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A B S T R A C T

In this comprehensive and detailed study, vacancy-mediated self-diffusion of A- and B-elements in triple-defect
B2-ordered ASB1-S binaries is simulated by means of a kinetic Monte Carlo (KMC) algorithm involving atomic
jumps to nearest-neighbour (nn) and next-nearest-neighbour (nnn) vacancies. The systems are modelled with an
Ising-type Hamiltonian with nn and nnn pair interactions completed with migration barriers dependent on local
configurations. Self-diffusion is simulated at equilibrium and temperature-dependent vacancy concentrations are
generated by means of a Semi Grand Canonical MC (SGCMC) code. The KMC simulations reproduced the
phenomena observed experimentally in Ni-Al intermetallics being typical representatives of the 'triple-defect'
binaries. In particular, they yielded the characteristic ‘V’-shapes of the isothermal concentration dependencies of
A- and B-atom diffusivities, as well as the strong enhancement of the B-atom diffusivity in B-rich systems. The
atomistic origins of the phenomenon, as well as other features of the simulated self-diffusion such as temperature
and composition dependences of tracer correlation factors and activation energies are analyzed in depth in terms
of a number of nanoscopic parameters that are able to be tuned and monitored exclusively with atomistic
simulations. The roles of equilibrium and kinetic factors in the generation of the observed features are clearly
distinguished and elucidated.

1. Introduction

The notion of the ‘triple defect’ was introduced by Wasilewski [1]
who originally defined it as a complex of a single A- or B-antisite defect
and two nn vacancies in a stoichiometric A-50 at% B system with the B2
superstructure (Fig. 1). Generation of ‘triple defects’ stems from a
substantial difference between the formation energies for A- and B-
antisite defects whose consequence is that the system disorders (e.g.
due to increasing temperature) by preferentially creating the antisites
with lower formation energy. Such a phenomenon is called ‘triple-de-
fect disordering’ (TDD). It should be noted that in general TDD de-
termines only statistics of the generated defects which may occur
without the generation of compact ‘triple defects’ as defined by Wasi-
lewski [1].

The tendency for TDD implies: (i) a large difference between the A-
and B-antisite concentrations; (ii) a large difference between the con-
centrations of vacancies residing on α- and β-sublattices (the ‘home’
sublattices of A and B atoms); (iii) an increase of vacancy concentration
with decreasing degree of chemical long-range order – i.e. with an in-
creasing concentration of antisite defects. In the extreme case of the
exclusive generation of A-antisites, their concentration is equal to one
half of the vacancy concentration – i.e. the vacancy concentration

strongly increases with decreasing degree of chemical order. In non-
stoichiometric binaries the tendency for TDD – i.e. lower formation
energy for A-antisites, means that while A-antisites compensate for the
deficit of B atoms in A-rich systems, the B-atoms in B-rich systems re-
main on the β-sublattice and the departure from stoichiometry is
compensated by ‘structural’ α-vacancies. The process of TDD should be
contrasted from the so called triple-defect mechanism of diffusion
which means atomic migration via specifically correlated atomic jumps
mediated by vacancy-pairs [2].

The topic of self or tracer diffusion in stoichiometric and non-stoi-
chiometric A-B B2 intermetallics with the tendency for TDD has been
widely investigated. Except for the basic interest in the physical aspects
of the phenomenon, the studies were taken up due to technological
attraction of the most common TDD alloys (NiAl, FeAl, CoAl, …). As
aluminides, they are successfully applied in industrial manufacturing
and in coatings exposed to high temperature in aggressive and corrosive
environments.

While the number of theoretical and computational studies is fairly
large, experimental works are relatively rare. The main reason for this
lies in the major difficulties posed by experimental tracer-diffusion
methods that require radioactive isotopes of the constituents. Many
TDD alloys have aluminum as the second component which
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unfortunately lacks suitable radioactive isotopes. The direct tracer-dif-
fusion experiments concerned, therefore the transition-metal compo-
nents –mostly Ni, whereas the tracer diffusion coefficient of Al has been
mainly deduced (approximately) from interdiffusion experiments, the
transition-metal self-diffusion coefficient and the thermodynamic
factor.

In 1949, Smoluchowski and Burgess [3] measured the tracer diffu-
sion coefficient of Co in NiAl. Co is known for its general tendency to
substitute for Ni on the Ni sublattice. Radioactive Co was plated on the
NiAl sample and the decrease of activity due to the penetration of co-
balt into material was recorded at 1150 °C. The overall shape of the
graph showing the self-diffusion coefficient of Co vs. concentration of
Ni perfectly resembles one obtained in a more recent experiment by
Frank et al. [4].

In 1971, Hancock and MacDonnell [5] measured the tracer diffusion
coefficient of the radioactive isotope 63Ni in NiSAl1-S polycrystals over
the temperature range of 1270–1600 K. The lowest value of diffusion
coefficient was observed for the stoichiometric alloy (S=0.5), with a
relatively high activation energy of 3.2 eV. It appeared that even a small
excess of Al led to a rapid decrease of the activation energy to 1.84 eV
for S=0.483. Almost symmetrically, for Ni-rich material, tracer dif-
fusion was also faster than in the stoichiometric system, with a gradual
increase of diffusion coefficient and a lowering of the activation energy
towards 2.25 eV for S=0.58.

These results were critically evaluated by Frank et al. [4]. The most
significant improvement with respect to the aforementioned study was
the almost exclusive use of NiSAl1-S monocrystals. Accordingly, the
impact of grain boundaries was minimized leading to diffusion coeffi-
cients that were smaller by about an order of magnitude. The crucial
result of this experiment was that while the Ni-tracer diffusivity sys-
tematically rose with S no significant change of Ni tracer diffusivity was
observed in the range of < <S0.468 0.5.

Much less information is available concerning Al diffusion. In 1975
Lutze-Birk and Jacobi [6] measured 114In tracer diffusion in NiAl. Being
in the same group as Al in the periodic table, 114In replaces Al on the Al
sublattice. As a function of chemical composition the 114In-diffusivity
showed the characteristic ‘V’-shape with the minimum value around the
stoichiometric composition.

Indirect estimation of the tracer diffusion coefficients in Ni-Al from
interdiffusion experiments has recently been performed by Paul et al.
[7] and Minamino et al. [8]. Fig. 2 shows the results obtained by Paul
et al. which suggests that when traced in a logarithmic scale versus
concentration both Ni and Al tracer diffusivities show again the ‘V’-
shape with minima around the stoichiometric composition Ni-50at.
%Al. Another important feature is the intersection of the DNi and DAl
isotherms at <S 0.5.

Predicting rapid growth of the tracer diffusivities of Ni and Al with
an increase of Ni and Al content respectively, the results of Paul and
Minamino are in good qualitative agreement with those of Frank et al.
[4] and Hancock and MacDonnell [5]. In addition, the absolute values

of the tracer diffusion coefficients calculated for Ni and In [6] are very
close to the quantities directly measured in the vicinity of =S 0.5.
However, the symmetrical growth of the Ni diffusivity with decreasing
S (the ‘V’-shape) is in clear contrast with the most reliable results of
Frank et al. [4].

The above experimental results have been widely analyzed in terms
of the activation energy of diffusion and possible mechanisms of atomic
migration responsible for this energy. Such mechanisms operating in
Ni-Al intermetallics at temperatures at which experimental studies are
performed are determined by a very high degree of the B2 long-range
order (LRO) maintained in these systems up to the melting point of
about 1900 K [9]. Krachler et al. [10] remarked on the impact of short-
range chemical order in Ni-Al resulting in the curved shape of the Ar-
rhenius plots of the measured tracer diffusivities [4]. Mishin et al.
[11–13] performed extensive studies of the energetics of point defect
complexes and migration barriers for various diffusion mechanisms in
Ni-Al modelled with interatomic potentials determined within the
embedded atom method (EAM). Soule De Bas and Farkas [14] further
extended that research by considering complex sequences of 10 and 14
atomic jumps. More recently, Chen et al. [15] and Yu et al. [16] ana-
lyzed the atomic migration barriers in Ni-Al applying either angle-de-
pendent interactions or new EAM potentials fitted to the experimental
data. Marino and Carter proposed a more direct computational ap-
proach based solely on density functional theory (DFT) and in a series
of works [17,18] evaluated not only the migration barriers and acti-
vation energies, but also the diffusion coefficients related to particular
mechanisms proposed for Ni tracer diffusion in NiAl.

