibroblastic cells and decreased CCL2 expression in the stroma (Figure 14). These data indicate 

that CCR2 overexpression or knockdown is associated with changes in CCL2 expressing 

fibroblasts in the DCIS stroma.
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Figure 13 - CCR2 overexpression in SUM225 MIND xenografts increases the levels of CCL2 
expressing fibroblasts. Sum 225 MIND lesions were immunostained for A. Fibroblast Specific 
Protein 1 (Fsp1), B. Progesterone Growth Factor Receptor-α (PDGFR-α). or C. CCL2 
expression. Representative images are shown with magnified image underneath. The stroma is 
marked with an asterisk in the magnified image. Expression in the stroma was quantified by 
Image J, in arbitrary units. Statistical analysis was performed using one-way ANOVA with 
Bonferonni post-hoc comparison. Statistical significance was determined by p<0.05. *p<0.05, 
***p<0.001. Mean±SEM values are shown. Scale bar=400 microns. 



89 



90 

Figure 14 - CCR2 shRNA knockdown in DCIS.com MIND xenografts reduces the levels of 
CCL2 expressing fibroblasts DCIS.com MIND lesions were immunostained for A. Fibroblast 
Specific Protein 1 (Fsp1), B. Progesterone Growth Factor Receptor-α (PDGFR-α) or C. CCL2 
expression. Representative images are shown with magnified image underneath. Asterisk 
denotes stroma. Statistical analysis was performed using Two-Tailed T-test (B). Statistical 
significance was determined by p<0.05. *p<0.05. Mean±SEM values are shown. Scale bar= 400 
microns. 
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CCL2 from DCIS fibroblasts is important for CCR2 mediated breast cancer survival and 

invasion 

While previous studies have established an important role for carcinoma-associated 

fibroblasts from invasive breast cancers [157, 158], the role of fibroblasts derived from DCIS 

tissues remain poorly understood. To figure out the functional role of CCL2 derived from DCIS 

fibroblasts in CCR2 mediated breast cancer progression, we utilized the subrenal capsule model. 

Mammary carcinoma cells grafted in the subrenal capsule form tumors similarly to orthotopic 

injection [7, 8]. Unlike injecting into the stroma-rich mammary gland, the subrenal capsule 

space is devoid of fibroblasts and is immunologically privileged, enabling us to determine the 

relative contribution of co-grafted fibroblasts without interference from host stroma. To 

establish whether tumoral CCR2 affects tumor formation and progression in the absence of 

stroma, DCIS.com cells with CCR2-KD or control shRNA were grafted without fibroblasts. 

CCL2 levels were significantly lower in the CCR2 KD tumor cells (Figure 15A), but DCIS.com 

cells grafted alone did not show significant differences in tumor growth or invasion compared to 

control shRNA cells grafted alone (Figure 15B-C). 
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Figure 15 - CCR2 knockdown alone does not significantly affect progression of DCIS.com 
breast cancer cells. A. CCL2 ELISA of conditioned medium from Control shRNA (Con) or 
CCR2 shRNA expressing (CCR2-KD) DCIS.com breast cancer cells B. Tumor mass of 
DCIS.com cells grafted alone in the kidney capsule of NOD-SCID mice. C. Scoring of tumor 
sections immunostained with antibodies to pan-cytokeratin (red) and phalloidin (green). 3 
sections/tumor, n=5 samples/group. T=tumor, K=Kidney. Scale bars = 200 microns. Statistical 
analysis was performed using Two-Tailed T-test. Statistical significance was determined by 
p<0.05. 
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To further characterize the expression of CCL2 in DCIS stroma, fibroblasts were isolated 

from patient samples of normal breast (named hNAF2525, hNAF8727) or DCIS tissues (named 

1213-249, 80H, HPO70213) and analyzed for CCL2 expression. By ELISA, the 80H and 

1213-249 DCIS-derived fibroblast lines expressed higher levels of CCL2 compared to normal 

fibroblasts and DCIS.com cells ( Figure 16A). To determine the role of fibroblast-derived CCL2 

on tumor growth and invasion, DCIS.com cells were co-grafted into the renal capsule of NOD- 

SCID mice with 1213-249. Fibroblasts co-grafted with parental DCIS.com cells had increased 

tumor mass compared to DCIS.com cells grafted alone ( Figure 16B). CCR2 deficient DCIS.com 

cells co-grafted with 1213-249 fibroblasts showed a 20% decrease in tumor mass compared to 

fibroblasts co-grafted with control 

DCIS.com cells 

To examine for changes in tumor invasion into normal kidney tissue, we performed CO- 

IF staining for pan-cytokeratin (pan-CK) and phalloidin to distinguish tumor cells from kidney 

tissues. In the subrenal capsule model, pan-CK antibodies stained DCIS.com tumors more clearly 

than CK5 antibodies used in the MIND model. Pan-CK antibodies recognized 

CK:4,5,6,8,10,13 and 18, and preferentially stained breast cancer cells over kidney tissues, which 

expressed fewer of the cytokeratins [159].  Using this approach, tumor invasion was 

characterized by a poorly-defined border between tumor and kidney tissues. CCR2 deficient cells 

co-grafted with fibroblasts showed a reduction in tumor invasion, characterized by more cohesive 

tumors and a clearer delineation between tumor and kidney tissues than control tumors (Figure 16 

C). CCR2 KD also inhibited proliferation and increased apoptosis by PCNA and CC3 staining 

(Figure 16D-E). CCR2-KD DCIS.com cells grafted alone did not show significant differences in 

tumor growth or invasion compared to control shRNA cells grafted alone (Figure 17). These 
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studies indicate that CCR2 knockdown in DCIS.com breast cancer cells inhibit fibroblast- 

mediated tumor growth and invasion. 
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Figure 16 - CCR2 knockdown in DCIS.com cells inhibits fibroblast-mediated cancer 
progression. A. CCL2 ELISA of conditioned medium from fibroblasts derived from normal 
breast (hNAF2525, hNAF8727) or DCIS tissues (1213-249, 80H, HPO70213), in comparison 
with DCIS.com breast cancer cells. B-E. 1213-249 fibroblasts (Fbs) were co-grafted with 
parental (Par) DCIS.com cells or DCIS.com cells expressing control (Con) or CCR2 shRNAs 
(CCR2-KD) in the subrenal capsule of NOD-SCID mice for 21 days. Kidney tissues were 
measured for tumor mass (B), scored for tumor invasion into normal kidney by pan-cytokeratin 
(red) and phalloidin (green) staining (C), tumor-cell proliferation by PCNA immunostaining 
(D), tumor-cell apoptosis by cleaved caspase-3 immunostaining (E). Scale bar=400 microns. 
Arrows point to examples of positive staining. Expression in tissues was quantified by Image J. 
n=7 mice per group. Statistical analysis was performed using One-way ANOVA with 
Bonferonni post-hoc comparison (B) or Two-Tailed T-test (D, E). Statistical significance was 
determined by p<0.05. *p<0.05, ***p<0.001. Mean±SEM are shown. 

http://dcis.com/
http://dcis.com/
http://dcis.com/
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Figure 17 - CCR2 shRNA knockdown in DCIS.com MIND xenografts reduces the levels of 
CCL2 expressing fibroblasts. DCIS.com MIND lesions were immunostained for A. Fibroblast 
Specific Protein 1 (Fsp1), B. Progesterone Growth Factor Receptor-α (PDGFR-α) or C. CCL2 
expression. Representative images are shown with magnified image underneath. The stroma is 
marked with an asterisk in the magnified image. Expression in the stroma was quantified by 
Image J, in arbitrary units. Statistical analysis was performed using Two-Tailed T-test (B). 
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To determine the relevance of CCL2 expression in DCIS fibroblasts, fibroblasts were 

immortalized by hTERT expression to enable stable shRNA expression. Two CCL2 deficient 

fibroblast lines were generated from 2 different shRNA systems. A 47% decrease in CCL2 

expression was observed using the GFP-c-shLenti Origene system (CCL2-pLenti). A 30% 

decrease in CCL2 expression using the GIPZ Dharmacon system (CCL2/GIPZ) (Figure 18A). 

CCL2 deficient or control fibroblasts were co-grafted with DCIS.com breast cancer cells in 

the subrenal capsule and analyzed for changes in tumor progression. CCL2 deficient 

fibroblasts co-grafted with DCIS.com cells resulted in smaller tumors and reduced tumor 

invasion, associated with decreased tumor-cell proliferation and increased apoptosis ( Figure 

18B-C). These studies indicate that CCL2 derived from DCIS fibroblasts enhances 

progression of DCIS.com breast cancer tumors. 
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Figure 18 - CCL2 derived from DCIS fibroblasts is important for progression of DCIS.com 
breast cancer cells. A. CCL2 ELISA of 1213-249 fibroblasts expressing control shRNA 
(Con) or CCL2 shRNAs from pLenti or GIPZ lentivirus systems. B-C. Control or CCL2 
deficient 1213-249 fibroblasts were co-grafted with DCIS.com breast cancer cells in the 
subrenal capsule and analyzed for changes in tumor growth (B), and scored for tumor 
invasion into normal kidney tissue by pan-cytokeratin (red) and phalloidin (green) staining 
(C). N=7 mice/group. Scale bar=400 microns. K=kidney, T=tumor. Statistical analysis was 
performed using one-way ANOVA with Bonferonni post-hoc comparison. Statistical 
significance was determined by p<0.05. **p<0.01. Mean±SEM are shown. 
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CCL2/CCR2 mediated invasion is associated with increased ALDHA11 and decreased 

HTRA2 expression 

Lastly, we analyzed the relationship between expression of downstream CCL2/CCR2 

signaling proteins and increased breast cancer survival and invasion. Through candidate 

screening of factors related to breast cancer survival and invasion, we found that CCL2 treatment 

of DCIS.com breast cancer cells over time increased expression of ALDH1A1, a stem cell 

marker and pro-invasive factor, and reduced expression of HTRA2, a pro-apoptotic 

mitochondrial serine protease (Figure 19A & B) [160] [161]. 

 
Figure 19 - CCL2 treatment of DCIS.com breast cancer cells increase ALDH1 and decreases 
HTRA2 expression. Immunoblot for A. HTRA2 and B. ALDH1A1 expression in DCIS.com 
breast cancer cells treated with 60 ng/ml CCL2 for up to 24 hours. Expression levels were 
determined by densitometry analysis. Experiments were performed in triplicate. Statistical 
analysis was performed using One Way ANOVA with Bonferonni post-hoc comparison. 
Statistical significance was determined by p<0.05. *p<0.05, **p<0.01. Mean±SEM are shown. 
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CCR2 knockdown in DCIS.com breast cancer cells decreased expression of ALDH1A1 

and increased HTRA2 in MIND xenografts by immunohistochemistry staining (Figure 20A-B). 

