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Abstract 

The prevalence of metabolic disease continues to rise in the United States, leading to 

conditions such as metabolic syndrome, diabetes, and NAFLD. Heat shock proteins (HSPs) are 

molecular chaperones which aid in protein folding during cellular stress. These proteins are also 

important in metabolic function, through inhibiting inflammation and increasing oxidative 

capacity in skeletal muscle. Reduced HSPs may also lead to metabolic disease, demonstrated 

by reduced HSP72 expression in skeletal muscle of diabetic patients and in the liver with the 

progression of NAFLD.  

 Our studies further demonstrate that disruption in the HSP response could be an 

underlying commonality in various metabolic conditions and tissues. First, we found that a 

reduction in HSPs in skeletal muscle of a post-menopausal rat model is associated with reduced 

mitochondrial protein expression, increased lipid storage, and reduced exercise capacity. We 

also investigated the role of HSP72 in the liver. A loss of HSP72 in hepatocytes led to a 

reduction in fatty acid oxidation, mitochondrial dysfunction, and increased lipid storage. A 

reduction in HSPs in both the skeletal muscle and the liver may increase susceptibility to the 

development of metabolic disease.  

Our work also demonstrates that activation of HSPs has potential to protect from 

metabolic dysfunction. We found that a heat treatment intervention increases HSP72 in the liver, 

reduces hepatic triglyceride storage, and improves whole-body glucose homeostasis in rodents 

fed a high-fat diet. We also found that acute and chronic exercise increase HSP72 protein 

expression in the liver. The induction of HSPs with exercise was associated with changes in 

autophagy and mitophagy protein expression, which may protect hepatocytes from 

accumulation of damaged organelles. This work strongly suggests that HSP72 maintains whole-

body metabolic homeostasis through protecting against lipid accumulation in both skeletal 

muscle and liver. Therapies which activate HSP72 may be the key to protecting against 

metabolic disease.  
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1.1 Obesity and Metabolic Syndrome  

1.1.1 Epidemiology  

Obesity is a significant health concern in the United States that is predicted to affect half 

of Americans by 2030 [1]. This places an immense burden on our health care system, as the 

yearly cost in the United States for obesity is $147 billion dollars [1]. Metabolic syndrome 

develops over time and is a collection of factors including abdominal obesity, dyslipidemia, 

hypertension and glucose intolerance stemming from metabolic dysfunction [2]. Obesity and 

metabolic syndrome put people at risk for many other health complications such as type 2 

diabetes, cardiovascular disease, and stroke. This health crisis is not slowing, as one in six 

children in the United States are obese [3]. Due to the high prevalence, the medical community 

is in need of novel and more effective strategies for prevention and treatment of metabolic 

syndrome.  

Insulin resistance is a major component of metabolic dysfunction. Due to high blood 

glucose, inflammation and lipid toxicity, metabolic tissues such as skeletal muscle and the liver 

become insulin insensitive over time. This results in dysregulation of gluconeogenesis by the 

liver, and decreased ability of skeletal muscle to perform glucose uptake [4, 5]. At the beginning 

of metabolic dysfunction development, pancreatic β-cells overproduce insulin in order to 

compensate for insulin resistance in metabolic tissues. However, the hormone no longer 

effectively clears glucose from the blood. Eventually with the progression into type 2 diabetes, 

β-cells are not able to produce sufficient insulin [6]. 

1.1.2 Risk Factors and Current Treatment 

There are many factors that affect a person’s susceptibility to metabolic syndrome. 

Obesity, excess nutrition, sedentary behavior, insulin resistance and family history of the 

disease are all risk factors for development of metabolic syndrome. Certain racial groups, such 

as Hispanics, are more susceptible to developing metabolic syndrome [7]. The first treatment 
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option for metabolic syndrome involves lifestyle changes such as physical activity and improved 

nutrition [7]. If lifestyle changes are not sufficient, surgery and medication are also options. 

Bariatric surgery has become a common strategy to decrease obesity [8]. Medications which 

control blood pressure, cholesterol levels, and blood glucose are also typically used.  Insulin 

sensitizers, such as metformin and thiazolidinediones (TZDs), are a main form of treatment in 

patients with advancing diabetes [9, 10].  

 

1.2 Metabolic Dysfunction in Postmenopausal Women 

The development of insulin resistance in skeletal muscle and systemically is a critical 

step towards diabetes, and often occurs in post-menopausal women [11]. Estrogen’s most 

studied role is in reproductive tissues, but estrogen is also important in many non-reproductive 

tissues [12, 13]. Estrogen therapy can ameliorate the increased risk of diabetes in 

postmenopausal women through improving metabolic homeostasis systemically and in skeletal 

muscle [14]. Clinical studies have been essential in identifying the role of estrogen in 

metabolism, but rodent models have allowed us to identify tissue-specific effects of estrogen 

action including the importance of estrogen action in skeletal muscle. Rodent models, such as 

ovariectomy and estrogen receptor knockout, have also deepened our understanding of the 

estrogen-mediated mechanisms. 

1.2.1 Susceptibility to Insulin Resistance in Male and Female Rodents 

Males and females exhibit variations in metabolic regulation and response to metabolic 

stressors. Although these variations have been observed in rodent and human research, studies 

investigating the effect of a high-fat diet (HFD) on weight gain in male versus female rodents 

has yielded inconsistent results. Some studies have found that female rodents gain significantly 

less body weight [15] and adipose tissue weight [15, 16] than male rodents on a HFD. Other 

studies have found that male and female rodents gain similar weight [16, 17] or that female 

rodents gain more body weight and adipose tissue than male rodents on a HFD [18-20]. 

https://www.google.com/search?q=thiazolidinediones&spell=1&sa=X&ved=0ahUKEwie1OTy_6_WAhUr8IMKHUjQA5QQvwUIJSgA
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Variables that could significantly change the outcome in these studies are the species of rodent 

and also the duration and composition of HFD. Also, it is understandable that estrogen can be 

protective from metabolic dysfunction to only a certain extent before diet can overcome that 

protection. 

Although many studies are not in agreement with changes in weight gain with a HFD, 

one difference that has been consistently observed in past studies is decreased susceptibility to 

insulin resistance in female rodents following a HFD [17, 18, 21-25]. For example, Yakar et al. 

found that a 10-week HFD equally increased body weight and fat percentage in both male and 

female rodents, however male rodents demonstrated increased insulin resistance as measured 

by glucose and insulin tolerance tests, while females did not [22]. Other studies have found 

similar results regarding protection from insulin resistance in female rodents even without 

reduced weight gain compared to male rodents [17, 18]. In addition to reduced susceptibility to 

insulin resistance, female rodents show greater whole-body oxygen consumption compared to 

males [16, 26]. Both enhanced insulin sensitivity and oxygen consumption contribute to 

improved whole-body metabolism in female rodents. 

Insulin sensitivity and systemic metabolic homeostasis may be better maintained in 

female rodents on a HFD due to enhanced skeletal muscle metabolism. Many studies have 

demonstrated that a HFD in male rodents impairs skeletal muscle glucose metabolism [27-29], 

but not as many studies have compared males and females. In two different studies, 

researchers found metabolic differences in skeletal muscle that may protect female rodents 

from HFD-induced insulin resistance. Gomez et al. found that female rodents had higher 

triglyceride storage capacity in skeletal muscle [17] and adipose tissue and increased 

expression of fatty acid utilization genes in skeletal muscle [18]. Additionally, they found that 

stress and antioxidant enzyme activity in muscle was similar between genders, although female 

rodents demonstrated slightly higher skeletal muscle oxygen consumption and significantly 

higher cytochrome C oxidase (COX, the last enzyme in the respiratory electron transport chain) 
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activity than male rodents in response to a HFD. Skeletal muscle from female rodents also had 

increased Glut4 protein content, the main glucose transporter in skeletal muscle, and UCP3 

protein content, an uncoupling protein, in response to a HFD [17]. Uncoupling proteins (UCP) 

transfer hydrogen ions to the intermembrane space and can protect mitochondria from oxidative 

stress [30] with increased flux into the electron transport chain (ETC). Another study by Catala-

Niell et al. found that female rodents have reduced hydrogen peroxide production and increased 

antioxidant activity in skeletal muscle [16]. Although these studies found varying results, overall 

improved skeletal muscle metabolic function and flexibility in female rodents could be a defining 

factor in the protection from HFD-induced insulin resistance.  

1.2.2 Skeletal Muscle Metabolic Dysfunction following Ovariectomy 

Ovariectomy (OVX) in rodents is a model of human ovarian hormone loss that is seen in 

postmenopausal women.  Like in postmenopausal women, ovariectomy in rodents leads to 

increased metabolic dysfunction which results in increased weight gain and body fat [15, 22, 31-

42]. In addition to body weight changes, insulin sensitivity is impaired with a loss of estrogen 

[22, 39, 43, 44]. Yakar et al. observed increased body weight and body fat percentage, as well 

as reduced glucose tolerance as measured by a glucose tolerance test in OVX rodents [22]. 

Additionally, Kumagai et al. found that OVX rodents do not demonstrate changes in body weight 

or fat, but were insulin resistant as measured by a euglycemic hyperinsulinemic clamp [43]. 

Skeletal muscle also becomes insulin resistant with a loss of estrogen as demonstrated by 

reduced insulin-stimulated glucose uptake [40, 43, 45, 46]. When OVX rodents are placed on a 

high-fat diet (HFD), metabolic dysfunction is further exacerbated. A high caloric diet for 10 

weeks in OVX rodents leads to further increased body weight, body fat percentage, insulin 

resistance as demonstrated by an insulin tolerance test, glucose tolerance test and high leptin 

levels [22].  Later studies found similar results in the exacerbation of weight gain, food intake 

[37] and insulin resistance with a HFD [35, 36].  
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Reduced metabolic signaling in muscle from OVX rodents may account for reduced 

insulin sensitivity in skeletal muscle as well as systemically. Muscle from OVX mice 

demonstrate reduced phosphorylation of AMP-activated protein kinase (AMPK), which is a 

master regulator of energy homeostasis that activates glucose and fatty acid oxidation pathways 

[47, 48]. Additionally, changes in glucose uptake following a loss of estrogen may be due to 

reduced insulin signaling. Phosphorylation of Akt [40, 48] and IRS-1 in the insulin signaling 

pathways of skeletal muscle are reduced following ovariectomy [48]. Insulin receptor substrate 1 

(IRS-1) is a signaling adaptor protein, and Protein kinase B (Akt) is a serine/threonine-specific 

protein kinase. Both are required for the insulin-induced translocation of Glut4 to initiate glucose 

uptake. Although ovariectomies in rodents reduce skeletal muscle glucose uptake, the majority 

of studies have found no difference in Glut 4 protein content [37, 46, 49]. Reduced translocation 

of Glut4 may be more important than changes in protein content with a loss of estrogen [46].  

Along with reductions in insulin signaling, other metabolic signaling pathways are also 

reduced in OVX rodents. Whole-body oxygen consumption is decreased in OVX rodents [38, 

40], which may be due to downregulated fatty acid oxidation signaling pathways specifically in 

skeletal muscle. Impaired fatty acid oxidation signaling in skeletal muscle of OVX rodents 

includes various aspects of fat metabolism including fatty acid uptake, β-oxidation, and 

mitochondrial biogenesis. Specifically, Campbell et al. found that a loss of circulating estrogen 

resulted in a 20% reduction of CPT-1 and β-HAD activity in skeletal muscle [50]. CPT-1 

(carnitine palmitoyltransferase) is a protein that transports fatty acids into the mitochondria for 

oxidation, and β-HAD (β-3-hydroxyacyl-CoA dehydrogenase) is a part of the β-oxidation 

pathway. Additionally, Kamei et al. found reduced expression of genes (PPARGC1A, ERR1, 

ACO, and MCAD) which regulate fatty acid oxidation in OVX rodents. [34]. Other studies have 

found similar reductions in PGC-1α and downstream effector TFAM gene expression with 

ovariectomy [48, 51]. PGC-1α is a transcriptional coactivator that activates various energy 

metabolism pathways and is a master regulator of mitochondrial biogenesis. Therefore, 
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reductions in this protein as well as reductions in numerous aspects of fatty acid oxidation can 

have dramatic negative effects on skeletal muscle metabolism.  

Along with reductions in expression of various metabolic genes, mitochondrial function is 

also impaired in skeletal muscle with ovariectomy. Skeletal muscle oxygen consumption was 

observed to be reduced in OVX rodents in multiple studies [33, 41, 51]. Cavalcanti-de-

Albuquerque et al. found that by 8 weeks post-ovariectomy, there was a decrease in PGC-1α 

expression and oxygen consumption of lipid substrates in both fast and slow twitch muscle. 

Additionally, these animals had higher lactate levels following intense exercise, possibly 

indicating increased reliance on glycolysis [41]. Studies have also observed increased H202 

generation [51] in ovariectomized rodents, and a reduction in uncoupling protein expression 

which can worsen damage from oxidative stress [48, 51]. Deficiencies in mitochondrial oxygen 

consumption, mitochondria content, and increased oxidative stress contribute to skeletal muscle 

metabolic dysfunction in ovariectomized rodents.  

In addition to the abovementioned mitochondrial deficiencies observed with a loss of 

estrogen, impaired mitochondrial function with ovariectomy may also be due to alterations in 

mitochondrial dynamics. Capllonch et al. demonstrated that OVX decreases expression of 

proteins which regulate mitochondrial dynamics including MFN1, MFN2, and DRP1 [51]. 

Mitofusin (MFN) proteins are mitochondrial fusion proteins, while Dynamin-related protein 1 

(DRP1) is a mitochondrial fission protein. Activation of DRP1 and fission of the mitochondria is 

required for mitophagy (degradation of dysfunctional mitochondria). Mitophagy is important in 

the maintenance of high mitochondrial quality, and reduction in mitophagy may contribute to 

obesity and diabetes [52, 53].  

A loss of mitochondrial function and accumulation of dysfunctional mitochondria can 

significantly contribute to impaired lipid handling in various tissues, including skeletal muscle. 

OVX mice have increased skeletal muscle triglyceride (TAG) storage [33, 34, 40, 42], and 

diacylglycerol (DAG) content [40], a lipid intermediate, which contributes to insulin resistance. 
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Additionally, Camporez et al. observed increased protein content of lipid transporter proteins, 

CD36 and FABP. CD36 (also called FAT, fatty acid translocase) and FABP (fatty acid binding 

protein) both transport fatty acids across the cell membrane to be oxidized or stored [40]. 

Together these studies demonstrate that ovariectomy reduces fatty acid oxidation, impairs 

mitochondrial function, and increases fatty acid uptake which may contribute to increased lipid 

accumulation and insulin resistance that are seen following a loss of estrogen. 

Many studies investigating ovariectomy or estrogen treatment fail to evaluate or consider 

fiber type in their results looking at skeletal muscle. It is important to remember when 

investigating skeletal muscle-specific differences that findings may vary depending on the fiber 

type investigated. These muscle types are described as oxidative (type I), glycolytic (type II), or 

intermediate (type IIa) based on the metabolic pathways they typically depend on. Oxidative 

muscle fibers contain more mitochondria, higher levels of myoglobin, and increased expression 

of oxidative enzymes. Glycolytic muscles contain few mitochondria and greater expression of 

glycolytic enzymes. The effect of ovariectomy on skeletal muscle outcomes may be due to a 

fiber type shift, since diabetic patients demonstrate a shift in their muscle types to more type II 

fibers [54, 55].  

1.2.3 ERα as a Primary Mediator of Metabolic Function  

The physiological action of estrogen is mediated through two receptors, ERα and ERβ. In 

the classical genomic pathway, ligand-bound estrogen receptors bind to estrogen response 

elements (ERE) in gene promoters and regulate transcription [56]. In non-classical pathways, 

ERs (such as GPER) localize at the plasma membrane and are activated/inhibited via post-

translational modifications through various signaling pathways [57-60]. Although ovariectomized 

models have been valuable in investigating metabolic dysfunction with a loss of estrogen, 

estrogen receptor knockout models have also provided important evidence towards how 

estrogen acts metabolically. ERα is the primary player in the protective metabolic effects of 

estrogen, and this was clearly demonstrated in ERα-/- models. Male and female ERα-/- mice 
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exhibit increased adiposity and insulin resistance, as well as impaired fatty acid β-oxidation and 

accumulation of bioactive lipids in muscle [61, 62]. Additionally, muscle-specific ERα-/- mice also 

demonstrate impaired glucose homeostasis, diminished skeletal muscle oxidative metabolism, 

and impaired mitochondrial function and dynamics [63]. Furthermore, ERα pharmacological 

activation improves metabolic homeostasis through increasing insulin sensitivity [64], oxygen 

consumption and reducing weight gain and fat accumulation [65]. These past studies have been 

imperative in identifying the role of ERα in metabolic homeostasis. Similar studies investigating 

ERβ and metabolism have found that ERβ knockout animals do not have impaired metabolism 

[62, 66, 67]. Additionally, activation of ERβ did not improve skeletal muscle insulin sensitivity like 

activation of ERα [68]. However, one study identified that a reduction in ERβ may protect 

against insulin resistance and glucose intolerance in adipose tissue [67]. Future studies are 

needed to identify the role of ERβ in regulating metabolism. 

Further investigation into estrogen-agonists has also advanced the field’s understanding 

of possible treatment methods. Hormone replacement therapy is known to alleviate conditions in 

postmenopausal women such as osteoporosis and cardiovascular disease [69]. In the Women’s 

Health Initiative clinical trials, hormone therapy alleviated some of these conditions, but they 

also observed increased risk of breast cancer, stroke, and heart disease [70]. Since this trial, 

there has been a demand for the development of safe estrogen mimetic compounds. There is 

promise in the use of selective estrogen receptor modulators (SERMs) and tissue-selective 

estrogen complexes (TSEC) which have agonistic and antagonistic activity in a tissue-specific 

manner [71-74]. Kim et al. demonstrated that the SERM bazedoxifene (BZA) alone, and in 

combination with conjugated estrogen, acts in an ERα specific manner to improve glucose 

tolerance and energy expenditure in mice [73] and can reduce body weight gain caused by 

ovariectomy [75-77]. Further studies continue to investigate SERMs [74, 78, 79] and will be 

important in the treatment of postmenopausal women.  
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1.2.4 Exercise as Treatment for Postmenopausal Women 

Exercise is a possible treatment approach to prevent or reverse metabolic dysfunction 

that occurs during menopause [80-83]. With a loss of estrogen, rodents and humans 

demonstrate a loss of physical activity [31, 32, 84-87]. This is consistent in ERα knockout mice 

[88]. This reduction in physical activity is also extended to exercise capacity. Ovariectomized 

[31, 32, 84, 89] and ERα knockout animals (unpublished observations) demonstrate a reduction 

in capacity to perform exercise. This may be partially due to the observed impairments in whole-

body and skeletal muscle oxygen consumption and skeletal muscle mitochondrial function [33, 

38, 40, 41, 51, 61]. Impairments in exercise capacity, whole-body oxygen consumption and 

skeletal muscle metabolism imply that with a loss of estrogen it’s likely that there is also a 

reduction in cardiorespiratory fitness. Cardiorespiratory fitness, or aerobic capacity, describes 

the ability of the body to deliver and utilize oxygen in peripheral tissues. Low aerobic capacity is 

a prominent risk factor for metabolic dysfunction, hypertension, cardiovascular disease and 

mortality [90-93].  

Work from the laboratory of Vieira-Potter recognizes the importance of aerobic capacity 

in protection against ovariectomy-induced insulin resistance. Her laboratory has studied the 

relationship between aerobic capacity and a loss of estrogen by using a rat that is artificially 

selected for low and high running capacity. These rodents are only exposed to a single running 

test to separate them into two groups; the low and high capacity runners (LCR and HCR) [94]. 

These animals have stark differences in aerobic capacity. Her laboratory found that rodents with 

enhanced aerobic capacity are protected against increased adipose accumulation and the 

development of insulin resistance with ovariectomy [95]. This is most likely due to the enhanced 

energy expenditure [95] and increased insulin-stimulated glucose uptake  in skeletal muscle and 

adipose tissue in the rodents with high aerobic capacity [96]. Additionally, Park et al. from the 

Vieira-Potter laboratory investigated if rodents with low aerobic capacity could improve their 

metabolic homeostasis following ovariectomy by using exercise. They found that exercise 
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increased insulin sensitivity, energy expenditure, mitochondrial content and skeletal muscle 

AMPK activation in both low and high-capacity runners following ovariectomy [97]. 

Although aerobic capacity has very strong genetic components [94], low physical activity 

also reduces aerobic fitness, which demonstrates that participation in exercise can improve 

one’s aerobic fitness [98]. This observation is supported by a study from Earnest et al. and 

others which demonstrate that aerobic exercise protects postmenopausal women from the 

development of metabolic syndrome and is dose-dependent [80, 99]. In addition to aerobic 

capacity, some past studies have shown that exercise training can improve metabolism in 

ovariectomized rodents [32, 100-106]. Researchers have found that exercise can mitigate some 

of the loss in metabolic function that occurs with a loss of estrogen. Exercise and estrogen act 

similarly to improve whole-body and skeletal muscle metabolism [95, 100, 103, 107-113] 

through improving insulin action, lipid handling, and oxidative capacity and increasing skeletal 

muscle expression of ERα [107, 108, 114]. It is clear from these past studies that reduced 

aerobic capacity contributes to the development of metabolic syndrome in postmenopausal 

women. These studies also demonstrate that exercise should continue to be considered as a 

strong treatment option in postmenopausal women. 

 

1.3 Non-Alcoholic Fatty Liver Disease 

Metabolic disease is very common, and can affect various age-groups, organs, and both 

genders. Fatty-liver, or non-alcoholic fatty liver disease (NAFLD) is the liver component of 

obesity and metabolic disease. As discussed above, skeletal muscle is very important in 

glucose homeostasis through its regulation of glucose uptake and the effects of skeletal muscle 

mitochondrial function on whole-body metabolic homeostasis. The liver is also very important in 

systemic metabolism, specifically through its regulation of gluconeogenesis. With metabolic 

disease, the liver displays various metabolic defects including mitochondrial dysfunction, excess 
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lipid storage, inflammation, and insulin resistance all of which contribute to systemic 

dysregulation of glucose.  

1.3.1 Prevalence and Diagnosis of NAFLD 

NAFLD is defined as excessive accumulation of fat in the liver which is also referred to 

as steatosis. This is defined by the liver triglyceride content as being more than 5 % of liver 

weight [115]. Currently, it is estimated that 34% of the general population and 75-100% of obese 

and extremely obese individuals have NAFLD [116, 117]. Due to this connection, NAFLD 

patients have a high risk of developing hepatic insulin resistance, ultimately contributing to 

hyperglycemia, dyslipidemia (high plasma triglycerides or low HDL cholesterol) and 

development of type 2 diabetes [118, 119]. In about 25% of cases increased hepatic lipid 

storage in NAFLD can progress on to more severe liver disease called non-alcoholic 

steatohepatitis (NASH) [120]. In addition to steatosis, hepatocyte ballooning, lobular 

inflammation, and mega mitochondria development occur with NASH. This can further progress 

to fibrosis, cirrhosis and hepatocarcinoma [120]. 

NAFLD is diagnosed by identifying the presence of steatosis through imaging or 

histology, along with reports of little alcohol consumption by the patient [121].  Imaging 

procedures can be used (CT scans, magnetic resonance imaging, or transient elastography) to 

detect steatosis and possible fibrosis [122]. The severity of NAFLD is difficult to diagnose since 

liver biopsy is the best method to properly assess the liver histologically [123]. NAFLD is further 

diagnosed through abnormal liver tests (such as serum aspartate transaminase (AST) and 

alanine transaminase (ALT), and hepatitis blood tests) and the presence of metabolic risk 

factors [124]. A NAFLD fibrosis score can be determined by a physician through identifying a 

combination of characteristics such as hyperglycemia, body mass index and high AST/ALT 

levels [125]. 
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1.3.2 Development and Treatment of NAFLD 

Liver fat accumulation occurs when fatty acid uptake, storage, and de novo lipogenesis 

is greater than fatty acid oxidation and efflux of lipids. Inflammation, lipotoxicity, oxidative stress, 

mitochondrial dysfunction, endoplasmic reticulum stress, and variations in the microbiome are 

all part of the development of NAFLD. NAFLD is thought to progress to liver injury through the 

“two hit hypothesis”. The first hit is the excessive accumulation of triglycerides in the liver. The 

second hit involves oxidative stress, mitochondrial dysfunction and inflammation which can lead 

to further liver damage [126]. Kupffer cells are macrophages that are present in the liver through 

which inflammatory signaling and cytokine production are mediated [127, 128]. Alterations in 

cytokine production (e.g. TNFα, IL6) and hormone production (e.g. adiponectin) in obesity 

contribute to NAFLD development [129, 130]. The main therapeutic approach to treat NAFLD is 

a change in lifestyle. Modest weight loss around 5-10% can decrease inflammation, improve 

steatosis and histology, and lower risk of disease progression [131].   

Research from Dr. Thyfault and others has shown that exercise training can effectively 

prevent and treat hepatic steatosis [132-134]. Exercise and intrinsic aerobic capacity in rodents 

leads to improved hepatic mitochondrial function (enzyme activities, respiration and oxidation) 

[135, 136]. Fitness and physical activity are also important in improving liver function and 

decreasing hepatic triglyceride levels in humans [137-139]. For example, Kantartzis et al. 

observed that high cardiorespiratory fitness increased effectiveness of a lifestyle intervention to 

decrease liver fat [137]. Exercise also alleviates insulin resistance and NAFLD symptoms in 

patients independent of weight loss [140]. Further research is necessary to allow clinicians to 

prescribe exercise that is specific to treat NAFLD and NASH. 

Surgery and pharmacological interventions are also possible treatments for NAFLD. 