In 2011 Evteev et al. [19] published an interesting paper showing
the results on Ni- and Al-self diffusion in NiAl simulated directly by
means of Molecular Dynamics. The process was simulated in a layer
limited by [1 1 0]-oriented free surfaces through which vacancies en-
tered the system from outside and reached an equilibrium concentra-
tion. The simulations were performed at a temperature close to the
melting point and yielded a Ni-diffusivity ca. 2.5 times higher than the
Al diffusivity.

An almost complete computational study of diffusion in NiAl was
performed by Xu and Van der Ven [20–22] who combined ab initio
energy calculations with configurational thermodynamics by means of
the Cluster Expansion method. The developed model of Ni-Al covered
the equilibrium vacancy thermodynamics with, however, a priori as-
sumptions concerning their preferential residence on particular sub-
lattices in the B2 superstructure. Equilibrium thermodynamics of the
system including vacancy concentrations was determined by means of
the Semi Grand Canonical Monte Carlo (SGCMC) method assuming a

Fig. 1. Scheme of B2-type superstructure: α-sublattice (unfilled circles); β-
sublattice (filled circles).

Fig.2. Reduced tracer diffusion coefficients of Ni and Al in NiSAl1-S inter-
metallics at 1000 °C deduced from interdiffusion experiments. After Paul et al.
[7]
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zero value of the chemical potential of vacancies. Separately, migration
barriers were calculated in the DFT formalism for different jump types
and local configurations. Consequently, it was possible to use kinetic
Monte Carlo (KMC) to simulate diffusion processes in a system with a
well-defined defect concentration and the degree of chemical order.
The final results concerning the isothermal concentration dependence
of Ni- and Al-diffusivities were in qualitative agreement with the ex-
perimental study of Frank et al. [4] reproducing the growth of Ni-dif-
fusivity with increasing Ni-concentration in Ni-rich binaries. In agree-
ment with the experimental works of Paul and Minamino [7,8] the
same behaviour of Al-diffusivity has been observed. Much less attention
has been paid to the Al-rich systems. The results shown in the work
concern only one composition ( ≈C 0.47Ni ) and may suggest that the
diffusivity growth for both Ni and Al in the Al-rich region is much
weaker than that reported experimentally [5–7]. Exploring the tracer-
diffusion computations, Xu and Van der Ven evaluated the interdiffu-
sion coefficient for Ni-Al which, however, decreased with growing Al
content below =S 0.5. Although this clear contradiction with experi-
ment could be attributed to the polycrystalline character of samples
analyzed in the works [7,8], the authors suggested that it rather re-
sulted from incorrect assumptions concerning the equilibrium vacancy
concentration.

The present work aims at the determination and detailed analysis of
the impact of the tendency for TDD – defined at the beginning of this
section, on self-diffusion of the components in B2-ordering A-B binaries.
Such studies have been taken up in the past (see e.g. [23]) focusing on
the effect of interatomic interactions on the features of diffusion of
system component atoms. By adapting in the model relationships be-
tween the atomic-jump migration energies yielded by ab-initio calcu-
lations dedicated to Ni-Al [22], the present study refers specifically to
this system. The choice facilitates also the assessment of the simulation
findings as the related experimental results with which they might be
compared concern almost exclusively Ni-Al. The presented simulations
address, therefore, vacancy-mediated atomic migration processes in a
B2 superstructure of a TDD system loosely resembling Ni-Al.

By applying a straight forward Ising-type model it is possible to
clearly demonstrate the strict correlation between the equilibrium
thermodynamics of the system (equilibrium configurations of atoms
and vacancies) and the kinetics of self-diffusion. Systems were simu-
lated that represented uniformly a wide range of compositions both in
the A-rich and B-rich side of the AB stoichiometry. The approach pro-
vides a deep understanding of the diffusion phenomenon which is
crucial for any effective development of material technologies.

The paper is organized as follows: The methodology of the study is
described in Section 2 clearly pointing at the equilibrium and non-
equilibrium (kinetic) aspects of the modelled phenomenon. The model
of the simulated A-B binary showing the tendency for TDD and re-
sembling the Ni-Al intermetallic system is presented in Section 3. The
results of the study shown in detail in Section 4 are then widely dis-
cussed in Section 5. The main conclusions are listed in Section 6.

2. Methodology

2.1. General remarks

The methodology of the reported study covers two aspects:

• The determination of the temperature and composition dependence
of the equilibrium atomic and point-defect configurations in the
system.

• The determination of the temperature and composition dependence
of self-diffusivities and tracer correlation factors of the system
components, as well as their activation energies.

In both cases, Monte Carlo (MC) simulations were performed.
Supercells were composed of 25×25×25 unit cells of the B2

superstructure (Fig. 1) – i.e. containing =N 31250 lattice sites be-
longing to equi-numerous α- and β-sublattices and populated with NA

A-atoms, NB B-atoms and NV vacancies. 3D periodic boundary condition
(PBC) were imposed upon the supercells.

2.2. Model for equilibrium configuration of the system

Of interest are the atomic configurations of a binary A-B system
with vacancies. The configurations cover both the distribution of atoms
over lattice sites and vacancy concentration and are parameterized by
means of the following quantities:

• Concentrations of atoms and vacancies on particular μ-sublattices:

= = =C
N

N
μ α β(X A, B, V; , )X

μ X
μ

( )
( )

(1)
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= +C C CX X
α

X
β( ) ( ) (2)

• Indicator of the chemical composition:

=
+

+ + +
S

N N
N N N N

A
α

A
β

A
α

A
β

B
α

B
β

( ) ( )

( ) ( ) ( ) ( ) (3)
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• Pair-correlations (short-range order parameters) for atoms and va-
cancies:

=
∙

C
N

C NXY
μν XY

μν

X tot
μν

( )
( )

( ) (5)

where NXY
μν( ) (X,Y=A,B,V; μ,ν= α,β) denotes the number of −X Y nn

or nnn pairs with X- and Y-species residing on −μ and −ν type sublattice
sites, respectively; = ∑N Ntot

μν
X Y XY

μν( )
,

( )

It is important to note that because N is a sum of the numbers of
atoms and vacancies, a fixed value of S does not imply constant values of
the component concentrations CX defined by Eq. (1).

In the equilibrium state corresponding to given external conditions
particular configurations appear in the system with a specific prob-
ability distribution yielding average values of the above parameters
interpreted as observables. By means of the Monte Carlo simulations it
is possible to find the equilibrium state of the system by generating a set
of configurations showing the equilibrium probability distribution.

The present study was based on the Schapink model for the equi-
librium configuration of a multicomponent system with vacancies [24],
whose simple version was previously applied by one of the authors
[25,26]. In this approach, a lattice gas A-B-V is treated as a regular
ternary system – i.e. vacancies are treated strictly as an additional
chemical component. The crucial property of the lattice gas (and also
the condition for the applicability of the model) is that it shows a
miscibility gap with a critical temperature TC below which it decom-
poses into two phases: one with ≪C 1V and another (unrealistic) one
with ≈C 1V . Then, the basic assumption of the model is that the lattice-
gas phase with ≪C 1V being in equilibrium with the one with ≈C 1V is
identified with the binary A-B crystal in equilibrium – i.e. the crystal
with an equilibrium atomic configuration and equilibrium vacancy
concentration.
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2.3. Search for phase equilibria in the A-B-V lattice gas

Following the idea of Binder et al. [27] equilibrium compositions
and configurations of the A-B-V lattice gas were determined at fixed
temperatures T for arbitrary values of the chemical potentials μX
(X=A,B,V). The procedure aimed at finding their values μX

eq( ) yielding
two solutions: one with ≪C 1V and another with ≈C 1V . Similar to our
previous papers (see e.g. [28]) the lattice gas was examined using a
standard algorithm of Semi Grand Canonical Monte Carlo (SGCMC)
simulations where due to a fixed value of N the system is parameterized
by two independent relative chemical potentials defined in the present
paper as:

= −μ μ μΔ AV A V (6)

= −μ μ μΔ BV B V

The SGCMC algorithm works in the following scheme:

(i) Random choice of a single lattice site occupied by a species ‘X’
(X=A,B,V);

(ii) Random choice of a species type ‘Y’ (Y=A,B,V);
(iii) Replacement of the species ‘X’ by the species ‘Y’ with the

Metropolis probability:

= ⎧
⎨⎩

⎡
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−
− − ⎤

⎦⎥
⎫
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→
→exp

E μ μ
k T
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Δ (Δ Δ )

X Y
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where →EΔ X Y denotes the change of the system configurational energy
due to the →X Y replacement. The quantity kB denotes the Boltzmann
constant. →EΔ X Y is evaluated within a particular model of the system
implemented with the simulations and depends on the current com-
position and configuration of the lattice gas.

