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1 Introduction 

 

As the title of my thesis reveals, the function of novel proteins interacting with 

cytokinin-catabolizing enzymes have been investigated. In contrast to cytokinin, which is a 

well-characterized phytohormone, the molecular and cellular properties of the cytokinin 

oxidase/dehydrogenase (CKX) enzymes are largely unknown. Recent studies have 

suggested that CKX proteins are relevant for regulating cytokinin concentration in the 

endoplasmic reticulum (ER), which is the major site of cytokinin signal perception, and that 

their levels are controlled by a proteasome-dependent ER-associated degradation (ERAD) 

mechanism. In this work, several plant-specific proteins, called heavy metal-associated 

isoprenylated plant protein (HIPP), were found to interact with CKXs and influence their 

activity. The following chapters will cover several different topics, including cytokinin and their 

role in plant development, the basic biochemical properties of CKXs, protein ERAD as well as 

the current knowledge about HIPP proteins. 

 

1.1 Cytokinin  

 

1.1.1 Cytokinin structural variation, biosynthesis, and metabolism 

 

The plant hormone cytokinin plays diverse roles in plant development, morphogenesis, and 

many other physiological processes (Werner and Schmülling, 2009; Perilli et al., 2010; Kieber 

and Schaller, 2018). Cytokinins are adenine derivatives carrying either an isoprene-derived or 

an aromatic side chain at the N6 terminus, whereby the nature of the chain can markedly 

influence the biological activity of the cytokinin (Mok and Mok, 2001). Cytokinin was first 

discovered by Skoog, Miller, and associates in 1955 due to its cell division-promoting effect 

(Miller et al., 1955; Mok and Mok, 2001). Nowadays, the definition of cytokinins has grown to 

include a wide variety of natural and synthetic compounds. The main naturally occurring 

cytokinins are trans-zeatin (tZ), cis-zeatin (cZ), isopentenyladenine (iP) and dihydrozeatin (DZ) 

(Fig. 1) (Sakakibara, 2006). Among them, tZ and iP as well as their sugar conjugates are the 

major cytokinin forms and tZ and iP exhibit higher activity in Arabidopsis thaliana (Arabidopsis) 

(Spíchal et al., 2004; Romanov et al., 2005), whereas cZ is generally considered as the 

weakly active or inactive isoform and no specific function has been reported in Arabidopsis 

(Gajdošová et al., 2011).  
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Figure 1. Structures of representative cytokinin species and their conjugates (modified from Sakakibara, 
2006). 

 

The first step in the biosynthesis of cytokinin is the addition of a prenyl side chain derived from 

dimethylallyl diphosphate to the N6 position of ADP or ATP by isopentenyltransferase (IPT) 

enzymes (Sakakibara, 2006). IPTs are encoded by a multigene family in most plants, e.g. 

Arabidopsis genome encodes seven IPTs and two tRNA-IPTs which use tRNA as substrate 

and produce cZ (Sakakibara et al., 2005). The resulting cytokinin nucleotides can be 

trans-hydroxylated to form tZ nucleotides by the cytochrome P450 enzyme CYP735A1 and 

CYP735A2 (Takei et al., 2004). The release of the active, free-base, cytokinin forms from their 

nucleotide precursors are catalyzed by LONELY GUY (LOG) family of cytokinin riboside 

5’-monophosphate phosphoribohydrolases in a single step (Kurakawa et al., 2007; Kuroha et 

al., 2009).       

The levels of cytokinin in individual tissues, cells, and organelles are also depended on 

cytokinin conjugation or degradation. The most common conjugation of cytokinin involves 

N-glycosylation, which occurs on the N3-, N7- or N9-position of the adenine ring, and 

O-glycosylation, which occurs at the hydroxyl group of the side chains of cytokinins. Cytokinin 

N7- and N9-glucosides are usually inactive because the conjugation is thought to be 

irreversible (Bajguz and Piotrowska, 2009). In contrast, O-glucosylated cytokinins can be 

converted into active cytokinins and are considered important for storage, transport and 

protection against degradation (Bajguz and Piotrowska, 2009). Cytokinin degradation is 

catalyzed by cytokinin oxidases (CKXs) encoded by seven genes in Arabidopsis (Schmülling 

et al., 2003). CKXs irreversibly cleave unsaturated N6-isoprenoid side chains from the 

free-base and riboside forms of cytokinins, converting active cytokinins to adenine (Werner et 

al., 2006).   