Bariatric surgery improves glucose production, insulin sensitivity, fibrosis, and decreases VLDL-

TG secretion [141, 142]. It is also common for physicians to prescribe insulin sensitizers, 

hypertension medication, or medication to manage dyslipidemia such as statins [143]. 
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Pharmacological agents to treat weight loss have not been adopted as the main therapeutic 

approach by physicians due to negative side effects or overall little improvement [144-146]. 

There has also been a push for researchers and clinicians to find an effective and safe 

medication that can treat NAFLD and NASH directly. Various pharmacological compounds have 

been investigated to treat NASH such as vitamin E [147], pentoxifylline [148] and 

ursodeoxycholic acid [149]. Although there are many promising pharmacological agents 

currently being studied, as of yet there is no medication that can effectively and safely treat 

NAFLD and NASH. 

1.3.3 Relationship between NAFLD and Metabolic Syndrome 

It is continually debated whether NAFLD is a cause or result of whole-body metabolic 

dysfunction and insulin resistance. Increased steatosis is often associated with whole body 

insulin resistance [150-152]. However, there are also numerous animal studies that have found 

a disconnect between steatosis and insulin resistance, in which they found the presence of 

steatosis but not insulin resistance [153-155]. In fact, in some cases steatosis is a mechanism 

which guards the liver from the development of insulin resistance through protection from 

exposure to lipid intermediates [156, 157].  

Still, other studies have found a strong connection between steatosis and insulin 

resistance. Insulin resistance may precede and encourage the development of fatty liver 

through promoting lipid synthesis.  In healthy individuals, insulin activates hepatic insulin 

signaling and suppresses gluconeogenesis [158].  Insulin resistance in the liver decreases the 

liver’s ability to regulate gluconeogenesis, therefore hyperglycemia is increased 

[130].Throughout the progression of insulin resistance, there is increased production of insulin 

by the pancreas in an attempt to compensate for the decreased whole-body sensitivity and 

increased circulating glucose. Hyperinsulinemia stimulates de novo lipogenesis and triglyceride 

synthesis pathways in the liver, therefore contributing to the development of fatty liver [159].  
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NAFLD also contributes to systemic insulin resistance and may occur before insulin 

resistance. One of the liver’s primary functions is to maintain whole-body metabolic homeostasis 

through regulation of blood sugar levels. Increased storage of hepatic lipids due to increased 

circulation of free fatty acids in obesity leads to dysfunction in hepatic glucose and fatty acid 

metabolism [159]. Current evidence suggests that dyslipidemia also induces insulin resistance 

through increased intracellular generation of toxic lipid intermediates (DAG, ceramides) which 

can inhibit insulin signaling and activate inflammation [160, 161]. Due to the shared 

mechanisms in the development of NAFLD and metabolic syndrome, it is nearly impossible to 

discern the cause and effect [162] and mostly likely both equally contribute to whole-body 

metabolic dysfunction. 

One commonality in the pathogenesis of NAFLD and insulin resistance is inflammation. 

One main pro-inflammatory pathways that is activated in various tissues with insulin resistance 

and NAFLD progression is the JNK pathway [163, 164]. The cJUN-N-teriminal-kinase (JNK) 

pathway is not only an important player in the cell stress response, but it also is a major 

signaling transducer in obesity and insulin resistance [165]. Deletion of certain isoforms of JNK 

protects mice from insulin resistance induced by a HFD [166], and increased JNK activity occurs 

in in the muscle, liver, and adipose tissue of various rodent models of obesity [163]. Specifically, 

JNK decreases insulin signaling in skeletal muscle through inhibiting the insulin receptor 

substrates 1 and 2 [165, 167]. Additionally, JNK promotes the increase in production of pro-

inflammatory cytokines from adipose tissue in obese individuals [168]. JNK also contributes to 

the development of NAFLD through dysregulating hepatic mitochondrial function.  Fatty acid 

oxidation and respiration are impaired while reactive oxygen species (ROS) production in the 

liver is increased with the activation of JNK [163, 166, 167, 169, 170]. JNK is an essential part of 

the molecular mechanism connecting obesity to metabolic syndrome and NAFLD. 
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1.3.4 Liver Metabolism and Mitochondrial Dysfunction 

The liver is a central organ involved in metabolic regulation. The liver takes up free fatty 

acids from circulation, oxidizes free fatty acids and glucose, synthesizes triacylglycerol, 

produces ketones, and assembles and secretes VLDL particles. Dysregulation in any of these 

pathways can lead to metabolic dysfunction and NAFLD [171].  In simple terms, NAFLD occurs 

when there is an imbalance in hepatic fatty acid input (uptake, storage, and synthesis) and fatty 

acid output (oxidation and secretion). Dysfunction of various hepatic metabolic pathways leads 

to NAFLD (Figure 1). 
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Figure 1. Hepatic metabolic dysfunction contributes to excess lipid accumulation. 
Physical inactivity and overnutrition/obesity lead to dysfunction in various hepatic metabolic 
pathways. Reduced lipid efflux or oxidation, and increased uptake, storage, and de novo 
lipogenesis together result in the excess accumulation of lipids in the liver. This leads to further 
metabolic dysfunction, insulin resistance, and advanced liver disease. 
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Uptake of Fatty Acids 

Hepatocytes obtain fatty acids from various sources:  lipolysis of adipose tissue to non-

esterified fatty acids (NEFA), hydrolysis of chylomicrons coming from the gut, de novo 

lipogenesis, and hydrolysis of intracellular triglycerides. Fatty acids that are absorbed in the gut 

are converted to chylomicrons as triacylglycerol (TAG) and sent out to the lymphatic system. 

Chylomicrons reach the liver through the hepatic artery and portal vein and lipoprotein lipase 

(LPL) at the hepatic cells releases the non-esterified fatty acids. In order for lipids to enter the 

liver, membrane transport proteins such as cluster of differentiation 36 (CD36), fatty acid binding 

protein (FABP), fatty acid transport proteins (FATP), and calveolin proteins allow for fatty acids 

to cross the hepatic membrane [171, 172]. Once inside the cell, long chain fatty acids are 

activated to acyl-coenzyme A (CoA) through attachment of a CoA by acyl-CoA synthetases 

[173]. Long-chain fatty acids and fatty acyl-CoAs bind to fatty acid binding protein (FABP) or 

acyl-CoA synthetases (ACS) and then are carried to various cellular compartments.   

Fatty acid transporters have a role in the development of NAFLD. FAT/CD36 is a fatty 

acid transporter that is expressed in tissues that are important for lipid metabolism [174]. Obese 

rodent models have increased hepatic steatosis and expression of CD36 [151, 175]. 

Additionally, FATP5 [176] and FABP1 knockout animals [177, 178] exhibit protection from 

triglyceride storage and NAFLD. The repetitive mechanisms that are used by liver cells to take 

in lipids from circulation demonstrates the dependence of the liver on free fatty acids, and the 

complications in studying how fatty acid uptake contributes to NAFLD.  

Triglyceride Storage 

Fatty acyl-CoAs are mainly shuttled to three different pathways which are oxidation, 

ketogenesis, or conversion into triglycerides. Fatty acids that are converted to triglycerides can 

be stored or secreted as very low-density lipoproteins. The main pathway for construction of 

triglycerides from fatty acyl-CoAs is the glycerol-3-phosphate pathway [179]. There are 

numerous enzymatic steps for acyl-CoA to be combined with glycerol-3-phosphate (G3P) and 
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form TAG. The production of phospholipids is also intertwined in this pathway, and some of the 

intermediates produced can branch off for phospholipid production. The steps happen 

sequentially through 1) glycerol-3-phosphate acyltransferase (GPAT), 2) 1-acylglycerol-3-

phsophate acyltransferase (AGPAT), 3) the phosphatidate phosphatase action of lipin, and the 

4) giacylglycerol acyltransferase (DGAT) enzyme [180].  

Increased activation of the TAG synthesis pathway may lead to the development of 

NAFLD. This phenomenon has been demonstrated in studies utilizing models which target TAG 

synthesis enzymes such as GPAT and DGAT. Knockout rodent models for GPAT1 are 

protected from steatosis and insulin resistance in the liver when placed on a high-fat diet [181], 

and have decreased circulating TAG and VLDL cholesterol [182]. Also, GPAT1 liver 

overexpression results in the reversal of these measures [183], which further supports the 

importance of GPAT1 for fatty liver disease development. The last step for TAG synthesis 

involves diacylglycerol acyltransferase (DGAT) 1 or 2 which adds an acyl moiety to glycerol 

[184]. Silencing or knockout of each isoform has been demonstrated to reduce steatosis and 

increase oxidation and energy expenditure [185, 186].  It is clear that DGAT proteins are 

involved in the development of NAFLD, although the consequences of increased lipid storage 

are still unclear. Monetti et al demonstrated that DGAT1 and 2 overexpression in the liver 

resulted in increased steatosis without changes in insulin signaling [153]. These results 

demonstrate the need for further investigation into whether steatosis is deleterious or protective 

in different situations. 

Lipid Export 

In addition to intracellular storage, triglycerides are released as VLDL from the liver in 

order to deliver cholesterol and triglycerides to peripheral tissues. VLDL particles contain 

apolipoprotein B (ApoB), cholesterol esters and triglycerides and are formed by the microsome 

triglyceride transfer protein (MTTP). In NAFLD patients, increased VLDL is formed due to 

increased adipose tissue lipolysis, hepatic de novo lipogenesis and increased circulating 
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triglycerides [187, 188]. Additionally, patients with NAFLD have decreased high density 

lipoprotein cholesterol (HDL) [189]. HDL particles aid in the elimination of excess cholesterol in 

the body by transporting it to the liver for conversion into bile. VLDL-TG secretion is one 

mechanism to decrease triglyceride storage in the liver, however in patients with NAFLD 

increased VLDL synthesis is unable keep up with intracellular triglyceride production and fatty 

acid uptake [190]. In patients with NAFLD, increased VLDL secretion rate eventually plateaus, 

which may contribute to the progression and worsening of NAFLD [190].  

Fatty Acid Oxidation 

 The liver requires a high amount of energy to perform its tasks. One of the liver’s main 

functions is to maintain systemic metabolic homeostasis. During fasting or exercise, the liver 

maintains metabolic homeostasis by breaking down glycogen stores through glycogenolysis and 

also making glucose through gluconeogenesis. Hormonal signals regulate these processes. For 

example, glucagon increases hepatic gluconeogenesis in times of low glucose, and insulin 

decreases hepatic gluconeogenesis in the liver [191]. Metabolites that come from skeletal 

muscle and adipose tissue (lactate, amino acids, NEFAs and glycerol) are taken up in the liver 

and used for gluconeogenesis.  

The liver mainly fuels its processes through oxidizing fatty acids. However, during 

hyperglycemia, the liver uses glucose as its main fuel source through glycolysis and oxidative 

phosphorylation, stores glucose as glycogen, and also converts glucose into fatty acids through 

de novo lipogenesis. In times of lower glucose, the liver depends on fatty acids. Once inside 

hepatocytes, fatty acyl-CoAs are primarily oxidized in the mitochondria. Fatty acyl-CoAs enter 

the mitochondrial matrix through conversion to acyl carnitines by CPT-1 and 2 and are 

transported across the mitochondrial membrane by carnitine-acylcarnitine translocase. This is 

the rate limiting step of fatty acid oxidation (FAO) [192]. Once inside the lumen, the acyl-

carnitines are once again converted to acyl-CoAs and subsequently go through β-oxidation. 

Overexpression of CPT-1 in hepatocytes results in increased FAO and lower TAG storage 
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[193]. In NAFLD patients, CPT gene expression is decreased in the liver compared to people 

without NAFLD [194], thus ultimately reducing fatty acid oxidation.   

β-oxidation involves multiple enzymatic steps including dehydrogenation, hydration, and 

cleavage. These reactions are catalyzed by four enzymes; acyl-CoA dehydrogenase, 2-enoyl-

CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. This process 

shortens a fatty-acyl CoA by two carbon units each cycle. The product of carbon cleavage is the 

molecule acetyl-CoA which thus can enter (tricarboxylic acid cycle) TCA cycle for complete 

oxidation and production of reducing equivalents that enter the Electron Transport Chain.  

Peroxisomes and microsomes also partially contribute to fatty acid oxidation. About 10% 

of β-oxidation occurs in peroxisomes, although this is increased with high lipid exposure [195]. 

Peroxisomal β-oxidation breaks down very long chain fatty acids and dicarboxylic acid and is 

different from mitochondrial oxidation due to the production of H2O2 in the first dehydrogenation 

step [196]. Peroxisomes do not contain an electron transport chain and send intermediates to 

the mitochondria. In situations with high lipid exposure, like obesity and NAFLD, peroxisome 

function is important for the cell to face metabolic challenges. One study found that when β-

oxidation is not functional in hepatic peroxisomes, there is increased steatosis [197]. 

Additionally, overutilization of peroxisomal β-oxidation, which occurs with high lipid exposure 

and metabolic disease, leads to H2O2 production from peroxisomes and can further contribute to 

NAFLD progression. Microsomal oxidation (ω-oxidation) also contributes minimally overall fatty 

acid oxidation, but like peroxisomal oxidation, microsomal oxidation is increased with high lipid 

exposure and produces H2O2 [171, 194].  

Ambiguities exist as to how the rate of hepatic fatty acid oxidation may be linked to 

obesity and NAFLD. Previous research has shown that a reduction of β-oxidation enzymes in 

the livers of rodents leads to increased steatosis in the liver [198], and an increase in β-

oxidation enzymes reduces hepatic steatosis [199]. However, a reduction of FAO does not 

seem to contribute to the development of NAFLD in humans.  With increased exposure to fatty 
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acids in NAFLD, initially there are increased levels of fatty acid oxidation [200, 201]. However, 

other deficits are seen in the mitochondria such as morphological changes, impaired ATP 

production and also increased ROS production [202-205]. Although oxidation may not be 

reduced as NAFLD develops, there could be uncoupling of fatty acid oxidation process to ATP 

production which would alter overall hepatic metabolism. Additionally, impaired FAO may 

depend on the stage of NAFLD, and only occur in later stages or with a transition to NASH. 

Ketogenesis 

Ketogenesis is another important process for the liver to maintain metabolic 

homeostasis. Ketone bodies (acetoacetate and β-hydroxybutyrate) are primarily produced in 

liver mitochondria and production is increased when glucose is not available or following 

exposure to high levels of fatty acids [206]. Ketones are formed from acetyl-CoA produced 

during β-oxidation of fatty acids. Various studies have observed an increase, no change, or a 

decrease of hepatic ketogenesis during metabolic disease [207-214]. However, not all of these 

studies specifically identified the stage of liver disease development, which may contribute to 

the inconsistencies. When studies have focused on the specific stage of liver disease, more 

clarity is achieved. In early insulin resistance or hepatic steatosis either no change or an 

increase of ketogenesis has been observed [207-212]. This is similar to what has been 

observed with changes in fatty acid oxidation in early liver metabolic dysfunction [207, 211-214]. 

With more advanced liver disease and the development of NASH, studies have found a 

reduction in ketogenesis [209, 210, 212].  

Ketogenesis is often considered as a fuel source for other tissues, but this process is 

important for the maintenance of hepatic metabolic function as well. About two-thirds of the 

fat that comes to the liver is converted into ketones [215], therefore the majority of fatty acid 

oxidation is directed to ketogenesis [211]. When the liver is exposed to excess lipids it may 

compensate by  increasing ketogenesis, β-oxidation, and cholesterol export to prevent excess 

hepatic lipid accumulation and lipotoxicity. As liver disease advances towards steatohepatitis, 
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increased lipid storage and lipotoxicity occurs since these pathways cannot compensate for the 

increased influx of substrates due to lipid oversupply. Therefore, ketogenesis can be a 

mechanism of lipid disposal, and dysfunction in this pathway could promote the development of 

NAFLD into NASH. Cotter et al. studied the importance of ketogenesis to prevent steatohepatitis 

by using a knockout mouse for mitochondrial 3-hydroxymethylglutaryl CoA synthase 

(HMGCS2), which is the first enzyme involved in ketogenesis. On a chow diet, these animals 

had increased gluconeogenesis and de novo lipogenesis, but when placed on a HFD they 

developed severe inflammation and impaired gluconeogenesis [209]. This study demonstrated 

that even in non-fasting conditions ketogenesis is critical for normal metabolic flexibility in the 

liver.  

De Novo Lipogenesis 

In addition to transporting lipids across the hepatic membrane, the liver also synthesizes 

lipids through de novo lipogenesis. Acetyl-CoA can be made from citrate, a TCA cycle 

intermediate. This process is enhanced with increased TCA cycle flux, such as in times of 

increased energy intake or with dysregulation of lipid or glucose metabolism [187, 188]. Acetyl-

CoA is then targeted for de novo lipogenesis through conversion to malonyl-CoA by acetyl-CoA 

carboxylase (ACC). The final enzyme in this pathway, fatty acid synthase (FAS), converts 

malonyl-CoA and NADPH into palmitic acid.  

Numerous enzymes and transcription factors regulate the rate of lipogenesis including 

SREBPs, ChREBPs, LXR, FXR and PPARs [171, 194, 216, 217]. Hormones such as insulin 

and glucagon control de novo lipogenesis through regulation of these enzymes. Specifically, 

insulin increases expression of ACC and SREBP-1c, and activates insulin signaling (Akt, 

mTOR) to promote de novo lipogenesis [217, 218]. Glucagon, which increases in times of 

fasting and exercise, opposes insulin action through activating AMPK. AMPK is a master 

regulator of energy homeostasis. Glucagon stimulates AMPK to increase hepatic fatty acid 

oxidation and inhibit de novo lipogenesis [219, 220].  
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De novo lipogenesis intermediates also regulate fatty acid oxidation through inhibiting 

entrance of fatty acids into the mitochondria. McGarry et al. showed that malonyl-CoA is an 

inhibitor of CPT-1 [221]. Thus, ACC, which converts acetyl-CoA to malonyl-CoA, not only 

increases de novo lipogenesis but also decreases CPT-1 activity [222]. This system allows for 

an extra layer of regulation and rapid shifts in substrate utilization. Dysregulation of hepatic de 

novo lipogenesis is mainly due to increased expression of lipogenic genes in patients with 

metabolic disease [159, 194, 223]. This increase in de novo lipogenesis can further promote 

insulin resistance and elevate circulating LDL cholesterol and triglyceride [224].   

Role of the Mitochondria 

Mitochondria produce energy through the oxidation of nutrients and are highly important 

to the function of hepatocytes. Hepatocytes have a higher density of mitochondria and faster 

mitochondrial turnover than skeletal muscle [225]. Substrates come to the mitochondria mainly 

from glucose and lipid metabolism. Glucose is broken down into pyruvate which is brought into 

the mitochondria and converted to acetyl-CoA for entrance into the TCA cycle. Fatty acids are 

brought to the mitochondria, are broken down in β-oxidation and then enter into the TCA cycle 

also as acetyl-CoA. Mitochondria are the coordinators of hepatic lipid metabolism and as a 

result, mitochondrial dysfunction is considered central to the development of NAFLD [226, 227]. 

The mechanisms leading to mitochondrial dysfunction in NAFLD are complex and can be 

attributed to abnormalities in FAO (as mentioned above), mitochondrial biogenesis, and 

oxidative phosphorylation. Mitochondrial dysfunction can alter lipid metabolism, increase ROS 

production and lipid peroxidation, and increase the release of cytokines [228]. All of these 

factors contribute to liver disease development.  

Various animal models have provided evidence linking hepatic mitochondrial dysfunction 

to NAFLD and insulin resistance.  Rector et al. studied a rodent model with a genetic defect in 

mitochondrial β-oxidation to determine the effect on insulin action. This impairment of β-

oxidation resulted in hepatic steatosis and systemic insulin resistance [229].  In a separate 
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study, Rector et al. showed that in a hyperphagic rodent model (obese OLETF rat) a reduction 

of fatty acid oxidation and mitochondrial content occurs before the progression to hepatic 

steatosis or insulin resistance [230]. These studies demonstrate the importance of mitochondrial 

dysfunction in animal models that develop hepatic steatosis and insulin resistance.   

The Electron Transport Chain and ATP Production 

Reducing equivalents (NADH and FADH2) are produced throughout fatty acid and 

glucose metabolism for entrance into the electron transport chain. NADH and FADH2 donate 

electrons to the ETC which is coupled to proton pumping into the inner membrane space. 

Pumping of protons across the inner mitochondrial membrane creates an electrochemical 

gradient. Energy is produced through coupling electron transfer down the ETC to ATP 

production. ETC complex function can be compromised with metabolic dysfunction [228, 231]. 

Past research has demonstrated reduced activity of ETC complex proteins with NAFLD and 

NASH in rodent and human studies [203, 232, 233]. This can lead to impaired mitochondrial 

function through reduced respiration. Mechanisms behind ETC dysfunction are still being 

studied, but may be due to increased reactive oxygen species production [234, 235].   

Oxidative stress  

Increased ROS production occurs with NAFLD and can lead to damage of cellular 

components including mitochondrial DNA, lipids, and protein [232, 235]. Reactive lipid 

mediators can be formed with oxidative stress, such as 4-hydroxy-2-nonenal (4HNE), which can 

increase uncoupling of the mitochondria thus reducing ATP production [236]. ROS can also 

further increase cytokine production in the liver such as TNFα which can activate apoptotic 

pathways [237]. In addition to increased oxidative stress, patients with NAFLD have an impaired 

antioxidant capacity through a reduction in antioxidant enzyme activity such as glutathione and 

SOD [238]. Low antioxidant capacity increases mitochondrial damage and impairs the liver’s 

ability to face a metabolic challenge. Various antioxidants have been investigated as treatments 

for NAFLD. Vitamin E is an antioxidant which was shown to improve fibrosis and progression of 
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liver disease, although this treatment had negative side effects and is only recommended for 

NASH [147, 239]. Other antioxidations that possibly prevent the ROS damage are betaine [240], 

N-acetylcysteines [241], vitamin C [242], and resveratrol [243]. Although there have been 

promising results in studies investigating these antioxidants, they have had minimal success in 

clinical trials or require further study. 

Biogenesis and Degradation of Mitochondria 

Mitochondria are able to adjust to their environment and high or low substrate exposure 

through regulating ATP production, mitophagy, and apoptosis [244]. They achieve this through 

rapid post-translational modifications and cellular signaling, as well as longer term adjustments 

in mitochondrial mass. Mitochondrial content is maintained through the balance of biogenesis 

and mitophagy [245]. Mitochondrial biogenesis is regulated by transcription factors and 

signaling proteins. PGC-1α is a transcriptional coactivator and one of the master regulators for 

mitochondrial biogenesis. This coactivator is important in tissues with high oxidative capacity 

such as skeletal muscle, liver, and brown adipose tissue [246, 247]. 

 PGC-1α interacts with transcription factors such as PPARα and TFAM to activate target 

gene expression thus increasing not only mitochondrial biogenesis, but also fatty acid oxidation, 

ketogenesis, and ATP production [248, 249]. PGC-1α also increases gluconeogenesis through 

activating the transcription factors hepatocyte nuclear factor 4a (HNF4a) and FoxO1 [250]. 

Rapid cell signaling through AMPK occurs with exercise and fasting which then increases 

mitochondrial gene expression through AMPK-mediated phosphorylation of PGC-1α [251]. 

Additionally, exercise and fasting increases NAD+ levels which leads to activation of Sirtuin 1 

(SIRT1). SIRT1 is an energy sensor and deacetylase, which deacetylates PGC-1α and FOXO1, 

further activating them in order to increase gluconeogenesis and fatty acid oxidation. These 

pathways are highly important in mitochondrial biogenesis and function, and can prevent excess 

liver triglyceride storage [252].  

Mitochondrial biogenesis is also balanced with mitochondrial degradation through mitophagy. 
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With metabolic dysfunction, mitochondrial morphology is altered as evidenced by a loss of cristae 

and swelling of the mitochondria [202, 205]. This has been observed with obesity, type 2 diabetes 

[253, 254] and NAFLD [202, 205]. One reason behind the accumulation of damaged mitochondria 

is an impairment in mitochondrial dynamics. Mitophagy occurs to remove damaged mitochondria 

through the cellular degradation process of autophagy. This is achieved through the sequestration 

of damaged mitochondria in autophagosomes which then fuse with lysosomes for degradation 

[255]. Mitophagy requires a coordinated interaction of various autophagy proteins (ex: LC3II, p62) 

and mitophagy proteins (ex: Parkin, BNIP3, Mfn2, DRP1) which aid in the fission, targeting, and 

tethering of the mitochondria to the autophagosome. Impaired mitophagy can result in retention 

of damaged, ROS producing mitochondria [53, 256]. The balance between mitophagy and 

mitochondrial biogenesis may be essential in lipid metabolism [257-261]. More investigation 

needs to be done to understand the role of mitophagy in the development of NAFLD. 

Impairments in an overall cellular degradation pathway, autophagy, also seems to 

contribute to NAFLD. Autophagy defects have been implicated in liver disease, 

neurodegenerative diseases, and metabolic syndrome [52]. Additionally, autophagy has been 

demonstrated to be important for maintenance of glucose homeostasis [262]. Autophagy can 

specifically degrade lipids through lipophagy. Thus, impaired autophagy could cause lipid 

accumulation in NAFLD [259]. Novel strategies to protect cellular and mitochondrial integrity and 

function through upregulation of mitophagy and autophagy could be effective in treating and 

preventing NAFLD.  
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1.4 Heat Shock Proteins 

1.4.1 Role of Heat Shock Proteins 

Growing evidence suggests the heat shock response and/or heat shock proteins (HSPs) 

could play an important role in preventing insulin resistance and the development of type 2 

diabetes. HSPs are a highly conserved family of proteins best identified for their role as 

molecular chaperones [263]. They play a critical role in maintaining cellular function via 

regulation of protein folding and degradation. Not surprisingly, changes in their expression 

profile and cellular localization are linked to numerous disease states. Several studies suggest 

that induction, transcription and translation of these cytoprotective HSPs decline with chronic 

disease such as NAFLD [264], Huntington’s Disease [265], and type 2 diabetes [266]. 