 
 

 
Figure 20 - Effect of CCR2 overexpression on ALDH1 and HTRA2 expression in SUM225 
MIND xenografts. Sum225 MIND xenografts were immunostained for A. ALDH1 or B. 
HTRA2 expression. Expression was measured by Image J (arbitrary units). Statistical analysis 
was performed using One Way ANOVA with Bonferroni post-hoc comparison. Statistical 
significance was determined by p <0.05. *p<0.05, **p<0.01. Mean+SEM values are shown. 
n=8 mice per group. 
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Conversely, CCR2 overexpression in Sum255 MIND xenografts enhanced ALDH1A1 

expression and decreased HTRA2 expression (Figure 21A-B), indicating that epithelial CCR2 

can regulate ALDH1A1 and HTRA2 expression. Furthermore, CCL2 knockdown in fibroblasts 

increased HTRA2 expression and decreased ALDH1 expression in DCIS.com cells in the 

subrenal capsule model ( Figure 21C-D), indicating that paracrine CCL2 signaling from the 

fibroblastic stroma was important for regulating ALDH1A1 and HTRA2 expression. Through 

KM Plotter analysis [162], increased CCR2 and ALDH1A1 and decreased HTRA2 expression 

were significantly associated with decreased metastasis free survival of breast cancer patients 

(Figure 21E). These data demonstrate a clinical relevance for CCL2/CCR2 signaling proteins 

in breast cancer. 
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Figure 21- CCL2/CCR2 mediated DCIS progression is associated with increased ALDH1 and 
decreased HTRA2 expression. A-D. ALDH1 and HTRA2 expression was examined by 
immunostaining of tumor tissues in the DCIS.com MIND Model (A-B) and subrenal capsule 
model (C-D). Expression in tissues was quantified by Image J. K=kidney tissue. T= tumor. 
Scale bar= 400 microns. E. RNA Expression of CCR2 (Affyid 207794_at), ALDH1A1 (Affyid 
212224_at) and HTRA2 (Afftyid 2030809_s_at) were analyzed for associations with Distance 
Metastasis Free Survival (DMFS) through KM Plotter. Statistical analysis was performed using 
Two-Tailed-T-test (A-B) or Log-rank Test (C). HR= Hazard Ratio. Statistical significance was 
determined by p<0.05. *p<0.05, **p<0.01. Mean±SEM are shown. 

http://dcis.com/
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Discussion 

The role of fibroblasts in DCIS progression is poorly understood. Fibroblasts derived 

from invasive breast ductal carcinomas promote tumor growth, invasion, metastasis and 

chemoresistance (32,33). One study showed that fibroblasts from normal, IDC or arthritic tissues 

enhanced progression of MCF10A cell lines in a subcutaneous injection model through 

Transforming Growth Factor-β and Hedgehog dependent mechanisms (38). For the first time, we 

show that fibroblasts derived from DCIS patient samples accelerate progression from DCIS to 

IDC through CCR2 dependent mechanisms. Moreover, CCL2/CCR2 mediated breast cancer 

progression is associated with increased expression of clinical relevant pro-invasive factors 

(ALDH1A1) and decreased expression of pro-apoptotic factors (HTRA2). 

Here, we noted some complementary and conflicting phenotypes through CCR2 

overexpression and knockdown. CCR2 overexpression in SUM225 cells enhanced formation of 

invasive lesions and increased the presence of CCL2+ fibroblasts, associated with increased 

ALDH1 and decreased HTRA2. CCR2 knockdown and knockout in DCIS.com cells inhibited 

invasive progression and decreased the presence of CCL2+ fibroblasts, associated with decreased 

ALDH1 and increased HTRA2 expression. However, whereas CCR2 knockdown significantly 

affected mammary tumor mass, CCR2 overexpression did not. While CCR2 overexpression 

increased tumor-cell proliferation and survival of SUM225 lesions, these levels were still lower 

than the cell proliferation and survival detected in DCIS.com MIND xenografts. CCR2 

expression levels in overexpressing cells did not reach the levels detected in DCIS.com breast 

cancer cells. Therefore, it is possible that the increase in cell proliferation and survival in CCR2 

overexpressing cells was not sufficient to affect overall mammary tissue mass. The levels of 

CCR2 expression in DCIS.com cells are consistent with previous studies showing that CCR2 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R33
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R38
http://dcis.com/
http://dcis.com/
http://dcis.com/
http://dcis.com/
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expression levels are higher in basal-like breast cancer cells compared to luminal breast cancer 

cells (13). Because SUM225 cells are luminal/Her2+, additional oncogenic pathways may be 

important to DCIS progression of this subtype. Regardless of subtype, by analyzing the effects of 

CCR2 overexpression in SUM225 cells with CCR2 knockdown in DCIS.com cells, we 

demonstrate a critical role for epithelial CCR2 receptor expression in DCIS progression. 

Despite a two-fold increase in the number of CCR2+ cells in the CCR2-H SUM225 cell 

line, CCR2-H cells did not show increased invasion, proliferation or survival compared to 

CCR2-L cells. It is possible a threshold of receptor expression modulates cellular activity. Such a 

threshold has been detected in T cells whereby 8000 T cell receptors/cell are needed for a 

commitment to proliferate (39,40). A threshold also exists for EGFR levels in regulating Cbl and 

Grb2 dependent signaling in epithelial cells (41). In our studies, CCR2-L cells may have reached 

a threshold for CCR2 expression in determining cellular invasion. While more cells expressed 

CCR2 in the CCR2-H cell line, the level of expression may not have been sufficient to commit 

these cells to invade. Histogram analysis revealed that while more cells overexpressed CCR2 in 

the CCR2-H cell line, expression levels did not vary highly between CCR2-L and CCR2-H cells. 

In addition to a receptor threshold, heterogeneity in expression of intracellular signaling 

components in breast cancer (42) may also explain why CCR2-H cells did not result in further 

DCIS progression. As we are unable to control which SUM225 cells express CCR2, it is possible 

some CCR2 overexpressing cells did not exhibit the necessary downstream signaling 

components to induce invasion. As CCR2 overexpression in SUM225 cells did not reach the 

levels of invasion detected in DCIS.com cells, it is likely that other oncogenic factors would be 

required to further enhance carcinoma invasion. Several oncogenic signaling pathways including 

Notch, EGF, and HGF signaling are associated with DCIS progression (43,44). It would be of 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R13
http://dcis.com/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R41
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R42
http://dcis.com/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R43
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R44
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interest to further understand how CCL2/CCR2 coordinates DCIS progression with other 

oncogenic factors. 

We also observed that CCR2 overexpression and knockdown affected the levels of 

fibroblasts in DCIS stroma. We expected that CCR2 signaling in breast cancers modulated 

fibroblast growth through expression of soluble growth factors such as PDGF and WNT5A, 

positive regulators of fibroblast proliferation (45,46). However, cultured DCIS fibroblasts treated 

with conditioned medium from CCR2 deficient or control DCIS.com control cells showed no 

significant changes in cell growth (Figure 22). 

Figure 22 - CCR2 deficiency in DCIS.com breast cancer cells does not affect fibroblast growth. 
Conditioned medium from control shRNA or CCR2-KD DCIS.com cells were used to treat 
1213-249 DCIS fibroblasts. Fibroblasts were counted after 24 and 48 hours of treatment by 
hemocytometer. Serum free medium was used as a vehicle control. Statistical significance was 
determined by One Way ANOVA with Bonferonni post-hoc comparison. Statistical significance 
was determined by p<0.05. *p<0.05, **p<0.01. Mean±SEM are shown. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R45
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R46
http://dcis.com/
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Furthermore, there were no changes in blood vessel density or macrophage recruitment, 

indicating that epithelial CCR2 would not regulate fibroblast accumulation indirectly through 

these stromal cell types. It is possible that epithelial CCR2 acts on other stromal components to 

indirectly modulate fibroblast growth, including adipocytes or granulocytes. Another possibility 

may involve the extracellular matrix. Hyaluronan and fibronectin increase fibroblast cell growth, 

while collagen suppresses fibroblast growth through mechano-signal transduction mechanisms 

(47,48). These factors would be present in mammary tissues, but not in conditioned medium. 

Studies are currently underway to understand how CCL2/CCR2 signaling breast cancer cells 

modulate the surrounding breast tumor microenvironment. 

We show that increased ALDH1 and decreased HTRA2 expression are associated with 

CCL2/CCR2 mediated DCIS progression. Previous studies have implicated ALDH1 expression 

in cancer stem cell renewal, invasion and drug resistance (49). Emerging studies indicate an 

important role for HTRA2 in positively regulating mitochondrial dependent apoptosis (50). The 

increased expression of HTRA2 in CCR2 deficient lesions is consistent with the increased 

expression of cleaved caspase-3, as an indicator of apoptosis. CCL2/CCR2 signaling in breast 

cancer cells may promote DCIS progression by enhancing ALDH1+ tumor initiating cells, or 

activating invasive pathways through ALDH1 activity in breast cancer cells. CCL2/CCR2 

signaling may facilitate survival of DCIS lesions through suppression of HTRA2 mediated 

apoptosis pathways. 

In summary, these studies identify a novel role for CCL2/CCR2 signaling in cancer 

progression, identify potentially new prognostic factors for DCIS, and potentially new molecular 

targets for the prevention of invasive breast cancer. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R48
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805627/#R50
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Chapter 4: CCR2 signaling in breast carcinoma cells enhances tumor growth and 

invasion by coordinating cytokine-dependent crosstalk with tumor microenvironment 
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Introduction 

Invasive breast cancers are characterized by inflammation, including increased 

angiogenesis, tissue remodeling, and immunosuppression. Elevated M2 macrophages[163, 164] , 

and decreased CD8+ cytotoxic T cells are associated with poor prognosis of luminal and basal- 

like breast cancers. [165, 166] [167] M2 macrophages support tumor growth and progression 

through secretion of growth factors, angiogenic factors and extracellular matrix proteins. M2 

macrophages also suppress T cell proliferation and inhibit the ability of CD8+ T cell to interact 

with, and eliminate tumor cells[168-171]. Macrophage recruitment and activity are regulated in 

part by chemokines, small soluble molecules (8kda) that form molecular gradients to induce 

cellular chemotaxis[172, 173]. The chemokine C-C ligand 2 (CCL2) regulates macrophage 

recruitment by signaling to CCR2, a seven-transmembrane G-protein-coupled receptors[172, 

174]. CCL2 overexpression by tumor cells correlates with macrophage recruitment, tumor 

vascularity, and poor patient prognosis[102, 138, 175]. Targeting CCL2 through siRNA or 

antibody neutralization inhibits macrophage recruitment associated with decreased breast tumor 

growth, invasion and metastasis[102-104]. These studies indicate that the CCL2 signaling 

pathway is a critical regulator of macrophage-mediated tumor progression. Though most studies 

characterize CCR2 as the chemotactic-receptor on macrophages for tumor-derived CCL2, CCR2 

is also overexpressed in breast carcinoma of multiple subtypes[93]. Targeting CCR2 in breast 

carcinoma cell lines by siRNA knockdown inhibits CCL2-induced survival and motility[93], 

suggesting that CCL2/CCR2 signaling to breast cancer cells regulate breast cancer progression. 

While CCL2 remains a therapeutic target of interest, its translation to the bedside remains 

controversial. CCL2 neutralizing antibodies effectively block cancer progression in some animal 
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models[102-104], and several clinical studies were initiated for its treatment of late stage solid 

tumors[105]. However, the use of CCL2 antibody neutralization in murine breast cancer models 

and in human trials reveal a paradoxical increase in systemic CCL2, leading to enhanced tumor 

angiogenesis and subsequent metastasis[106]. Recent studies from our lab suggested that 

targeting chemokine expression at the level of transcription may be more effective at inhibiting 

chemokine signaling activity[105, 107]. 

Targeting critical oncogenes through delivery of small interfering RNAs (siRNAs) could 

overcome present barriers at targeting CCL2/CCR2 and holds significant therapeutic potential 

[176-178] One peptide carrier that penetrates tissues efficiently and is currently being tested in 

clinical trials is the HIV-1 derived trans-activating transcriptor peptide (TAT49-57: 

RKKRRQRRR). TAT peptides exhibit unique properties by efficiently penetrating cell 

membranes independent of temperature and cell-surface receptor expression, but do not form 

stable complexes with nucleic acids[179-181]. Studies recently demonstrated that calcium ions 

induce the formation of non-covalent interactions TAT peptides and siRNAs, and become 

condensed into nanoparticles (Ca-TAT/siRNAs). These Ca-TAT/siRNA complexes efficiently 

transfect cells and penetrate tissues to induce gene knockdown more efficiently than and with 

lower toxicity than TAT peptides alone or conventional polyethyleneimine particles[182-184]. 