(iv) Return to step (i).

Two series of SGCMC runs were performed at each temperature: in
series 1 the simulations started with a perfect B2-ordered supercell with

= = = = =C C C C C; 0A
α

B
β

A
β

B
α

V
( ) ( ) 1

2
( ) ( ) , whereas in the simulations of

series 2 the supercell was initially empty ( = = =C C C0; 1A B V ).
The SGCMC simulations run at temperatures below TC yielded ty-

pical C μ μ(Δ , Δ )V A B isotherms as shown in Fig. 3. The almost cliff-like
discontinuity of the C μ μ(Δ , Δ )V A B surface reflected the coexistence of
the vacancy-rich and vacancy-poor phases. The effect showed well-
marked hysteresis and thus, exact evaluation of μΔ A

eq( ) and μΔ B
eq( ) (the

white line on the −μ μΔ ΔA B plane) required an application of some
further technique (see e.g. [28,29]). In the present work the technique
of thermodynamic integration was chosen (see [28] for detailed de-
scription and references).

2.4. Model of the vacancy-mediated atomic migration

Vacancy-mediated self-diffusion of A- and B-atoms was simulated at
constant temperaturesT by means of the standard Residence-Time KMC
algorithm [30] in samples with fixed chemical compositions (S) and
equilibrium vacancy concentrations CV corresponding to S and T and
determined by the SGCMC runs. The initial atomic and vacancy con-
figurations of the samples were generated by former SGCMC runs – i.e.
the initial values of CX

μ( ) and CXV
μν( ) (X=A,B,V; μ,ν= α,β) were close to

the equilibrium (average) ones.
In view of the fact that in most of the previous papers devoted to the

modelling of diffusion mechanisms in B2-ordering intermetallics, in
particular, in Ni-Al, atomic jumps to both nn and nnn vacancies were
considered, the same was implemented in the KMC algorithm applied in
the present study.

The probability for an atom X (X=A,B) to jump from the initial i
lattice site to a vacancy residing on nn or nnn j lattice site (Fig. 4) is
given by:

= × ⎡

⎣
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m

B
, 0

,
( )

(8)

where: Π0 is a pre-exponential factor whose value depends on the jump-
attempt frequency of the X-atom and thus is, in general, a function of
temperature and the type of jumping atom. The KMC-time increment of:
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is assigned to each executed atomic jump.
→EX i j

m
,

( ) is the migration barrier for the considered jump and ac-
cording to Fig. 4:

= −→ →
+E E EX i j

m
X i j X ij,

( )
: : (10)

Within the model used in the present paper:

=
+
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+ → → +E

E E
E X

2
( )X i j

X i j X j i
bar,

( ) : :

(11)

where the value of +E X( )bar depends exclusively on the type X of
jumping atom.

Consequently,

=
−

+→
→ → +E

E E
E X

2
( )X i j

m X j i X i j
bar,

( ) : :

(12)

As was mentioned in our previous works (see e.g. [31,32]) such
parameterization of →EX i j

m
,

( ) partially accounts for its dependence on a
local configuration around the atom-vacancy pair.

Fig. 3. Typical C μ μ(Δ , Δ )V A B isotherm with a facet showing the coexistence of
the vacancy-rich and vacancy-poor phases. The white line marks the positions
of μΔ A

eq( ) and μΔ B
eq( ) .

Fig. 4. Scheme of the energy parameterisation of a jump of a X-type atom (blue
solid circle) residing on a lattice site i to a vacancy (black open square) residing
on a lattice site j.
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While justification of the negligence of the temperature dependence
of Π0 (Eq. (1) was discussed earlier [32], almost equal values of the
jump-attempt frequencies reported for Ni and Al-atoms (see e.g.
[22,33]) make it reasonable to assume in the present work a constant
value of Π0 equal to unity both for A- and B-atoms.

Finally, it should be noted that fulfilment of the detailed balance
condition [34] by the KMC algorithm guaranteed conservation of the
equilibrium configurations of the samples (i.e. maintenance of constant
average values of CX

μ( ) and CXV
μν( ) ) all over the KMC simulation runs

performed at fixed temperatures.

2.5. Evaluation and analysis of diffusivities and correlation factors

The self-diffusion coefficients DX for X-atoms (X=A, B) were
evaluated from the standard Einstein-Smoluchowski relationship (see
e.g. [35]):

= ⎡
⎣
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dt

R t1
6

( )X
t

X
2

(13)

where 〈 〉R t( )X
2 denotes the monitored mean-square-distance (MSD)

travelled by X-atoms (X=A, B) within the MC-time t – i.e. the value of
R t( )X

2 averaged over all X-atoms in the sample.
Analysis of the evaluated diffusivities in terms of the dynamics of

atomic jumps to vacancies was done within the model of Bakker and
colleagues [36] now extended upon atomic jumps to both nn and nnn
vacancies. Expression of 〈 〉R t( )X

2 in Eq. (13) in terms of elementary
atomic jumps leads to

= ⎡
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where 〈 〉n t( )X
nn( ) and 〈 〉n t( )X

nnn( ) denotes the average numbers of nn and
nnn jumps performed by an X-atom within the MC-time t; ann and annn
denote the distances of the nn and nnn jumps, respectively; f X

corr( ) de-
notes the tracer correlation factor given by [37]:
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The problem is conveniently parameterized with average atomic-
jump frequencies →wμ ν

X( ) defined as average numbers of jumps performed
by one X-atom from μ-sublattice sites to vacancies residing on ν-sub-
lattice sites (μ,ν= α, β) within a unit KMC-time. Values of →wμ ν

X( ) are
directly determined by counting the particular X-atomic jumps exe-
cuted within a fixed number of KMC steps and by dividing the number
of these jumps by the related KMC time interval and the number NX of
X-atoms present in the supercell. Within the microscopic model [36]
they are expressed in terms of the atom-vacancy pair correlations CXV

μν( )

(Eq. (5)) and the migration energies associated with the elementary
atomic jumps (Eq. (8)):

= × × × ⎡
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where:

zμν denotes the number of ν-sublattice sites being nn ( ≠μ ν) or nnn
( =μ ν) of a μ-sublattice site;
〈 〉→E S T( , )X μ ν

m
,

( ) denotes the average over the migration barriers

→EX i j
m
,

( ) associated with the jumps yielding →w S T( , )μ ν
X( ) .

Due to the steady-state character of the simulated self-diffusion – i.e.
conservation of the average atomic configuration (i.e. of the values of
〈 〉CX

μ( ) and 〈 〉CXV
μν( ) ) guaranteed by the KMC algorithm →wμ ν

X( ) fulfils the
detailed balance condition:

=→ →w wμ ν
X

ν μ
X( ) ( )

(17)

Eqs. (16) and (17) yield, therefore, a link between the system en-
ergetics 〈 〉→E{ }X μ ν

m
,

( ) and the configuration parameters C{ }XV
μν( ) . Conse-

quently, they also determine the steady-state atomic configuration of
the system at a temperatureT .

Eq. (17) implies that

〈 〉
=

〈 〉
= +→ → →

n
t

w
n

t
w w2 ; [ ]X

nn

α β
X X

nnn

α α
X

β β
X

( )
( )

( )
( ) ( )

(18)

Combination of Eqs. (14) and (18) yields:

= × × × + + × ×→ → →D w a w w a f1
6

{2 [ ] }X α β
X

nn α α
X

β β
X

nnn X
corr( ) 2 ( ) ( ) 2 ( )

(19)

Eq. (19) makes it possible to demonstrate contributions of particular
atomic jumps to the observed diffusion coefficients and thus to analyze
in such terms the features of the effectively observed self-diffusion.

3. Model of the simulated system

3.1. Hamiltonian

Applied was an Ising-type model of the B2-ordering binary A-B
system with vacancies (and, consequently, of the A-B-V ternary lattice
gas) with nearest-neighbour (nn) V{ }XY

(1) and next-nearest-neighbour
(nnn) V{ }XY

(2) pair-interactions between atoms and vacancies: (X,Y=A,
B,V). It should be noted that because of the varying composition of the
system the SGCMC algorithm involves the total configurational energy
(not only the energy of mixing) and therefore, separate evaluation of all
the individual pair interaction parameters (not only of the ‘ordering
energies’ = − −W V V V2XY

j
XY
j

XX
j

YY
j( ) ( ) ( ) ( ) ) was required.