Conversely, induction and/or transgenic overexpression of HSPs results in ample metabolic 

benefit in animal models of obesity/metabolic disease [266-272]. Less clear, however, are the 

factors that regulate HSP expression in the pathological development of metabolic disease. In 

particular, very little is known regarding skeletal muscle HSP expression levels throughout the 

progression of obesity, insulin resistance and type 2 diabetes.   

As skeletal muscle is the primary tissue responsible for insulin-stimulated glucose 

uptake [273], many researchers have investigated changes in skeletal muscle HSP expression 

during obesity, insulin resistance and type 2 diabetes. Skeletal muscle HSP72 (a member of the 

HSP70 family expressed in animals) expression is inversely related to body fat percentage and 

blood glucose in healthy subjects [270, 274]. Additionally, both HSP72 mRNA and protein 

expression are significantly reduced in the skeletal muscle of type 2 diabetic patients and 

subjects with insulin resistance [266, 275-278]. Therefore, many have asserted that HSP72 

expression levels are tightly correlated to adiposity and decrease through the progression from 

obesity to metabolic disease (i.e. insulin resistance and type 2 diabetes).  

Interestingly, multiple studies using animals fed a HFD highlight that this relationship is 

much more complex. For instance, investigations in primates and rodents show that short-term 



29 
 

high-fat feeding (16- and 6-12 weeks, respectively) results in hallmark symptomology of insulin 

resistance but does not significantly reduce skeletal muscle HSP72 expression [267, 268, 271, 

279-281]. In fact, HSP72 expression may increase after short-term high-fat feeding, suggesting 

a possible compensatory response to combat metabolic dysfunction [279, 280]. However, long-

term high-fat feeding (6 years) appears to cause significant reductions in skeletal muscle 

HSP72 expression similar to the phenomenon described in type 2 diabetics [279]. Therefore, it 

is possible that skeletal muscle HSP72 expression can be characterized as an inverted 

parabolic relationship wherein initial increases in skeletal muscle HSP72 combat metabolic 

dysfunction, but these levels will eventually peak and decline depending on the severity and 

time spent under metabolic strain (Solid green line, Figure 2). 

  Discrepancies in the data regarding skeletal muscle HSP72 reductions during obesity, 

insulin resistance and type 2 diabetes may also be due to the model being used and the muscle 

type analyzed. For example, investigations reporting significant reductions in HSP72 expression 

during obesity, insulin resistance and type 2 diabetes primarily analyzed the vastus lateralis 

muscle from human subjects [275-278]. Alternatively, primate and rodent investigations 

observing no significant reductions in HSP72 expression in response to short-term high-fat 

feeding analyzed the biceps femoris, soleus, and extensor digitorum longus muscles [267, 268, 

271, 279-281]. Thus, it is also possible that organismal differences and/or muscle fiber type 

differences, variations in muscle oxidative capacity, and muscle size could contribute to inter-

study data variations. It is critical that future investigators address these inconsistencies when 

designing studies to address the role of HSP72 expression in metabolic disease. A greater 

understanding of the regulation of skeletal muscle HSPs during insulin resistance will allow 

future development of targeted therapies to maintain and even increase HSP expression to 

prevent metabolic disease (Figure 2, dashed green line). 
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Schematic depicting the timeline of metabolic disease from insulin resistance to type 2 diabetes. 
Insulin resistance can persist for 10-12 years prior to clinical diagnosis of type 2 diabetes, a time 
period that represents an increased risk for cardiovascular disease, obesity and type 2 diabetes. 
During insulin resistance, insulin secretion (red line) from pancreatic beta cells increases in an 
effort to maintain blood glucose (blue line). Insulin sensitivity declines (yellow line) resulting in a 
gradual increase in blood glucose and the development of type 2 diabetes. Insulin resistance 
represents a window of time when progression towards more severe metabolic disease can be 
prevented by lifestyle interventions like diet and exercise. HSPs are robustly induced by 
exercise and HSP72 mRNA and protein expression are significantly reduced in the skeletal 
muscle of type 2 diabetic patients. However, very little is known about HSP expression patterns 
and regulation during insulin resistance. We hypothesize that HSP72 expression, in particular, 
may demonstrate an inverted parabolic relationship wherein initial increases in HSP72 combat 
metabolic dysfunction, but expression levels eventually peak and decline with disease severity 
and time spent under metabolic strain (solid green line). Exercise and heat treatment represent 
potential targeted therapies that could maintain and even increase HSP expression to prevent 
metabolic disease (dashed green line).  

Figure 2. Targeting heat shock proteins in the prevention of insulin resistance. 
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1.4.2 HSP Mechanisms of Action in Insulin Resistance 

The complex, integrative and multi-organ nature of the HSP response makes the 

identification of specific mechanisms of action difficult. For instance, the most widely known 

HSP, HSP72, has varying roles and mechanisms of action in heart muscle, skeletal muscle, 

adipose tissue and the liver. Recent studies suggest decreasing inflammation, improving 

mitochondrial function/oxidative capacity, and maintaining proteostasis could be viable 

mechanisms of action for HSPs in metabolic tissues. 

Anti-Inflammatory Properties of HSP72.    

The ability of HSPs to decrease inflammation has centered on the proinflammatory 

protein JNK. Importantly, JNK activation is increased with the progression of insulin resistance 

and diabetes [166, 167, 169, 170, 282, 283], while HSP72 expression is correspondingly 

decreased [266, 275, 284, 285]. This inverse relationship between JNK activation and HSP 

expression also occurs during the progression from non-alcoholic fatty liver disease (NAFLD) to 

non-alcoholic steatohepatitis (NASH) [264]. This relationship is of no coincidence. JNK 

activation indirectly inhibits HSP expression by maintaining heat shock factor 1 (HSF1), the 

primary HSP transcription factor, in its inactive monomeric state [286, 287]. Beyond inactivation 

of HSF1 and HSP expression, there are other downstream targets of JNK that potentiate insulin 

resistance. 

JNK is thought to drive insulin resistance through inhibitory phosphorylation of insulin 

receptor substrate1- (IRS-1), a key protein in the insulin signaling cascade [288]. In addition, 

JNK can downregulate peroxisome proliferator-activated receptor α/fibroblast growth factor 21 

(PPARα/FGF21) signaling in hepatocytes, leading to reduced fatty acid oxidation and the 

development of insulin resistance [289]. JNK activation also inhibits mitochondrial respiration, 

increases ROS production and causes apoptosis [290-294]. Previous studies suggest that 

HSP72 induction directly inhibits JNK activation, thereby improving insulin sensitivity and 

glucose tolerance at both skeletal muscle-specific and systemic levels [266, 267, 269, 295, 
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296]. For example, work by our laboratory has demonstrated that in vivo heat treatments 

decrease JNK activation in skeletal muscle of aged and HFD-fed rats [268, 297]. 

Pharmacological activation of HSP72 also causes reduced JNK activation in skeletal muscle 

and liver [267, 295]. Finally, overexpression of HSP72 in skeletal muscle decreased JNK 

activation in mice fed a HFD and was associated with beneficial metabolic outcomes [266]. In 

each instance, lowering of JNK activation resulted in improvements in insulin sensitivity and 

glucose tolerance, highlighting the importance of this HSP-mediated mechanism for insulin 

action.  

HSP72 is proposed to regulate JNK activation through multiple mechanisms including 

direct inhibition via protein-protein interaction with JNK [298], and/or inhibition of upstream JNK 

signaling pathways [299, 300]. Evidence also exists suggesting that activation of HSP72 in the 

liver may decrease inflammation independent of JNK inhibition.  Specifically, pharmacological 

activation of HSP72 decreases steatosis without decreasing JNK activation in HFD-fed rodents 

[301]. Although no change in JNK activation was observed, increased HSP72 expression 

resulted in inhibition of tumor necrosis factor α (TNFα) in the liver of rodents fed a HFD.  

HSP72 may also play additional anti-inflammatory roles extracellularly or via localization 

in macrophages. For instance, HSP72 decreases during NAFLD progression in human Kupffer 

cells, which are liver-specific macrophages [264]. Interestingly, heat-induced upregulation of 

HSP72 in Kupffer cells coincides with suppression of TNFα [302, 303]. Additionally, in myeloid 

cells, JNK activity is considered essential for activation of macrophages and a release of pro-

inflammatory cytokines [168, 304]. The ability of extracellular HSP72 to inhibit pro-inflammatory 

cytokine release from macrophages, lymphocytes, and other immune cells [305-310] could be 

critical in decreasing local inflammation and attenuating the development of insulin resistance.  

HSP72 Regulation of Mitochondrial Integrity and Function.  

Mitochondrial dysfunction is a primary contributor to the development of metabolic 

disease and is therefore a possible target for therapy [311-313]. Our laboratory and others have 
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shown that heat treatment improves skeletal muscle mitochondrial function by improving fatty 

acid oxidation [268], increasing mitochondrial enzyme activity [268, 314, 315], and increasing 

mitochondrial biogenesis [316]. Transgenic overexpression of HSP72 in skeletal muscle also 

increases mitochondrial enzyme activity, mitochondrial content, and endurance running capacity 

[266, 269]. Thus, it is possible that the beneficial mitochondrial adaptations stemming from heat 

treatment are a result of HSP72 induction.  

 HSP72 induction may mediate mitochondrial improvements by regulating mitophagy, 

the targeted degradation of mitochondria through autophagy.  For instance, mice lacking 

skeletal muscle HSP72 demonstrate a reduced ability to degrade mitochondria through 

mitophagy [317]. Additionally, these mice exhibit enlarged, dysmorphic mitochondria with 

reduced muscle respiratory capacity and increased lipid accumulation. Thus, activation of 

HSP72 may improve mitochondrial quality by enhancing the degradation of dysfunctional 

mitochondria.  

Heat Shock Transcription Factor Regulation of Oxidative Capacity.  

One of the most important heat shock response functions in metabolic tissue may 

actually lie upstream of HSP72. HSP72 overexpression leads to an increase in mitochondrial 

content, oxidative capacity, and insulin sensitivity [266, 311-313, 318]. Similarly, the absence of 

HSP72 expression results in mitochondrial dysfunction and insulin resistance [317]. In addition 

to increasing HSP72 content, and thereby the ability to enhance mitochondrial quality control, 

exercise also increases peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) 

expression [319-321]. PGC1α is the primary transcriptional coactivator for mitochondrial 

biosynthesis [322, 323]. Interestingly, recent investigations reveal that the upstream regulatory 

elements of the PPARGC1A gene contain a heat shock element (HSE) binding sequence. This 

HSE sequence provides a docking site for the primary HSP transcription factor, heat shock 

factor 1 (HSF1). Indeed, chromatin immunoprecipitation analyses show that HSF1 and PGC1α 

co-occupy the HSE sequence on the promoter of the PPARGC1A gene [324]. Through a myriad 
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of HSF1 activation and knockdown experiments, the Mueller lab provides compelling evidence 

that HSF1 is a primary regulator of mitochondrial biogenesis, enzymatic function, and whole-

body metabolism [324, 325]. These data exemplify the elegant coordination of HSF1 

downstream targets (i.e. HSPs and PGC1α) in regulating mitochondrial biogenesis, quality 

control, and enzymatic function under conditions of metabolic demand and/or chronic disease. 

Importantly, future research is needed to delineate the specific contributions of varying 

downstream HSF1 targets, as well as potential direct effects of HSF1 itself, with regard to 

metabolic outcomes. This information, combined with a greater understanding of HSP 

mechanisms of action in metabolic tissue, may provide novel therapeutic targets to ameliorate 

metabolic dysfunction. 

1.4.3 Exercise-Induced HSP Response 

Exercise is a primary treatment modality for patients exhibiting symptoms of metabolic 

dysfunction. Specifically, regular exercise training is known to decrease metabolic and 

cardiovascular disease risk factors in patients suffering from obesity and metabolic dysfunction 

[326, 327].  Exercise is also a potent inducer of HSP expression [328], with HSP72 showing the 

most robust and consistent upregulation with exercise. HSP72 induction via heat treatment, 

pharmacologic intervention, and transgenic overexpression result in metabolic effects similar to 

exercise in models of obesity and insulin resistance [266-268, 297, 328]. Thus, exercise-

induced HSP72 expression may contribute to the beneficial metabolic effects observed with 

exercise training. There is already a significant amount of information available about exercise 

and HSPs, however little is known regarding the role of exercise-induced HSP72 expression in 

treating metabolic disease. 

Complexity of the Exercise HSP Response 

The direct cause of exercise-induced HSP upregulation, primarily HSP72, remains 

unknown. It is hypothesized that a variety of biochemical, metabolic, and/or physical stressors 

may stimulate HSP72 expression post-exercise. For instance, common challenges to tissues 
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during exercise such as mechanical stress, acidosis, hypoxia, ischemia, reactive oxygen 

species formation, and calcium signaling changes are shown to independently cause HSP 

induction [329-337]. Additionally, increased metabolic stress via depletion of bioenergetic 

substrates (i.e. glycogen) is shown to potentiate exercise-induced HSP72 expression [338]. A 

similar potentiation effect is observed when exercise bouts are completed in a hot environment, 

but this effect is blunted in a cold environment [339]. Thus, it appears that elevations in HSP72 

expression post-exercise are not a result of one, but many physiologic stressors associated with 

exercise.  

 Adding complexity is the understanding that exercise-induced HSP expression is training 

modality, intensity, and duration dependent. In skeletal muscle, elevations in HSP72 expression 

occur with both aerobic and resistance training [340, 341]. Importantly, HSP72 expression is 

dependent on exercise intensity. For instance, HSP72 expression displays a positive 

relationship with exercise intensity during both aerobic and resistance training [338, 340, 342, 

343]. This relationship also exists when comparing exercise intensity and metabolic outcomes 

[344], supporting the potential contribution of HSP72 induction to the metabolic benefits 

associated with exercise.  

HSP72 expression also varies based on the duration of the training regimen (i.e. acute 

versus chronic training).  Acute exercise bouts cause dramatic elevations in HSP72 within 24h 

[340], while chronic training regimens typically result in minimal elevations in HSP72 post-

exercise [336]. Similarly, untrained subjects exhibit lower basal HSP72 expression and a higher 

degree of change in HSP expression post-exercise compared to fit subjects [336, 345].  The 

minimal degree of change in HSP72 expression observed during long-duration training 

protocols and in fit subjects is likely a result of adaptation to exercise. This phenomenon, 

referred to as the repeated bout effect [346, 347], is exemplified by the lack of potentiated HSP 

induction in recurring exercise bouts (specifically HSP72 and HSP27) [348]. However, cessation 



36 
 

of exercise in trained subjects will cause basal HSP expression to return to levels comparable to 

those observed pre-exercise [349].  

Aerobic Capacity and Exercise Training Impact HSP Expression and Induction.  

Recently, our lab has published data suggesting that intrinsic aerobic capacity, or the 

ability of the body to take up and utilize oxygen, is coupled to HSP induction and metabolic 

flexibility [271]. Low aerobic capacity increases susceptibility to developing metabolic 

dysfunction. Importantly, it is estimated that 50-70% of one’s aerobic capacity is attributable to 

inheritable traits [350]. This genetic/phenotypic phenomenon is exemplified by rodent models 

selectively bred for high-capacity or low-capacity running (HCR and LCR respectively) [351]. 

Specifically, these models have drastic differences in susceptibility to metabolic complications 

[136, 352-354].  For instance, the HSP72 response is blunted in LCR rodents after heat 

treatment and they require the heat intervention to maintain metabolic flexibility/protection when 

acutely challenged with a HFD [271]. Conversely, HCR rodents maintain the ability to 

upregulate HSP72 expression in skeletal muscle via heat treatment and display metabolic 

flexibility/protection independent of intervention when metabolically challenged. These data 

suggest that intrinsic aerobic capacity is coupled to the HSP72 response in skeletal muscle and 

that these two factors are primary contributors to whole-body metabolic health. As mentioned, 

unfit subjects with metabolic dysfunction, and most likely low aerobic capacity, have markedly 

low levels of HSP72 expression compared to healthy controls [266, 275, 276]. Thus, chronic 

exercise may restore basal HSP72 expression levels to that of healthy subjects. The restoration 

of basal HSP72 expression via exercise may directly impact organ-specific insulin sensitivity. 

Tissue-Specific HSP Expression and Induction.  

As mentioned, exercise increases skeletal muscle HSP72 expression. However, the 

levels of both basal HSP72 expression and exercise-induced HSP72 expression are dependent 

on muscle fiber type. For instance, muscles predominantly composed of type I fibers have 

higher basal HSP72 expression compared to muscles composed of type II fibers [355, 356]. 
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Furthermore, the magnitude of HSP72 upregulation is much greater in type II muscle fibers 

post-exercise compared to type I fibers [340, 357]. This may explain the intensity dependent 

increases in HSP72 expression post-exercise, as higher intensity activities cause the 

recruitment of fast-twitch muscle fibers, resulting in a greater overall change in HSP72 

expression. As type II muscle fibers are inherently glycolytic and have a high dynamic range of 

HSP72 expression, it invites the possibility that the positive metabolic effects seen with HSP72 

overexpression may be primarily mediated by changes in type II fast-twitch muscles.  

 Exercise is also known to increase HSP72 expression in the liver, kidney, lungs, heart, 

and brain [358-360]. Interestingly, exercise also results in the release of extracellular HSPs 

(eHSPs) from the hepatosplanchnic viscera and brain into circulation [338, 361], and other 

potential sites of origin include epithelial cells [362] and immune cells [363, 364]. During states 

of metabolic dysfunction, HSP72 expression in the liver is of primary concern due to the organ’s 

role in maintaining whole-body metabolic homeostasis. Pharmacologic HSP72 induction in the 

liver is shown to improve insulin sensitivity and glucose tolerance in models fed a high-fat diet 

[295]. This protective effect may stem from the enhancement of HSP72-mediated mitochondrial 

quality control and the restoration of the insulin signaling pathway in hepatocytes - both of which 

occur with exercise and HSP72 upregulation in skeletal muscle. Thus, exercise-induced HSP72 

expression in the liver may act to restore liver insulin sensitivity by mechanisms similar to those 

observed in skeletal muscle. However, future studies are needed to confirm this notion. 

 

1.5: Research Questions 

It is established that HSPs regulate metabolic function systemically and specifically in 

skeletal muscle. Impaired HSP induction in skeletal muscle has been studied in the prevention 

of obesity and diabetes, although information is still needed about the role of HSPs in the 

prevention of other metabolic-related conditions. Two specific metabolic conditions which may 
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be prevented by activating HSPs are metabolic syndrome in postmenopausal women and 

NAFLD.  

Past studies using ERα-/- mice have aided in the understanding of metabolic dysfunction 

with a loss of estrogen in postmenopausal women. However, the metabolic characteristics have 

not been characterized in the ERα-/- rat model which could further define estrogen-mediated 

metabolic regulation. Additionally, the effect of these metabolic changes on exercise capacity 

has not been investigated. We aim to identify the metabolic effects of ERα-/- in a rat model, as 

well as investigate how ERα loss affects exercise capacity. One past study in ERα-/- mice has 

identified an impairment of HSP induction [88].  We also aim to investigate heat shock protein 

expression in the rat ERα-/- model and speculate on a connection between ERα and the heat 

shock response. These data could identify similarities between ERα and HSP regulation of 

metabolism and identify future areas of investigation for an ERα/HSP72 mechanism in skeletal 

muscle. 

Past studies looking at the metabolic effects of heat shock proteins have mainly focused 

on the skeletal muscle. Due to the need for new therapeutic approaches for NAFLD, identifying 

the role of HSP72 in hepatic metabolism is necessary. We aim to identify the hepatocyte-

specific role of HSP72 in preventing hepatic steatosis. Additionally, we have previously 

observed the induction of HSPs in the liver [268], and others have identified hepatic HSP72 

induction with exercise [358, 365, 366]. However, HSP72 induction across multiple exercise 

modalities and with acute and chronic exercise has not been established in the liver. We aim to 

investigate HSP72 induction with acute and chronic exercise and identify how this could 

improve hepatic metabolic function. These studies will widen the understanding of HSP72 in the 

development of metabolic dysfunction and advance its use as a therapeutic target in various 

disease states.  
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2.1 Abstract 

Postmenopausal estrogen deficiency increases the risk for metabolic syndrome, obesity, 

and type 2 diabetes. Estrogen treatment improves metabolic function in postmenopausal 

women, and estrogen receptor α (ERα) is thought to be the primary player in these protective 

metabolic effects through increasing insulin sensitivity and mitochondrial function. However, 

there is not still not a complete understanding of ERα-mediated mechanisms. Additionally, the 

effect of these metabolic deficits on exercise capacity have not been elucidated. The purpose of 

this study was to investigate the impact of ERα loss on whole-body metabolic homeostasis, 

skeletal muscle metabolic pathways, and exercise capacity in a rat model. 14 wk-old female 

Wildtype (WT) and ERα knockout (ERα -/-) rats were exercised to exhaustion and one week later 

a glucose tolerance test was performed. At sacrifice, body weight and adipose tissue depot 

weights (subcutaneous, retroperitoneal and periuterine) were measured. Adipocyte cell size, 

mitochondrial protein content, and heat shock protein expression were assessed by 

immunohistochemistry and western blot, respectively. Intramuscular triglyceride storage was 

also assessed. ERα deficient rats had increased body weight and subcutaneous adipose tissue 

mass compared with WT rats. Although there was no increase in retroperitoneal adipose tissue 

mass, adipocyte size was increased in ERα deficient rats. HOMA-IR values were increased in 

ERα -/- rats indicating increased insulin resistance. ERα deficiency also decreased exercise time 

to exhaustion when compared with WT rats. Mitochondrial proteins Complex IV, cytochrome c, 

and mitochondrial regulator peroxisome proliferator-activated receptor gamma coactivator 1-

alpha (PGC-1α) were significantly decreased in white gastrocnemius muscle, and intramuscular 

triglyceride storage was increased in red and slightly increased in white gastrocnemius skeletal 

muscles from ERα deficient rats. Lastly, basal HSP72 and HSP60 protein expression was 

reduced in white gastrocnemius of ERα -/- rats. Our data demonstrate the potential regulatory 

role of ERα to enhance aerobic capacity and improve energy metabolism both systemically and 

in skeletal muscle in a rat model. Exercise as treatment in postmenopausal women has the 
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potential increase aerobic capacity and preserve high metabolic function. Increased aerobic 

capacity maintains heat shock protein and mitochondrial protein expression in skeletal muscle, 

thus acting to prevent metabolic disease.  

Key words: Estrogen receptors, postmenopausal women, skeletal muscle, insulin 

resistance, metabolic syndrome, heat shock proteins, mitochondria. 
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2.2 Introduction 

Metabolic syndrome is a cluster of metabolic disorders affecting 23% of adults [367]. 

This condition puts people at risk for other health problems such as cardiovascular disease, 

type 2 diabetes, and stroke [367]. Post-menopausal women are at increased risk for metabolic 

syndrome and type 2 diabetes. With a loss of circulating estrogen, women experience weight 

gain, reduced insulin sensitivity, and decreased energy expenditure and fat oxidation [14, 368-

372]. Ovariectomized rodents demonstrate similar metabolic impairments such as weight gain, 

increased adiposity, and insulin resistance [15, 33, 34, 38]. Estrogen treatment improves insulin 

sensitivity and glucose tolerance [43, 44, 373-375]. This is due, in part, to estrogen activation of 

skeletal muscle metabolic pathways at a cellular level [40, 376-379].   

Estrogen acts through two receptors in tissues, estrogen receptor (ER)α and ERβ. The 

receptor that is most responsible for the metabolic actions of estrogen is ERα, which is highly 

expressed in insulin sensitive tissues [88, 380]. ERα knockout models have allowed for deeper 

understanding of estrogen-mediated mechanisms. Whole-body ERα ablation in a mouse model 

results in obesity and reduced glucose tolerance [62, 88, 375, 381]. These mice also develop 

skeletal muscle insulin resistance, increased lipid storage, and reduced markers of fatty acid 

oxidation [62, 88, 375]. Additionally, muscle-specific ERα ablation (MERKO) in a mouse model 

results in a similar phenotype of increased adiposity, insulin resistance, and skeletal muscle 

metabolic dysfunction [63]. Ribas et al. found that skeletal muscle mitochondrial dysfunction, 

specifically in the mitochondrial degradation pathway of mitophagy, contributes to increased 

lipid accumulation and impaired oxidative metabolism in MERKO mice [63]. ERα can also be 

activated with pharmacological compounds, which increases insulin sensitivity and energy 

expenditure and reduces weight gain in rodents [64, 65, 77, 382].  Knockout models and ERα 

activation studies have allowed for a better understanding of estrogen regulation of metabolism 

at a tissue and cellular-level, however metabolic characterization has not been done in other 

available ERα-/- species, specifically the rat [383]. Further characterization of the effect of ERα 
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knockout will continue to better define these mechanisms and help identify best treatment 

approaches in postmenopausal women.  

Exercise is one treatment modality which could improve insulin resistance and reduce 

adiposity caused by a loss of estrogen during menopause [80-83]. Past research has shown 

that ovariectomized mice run less than control animals [31, 32, 84], and that whole-body ERα-/- 

mice demonstrate reduced ambulatory movement [88], however exercise capacity in the ERα 

knockout models has not been investigated. The purpose of this study is to 1) characterize 

metabolic dysfunction in the ERα-/- rats and 2) identify the impact of ERα loss on exercise 

capacity. Our results demonstrate that ERα-/- rats have whole-body and skeletal muscle-specific 

metabolic deficits including a reduction in expression of mitochondrial proteins and regulators. 