Furthermore, Ca-TAT/siRNA complexes could be formulated to selectively transfect mammary 

carcinoma cells over stromal cells including macrophages and fibroblasts based on calcium 

chloride concentration[185]. Given that the stromal component of breast tumors varies with cell 

type and cell number[186-188], Ca-TAT peptides are a useful tool to induce gene knockdown in 

breast tumor tissues. 
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Here, we sought to understand how epithelial CCR2 signaling contributes to breast 

cancer progression. Delivery of CA-TAT/CCR2 siRNA complexes to PyVmT mammary tumor- 

bearing mice specifically inhibited CCR2 expression in carcinoma cells and inhibited tumor 

growth and invasion associated with decreased angiogenesis, M2 macrophage recruitment and 

elevated CD8+ T cell recruitment and activity. These anti-tumor phenotypes were associated 

with decreased tumoral expression of CCL2 and increased expression of CD154, an immune- 

stimulatory soluble ligand. CCR2 deficient mammary carcinoma cells showed decreased wound 

closure and proliferation, which was rescued with CD154 antibody neutralization or CCL2 

treatment. Recruitment of endothelial cells and macrophages is inhibited when epithelial CCR2 

is targeted, and rescued with CD154 antibody neutralization or CCL2 treatment. Using live 

imaging and a novel 3D macrophage infiltration assay, we show that CCR2 signaling in 

mammary carcinoma cells regulates the recruitment of macrophages and proliferation of 

carcinoma cells. Immunostaining of breast tumor tissues show an inverse correlation between 

CCR2 and CD154 expression. Datamining analysis demonstrate that CD154 expression 

correlates with relapse free survival for breast cancer patients. In summary, these data show that 

CCR2 signaling in breast cancer cells facilitates breast cancer growth and spread through stroma- 

dependent and stroma-independent mechanisms. Furthermore, this report indicates that M2 

macrophage recruitment could be suppressed and CD8+ T cell activity could be enhanced 

through modulation of CCL2/CCR2 and CD154 signaling mechanisms, with important 

implications on targeted and immuno-therapies. 
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Materials and Methods: 

Animal care and surgery 

Female FVB mice at 8 weeks age were purchased from Charles River. Mammary 

intraductal injections were performed as described[9, 149]. Briefly, 20,000 PyVmT cells were 

directly injected in 5 uL of sterile PBS into mammary ducts of the 4th and 9th mammary glands; 

successful injections were visualized with dextran blue. When the tumors reached 0.4 cm in 

diameter, 10 μg (100 μl) of Ca-TAT/control or Ca-TAT/CCR2 siRNA nanoparticles were 

injected into the primary tumor in four different areas of the tumor, using a 27-gauge needle. 

Each mouse received a total of three injections of Ca-TAT/siRNA complexes at one-week 

intervals. Animals were monitored twice weekly for tumor formation by palpation and 

measurement by caliper. Animals were euthanized 28 days after first injection, when control 

tumors reached maximum allowable tumor size, approximately 1.5 cm3. Animals were 

maintained at the University of Kansas Medical Center, in accordance with the AALAC. All 

animal experiments were performed at the University of Kansas Medical Center under an 

approved IACUC. 

Cell culture 

Raw264.7 and MCF10A cell lines[189] were purchased from ATCC. DCIS.com 

expressing wild-type CCR2 (WT) or CRISP/R ablated for CCR2 expression were generated and 

characterized as described in previous studies[190] . MCF10-DCIS.com (DCIS.com) breast 

cancer cells[189] were kindly provided by Fariba Behbod (University of Kansas Medical 

Center). Raw 264.7 mcherry cells were generated by lentiviral transduction using pSico-Ef1a- 

mCherry plasmid (Addgene, Cambridge, MA). PyVmT carcinoma cells were isolated and 
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characterized as described[191]. Unless indicated, cells were cultured in DMEM/10% FBS/1% 

penicillin-streptomycin (Cellgro cat no.30-004-CI). 

siRNA and gRNA 

Sense and anti-sense oligonucleotides were synthesized and annealed by Dharmacon 

Fisher (cat no L-041015). The following siRNA targeting sequences were designed: enhanced 

green fluorescent protein (eGFP) as a negative control: 5′-GCUGACCCUGAAGUUCAUC-3′. 

DCIS.com cells with wild-type, heterozygous deletion, and knockout of CCR2 were generated as 

previously described[190]. CCR2 targeting sequence was 50- 

TTCACAGGGCTGTATCACATCGG-30, targeting genomic region encoding extracellular 

domain between second and third transmembrane regions, and clones screened by DdeI 

restriction digest of PCR products generated with primers 5’-ACATGCTGGTCGTCCTCATC & 

3’-AAACCAGCCGAGACTTCCTG. 

Preparation of Ca-TAT complexes 

TAT peptides [sequence N to C: (+)H-RKKRRQRRR-NH2(+)] were synthesized to 

purity >95% by Biomatik (Cambridge, Ontario). The following formula was used to determine 

the amount of TAT peptide needed for a specific N/P ratio per μg of DNA or siRNA: μg of TAT 

= 0.446 × (N/P ratio) + 0.116 as previously described[107]. TAT peptides were mixed with 

siRNA or plasmid DNA in 45 μl sterile deionized water containing 75 mM CaCl2. The solution 

was pipetted 20 times and incubated on ice for 20 minutes. For in vivo studies, 25 µl of 10 % 

glucose was added to the complexes, and diluted with PBS to a total volume of 100 µl before 

use. For in vitro studies, these complexes were added directly to cells. 
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Generation of conditioned media 

500,000 cells were seeded in 10 cm plates for 24 hours, transfected with siRNA 

complexes as needed for 24 hours, and incubated in 7 ml DMEM/1% FBS for 24 hours. 

Medium was collected, centrifuged to eliminate debris and filtered through 0.45-micron PES 

membranes. 

Wound closure assay 

200,000 cells/well were seeded in 24 well plates, transfected with siRNA complexes in 

growth media for 24 hours. Cells were serum starved for 24 hours and scratched in DMEM/1% 

FBS with or without 3 ug/ml CD154, 1 ug/ml anti-CD154 (cat no.552559, BD Biosciences) or 

control mouse IgG (Millipore cat no.12-371). Images were captured at 10x magnification at 0 

and 24 hours. Wound closure was measured using Image J, with 

MRI_Wound_Healing_Tool.ijm. 

Flow cytometry 

Adherent cells were detached from plastic using Accutase (Innovative Cell 

Technologies, cat no. AT104). Cells were rinsed three times with PBS, and blocked in 

PBS/10% FBS for 10 minutes. Cells were then incubated for 3 minutes PBS/1% BSA/1 g/L 

dextrose with or without human specific anti-CD40-FITC (R&D Systems, cat no. MAB6321) 

or murine specific anti-CD40-FITC (BD Biosciences cat no. 12040181) at 1:100 dilution. 

Cells were washed with PBS/1% BSA 3 times, and analyzed using a BD LSR II flow 

cytometer. Tumor tissues were processed for flow cytometry using methods described [107]. 

Briefly, 3-4 mm3 in size were minced with fine scissors, enzymatically digested to single-cell 

suspensions overnight on ice, incubated in 5 ml red blood cell lysis buffer for 7 minutes at room 
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temperature and centrifuged to eliminate debris. Approximately 200,000 cells were stained at 

1:100 dilution antibodies to: CD24-FITC (BD Pharmingen cat no. 560992), F4/80-PE (Serotec 

cat no.MCA497PE), CD69-FITC (Biolegend Cat no.104505), CD4-PE-Cy5 (BD Pharmingen cat 

no.553654). CD8-APC (Biolegend cat no.100711), CD11b-APC-Cy7 (BD Pharmingen cat. no 

557657). Samples were analyzed using a BD LSRII flow cytometer. Compensation controls 

were performed to minimize spectral overlap artifacts. Isotype control antibodies were utilized 

for background correction. 

Histology/Immunohistochemistry 
 

Tumor tissues were fixed in 10 % neutral formalin buffer, embedded in wax and stained 

by H&E as described[107]. For immunostaining, five-micron sections were dewaxed and 

subject to antigen retrieval through pressure cooking at low pressure for 2 minutes in 10 mM 

Sodium Citrate pH 6.0. Endogenous peroxidases were  quenched with  PBS/10% 

methanol/10% H202. Sections were blocked with PBS/3% FBS and incubated with primary 

antibodies (1:100) to: cleaved caspase-3 (Cell Signaling Technology catalog no. 9579), PCNA 

(Biolegend, cat no. 307902), Von Willebrand Factor 8 (VWF8; Millipore, catalog no.Ab7356), 

CCR2 (Santa Cruz Biotechnology, cat no.sc-6228), CD154 (BD Biosciences cat no.552559), 

and CCL2 (Santa Cruz Biotechnology, cat no. 1304). Cleaved caspase-3, PCNA, VWF8, CCR2 

and CD154 were detected with rabbit biotinylated antibodies (1:1000). CCL2 was detected  

with goat biotinylated antibodies (1:1000). Secondary antibodies were bound to streptavidin- 

peroxidase (Vector Laboratories, cat no. PK-6100), and incubated with DAB substrate (Vector 

Laboratories, cat no.SK4100,). Slides were counterstained in Mayer’s hematoxylin and mounted 

with Cytoseal. 5 images per field at 20x magnification were captured using the EVOS FL Auto-

Imaging System. Protein expression was quantified using Image J as described 
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previously[175]. CCR2, CCL2, CD154 and VWF8 expression were analyzed as positive 

staining pixel density normalized to total area. Ki67 and cleaved caspase-3 were quantified by 

determining the relative area of positive stained cells to total number of cells. 

Immunofluorescence 
 

3D cultures were fixed in 10 % NBF, embedded in 4% agarose and paraffin as 

described[192]. 5-micron tumor or 3D culture sections were dewaxed and subject to antigen 

retrieval by heating under low pressure for 2 minutes in 10 mM Sodium Citrate, pH 6.0. 

Sections were blocked with PBS/3% FBS for 1 hour and incubated with antibodies (1:100) to: 

CD8 (Biolegend cat no.100715), CD69-FITC (Biolegend cat no.104505), CD11b-APC-Cy7 

(BD Pharmingen cat. no. 557657), Arginase-1 (Santa Cruz Biotechnology cat no.sc20150) or 

PCNA (Biolegend cat no.307902) 4°C overnight. CD8 was detected with anti-rat-AlexaFluor 

568 (Invitrogen cat no.A-11077). Arginase I was detected with anti-rabbit-AlexaFluor 488 

(Invitrogen cat no.A-11034). PCNA was detected  with  anti-mouse-Alexa-Fluor488 

(Invitrogen cat no. A-A11001). Sections were counterstained with DAPI and mounted using  

1:1 PBS: glycerol. Images were captured at 10x magnification using the EVOS FL Auto- 

Imaging System. Expression was quantified using Image J as described[105]. Expression was 

normalized to DAPI staining. 

CD154 ELISA 
 
 

High-protein binding plates were coated with 1 g/ml capture CD154 antibody (BD 

Bioscience, San Jose, CA, cat no.552559) overnight. Plates were blocked in PBS/10% BSA 

for 2 hours at room temperature. Samples were diluted 1:1 in PBS/1% BSA/Tween-20, and 

plated at 100 ul/well for 24 hours at 4oC. Wells were washed with PBS three times, and 

incubated with 100 ul/well 0.5 ug/ml biotinylated anti-CD154 (BD Biosciences, cat no. 
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552560) for 2 hours, followed by streptavidin-peroxidase (Vector Laboratories, cat no. PK- 

6100) for 30 minutes. Reactions were catalyzed using tetramethylbenzidine substrate (cat no. 

34028, Pierce). Absorbance was read at OD 450nM using a BioTek Microplate Reader. 

Concentrations were determined from standard curve ranging from ten pg/ml to 10 ng/ml 

recombinant CD154 (Peprotech, Rocky Hill, NJ, cat no. 310-02). 

Macrophage infiltration assay 

TheraKan devicesTM were manufactured by Fennik Life Sciences (Kansas City, KS). 

Macrophage infiltration was determined using methods previously described [107]. Briefly, 

100,000 breast cancer cells were embedded in 250 ul rat tail collagen (BD Pharmingen) for each 

device. Devices were placed in six well dishes and incubated in DMEM/10% FBS overnight. 

500,000 Raw264.7 or THP1 mCherry labeled cells were counted and resuspended into 2.5 ml of 

DMEM/10% FBS for each device. Devices were opened and cells were pipetted into each well, 

outside of the device. Devices were imaged daily at 10x magnification using an EVOS FL Auto- 

Imaging System (Invitrogen) for up to 48 hours. The number of macrophages were measured by 

quantification of fluorescence as described[193]. 