Evaluation of the V{ }XY
(1) and V{ }XY

(2) parameters was based on the
following criteria to be fulfilled by the modelled ternary A-B-V lattice
gas:

(i) Ternary miscibility gap with a non-zero critical temperature TC.
(ii) B2-ordering of the vacancy-poor lattice-gas phase at temperatures

below the order-disorder temperature −TO D : <−T TO D C.
(iii) Tendency for TDD in the vacancy-poor phase – i.e. preferential

formation of A-antisite defects. With reference to the earlier re-
marks (see Section 1) the tendency for TDD was parameterized by

the ‘triple defect indicator’ TDI defined in Ref. [36] as =TDI
N
N

A
β

V

( )
.

In the stoichiometric AB binary with the tendency for TDD
≈TDI 1/2 should hold through a finite temperature range.

As fulfilment of the above criteria determines only the relationships
between V{ }XY

(1) and V{ }XY
(2) assignment of particular values of the pair

potentials required an arbitrary evaluation of −TO D in the stoichiometric
system with =N NA B. It should be firmly stressed that by no means did
the latter affect meaningful results of the study, which in most cases are
presented with relative (reduced) parameters.

The preliminary search for the proper values of V{ }XY
(1) and V{ }XY

(2) was
done by scanning their space and analytically checking the above cri-
teria within the Bragg-Williams approximation (see [38]). As a starting
point, the values of V{ }XY

(1) found in Ref. [38] were used. A relationship
= − ×V V0.5XY XY

(2) (1) was chosen as an arbitrary assumption. Further ad-
justment was performed by checking the equilibrium atomic config-
urations generated by SGCMC simulations for the fulfilment of the
criteria listed above. It must be emphasized that no calculations are
known by the authors that accounted for interactions with vacancies
and no strict reference to literature data was possible.

The final values of V{ }XY
(1) and V{ }XY

(2) used in the study are displayed in
Table 1.

3.2. Migration barriers (saddle-point energies)

For the sake of the studies of atomic migration the extended Ising
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model was completed with four parameters responsible for atomic
migration: +E A( )nn bar, , +E B( )nn bar, , +E A( )nnn bar, and +E B( )nnn bar, (see Fig. 4
and Eq. (12)). +E X( )nn bar, and +E X( )nnn bar, denote the parameters asso-
ciated with X-atom jumps to nn and nnn vacancies, respectively.

While the relation +E A( )nn bar, < +E B( )nn bar, followed from the pre-
vious work [31], reference to the values of →EX i j

m
,

( ) determined by ab
initio calculations of Xu and Van der Ven [22] (Table 2) suggested that

+E A( )nnn bar, > +E B( )nnn bar, .
Although the evaluation of the +E X( )nn bar, and +E X( )nnn bar, parameters

was achieved by respecting the above criteria, the choice of the parti-
cular values was arbitrary with a lower limit yielded by the obvious
condition of >→E 0X i j

m
,

( ) . Table 3 displays the final values of the
+E X( )nn bar, and +E X( )nnn bar, parameters used in the present KMC simula-

tions.

4. Results

4.1. General remarks

Because of the arbitrary evaluation of the energetic parameters of
the simulated A-B system, presentation of the simulation results in
terms of absolute quantities was generally avoided. The values of par-
ticular parameters were, therefore, normalized to selected character-
istic values as listed in Table 4.

4.2. Adequacy and effectiveness of the Schapink model

Fig. 5 shows an example of the isothermal S-dependence of the re-
lative chemical potentials μΔ AV

eq( )and μΔ BV
eq( ) determined both by directly

analyzing the ‘map’ of Fig. 3 [28] and by calculating their values in
equilibrium configurations generated by standard canonical MC simu-
lations [29].

Almost perfect agreement between the values obtained by both
methods indicates the correctness of the present approach.

The SGCMC simulations of the A-B-V lattice gas revealed a mis-
cibility gap, whose several =S const. sections are shown in Fig. 6.

The equilibrium B2-ordered phases with equilibrium vacancy con-
centrations were analyzed in the range of < <S0.3 0.58 and showed
S-dependent ‘order-disorder’ transition temperatures −TO D never ex-
ceeding the value of TC and reaching the maximum value −TO D

max( ) for
≈S 0.4 (Fig. 7).

4.3. Point defect concentrations and TDD tendency of the system

The SGCMC-generated equilibrium configurations of the system
were analyzed in terms of the T- and S-dependence of point defect
concentrations CX

μ( ) (Eq. (1)), as well as of atom-vacancy pair correla-
tions CXV

μν( ) (Eq. (5)). Arrhenius plots of the parameters were linear in a
wide range of temperatures; however, showed well marked curvatures
in the vicinity of the ‘order-disorder’ transition points (see Fig. 8 for the
plots of CV , CV

μ( ) and CXV
μν( ) ). The effect, obviously following from the

increasing temperature dependence of the degree of LRO and SRO, was
especially enhanced in the case of α-vacancies in B-rich binaries.

As briefly described in Section 1, the departure from stoichiometry
of a B2 binary A-B system with a tendency for TDD is compensated by
structural α-vacancies in A-poor binaries ( <S 0.5) and by structural A-
antisites in A-rich ones ( >S 0.5). The S-dependence of the concentra-
tions of the structural point-defects at →T K0 (i.e. at the absence of
thermally activated defects) follows from the balance ∑ =N NX ν X

ν
,

( )

(X=A,B,V; ν= α,β) which yields:

(i) For structural vacancies ( <S 0.5; = =N N 0A
β

B
α( ) ( ) ):

Table 1
Values of nn (VXY

(1) ) and nnn (VXY
(2) ) pair interaction parameters used in the

study.

X-Y VXY
(1) (eV) VXY

(2) (eV)

A-A –0.12 +0.06
B-B –0.05 +0.02
V-V 0 0
A-B –0.125 +0.062
A-V +0.038 –0.01
B-V –0.001 +0.06

Table 2
Values of the migration barriers →EX i i

m
,

( ) associated with Ni- and Al-atom jumps to
nnn vacancies in NiAl – ab initio calculations [22].

X
→EX α α

m
,

( ) (eV) →EX β β
m
,

( ) (eV) Average (eV)

Ni 2.76 2.05 2.41
Al 2.42 1.49 1.96

Table 3
Values of the migration-barrier parameters: +E A( )nn bar, , +E A( )nnn bar, , +E B( )nn bar,

and +E B( )nnn bar, used in the study.

X +E X( )nn bar, (eV) +E X( )nnn bar, (eV)

A 0.4 1.2
B 0.6 0.5

Table 4
Definitions of normalized (reduced) parameters used in the presentation of the
simulation results.

Reduced Parameter Symbol Reference value

Temperature ∗Tred −T S( )O D

Temperature Tred −TO D
max( ) (Fig. 7)

Atom-vacancy pair correlation C( )XV
μν

red
( ) = =∗C S T( 0.5, 1)V red

Tracer diffusivity D( )X red = =D S T( 0.5, 0.47)A red
Activation energy for tracer

diffusivity
E D( ( ))A X red =E D S( )( 0.5)A A

Activation energy for tracer
correlation factor

E f( ( ))A X
corr

red
( ) =E D S( )( 0.5)A A

Atomic-jump frequency
→w( )μ ν
X

red
( ) = =→w S T( 0.5, 0.47)α α

A
red

( )

Average migration energy 〈 〉→EX μ ν
m

red,
( ) 〈 〉 = =→E S T( 0.5, 0.47)A α α

m
red,

( )

Fig. 5. Relative chemical potentials −μΔ X V corresponding to the phase equili-
bria in the A-B-V lattice gas at =T 0.47red . Coloured solid circles denote the
values determined according to Ref. [29]; open circles represent the values
determined by thermodynamic integration [28].

J. Betlej, et al. Computational Materials Science 172 (2020) 109316

6



= −N N NV
αstruct

B A
( ) (20)

= = −
+ + −

= −
−

C
N

N
N N

N N N N
S
S( )

1 2
2(1 )V

αstruct V
αstruct

B A

B A B A

( )
( )

(21)

(ii) For structural A-antisites (S > 0.5, =C 0V ):

− = + =N N N N N
2A A

βstruct
B A

βstruct( ) ( )
(22)

= = −
+

= −C
N

N
N N
N N

S
2( )

1
2A

βstruct A
βstruct

A B

A B

( )
( )

(23)

Fig. 9 shows the S-dependence of the vacancy and antisite con-
centrations extrapolated to →T K0 .