The maintenance of cytokinin homeostasis is regulated by multiple inputs, including 

interchanges between bases, nucleosides and nucleotides and external factors as biotic or 

1
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abiotic cues (Sakakibara et al., 2005; Werner et al., 2006; Kieber and Schaller, 2018). For 

example, in Arabidopsis cytokinin accumulation is closely correlated with IPT genes 

expression and the ipt loss-of-function mutants have lower cytokinin levels and exhibit 

retarded shoot growth and enhanced root growth (Miyawaki et al., 2006). Furthermore, the 

expression of these IPT genes is downregulated by cytokinin, indicating a feedback 

mechanism (Miyawaki et al., 2004). Cytokinin levels are also regulated by diverse 

environmental factors (Bielach et al., 2017). For instance, nitrate as well as phosphate induce 

the expression of IPT genes (Argueso et al., 2009), and high concentrations of heavy metals 

increase the ratio of cytokinin conjugation (Atanasova et al., 2004). Moreover, it has been 

shown that numerous microbes, including pathogenic or symbiotic bacteria and fungi, can 

modulate cytokinin levels in the host plants (Joshi and Loria, 2007; Pertry et al., 2009; 

Siddique et al., 2015).   

 

1.1.2 Cytokinin transport 

 

Cytokinin biosynthesis was originally thought to take place exclusively in the roots, and then 

transported in the xylem from the roots to the shoots (Beck and Wagner, 1994; Beveridge et 

al., 1997), but more recent work has shown that cytokinin could be synthesized also in shoots 

and be transported to the roots through the phloem (Miyawaki et al., 2004; Hirose et al., 2008; 

Kamada-Nobusada and Sakakibara, 2009). tZ-type cytokinins are produced primarily in roots, 

where the CYP735A2 gene is predominantly expressed (Takei et al., 2004) and tZ riboside is 

the major cytokinin translocated in the xylem (Hirose et al., 2008). By contrast, iP- and cZ-type 

cytokinins are predominantly in the phloem sap. Cytokinin acts as long-distance signal to 

coordinate root and shoot development, but also can be synthesized in numerous cell types 

and function as local signals (Kieber and Schaller, 2014). For example, conditional induction 

of IPT gene expression in a single shoot lateral bud promotes the outgrowth of single bud, but 

not adjacent buds (Faiss et al., 1997). 

Based on the structural similarity between cytokinins and purines, two membrane-located 

cytokinin transporters, purine permeases (PUPs) and equilibrative nucleoside transporters 

(ENTs), have been identified (Durán-Medina et al., 2017; Kang et al., 2017). 

Complementation assays using adenine uptake deficient yeast mutant revealed that PUP1 

and PUP2 mediated the import of nucleobase cytokinins (Gillissen et al., 2000; Bürkle et al., 

2003). Interestingly, Zürcher et al. recently reported that the cytokinin uptake transporter 

PUP14 regulates cellular cytokinin signaling by depleting the pool of active cytokinins from the 

apoplast, which makes them unavailable to be perceived by plasma membrane-localized 

receptors (Zürcher et al., 2016). Unlike PUP, ENTs carry the nonspecific translocation of 

cytokinin ribosides (Hirose et al., 2008). In Arabidopsis, the ATP-binding cassette (ABC) 
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transporter ABCG14 is the sole transporter that has been shown to export cytokinins across 

the plasma membrane (Ko et al., 2014; Zhang et al., 2014). ABCG14 loads cytokinins from 

their biosynthetic site into the xylem in the roots and transports them to the shoots. Disruption 

of ABCG14 results in defects in the long-distance translocation and distribution of cytokinins 

and retardation of shoot growth (Ko et al., 2014; Zhang et al., 2014). 