Live imaging co-culture assays 

Control shRNA and CCL2_3 knockdown PyVmT cells at 50% confluency were treated 

with TAT-siRNA particles for 48 hours, then trypsinized, counted, and resuspended in a 1:1 

mixture of growth-factor-reduced basement membrane extract to rat tail collagen at 1x107 cells/ml 

on ice. 40 ul of this solution was pipetted into the center of a 24 well plate and incubated at 37C 

for 30 min. 200,000 Raw macrophages (a 5:1 macrophage: tumor-cell ratio) in 1 mL of DMEM 

with 1% FBS were then placed into the well, and allowed to adhere for 12 hours. Media was 

replaced by serum-free DMEM containing no additives, 100 ng/ml of CCL2 or 1 ug/ml of CD154. 
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Plates were imaged for 24 hours at 15-minute intervals. T-stacked images were analyzed with 

TrackMate plugin of Fiji to obtain track and spot data. n=4 experiments per group, with >100 cells 

tracked per group. 

Biospecimens 

The BR802b tissue microarray was obtained from US Biomax, INC (Rockville, MD). 

Additional patient samples were obtained from the University of Kansas Tissue Repository. 

Patient samples were collected under approval by IRB at KUMC. All samples were de-identified 

by US Biomax or the Biospecimen Core, an IRB-approved facility, prior to distribution. 

Ethics statements 

The tissues collected for these studies were de-identified and classified as “Exempted” 

according to regulations set forth by the Human Research Protection Program (ethics committee) 

at the University of Kansas Medical Center (#080193). Written informed consent for tissue 

collection was obtained by the Biospecimen Core Repository. Tissue samples were de-identified 

by the National Cancer Institute Diagnostics Program and the Biospecimen Core Repository 

prior to distribution to the investigators. Existing medical records were used in compliance with 

the regulations of the University of Kansas Medical Center and National Cancer Institute. These 

regulations are aligned with the World Medical Association Declaration of Helsinki. 

Datamining 

mRNA breast cancer datasets were accessed on www.kmplot.com on October 12, 2018 to 

assess the significance of CD154 (207892_at) with the following parameters: relapse free 

survival, basal=879, luminal A (n=1933), Luminal B (n=1149), HER2+ (n=251). 

http://www.kmplot.com/
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Statistical analysis 

Statistical analysis was performed using Graphpad Prism software. Student’s Two-Tailed 

T-test was used for two groups. One Way ANOVA with Bonferroni’s post-hoc comparison was

used for more than two groups. In vitro experiments were conducted with triplicate samples, and 

performed a minimum of three times. *p<0.05, **p<0.01, ***p<0.001, ns= not significant. Data 

are presented as mean+SEM. 



122 

Results 

Delivery of CCR2 siRNAs complexed to Ca-TAT peptides decreases mammary tumor 

growth and invasion 

Previous studies showed Ca-TAT complexed to plasmid or siRNA preferentially 

transfected mammary carcinoma cells with minimal uptake in stromal cells including 

macrophages and fibroblasts[185]. Using a luciferase promoter plasmid complexed to Ca-TAT 

peptides, we compared uptake of these complexes to normal mammary tissues and PyVmT 

tumor tissues. PyVmT mammary tumor tissues showed a significant uptake in luciferase 

complexes over normal tissues (Figure 23). 

Figure 23 Ca-TAT complexes are preferentially taken up in PyVmT mammary tumor tissues. 
Ex vivo cultures injected with Ca-TAT alone or Ca-TAT/luc complexes were analyzed for 
luciferase activity by IVIS imaging. N=3/group. Representative results are shown. Statistical 
analysis was performed by One Way ANOVA followed by Bonferonni post hoc comparisons. 
Statistical significance was determined by p value less than 0.05 through comparison with 
Control siRNA group within Tumor or Normal group, 
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MMTV-PyVmT transgenic mice progress to invasion and metastasis in a stage dependent 

manner. [194-197]. However, tumor initiation and progression vary among progeny making it 

difficult to assess the effects of molecular targeting in transgenic mice. To increase consistency 

in tumor initiation and progression over time, mammary tumors were established in FVB mice 

via Mammary Intraductal injection of PyVmT mammary carcinoma cells, which closely mimics 

the development and progression of IDC in patients ([9, 198]). When mammary tumors reached 

0.4 cm3 in volume (~49 days), mice were intratumorally injected with either PBS vehicle, or Ca- 

TAT peptides complexed to control siRNAs (si_CTRL) or CCR2 siRNAs (si_CCR2), once a 

week for 3 weeks (Figure 24A). 

Mice were sacrificed one week after their last injection, or when tumors reached 

approximately 1.5 cm in diameter, the maximum allowable size set by IACUC guidelines. To 

assess carcinoma-specific CCR2 knockdown, mammary tumor-cell suspensions co-stained for 

CCR2+/CD24+ cells (mammary carcinoma cells) or CCR2+/Cd11b+ cells (myeloid cells). 

CCR2 expression was unchanged in Cd11b+ cells, but was reduced by 40% in mammary 

carcinoma cells by flow cytometry (Figure 24B). Si_CCR2 complexes inhibited tumor growth 

visibly (Figure 24C), reduced tumor mass by 54% and tumor volume by 56% compared to 

si_CTRL or PBS treatment (Figure 24D-E). Compared to si_CTRL treatment, si-CCR2 treated 

tumors showed significantly decreased tumor-cell proliferation, as indicated by PCNA 

immunostaining (Figure 24F-G), but no change in apoptosis, as indicated by cleaved caspase-3 

immunostaining Figure 24H-I). These data indicate that delivery of si_CCR2 complexes inhibits 

mammary tumor progression associated with decreased CCR2 expression in mammary 

carcinoma cells. 
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Figure 24 Effect of intratumoral injections of TAT-Ca2+ nanoparticles complexed with CCR2 
siRNA on tumor growth, cellular proliferation, and apoptosis. A) In vivo experimental design: 
Mice injected intraductally at day 0 with 20,000 polyoma middle T cells. Once tumors reached 
0.4 cm2in size, 3 doses of  ug siRNA complexed to Ca-TAT nanoparticles were injected 
intratumorally. Mice were sacrificed one week after the last dose. B) Efficiency of targeted 
knockdown of CCR2 in epithelial cells versus stromal cells (CD11b+) as detected by flow 
cytometry. C) Representative images of tumors from siCTRL and siCCR2 treated mice. N=6 
mice per group. D) Box and whisker plots depicting tumor mass at endpoint by treatment group. 
E) Growth curve of tumor volume measured weekly prior to injection for each group. F-I)
Representative images of IHC staining of formalin fixed tumors from siCTRL-treated and
siCCR2-treated mice with quantification for PCNA (F&G) and CC3 (H&I). For (H) arrowheads
depict positive CC3 staining. Images taken at 10x. Scale bar = 200 um. N=7 per group.
Analyzed by two-sided univariate t-test for significance. *p<0.05 PCNA = proliferating cell
nuclear antigen; CC3 = cleaved caspase 3.
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CCR2 targeting of carcinoma cells reduces M2 macrophage recruitment, associated with 

decreased angiogenesis and increased cytotoxic T cell infiltration 

Given that M2-polarized macrophages are known to drive early invasion and tumor 

growth, we stained tumors for CD11b+/F4-80+ macrophages by flow cytometry. SiCCR2- 

therapy decreased CD11b+/F480+ macrophage populations by 68% (Figure 25A). To localize 

the macrophage populations to the tumor and assess their M2 phenotype, we stained serial 

sections of paraffin-embedded tumors for CD11b+/arginase+ cells. Co-immunofluorescence 

revealed 78% fewer arginase+/CD11b+ cells in the siCCR2 tumors compared to siCTRL (Figure 

25B). Associated with this decreased inflammatory infiltrate, mammary tumors treated with 

si_CCR2 complexes showed decreased tumor invasion compared to si_CTRL treatment (Figure 

25C). Tumors were examined for changes in tumor vascularity and lymphocytic infiltrate to see 

if decreased M2 macrophage content of siCCR2 tumors affected anti-tumor immunity or 

angiogenesis. Si_CCR2 treatment decreased intratumoral vascularity by 82%, as indicated by 

VWF8 immunostaining of capillary structures (Figure 25D). To quantify lymphocytic 

populations, we stained tumor digests for CD4, CD8, and CD69, a marker of T cell activation 

and tissue residency. Compared to si_CTRL treated tumors, si_CCR2 treated tumors showed 

significantly increased CD8+/CD69+ T cells indicating increased numbers of resident activated 

CD8+ cytotoxic T cells; there were no significant differences in the numbers of CD4+ helper 

cells between groups (Figure 25E). Co-immunofluorescent (CO-IF) staining of CCR2 deficient 

mammary tumors revealed that CD8+/CD69+ T cells were distributed throughout the tumor 

including necrotic areas (Figure 25F). These data indicate that si_CCR2 treatment reduces tumor 

promoting M2 macrophages, decreases angiogenesis, and increases tumoricidal activated T cell 

responses. 
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Figure 25 - Delivery of CCR2 siRNA complexes inhibit tumor angiogenesis and enhances CD8+ 
T cell levels. Whole tumors were digested an analyzed for macrophage content by gating for an 
F4/80+/CD11b+ population via flow cytometry. Mean+-SEM for percentage of gated viable 
cells that were F4_80+/CD11b+, and (C) representative scatter plots and selected population. 
n=6 per treatment group. Tumor sections were immunostained for CD11b and arginase 1 (Arg1), 
an M2 macrophage marker. Whole tumor samples were imaged at 10x by automated fluorescent 
microscopy, and cell number was quantified by ImageJ.  Bar A.  PyVmT mammary tumor 
tissues digested and analyzed for macrophage content by gating for an F4/80+/CD11b+ 
population via flow cytometry. Mean+-SEM for percentage of gated viable cells shown. B. Co- 
immunofluorescence staining for CD11b (red) /arginase I (green) expression. C. Invasive fronts 
of tumors imaged by H&E. D. Von Willebrand factor 8 (VWF8) immunostaining; positive 
staining indicated by black arrows, E. flow cytometry analysis for CD4+/CD8+ cells, 
CD8+/CD69+ cells (C) or F/480+/ CD11b+ cells, F. Co-immunofluorescence staining for CD8 
(red)/CD69 (green) expression; or E. co-immunofluorescence staining for CD11b (red) /arginase 
I (green) expression. Scale bar= 200 microns. N=6 tumors per group, with >15 images per tumor 
section. Immunostaining was quantified by Image J, and normalized to hematoxylin (B) or DAPI 
(D). Statistical analysis was performed using 2-tailed T test. Statistical significance was 
determined by p<0.05. *p<0.05. Mean+SEM are shown. 
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Intratumoral depletion of CCR2 increases expression of CD154 

To determine the effect of Ca-TAT/siRNA complexes on regional CCR2 expression 

within the tumor, mammary tumor sections were immunostained for CCR2. In si_CTRL treated 

tumors, CCR2 expression was detected in carcinoma cells, blood vessels and inflammatory 

infiltrating cells (Figure 26A). si_CCR2 treated tumors showed a reduction in overall CCR2 

expression by 80%, corresponding to lower expression levels in the tumor epithelium, decreased 

vasculature and fewer inflammatory infiltrating cells (Figure 26A). Given that M2 macrophages 

are a significant source of CCL2 in breast cancer, and the observed decrease in CCL2 of 

siCCR2-treated epithelium, vasculature, and inflammatory infiltrate than in siCTRL tumors 

(Figure 26B), these data indicate that epithelial CCR2 may enhance CCL2 levels in tumors by 

recruiting CCL2-secreting stromal cells. 