The curves →C S T K( , 0 )A
β( ) and C S( )A

βstruct( ) , as well as
→C S T K( , 0 )V

α( ) and C S( )V
αstruct( ) coincided almost ideally in the range of

>S 0.5 and < <S0.45 0.5, respectively. This behaviour clearly in-
dicated the triple-defect character of the system. In the range of

<S 0.45 the curve →C S T K( , 0 )V
α( ) deviated, however, from C S( )V

αstruct( )

towards lower values of CV
α( ) which was accompanied by an increase of

the concentration of B-antisites, appearing already at =S 0.5 (see the
inset in Fig. 9) and contributing to the compensation of the deficit of A-
atoms on the α-sublattice. Remarkably, A-antisites definitely absent
below =S 0.5 re-appeared at <S 0.4. The observed effects, especially
the decrease of the vacancy concentration below the value of CV

αstruct( ) ,
indicate that the decrease of A-atom concentration caused a decay of
the tendency for TDD of the system.

4.4. Temperature and composition dependence of tracer diffusivities of A-
and B-atoms

Fig. 10 shows the Arrhenius plots of A- and B-atom diffusivities
evaluated by means of Eq. (13) applied to the KMC-time dependences
〈 〉R t( )X

2 of the MSD yielded by KMC simulations.
Similarly as in the case of CV , CX

μ( ) and CXV
μν( ) the Arrhenius plots of DA

and DB showed curvatures close to the order-disorder transition point
−TO D, but the linear segments make it possible to evaluate the activation

energies E D( )A X for A- and B-atoms self-diffusion (Fig. 11).
Both activation energies showed maximum values close to =S 0.5.

While <E D E D( ) ( )A A A B held for >S 0.4, a strong decrease of E D( )A B

with decreasing S caused that the relationship inverted at ≈S 0.4. The
decrease of E D( )A A for >S 0.5 means there is qualitative agreement
between the reported simulation results and the corresponding ex-
perimental data on Ni-tracer diffusion in NiAl [4,5].

Fig. 12 presents the isotherms D S( ) ( )A red and D S( ) ( )B red corre-
sponding to =T 0.47red and =T 0.78red . The curves showed the char-
acteristic asymmetric ‘V’-shapes with minima located at =S 0.43 and

=S 0.5, respectively (see the inset in Fig. 11a). The ‘V’-shape of
D S( ) ( )B red was definitely more pronounced and clearly visible in a
logarithmic scale (Fig. 11c,d). Besides, the curve increased much
stronger with decreasing S than did D S( ) ( )A red with increasing S. As a
result, the relationship >D DA B observed in the range of A-rich binaries
inverted at ≈S 0.4 where the D S( ) ( )A red and D S( ) ( )B red curves inter-
sected. Both features qualitatively corroborate with the experimental
results [4,6,7].

Temperature dependences of the positions of the diffusivity minima
and of the intersection of D S( )A and D S( )B are displayed in Fig. 13a and

Fig. 6. Sections of the miscibility gap of the A-B-V lattice gas: red solid squares represent the ASB1-S systems with an equilibrium vacancy concentration: (a) =S 0.31;
(b) =S 0.46; (c) =S 0.5; (d) =S 0.59.

Fig. 7. S-dependence of the reduced ‘order-disorder’ transition temperature in
the simulated A-B binaries with vacancies.
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b. While the minima of both D S( )A and D S( )B shifted towards lower
values of S with increasing temperature (Fig. 13a), the location of

=D DA B remained at ≈S 0.4 in the whole range of < <T0.47 0.8red

(Fig. 13b) – which obviously resulted in =E D( )A A E D( )A B observed at the
same value of S (Fig. 11).

4.5. Elucidation of atomistic origins of the features of A- and B-tracer
diffusivities

The analysis was based on the atomistic model of self-diffusion and

the relationships given by Eqs. (13)–(19) expressing self-diffusion
coefficients D T S( , )X (observables) in terms of tracer correlation factors
f T S( , )X

corr( ) and atomic-jump frequencies →w T S( , )μ ν
X( ) which, in turn,

depended on atom-vacancy pair correlations C T S( , )XV
μν( ) and the

average migration barriers 〈 〉→E T S( , )X μ ν
m
,

( ) (Eq. (16)). Each one of the
above parameters, as well as its composition- and temperature-depen-
dence was independently evaluable by means of MC simulations.

4.5.1. Tracer correlation factors
Fig. 14 shows the temperature and composition dependences of the

tracer correlation factors f A
corr( ) and fB

corr( ) .
The linear parts of the Arrhenius plots of f X

corr( ) yielded effective
activation energies E f( )A X

corr( ) traced in Fig. 15a against S. Fig. 15b and c
show the S-dependence of two relationships between E f( )A X

corr( ) and the
total activation energies E D( )A X for self-diffusion (Fig. 11): the differ-
ence between both activation energies (Fig. 15b) and the contribution
of E f( )A X

corr( ) to E D( )A X (Fig. 15c).
According to Eq. (14) the activation energy E f( )A X

corr( ) additively
contributes to the activation energy E D( )A X for X-atom tracer-diffusion.
The difference −E D E f( ) ( )A X A X

corr( ) yields, therefore, the part of E D( )A X

stemming directly from the kinetics of atomic jumps to vacancies. The
graphs in Fig. 15c show, in turn, that the contribution of the activation
energy E f( )A X

corr( ) to the total activation energy E D( )A X for X-tracer
diffusion never exceeded 30%.

4.5.2. Analysis of D (T, S)X in terms of atomic jump frequencies, atom-
vacancy pair-correlations and average migration barriers.

The pure effect of →wμ ν
X( ) on the diffusivities is manifested by the

values of D S T( , )X evaluated with Eq. (13) divided by the corre-
sponding values of f S T( , )X

corr( ) evaluated independently with Eq. (15).
Elucidation of the atomistic origin of the observed features of A- and B-
atom diffusivities follows, in turn, from the analysis of the interrelations

Fig.8. Arrhenius plots of (a) total vacancy concentration CV ; (b) α-vacancy concentration CV
α( ) ; (c) β-vacancy concentration CV

β( )and (d) atom-vacancy pair corre-
lations CXV

μν( ) determined by SGCMC simulations of ASB1-S binaries.

Fig. 9. S-dependence of CV
α( ) , CA

β( ) and CB
α( ) extrapolated to →T K0 . The solid

red line and the dashed black line denote the S-dependences of the con-
centrations of structural A-antisites and structural A-vacancies, respectively,
according to Eqs. (21) and (23).
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between atom-vacancy pair-correlations (CXV
μν( ) ), average migration en-

ergies (〈 〉→EX i μ j ν
m
, ( ) ( )

( ) ) and the atomic-jump frequencies ( →wμ ν
X( ) ).

Fig. 16 presents two sequences of the isotherms D f S T[ / ]( , )X X
corr( ) ,

→w S T( , )μ ν
X( ) , C S T( , )XV

μν( ) and 〈 〉→E S T( , )X μ ν
m
,

( ) corresponding to =T 0, 47red
and =T 0.78red .

The graphs in Fig. 16(a)–(d) clearly indicate that:

(i) The shapes of D S( )X (Fig. 6) and D f S[ / ]( )X X
corr( ) are qualitatively

similar. The division by f X
corr( ) slightly shifted the minima of D S( )A

and D S( )B towards lower and higher values of S, respectively.
(ii) Only nn intersublattice A-atom jumps are effectively active and the

S-dependence of their frequencies →wα β
A( ) definitely controls the

shape of D f S[( ) / ]( )A red A
corr( ) . In particular, the minimum value of

D f( ) /A red A
corr( ) and its substantial increase in the range of >S 0.4

result, from a similar behaviour of →w S( )α β
A( ) .

(iii) B-atom diffusion proceeds via all three kinds of nn and nnn B-atom
jumps, however, while the nnn α↔ α jumps and the much less
frequent nn α↔ β ones definitely dominate in the range of <S 0.5,
the nnn β↔ β jumps are the most frequent in the range of ≥S 0.5.
Therefore, while the strong increase of DB at <S 0.5 is due to the
strong increase of →wα α

B( ) , the minimum of D S( )B at ≈S 0.5 actually
results from the minimum of →wβ β

B( ) .
(iv) Increasing the temperature causes a general increase of all the

atomic-jump frequencies and shifts the minima of →w S( )μ ν
X( ) towards

lower values of S. Mutual relationships between the values of →wμ ν
X( )

remain unaffected.