 

1.1.3 Cytokinin perception and signaling 

 

Cytokinin signaling involves a His-Asp phosphorelay system, which is similar to the bacterial 

two-component signaling (TCS) systems for sensing environmental stimuli (Hwang and 

Sheen, 2001). Typically, the TCS consist of two conserved proteins, one of which is a 

membrane-located receptor kinase with an extracellular sensing domain and a cytoplasmic 

His kinase (HK) domain (Hwang et al., 2002). Upon binding a ligand, the kinase domain is 

activated and autophosphorylates a conserved His residue. Without any additional ATP 

requirement, the phosphoryl group is transferred to an Asp residue on the receiver domain of 

the second protein component, the response regulator, which activates downstream 

responses (Mizuno, 1997; Imamura et al., 1998; Imamura et al., 1999). Among the 

multicellular eukaryotes, the TCS is unique to higher plants, utilizing an extended version of 

the basic TCS where the phosphoryl residue transfer from the sensor HK to the response 

regulator via a multistep phosphorylation events alternating between His and Asp residues 

(To and Kieber, 2008; Argueso et al., 2010). In the model plant Arabidopsis, cytokinin 

signaling cascade involves various elements that are encoded by multigene families, 

including ARABIDOPSIS HISTIDINE KINASE (AHK) receptors, histidine-containing 

phosphotransfer proteins (AHPs) and response regulators (ARRs) (Fig. 2) (Werner and 

Schmülling, 2009).   

The first cytokinin receptor AHK4/CRE1/WOL was independently identified by three groups in 

2001 (Mähönen et al., 2000; Inoue et al., 2001; Suzuki et al., 2001; Ueguchi et al., 2001). AHK 

cytokinin receptors (Fig. 2) have a conserved extracellular CHASE (cyclases/histidine 

kinases-associated sensory extracellular) domain, which was shown to be sufficient for 

cytokinin binding (Heyl et al., 2007), at least two transmembrane domains, and cytoplasmic 

HK domain and receiver domains (Heyl and Schmülling, 2003). AHK4/CRE1/WOL but not 

AHK2, nor AHK3 can mediate cytokinin signaling via bidirectional phosphorelay (Fig. 2): it 

phosphorylates AHPs in the presence of cytokinin and acts as a phosphatase in the absence 

of cytokinin (Mähönen et al., 2006a). AHK proteins were reported to predominantly localize to 

the endoplasmic reticulum (ER), with the CHASE domain localized into the lumen of the ER 

and the C-terminal kinase domain and receiver domain exposed to the cytoplasm, suggesting 

that the cytokinin signaling is predominantly initiated in the ER (Caesar et al., 2011; Lomin et 
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al., 2011; Wulfetange et al., 2011). Smaller fraction of AHK proteins localizes to the plasma 

membrane. The functional relevance of the differential localization of AHK receptors is 

currently unclear (Zürcher et al., 2016; Romanov et al., 2018). Upon cytokinin binding, the 

cytosolic HK domain is activated and autophosphorylation occurs on the conserved His 

residue (Inoue et al., 2001) followed by a transfer of a phosphoryl group to a conserved Asp 

within the receiver domain (Suzuki et al., 2001; Ueguchi et al., 2001; Yamada et al., 2001; 

Hwang et al., 2002).  

 

 

 
Figure 2. Schematic model of core steps of the cytokinin signaling pathway. 
The binding of bioactive cytokinins to the CHASE domain of histidine kinase receptors (AHKs) results in the 
autophosphorylation of a histidine (H) residue in the protein kinase domain (red). The phosphoryl group is 
transferred intramolecularly to an Asp-residue (D) of the receptor receiver domain (green) and then to a conserved 
His-residue of the histidine phosphotransfer proteins (AHPs). In the absence of cytokinin, AHK4/CRE1 acts as a 
phosphatase that dephosphorylates AHPs. AHP proteins transfer the phosphoryl group to type-B or type-A 
response regulators (ARRs). AHP6, a pseudo-phosphotransfer protein that lacks the conserved His-residue, 
inhibits the phosphorelay. Type-B ARRs, which contain a C-terminal DNA-binding domain (turquoise), act as 
transcription factors that bind to the promoter regions of their target genes including type-A ARRs and other 
cytokinin-related genes. One function of the type-A ARRs is to repress signaling in a negative feedback loop. CRFs 
overlapping with type-B ARRs modulate the expression of many cytokinin target genes (Rashotte et al., 2006). 
These effector proteins together determine the signaling output of the pathway. The figure has been adapted from 
Werner and Schmülling (2009).  
 