Given the significant changes in angiogenic and immune responses in mammary tumors 

with CCR2 knockdown, we hypothesized that CCL2/CCR2 signaling regulates other pro- 

inflammatory molecules. Though CCL2-deficient MDA-MB-231 breast tumor xenografts 

develop fewer tumor metastasis associated with a reduction in macrophage recruitment[107], 

cytokine array profiling of these CCL2-deficient cells revealed that IL6 and VEGF were 

minimally changed in CCL2 deficient tumor cells, but that expression of CD154 was 

significantly elevated in CCL2-deficient cells in vitro and in vivo. Similarly, immunostaining 

revealed significantly elevated CD154 in the tumor epithelium of CCR2-deficient PyVmT 

mammary tumors (Figure 26C). We then treated PyVmT cells in vitro with siCCR2, and found 

that while CCR2 decreased and CD154 increased after siCCR2-treatment, there was no change 

in CCL2 expression (Figure 26D-E). Similarly, we found that CCR2 knockout increased CD154, 
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but did not change CCL2, in DCIS.com cells (Figure 26F). Furthermore, these data indicate an 

inverse association between CCR2 expression and CD154 expression in mammary tumor tissues. 
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Figure 26 - CCR2 siRNA upregulates CD154, but not CCL2, in human and mouse tumor-cell 
lines.  Immunohistochemical staining of PyVmT tumors for A) CCR2, B) CCL2, and C) 
CD154. Representative images of si_CTRL (left panel), si_CCR2 (middle panel), and isotype 
control (right panel). Positive staining quantified in ImageJ and represented in bar graphs on far 
right as a ratio of positive staining area to total tumor area. Insets shown for detail. N=6 mice 
per group, with 4 10x bright field images per tumor sample. Scalebar = 100 microns. D) CCR2 
expression analyzed by flow cytometry, calculated by Overton subtraction method of positivity 
relative to isotype-stained control. E) Enzyme-linked immunosorbent assay results for CD154 
and CCL2 levels in supernatants collected after 24 hrs from E) PyVmT cells treated with 
siCTRL or siCCR2 and F) DCIS.com cells with wild-type CCR2 (WT) or homozygous 
knockout of CCR2 (KO). N=4 experiments per group. Positive controls included a murine 
macrophage line (Raw) and a human megakaryoblast line (Meg-01). Statistical significance 
calculated with 2-tailed, univariate student’s T test with an alpha of 0.05. Significant 
differences = * (p<0.05). 
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CD154 antagonizes CCR2 synergism to mediate tumor-cell proliferation and migration 

CD154 is a member of the Tumor necrosis family of ligands that is expressed as a type II 

transmembrane protein (35kda) or proteolytic cleaved soluble biologically active protein (18 

kda). CD154 stimulates a cytotoxic T cell response, promote M2 to M1 macrophage conversion, 

and inhibits breast tumor growth, indicating that CD154 functions as a tumor suppressor[59, 

199-201]. To better understand the role of upregulated CD154 in CCR2-deficient tumors, we

used cell culture models of the in vivo phenotypes we observed to be affected by siCCR2 knock. 

PyVmT mammary carcinoma cells were transfected with si_CTRL or si_CCR2, treated with 

neutralizing antibodies to CD154 or recombinant CCL2 protein, and analyzed for cell 

proliferation by PCNA staining and migration by wound closure assay. 

For these assays, we generated stable PyVmT cells lines expressing control shRNA 

(control KD) or CCL2 shRNA (CCL2 KD) to mitigate the possibility of residual CCR2 signaling 

or signaling through an alternate chemokine receptor. CCL2 or CD154 neutralization 

significantly increased proliferation, in both siCTRL and siCCR2-treated, but this effect was 

significantly reduced by siCCR2 (Figure 27A). SiCCR2 treatment also inhibited wound closure, 

which was rescued with both CD154 antibody neutralization and CCL2 treatment (Figure 27B), 

but not by CCL2 in CCL2 KD lines. These results indicate CCR2 regulates proliferation and 

migration thru CD154 suppression, and low levels of CCR2 are sufficient for CCL2-induced 

signaling to suppress CD154. 

To see if complete ablation of CCR2 more severely affected proliferation or migration, 

these studies were repeated in CCR2-KO DCIS.com cells. CCR2 KO decreased proliferation 

compared to WT in a CD154-dependent manner (Figure 27C). In DCIS.com cells, both CCR2 

KO and CCL2 KD decreased migration (Figure 27D). CCL2 rescued migration in WT cells with 
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CCL2 KD, but it had no effect on CCR2 KO cells in either group. CD154 neutralization rescued 

migration in CCR2 KO cells, but not had no effect on WT cells. These data show that CCR2 

enhances migration in breast cancer cells in a CD154-dependent manner, and that in absence of 

CCR2, CCL2 has no effect on proliferation or migration. 
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Figure 27 - CCR2 has expression-level effects on proliferation and migration in murine and 
human breast cancer cells. A) PyVmT cells with alterations described were treated with Serum- 
free (SF) DMEM, 100 ng/ml of recombinant exogenous CCL2, or one ug/ml of CD154 
neutralizing antibodies. Proliferation measured as the ratio of PCNA positive nuclei: DAPI 
positive nuclei as measured by fluorescence microscopy with 200x images. B) PyVmT cells 
were grown to a confluent monolayer, serum starved for 24 hours, and a wound was made with 
a p200 ul pipette tip. Four 4x images were taken of the scratch at identical locations per well, 
and the area of the wound was measured by ImageJ. Percent wound closed = (1-(area 24 
hours/area 0 hours)) *100. C) DCIS.com with CRISPR-Cas9-directed knockout of CCR2 
(CCR2 KO) or wild-type CCR2 (CCR2 WT) were assessed for proliferation in the presence of 
CCL2 or CD154 neutralizing antibodies as in (A). D) Wound closure assay results with 
experimental conditions identical to (B) without TAT-siRNA treatment. N=4 experiments with 
duplicates per experiment for each group. Statistical significance calculated with 2-tailed, 
univariate student’s T test with an alpha of 0.05. Significant differences = * (p<0.05) and ** 
p<0.005). 
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CCR2 promotes endothelial recruitment and budding thru a CD154-independent 

mechanism 

Studies conflict over the role of CD154 in angiogenesis, as in one study CD154 inhibits 

endothelial cell migration[202], and others show a pro-angiogenic function[203, 204]. To 

determine the relevance of CCR2 mediated suppression of CD154 to tumor angiogenesis, tumor- 

cell recruitment of endothelial cells was analyzed by trans well assay. Endothelial cells were 

seeded on the topside of Matrigel coated trans wells, and conditioned media from PyVmT cells 

was placed in the lower well (Figure 28A). CCR2 knockdown in mammary carcinoma cells 

decreased invasion of endothelial cells, and rescued by CD154 antibody neutralization or CCL2 

treatment (Figure 28B). Conditioned media from siCCR2-treated or CCL2 KD cells decreased 

the branching morphology of endothelial cells, but anti-CD154 had no effect on branching 

(Figure 28C-E). These data indicate that CCR2 promotes endothelial cell recruitment to tumor 

cells through suppression of CD154 and increased CCL2 expression, and CCL2/CCR2 appear to 

promote endothelial budding in a CD154-independent manner. 
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Figure 28 - CD154 neutralization and CCL2 rescues endothelial cell recruitment inhibited by 
CCR2 deficiency, but not endothelial sprouting, in mammary carcinoma cells. A) Diagram of 
endothelial cell recruitment assay. B) Endothelial cells at the underside of transwells were 
identified by DAPI staining, imaged by EVOS FL Auto-Imaging and counted. Lung 
microvascular endothelial cells were plated on Matrigel coated 96 well plates, treated with 40 
ng/ml VEGF (positive control) or CCL2 (B), or conditioned medium from PyVmTcells 
transfected with si_CTRL or si_CCR2 complexes, with or without 1 mg/ml IgG control or anti- 
CD154 or 100 ng/ml CCL2 for 24 hours, and analyzed for branching (C). Mean number of 
branch points were counted. Statistical analysis was performed using One Way ANOVA with 
Bonferroni post-hoc comparison. Statistical significance was determined by p<0.05. *p<0.05, 
**p<0.01. Mean+SEM are shown. 
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Tumoral CCR2 enhances macrophage recruitment, M2 polarization associated with 

increased invasiveness and proliferation in co-culture assays 

In previous studies, we quantified macrophage recruitment using a three-dimensional 

model that mimics chemotactic gradients from tumor cells, in which infiltration in TheraKanTM 

was dependent on the presence of tumor cells[107]. PyVmT mammary carcinoma cells treated 

with siCCR2 or siCTRL were embedded in collagen and placed into the inner chamber of the 

Therakan device. mCherry labeled Raw264.7 macrophages were plated outside the devices, and 

measured for infiltration into the 3D cultures. Si_CTRL PyVmT cells showed robust 

macrophage recruitment, which was significantly decreased with CCR2 knockdown (Figure 29A 

-B). Treatment of 3D cultures with CD154 neutralizing antibodies increased macrophage

recruitment in CCR2 deficient 3D cultures, whereas CCL2 knockdown further decreased 

macrophage recruitment by siCCR2-treated cells (Figure 29B). These data indicate that CCR2 

promotes macrophage recruitment by suppressing CD154, and that tumoral CCL2 is necessary 

for this mechanism. 

Based on our findings that siCCR2 treated had fewer M2 macrophages, we analyzed how 

epithelial CCR2 affects M2 polarity in the context of CD154 and CCL2. Raw264.7 cells were 

treated with CCL2, CD154, or conditioned medium from PyVmT carcinoma cells transfected 

with si_CTRL or si_CCR2 complexes and immunostained for arginase I expression. In the 

absence of cells, CCL2 increased arginase expression 3-fold compared to CD154-supplemented 

DMEM (Right columns of Figure 29C). Conditioned medium from siCCR2-treated cells 

decreased arginase I expression, and both CCL2 and CD154 neutralization rescued this 

phenotype (Figure 29C). These data indicate that CCR2 signaling in mammary carcinoma cells 
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enhances macrophage recruitment and polarization through both CD154 and CCL2-dependent 

mechanisms. 

Epithelial CCR2 expression affects macrophage-mediated proliferation and migration of 

cancer cells 

Based on the in vivo increases in proliferation and invasion, we assessed the effects of 

macrophage recruitment on tumor cells in the 3D recruitment assays. The collagen plugs from 

the macrophage recruitment assays were fixed, sectioned, and stained for PCNA. SiCCR2- 

treated cells showed decreased PCNA expression compared to si_CTRL-treated cells (Figure 

29D). CCL2 treatment or CD154 antibody neutralization rescued PCNA expression in CCR2 

deficient cultures. CD154 treatment of control cultures did not affect PCNA expression (Figure 

29D). 

Finally, we utilized a live imaging assay of macrophage-mediated invasion to assess how 

epithelial CCR2 promotes invasion in the presence or absence of macrophages. We found that 

macrophages greatly enhanced invasion in PyVmT cells in vitro (Supp videos 3-4), and that 

recombinant CD154 was as potent as CCL2 KD or siCCR2 in decreasing tumor-cell invasion. 