The graphs in Fig. 16(c)–(h) illustrate the crucial effect of the

equilibrium atomic configuration of the system parameterized by the
atom-vacancy pair-correlations C{ }XV

μν( ) and of the average migration
energies 〈 〉→E{ }X μ ν

m
,

( ) on the corresponding atomic-jump frequencies

→w{ }μ ν
X( ) and finally, on the S-dependence of the tracer diffusivities DA and

DB.
It is concluded that:

(i) The fast increase of the B-atom diffusivity in B-rich binaries is
mainly due to the fast increase of the B-antisite – α-vacancy cor-
relations CBV

αα( ) which, together with a low and almost constant
value of the corresponding average migration energy 〈 〉→EB α α

m
,

( ) ,
yields a very strong increase of the corresponding atomic jump
frequency →wα α

B( ) . The process is additionally supported by a much
weaker increase of both CBV

βα( ) and CBV
αβ( ) which, when accompanied

with a decrease of initially high 〈 〉→EB β α
m
,

( ) , yields an increase of

→wα β
B( ) .

(ii) An increase of the A-atom diffusivity in the A-rich binaries is due to
a simultaneous increase of both CAV

βα( ) and CAV
αβ( ) occurring at almost

constant values of 〈 〉→EA β α
m
,

( ) and 〈 〉→EA α β
m
,

( ) .
(iii) The minimum of D S( )B and of the corresponding jump frequency

→wβ β
B( ) observed at ≈S 0.5 clearly coincides with the minimum of

the B-atom-vacancy pair correlation CBV
ββ( )

(iv) The atomistic origin of the minimum of the A-atom diffusivity
D S( )A stemming from the minimum of →w S( )α β

A( ) observed at ≈S 0.4
is more complex. The single minimum of →w S( )α β

A( ) results from an

interplay between the definitely non-coinciding minima of C S( )AV
αβ( )

and C S( )AV
βα( ) (Fig. 16g,h) and the S-dependence of the average

migration energies 〈 〉→EA α β
m
,

( ) and 〈 〉→EA β α
m
,

( ) . The position of the

minimum →w S( )α β
A( ) almost coincides with a point where the iso-

therms 〈 〉→E S( )A α β
m
,

( ) and 〈 〉→E S( )A β α
m
,

( ) intersect and which, according
to Eq.(12), marks the composition S where the A-atom jumps to a
nn vacancy generates no change of the system configurational
energy.

4.5.3. Composition dependence of the tracer correlation factors
Low values of f X

corr( ) mean that the effective distance travelled by
tracer atoms is reduced despite the execution of elementary jumps to
vacancies – i.e. a great number of jumps are reversed. It is expected that
the probability for the reversals of an X-atom →i μ j ν( ) ( ) jumps – i.e. of
X-atom oscillations between the sites i μ( ) and j ν( ), is the higher, the
higher is the difference between the corresponding migration energies

= −↔ → →E E EΔ | |X i μ j ν
m

X i μ j ν
m

X i ν j μ
m

: ( ) ( )
( )

: ( ) ( )
( )

: ( ) ( )
( ) . Fig. 17 clearly illustrates the

occurrence of the effect in the simulated A-B binaries.
In the case of A-atoms which migrate predominantly via nn inter-

sublattice jumps the S-position of the minimum of the correlation factor
f A

corr( ) coincides with the maximum of 〈 〉↔EΔ A α β
m
:

( ) . The correlation factor
fB

corr( ) shows a minimum at ≈S 0.43 – i.e. in the area where both nn
α↔ β and nnn α→ α B-atom jumps are almost equally active and,
therefore, both contribute to the effect. The shift between the positions

Fig. 10. Examples of the Arrhenius plots of A-atom (a) and B-atom (b) diffusivities determined by KMC simulations of ASB1-S binaries.

Fig. 11. S-dependence of the reduced activation energies E D( )A A red and
E D( )A B red.
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of the minimum fB
corr( ) and maximum 〈 〉↔EΔ A α β

m
:

( ) is probably due to the
nnn α→ α jumps. Their average migration barriers are lower than

+E B( )nnn bar, which, in view of Eq. (12), means that the atoms jump most
often to positions corresponding to lower configurational energy. An
increase and maximum observed on 〈 〉↔E S( )B α α

m
:

( ) (Fig. 17b) suggests that
contribution of jumps with a higher migration energy increases and this
means more cases of oscillations.

5. Discussion

5.1. General remarks

The effect of composition and temperature on a steady-state va-
cancy-mediated tracer diffusion of components was simulated in a B2-
ordering A-B binary showing the tendency for TDD. The system was
modelled with Ising-type nn (VXY

(1) ) and nnn (VXY
(2) ) pair interactions be-

tween atoms and vacancies (X,Y=A,B,V) and with migration-barrier
parameters +E X( )nn bar, , +E X( )nnn bar, controlling the heights of the migra-
tion barriers encountered by the jumping atoms. The migration-barrier
parameters assigned to A- and B-atom jumps to nn and nnn vacancies

Fig. 12. Examples of the isotherms D( )A red and D( )B red traced in linear (a), (b) and in logarithmic (c), (d) scales.

Fig.13. (a) Reduced-temperature dependence of the positions of the minima of D S( ) ( )A red and D S( ) ( )B red ; (b) Reduced-temperature dependence of the difference
−D DB A for selected values od S.
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were evaluated with reference to some ab initio calculations concerning
Ni-Al [22] and thus, to that extent, the simulated system might be
considered as resembling that real one. According to the applied
parameterization (Fig. 4, Eq. (12)) the resulting migration barriers were
partially dependent on local configurations of the jumping atoms.

Tracer diffusion running in bcc supercells with equilibrium vacancy
concentration, as well as with equilibrium atomic and vacancy con-
figuration was simulated by means of a rigid-lattice KMC algorithm.
The equilibrium states of the supercells were generated by means of an
SGCMC algorithm applied to the Schapink model [24] of phase equi-
libria in the ternary A-B-V bcc lattice gas.

The main interest was focused on the effect of the tendency for TDD;
in particular, on the origin of the ‘V’-shapes of the diffusivity isotherms
and of the strong enhancement of the B-atom diffusion in the B-rich
binaries.

Because the applied rigid-lattice approximation does not allow for
the loss of the bcc structure, its stability (e.g. melting), or definite re-
arrangements of atomic and vacancy configuration (e.g. the formation
of phases mimicking Al3Ni2 or Al3Ni5 which neighbour β-NiAl in the Ni-
Al system [39]) were beyond the performed MC simulations.

5.2. Reliability of the model

5.2.1. Ising-type Hamiltonian and migration barriers
As clearly stated earlier, the evaluation of both the values of the

pair-interaction parameters (VXY
(1) and VXY

(2) (X,Y=A,B,V)) and migra-
tion-barrier parameters ( +E X( )nn bar, and +E X( )nnn bar, ) of the simulated A-B
system was mostly arbitrary. Nevertheless,

• The values of VXY
(1) and VXY

(2) (Table 1) implemented in the Schapink

model of the equilibrium atomic configuration [24] reproduced the
basic ‘TDD’ properties of the A-B system (Fig. 9). This result justifies
not only the (arbitrary) choice of the values of pair interactions, but
also the validity of the Schapink model and its quite specific concept
of equilibrium configuration. In view of the technical simplicity of
the implementation of the method with SGCMC simulations finally
yielding atomic configurations equilibrated simultaneously with
respect to vacancy concentration and the degree of chemical order,
the result is of importance for the development of this sort of
modelling.

• Evaluation of +E X( )nn bar, and +E X( )nnn bar, (X=A,B) was on one hand
done with reference to the ab initio calculations, but on the other
hand, involved the approximation of assigning values of these
parameters exclusively to distances of atomic jumps to vacancies
and to the kinds of jumping atoms. In view of Eq. (12) the applied
migration-barrier parameters affected much more the effective mi-
gration barriers for nnn jumps (maintaining the degree of chemical
order) than those for nn intersublattice jumps. The applied values of

+E X( )nn bar, yielded large difference between the migration eneries for
the A-atom and B-atom nn jumps which considerably reduced the B-
atom mobility in A-rich binaries. The nn B-atom jumps were, how-
ever, never totally blocked – as was done e.g. in Ref. [22]. Com-
parison of the values of the migration energies evaluated ab initio for
Ni nnn jumps in Ni-Al (Table 2) and the corresponding parameters
applied in the present work (Table 3) suggests that the roughest
approximation concerned equal barriers for nnn A-atom jumps
within α- and β-sublattices. The net effect of this discrepancy on the
relationship between the evaluated diffusivities should, however, be
small because the very low β-vacancy concentration definitely hin-
dered the A-atom migration within the β-sublattice (regardless of

Fig. 14. Tracer correlation factors for A- and B-atom diffusion: Examples of Arrhenius plots of f A
corr( ) (a) and fB

corr( ) (b); Examples of the isotherms at =T 0.47red (c) and
at =T 0.78red (d).
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the height of the related migration barriers).