The AHPs, which shuttle between the cytosol and the nucleus, transfer the phosphoryl group 

from the receiver domain of an activated AHK to the receiver domain of an ARR in the nucleus 

(Fig. 2) (Punwani et al., 2010). In Arabidopsis, AHPs are encoded by five genes and all of 

them contain a highly conserved XHQXKGSSXS motif which is responsible for the His-Asp 

phosphor-transfer (Hwang et al., 2002), and a cysteine residue that can be S-nitrosylated by 

Cytokinin

CRFs
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nitric oxide to attenuate cytokinin signaling (Feng et al., 2013). AHP proteins play largely 

redundant role in positive regulating cytokinin signaling (Hutchison et al., 2006). AHP6 is a 

pseudo AHP, which lacks the conserved His residue, and repress cytokinin signaling by 

inhibiting the phosphotransfer reaction (Fig. 2) (Mähönen et al., 2006b). Interestingly, the 

expression of AHP6 is downregulated by cytokinin indicating that it may have a role in 

generating a shaper signaling boundaries during a certain development stage or within a 

specific tissue (Mähönen et al., 2006b; Moreira et al., 2013; Besnard et al., 2014). 

There are mainly two types of ARRs that modulate cytokinin signaling in Arabidopsis: type-A 

and -B ARRs (Fig. 2) (Imamura et al., 1998; D'Agostino et al., 2000; Zürcher and Müller, 

2016). They have a conserved N-terminal receiver domain but differ in their C-terminal 

domains (Heyl and Schmülling, 2003; To and Kieber, 2008). The 11 type-B ARRs can be 

activated by phosphorylation of the Asp residue in their receiver domain and act as 

transcriptional activators with C-terminal extension containing a Myb-like DNA-binding domain 

(Kieber and Schaller, 2014). Higher-order loss-of-function mutations of the type-B ARRs 

display almost complete cytokinin insensitivity and inherently exhibit reduced cytokinin 

responses (Argyros et al., 2008; Ishida et al., 2008). By contrast, the 10 type-A ARRs are 

shorter proteins that contain only the receiver domain but lack the DNA-binding domain. The 

type-A ARRs are primary target genes of the type-B ARRs and their expression is used to 

monitor transcriptional activity in response to cytokinin (D'Agostino et al., 2000; Hwang and 

Sheen, 2001). Type-A ARRs function as negative-feedback regulators of cytokinin signaling 

(To et al., 2007; Lee et al., 2008). 

Several studies has shown that there are additional factors that can modulate the TCS 

pathway and link it to the other pathways (El-Showk et al., 2013). For example, 160 proteins 

have been identified to interact with 17 different proteins of the TCS in a yeast two-hybrid 

screen. Among them, several cytokinin receptor-interacting proteins, such as ADL1A and 

GNOM, are involved in membrane trafficking, indicating that the subcellular localization of 

AHK receptors might be dynamic (Dortay et al., 2008). The KISS ME DEADLY (KMD) F-box 

proteins from the E3-ubiquitin ligase complex have been found to interact directly with type-B 

ARRs to regulate their rate of turnover (Kim et al., 2013). The CYTOKININ RESPONSE 

FACTORS (CRFs), belonging to a subset of Arabidopsis AP2 transcription factors, are 

transcriptionally upregulated in response to cytokinin and act in parallel to the type-B ARRs 

(Fig. 2) (Rashotte et al., 2006).  

 

1.1.4 Cytokinin crosstalk 

 

For over half a century, the antagonism between cytokinin and auxin has been known (Skoog 

and Miller, 1957), and recently studies have begun to unravel the molecular and mechanistic 
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bases for the antagonism (Moubayidin et al., 2009). For example, the expression of the IPT 

genes has been shown to respond to exogenous auxin application (Miyawaki et al., 2004). 

Similarly, the expression of another cytokinin biosynthesis gene CYP735A is significantly 

decreased by exogenous auxin (Takei et al., 2004) and this hormone also differently regulates 

the expression of the CKX genes (Werner et al., 2006). More recently, studies have shown 

that cytokinin also interact with other phytohormones to coordinate plant growth and 

development.  