The effect of CD154 on siCCR2-treated cells was additive, whereas knockdown of CCL2 had no 

effect on the invasiveness of siCCR2 treated cells (Figure 29E-F). These results suggest that 

epithelial CCR2 promotes invasion thru CD154-dependent mechanisms, and that CD154 

suppresses invasion in a CCR2-independent manner. 
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Figure 29 - CD154 rescues macrophage recruitment in CCR2 deficient mammary carcinoma 
cells. A. TrackMate plugin for Fiji used to generate models and graphs; scale bar in microns. B. 
Raw macrophages were incubated with conditioned media from Polyoma -middle-T antigen 
(PyMT) cells with stable CCL2 knockdown and/or siCCR2 TAT; n=3 replicate experiments. 
C. 3D cultures of PyVmT mammary carcinoma cells transfected with si_CTRL or si_CCR2
complexes were established in the devices. Cultures were incubated with Raw 264.7 mCherry
cells with/without IgG or one ug/ml anti-CD154 and analyzed for macrophage recruitment into
3D cultures. E. 24 hour captures of PyMT cells migrating out of Matrigel plug onto 2D culture
of Raw macrophages (left); Euclidian displacement tracks for all cells tracked (right). F.
Average track length was calculated with TrackMate plugin of Fiji and subsequent track
analysis by the Chemotaxis plugin. Cells were treated with CCL2 at 100 ng/ml or CD154 at one
ug/ml, or expressed stable knockdown to CCL2 and treated with SF media. Statistical analysis
was performed using One Way ANOVA with Bonferroni post-hoc comparison (A, D, E) or 2-
tailed T test (B, C). Statistical significance was determined by p<0.05. *p<0.05, Mean+SEM are
shown.
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CD154 expression is a marker for favorable prognosis in breast cancers and correlates 

inversely with CCR2 expression in human breast tissue 

CD154 protein expression is downregulated in breast carcinoma tissues [68]; however, its 

relationship to CCL2/CCR2 signaling has not been determined. To determine whether epithelial 

CCR2 expression correlates with CD154 expression in humans, we immunostained tumor and 

adjacent-normal-matched sections for CCR2 and CD154 (Figure 30A). Images of each tumors 

were processed identically by color deconvolution, thresholding, and calculated as a ratio of 

DAB+ area over the total area of the tumor. Quantification showed a strong negative correlation 

between CCR2 and CD154 within individual tissues (Spearman’s rho= -0.68; Figure 30B), with 

tumor tissues having high CCR2 and low CD154 relative to normal adjacent tissue (Figure 30 

C&D). Survival analysis of gene expression in 1101 unique primary breast carcinomas showed 

that elevated tumoral expression of CD154 correlated positively with overall survival in breast 

cancer patients (Figure 30E). These data indicate that tumor tissues express high levels of CCR2 

and low levels of CD154, and that normal adjacent tissue express high CD154 and low CCR2, 

suggesting that high CCR2 expression and/or low CD154 expression. RNAseq data from breast 

cancer patients also show that CD40 is correlated with patient prognosis (Figure 31), and that 

high CD154 expression correlates with decreased tumor stage and metastatis in patients (Figure 

32). These data suggest a marker for favorable prognosis, providing further evidence for its 

role in tumor suppression. 
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Figure 30 - CCR2 expression in breast tissues inversely correlates with CD154, a marker 
associated with favorable survival in breast cancer patients. A-D. Normal breast (n=35) or IDC 
tissues (n=48) were immunostained for CCR2 or CD154 (A). Expression of CCR2 (B) and 
CD154 (C) was quantified by Image J. Statistical analysis was performed using Mann Whitney 
test. Associations were analyzed by Spearman correlation analysis (D). E. mRNA luminal A/B, 
HER2+ and basal-like breast cancer datasets were analyzed for associations between CD154 
expression and relapse free survival. Statistical analysis was performed using Log-rank test with 
Hazard ratios (HR) shown. Statistical significance was determined by p<0.05. 
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Figure 31 Regression-free survival of patients based on CD154, CD40 expression by subtype. 
Kaplan Meier recurrence free survival curves were generated for CD154 and CD40 expression 
using a median cutoff expression value, with breast tumor tissue samples stratified by PAM50 
subtype. Red lines indicate high expression and black lines indicate low expression, as 
determined by median cutoffs. PAM50 subtyping and mRNA expression were accessed from 
GDC-TCGA RNA SEQ data and curves were generated with KMPlotter web-based application. 
HR indicating risk of recurrence by high expression group are shown, as well as log-rank p 
value. P values determined by log-rank test of survival. 
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Figure 32 - Expression of CD40LG mRNA in human tissue samples correlates inversely with 
invasive stage and metastatic spread. Left panel shows invasive stage from breast cancer 
TCGA RNA seq data for patients with pathological T-scoring.  On right, accessed with 
XenaBrowser web plugin for dataset described.
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Discussion 

The ability of breast cancer cells to recruit tumor-promoting macrophages is well- 

documented but poorly understood. Though many studies have described how tumor-derived 

CCL2 recruits tumor-promoting CCR2-expressing macrophages, little is known of how tumoral 

CCR2 affects the composition of the tumor microenvironment [128, 174]. It is possible that 

tumor cells continue to shape the microenvironment after stromal cells and macrophages are 

recruited. Based on the data presented her, we suggest CCR2 expression by tumor cells is a 

major contributor to these continued interactions, by maintaining tumor-promoting 

microenvironment both in composition and in tumor-promoting capacity. 

Recent studies have shown that increased CCR2 signaling in breast cancers enhances cell 

survival and motility[93] and enhances development of invasive breast cancers in animal 

models[190]. Here we demonstrate that CCR2 signaling to carcinoma cells facilitates tumor-cell 

growth and migration by suppressing CD154 and increasing CCL2 bioavailability. CCR2 

deficient PyVmT and DCIS.com cells showed elevated CD154 levels, which suggests that CCR2 

negatively regulates CD154 expression. CCR2 deficiency in breast cancer cells had no effect on 

CCL2 expression in cultured cells, however, CCR2 deficient tumors showed decreased overall 

levels of CCL2, indicating that tumoral CCL2 expression is regulated by other mechanisms. 

CCR2 expression may affect CCL2 levels in vivo due to the recruitment and 

accumulation of CCL2-secreting M2 macrophages[205], as targeting CCR2 expression in tumor 

cells decreased intratumoral M2 macrophages. Alternatively, CCL2 expression is regulated by 

other cytokines such as IL1beta and TNFa[206, 207] that are secreted by immune cells and 

endothelial cells[208, 209]. A reduction in tumoral CCR2 could inhibit these stromal responses 
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and corresponding regulatory factors, thus inhibiting CCL2 expression. The evidence suggests 

that CD154 expression is likely a regulatory mechanism intrinsic to tumor cells, as CD154 

expression levels increased when CCL2 or CCR2 expression was decreased both in vivo and in 

vitro across multiple mouse models and cancer cell lines. 

We show that CCR2 mediates tumor-cell migration through suppression of autocrine 

CD154 signaling. The tumor-suppressive effects of CD154 in PyVmT and DCIS.com cells are 

consistent with previous studies showing that CD154/CD40 signaling inhibits proliferation and 

induces apoptosis in ovarian, and cervical carcinoma and decreases migration of colon cancer 

cells[76, 210]. A few studies characterizing the role of CD154 in breast cancer cells show that 

CD154 inhibits proliferation in breast cancers through CD40 dependent mechanisms [68, 211]. 

Interestingly, CD154 neutralization did not affect cell proliferation of PyVmT or DCIS.com 

cells, but did rescue cell migration. The biological effects of CD154 were not associated with 

CD40 expression, which was detected in DCIS.com but not PyVmT cells, suggesting CD154 

suppresses migration through another receptor. CD154 is capable of binding integrin receptors 

to facilitate immune cell activity[59]. It is possible that integrin receptors expression on PyVmT 

cells mediate CD154 signaling, as we have observed that most breast cancer cell lines express 

high levels of integrins known to associate with CD154. 

Most studies on CD154 focus on its function as a co-stimulatory molecule during 

immune activation. CD154 is downregulated in breast tumors, and its expression is associated 

with increased relapse free survival. The immune-stimulatory effects of CD154 combined with 

its ability to inhibit growth and migration of cancer cells make it an ideal immunotherapeutic 

agent. Further studies on this pathway in carcinoma cells are necessary to fully understand the 

role of CD154 signaling in cancer progression. 



147 
 

We show that CCR2 mediates tumor-cell proliferation through paracrine mechanisms. 
 

Si_CCR2 treated PyVmT cells and DCIS.com CCR2-KO breast cancer cells showed no 

differences in cell proliferation compared to si_CTRL transfected cells or cells expressing wild- 

type CCR2. Furthermore, CD154 treatment did not affect proliferation of these cell lines. 

However, M2 macrophages recruited to breast cancer cultures were associated with increased 

tumor-cell proliferation. These data are consistent with previous studies showing that M2 

macrophages are associated with increased tumor growth, and secrete growth factors that favor 

tumor progression[212]. CD154 levels in tumors also correlated with activation of T cells, 

consistent with the ability of CD154 to promote T cell activation and proliferation. In addition, 

M2 macrophages inhibit CD8+ cell activity and secrete angiogenic factors, facilitating tumor 

growth in an indirect manner[212, 213]. 

Our data show that CCR2 alters macrophage recruitment and polarization by increasing 

intratumoral CCL2 levels and decreasing expression of CD154 by tumor cells. The presence of 

M2 macrophages are associated with breast tumor growth and invasion, as mice with impaired 

macrophage recruitment and differentiation show inhibited mammary tumor and metastasis[214]. 

In addition, targeting M2 macrophages that express pattern recognition receptors inhibits breast 

tumor growth in animal models[215].CCL2 treatment in cell culture models rescued mammary 

carcinoma cell migration inhibited by CCR2 deficiency, and recruits M2 macrophages that are 

associated with tumor-cell proliferation. In addition, we showed that suppression of CD154 in 

tumor cells mediated macrophage recruitment and polarization in the presence of breast cancer 

cells. These data are consistent with previous studies demonstrating tumoricidal activities from 

macrophages activated by CD154[77, 216]. 
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In addition to inducing M2 macrophage recruitment, our studies show that tumoral CCR2 

may also be directly involved in tumor angiogenesis. Coopting of blood vessels is a well-known 

hallmark of cancer, supported by findings that angiogenesis inhibitors block tumor growth [2, 

217]. In addition, the leaky vasculature in tumors are associated with T cell anergy, contributing 

to limited cytotoxic T cell activity in tumors [218]. Previous studies have shown that CCL2 

stimulates angiogenesis [219, 220]. CD154 also functions as an angiogenic factor [204, 221]. 

Here, we show that mammary tumor cells recruitment of endothelial cells is dependent on CCR2 

expression, and that CCR2 mediates endothelial recruitment in part through suppression of 

CD154. 

Here, we show that targeting CCR2 promotes an environment to enhance T cell 

expansion and activation by elevating expression of immune reactive cytokines such as CD154 

and inhibiting expression of immunosuppressive cytokines such as CCL2. Thus, targeting CCR2 

could enhance effectiveness of therapeutic vaccines or CD25 blocking antibodies that target T 

regulatory cells. Further studies are necessary to discern these possibilities. 

Chemotherapeutic failure and disease recurrence remains significant in treatment of 

invasive breast cancer[222, 223]. Recent studies show that the immune landscape is a major 

factor influencing therapeutic responsiveness. The presence of tumor infiltrating lymphocytes are 

associated with clinical responsiveness to neoadjuvant chemotherapy in HER2+ and triple- 

negative breast cancers[224-227]. Depletion of M2 macrophages through targeting CSFR1 

enhanced responsiveness to paclitaxel in animal models of breast cancer [122]. Studies suggest 

that M2 macrophage secrete soluble factors such as TGF-b and arginase I that facilitate tumor- 

cell survival, limited chemotherapy induced cell death[228]. Our studies show that targeting 

CCR2 could both reduce tumor-promoting M2 macrophages and increase the resident 
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lymphocyte population. As the efficacy of many immunotherapeutics hinges on the ability of 

lymphocytes to access a tumor, any mechanism or therapy that could increase lymphocytic 

infiltrates warrants further investigation. 

In summary, our studies demonstrate the importance of CD154 suppression by CCR2 

signaling in breast cancer progression, and suggest that epithelial CCR2 plays as important a role 

in macrophage-mediated breast cancer progression as macrophage CCR2. At a time when the 

clinical utility of combined immune checkpoint therapies is increasing, these studies prompt 

future studies testing combination therapy that specifically targets CCR2 and potentiates the anti- 

tumor effects of CD154. These results implicate CD154 suppression as a mechanism by which 

CCR2/CCL2 axis promotes breast cancer progression, and warrants further studies targeting this 

CD154-suppressing mechanism to enhance immunotherapy in CCR2-driven breast cancers. 
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Chapter 5: Discussion 
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Summary of Results 

The tumor-promoting CCL2/CCR2 axis in breast cancer is complex. Many studies show 

that tumor cells express CCL2 to recruit CCR2-expressing monocytes to the tumor 

microenvironment. These macrophages polarize to an M2 phenotype, then facilitate 

angiogenesis, which facilitates vascular spread of the carcinoma cells and ultimately metastatic 

seeding. This model fits with much of the evidence, but it is a unilateral model of interaction 

between tumor macrophage and do not account for a reciprocal mechanism. CCR2 is 

overexpressed in many IDCs, and though macrophages are plentiful in the microenvironment 

and known to secrete high levels of CCL2, the role of epithelial CCR2 signaling in breast 

cancers is poorly understood. The studies presented here support a role for CCR2 in recruiting, 

shaping, and maintaining a tumor-promoting microenvironment, in addition to its role in directly 

promoting the proliferation and invasion of tumor cells through CCL2 ligation. 