The low value of +E B( )nnn bar, enhanced the migration of B-antisites
within the α-sublattice. Their presence resulted, however, from the
equilibrium configuration controlled by the pair-interaction para-
meters. Qualitatively, the value of +E B( )nnn bar, had no effect on the shape
of D S( )B , but controlled the position =S D D( )A B of the intersection of
D S( )A and D S( )B (Fig. 18).

5.2.2. Contribution of atomic jumps to nnn vacancies
Occurrence of direct atomic jumps to nnn vacancies, especially in

systems showing high B2-ordering energy is considered realistic [40]
and their contribution to the vacancy-mediated diffusion in inter-
metallics was discussed in a number of works concerning the analysis of
possible atomistic mechanisms of the phenomenon. Despite an ample
number of related studies, most of the works addressing the Ni-Al
system (see e.g. [10,14,16,21]) were devoted to Ni self-diffusion in Ni-
rich binaries where the nnn jumps of Ni atoms were ruled out due to
high migration barriers. Both Ni and Al self-diffusion in B2 Ni-Al was
modelled by Xu [22] whose ab-initio calculations – unfortunately,
concerning again mainly the stoichiometric and Ni-rich binaries (only
one example of an Al-rich alloy was considered) – showed that because
of low migration barriers (in contrast to the case of Ni atoms), the nnn
jumps of Al atoms cannot be excluded. It was shown that the nnn Al-
atom jumps are involved in the proposed ‘triple-defect’ diffusion me-
chanism definitely contributing to the process.

In the present work, two features of self-diffusion experimentally
observed in Ni-Al were elucidated in terms of the operation of B(Al)-
atom jumps to nnn vacancies in the ‘triple-defect’ A-B (Ni-Al) binaries:
(i) the strong increase of DB Al( ) in the B(Al)-rich systems resulting from

the increase of the frequency of B(Al)-antisite nnn jumps due to both
low migration barriers assumed with reference to [22] and the high
concentrations of B(Al)-antisites and α-vacancies and (ii) the minimum
value of DB at =S 0, 5 resulting from the minimum value of the fre-
quency of B-atom jumps to the nnn β-vacancies (such jumps were found
to dominate at this composition). Regrettably, the results cannot be
compared with literature data on the analogous modelling as neither Xu
[22], nor, to the authors knowledge, any other authors modelled sys-
tematically the concentration dependence of self-diffusion in B(Al)-rich
A-B (Ni-Al) binaries.

Finally, it should be mentioned that the results of the present study
find support in recent experimental findings obtained for self-diffusion
in NiAl by means of X-ray Photon Correlation Spectroscopy [41]. The
results suggest a large contribution of atomic jumps in [1 0 0] direc-
tions, obviously meaning the nnn ones.

5.3. Effect of temperature and composition on the system tendency for TDD

According to the definition (see Section 1), the strength of the
system tendency for TDD can be measured by the difference between
the formation energies for A- and B-antisites. The analysis was per-
formed by applying two alternative parameters measuring the antisite
formation energies: (i) E A( )f β( ) ( ) (E B( )f α( ) ( ) ) equal to differences be-
tween average potential energies of A-(B-) atoms on antisite and right
positions; (ii) →E A V( )f α β( ) ( ) ( →E B V( )f β α( ) ( ) ) equal to average in-
crements/decrements of the system configuration energy due to atomic
jumps to nn vacancies residing on antisite positions (i.e. due to

↔A Vα β( ) and ↔B Vβ α( ) ) exchanges). In view of Eq. (12),
→E A V( )f α β( ) ( ) and →E B V( )f β α( ) ( ) equal the differences

〈 〉 − 〈 〉→ →E EA α β
m

A β α
m

,
( )

,
( ) and 〈 〉 − 〈 〉→ →E EB β α

m
B α β

m
,

( )
,

( ) between the average mi-
gration energies associated with the nn jumps of A- and B-atoms,

Fig.15. S-dependence of: (a) E f( ( ))A A
corr

red
( ) and E f( ( ))A B

corr
red

( ) ; (b) the differences −E D E f( ( )) ( ( ))A A red A A
corr

red
( ) and −E D E f( ( )) ( ( ))A B red A B

corr
red

( ) ; (c) the ratios
E f E D( )/ ( )A A

corr
A A

( ) and E f E D( )/ ( )A B
corr

A B
( ) .
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respectively.
Fig. 19 shows: (a) isothermal S-dependences of E A( )f β( ) ( ) , E B( )f α( ) ( )

and of their differences = −E B A E B E AΔ ( , ) ( ) ( )f α β f α f β( ) ( ) ( ) ( ) ( ) ( ) ( ) and
(b) isothermal S-dependences of →E A V( )f α β( ) ( ) , →E B V( )f β α( ) ( ) and
the difference → → = → −E B V A V E B V EΔ ( , ) ( )f β α α β f β α f( ) ( ) ( ) ( ) ( ) ( )

→A V( )α β( ) .
Positive values of E B AΔ ( , )f α β( ) ( ) ( ) and ↔ ↔E B V A VΔ ( , )f β α α β( ) ( ) ( )

over all of the range of S indicate the maintenance of the tendency for
TDD, whose strength reached, however, a maximum at =S 0.5 and
continuously decreased when departing from the stoichiometric com-
position of the system.

It is remarkable that while the values of E A( )f β( ) ( ) and E B( )f α( ) ( )

were positive over all of the explored range of the chemical composition
of the system (which guaranteed stability of the B2 superstructure), the
energy →E A V( )f α β( ) ( ) was negative for >S 0.4 indicating that A-atom-
β-vacancy exchanges decreased the system configuration energy within
this range of the chemical composition.

As was demonstrated in Fig. 9, the ground-state configurations of
the A-B binaries showed features typical for a TDD system: the de-
parture from the stoichiometric chemical composition ( =S 0.5) was

compensated exclusively by structural A-antisites at >S 0.5 and pre-
dominantly by structural α-vacancies at <S 0.5 (few B-antisites started
to appear already at =S 0.5).

The effect of temperature on the curves corresponding to →T 0K
(Fig. 9) is illustrated by Fig. 20 which displays the same curves together
with the analogous equilibrium point-defect concentration isotherms
corresponding to =T 0.47red .

The graphs indicate that the isotherms corresponding to >T 0K
conserved the general memory of their shapes at →T 0K. The tem-
perature effect on equilibrium configurations consisted of the activation
of thermal antisites and vacancies causing an increase of the values of
CV

α( ) , CV
β( ) , CA

β( ) and CB
α( ) . The following particular temperature-induced

features directly influenced tracer diffusivities: (i) monotonic growth of
CV

α( ) with S decreasing down to ≈S 0.35; (ii) the presence of β-vacancies
(absent at →T 0K) with concentration ≪C CV

β
V

α( ) ( ) showing a sharp
minimum at ≈S 0.5 (see the inset in Fig. 20); (iii) replacement of the
onsets of the appearance of A-antisites ( ≈S 0.4) and B-antisites
( ≈S 0.5) at →T 0K by minima of C S( )A

β( ) and C S( )B
α( ) . Positions of those

minima moved with increasing temperature towards lower values of S.