Additionally, a whole-body loss of ERα results in reduced exercise capacity. These findings 

identify other pathways through which ERα could act in skeletal muscle. This study also 

identifies that a loss of ERα negatively impacts the ability for rodents to tolerate a metabolic 

stressor such as exercise.  

 

2.3 Methods 

Experimental Animals. Twelve-Fifteen week-old female Wildtype (WT) and ERα-/- rats 

were from the laboratory of Dr. Michael Soares and Dr. MA Karim Rumi [383]. They were 

housed in a temperature-controlled facility (22 ± 2˚C) with 12:12 h light:dark cycles. Animals 

were allowed ad libitum access to water and were fed a standard chow diet (Envigo TekLad 

8604). Following an overnight fast, animals were anesthetized with pentobarbital sodium and 

tissues dissected for experimental procedures. All protocols were approved by the Animal Care 

and Use Committee of the University of Kansas Medical Center. 

Glucose tolerance test. One week prior to sacrifice, both WT and ERα-/-  animals went 

under an intraperitoneal glucose tolerance test (IPGTT). Following an overnight fast, rats were 

anesthetized with an intraperitoneal injection of pentobarbital sodium (2.5 mg/100 g body 
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weight) and injected with a glucose load of 2 g/kg body wt. Tail blood was removed every 30 

min and glucose levels were assessed using a glucometer and test strips (Accu-Chek Active, 

Roche Diagnostics, Indianapolis, IN, USA). Blood was allowed to clot for 30 min on ice, spun at 

3,000 g for 60 min at 4˚C, and serum was drawn off and frozen at -80˚C. Serum was analyzed 

for concentration of insulin using an insulin ELISA (Alpco, Salem, NH, USA).  

Immunohistochemistry adipose tissue. Retroperitoneal adipose tissue (rpWAT) was fixed 

overnight in 4% paraformaldehyde, placed in 70% ethanol for 48-72 hr, processed and paraffin 

embedded. Ten μM sections were places on slides and subsequently hematoxylin and eosin (H 

& E) stained. Images were taken on a Nikon 80i microscope and images were quantified using 

Image J. 

Glucose Transport. Insulin-stimulated glucose transport into extensor digitorum longus 

(EDL) and soleus muscle was determined as previously [268, 297, 384, 385]. After dissection, 

muscle strips were placed in vials in a shaking incubator (35˚C) for 60 min containing Krebs-

Henseleit bicarbonate (KHB) buffer with 8 mM glucose and 32 mM mannitol. Non-insulin treated 

muscles stayed in the same vials for 30 more minutes. Insulin-treated muscles were transferred 

to new vials for 30 min in the same buffer with the addition of insulin (1 mU/ml) at 35˚C. Muscle 

strips were then transferred to new vials containing 2 ml of KHB and 40 mM mannitol, with or 

without insulin (1 mU/ml) for 10 min at 29˚C. Muscle strips were again transferred to new vials 

containing 2 ml of KHB and 4 mM 2-[1,2-3H] deoxyglucose (1.5 µCi/ml) and 36 mM [14C] 

mannitol (0.2 µCi/ml), with or without insulin (1 mU/ml) for 20 min. During all incubation steps, 

muscle strips were exposed to a gas phase of 95% O2-5% CO2 at 29˚C. Finally, muscle strips 

were blotted, clamp-frozen at -80˚C, and processed for determination of intracellular and 

extracellular accumulation of 2-deoxyglucose. 

Western blots in muscle. Muscles were processed for Western blotting by methods 

previously described [268, 297, 386]. Briefly, muscle was homogenized in a 12:1 (volume-to-

weight) ratio of ice-cold cell extraction buffer (Biosource, Invitrogen) containing 10 mM Tris·HCl 
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(pH 7.4); 100 mM NaCl; 1 mM each of EDTA, EGTA, NaF, and phenylmethylsulfonyl fluoride; 2 

mM Na3VO4; 20 mM Na4P2O7; 1% Triton X-100; 10% glycerol; 0.1% SDS; 0.5% 

deoxycholate; and 250 µl/5 ml protease inhibitor cocktail. Homogenates were rotated for 30 min 

at 4˚C, and then centrifuged for 20 min at 3,000 rpm at 4˚C. The supernatant was removed and 

protein concentration determined by Bradford assay. Samples were diluted in HES buffer and 

Laemmli buffer containing 100 mM dithiothreitol (DDT) (Thermo Scientific, Rockford, IL, USA) 

based on protein concentration to generate samples containing equal concentration of protein. 

Samples were heated in a boiling water bath 5 min. For assessment of mitochondrial 

complexes, samples were diluted in HES buffer, non-reducing lane marker buffer not containing 

DDT (Thermo Scientific, Rockford, IL, USA), and were not boiled. 

Protein (40-80 µg) was separated on SDS-PAGE gels, followed by a wet transfer to a 

nitrocellulose membrane for 90 min at 200 mA. Membranes were blocked in Tris-buffered saline 

(TBS), 0.1% Tween 20 (TBST), and 5% nonfat dry milk or 5% bovine serum albumin (BSA) 

followed by incubation with the appropriate primary antibodies. Following three washes with 

TBST, blots were incubated with an appropriate horseradish peroxidase (HRP)-conjugated 

secondary antibody in TBST 1% nonfat dry milk or BSA at a concentration of 1:10,000 for 1 hr 

at room temperature. Blots were then washed twice with TBST and once with TBS, dried, and 

visualized by enhanced chemiluminescence (ECL). Bands were quantified using Image J or 

Image Lab (Bio-Rad) densitometry. Blots were then stripped for 15-20 min at 55˚C in buffer 

containing 62.5 mM Tris·HCl, 2% SDS, and 100 mM 2-mercaptoethanol and re-probed for α-

tubulin as a loading control. Ponceau (Sigma) was used as a loading control for Complex IV. 

Primary antibodies used included HSP72 (cat no. SPA-810, Enzo Life Sciences, 

Farmingdale, NY), HSP60 (cat no. SPA-807, Enzo Life Sciences), PGC-1α (cat no. 516557, 

Cal-Biochem, Darmstadt, Germany), MitoProfile Total OXPHOS (cat no. ab110413, Abcam, 

Cambrdige, MA), LC3B (cat no. 2775, Cell Signaling Technology, Inc., Danvers, MA), 

cytochrome c (cat no. AAM-175, Enzo Life Sciences), pParkin (phospho s65) (cat no. 
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ab154995, Abcam) Parkin (cat no. sc-32282, Santa Cruz Biotechnology, Dallas, Texas), and α-

tubulin (cat no. ab7291, Abcam). Secondary antibodies used included goat anti-mouse (cat no. 

170-5047, BioRad, Hercules, CA) donkey anti-rabbit (cat no. 711-035-15, Jackson, Immuno-

Research, Inc., West Grove, PA), and goat anti-rabbit (cat no. sc-2004; Santa Cruz 

Biotechnology). 

Exercise capacity. Animals were acclimatized to the treadmill for two days at 12 m/min 

speed. The exercise test on the third day began at a speed of 12m/min at 0% incline. The speed 

was increased every 3 min by 3 m/min until 24 m/min was reached. The exercise was stopped 

when rodents stayed on the shock grid three times for 5 seconds. Exercise time was recorded 

for each animal.  

Triglyceride assay. Intramuscular triacylglycerol concentration was determined based on 

the methods by Frayn and Maycock (123 bob diss). The white and red gastrocnemius muscle 

were homogenized in 3 ml of 2:1 chloroform:methanol, transferred to 13x100 mm borosilicate 

glass tubes, vortexed, and incubated overnight at 4˚C. The following day, 3 ml of 4 mM MgCl2 

was added to each tube, vortexed, and centrifuged at 1,000 g for 1 hr at 4˚C. The bottom 

organic layer (1.5 ml) was drawn off and placed into clean borosilicate glass tubes, allowed to 

dry overnight, reconstituted with 500 µl of ethanolic KOH, and heated at 75˚C for 20 min. 

Following heating, 1 ml of 0.15 mM MgSO4 was added to each tube, centrifuged at 1,000 g for 

1 hr at 4˚C, and supernatant removed and assayed for triglyceride and free glycerol 

concentration using a commercially available colorimetric assay (F6428, Sigma, St. Louis, MO). 

Statistical analyses. Results are presented as mean ± SEM. Statistical significance was 

set at P < 0.05. Analysis was performed using Sigma Plot for Windows, version 12.0 (Systat 

Software Inc., Chicago, IL, USA). Data were compared by unpaired t-test or two-way analysis of 

variance (ANOVA) with Fisher’s post-hoc differences performed where appropriate. Where raw 

values did meet the assumptions of equal variance or normal distribution, values were 

logarithmically, square root, or reciprocal transformed.  
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2.4 Results 

Body weight and adipose changes in the ERα null rat 

Body weight (WT: 307.6 ± 8.2 g, ERα-/-: 428.7 ± 11.3 g) was 39% greater in ERα-/-  rats 

than WT rats (P<0.001, Figure 3A), and energy efficiency was 2.7-fold greater in ERα null 

animals (P<0.05, Figure 3B). This was calculated as the change in body weight divided by 

kilocalories consumed. When normalized to body weight, subcutaneous adipose tissue weight 

(WT: 1299.4 ± 131.3 mg, ERα-/-: 3505.8 ± 466.8 mg) was significantly increased in ERα-/- 

animals (90%, P<0.001, Figure 3C) while other fat pad weights (retroperitoneal and periuterine) 

were not significantly different than the WT animals (not shown). Adipose cell size was also 

evaluated in the retroperitoneal adipose tissue. Although adipose weight was not different, cell 

size of retroperitoneal adipocytes was increased by 62% in the ERα-/-  animals (P<0.05, Figure 

3D and 3E), which is associated with impaired systemic insulin sensitivity [387]. Increased 

adipocyte size has also been observed in ovariectomized animals [38, 373]. 
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Figure 3.Whole-body ERα -/- in rats results in increased body weight and adipose tissue.  
Body-weight related changes were compared between groups. A) Body weight, B) food 
efficiency C) and subcutaneous adipose tissue (normalized to body weight) were evaluated. 
N=11-14 for body weight and adipose tissue. N=5 for energy efficiency. D) Quantification of 
retroperitoneal (rpWAT) adipocyte size. E) Representative images of rpWAT cross-sections. 
N=5 per group, ~500 cells counted per animal. Values are reported as the mean ± SE.  All were 
analyzed by t-test. *P < 0.05,***P < 0.001.  
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Effect of ERα knockout on insulin resistance  

Fasting blood glucose levels were similar between WT and ERα-/- rats (Figure 4A). 

However, fasting serum insulin levels were 51% greater in ERα rats (P<0.05, Figure 4B). This 

resulted in a 59% greater HOMA-IR in the ERα rats (P<0.05, Figure 4C), suggestive of 

increased insulin resistance. Glucose tolerance was also compared between strains via 

intraperitoneal injection of glucose and tracking of glucose and insulin values over two hours. 

ERα null and WT rats demonstrated similar glucose concentrations throughout the glucose 

tolerance test (Figure 4D) and similar glucose area under the curve (AUC) values (Figure 4F). 

Insulin concentrations were also similar throughout the glucose tolerance test between groups, 

other than a significant increase in insulin values in the ERα-/- at the zero and sixty-minute time 

points (Figure 4E). There was a strong trend for an increased insulin AUC in ERα-/-  rats (45%, 

P=0.07, Figure 4G). This is suggestive of increased insulin secretion in order to maintain similar 

blood glucose values as the WT animals. We also compared insulin-stimulated glucose 

transport in the soleus and EDL between WT and ERα-/- rats. In the soleus muscle, there was no 

significant difference in insulin-stimulated glucose uptake between the WT and ERα-/- animals. 

(data not shown). However, in the EDL muscle, insulin significantly increased glucose transport 

in the WT (60%, P<0.05, Figure 4H), but not in the ERα-/- animals. 
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Figure 4. Loss of ERα-/-  leads to systemic and skeletal muscle insulin resistance.  
A) Fasting glucose, and B) insulin were evaluated from serum, and C) HOMA-IR was calculated 
from these values. D) Glucose concentrations, E) insulin concentrations, F) glucose AUC, G) 
and insulin AUC were calculated in response to an intraperitoneal glucose injection. Rats were 
fasted overnight one week prior to sacrifice and were injected with a glucose load of 2 g/kg body 
weight intraperitoneally. Blood glucose was measured prior to, and 30, 60, 90, and 120 min 
following injection using a glucometer. N=6-8 per group. H) Insulin-stimulated glucose uptake 
was evaluated from EDL muscles. Insulin-stimulated glucose uptake was determined by 
incubating muscles in the presence or absence of 1 mU/ml insulin for 20 min. N=8-10 per group. 
Values are reported as the mean ± SE.  All were analyzed by t-test, besides the glucose 
transport which was analyzed by two-way ANOVA. *P < 0.05. 
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Mitochondrial protein expression  

In order to identify differences in regulation of mitochondrial biogenesis, we measured 

expression of the mitochondrial proteins and regulators. We evaluated changes in peroxisome 

proliferator-activated receptor gamma co-activator-alpha (PGC-1α), electron transport chain 

complexes, and cytochrome C in red gastrocnemius and white gastrocnemius. There was over 

an 85% reduction in PGC-1α (P<0.001, Figure 5A), an 82% reduction in Complex IV (P<0.001, 

Figure 5B), and a 38% reduction in cytochrome c protein content (P<0.05, Figure 5C) in white 

gastrocnemius of ERα-/- rodents. No significant differences were observed in the other 

mitochondrial complex proteins, or in any of the abovementioned proteins in the red 

gastrocnemius muscle (data not shown).  Due to past findings related to mitophagy dysfunction 

in the MERKO mouse  [63], we also evaluated autophagy/mitophagy protein expression in the 

ERα-/- rat. Autophagy is a major cellular degradation pathway, while mitophagy is specifically 

mitochondrial degradation through autophagy. We found a 45% decrease in the expression of 

microtubule-associated protein 1 light chain 3 (LC3-II) with a loss of ERα (P<0.05, Figure 5D). 

LC3 is lipidated to form LC3-II when autophagosomes are forming [388], thus is a marker of 

increased autophagy. We also evaluated Parkin, the E3 ubiquitin ligase which targets 

mitochondria for degradation through mitophagy. Parkin is recruited to the mitochondria and 

activated by Pink1, which phosphorylates Parkin at serine 65 (Ser 65). We observed a 50% 

decrease in Ser 65 phosphorylation of Parkin in the ERα-/- rats (P<0.05, Figure 5E). 
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Figure 5. Mitochondrial protein expression is reduced with a loss of ERα.   
A) Protein expression of PGC-1α, B) Complex IV, and C) cytochrome C, D) LC3II/LC3I E) and 
phosphorylation of the Parkin protein expression were quantified in the white gastrocnemius 
muscle. N=4-5 per group. Values are reported as the mean ± SE.  All were analyzed by t-test. 
*P < 0.05, ***P < 0.001. 
 

 

 

 

 

 

 



53 
 

Heat shock protein expression and triglyceride storage with a loss of ERα  

Heat shock proteins (HSP), which are cellular chaperone proteins that protect the cell 

from stress, were also evaluated. There was over a 95% reduction in HSP72 (P<0.001, Figure 

6A) and a 25% reduction in HSP60 (P<0.05, Figure 6B) in white gastrocnemius of ERα-/- 

rodents compared to WT. We observed no significant difference in heat shock protein 

expression in the red gastrocnemius. Due to the observed reduction in mitochondrial and heat 

shock protein expression, we also evaluated triglyceride storage in white and red 

gastrocnemius. We observed a trend towards an increase in triglyceride storage in the white 

gastrocnemius (52%, P=0.09, Figure 6C), and a significant increase in triglyceride storage in 

the red gastrocnemius (48%, P<0.05, Figure 6D) of ERα-/- rats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

 

 

Figure 6. Basal heat shock protein expression is reduced and triglyceride storage is 
increased in skeletal muscle of ERα-/-  rats.  
A) HSP72 and B) HSP60 protein expression were compared between groups in white 
gastrocnemius. N=4-5 per gruop. C) Triglyceride content in the white gastrocnemius D) and red 
gastrocnemius were also evaluated. N=9-11 per group. Values are reported as the mean ± SE.  
All were analyzed by unpaired t-test. *P < 0.05, ***P < 0.001. 
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Effects of ERα knockout on exercise capacity 

Due to changes in mitochondrial and heat shock protein expression, we hypothesized 

that ERα-/- rats would have reduction in exercise capacity. In untrained animals, WT animals ran 

twice as long as ERα-/- animals in an exhaustive exercise treadmill test (P<0.05, Figure 7). This 

result suggests that the metabolic deficits in skeletal muscle affect exercise capacity in the  

ERα-/- rats. 
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Figure 7. Impaired exercise capacity in the ERα-/- rat.  
After two days of acclimation, untrained WT and ERα-/- animals performed an exhaustive 
exercise bout on a treadmill. N=6-7 per group. Values are reported as the mean ± SE.  Results 
were analyzed by unpaired t-test. *P < 0.05. 
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2.5 Discussion 

Various studies have identified ERα as a therapeutic target to prevent the development of 

metabolic syndrome in postmenopausal women. Past studies have discovered mechanisms 

through which ERα acts to maintain skeletal muscle and whole-body metabolism. However, the 

loss of ERα and its effect on metabolism in a rat model had not been characterized. Additionally, 

the effect of ERα loss on exercise capacity was previously unknown. This work further defined 

ERα mechanisms in a new model, and identified the importance of ERα in the ability to perform 

exercise. These results will allow for a better understanding of the development of metabolic 

syndrome with a loss of estrogen which will lead to better treatment approaches.  

In this study, we evaluated exercise capacity in a rat with whole-body knockout of ERα 

through a treadmill exercise test to exhaustion.  We identified that whole-body ERα-/- results in a 

reduced running time compared to WT animals. These results agree with past work which 

demonstrated reduced exercise capacity with a loss of estrogen following ovariectomy [31, 32, 

84, 89]. Ovariectomized rodents also demonstrate reductions in whole-body oxygen 

consumption [38, 40], skeletal muscle fatty acid oxidation and mitochondrial biogenesis 

signaling [34, 48, 50, 51], and skeletal muscle oxygen consumption [33, 41, 51]. The observed 

reduction in exercise capacity in ERα-/- rats may be partially due to the loss of PGC1-α, the 

major regulator of mitochondrial biogenesis, in skeletal muscle. Rodents with mitochondrial 

biogenesis deficiencies through skeletal muscle-specific PGC1-α knockout also demonstrate 

reduced endurance capacity [389]. Additionally, PGC-1α overexpression in the muscle leads to 

enhanced exercise capacity [390, 391]. These past studies demonstrate the importance of 

PGC-1α in exercise capacity. 

Another observation from our study was a reduction in basal HSP72 and HSP60 

expression in the white gastrocnemius muscle in ERα-/- rats. In whole-body ERα-/- mice, Ribas 

et. al did not observe a reduction in basal HSP levels, however they did find a decrease in HSP 

induction with a high-fat diet [88]. Past studies have found that a skeletal muscle HSP 
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expression is associated with exercise and aerobic capacity [271, 392]. Muscle-specific 

overexpression of HSP72 results in a 2-fold increase in endurance exercise capacity and 

increased mitochondrial content and enzyme activity [266, 269]. With the large reductions in 

PGC-1α and HSP72 protein expression in skeletal muscle of ERα-/- rats, it is likely that these 

rodents have reduced aerobic capacity. Cardiorespiratory fitness, or aerobic capacity, describes 

the body’s ability to deliver and use oxygen in peripheral tissues. Low aerobic capacity 

increases susceptibility to developing metabolic dysfunction, hypertension, and cardiovascular 

disease [90-92].  

This study suggests that ERα is important in maintaining aerobic capacity through 

skeletal muscle-specific mechanisms. Reduced aerobic capacity through decreased PGC-1α 

and HSP72 protein expression may be what leads ERα-/- rodents to develop insulin resistance. 

ERα may be acting through heat shock proteins and the mitochondria in order to maintain 

metabolic health. Past studies have shown that exercise training and aerobic capacity improve 

metabolism in ovariectomized rodents [95, 100-105]. Researchers have also identified that 

exercise and estrogen act similarly to improve whole-body and skeletal muscle metabolism [95, 

100, 103, 107-113]. These data imply that exercise should continue to be considered as viable 

treatment modality in postmenopausal women. It would be interesting for future studies to 

investigate the ability of exercise training to improve metabolic parameters in the whole-body 

and muscle-specific ERα-/- rodents. These studies would identify the ability of exercise to 

improve metabolic dysfunction that is seen with a loss of ERα. 

Due to the similarities in metabolic regulation between heat shock proteins and PGC-1α, 

more studies have begun to investigate links between these proteins. A recent study identified a 

heat shock element (HSE) binding sequence upstream from the gene for PGC-1α 

(PPARGC1A). This allows the major HSP transcription factor, heat shock factor 1 (HSF1), to 

bind and regulate PPARGC1A expression [324]. Ma et. al also found that HSF1 and PGC-1α 

bind to each other at the HSE on the PPARGC1A gene. Based on the interaction and 
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coregulatory activity of HSF1 and PGC1-α, and the loss of both PGC1-α and HSP72 in ERα-/- 

rats, it is possible that ERα is also a part of this mechanism. Past studies have identified 

estrogen or estrogen receptor regulation of heat shock proteins in skeletal muscle and 

cardiomyocytes [88, 393-395]. However, the relationship between estrogen receptors and heat 

shock proteins is unclear. Work from our lab did not find a reduction of HSP expression with 

ovariectomy [37], and another study found that estrogen attenuates the HSP72 response after 

exercise [396] . Future studies should investigate the relationship between HSF1 and ERα, and 

the possibility that ERα could be an upstream regulator of HSF1, thus affecting downstream 

expression of PGC1-α and HSP72. 

In addition to investigating exercise capacity in these rodents, we are the first to 

characterize metabolic deficiencies in the ERα-/- rat. Metabolic outcomes can vary between 

species, even between species as close as the mouse and the rat [397-400]. For example, mice 

have a higher basal metabolic rate compared to rats in order to maintain body temperature, as 

well as increased gluconeogenesis and circulation of free fatty acids [397, 400, 401]. These 

differences could cause variability in metabolic outcomes, and highlight the importance of 

characterizing both species in order to further define metabolic molecular mechanisms with a 

loss of ERα. 

 Similar to previous reports in ERα knockout mice, we observed metabolic dysfunction 

with a loss of ERα in the rat model. We observed whole-body changes such as increased body 

weight, adipose tissue, and markers of insulin resistance. We also observed changes in 

mitochondrial protein expression, however, they were unique from past findings [63, 88]. In 

white skeletal muscle, along with a significant decrease the mitochondrial biogenesis regulator 

PGC-1α, we observed a reduction in complex IV, and cytochrome C protein expression. 

Cytochrome c and complex IV are a part of the electron transport chain. There was no change 

in gene expression for these proteins in the MERKO mouse [63], and they were not evaluated in 

the whole-body knockout mice [88]. Although there was no change in protein expression, Ribas 
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et. al did observe a reduction in mitochondrial DNA replication in the MERKO mice [63]. Since 

PGC-1α is a major factor controlling energy homeostasis through regulating mitochondrial 

biogenesis and FAO enzymes, ERα’s metabolic effects could be mediated through this protein. 

Future work investigating changes in mitochondrial content through electron microscopy would 

further define the implications of these protein changes.  

Another major finding by Ribas et. al in the MERKO mice was a reduction in the 

mitochondrial degradation pathway, mitophagy [63]. They found that ERα is important in 

preserving mitochondrial health through maintaining mitochondrial turnover. This is in 

agreement with past studies which have found the importance in autophagy and metabolic 

health [388, 402-404]. In the ERα-/- rats also saw a reduction in autophagy and mitophagy 

proteins through reduced phosphorylation of Parkin and LC3-II protein content in the ERα-/- rats. 

In the mouse model, Ribas et. al did not evaluate Parkin phosphorylation, although they 

observed a reduction in Parkin protein content [63], which we did not observe. They also found 

a reduction in PINK protein content, which phosphorylates and activates Parkin [63]. Based on 

our findings and the findings from the MERKO model, it’s possible that of ERα regulates Parkin 

activation through regulating its phosphorylation. These data along with the other observed 

mitochondrial protein changes confirm that there are mitochondrial deficits in the rat model, 

although they seem to be uniquely regulated compared to the mouse models. 

Another unique perspective from our study is looking at fiber-type specific effects. The 

observed deficits in mitochondrial protein expression, heat shock protein expression, and 

glucose transport were observed in either the EDL or white gastrocnemius muscles, which are 

both mainly comprised of type II muscle fibers [405]. We did not observe these changes in the 

red gastrocnemius which is mainly comprised of type I muscle fibers. However, triglyceride 

storage in red gastrocnemius was significantly increased, and there was a trend towards 

increased storage in the white gastrocnemius. Diabetic patients often undergo a shift from type 

I, oxidative muscle fibers to more type II, glycolytic muscle fibers [54, 55], while the opposite 
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occurs with endurance exercise training [406]. A limitation in this study is that we did not 

evaluate fiber type changes through staining of the myosin heavy chain, however past evidence 

has shown that PGC-1α and HSP72, as well as various mitochondrial proteins, are increased in 

type I, oxidative muscle fibers compared to type II fibers [355, 356, 407-411]. These data 

suggest that with a loss of ERα, there could be a shift away from oxidative characteristics in 

skeletal muscle. These results further suggest that exercise training could prevent some of the 

negative metabolic shifts that occur with a loss of estrogen during menopause.  