These results of these suggest a novel mechanism of crosstalk between tumor and 

macrophages, wherein epithelial CCR2 signaling suppresses CD154 expression in carcinoma 

cells to recruit a CCL2-rich stroma. This CCL2 rich stroma is composed primarily of 

macrophages and fibroblasts, as tumoral CCR2 expression was shown to recruit these cell types 

in chapters 3 and 4. Chapter 2 describes how CCL2 levels in tumor cells correlate with CD154 

expression levels. By knocking down CCL2 in the presence or absence of CD154, I provide 

evidence that tumor-derived CCL2 directly promotes cancer cell migration, survival, and stem 

cell renewal in a CD154 dependent manner. In the absence of CCL2 or CCR2, whether due to 

pharmacologic inhibition, genetic manipulation, or basal expression patterns, suppression of 

CD154 is lost. In these CCL2/CCR2 deplete tumor cells, CD154 inhibits the functions that 

CCL2/CCR2 signaling would normally promote. These studies illustrate how CCL2 and CD154 
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expression can directly affect the tumor-intrinsic functions of carcinoma cells, but only 

tangentially implicate CCR2 in this mechanism. To rule out the possibility that CCL2 

suppresses CD154 by signaling through one of its alternate receptors, we knocked down and 

knocked out CCR2 in multiple breast cancer cell lines. 

By transplanting these cells into murine compartments of variable stromal exposure, the 

role of tumoral CCR2 was investigated in the context of stromally-dependent and stromally- 

independent mechanisms. These studies show that in the presence of fibroblasts, tumoral CCR2 

expression can promote invasive progression. CCR2 expression directly correlated with the 

level of CCL2-expressing fibroblasts in the tumor microenvironment, suggesting that CCR2 

signaling in carcinoma cells regulates fibroblast populations in the microenvironment. In the 

absence of fibroblasts, CCR2 expression does not correlate with invasion or growth, suggesting 

that in vivo, stromal interactions are necessary for CCR2-driven tumor progression. The level of 

macrophages recruited to these tumors was unaffected by tumoral CCR2 expression, which 

could be due to the fact that these studies were conducted in immune-compromised mice where 

lymphoid populations are severely decreased and myeloid populations display decreased 

function. 

To determine how tumoral CCR2 might affect the tumor microenvironment in the 

presence of a fully intact immune system, we utilized a syngeneic mouse model and selectively 

targeted tumor-cell CCR2. In this immune-competent mouse model, however, we observed 

multiple stromal responses not before characterized in the context of tumoral CCR2 We found 

that where tumoral CCR2 was selectively targeted, CD154 was overexpressed, which correlated 

with decreased M2 macrophages, decreased angiogenesis, and an increase in the number of 

activated cytotoxic T cells. 
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Previous studies show that CD154 overexpression in cancer cells leads to M1 

polarization, can activate T cells, and that it has growth-inhibitory effects on breast carcinoma 

cells[71, 76, 79, 81]. Functional studies revealed that tumoral CCR2 promotes both recruitment 

of macrophages and M2 polarization, and this recruitment is dependent on CD154 suppression. 

The inhibitory effect of CCR2 block on proliferation and invasion was magnified in the presence 

of macrophages, further illustrating that epithelial CCR2 promotes tumor growth through stromal 

interactions. Taken together, a model emerges where epithelial CCR2 promotes tumor 

progression thru negatively regulating CD154 expression and promoting recruitment of a CCL2- 

rich stroma (Figure 33). 

This model links the broad range of tumor promoting functions of CCL2/CCR2 signaling 

with the equally broad tumor-suppressing properties of CD154, which have been studied 

extensively and even taken to clinical trial separately. These findings reveal the importance of 

CD154 suppression in CCL2/CCR2-driven tumors. Additionally, these studies show that 

epithelial CCR2 signaling recruits CCL2-secreting stroma, providing a feed forward mechanism 

for inflammatory progression. This novel mechanism is supported by the data presented in this 

document and the countless studies characterizing the effects of CCL2 and CD154 on the tumor 

microenvironment. There are both CCR2 inhibitors and CD154-based agonistic therapies going 

that are already at the clinical trial stage now. These results suggest those two therapies could be 

rationally combined in treating CCR2+ breast cancers.
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Critical Review and Proposed Solutions 
 

The role of the CCL2/CCR2 chemokine axis in breast cancer is complex. Traditional 

models theorized that CCL2 secretion by the tumor recruited monocytes expressing CCR2, and 

once resident tumor macrophages, they polarize to an M2 phenotype. From the studies provided 

here, a new crosstalk model emerges, wherein CCL2 expression by both tumor and macrophage 

facilitates monocyte recruitment, immune suppression, and direct effects on the tumor cells that 

synergistically promotes tumor progression. 

Through controlled in vitro experiments, I have mapped how CD154 suppression plays a 

major role some in CCL2/CCR2 tumor-promoting functions. However, cytokine expression 

levels in the tumor microenvironment are plastic, where increased signaling by one cytokine 

upregulates or downregulates a network of others [229]. It is likely that the many functions of 

CCR2/CCL2 in the tumor microenvironment are due to its impact on the expression of other 

cytokines as well. Indeed, though these results provide clear evidence that CD154 suppression is 

required for CCL2/CCR2-signaling to drive tumor progression, there are some findings that were 

surprising or will require further investigation. 

The mechanism by which CCR2 promotes angiogenesis and invasion are not investigated 

in these studies, but previous work in our lab and others provide insight. CCL2 directly induces 

cellular invasion by signaling thru MAPK and RhoA in 4T1, PyVmT, and MDA-231 cells, and 

thru facilitating epithelial-mesenchymal transition via activation of Hedgehog signaling in 

hepatocellular carcinoma[93] [230]. It is likely that the increased M2 macrophage population 

contribute to early invasion, as macrophages are known to facilitate invasion by secreting 

MMPs[231], or dissolving cell-cell junctions [32]. The increase in angiogenesis is also likely 
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due to the increase in M2 macrophage content of the tumors, which are known to produce IL-6 

and VEGF [190]. However, we found that CCL2 blockade did not affect VEGF or IL-6 in vivo 

or in vitro. These findings are from human cells transplanted into immune-compromised mice, so 

it could be due to a dysfunctional myeloid compartment, or it could be due to failure of human 

chemokines to trigger chemotaxis of macrophages in murine systems. 

Another surprising finding was the variable effect of CCR2 blockade on CCL2 levels in 

DCIS.com cells. CCR2 knockout has no effect on CCL2 expression, but knockdown of CCR2 

decreases CCL2 levels. Residual CCR2 expression may allow for regulatory signaling to 

decrease CCL2 levels in the CCR2 KD cells but not in the CCR2-null knockout cells, as CCR2 

levels have been shown to directly correlate with CCL2 expression in some cell types [232]. 

Results from other labs on the effect of CCR2 expression on tumoral CCL2 expression are 

similarly confounding. One study compared CCL2 secretion by cell lines derived wild-type- 

CCR2 and CCR2-knockout MMTV-neu mice and compared CCL2 secretion levels, and found 

that CCL2 secretion by CCR2 knockout lines ranged from 50% to 750% of the levels of wild- 

type CCR2 cells [233]. It appears that the regulation of CCL2 by CCR2 is context dependent and 

cell-type specific. Future studies should investigate how CCR2 levels regulate CCL2 expression 

in breast cancer cell lines of varying genetic background and molecular subtype to better 

understand how these factors affect CCL2 regulation. 

The impact of the increased T cell populations in siCCR2 treated tumors is unclear, as 

there was no change in apoptosis in the siCCR2 treated tumors, despite higher levels of activated 

T cells which normally induce apoptosis[234]. There are 2 possibilities to explain this – that T 

cells are inducing cell death or suppressing tumor growth independent of apoptosis, or the actual 

effect is being masked by another process that is elevating apoptosis in the siCTRL group. 
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Although the most common mechanism of tumor-cell-killing by T cells is apoptosis, there are 

several apoptosis-independent mechanisms of cell death as well, including necrosis and 

autophagy [235, 236]. In chapter 3 I demonstrate that these mechanisms of death are active when 

tumoral CCR2 is blocked in NOD-SCID mice, but the lack of lymphocytes in these mice make a 

correlation tenuous. Further studies investigating the mechanism of CD154-mediated T cell 

activation and its effects on tumor development are warranted. 

A major weakness in these studies is that all in vivo characterizations of the function of 

CD154 in CCL2/CCR2-mediated breast cancer progression are correlational in nature. None of 

the experiments directly implicate CD154 in antagonizing the functions of CCL2/CCR2 

signaling through the use of an in vivo model. The correlational data is backed by literature and 

the data are relatively strong, as CD154 appears to be upregulated in all mouse models that 

disrupt CCL2 or CCR2 expression via shRNA, siRNA, or CRISPR knockout. A more direct 

method investigating the role of CD154 in CCR2-driven tumors would be to monitor tumor 

progression in murine transplants of cells expressing both high levels of CCR2 and CD154 (or 

conversely, knockout of CCR2 and CD154). 

It is difficult to judge the role of tumoral CCL2 and CCR2 on macrophage recruitment 

and angiogenesis from chapters 2 and 3 due to the use of immune-compromised mice and human 

xenografts. Although immune-compromised mice are required to prevent rejection of human 

tumor cells, these studies would have been strengthened by the use of humanized mice, or if the 

in vivo models made use of murine mammary carcinoma cells in syngeneic immune-competent 

hosts. The lack of homology between murine and human CCL2/CCR2 and CD154/CD40 could 

explain why in chapter 4, despite altered levels of CCL2 in CCR2 overexpressing SUM225 cells 

and CCR2 KD DCIS.com cells, there was no change in macrophage recruitment or angiogenesis. 
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It is possible that the alterations in epithelial CCR2 did not regulate overall tumor CCL2 levels in 

SUM-225 or DCIS.com xenografts because murine CCR2 doesn’t recognize human CCL2. This 

theory is supported by the similar findings that there is no change in angiogenesis in the 

DCIS.com or SUM-225 tumors; whereas when the syngeneic immune-competent model was 

used, macrophage content, angiogenesis, and CCL2 levels were all correlated with tumoral 

CCR2 expression. 

The regulatory mechanism by which CCL2/CCR2 signaling suppresses CD154 signaling 

is unclear. These results suggest that CD154 expression is enhanced in both membrane-bound 

and soluble form, meaning that it is not simply being cleaved from its membrane-bound form at 

a higher rate after CCR2 blockade. It is likely that the upregulation occurs at the transcriptional 

level. Studies on the regulation of CD154 expression in carcinoma cells are few, but data from 

other cell types suggest that nuclear factor of activated T cells (NFAT) can induce CD154 

expression in megakaryocytes, however, it is not clear whether this would be relevant to cancer 

cells [237]. Future studies investigating this regulatory mechanism should focus on downstream 

effectors of CCR2, including PI3k, Akt, and MAPK signaling pathways. Better understanding 

this pathway may allow therapeutic design of molecules that upregulate CD154 independent of 

CCR2 blockade, which could prove useful in non-CCR2 driven tumors. 

Finally, though useful in understanding its tumor-promoting mechanisms in a laboratory 

setting, targeting CCR2/CCL2 for cancer therapy has proven difficult. Although CCL2/CCR2- 

signaling promotes the progression of breast cancers, it is also essential for proper immune 

function. T cells express CCR2, and CCR2 knockout promotes T cells to mature into immune 

suppressive T regulatory cells and Th17 subtypes [238]. Absence of CCL2/CCR2-signaling in 

mice has been shown to accelerate metastatic spread in mice [239]. Several mouse trials and 
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human trials show that systemic depletion of CCL2 can actually hasten disease progression [106] 

[135, 240]. Attempts are now being made to develop a safer method of targeting CCL2/CCR2 

signaling. A small molecule CCR2 inhibitor, CCX872-B, has shown fewer side effects and may 

be more effective than FOLFIRANOX based on preliminary results of a phase 1b trial for 

advanced pancreatic cancer, suggesting CCR2 inhibition might be safer than earlier CCL2- 

neutralizing strategies. Based on the findings of my studies, specifically targeting CCR2 in the 

tumor microenvironment may also be an effective strategy. 