Fig. 16. Isothermal S-dependence at =T 0.47red and =T 0.78red of the reduced values of: D f/X X
corr( ) (a),(b); →wμ ν

X( ) (c),(d); CXV
μν( ) (e),(f),(g),(h); 〈 〉→EX μ ν

m
,

( ) (i),(j),(k),(l). The
graphs (g) and (h) show C S( )XV

μν( ) in a scale visualizing the minima discussed. The solid lines are for eye guidance only.
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Fig. 16. (continued)

Fig.17. Isothermal S-dependence of the tracer correlation factors f X
corr( ) and of the averaged values of ↔EΔ X i μ j ν

m
: ( ) ( )

( ) corresponding to the dominating X-atom jumps at

=T 0.47red : (a) f A
corr( ) and 〈 〉↔EΔ A i α j β

m
: ( ) ( )

( ) ; (b) fB
corr( ) , 〈 〉↔EΔ B i α j α

m
: ( ) ( )

( ) and 〈 〉↔EΔ B i α j β
m
: ( ) ( )

( ) . The dashed line in (b) marks the value of +E B( ( ))nnn bar red, .
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5.4. Effect of the system tendency for TDD and its decay on vacancy-
mediated atomic migration and tracer diffusion

As the tendency for TDD belongs to the domain of equilibrium
thermodynamics, it affected directly the composition dependence of the
atom-vacancy correlations CXV

μν( ) . The principal factors of this influence
were: (i) very low values of CV

β( ) over all the range of S and (ii) con-
tinuous increase of CV

α( ) with decreasing S stemming from the presence
of structural vacancies in the B-rich systems. As a result, the B-rich
binaries contained many more vacancies than did the A-rich ones which
resulted in a much stronger increase of the values of CBV

μν( ) with de-
creasing S with respect to the analogous increase of the values of CAV

μν( )

with increasing S (Fig. 16 e,f).
The final effect of CXV

μν( )on the atomic-jump frequencies involved the
values of the migration energies 〈 〉→EX μ ν

m
,

( ) depending on the parameters
+E X( )nn bar, and +E X( )nnn bar, (Table 3).
In such terms, the ‘V’-shapes of the D S( )A and D S( )B isotherms may

be discussed by pointing out two aspects: (i) the origin and positions of
the minima and (ii) the origin of different slopes of the growth of the
diffusivities away from the minima.

5.4.1. Minima of D S( )X

• The minimum of D S( )B is observed at ≈S 0.5 (Fig. 12) where B-
atoms migrate predominantly via nnn jumps within β-sublattice

(Fig. 15c,d). Due to the effect of fB
corr( ) it is slightly displaced with

respect to the minimum of the corresponding frequency →wβ β
B( ) clearly

correlated with the minimum of CBV
ββ( ) which finally follows from the

minimum of CV
β( ) observed at ≈S 0.5.

• The minimum of D S( )A is observed away from the stoichiometric
composition at ≈S 0.43 (Fig. 12) and similarly, as in the case of
D S( )B , the S-dependence of f A

corr( ) shifts its position away from the
minimum of →wα β

A( ) . The minimum of →wα β
A( ) results, however, from an

interplay between the S-dependences of different atom-vacancy pair
correlations C S( )AV

αβ( ) and C S( )AV
βα( ) and the corresponding average

migration energies 〈 〉→E S( )A α β
m
,

( ) and 〈 〉→E S( )A β α
m
,

( ) which also differ one
from each other and strongly vary with S in the vicinity of the
minimum.

In conclusion, the atomistic origins of the minima of D S( )A and
D S( )B are substantially different and the presented simulation results
yield no reasons for their possible coincidence – which, if observed,
could be accidental. Besides, it should be noted that as no known ex-
periments on Ni-tracer diffusion in Ni-Al covered the range of

<C 0.47Ni , the present results may explain the long-time controversy
concerning the ‘V’-shape of D S( )Ni .

5.4.2. Slopes of D S( )X

Enhancement of the A-tracer diffusion and the resulting increase of
DA at >S 0.43 clearly followed from the increase of =→ →w wα β

A
β α

A( ) ( ) which
was due to the increase of the number of A-antisites. The effect found
no support from the vacancy concentration which generally decreased
despite a very small increase of CV

β( ) . As a result, a moderate increase of
CAV

βα( ) and a weak increase CAV
αβ( ) were observed which combined with

constant 〈 〉 < 〈 〉→ →E EA α β
m

A β α
m

,
( )

,
( ) and yielded an increase of →wα β

A( ) . Despite a

very high value of CAV
αα( ) almost no nnn A-atom jumps occurred because

of the very high migration barrier assumed. On the other hand, a very
high value of the migration energy 〈 〉→EB β α

m
,

( ) and a very low concentra-
tions of B-antisites and β-vacancies naturally reduced the B-atom ac-
tivity at >S 0.5. Some increase of DB (whose value was definitely lower
than DA) occurred due to an increase of →wβ β

B( ) and →wα β
B( ) following from

an increase of CV
β( ) and consequently of CBV

ββ( )and CBV
αβ( ) (Fig. 16c–f).

In contrast to the case of A-atom diffusion at >S 0.43, the strong
enhancement of B-atom diffusion observed at <S 0.5 was due to in-
creasing numbers of B-antisites and α- and β-vacancies and a decrease
of 〈 〉→EB β α

m
,

( ) resulting in an increase of the frequencies of all kinds of the
B-atom jumps with definite domination of →wα α

B( ) . The increase of the α-
vacancy concentration was very strong and occurred in parallel with
the decay of the tendency for TDD followed, in turn, by raising the
number of B-antisites and thus, by increasing B-antisite-α-vacancy

Fig. 18. Effect of +E B( )nnn bar, on the value of =S D D( )A B at =T 0.47red .

Fig. 19. Isothermal S-dependence of (a) E A( )f β( ) ( ) , E B( )f α( ) ( ) and E B AΔ ( , )f α β( ) ( ) ( ) ; (b) ↔E A V( )f α β( ) ( ) , ↔E B V( )f β α( ) ( ) and ↔ ↔E B V A VΔ ( , )f β α α β( ) ( ) ( ) at =T 0.47red .
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correlation CBV
αα( ) . Due to the low migration energy 〈 〉→EB α α

m
,

( ) , the jump
frequency →wα α

B( ) was also intensively increasing. The also observed
growth of →wα β

B( ) and →wβ β
B( ) was caused by the diminishing difference

between 〈 〉→EB α β
m
,

( ) and 〈 〉→EB β α
m
,

( ) , as well as by growing CV
β( ) .

The intensive increase of DB started right at ≈S 0.5 – i.e. before DA
reached its minimum and in view of the much weaker S-dependence of
the A-atom diffusivity the value of DB became finally higher than DA.

5.5. Outlook for further investigations

Ab initio modelling of Ni-Al yields the virtual B2→A2 ‘order-dis-
order’ transition point in these binaries close to 6000 K [42] – far above
the experimentally observed melting point (inaccessible of course
within the rigid-lattice MC simulations). Hence, the reduced tempera-
tures Tred corresponding to most of the reported diffusion experiments
performed on Ni-Al (usually at ≈T 1000K) do not exceed the level of
0.2. As MC simulations performed at such low temperature are in-
efficient and yield large uncertainties of the evaluated parameters, the
computer experiments are performed much higher in the reduced-
temperature scale. In this way, reliable temperature dependences of the
parameters of interest are determined. By extrapolating these de-
pendences to the experimental conditions, not only qualitative, but also
quantitative correspondence between the simulated and real properties
of Ni-Al and other strongly ordered systems might be attained. Such an
option seems especially attractive for KMC simulations implemented
with ab-initio based Hamiltonians – e.g. parameterized with Effective
Cluster Interactions (ECI) evaluated within the Cluster Expansion (CE)
formalism (as was done in Ref. [22]).

6. Conclusions

• Vacancy-mediated tracer diffusion of the components of a B2-or-
dering binary systems A-B showing a tendency for TDD and loosely
resembling the Ni-Al compounds was simulated in a wide range of
concentration by means of a KMC algorithm. The process was run in
crystals with equilibrium configurations and vacancy concentrations
generated by a SGCMC algorithm. Features of the temperature and
composition dependence of the component diffusivities were eluci-
dated in terms of the frequencies of elementary atomic jumps to nn
and nnn vacancies.

• High B(Al)-atom diffusivity in B(Al)-rich binaries was found to be
due to enhanced B(Al)-antisite migration via jumps to nnn α-va-
cancies. The diffusivity strongly increased with increasing B(Al)-
atom concentration because of the strong increase of both α-vacancy

and B(Al)-antisite concentrations caused by a gradual decay of the
system tendency for TDD.

• The isothermal concentration dependence of the B(Al) atom tracer
diffusivity definitely showed a ‘V’-shape with a minimum at the
stoichiometric composition ( =S 0.5). The atomistic origins of the
shape, as well as of the position of the minimum were explained.

• Although the ‘V’-shape was observed also in the case of the iso-
thermal concentration dependence of the A(Ni) atom tracer diffu-
sion, its atomistic origin was different. The minimum was located at

<S 0.5 – away from the stoichiometric composition. This finding
might suggest the reason for the discrepancies between the related
experimental results.
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