In this study, we utilized a whole-body ERα-/- rat to evaluate metabolic changes and 

exercise capacity. Future studies to investigate metabolic characteristics in muscle-specific 

ERα-/- rats would be necessary to further identify skeletal muscle-specific changes with a loss of 

ERα. Additionally, since we utilized a whole-body knockout, it is possible that part of the 

reduction in exercise capacity could be due to a loss of ERα in the brain, leading to reduced 

physical activity [114, 412]. However, due to the metabolic dysfunction and insulin resistance 

seen in both whole-body and MERKO mice in past studies  [62, 88, 375, 381], the skeletal 

muscle metabolic deficits seen in our model could be due to loss of ERα-/- specifically in the 

skeletal muscle. Additionally, past research has shown the importance of skeletal muscle-

specific PGC-1α and HSP72 in exercise capacity [266, 269, 271, 389-392]. Therefore, it is 

conceivable that the skeletal muscle metabolic impairments in the ERα-/- rat also contribute to 

the reduction in exercise capacity. Future studies using a muscle-specific knockout would 

further support this work.  
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Figure 8. Systemic and skeletal muscle metabolic dysfunction in the ERα-/- rat.  
Summary of the results describing findings in the ERα-/- rat model. Unique findings are 
highlighted in yellow.  
 

 

 

 

 

 

 

 

 



63 
 

Conclusion 

Systemic and skeletal muscle metabolic dysfunction in the ERα-/- rat contribute to a 

reduction in exercise capacity. Skeletal muscle reductions in mitochondrial, 

autophagy/mitophagy, and heat shock protein expression likely contribute to this decrease in 

exercise capacity (Figure 8). This study characterized unique metabolic deficits in the whole-

body ERα-/- rat, which identified that basal HSP expression and deficits in mitochondrial proteins 

and regulators could contribute to the skeletal muscle metabolic dysfunction. This suggests that 

therapies that improve skeletal muscle metabolic signaling with a loss of estrogen could be 

effective in maintaining exercise capacity and metabolic homeostasis. 
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CHAPTER 3 

– 

Heat Shock Protein 72 Regulates Hepatic Lipid Accumulation 

 

 
Portions of this chapter have been accepted for publication. It is printed here with 
adaptations since publication with permission. Archer, A.E., Rogers, R.S., Von Schulze, 
A.T., Wheatley, J.L., Morris, E.M., McCoin, C.S., Thyfault, J.P., andGeiger, P.C. (2018). 
Heat Shock Protein 72 Regulates Hepatic Lipid Accumulation. Am J Physiol Regul Integr 
Comp Physiol. 
 
https://www.physiology.org/doi/abs/10.1152/ajpregu.00073.2018 
 

 

  

https://www.physiology.org/doi/abs/10.1152/ajpregu.00073.2018


65 
 

3.1 Abstract 

Induction of the chaperone Heat Shock Protein 72 (HSP72) through heat treatment, 

exercise, or transgenic overexpression improves glucose tolerance and mitochondrial function 

in skeletal muscle. Less is known about HSP72 function in the liver where an accumulation of 

lipids can result in inflammation, hepatic insulin resistance and Nonalcoholic Fatty Liver Disease 

(NAFLD). The purpose of the current study was 1) to determine whether weekly in vivo heat 

treatment (HT) induces HSP72 protein expression in the liver and improves glucose tolerance in 

rats fed a high-fat diet (HFD) and 2) to determine the ability of HSP72 to protect against hepatic 

lipid accumulation and mitochondrial dysfunction in primary hepatocytes. Male Wistar rats were 

fed a HFD for 15 weeks and were anesthetized and given weekly HT (41°C for 20 min) or sham-

treatments (ST, 37°C for 20 min) for the last 7 weeks. A glucose tolerance test and insulin-

stimulated glucose uptake in skeletal muscle were performed. The impact of an acute loss in 

HSP72 via siRNA on lipid handling and mitochondrial integrity was examined in primary 

hepatocytes. Weekly in-vivo HT increased glucose tolerance and HSP72 protein content and 

triglyceride storage was decreased in skeletal muscle and liver. In primary hepatocytes, 

mitochondrial quality was reduced in the absence of HSP72 while protein expression of PGC-

1α, and mitochondrial ETC complexes were unchanged. Primary hepatocytes also 

demonstrated reduced fatty acid oxidation and increased lipid accumulation following palmitate 

treatment compared with control siRNA-treated primary hepatocytes. This data suggests that in 

vivo HT significantly improves systemic metabolism with robust induction of HSP72 in the liver. 

Acute loss of HSP72 in primary hepatocytes significantly impacts mitochondrial quality and lipid 

handling. These findings suggest future therapies targeting HSP72 in the liver may prevent 

hepatic insulin resistance and NAFLD.  

Key words: liver metabolism, steatosis, non-alcoholic fatty liver disease, heat shock 

proteins, mitochondria 
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3.2 Introduction 

The heat shock response is a highly conserved defense system to combat cellular and 

oxidative stress [413] comprised of a family of heat shock proteins (HSPs) identified by molecular 

weight [263, 414, 415]. Best known for their chaperone functions, HSPs also have cell signaling 

functions and more recently identified roles in regulation of metabolism [269]. HSP72 is of great 

interest in relation to metabolic disease as it is highly induced in response to stress and with 

endurance exercise [266, 268, 269]. Kurucz et al. first demonstrated that HSP72 expression was 

markedly decreased in skeletal muscle of insulin resistant and type 2 diabetic patients [276]. 

Subsequent studies from our lab and others showed that heat treatment (HT), transgenic 

overexpression of HSP72, and pharmacological induction of HSP72 effectively prevent high-fat 

diet-induced glucose intolerance and skeletal muscle insulin resistance [266-269, 295, 297, 416, 

417]. HSP72 is also important in skeletal muscle mitochondrial function. Loss of HSP72 results in 

retention of dysmorphic mitochondria, but transgenic overexpression of skeletal muscle HSP72 

results in an increase in mitochondrial content and activity of mitochondrial enzymes [269, 317]. 

As a result, HSP72 has a well-established role in regulating glucose homeostasis, insulin 

sensitivity and oxidative capacity in skeletal muscle.  

Two recent studies have indicated a potential role for HSP72 in liver metabolism. Zeng et 

al. demonstrated the small molecule drug matrine, used for treatment of chronic viral infections 

and tumors in the liver, has hepatoprotective effects that involve the activation of HSP72 in the 

liver [301]. In addition, Di Naso demonstrated a correlation between decreased HSP72 protein 

levels in obese patients with progression of insulin resistance and nonalcoholic fatty liver disease 

(NAFLD) [264]. NAFLD is characterized by an excessive accumulation of lipids in the liver that 

ultimately contribute to the development of hepatic insulin resistance, hyperinsulinemia, 

hyperglycemia, and type 2 diabetes. Mitochondria are critical to liver function and considerable 

evidence indicates decreased mitochondrial function contributes to the pathobiology of metabolic 

diseases. However, the mechanisms that govern hepatic mitochondrial function and alter 
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susceptibility for hepatic insulin resistance and steatosis are poorly understood. To date, no 

studies have examined the direct effect of HSP72 modulation on hepatic lipid metabolism.  

The purpose of the present study was two-fold. First, to determine whether in vivo HT 

intervention would sufficiently induce hepatic HSP72 expression and improve insulin sensitivity 

in rats following 8 wk of high-fat feeding. Previously we had noted that 12 wks of weekly HTs in 

conjunction with 12 wk high-fat feeding protected against the development of insulin resistance 

[268], however studies have not investigated the ability of HT to be used as an intervention in 

rodents. Our second aim was to examine the impact of direct HSP72 modulation on primary 

hepatocytes in vitro. Prior studies provide strong evidence that induction of HSP72 increases 

oxidative capacity and mitochondrial function in skeletal muscle. Given that the liver has high 

mitochondrial density and fast mitochondrial turnover [225], it is likely that HSP72 plays an 

important role in maintaining hepatic mitochondrial function. We hypothesize that HSP72 exerts 

beneficial metabolic effects in hepatocytes by supporting fatty acid oxidation and preventing lipid 

storage. Targeting HSP72 could be an effective strategy for reducing hepatic insulin resistance, 

NAFLD and type 2 diabetes.  

 

3.3 Methods 

Experimental animals and in vivo heat treatment. Eight wk old male Wistar rats (~150 – 

180 g each) were purchased from Charles River Laboratories (Wilmington, MA, USA) and 

housed in a temperature controlled facility (22 ± 2˚C) with 12:12 h light:dark cycles. Animals 

were allowed ad libitum access to water. Rats were fed a modified Kraegen high-fat diet (HFD) 

(60% of kilocalories from fat) for 15 wk [268, 418]. During the last 7 wk of the HFD, rats received 

either weekly in vivo heat (HT) or sham treatment (ST, n=9/group). All animals were 

anesthetized with an intraperitoneal injection of pentobarbital sodium (5 mg/100 g body weight) 

prior to ST or HT. HT consisted of lower body immersion in a 42°C water bath to gradually 

increase body temperature to between 41°C and 41.5°C where it was maintained for 20 min. ST 
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consisted of immersion in a 37°C water bath and maintaining body temperature at 37°C for 20 

min [268, 386]. Body temperature was monitored by a rectal thermometer. Following treatment, 

0.5 ml of 0.9% saline was injected intraperitoneally to aid in recovery. Forty-eight h following HT 

or ST, and following a 10-hr overnight fast, animals were again anesthetized with pentobarbital 

sodium and tissues dissected for experimental procedures. All protocols and procedures were 

approved by the Institutional Animal Care and Use Committee of the University of Kansas 

Medical Center. 

Glucose tolerance testing and other blood measures. One week prior to sacrifice, and 48 

h following HT or ST, rats underwent an intraperitoneal glucose tolerance test (IPGTT). 

Following an overnight fast, rats were anesthetized with an intraperitoneal injection of 

pentobarbital sodium (5 mg/100 g body weight) and injected with a glucose load of 2 g/kg body 

wt. Tail blood was removed every 30 min and assessed for blood using a glucometer and the 

manufacturer’s test strips (Accu-Chek Active, Roche Diagnostics, Indianapolis, IN). Blood was 

allowed to clot for 30 min on ice, spun at 3,000 g for 60 min at 4°C, and serum drawn off and 

frozen at -80°C. Serum was analyzed for concentration of insulin using an insulin ELISA (Alpco, 

Salem, NH, USA). Serum triglycerides and NEFAs were also determined by colorimetric assays 

using the manufacturer’s instructions (Cayman Chemical, Ann Arbor, MI and Wako Diagnostics, 

Richmond, VA, respectively).  

Glucose Transport. Insulin-stimulated glucose transport into extensor digitorum longus 

(EDL) and soleus muscle was determined as previously [268, 297, 384, 385]. After dissection, 

muscle strips were placed in vials in a shaking incubator (35˚C) for 60 min containing Krebs-

Henseleit bicarbonate (KHB) buffer with 8 mM glucose and 32 mM mannitol. Non-insulin treated 

muscles stayed in the same vials for 30 more minutes. Insulin-treated muscles were transferred 

to new vials for 30 min in the same buffer with the addition of insulin (1 mU/ml) at 35˚C. Muscle 

strips were then transferred to new vials containing 2 ml of KHB and 40 mM mannitol, with or 

without insulin (1 mU/ml) for 10 min at 29˚C. Muscle strips were again transferred to new vials 
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containing 2 ml of KHB and 4 mM 2-[1,2-3H] deoxyglucose (1.5 µCi/ml) and 36 mM [14C] 

mannitol (0.2 µCi/ml), with or without insulin (1 mU/ml) for 20 min. During all incubation steps, 

muscle strips were exposed to a gas phase of 95% O2-5% CO2 at 29˚C. Finally, muscle strips 

were blotted, clamp-frozen at -80˚C, and processed for determination of intracellular and 

extracellular accumulation of 2-deoxyglucose. 

Adipose tissue imaging. Epididymal white adipose tissue was fixed overnight in 4% 

paraformaldehyde, placed in 70% ethanol for 48-72 h, processed and paraffin embedded. Ten 

μM sections were places on slides and subsequently hematoxylin and eosin (H & E) stained. 

Images were taken on a Nikon 80i microscope and images quantified using Image J. 

Hepatocyte Primary Cell Culture. Hepatocytes from C57Bl6/J mice (~8-20 weeks) were 

isolated by collagenase perfusion. Animals were anesthetized with 1-2 ml of isoflurane. The 

hepatic portal vein was cannulated and the liver was infused with a perfusion buffer (1xHBSS 

Ca++/Mg++ free, 100 U/ml penicillin, 100 µg/ml streptomycin, 10 mM HEPES) at 8.2 ml/min. 

The portal vein and diaphragm were cut and the superior vena cava was clamped. After 10 

minutes with the first perfusion buffer, the buffer was changed to a second perfusion buffer 

(1xHBSS with Ca++/MG++, 100 U/ml penicillin, 100 µg/ml streptomycin, 10 mM HEPES, 0.025 

mg/ml collagenase, Roche Liberase TM). Colleganase digestion continued for ~7-10 minutes 

until signs of digestion were observed. The perfusion pump was stopped and the liver was 

excised. The liver was placed in 100 ml sterile beaker containing 20-30 mls of a cold third buffer 

(1xHBSS Ca++/Mg++ free, 100 U/ml penicillin, 100 µg/ml streptomycin, 10 mM HEPES, 1x10-7 

M Insulin). The liver was chopped with scissors and forceps and filtered through cell filters 

beginning with 100 µM, then 70 µM, and the 30 µM. Cells were collected into a 50 ml conical 

tube. Cells were centrifuged in a volume of 50 ml at 50 g for 5 min at 4 degrees. The media was 

aspirated and the wash step was repeated 2 more times using the cold third buffer. After the 

third wash the cells were resuspended in Williams E Media (Sigma, St. Louis, MO) and viability 

was determined using trypan blue. Hepatocytes were plated on collagen-coated plates (rat tail 
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collagen type I, Corning) in hepatocyte growth media (Williams E, 10% FBS, 4 mM L-glutamine, 

100 U penicillin/100 mg streptomycin, 2 ng/mL rat EGF, 100 nM insulin, 100 nM 

dexamethasone, 0.1% BSA, 10 mM sodium pyruvate). For fatty acid oxidation experiments 

hepatocytes were plated into a 12-well plate (2x105 cells/well). For all other experiments, 

hepatocytes were plated in 6 well plates (1x106 cells/well). For lipid exposure experiments, cells 

were treated with 250 µM Palmitate for 24 h. Palmitate was conjugated to 1% BSA in 

hepatocyte growth media. Further cell experiments are described below.  

siRNA transfection. Hepatocytes were transfected with 15 nM HSP72 siRNA 

(NM_212504; Sigma) or MISSION® siRNA Universal Negative Control #1 using Mission siRNA 

transfection reagent (Sigma) according to the manufacturer’s protocol in hepatocyte growth 

media. Hepatocytes were harvested 24-48 h after transfection, and knockdown was confirmed 

by western blot.  

Heat treatment in primary hepatocytes. Hepatocytes were heat treated (42°C) or sham 

treated (37°C) in a water bath for 30 minutes, and growth media was changed immediately 

after. Experiments continued 24 hours following heat treatment.  

Lipid droplet detection. Along with siRNA or heat treatment, cells were treated with 

Palmitate or Vehicle as described above.  Cells were then treated with 3.8 µM Bodipy 493/503 

(D3922; Thermo Fisher Scientific, Rockford, IL) for 15 minutes in serum-free William’s E media 

and then washed with 1xPBS.  Cells were then imaged live using confocal imaging.  Images 

were acquired with the Nikon A1 Confocal Live Cell Scanning Microscope (Melville, NY). 

Triglyceride content. Triglyceride content from various tissues was evaluated as done 

previously [133, 136]. Intramuscular triacylglycerol concentration was determined based on the 

methods by Frayn and Maycock [419]. The tibialis anterior, consisting of mostly glycolytic 

muscle fibers [420], was homogenized in 3 ml of 2:1 chloroform:methanol, transferred to 13x100 

mm borosilicate glass tubes, vortexed, and incubated overnight at 4˚C. The following day, 3 ml 

of 4 mmol/l MgCl2 was added to each tube, vortexed, and centrifuged at 1,000 g for 1 h at 4˚C. 
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The bottom organic layer (1.5 ml) was drawn off and placed into clean borosilicate glass tubes, 

allowed to dry overnight, reconstituted with 500 µl of ethanolic KOH, and heated at 75°C for 20 

min. Following heating, 1 ml of 0.15 mmol/l MgSO4 was added to each tube, centrifuged at 

1,000 g for 1 h at 4°C, and supernatant removed and assayed for triglyceride and free glycerol 

concentration using a commercially available colorimetric assay (F6428, Sigma). Liver was 

processed similarly except that after drying overnight, samples were reconstituted in butanol – 

Triton X-110 and assayed directly afterwards [133]. 

Liver triacylglycerol concentration was also detected from primary hepatocytes. Cells 

were harvested using lysis buffer (0.03% SDS in PBS), followed by addition of 1 ml of 2:1 

chloroform/methanol to each tube of lysate. The tubes were centrifuged for 1 h (1000 g, 4 C) 

and the organic layer was transferred to a clean Eppendorf tube. Tubes were then transferred to 

a fume hood for 48-72 h to evaporate the organic phase, and then each sample was 

reconstituted in 75 ul of butanol: Triton X-114 (3:2). Glycerol content was evaluated to measure 

lipid content and was determined by using the Glycerol Free Reagent kit (F6428; Sigma). 

Optical density was evaluated at 540 nm. 

Mitochondrial quality measurement. Hepatocytes were treated with 100 nM MitoTracker 

Green FM (M7514; Thermo Fisher) in William’s E Media, a green fluorescent mitochondrial stain 

which localizes to mitochondria regardless of mitochondrial membrane potential.  Cells were 

also stained with 600 nM tetramethylrhodamine, ethyl ester (TMRE) (T669; Thermo Fisher) in 

William’s E Media, which is a red florescent stain sequestered by active mitochondria. Cells 

were washed with warm PBS, stained with both stains for 30 min, and then washed again with 

warm PBS. Cells fixed with 3.7% PFA and imaged with confocal imaging.  Images were 

acquired with the Nikon A1 Confocal Live Cell Scanning Microscope. 

Fatty acid oxidation. Fatty acid oxidation (FAO) was determined in primary hepatocytes 

based on previous protocols [252]. Primary hepatocytes in 12-well plates were serum starved 

and then washed with warm PBS. Cells were then incubated in FAO reaction medium 
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containing DMEM-low glucose (Invitrogen), 0.5 µCi/ml [1-14C] palmitate, 100 µM palmitate 

,0.25% BSA, 1 mM carnitine, and 12.5 mM HEPES (pH ~7.4) at 37°C for 3 h in triplicate. To 

identify carnitine palmitoyltransferase-1 (CPT-1)-mediated FAO, some wells were treated with 

the CPT-1 inhibitor etomoxir (100 µM). CPT-1-mediated FAO is calculated as the difference 

between total FAO and FAO in the presence of etomoxir. After 3 h, the medium from each well 

was collected, and an aliquot of medium was put into the sealed trapping device. The 14CO2 was 

driven from the media aliquot by addition of perchloric acid and trapped in NaOH, which was 

collected and analyzed by liquid scintillation counting for determination of complete FAO to CO2. 

The acidified media was collected, refrigerated, and centrifuged (16,000 g, 4°C). An aliquot was 

analyzed by liquid scintillation counting for determination of the acid-soluble metabolites (ASMs) 

of FAO. ASMs are radiolabeled fatty acids which have not been completely oxidized to CO2, 

thus represent incomplete FAO. The cells were rinsed three times with ice-cold Krebs-Henseleit 

buffer and lysed with SDS lysis buffer. The protein concentration of the lysate was determined 

by BCA assay. 

Transmission Electron Microscopy. The tissue was fixed with 2% glutaraldehyde in 0.1M 

Cacodylate buffer. Tissue was rinsed 2Xs 10 min each with Cacodylate buffer. Tissue was post 

fixed in 1% osmium tetroxide buffered, for 1 hour. Tissue was rinsed 3Xs 10 min each with 

distilled water. Tissue was dehydrated in a graded series of ethanol as follows: 50%, 70%, 80%, 

95%, 100%,100% 10 min each. Tissue was placed into propylene oxide 2Xs 20 min each then 

transferred to a half/half mixture of propylene oxide/Embed 812 medium mixture resin (Electron 

Microscopy Sciences, Fort Washington PA) samples were left to infiltrate overnight. Tissue was 

placed into 100 Embed 812 resin for 1 h. They were then placed into BEEM capsules size 00 

and cured overnight in a 65°C oven. The individual sample blocks were sectioned using a 

Diatome diamond knife on a Leica UC-7 ultramicrotome at 80nm thick and picked up on 200 

mesh copper grids. Samples were examined using a J.E.O.L. JEM-1400 TEM operated at 

100KV.  
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Western blotting. Muscles and liver were processed for Western blotting by methods 

previously described [268, 297, 386]. Briefly, muscle and liver tissue were homogenized in a 

12:1 (volume-to-weight) ratio of ice-cold cell extraction buffer containing 10 mmol/l Tris·HCl (pH 

7.4); 100 mmol/l NaCl; 1 mmol/l each of EDTA, EGTA, NaF, and phenylmethylsulfonyl fluoride; 

2 mmol/l Na3VO4; 20 mmol/l Na4P2O7; 1% Triton X-100; 10% glycerol; 0.1% SDS; 0.5% 

deoxycholate; and 250 µl/5 ml protease inhibitor cocktail. Homogenates were rotated for 30 min 

at 4°C, and then centrifuged for 20 min at 3,000 rpm at 4°C and the supernatant was removed.  

Before harvesting for western blots, hepatocytes were serum starved for 6 h. Cells for western 

blotting were rinsed with PBS scraped, collected, and pelleted. The cell pellets were lysed in 

RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM 

EDTA, 1 mM PMSF, 1 mM NaF, 1mM NA3VO4, and protease inhibitors (Thermo Fisher)) and 

were centrifuged at 12,000 rpm x 12 min 4°C. The protein content of the supernatant for tissue 

homogenates and cell culture determined by Bradford assay and lysates were stored at -80°C 

until analysis.  

Samples were diluted in HES buffer and Laemmli buffer containing 100 mmol/l 

dithiothreitol (DDT) (Thermo Fisher) based on protein concentration to generate samples 

containing equal concentration of protein. Samples were heated in a boiling water bath 5 min. 

For assessment of mitochondrial complexes, samples were diluted in HES buffer, non-reducing 

lane marker buffer not containing DDT (Thermo Fisher), and were not boiled. Protein (20-80 µg) 

was separated on SDS-PAGE gels, followed by a wet transfer to a nitrocellulose membrane for 

1.5-4 h at 200-250 mA. Membranes were blocked in Tris-buffered saline (TBS), 0.1% Tween 20 

(TBST), and 5% nonfat dry milk or 5% bovine serum albumin (BSA) followed by incubation with 

the appropriate primary antibodies. Following three brief washes with TBST, blots were 

incubated with an appropriate HRP-conjugated secondary antibody in TBST 1% nonfat dry milk 

or BSA at a concentration of 1:10,000 for 1 h at room temperature. Blots were then washed 

twice with TBST and once with TBS, dried, and visualized by Enhanced chemiluminescence 
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(ECL). Bands were quantified using Image J or Image Lab densitometry. Blots from liver and 

muscle were then stripped for 15-20 min at 55°C in buffer containing 62.5 mmol/l Tris·HCl, 2% 

SDS, and 100 mmol/l 2-mercaptoethanol and re-probed for α-tubulin or β-actin as a loading 

control. Ponceau (Sigma) was used as a loading control from cell culture studies.  

Antibodies. HSP72 primary antibody (cat. no. SPA-810) and Cytochrome c (cat no. 

AAM-175) were purchased from Enzo Life Sciences (Farmingdale, NY). PGC-1α (cat. no. 

516557) was purchased from Cal-Biochem (Darmstadt, Germany). MitoProfile Total OXPHOS 

Rodent WB Antibody Cocktail (cat. no. 110413) was purchased from MitoSciences (Eugene, 

Oregon). Bradford protein quantification reagent was purchased from Bio-Rad (Hercules, CA). 

Secondary antibodies used included goat anti-mouse (cat no. 170-5047, BioRad), donkey anti-

rabbit (711-035-152, Jackson Immuno-Research, Inc., West Grove, PA), and goat anti-rabbit 

(cat no. sc-2004; Santa Cruz Biotechnology). Enhanced chemiluminescence reagents were 

purchased from Thermo Fisher.  

Statistical Analysis. Results are presented as mean ± SEM. Statistical significance was 

set at P < 0.05. Analysis was performed using Sigma Plot for Windows, version 12.0 (Systat 

Software Inc., Chicago, IL). Data were compared by an unpaired t-test, one-way ANOVA, or 

two-way ANOVA using Fisher’s post-hoc differences performed where appropriate. Where raw 

values did meet the assumptions of equal variance or normal distribution, values were 

logarithmically, square root, or reciprocal transformed. 