Perspective 

The ability of tumor cells to avoid immune detection while actively recruiting the very 

cells responsible for eliciting such a response illustrates the difficulty of mounting an effective 

immune response against well-established tumors. The most promising immunotherapies in 

cancer therapy today rely on a large population of intratumoral lymphocytes that are ready to 

respond. In the case of breast cancer though, over 50% of infiltrating cells are macrophages, 

which not only promote tumor growth and angiogenesis, but actively block the recruitment and 

maintenance of cytotoxic T lymphocytes. The mechanism by which cancer cells coordinate this 

sophisticated immunologic smokescreen may allow for sensitization to immune checkpoint 

blockade therapies, or illuminate novel therapeutic techniques that make use of the macrophages 

which already reside within the tumor. 

By better understanding how tumoral CCR2 blockade and increased levels of CD154 

contribute to T cell activation, these mechanisms might be used to increase the efficacy of 

current immunotherapies. PDL1 and CTLA4 are currently targeted molecules in 
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immunotherapy, as they both are checkpoint inhibitors that serve to suppress an immune 

response. The efficacy of these therapies, however, is dependent on a Th1-type tumor 

microenvironment, which is characterized by the presence of M1 macrophages, CD8+ T cells, 

CD4+ T cells, as well as IL-2, IFN-gamma, IL12, and TNF [241]. These lymphocyte-rich, 

cytotoxic microenvironments are termed “hot tumors”, as they are primed for immune activation. 

The problem for breast cancer immunotherapy is that breast tumors are Th2-dominated 

“cold” microenvironments, characterized by Treg and Breg lymphocytes, M2 macrophages, 

TAFs, and IL4, IL6, IL10, and TGFbeta [242]. Therefore, the tumor microenvironment must be 

converted back to a Th1 environment in order for checkpoint blockade to work. The studies 

presented in this dissertation suggest that CCR2 inhibition or CD154-based therapies shift from a 

Th2 to a Th1 immune background CD154 can decrease the M2 phenotype of macrophages, and 

CCR2 blockade decreases the M2 macrophages and increases both total numbers of infiltrating T 

lymphocytes and their activation state.  Furthermore, studies utilizing CD40-agonizing 

antibodies have shown tumor responses in the absence of T cells due to cytotoxic myeloid- 

derived cells, including M1 macrophages [75, 243-245]. The net effect of CCR2 blockade is to 

flip the microenvironment from a tumor-friendly to a tumor-hostile environment. 

As breast tumors are often macrophage-rich, a combined CCR2-blocking and 

CD154/CD40-agonizing therapy could provide the necessary switch to a turn a cold tumor hot, 

susceptible to checkpoint blockade immunotherapy. As we begin to understand how breast 

cancer cells suppress the immune response and generate a tumor-promoting microenvironment, 

we are finding redundant and overlapping mechanisms that protect tumors from immune 

detection and promote their growth. Therefore, therapies should target multiple overlapping 

mechanisms to overcome tumor defenses, in a similar way that virologists combined anti-viral 
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therapies to finally turn HIV into a survivable infection. By combining the stimulatory effects of 

CCR2-blockade or CD154-upregulation with current immune checkpoint blockade therapy, a 

durable anti-tumor response could be generated that persists in immune memory. Although we 

are just beginning to understand the complexity of this disease, so too are we quickly developing 

more and more complex therapies to treat it. Hopefully someday the complexity of our therapies 

will eclipse the complexity of this deadly disease. 



161 



162 

Figure 33 - Mechanism for CCR2 to promote breast cancer progression through suppressing 
tumoral expression of CD154. 
A) In CCR2-driven tumors, CD154 is repressed. Tumor cells secrete CCL2, which recruits and
polarizes M2 macrophage to the tumor microenvironment. M2 macrophages secrete high levels
of CCL2, promoting further CD154 suppression. CCL2 directly promotes cancer cell invasion
and proliferation, and decreases apoptosis. M2 macrophage inhibit immune surveillance by
cytotoxic T cells, and facilitate angiogenesis through secretion of angiogenic factors. B) In the
absence of CCR2, CD154 (grey boxes) is expressed by tumor cells. CD154 directly inhibits the
migration and proliferation of tumor cells. CD154 favors M1 macrophage activation which
secrete less CCL2 than M2 macrophages, thereby decreasing overall CCL2 levels in the tumor.
M1 macrophages and soluble CD154 activate T cells to proliferate and recognize tumor cells.
The M1 macrophages phagocytose tumor and cytotoxic T cells are then capable of recognizing
and killing tumor cells, decreasing tumor growth and invasion. Increased CD154, along with a
decrease in the M2-derived angiogenic factors leads to decreased endothelial recruitment and
angiogenesis
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Appendix 
 

Overview of cancer and nomenclature 
 

Under normal physiologic conditions, cellular division is regulated tightly to ensure cellular 

phenotypes are maintained. Cells can increase their functional mass in response to a stimulus by 

increasing cell number (hyperplasia) or increasing their size (hypertrophy). The regenerative 

capacity required of immune cells and the epithelial linings of glands and organs require a 

continuous ability to faithfully replicate. Controlled proliferation allows for an increase in 

cellular mass that appears and functions normally, and require that upon removal of a stimulus, 

the tissue involutes back to a normal cellular size and number. 

Abnormal cellular growth is considered neoplasia if the division continues independent 

of the presence of a stimulus, and this abnormal growth of cells of is called a neoplasm or tumor. 

Tumors can be benign or malignant, in which benign tumors are confined to their tumor of origin 

and cannot spread. A malignant tumor, or cancer, is an abnormal proliferation of cells is capable 

of invading beyond the margins of its tissue of origin (invasion) and growing in distant organs 

(metastasis). Benign and malignant describe only the invasive potential of a tumor, and are not 

indicators of prognosis. 
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Normal breast structure and function 
 
 

 
Figure 34- Normal architecture of the breast and pathogenesis of invasive ductal carcinoma. 

 
 

The human breast is composed of milk-producing-glands, the lumens of which are 

continuous with tubular structures called ducts that carry the milk to the nipple during lactation 

(Fig 1A). The lobe is made up of lobules, which are made up of alveoli, which are the most 

basic milk-producing structure of the human breast. The ducts feed from the alveoli, merging 

together as they extend to the nipple. Both structures are lined with a single layer of epithelial 

cells and surrounded by a layer of basement membrane to which they are anchored, as well as a 

layer of myoepithelial cells that contract to excrete milk upon oxytocin stimulation. 

It is these 2 epithelial layers (the luminal epithelium and the ductal epithelium) that most 

often give rise to breast cancer. Cancer that arises from the luminal epithelium is called luminal 

carcinoma (carcinoma being a general term for malignant neoplasm arising from epithelium), 
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and cancer of the ductal epithelium is ductal carcinoma. If a carcinoma has invaded, it is termed 

invasive; if it has not, it is termed in situ. 

Pathogenesis of Breast Cancer 
 

Benign diseases 
 

There are a number of benign pathologies of the breast that mimic the appearance of breast 

cancer by gross examination or mammography, but do not increase the risk of cancer. Major 

benign pathologies of the breast include: 

• Mastitis – Inflammation of the breast as a result of acute or chronic infection; acute is often 

bacterial and secondary to lactation and breast feeding, and chronic can be bacterial, viral, or 

idiopathic (of unknown origin). 

• Mammary duct ectasia – a chronic inflammatory disease that is distinct from mastitis, caused 

by blocked lactiferous ducts and resulting in dilated ductal spaces and periductal immune cell 

infiltrates.  This disease can mimic carcinoma as irregular masses, but do not increase the 

risk of ductal carcinoma. 

• Fat necrosis – trauma or ischemia (lack of oxygen to a tissue) can result in necrotic adipose 

cells. Neutrophils and macrophages respond to the site of injury, which over time results in 

calcification and fibrosis of the necrotic area. This can cause a hard mass that resembles 

carcinoma. 

• Fibrocystic change – The most common breast disorder, a class of breast pathologies that 

often produce palpable lumps. These disorders are recognized by fibrous proliferation in the 

breast stroma, formation of cysts (a closed sphere with a simple epithelial lining), and 

epithelial hyperplasia. 
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Since these diseases mimic carcinoma, they are often biopsied and examined. Their distinct 

etiologies, however, are often physical or infectious in nature, rather than genetic, and do not 

increase the risk of carcinoma development. 

Initiating a malignancy: hyperplasia 

Within fibrocystic changes, there are several proliferative diseases of the epithelium that increase 

the risk of carcinoma. These diseases, with their relative risk of developing carcinoma, include: 

• Ductal hyperplasia of the usual type (DCUT), where 2 or more epithelia exist in the

lining of the duct and may show nuclear atypia. Two-fold higher risk than population.

• Atypical ductal hyperplasia (ADH), where there the ductal epithelium completely

involves in the ductal lumen. Four- to five-fold fold higher risk.

• Ductal carcinoma in situ (DCIS), where the entire ductal lumen is filled with atypical

cells. Eight- to ten-fold increase in risk[246].

Cutoffs for size and fraction of atypical cells are often used to distinguish ADH from DCIS, but 

this distinction is controversial[247]. The increasing risk of carcinoma that is associated with 

each disease suggest they represent a spectrum from normal tissue to malignant carcinoma.2

DCIS is the most common form of pre-invasive breast cancer in the US, with over 50,000 

cases diagnosed every year.  Standard treatment for DCIS involves a combination of 

lumpectomy and radiation therapy [139, 140]. Yet, 10 to 35% of patients experience disease 

recurrence, often accompanied by invasive ductal carcinoma (IDC) [141, 142], indicating that 

under-treatment and over-treatment remain significant concerns in patient care. Few approaches 

2 Summary of increased risks of fibrocystic and proliferative breast disease summarized 
in Table 1 from Fitzgibbons, et al. 1998. 
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exist to evaluate prognosis of DCIS. Compared to IDC, the use of biomarkers in DCIS has not 

been well studied. Small or low grade lesions may still become invasive [142, 143]. Estrogen 

receptor (ER), Her2, Ki67, p16 and Cox2 are associated with disease recurrence but not with 

development of invasive breast cancer [144]. Identifying key mechanisms associated with DCIS 

progression could lead to better prognostic factors and tailored treatments for patients with 

DCIS. 

 
 

Malignancy: early growth and invasion 
 

The most dangerous attribute a cancer cell is their ability to invade. Without invasion, 

tumors could become massive and compress nearby structures, but they would all be curable by 

surgical excision. It is for this reason that the definitive characteristic of a malignant cell is 

invasive potential. In order to move across a 2-dimensional plate or a three-dimensional scaffold, 

cells must make drastic changes to their shape and morphology by rearranging their 

cytoskeleton, which is largely composed of stiff actin filaments and microtubules. 

 
 

Metastasis: spreading to distant organs 
 

Approximately 40,000 women will die from breast cancer in 2018, with over 90% of 

these deaths caused by metastasis [248]. Metastases can arise from lesions that are undetectable 

by mammography screening [249, 250]. Tumors are classified based on whether their gene 

expression matches the epithelium of the differentiated milk duct lumen (luminal), or the 

undifferentiated stem cells in the basal layer (basal). Basal tumors are often triple-negative, 

expressing no ER, progesterone receptor (PR), or growth factor receptor (Her2). Targeted 

therapies for breast cancer antagonize either ER or Her2, leaving chemotherapy as the only 
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treatment option for ER-/Her2- lesions. TNBC cells most resemble mammary stem cells, which 

possibly explains their increased tendency to metastasize [111]. Despite recent advances in 

immunotherapy, which has cured patients with previously untreatable malignant melanoma, 

trials in breast cancer have shown mixed results[113, 251-254]. Stem cells likely contribute to 

this resistance because they are lowly immunogenic and often senescent[255, 256]. Thus, 

targeting the molecular determinants of stem cells could enhance the efficacy of immune 

therapies. Understanding the molecular processes by which cancer stem cells arise and persist 

will enhance treatments for patients with incurably disseminated breast cancer. 
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