 

3.4 Results 

At the end of the initial 8 wk period of high-fat feeding, body weight (Sham: 498.8 ± 19.1 

g, Heat: 492.1 ± 15.7 g) and daily food intake (Sham: 19.2 ± 0.8 g/d, Heat: 19.4 ± 1.1 g/d) were 

similar prior to beginning HT or ST. During the 7 wk HT or ST period there was a strong trend 

for HT rats to gain less weight on the high-fat diet (HFD) compared to ST animals (P = 0.056, 

Figure 9A). Food intake was not significantly different following HT (Figure 9B). Energy 
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efficiency, calculated as the change in body weight divided by the kilocalories consumed during 

this period, was 19% lower in the HT rats compared to ST (P < 0.05, Figure 9C). Coinciding 

with modest changes in body weight, the weight of the eWAT (Sham: 17.1 ± 2.0 g, Heat: 14.3 ± 

1.2 g), subcutaneous white adipose tissue (SCAT) (Sham: 9.3 ± 1.5 g, Heat: 6.7 ± 1.1 g), and 

brown adipose tissue (BAT) (Sham: 729.4 ± 67.3 mg, Heat: 700.0 ± 38.7 mg) were not 

significantly different between HT and ST rats. However, adipocyte size in the eWAT was 28% 

lower in HT rats compared to ST (P < 0.001) (Figure 9D & 9E). 
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Figure 9. Body weight related changes following weekly heat treatment in rats fed a HFD.  
(A) Change in body weight, (B) food intake, (C) energy efficiency, and (D) cross-sectional area 
of adipocytes from eWAT in rats fed a HFD for 15 kw and receiving weekly in vivo ST (37˚C, 20 
min) or HT (41˚C, 20 min) during the last 7 wk of the HFD. (E) Representative images of 10 µm 
thick sections of eWAT stained with H&E. Bar represents 50 µm. * P < 0.05, ***P < 0.001 
denotes a significant difference between groups determined by unpaired t-test. Values are 
mean ± SEM. N=8-9 animals/group. 
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Heat treatment, glucose tolerance, and insulin sensitivity 

Whole-body insulin resistance has been consistently shown in rats after just 3-6 wk of 

high-fat feeding [418, 421-423]. Fasting blood glucose concentration was not significantly 

different between ST and HT rats (Figure 10A), and fasting insulin concentration was only 

modestly reduced following HT (P = 0.07, Figure 10B). Following an intraperitoneal injection of 

glucose one wk prior to the final ST/HT, and 48 h after the last ST/HT, HT rats had significantly 

lower blood glucose concentrations compared to ST (main effect of treatment P < 0.05, Figure 

10C), as well as 20% lower glucose area under the curve (AUC) values (P < 0.05, Figure 10D).  

Insulin concentration was significantly lower 30 min following glucose injection in HT rats 

compared to ST, but was not significantly different 60 min, 90 min, or 120 min following injection 

(Figure 10E). Insulin AUC values were not significantly different between HT and ST rats 

(Figure 10F). Serum triglycerides were not significantly different between ST (120.7 ± 11.3 

mg/dl) and HT rats (114.3 ± 17.1 mg/dl), and serum NEFA concentration were not significantly 

different between ST (0.469 ± 0.04 mmol/l) and HT animals (0.421 ± 0.04 mmol/l). 

We also evaluated skeletal muscle insulin sensitivity in both the soleus and EDL muscle 

of ST and HT rodents. The EDL is a composed of primarily glycolytic type II muscle fibers while 

the soleus is composed primarily of oxidative type I muscle fibers [420]. In the EDL of HT rats, 

we observed significantly greater insulin-stimulated glucose uptake compared to ST rats (P < 

0.05) (Figure 10G). In the soleus, we did not observe significant differences in insulin-

stimulated glucose uptake between HT and ST rats (data not shown).  
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Figure 10. Heat treatment improves glucose tolerance and insulin-stimulated glucose 
uptake in rats fed a HFD.  
(A) Fasting blood glucose and (B) serum insulin concentration in rats fed a HFD for 15 wk and 
receiving weekly in vivo ST (37˚C, 20 min) or HT (41˚C, 20 min) during the last 7 wk of the HFD. 
Blood glucose (C) and insulin concentrations (E) in response to an intraperitoneal (i.p.) glucose 
injection, and AUC of glucose (D) and AUC  (F) of insulin following i.p. glucose injection. Rats 
were fasted overnight one week prior to sacrifice and were injected with a glucose load of 2 g/kg 
body weight intraperitoneally. Blood glucose was measured prior to, and 30, 60, 90, and 120 
min following injection using a glucometer. Differences between groups were determined by 
unpaired t-tests at each GTT time point and also when comparing AUC and fasting glucose and 
insulin levels. * P < 0.05 (G) Insulin-stimulated glucose uptake in the EDL muscle in ST and HT 
rats. Insulin-stimulated glucose uptake was determined by incubating muscles in the presence 
or absence of 1 mU/ml insulin for exactly 20 min. † P < 0.05 denotes insulin-stimulated glucose 
uptake is significantly greater than basal determined by one-way ANOVA with Fisher’s post hoc 
analysis performed where appropriate. Values are mean ± SEM. N=6-9 animals/group. 
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Liver and skeletal muscle responses to heat treatment 

Induction of HSP72 by HT was then determined in skeletal muscle and liver. HSP72 

levels were 315% greater in the EDL of HT rats compared to ST (P < 0.001, Figure 11A), but 

HSP72 levels were not significantly different between HT and ST rats in the soleus (Figure 

11B). Hepatic HSP72 protein expression was 54% greater following HT compared to ST (P < 

0.01, Figure 11D). In addition to HSP72 induction, we also evaluated triglyceride storage in 

muscle and liver. We observed that in the tibialis anterior, a primarily glycolytic muscle [420], 

triglyceride content was 20% lower in HT rats compared to ST (P < 0.05, Figure 11C). Hepatic 

triglyceride content was reduced to an even greater extent, by 50%, in HT, HFD-fed rats 

compared to ST rats (P < 0.05, Figure 11F).  
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Figure 11. Heat treatment induces HSP72 and decreases triglyceride content in muscle 
and liver.  
ST and HT rats were fed a HFD for 15 wk and received weekly in vivo ST (37˚C, 20 min) or HT 
(41˚C, 20 min) during the last 7 wk of the HFD. ( A,B) HSP72 protein expression in the EDL and 
soleus, (C) triglyceride content in tibialis anterior, (D) hepatic HSP72 expression, (E) and 
hepatic triglyceride content were compared between ST and HT rats. * P < 0.05, ** P < 0.01 
denotes significantly different between treatment groups determined by unpaired t-test. Values 
are mean ± SEM. N=8-9 animals/group. 
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Loss of HSP72 in primary hepatocytes disrupts mitochondrial integrity 

  Exposure to siRNA for HSP72 in primary hepatocytes resulted in a 58% knockdown of 

protein expression following HT (P < 0.01, Figure 12A). Control and HSP72 siRNA treated 

hepatocytes were examined by transmission electron microscopy to evaluate differences in 

mitochondrial morphology. Mitochondria treated with siHSP72 were larger and swollen 

compared to control siRNA treated cells (Figure 12B). Hepatocytes treated with control siRNA 

or siHSP72 were also stained with MitoTracker green, a dye taken up by both functional and 

nonfunctional mitochondria (Figure 12C, middle images in green labeled B and E) and 

tetramethylrhodamine ethyl ester, (TMRE) a poteniometric dye taken up only by functional 

mitochondria (Figure 12C images in red labeled A and D). We observed reduced TMRE 

staining in siHSP72 treated cells without observing changes in MitoTracker green staining 

(Figure 12C, images C and F). Lower TMRE staining demonstrates a decrease in functional 

mitochondria relative to total mitochondria in hepatocytes lacking HSP72.  
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Figure 12. HSP72 knockdown in primary hepatocytes disrupts mitochondrial integrity.  
(A) Primary hepatocytes from C57/Bl6 mice were transfected with HSP72 siRNA or control 
siRNA and heat-treated 24 hours later. A 58% knockdown of HSP72 protein expression was 
observed 24 hours following HT. **P < 0.01, denotes significantly different between treatment 
groups determined by unpaired t-test. Values are mean ± SEM. N=3. (B) Primary hepatocytes in 
the presence or absence of HSP72 were imaged through Transmission Electron Microscopy. 
Representative images are shown. C) Primary hepatocytes treated with control siRNA or 
siHSP72 were stained with MitoTracker Green (middle images in green) to stain all 
mitochondria, and TMRE (left images in red) which stains only mitochondria with intact 
membrane potentials. The right images are merged MitoTracker/TMRE images. Representative 
images are shown. 
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Mitochondrial protein expression was then evaluated to determine if reductions to 

mitochondrial integrity were paralleled by reductions in mitochondrial protein expression. There 

was no significant difference in protein expression of PGC-1α or Electron Transport Chain 

(ETC) Complexes between control siRNA treated and HSP72 siRNA treated hepatocytes 

(Figure 13, A, C). However, cytochrome c protein expression increased by 20% with a loss of 

HSP72 (P < 0.05, Figure 13B). These data suggest that an acute loss of HSP72 does not 

reduce mitochondrial protein expression or biogenesis pathways. 
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Figure 13. The effect of HSP72 reduction on mitochondrial protein expression.  
Primary hepatocytes from C57/Bl6 mice were transfected with HSP72 siRNA or control siRNA. 
Protein expression levels of (A) PGC-1α and (B) Cytochrome c. * P < 0.05, denotes significantly 
different between treatment groups determined by unpaired t-test. Values are mean ± SEM. 
N=3-4. C. Representative blots of Complexes I-V.  
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A loss of HSP72 in primary hepatocytes reduces fatty acid oxidation  

To determine if mitochondrial function was altered by an acute loss in HSP72 

expression, fatty acid oxidation (FAO) of 14C palmitate was assessed in control siRNA and 

siHSP72-treated primary hepatocytes. Incomplete FAO (Figure 14A), complete FAO through 

the TCA cycle to CO2 (Figure 14B), and total FAO (incomplete + complete FAO to CO2) (Figure 

14C) were evaluated. A separate set of hepatocytes were also treated with etomoxir, an 

inhibitor of CPT-1, which allows for determination of differences between mitochondrial FAO 

and non-mitochondrial FAO mediated by other organelles. 

 Loss of HSP72 resulted in a 20% reduction of incomplete FAO (P<0.001, Figure 14A) 

and a 19% reduction in total FAO (P < 0.01, Figure 14C). Complete FAO to CO2 was not 

different between groups (Figure 14B). Mitochondrial incomplete FAO (19%, P<0.01) and non-

mitochondrial incomplete FAO (23%, P < 0.01) were significantly decreased with a loss of 

HSP72. Reductions in mitochondrial total FAO (16% P < 0.05) and non-mitochondrial total FAO 

(22%, P < 0.01) were also observed in siHSP72 treated hepatocytes. Additionally, siHSP72 

treatment resulted in a 26% decrease in non-mitochondrial complete FAO (P < 0.05). No 

significant difference in mitochondrial complete FAO was observed with a reduction in HSP72. 

Collectively, these data suggest that a loss of HSP72 decreases total FAO in primary 

hepatocytes due to decreased mitochondrial and non-mitochondrial incomplete FAO.  
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Figure 14. Knockdown of HSP72 alters primary hepatocyte fatty acid oxidation.  
14C-radiolabeled FAO of palmitate (100µM) in primary hepatocytes was evaluated in the 
presence and absence of the CPT-1 inhibitor etomoxir (100 µM) allowing for the evaluation of 
mitochondrial and non-mitochondrial mediated FAO separately and together (combined FAO). 
Incomplete FAO, complete FAO to CO2, and total FAO were determined. A) Incomplete, 
combined FAO (black bars), non-mitochondrial incomplete FAO (white bars) and mitochondrial 
incomplete FAO (gray bars) in control siRNA and siHSP72 treated hepatocytes. B) Complete, 
combined FAO to CO2 (black bars), non-mitochondrial complete FAO to CO2 (white bars), and 
mitochondrial complete FAO (gray bars). C) Total FAO (determined by adding incomplete and 
complete FAO to CO2) (black bars), non-mitochondrial total FAO, and mitochondrial total FAO 
(gray bars). * P < 0.05, ** P < 0.01, *** P < 0.001 denotes significantly different between 
treatment groups determined by unpaired t-test between control siRNA and siHSP72 groups. 
Values are mean ± SEM. N=3. 
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HSP72 expression in primary hepatocytes modulates lipid storage 

The impact of altering HSP72 protein expression on lipid accumulation was evaluated in 

primary hepatocytes. Palmitate treatment increased triglyceride (TAG) 161% in control siRNA 

treated hepatocytes (P < 0.001, Figure 15A and 15B). When compared to control siRNA 

treated hepatocytes, siHSP72-treated hepatocytes had 77% greater lipid accumulation following 

24 h of palmitate treatment (250 µM) (P < 0.001, Figure 15A and 15B, black bars). In addition, 

non-palmitate, siHSP72 treated hepatocytes demonstrated a 177% increase in lipid 

accumulation compared to control (P<0.001, Figure 15B, white bars).  

A separate set of hepatocytes were exposed to ST (37°C) or HT (42°C) for 30 minutes in 

order to increase HSP72 protein expression. HT was performed after 24 h of palmitate 

treatment. Palmitate treatment increased hepatic TAG by 95% in ST hepatocytes (P < 0.001, 

Figure 15C and 15D). However, HT blunted lipid accumulation in primary hepatocytes. TAG 

accumulation was 29% lower in HT hepatocytes compared to ST hepatocytes following 24 h 

palmitate exposure (P < 0.01, Figure 15C and 15D, black bars).  
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Figure 15. HSP72 modulates lipid storage in primary hepatocytes.  
A) Primary hepatocytes from C57/Bl6 mice were first treated with control siRNA or siRNA for 
HSP72 for 24 h and then with 250 µM Palmitate or Vehicle for 24 h. Cells were then stained with 
Bodipy for 20 min prior to imaging at 40X to assess triacylglycerol content. B) Liver 
triacylglycerol (TAG) content was also determined biochemically through a colorimetric assay. 
C) In separate experiments, cells were treated with Palmitate (250µM) or Vehicle for 24 h, and 
then exposed to ST (37ºC) or HT (42ºC) for 30 min. Following these treatments, cells were 
stained with Bodipy and imaged. D) Biochemical liver TAG was also determined. ** P < 0.01 
and *** P < 0.001 denotes significant differences between siRNA treatment groups. # P< 0.01 
and † P< 0.001 denotes significant differences between vehicle and palmitate treatments. 
Significant differences were determined by two-way ANOVA with Fisher’s post hoc analysis 
performed where appropriate. Values are mean ± SEM. N=6 wells.  
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3.5 Discussion 

NAFLD is the liver component of metabolic disease and is highly prevalent [424]. 

Currently, mechanisms underlying this condition are not well understood. HSPs are known to 

play important roles in skeletal muscle and systemic metabolism, but their potential roles in liver 

metabolism are unclear. In this study, we investigated the effect of in vivo HT intervention on 

whole-body and liver-specific metabolic outcomes. We also investigated the effect of HSP72 

modulation on mitochondrial integrity and lipid handling in primary hepatocytes. Through a 

combination of these in vivo and in vitro experiments, we demonstrated that in vivo HT induces 

hepatic HSP72 expression and reduces lipid storage in the liver. We also found that HSP72 is 

important in maintaining mitochondrial integrity and FAO, as well as preventing lipid storage in 

primary hepatocytes (Figure 16). 
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Figure 16. The role of hepatic HSP72 on lipid handling and whole-body metabolic 
homoeostasis.  
HSP72 was found by Di Naso et al. to be reduced with the progression of NAFLD and NASH. 
Based on the results of this study, we propose that heat treatment intervention and other 
treatments that induce hepatic HSP72 can improve lipid handling in the liver through increasing 
fatty acid oxidation and reducing lipid storage. This can lead to improved whole-body insulin 
sensitivity and glucose tolerance.  
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In addition to identifying liver-specific outcomes in this study, these are the first findings 

to indicate the ability of HT to reverse the damaging metabolic effects of a prior HFD. Previously 

we showed that 12 wk of weekly in vivo HT prevented HFD induced whole-body and skeletal 

muscle insulin resistance [268]. In the present study, we expand upon these findings by 

showing that after 8 wk of high-fat feeding, weekly in vivo HT improved whole-body glucose 

tolerance and increased insulin sensitivity in glycolytic skeletal muscle. In addition, weight gain 

was blunted by weekly HT and energy efficiency was reduced, indicating that energy utilization 

had been altered. Adipocyte size was reduced by weekly HT in the eWAT, although fat pad 

mass was not significantly reduced. Our results agree with prior studies showing HT, transgenic 

overexpression, or GGA administration to induce HSP72 levels reduces WAT mass and 

adipocyte size [266, 268, 295]. Adipocytes are known to play a large role in whole-body glucose 

homeostasis [425], and smaller adipocytes are generally more insulin sensitive [426]. Like 

reduced triglyceride storage in the liver, we also observed reduced triglyceride storage in 

skeletal muscle with HT. Increased lipid storage in the skeletal muscle has been shown to 

generate secondary messengers (i.e., DAGs and ceramides) that inhibit insulin signaling [427, 

428]. In the present study, we observed lower triglyceride content in glycolytic skeletal muscle of 

HT rats fed a HFD in association with increased insulin-stimulated glucose uptake.  

As excess lipid accumulation in the liver is a hallmark of NAFLD, reductions in 

triglyceride storage observed here represent a potential treatment modality that has not been 

widely explored. Past work by our laboratory and others has identified increased hepatic HSP72 

protein expression with heat and exercise [268, 365, 366, 429], however, these studies did not 

investigate the ability of HSP72 to affect liver steatosis. Adachi et al. reported that induction of 

HSP72 by administration of the compound GGA ameliorated hepatic insulin resistance and 

reduced JNK phosphorylation [295], but hepatic triglyceride content was not measured. Reports 

using mild electrical stimulus coupled with heat stress have shown reduced triglyceride storage, 

reduced inflammation, and increased insulin responsiveness in the liver of high-fat fed mice and 
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db/db mice [430, 431]. In these reports, HSP levels were not measured. Work from Di Naso et 

al. also supports that HSP72 activation may be important in the prevention of NAFLD, since 

they found that decreased HSFP72 levels correlated with NAFLD progression in humans [264]. 

Maybe one of the most promising studies linking HSP72 to liver metabolism is one by Zeng et 

al. which investigated pharmacological activation of HSP72 by the small molecule drug matrine. 

In mice, matrine increased hepatic HSP72 protein content and also reduced liver triglyceride 

storage and glucose intolerance [301]. In the current study, we observed that both HSP72 and 

HSP25 protein expression levels are induced in the liver by weekly HT in rats fed a HFD. 

Weekly HT also reduced hepatic triglyceride content. Our results expand on past research 

through identifying HT as a treatment modality to induce HSP72 and reduce triglyceride storage 

in the liver.  

Based on our results from weekly in vivo HT, we then aimed to identify if HSP72 has a 

more direct role in the protection against lipid accumulation in hepatocytes. We found with a 

loss of HSP72, primary hepatocytes demonstrated a reduction in mitochondrial integrity as 

shown by reduced mitochondrial membrane potential and changes in morphology. We also 

found that mitochondrial total FAO of palmitate was reduced with a decrease in HSP72 

expression. The most interesting results of this study are the robust effects of HSP72 

modulation on lipid storage in primary hepatocytes. We found that with an acute loss of HSP72, 

lipid accumulation was increased following palmitate exposure, while HT effectively prevented 

lipid accumulation. The consistency in results from our in vivo HT experiments and in vitro 

studies are very promising to identify HSP72 induction as a strategy to prevent NAFLD. 

 Identifying the effects of HSP72 loss on mitochondrial integrity and FAO is important 

due to the strong mitochondrial component in the development of NAFLD [226, 227]. Similar to 

our observations with a loss of HSP72 in primary hepatocytes, mitochondrial morphology is 

altered and a loss of cristae and swelling of the mitochondria is observed with diabetes and 

NAFLD [202, 205, 253, 254]. Past research in rodent models also provides strong evidence that 
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FAO contributes to the progression of NAFLD.  FAO in the liver is an essential part of hepatic 

lipid metabolism, and dysregulation of this process results in hepatic steatosis. Studies have 

shown that a reduction or genetic defect of hepatic β-oxidation enzymes leads to increased 

steatosis in the liver of rodents [198, 229], and an increase in β-oxidation enzymes reduces 

hepatic steatosis [199]. Additionally, Rector et al. also showed that in a hyperphagic rodent 

model a reduction of FAO occurs before the progression to hepatic steatosis or insulin 

resistance [230]. However, there isn’t evidence that decreased FAO contributes to the 

development of NAFLD in humans.  Actually, some studies have found increased FAO or 

mitochondrial oxidation gene expression in patients with NAFLD and NASH [194, 200, 201, 205, 

432], although hepatic FAO in humans is difficult to accurately measure and often has small 

sample sizes [433]. Studies have found other mitochondrial deficits such as impaired ATP 

production and increased ROS with NAFLD and NASH [202-205]. It’s possible that HSP72 

regulation of FAO contributes to lipid storage, however, future research must identify the 

significance of this finding in the context of NAFLD or NASH development in humans. 

Reduced hepatic mitochondrial FAO that we observed with a loss of HSP72 is consistent 

with past work investigating HSP72 and skeletal muscle mitochondrial function.  Our laboratory 

and others have shown that HT improves skeletal muscle mitochondrial function by improving 

FAO [268], increasing mitochondrial enzyme activity [268, 314, 315], and increasing 

mitochondrial biogenesis [316]. Modulation of HSP72 levels through overexpression or knockout 

also regulates skeletal muscle mitochondrial function. Whole body and skeletal muscle HSP72 

overexpression increases mitochondrial enzyme activity in rodents [266, 269]. Skeletal muscle 

specific overexpression of HSP72 increases skeletal muscle FAO [269] and reduces skeletal 

muscle lipid storage. This was consistent with a global knockout of HSP72 which demonstrated 

reduced skeletal muscle FAO, β-oxidation enzyme activity, and increased lipid storage [317]. 

Similar to our findings in primary hepatocytes, mitochondria were enlarged and dysmorphic in 

skeletal muscle of HSP72 knockout animals. Drew et al. also found that that the mitochondrial 



95 
 

degradation pathway, mitophagy, was impaired and contributed to the accumulation of 

damaged mitochondria in skeletal muscle of HSP72 knockout animals [317]. It is probable that 

impaired mitophagy occurs with a loss of HSP72 in the liver, and future studies will need to 

investigate this interaction. 

Fatty acids are mainly oxidized in the mitochondria, through the subsequent reactions of 

β-oxidation. Acetyl-CoA is produced which then may enter the TCA cycle and be completely 

oxidized to CO2, which is called complete FAO [173]. Incomplete oxidation of fatty acids can 

also occur and form acid-soluble metabolites such as ketone bodies, acyl-CoAs, and 

acylcarnitines. In this study, we observed reduced total mitochondrial FAO with a loss of HSP72 

in primary hepatocytes which was driven by reductions in incomplete hepatic FAO. About two-

thirds of the fat that comes to the liver is converted into ketones [215], therefore the majority 

of FAO is directed to ketogenesis from incomplete FAO [211]. Cotter et al. showed that 

ketogenesis can be a mechanism of lipid disposal, even in non-fasted conditions, and 

dysfunction in this pathway promotes the development of NAFLD into NASH [209]. With the 

reductions we observed in incomplete FAO with a loss of HSP72, further research is needed in 

order to identify if HSP72 could be involved in regulation of ketogenic pathways and if that is 

connected to steatosis. Another aspect of FAO we evaluated was non-mitochondrial FAO. FAO 

occurs in the mitochondria and also partially in peroxisomes and microsomes [171, 194, 195]. 

With a loss of HSP72, we observed reduced complete and incomplete non-mitochondrial FAO, 

which implies a decrease in FAO in other organelles. It’s possible that HSP72 can regulate both 

mitochondrial and non-mitochondrial FAO processes, and future research should address this 

possible role of HSP72. 

 In this study we also evaluated PGC-1α, cytochrome c, and mitochondrial complexes 

and found no difference in protein expression of PGC-1α and complex proteins with a loss of 

HSP72 in primary hepatocytes, and a slight increase in cytochrome c protein content. The 

increase in cytochrome c may be a reflection of compensation by the mitochondria. Past work in 
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skeletal muscle of a whole-body HSP72 knockout animals did not evaluate PGC-1α, but they 

found no difference in cytochrome c expression or protein levels of the electron transport chain 

proteins in skeletal muscle [317]. They also found no difference in citrate synthase activity or 

mtDNA between WT and knockout animals in skeletal muscle, which are both markers of 

mitochondrial content. However, Henstridge et al. found with whole-body overexpression of 

HSP72, mitochondrial number was increased by 50% in skeletal muscle, without any observed 

changes in in PGC-1α expression. Although in this current study we did not evaluate 

mitochondrial number, based on similar or slight increase in mitochondrial protein content 

between control siRNA and siHSP72, it is likely that mitochondrial content is not affected by a 

loss of HSP72 in primary hepatocytes. This would be consistent with observations from skeletal 

muscle of whole-body HSP72 knockout animals [317]. It is also possible that other proteins or 

post-translational modifications not evaluated in this study, such as PGC-1α acetylation, could 

be affected by a loss of HSP72. These outcomes will be important to evaluate in future studies.  

It is possible that HSP72 is not only important in steatosis, but also in the advancement 

of NAFLD. In about 20% of individuals, NAFLD eventually develops into a more severe liver 

disease called non-alcoholic steatohepatitis (NASH). NASH includes inflammation and cellular 

damage that can lead to fibrosis and cirrhosis [424]. Molecular metabolic defects occur in 

stages as NAFLD and NASH progress, and these changes continue to be investigated. For 

example, Sanyal et al. found the presence of various mitochondrial defects and insulin 

resistance with both NAFLD and NASH patients, but only observed mitochondrial structural 

defects in NASH patients [205]. Studies have also found that ketogenesis is increased in early 

hepatic steatosis [207-212], but eventually is reduced with advancement into NASH [209, 210, 

212]. Additionally, Di Naso et al. found that decreased HSP72 protein content and HSF1 

content, the main transcription factor for HSP72, correlated with the advancement of NAFLD 

and NASH. It is possible that a loss of HSP72 induction contributes to the transition of NAFLD 

into NASH. Hepatic HSP72 protein content could be a potential marker of NAFLD stage, 
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although this would be difficult to measure in vivo. Heat shock proteins can also be released 

extracellularly into circulation [338, 361-364, 434]. As suggested by Di Naso et al. and others, 

future work needs to identify if extracellular HSP72 in circulation could serve as a marker of 

hepatic metabolic disease stage [264, 285, 435, 436].  

In this study, we identified that HSP72 is important in lipid handling in hepatocytes 

specifically by modifying FAO and lipid storage. One limitation of this study is the fact that we 

did not investigate more aspects of lipid handling such as lipid secretion as VLDL, which is an 

important mechanism for the liver to export lipid out of hepatocytes [190]. Our findings strongly 

support that HSP72 has a direct role in hepatocytes. However, HSP72 protein in Kupffer cells 

could also be important in the development of NAFLD and NASH. Di Naso et al. suggested that 

impaired HSP72 in Kupffer cells could increase liver inflammation as liver disease progresses 

[264]. This is important since pro-inflammatory activity of Kupffer cells seems to be a part of 

NAFLD advancement into NASH, fibrosis and cirrhosis [437-439]. Interestingly, heat-induced 

upregulation of HSP72 in Kupffer cells coincides with suppression of TNFα [302, 303]. Although 

outside the scope of this work, it is important to recognize the dual role HSP72 could have in 

hepatocytes and Kupffer cells to prevent NAFLD development. Our work utilized in vivo and in 

vitro HT and siRNA treatment in primary hepatocytes to address our research questions. To 

further identify the impact of hepatic HSP72 mechanisms in whole-body metabolic homeostasis, 

the development of a liver-specific HSP72 knockout model will be necessary in future 

investigation of these mechanisms.  

 

Conclusion 

In this study, we identified that HT improves glucose tolerance and skeletal muscle 

insulin action in HFD-fed rodents. Weekly HT also specifically improves the metabolic profile of 

the liver by inducing HSP72 and reducing lipid storage. To our knowledge, this is the first study 

to directly modulate hepatic HSP72 levels and identify the importance of HSP72 in FAO and 
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prevention of steatosis. Thus, treatments that induce the expression of HSP72 should be 

explored as treatment options for other metabolic conditions, including NAFLD. 
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4.1 Abstract 

Heat shock proteins (HSPs) are molecular chaperones that aid in the recovery from 

stress and guard cells from future insults. HSP72, in particular, plays an important role in 

maintaining skeletal muscle insulin sensitivity and glucose homeostasis and is induced in 

skeletal muscle with heat or exercise. Less is known about HSP72 induction with exercise in the 

liver. The liver also goes through numerous metabolic adaptations following exercise, including 

possible activation of the degradation pathways autophagy and mitophagy. The purpose of this 

study was to examine the ability of various chronic and acute exercise modalities to induce 

HSP72 in the liver as well as autophagy and mitophagy pathways. Male Sprague Dawley rats 

were divided into sedentary (SED), voluntary wheel running (VWR), treadmill endurance (TM-

END) or treadmill interval sprint training (TM-IST) groups for four weeks. We found that with 

endurance treadmill training, HSP72 protein content was robustly increased in the liver.  Interval 

sprint training also increased HSP72 in the liver, while there was not a significant increase in 

HSP72 with voluntary wheel running. In response to an acute bout of exercise, increased 

HSP72 and reduced inhibitory phosphorylation of transcription factor HSF-1 were observed. 

Increased hepatic HSP72 in response to chronic and acute exercise were paralleled by 

increased autophagy (LC3-II). An increase in phosphorylation of a mitophagy protein, Parkin, 

was also observed with acute exercise. Our findings demonstrate that HSP72 expression in the 

liver is increased with both chronic and acute exercise in a time and intensity dependent 

manner. Additionally, mitophagy and autophagy protein changes could be a part of HSP72 

action with exercise.  Among the many benefits of exercise, increased hepatic HSP72 

expression with exercise could play an important role in improving hepatic metabolic function.  

Key words: heat shock proteins, exercise, autophagy, mitophagy, liver metabolism 
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4.2 Introduction 

Heat shock proteins (HSPs) are molecular chaperones that aid in the recovery from 

stress and guard cells from future insults [263, 415]. HSP72 is the highly inducible heat shock 

protein that can be activated in skeletal muscle with stressors such as heat and exercise [263, 

366, 440-442]. Additionally, Kurucz et al found that HSP72 is decreased in skeletal muscle of 

insulin resistant and type 2 diabetic patients [284]. Recent work by Di Naso et al. found that 

HSP72 could also be important in liver metabolism, due to decreased expression of HSP72 with 

non-alcoholic fatty liver disease progression [264].  

Our lab and others have demonstrated that increased HSP72, for example through heat 

treatment, transgenic overexpression, and pharmacological treatment, improves glucose 

tolerance, skeletal muscle insulin resistance, and mitochondrial function [266-269, 295, 297, 

416]. Mice lacking skeletal muscle HSP72 have enlarged, dysmorphic mitochondria with 

reduced muscle respiratory capacity and lipid accumulation in the skeletal muscle [317].  These 

mice also demonstrate a reduced ability to degrade mitochondria through mitophagy. This is 

important since degradation pathways such as mitophagy and autophagy are important in the 

maintenance of lipid homeostasis and mitochondrial function [257, 259, 260]. This evidence 

suggests that HSP72 could be a possible target for therapies to improve insulin sensitivity and 

hepatic mitochondrial function. Although much has been revealed in the importance of heat 

shock protein activation to improve metabolic function in skeletal muscle, there is a lack of 

knowledge in the role of heat shock proteins in the liver following exercise. Some studies have 

found increased HSP induction in the liver with exercise or heat treatment [268, 365, 366, 429], 

although the role of HSPs in the liver has not been investigated.  

The liver is essential for whole-body metabolic function metabolism and exercise 

tolerance through maintaining whole-body glucose homeostasis. The liver goes through its own 

exercise-induced set of acute and chronic adaptations such as improved fat handling [220]. This 

adaptation seems to be due to increased markers of mitochondrial function and content which 
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improve lipid metabolism [132, 133, 443-445]. Recently, a publication by Fletcher et al. 

compared the effect of various exercise modalities on hepatic mitochondrial metabolism [135]. 

In this study, mice performed voluntary wheel running, endurance treadmill running, or interval 

sprint training. Regardless of the training modality, exercise significantly improved hepatic 

mitochondrial respiration and also improved other markers of mitochondrial metabolism which 

were not always dependent on increased mitochondrial content [135]. These adaptations in the 

liver are important in the maintenance of hepatic metabolic dysfunction, although the role of 

HSPs in this process are not clear.  

The purpose of this investigation is to continue the work by Fletcher et al and evaluate 

hepatic HSP72 induction across these multiple exercise modalities and with chronic and acute 

exercise. Additionally, we also aim to identify changes in autophagy/mitophagy protein 

expression with various exercise modalities. Past studies have shown that degradation 

pathways such as autophagy increase with exercise [404, 446-450]. We hypothesize that 

HSP72 will be increased with various exercise modalities, and that we will also observe 

increased expression of autophagy and mitophagy proteins. HSP72 may be essential in the liver 

to increase mitochondrial function and activate degradation pathways to dispose of damaged 

organelles such as mitochondria. 

 

4.3 Methods 

Experimental Animals – Chronic Exercise.. Twelve-week old Sprague Dawley male rats 

(n=46) were split into into sedentary (SED), voluntary wheel running (VWR), treadmill 

endurance training (TM-END), or treadmill interval sprint training (TM-IST) groups (n=8-10 per 

group). The exercise intervention lasted 4 weeks. Rodents were individually housed in 

temperature controlled rooms (21°C) with 12:12 light:dark cycles. Rats were allowed ab libitum 

access to food and water as well as a standard rodent chow (Formulab 5008; Purina Mills, 

Brentwood, MO). Animals were sacrificed following 24 hours after the last bout of exercise or 24 
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hours after locking the wheels of the VWR animals. Animals from all groups were also fasted 

starting 18 hours prior to exercise. At the end of the experiment (16 weeks old) the rats were 

anesthetized with pentobarbital sodium (100 mg/kg) and the heart was removed. The animal 

protocol was approved by the Institutional Animal Care and Use Committee at the University of 

Missouri-Columbia [135].  

Experimental Animals – Acute Exercise. The animal protocol was approved by the 

Institutional Animal Care and Use Committee at the University of Kansas Medical Center. 

Twelve male Sprague Dawley rats were purchased from Charles River Laboratories and were 

randomly assigned (n=2-5 per group) into fed sedentary (SED), fed acute treadmill exercise 

(EX-FED), or fasted acute treadmill exercise (EX-FASTED). All animals were housed in a 

temperature controlled facility (22 ± 2˚C) with 12:12 hr light:dark cycles. Animals were allowed 

ad libitum access to water and a standard chow diet (9604; Harlan Teklad, Madison WI, USA). 

Two hours post-exercise, rats were anesthetized with pentobarbital sodium (100 mg/kg) and 

then exsanguinated by removal of the heart.  

Chronic exercise protocol. Rats were randomly assigned into four groups of SED, VWR, 

TM-END, or TM-IST rats. VWR animals had running wheels available in their cages. Wheel 

revolutions of the wheels were counted throughout the intervention period using VitalView 

software (VitalView, Version 4.2, 2007; Mini Mitter Company, Inc., Bend, OR). Animals in the 

treadmill groups (TM-END or TM-IST) went through an acclimation period for five days 15 

m/min, 5-10 min/day). During the first 1.5 weeks of treadmill exercise, the animals gradually 

worked up to a higher speed. The TM-END group of rats began at 20 m/min for 10 minutes 

(12% gradient) and progressively increased to 30m/min for 60 minutes (12% gradient). They 

maintained this speed for 5 days/week during the entire four weeks. Similarly, the TM-IST group 

began with 6 short, intense bouts of exercise at 35 m/min for 1 minute (12 % gradient, 4.5 

minutes rest in between exercise bouts). They slowly increased to six 50m/min sprints for 2.5 
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minutes (12% gradient,  4.5 minutes rest in between exercise bouts). Treadmill groups 

performed exercise in the morning.  

Acute exercise protocol. Rodents were separated into three groups of SED, EX-FED, or 

EX-FASTED (~515 g). Animals were acclimatized for four days on the treadmilll prior to 

exhaustive exercise bout. Acclimatization was for ~5 min at 0 m/min on day one, 15 m/min on 

day two, 15 m/min one day three, and 20 m/min on day four.  EX-FASTED animals were fasted 

for 12 hours prior to exhaustive exercise bout. The exhaustive exercise bout began for 5 min at 

20 m/min and increased to 25 m/min until exhaustion (~45-50 min). The exercise was stopped 

when rodents stayed on the shock grid three times for 5 seconds. SED animals were placed on 

locked treadmill throughout the same amount of time as exercised animals during 

acclimatization and during the exhaustive exercise bout.  

Western blot. Liver was processed for Western blotting by methods previously described 

[268, 297, 386]. Briefly, liver was homogenized in a 12:1 (volume-to-weight) ratio of ice-cold cell 

extraction buffer (Biosource, Invitrogen) containing 10 mM Tris·HCl (pH 7.4); 100 mM NaCl; 1 

mM each of EDTA, EGTA, NaF, and phenylmethylsulfonyl fluoride; 2 mM Na3VO4; 20 mM 

Na4P2O7; 1% Triton X-100; 10% glycerol; 0.1% SDS; 0.5% deoxycholate; and 250 µl/5 ml 

protease inhibitor cocktail. Homogenates were rotated for 30 min at 4˚C, and then centrifuged 

for 20 min at 3,000 rpm at 4˚C. The supernatant was removed and protein concentration 

determined by Bradford assay. Samples were diluted in HES buffer and Laemmli buffer 

containing 100 mM dithiothreitol (DDT) (Thermo Scientific, Rockford, IL, USA) based on protein 

concentration to generate samples containing equal concentration of protein. Samples were 

heated in a boiling water bath for 5 min.  

Protein (40-80 µg) was separated on SDS-PAGE gels, followed by a wet transfer to a 

nitrocellulose membrane for 90 min at 200 mA. Membranes were blocked in Tris-buffered saline 

(TBS), 0.1% Tween 20 (TBST), and 5% nonfat dry milk or 5% bovine serum albumin (BSA) 

followed by incubation with the appropriate primary antibodies. Following three washes with 
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TBST, blots were incubated with an appropriate horseradish peroxidase (HRP)-conjugated 

secondary antibody in TBST 1% nonfat dry milk or BSA at a concentration of 1:10,000 for 1 hr 

at room temperature. Blots were then washed twice with TBST and once with TBS, dried, and 

visualized by enhanced chemiluminescence (ECL). Bands were quantified using Image J or 

Image Lab (Bio-Rad) densitometry. Blots were then stripped for 15-20 min at 55˚C in buffer 

containing 62.5 mM Tris·HCl, 2% SDS, and 100 mM 2-mercaptoethanol and re-probed for β-

actin as a loading control.  

Primary antibodies used included HSP72 (cat no. SPA-810, Enzo Life Sciences, 

Farmingdale, NY), HSP25 (cat no. SPA-801, Enzo Life Sciences), HSP60 (cat no. SPA-807, 

Enzo Life Sciences), LC3B (cat no. 2775, Cell Signaling Technology, Inc., Danvers, MA), p62 

(cat no. 5114, Cell Signaling), pParkin (phospho s65) (cat no. ab154995, Abcam, Cambridge, 

MA), Parkin (cat no. sc-32282, Santa Cruz Biotechnology, Dallas, Texas), HSF-1 (cat no. 

NB300-730, Novus Biologicals, Littleton, CO), and pHSF-1 serine 303 (cat no. ab47369, 

Abcam)  and β-actin HRP-conjugated (cat no. ab20272, Abcam). Secondary antibodies used 

included goat anti-mouse (cat no. 170-5047, BioRad, Hercules, CA) donkey anti-rabbit (cat no. 

711-035-15, Jackson, Immuno-Research, Inc., West Grove, PA), and goat anti-rabbit (cat no. 

sc-2004; Santa Cruz Biotechnology). 

 

4.4 Results 

Rodent characteristics and mitochondrial function 

 As describe in the published work by Fletcher et al. [135], following four weeks of 

exercise, TM-END and TM-IST groups had reduced body weight compared to the SED and 

VWR groups.  All exercise groups had significantly reduced body fat compared to the SED 

group. Additionally, both SED and VWR animals had increased feeding efficiency compared to 

the other exercise groups. Fletcher et al. also measured mitochondrial function through 

evaluating mitochondrial respiration. All exercised animals regardless of exercise modality had 



106 
 

increased oxidative phosphorylation as demonstrated by increased flux through complex I and 

also increased maximal uncoupled mitochondrial respiration (above data no shown) [135].  

Chronic exercise and hepatic HSP72 induction 

The rodents performed four weeks of voluntary wheel running (VWR), treadmill 

endurance exercise (TM-END), or treadmill interval sprint training (TM-IST). These groups were 

compared to a sedentary (SED) group of animals (Figure 17).  
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Figure 17. Various exercise modalities in rodents. 
Rats were split into four groups: Sedentary (SED), Voluntary Wheel Running (VWR), Treadmill 
Endurance Exercise (TM-END), and Treadmill Interval Sprint Training (TM-IST). Interventions 
were performed for four weeks. 
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We compared hepatic induction of HSP72 between these various types of chronic 

exercise (Figure 18). Following four weeks of exercise, there was no difference in HSP72 

protein induction between SED and VWR rats, however we did see a significant increase in 

HSP72 induction in the treadmill exercise groups. Four weeks of TM-IST resulted in an 8-fold 

increase in HSP72 protein expression (P < 0.001). TM-END had a robust effect on HSP72 

compared to the other groups. There was a 37-fold increase in liver HSP72 protein expression 

with four weeks of endurance training (TM-END) (P < 0.001). This was a ~350% greater 

increase in HSP72 induction with the TM-END group compared to TM-IST group (P < 0.001).  
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Figure 18. Hepatic HSP72 induction with various exercise modalities. 
Effects of various exercise modalities (VWR, TM-IST, and TM-END) on HSP72 induction in the 
liver.  n=6-9 per group. Analyzed by one-way ANOVA.***P < 0.001 compared to SED animals. # 
P < 0.001 between TM-END and TM-IST groups.  
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Heat shock and autophagy protein induction with endurance chronic exercise 

Due to the drastic increase in HSP72 protein expression in the liver with chronic 

endurance exercise (Figure 19A), we also evaluated expression other two other heat shock 

proteins, HSP25 and HSP60. HSP25 was increased by 32-fold (P < 0.001, Figure 19B), and 

HSP60 increased by 27% with endurance exercise (P < 0.05, Figure 19C). Due to past work 

linking exercise and autophagy [404, 446-450] and also possibly HSPs and 

autophagy/mitophagy [317], we also evaluated autophagy protein expression with endurance 

chronic exercise. We found a 56% increase in the expression of microtubule-associated protein 

1 light chain 3 (LC3-II) with endurance exercise (P < 0.05, Figure 19D). LC3 is lipidated and 

becomes LC3-II when autophagosomes are forming [388], thus is a maker of increased 

autophagy. The protein p62 is a selective cargo adaptor that is important for sequestration of 

organelles for autophagy. This protein is degraded with increased autophagy. We observed no 

difference in p62 protein expression with endurance exercise (Figure 19E). 
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Figure 19. Endurance exercise induces the heat shock response and alters autophagy 
protein expression in the liver.  
Following four weeks of endurance exercise training A) HSP72, B) HSP25 and C) HSP60 were 
evaluated. Autophagy protein expression of D) LC3-II and E) p62. n=6-10 per group. All were 
analyzed by unpaired t-test. *P<0.05, ***P < 0.001. 
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Acute exercise increases HSP72 induction and mitophagy protein expression 

Based on the differences we observed in hepatic HSP72 induction with chronic 

endurance treadmill exercise, we were interested in the timing of HSP72 induction with treadmill 

exercise. We performed acute treadmill exercise and collected tissues 2 hours following 

exercise to identify if HSP72 was induced rapidly following an exercise bout. In addition to 

investigating acute exercise, we also added a fasted, exercised group to our study (Figure 20). 

Fasting has been shown to induce HSPs [451, 452] and also increase autophagy [453, 454]. 

We hypothesized that fasting in addition to exercise would increase HSP72 and autophagy 

protein expression more than exercise alone. Two groups of Sprague Dawley rodents were 

exercised and fed (EX-FED) or exercised and fasted (EX-FASTED). The animals performed 

acute treadmill exercise to exhaustion. We also had a third sedentary, fed group (SED) that 

were placed on a locked treadmill during the same amount of time as the exercised animals. We 

observed a 34-fold increase in HSP72 induction in the exercised, fed group (P < 0.05) and a 50-

fold increase in HSP72 induction in the exercised, fasted group (P < 0.01, Figure 21A).  There 

was a 48% greater increase in the exercise fasted group compared to exercise alone.  
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Figure 20. Acute exercise in rodents.  
Rats were either sedentary (SED) or performed acute treadmill exercise. The exercised animals 
were either fed (EX-FED) or fasted (EX-FASTED). Rats were fasted or fed for 12 hours and 
then underwent one bout of treadmill exercise until exhaustion. Tissues were collected post-
exercise following a 2-hour recovery. 
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We were interested in the mechanism of how acute exercise was increasing HSP72 in 

the liver. We evaluated changes in protein expression of the transcription factor for HSP72, 

Heat Shock Factor-1 (HSF-1). HSF-1 has various phosphorylation sites including serine 303 

which is an inhibitory phosphorylation site on HSF-1. We observed a 68% reduction (P=0.09) in 

HSF1 phosphorylation on serine 303 in the exercise, fasted group (Figure 21B), indicating a 

reduction in inhibitory phosphorylation of HSF-1.  

Lastly, we evaluated changes in protein expression of Parkin, the E3 ubiquitin ligase 

which targets mitochondria for degradation through mitophagy. Parkin is recruited to the 

mitochondria and activated by Pink1, which phosphorylates Parkin at serine 65 (Ser 65). 

Therefore, we evaluated Parkin phosphorylation at serine 65 as a way to look at Parkin 

activation with exercise. We found a slight increase in Parkin phosphorylation (P = 0.07) in the 

exercised, fed group and a 58% increase in the exercise, fasted group (P < 0.01, Figure 21C).  
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Figure 21. Fasting combined with acute treadmill exercise increases HSP72 induction 
and phosphorylation of mitophagy-associated ubiquitin ligase, Parkin in the liver. 
In rodents that performed acute exercise (fed or fasted) we evaluated A) HSP72, B) pHSF1 Ser 
303, and C) pParkin Ser 65 protein expression. All were analyzed by one-way ANOVA. n=2-5. 
*P<0.05 **P < 0.01, ***P < 0.001 when compared to SED. 
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4.5 Discussion 

The liver is a major metabolic organ which maintains whole-body glucose homeostasis. 

This metabolic organ goes through various acute and chronic adaptations to exercise which are 

important in the prevention of metabolic disease. Currently, differences in the hepatic metabolic 

response to various exercise modalities are not well understood. Identification of the variability 

in metabolic responses to exercise, including the heat shock response, will facilitate the 

development of exercise protocols as therapy.  

In this study, we evaluated heat shock protein induction in the liver with chronic and 

acute exercise. Additionally, with acute exercise, we investigated the combination of exercise 

and fasting. With chronic exercise, rodents performed various exercise modalities to compare 

differences in heat shock protein induction. New findings from the present study indicate that the 

HSP72 protein expression is increased with acute and chronic treadmill endurance exercise. 

HSP72 was also induced to a lesser degree with chronic interval sprint training, but not 

voluntary wheel running. With acute treadmill exercise, fasting and exercise resulted in a further 

increase in HSP72 induction compared to exercise alone. Additionally, a reduction of inhibitory 

phosphorylation on HSP72’s major transcription factor, HSF1, was also observed with exercise 

and fasting combined.  

The mechanism behind HSP72 activation requires activation and translocation of the 

transcription factor, heat shock factor 1 (HSF1). When HSF1 is activated it moves to the nucleus 

and binds to heat shock elements which allows for transcription of HSP72. Elevated levels of 

both HSP90 and HSP70 act as a feedback mechanism and negatively regulate HSF1. Once 

there is a stressor such as exercise, HSPs dissociate from HSF1 which is then free to 

translocate to the nucleus and bind to HSEs which allows for increased transcription of HSP 

genes [455]. The HSP response is rapid and powerful, but also acts through feedback inhibition, 

as eventually increased HSPs re-bind to HSF1 which inhibits transcription. HSF1 is also 

regulated by multiple post translational modifications.  Constitutive phosphorylation of serines 
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303 and 307 have an important role in the negative regulation of HSF1 transcriptional activity 

[456], while phosphorylation sites serines 230 and 326 contribute to activation of HSF1 in times 

of stress [457, 458].  Once heat shock occurs, phosphorylation of HSF1 soon follows, while 

acetylation is more delayed and coincides with the feedback inhibition of HSF1. Increased 

expression and activity of SIRT1 which deacetylates HSF1 increases the binding of HSF1 to 

DNA [458]. These intricate mechanisms allow for regulation of duration and intensity of the heat 

shock response. Studies have not investigated these mechanisms in relationship to HSP72 

activation with exercise, especially in the liver. This study has identified the reduction of 

inhibitory phosphorylation at serine 303 that occurs following acute exercise, further specifying 

the mechanism of HSP72 activation in the liver.  

Multiple types of exercise can increase the heat shock response, and the majority of 

past research has focused on skeletal muscle. Heat shock protein increases can be detected 24 

hours or up to a week after an exhaustive bought of exercise in skeletal muscle, and chronic 

endurance or resistance training protocols have also been shown to increase HSP72 in skeletal 

muscle [336, 340-343, 459-463]. Many of these effects are intensity-dependent. HSP72 

induction is increased with exercise intensity with aerobic and resistance exercise [338, 340, 

342, 343]. It was also found that treadmill endurance training results in an increase in HSP72 

and HSF1 expression in the liver [429]. Additionally, acute exercise has also been shown to 

increase HSP72 in the liver, with multiple waves of HSP72 induction within 48 hours of exercise 

[366]. These studies identified the importance of heat shock proteins as a part of the complex 

molecular and metabolic adaptations following exercise. However, this is the first study to 

compare various exercise modalities along with HSP72 induction in the liver. In this study, the 

37-fold increase in HSP72 induction observed with chronic treadmill exercise and the 34-50-fold 

increase (fasted and fed) in HSP72 induction observed with acute treadmill exercise is equal to 

or much greater than induction that has been observed in skeletal muscle [429]. These results 
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suggest that robust HSP72 induction could have a major role in post-exercise hepatic 

adaptation.  

HSP72 is the highly inducible heat shock protein and has been identified to be important 

in metabolic function, however we also observed induction of other heat shock proteins (HSP25 

and HSP60) with chronic endurance exercise. HSP25 works as a molecular chaperone and 

protects against oxidative and thermal stress [464-466]. This protein also seems to be important 

for skeletal muscle to recover from exercise [333, 463, 467, 468]. Additionally, HSP60 is 

important for mitochondrial function through aiding in correct folding of proteins into the 

mitochondria [440, 469, 470]. HSP60 has also been shown to be induced by heat and exercise 

[440, 471, 472]. Future work would need to delineate the importance of these individual proteins 

in relation to HSP72 in the liver.  

In addition to studying the heat shock response following acute and chronic exercise, we 

also identified changes in autophagy and mitophagy protein expression with exercise. 

Autophagy involves a complex set of mechanisms which leads to the targeted degradation of 

organelles. Organelles are essentially tagged and marked for degradation, and are attached to 

the forming autophagosomes. LC3 lipidation which then forms LC3-II is a part of this process 

[388]. Additionally, p62, a polyubiquitin-binding protein, aids in the tethering of organelles to the 

autophagosome. Autophagosomes then fuse with the lysosomes resulting in the degradation of 

p62 and targeted organelles. Studies have shown that increased LC3-II and reduced p62 

protein expression indicate the presence of increased autophagy [53, 403]. LC3-II is also 

increased with increased mitophagy [53], the targeted degradation of mitochondria. 

In response to four weeks of chronic endurance treadmill training we observed an 

increase in LC3-II accumulation with no change in p62. This suggests a possible increase in 

autophagosome formation following four weeks of chronic treadmill exercise. Autophagy may be 

an important mechanism in the prevention of excess hepatic steatosis, as autophagy can be 

important for the degradation of lipids, called lipophagy [473].  Additionally, autophagy has been 
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demonstrated to be essential for glucose homeostasis [262]. Due to its effect on LC3-II 

accumulation, exercise may be a potential treatment modality which could treat liver steatosis. 

With acute and chronic treadmill exercise we also evaluated changes in mitophagy protein 

expression. Parkin is a major regulator of mitophagy through being an E3 ubiquitin ligase and 

marking mitochondria for degradation. Parkin is regulated by the protein Pink1 through the post-

translational modification. Pink1 finds dysfunctional mitochondria that have lost membrane 

potential and recruits and activates Parkin through phosphorylation of serine 65 [53].  With 

chronic exercise, we observed no difference in Parkin or phosphorylation of Parkin (data not 

shown). However, with acute exercise we observed an increase in phosphorylation of Parkin. 

This pattern was very similar to our observations of HSP72 with acute exercise, with a slight 

increase of each protein with the fed, exercised group and a further increase in the fasted, 

exercise group.  

This is the first study to both identify the response of HSP72 and autophagy and 

mitophagy proteins with exercise. Additionally, to our knowledge, this is the only study to identify 

these changes with exercise and the combination of fasting and exercise. This is important 

since HSP72 has been linked to autophagy and mitophagy processes in past work [269, 317]. 

Overexpression of HSP72 in skeletal muscle was shown to increase autophagy in response to 

fasting [269]. Additionally, Drew et al showed that HSP72 can bind to Parkin, aid in Pink1 

binding and increase mitochondrial degradation through mitophagy. Mice with a loss of HSP72 

have Parkin that is non-functional. This is demonstrated through increased accumulation of 

damaged mitochondria. Therefore, HSP72 activation with exercise, and possibly through a 

combination of exercise and fasting, may activate autophagy and mitophagy pathways and 

maintain a group of higher-functioning mitochondria in the liver.  

It is important to connect the results from this study to past results from Fletcher et al. 

[135]. Their group found that all types of chronic exercise (VWR, TM-END, and TM-IST) 

increased mitochondrial respiration and also individually demonstrated their own unique 
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improvements in mitochondrial function. It is interesting that in our study, we found robust 

increases in LC3-II and also HSP72 mainly in the TM-END group, and not in all exercise groups 

as they observed with mitochondrial respiration. We also observed increased HSP72 and 

phosphorylation of the mitophagy protein, Parkin, with acute treadmill endurance exercise. 

These results could be important when prescribing exercise to patients with non-alcoholic fatty 

liver disease or other metabolic conditions that already have mitochondrial damage and 

impairments [202, 205, 226, 227, 253, 254]. It may not be the best approach initially to perform 

types of exercise that increase respiration through damaged, ROS producing mitochondria. 

Initially, maybe the best treatment approach for this population would be a type of exercise that 

would activate the degradation pathways autophagy and mitophagy in order to first degrade 

unhealthy mitochondria and other organelles. This study would suggest that endurance treadmill 

exercise may be the best exercise modality to activate both HSP72 and degradation pathways 

acutely and chronically. 

There are a few limitations to this study that limit study conclusions. Future studies will 

be needed to further identify the effects of acute and chronic exercise on hepatic autophagy and 

mitophagy protein expression. Specifically, the usage of a lysosomal inhibitor such as leupeptin 

would be needed to fully identify an increase in autophagy with exercise. This compound allows 

the identification of true autophagy flux. In future studies, the use of leupeptin will be necessary 

to recognize that autophagy or mitophagy is increased with both chronic and acute exercise. 

The addition of fasting to exercise in this study is a novel approach, especially since studies 

have not identified the effect of this combination on HSP72 or autophagy protein expression. 

However, the lack of a fasting sedentary group limits the experiment’s conclusions. It is 

unknown if exercise and fasting were additive like suggested above, or if fasting alone would 

increase HSP72 expression and phosphorylation of Parkin in the liver to maximum levels. 

Future work will need the addition of a fasting, sedentary group to answer this question.   
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In addition to HSP72, past work has found a link between reduced HSF1 protein content 

to the development non-alcoholic fatty liver disease [264]. HSF1 has also been linked to 

regulation of mitochondrial biogenesis and enzyme function [324]. It would be necessary to 

identify if it is the HSP72 activity, or activity of its upstream regulator, HSF1, that has the primary 

effect on liver metabolism. The development of a liver-specific HSP72 knockout model would 

aid in answering this question. Future experiments using an HSP72 liver-specific knockout 

along with leupeptin during acute and chronic exercise would identify if this protein is essential 

in post-exercise metabolic modifications, specifically with autophagy and mitophagy.  
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Figure 22. HSP72 induction in the liver and activation of mitophagy.  
Summary of the proposed mechanism of HSP72 action following induction in the liver with 
exercise.  
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Conclusion 

The activation of HSPs has been proposed as a potential target in preventing and 

treating metabolic dysfunction [318]. Based on our data, exercise could be an appropriate 

approach to activate HSPs in the liver and improve hepatic metabolism through autophagy and 

mitophagy (Figure 22). Acute and chronic exercise may improve hepatic mitochondrial quality 

through inducing HSP72. This approach could be specifically effective as treatment for non-

alcoholic fatty liver disease and hepatic insulin resistance.  
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Past work has solidified that HSP72 induction is essential in skeletal muscle and whole-

body metabolism. Our recent work has identified that HSP72 is also important for lipid 

metabolism in skeletal muscle and liver in two different populations with metabolic dysfunction:  

in a postmenopausal model with metabolic syndrome and also in NAFLD.  We have also 

identified that HSP72 can be induced in the liver with exercise, and may be linked to changes in 

autophagy/mitophagy. These experiments further solidify the importance of HSP72 in lipid 

metabolism and mitochondrial health in various metabolic tissues.  

 

5.1 HSPs, JNK, and Fatty Acid Oxidation 

 Metabolic disorders, including metabolic syndrome in postmenopausal women and 

NAFLD, lead to increased inflammation throughout the body which exacerbates insulin 

resistance  [163, 165, 167]. Pro-inflammatory stress kinases such as PKC, IKKβ, and JNK are 

active in insulin resistent rodents [163, 164]. This occurs in various tissues including skeletal 

muscle, adipose, and liver [165, 167, 474]. One source of JNK activation is increased lipid and 

glucose exposure that occurs with metabolic dysfunction [475, 476]. Our laboratory and others 

have demonstrated an inverse relationship between HSP72 induction through heat or 

pharmacological activation and JNK activation in the skeletal muscle and liver [267, 268, 295, 

297]. Di Naso et al. also observed an inverse relationship between HSP72 and JNK activation 

with NAFLD and NASH progression [264]. This is important since JNK can lead to dysregulation 

of lipid handling and mitochondrial function, thus inhibiting mitochondrial respiration and 

increasing ROS [163, 166, 167, 169, 170]. Prevention of JNK activation may be an approach to 

prevent metabolic disease not only through maintaining insulin signaling but also through 

increasing fatty acid utilization. This is especially important since it has been shown very 

recently in rodents that pharmacological inhibition of JNK relieved NAFLD [477]. Both JNK and 

HSPs have been shown to inhibit each other [286, 287, 298-300]. Activation of HSPs through 
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exercise, heat or pharmacological interventions may be a necessary strategy to prevent pro-

inflammatory pathway activation.  

 Past work and our current studies have shown that HSPs increase mitochondrial 

function in the skeletal muscle [269, 317] and in the liver. Specifically, in our study, we observed 

reduced fatty acid oxidation with a loss of HSP72 in primary hepatocytes. The mechanism 

through which HSP72 can protect mitochondrial function, specifically in the liver, is still not well 

understood. We propose that mitochondrial function could be partially maintained through HSP 

induction and prevention of JNK activation. We believe this mechanism occurs in the liver, 

however skeletal muscle mechanisms could be similar. 

The contribution and mechanism of FAO impairment in NAFLD development continues 

to be unclear. Past research has identified that JNK may contribute to reduced fatty acid 

oxidation in liver and skeletal muscle. Specifically, knockdown of JNK in hepatocyte culture and 

in vivo was shown to reduce lipid synthesis, increase fatty acid oxidation, and improve insulin 

sensitivity [478, 479]. This mechanism seems to be present in skeletal muscle as well, since 

inhibition of JNK activation increases fatty acid oxidation in muscle [480].  

A more recent study by Vernia et al. demonstrated that JNK regulates fatty acid 

oxidation through PPARα [289]. PPARα is a transcription factor that is highly expressed in 

metabolic tissues including the liver and regulates many aspects of fatty acid metabolism, 

ketogenesis, as well as fibroblast growth factor 21 (FGF21) gene expression [481-487]. FGF21 

is a hepatokine and myokine which improves systemic metabolic function through many 

peripheral tissues. Importantly, it regulates fatty acid oxidation and ketogenesis gene expression 

in hepatocytes [484]. Whole-body as well as liver-specific deletion of PPARα in mice results in 

increased steatosis, impaired fatty acid metabolism and ketogenesis, as well as a reduction in 

expression of FGF21 in the liver [488-493]. Increased lipid storage, oxidative stress and lipid 

peroxidation that occur with hepatic steatohepatitis can be avoided through PPARα activation 

[490, 494]. PPARα activity allows the liver to adjust to increased influx of lipids in response to 
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high lipid exposure, and is a possible pharmacological target to treat liver disease. Therefore, 

PPARα-mediated activation of FGF21 may be essential in hepatic lipid handling and prevention 

of steatosis [484].  

PPARα is regulated by many signaling pathways, including pro-inflammatory molecules. 

Vernia et al showed that JNK inhibits hepatic fatty acid oxidation through the PPARα and 

FGF21 pathway [289]. They found that JNK activity is necessary to maintain expression of the 

PPARα transcriptional corepressors NCOR1 and NRIP1. These corepressors act by binding to 

PPARα and reducing transcription, thus reducing expression of FGF21, fatty acid oxidation and 

ketogenesis genes [289]. This group also demonstrated that JNK deficiency in the liver of HFD-

fed mice results in increased FGF21 expression and improved whole-body metabolism [289]. 

These improved metabolic outcomes were dependent on FGF21 expression. This pathway may 

be important in other tissues besides the liver, since FGF21 has also been shown to be a 

powerful myokine affecting whole body metabolism [495, 496], and JNK is also increased in the 

muscle with metabolic syndrome and diabetes [282]. Inhibition of PPARα -related pathways by 

JNK could contribute to a reduction of fatty acid oxidation during the progression of liver disease 

and skeletal muscle metabolic dysfunction.  

A close co-regulatory relationship between HSPs and JNK has been established in 

skeletal muscle, [165, 167, 267, 268, 286, 287, 295, 297-300] and studies are beginning to 

corroborate this relationship in the liver [264, 295]. In future studies, it will be necessary to 

recognize 1) is JNK activation a major contributor to increased steatosis in NAFLD through 

inhibition of the PPARα/FGF21 pathway, and 2) can HSP induction prevent JNK-mediated 

inhibition of fatty acid oxidation and protect from the development of steatosis. Our findings 

demonstrate in primary hepatocytes that following the loss of HSP72, there is a reduction in 

fatty acid oxidation and increased lipid accumulation. It is possible that with a loss of HSP72, 

JNK activation increases and inhibits PPARα/FGF21 pathway, reduces fatty acid oxidation and 
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increases lipid storage. Further research is needed to determine these HSP72-mediated 

mechanisms are present in hepatocytes and can protect against the development of NAFLD.  

 

5.2 Autophagy and HSP72 

Autophagy is an important cellular degradation process which degrades organelles and 

maintains cellular function. Defects in autophagy have been implicated in the development of 

metabolic syndrome and glucose insensitivity in skeletal muscle [52, 262]. Additionally, 

autophagy degradation of lipids (lipophagy) has also been shown to be important for liver 

homeostasis [259]. Autophagy is also impaired in livers of obese rodents which leads to ER 

stress and insulin resistance [260]. However, another study found that autophagy deficiency in 

skeletal muscle can lead to FGF21 induction and overall protection from insulin resistance [495]. 

Therefore, the role of autophagy is unclear, and the mechanisms that lead to autophagy 

dysfunction in metabolic disease are unknown.  

In our studies, we found changes in autophagy gene expression in skeletal muscle and 

liver in two different models.  We found that ERα-/- rats develop insulin resistance and skeletal 

muscle metabolic dysfunction, similar to what is observed in postmenopausal women. We also 

observed a reduction LC3-II protein content in skeletal muscle, which suggests a reduction in 

autophagosome accumulation in the insulin-resistant muscle. This reduction in autophagy may 

contribute to cellular organelle dysfunction and skeletal muscle insulin resistance. Additionally, 

in a separate study, we investigated expression of autophagy proteins in the liver following 

chronic exercise. Four weeks of chronic endurance treadmill exercise increased LC3-II protein 

content in the liver and suggests that chronic exercise increased autophagosome accumulation. 

This is in agreement with other studies in skeletal muscle which have shown that exercise 

increases autophagy [497]. 

In both studies, when we saw changes in autophagy protein content, we also observed a 

similar pattern of change in HSP72 content. It is logical that heat shock proteins and autophagy 
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would work together to maintain proteostasis and cellular health. In order to reach proteostasis 

there has to be a balance of protein folding and protein degradation [498]. Heat shock proteins 

are important in maintaining protein function through correct protein folding, while autophagy 

degrades dysfunctional proteins. It is possible that HSP72 could play a role in autophagic 

regulation in both skeletal muscle and liver. 

Heat stress induces heat shock proteins, and an early study showed that heat exposure 

in primary hepatocytes induced heat shock proteins, but reduced autophagy protein levels [499]. 

However, a separate study showed that heat exposure actually increases autophagy in various 

cell types including hepatocytes [500-503]. Recent studies have demonstrated an inverse 

relationship between HSF1 levels (the primary transcription factor for HSP72) and LC3-II levels 

[500, 502]. However, HSP72 overexpression in skeletal muscle increases LC3-II during fasting 

compared to fasted control animals [269]. Additional research is needed to clarify the 

relationship between HSPs and autophagy. 

It is well known that exercise increases heat shock proteins. The research area of 

exercise and autophagy activation has recently had renewed interest. Exercise has been 

demonstrated to increase autophagy in skeletal muscle [446, 504, 505]. Following exercise, 

many pathways of degradation and repair are activated, and both autophagy and heat shock 

protein regulation may be important in order to adapt to exercise [498]. Dokladny et al. proposed 

that autophagy is likely important in the initial degradation response following exercise, while the 

heat shock response is important for cellular building and protein synthesis that occurs in the 

days following exercise [498]. The coordination of these two systems likely allow for optimal 

adaptation and improvements of cellular physiology following exercise. Our studies showed that 

autophagy and heat shock proteins likely interact, especially during exercise, but more research 

is needed to fully understand autophagy regulation by the heat shock response in disease 

states.  
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In preliminary experiments, we studied the effect of HSP72 overexpression on 

autophagy flux in primary hepatocytes. First, we overexpressed HSP72 (adenoviral transfection) 

for 24 hours in growth media, and then with chloroquine (10 µM) in low serum media (0.5% 

FBS) for an additional 24 hours. Chloroquine treatment allows for assessment of autophagy flux 

by inhibiting lysosomal acidification and subsequent quantification of the upstream autophagy 

proteins that accumulate. We evaluated LC3-I which during increased autophagy flux is 

lipidated and becomes LC3-II [388]. The protein p62 is a selective cargo adaptor that is 

important for sequestration of organelles for autophagy. This protein is degraded with increased 

autophagy. As expected, chloroquine treatment increased LC3-I, LC3-II, and p62 (Figure 23A, 

B, and C). Additionally, following HSP72 overexpression, we saw a reduction in LC3-I and p62 

protein content with chloroquine treatment compared to control (Figure 23B, P < 0.001, and 

Figure 23C, P < 0.01). We did not see any change in LC3-II accumulation, a classical marker 

for autophagosome accumulation (Figure 23A).  In summary, HSP72 may regulate expression 

of certain autophagy proteins.  
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Figure 23. HSP72 overexpression reduces autophagy protein expression.   
Primary hepatocytes were treated with an HSP72 overexpressing adenovirus for 24 hours in 
Williams E growth media, and then with chloroquine (10 µM) in Williams E media (0.5% FBS) for 
24 hours A) LC3-II, B) LC3-I and C) p62 were compared between groups. D) Representative 
blot of HSP72 overexpression.  n=3 wells per group from one animal. Analyzed by one-way 
ANOVA. *P < 0.05 between control and HSP72 adenovirus groups, and † P < 0.05 between 
vehicle and chloroquine treated groups.  
 

 

 

 



132 
 

Although impairments in autophagy occur with metabolic disease, the mechanism of 

how this develops is largely unknown. Increased cellular lipid exposure has been proposed as a 

possible cause for reduced autophagy with obesity and metabolic diseases [506]. Saturated 

fatty acids are abundant in the Western diet. They may contribute to lipotoxicity and 

development of NAFLD through activation of JNK, ER stress, oxidative stress, and 

mitochondrial dysfunction [507]. However, findings from studies investigating the effect of a lipid 

challenge on autophagy are inconsistent. Koga et al. found chronic exposure to a lipid challenge 

through a 16-wk HFD in rodents resulted in a reduction in autophagy rate in the liver [506]. 

However, Mei et al. found that acute exposure of palmitic acid, a saturated fatty acid, had no 

effect on autophagy or slightly suppressed autophagy, while the unsaturated fatty acid oleic acid 

induced autophagy [508]. More research is needed to fully understand lipid regulation of 

autophagy.  

In preliminary experiments, we aimed to identify the effect of acute palmitate exposure 

and HSP72 loss on autophagy flux in primary hepatocytes. Hepatocytes were treated with 

siHSP72 for 48 hours to suppress HSP72 levels. All cells were subsequently treated with 

chloroquine for 30 min before treatment with palmitate plus chloroquine for an additional 24 

hours in order to assess autophagy flux.  We evaluated LC3-II, LC3-I and p62 protein 

expression following a loss of HSP72. Similar to the findings of Wei et al., we observed no 

significant difference in autophagy protein expression following palmitate exposure (Figure 24A, 

B and C) [508]. Additionally, we did not observe differences in protein expression between 

control siRNA and siHSP72 treated hepatocytes. Combined treatment with palmitate and 

siHSP72 treatment had no effect on LC3-II and LC3-I (Figure 24A, and B), but significantly 

increased p62 protein content (P < 0.05, Figure 24C). We observed variability between groups, 

and the presence of outliers which may have affected our results and should be addressed in 

future repeated experiments.  
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Figure 24. A loss of HSP72 and palmitate treatment increases autophagy protein 
expression.   
Primary hepatocytes were treated with siHSP72 for 48 hours (15 nM) and then palmitate for 24 
hours (250 µM). All hepatocytes were treated with chloroquine (10 µM) for 30 min before 
treatment of palmitate plus chloroquine for 24 hours. A) LC3-II, B) LC3-I and C) p62 were 
compared between groups D) Representative blot of HSP72 knockdown of ~60%. n=3-6 wells 
per group from one animal. Analyzed by one-way ANOVA. *P < 0.05 between control and 
siHSP72 groups, and † P < 0.05 between vehicle and palmitate treated groups. 
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Expression of proteins involved in autophagy may increase in primary hepatocytes 

following a combination of siHSP72 and palmitate exposure in order to manage organelle 

damage that both stressors put on the cellular components. It is likely that following a loss of the 

chaperone HSP72 hepatocytes become more vulnerable to cellular stressors associated with 

metabolic disease. An increase in JNK may also contribute to altered autophagy that occurs 

during metabolic disease progression. Inhibition of JNK in rodents has been shown to relieve 

NAFLD, and also suppress autophagy [477]. Yan et al. suggested that inhibition of JNK and 

suppression of autophagy in the liver contributed to improved insulin sensitivity [477]. A loss of 

HSP72 could be a key step towards further disease progression due to the inability to induce 

the heat stress response associated with increased cellular stress and inflammation.  

 
5.3 Liver-Specific HSP72 Knockout Model 

To date, no studies have examined direct effects of HSP72 on hepatic lipid metabolism. 

The use of a novel liver-specific HSP72 knockout animal in our laboratory will be key in 

identifying the importance of HSP72 in hepatic lipid metabolism. We believe that a loss of 

HSP72 will lead to steatosis and impaired whole-body glucose homeostasis. We also expect 

that a loss of HSP72 will lead to mitochondrial dysfunction and inflammation, which will be 

further exacerbated with a HFD. Additionally, we expect that a loss of HSP72 will impact 

autophagy and mitophagy pathways. Re-introduction of HSP72 through overexpression in this 

model should rescue steatosis and inflammation that occurs with a HFD. Using this model, we 

will be able to identify the importance of both HSP72 and its transcription factor, HSF1, to liver 

metabolism. Past research has demonstrated that HSF1 and PGC-1α can work together to 

regulate mitochondrial biogenesis and whole-body metabolism [324, 325]. In the liver-specific 
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HSP72 knockout rodent, we will be able to determine if those mechanisms are dependent on 

HSP72.  

 

 

5.4 HSP72 Regulation of the Unfolded Protein Response and Proteostasis. 

Cellular stress causes unfolded proteins to accumulate in the endoplasmic reticulum 

(ER), which activates the unfolded protein response (UPR) [509-511]. This response is 

important for cellular adaptation to ER stress and prevention of ER-stress induced apoptosis 

[512, 513]. ER stress and chronic activation of the UPR causes inflammation and contributes to 

the development of insulin resistance [514-523].  

Although other HSP family proteins have been shown to be a part of the UPR [455, 524, 

525] new evidence has also identified cytoplasmic HSP72 as part of the UPR. Specifically, 

HSP72 interacts with and upregulates inositol requiring enzyme 1 α (IRE1α) signalling to the 

ER. Activation of IRE1α by HSP72 enhances cell survival through prevention of ER-stress 

induced apoptosis [526]. This mechanism may be important in HSP72- mediated metabolic 

improvements, since activation of IRE1α also has been shown to suppress lipogenesis [527]. 

 HSP72 is known to regulate mitochondrial function, but it’s possible it regulates both the 

ER and the mitochondria. Additionally, ER and mitochondria can be tightly linked through 

interactions at mitochondria-associated membranes [528]. At these interactions, the organelles 

exchange lipids and calcium which is important for regulation of cellular homeostasis and 

adaption to metabolic stressors. Future work is needed to identify the role of HSP72 at the ER 

and between the ER and mitochondria.  

HSP72 also likely impacts metabolic health through the protein’s additional 

responsibilities as a cellular chaperone. During stress, HSP72 is essential to refold misfolded 

proteins and to maintain proteostasis. One way that HSP72 may maintain proteostasis is by 

regulating proteosomal degradation and autophagy [529, 530]. Degradation pathways via 
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proteasomes and autophagy are well established, but it was recently demonstrated that 

mitochondria also function as sites for protein degradation [531]. Specifically, the chaperone 

HSP104 detangles protein aggregates allowing mitochondrial transporters to import proteins 

into the outer and inner mitochondrial membrane. Proteases in the mitochondrial matrix are then 

able to degrade the newly imported unfolded proteins. Importantly, defects in HSP70 activity 

result in increased transport of misfolded proteins into the mitochondria, causing increased 

mitochondrial damage and ROS production. This phenomenon has been confirmed in both 

yeast and human retinal pigment epithelium cells [531]. It is tempting to speculate that defects in 

HSP72 activity could contribute to mitochondrial dysfunction by trigging this alternative 

mitochondrial-dependent degradation pathway. This alternative pathway may contribute to the 

swollen, rounded appearance of the mitochondria during metabolic disease, as well as 

decreased mitochondrial function as a respiratory organelle. Additional investigation of this 

mechanism in metabolic organs should be the focus of future research.   

 

5.5 HSP72 as a Biomarker of Metabolic Health 

Researchers have shown that HSPs can be released extracellularly (eHSP), specifically 

during exercise [338, 361-364]. HSP release could allow for organ crosstalk and the spread of 

HSPs to various tissues. eHSP72 function in general is associated with activation of the immune 

system [434], and in contrast to the anti-inflammatory actions of intracellular/cytosolic HSP72 

(iHSP72), can induce activation of proinflammatory pathways. Based on this antagonistic action 

of HSP72 on the inflammatory response, the Chaperone Balance Hypothesis contends that the 

balance between eHSP72 and iHSP72 (eHSP72/iHSP72) could determine the extent of tissue 

inflammation, and thereby influence the pathogenesis of insulin resistance and type 2 diabetes 

[532]. According to this hypothesis, an intervention which lowers the eHSP72/iHSP72 ratio 

could in effect improve insulin sensitivity. Long term exercise training results in decreased 

eHSP72 and increased iHSP72 expression (as in skeletal muscle, and as we have observed in 
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the liver), supporting this hypothesis. In addition to the research supporting the many metabolic 

benefits of exercise in post-menopausal women [80-83] and also in patients with NAFLD [137-

139], the effect of exercise on the eHSP72/iHSP72 ratio could be key in preventing metabolic 

dysfunction.  

Importantly, the eHSP72/iHSP72 ratio could be a valuable biomarker for assessment of 

the inflammatory response in metabolic disease. In women, these ratios could be assessed pre- 

and post-menopause in order to identify the development of metabolic syndrome. It equally 

could be used in patients who have risk of diabetes or NAFLD development.  

 
 

5.6 Conclusion 

 These current studies have identified the importance of HSPs in various tissues and 

metabolic diseases. In this work, we identified the importance of HSPs in exercise capacity of a 

postmenopausal model and possible mechanisms of HSP and estrogen receptor interaction in 

skeletal muscle. We also investigated HSPs in an understudied organ, the liver. We identified 

the importance of HSP72 in prevention of steatosis, and the ability of acute and chronic exercise 

to induce HSPs in the liver. Intracellular and extracellular HSP levels could be a valuable marker 

of overall and tissue-specific metabolic health. Clinicians should consider safe and effective 

treatments that induce the heat shock response (e.g. heat and exercise) as viable treatments for 

various metabolic diseases in humans.  
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