 

1.1.4.1 Cytokinin-gibberellin crosstalk 

 

Gibberellin (GA) is phytonormone that control diverse aspects of plant growth and 

development, from seed germination and stem elongation to leaf expansion and flower 

development (Sun, 2008). GA inhibits various cytokinin responses during plant growth and 

development (El-Showk et al., 2013). For example, exogenous GA application promoted root 

elongation by repressing the expression of ARR1 via the DELLA protein RGA during root 

meristem growth (Greenboim-Wainberg et al., 2005; Moubayidin et al., 2010). Marín-de la 

Rosa et al. (2015) further demonstrated that DELLA proteins interact with several type-B 

ARRs (ARR1, ARR2 and ARR14) and act as transcriptional co-activators of these ARRs to 

promote the expression of cytokinin-regulated genes (Marín-de la Rosa et al., 2015). In 

addition, mutation of the single DELLA gene in tomato did not repress cytokinin responses, 

while exogenous GA application suppressed the effect of IPT7 overexpression on leaf 

complexity, indicating that GA could affect cytokinin responses via a DELLA-independent 

pathway (Fleishon et al., 2011). Furthermore, recent studies in Medicago truncatula have 

revealed that GAs induce the expression of the CKX3 gene via a DELLA1-dependent way to 

regulate cytokinin metabolism whereas cytokinin regulates the expression of key GA 

biosynthesis genes in a AHK-dependent manner (Fonouni-Farde et al., 2018).  

 

1.1.4.2 Crosstalk with abscisic acid 

 

Abscisic acid is considered to be the main stress plant hormone, because of its rapid 

response and prominent role in plant adaptation to an adverse environment (Vishwakarma et 

al., 2017). Modified cytokinin levels or signaling could alter plant sensitivity to ABA, indicating 

a crosstalk between these two hormones (Tran et al., 2007a; Werner et al., 2010; Nishiyama 

et al., 2011; Nishiyama et al., 2013; Nguyen et al., 2016). Indeed, several type-A ARRs 

(ARR4, ARR5 and ARR6) have been reported to directly interact with ABSCISIC ACID 

INSENSITIVE5 (ABI5), which is a basic leucine zipper transcription factor regulating the 

ABA-mediated inhibitory of seed germination (Wang et al., 2011). Furthermore, Guan et al. 
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(2014) have shown that cytokinin promotes the proteasomal degradation of ABI5 requiring a 

functional cytokinin signaling pathway. Moreover, functional analysis of ABI4, which is an 

APETALA2 (AP2)-type transcription factor mediating the ABA signaling, has demonstrated 

that ABI4 negatively regulates the expression of several type-A ARRs (ARR6, ARR7 and 

ARR15) by directly binding to their promoters (Huang et al., 2017).  

 

1.1.4.3 Cytokinin and its crosstalk with salicylic acid 

 

The plant hormone salicylic acid (SA) has long been implicated as a key signaling component 

involved in defense responses (Durner et al., 1997). Studies have also uncovered a role of 

cytokinin in plant immunity (Albrecht and Argueso, 2017), and the cytokinin-induced immunity 

is at least partially dependent on the crosstalk with SA (Choi et al., 2010; Argueso et al., 2012; 

Jiang et al., 2013). One indication of the crosstalk between cytokinin and SA has emerged 

from the analysis of a resistance (R) protein, the coiled-coil nucleotide-binding 

leucine-rich-repeat protein (CC-NB-LRR). A semi-dominant gain-of-function mutation of this 

gene (uni-1D) results in the constitutive upregulation of the pathogenesis-related (PR) protein 

genes and several type-A ARR genes (ARR4, ARR5 and ARR6) (Igari et al., 2008). PRs have 

been used in numerous studies to elucidate transcriptional control mechanisms regulating 

plant immune responses, and the expression of PR genes is induced by SA (Carr et al., 2010). 

Introducing CKX1 genes in uni-1D plants not only suppressed the upregulation of ARR5 gene, 

but also repressed the activation of PR-1 gene, suggesting that cytokinin levels could mediate 

the expression of SA immune genes (Igari et al., 2008). This crosstalk between cytokinin and 

SA pathways has been further demonstrated by Naseem et al. (2012) showing that 

exogenous cytokinin application protects Arabidopsis plants against infection by 

Pseudomonas syringae pv. tomato DC3000 via the activation of the PR-1.  

 

1.1.5 Cytokinin functions in plant developmental processes 

 

Cytokinin is an essential phytohormone that is involved in numerous plant growth and 

developmental processes. These include the effects on seed germination (Khan, 1971; Wang 

et al., 2011), the role in promoting apical and axillary meristems activity (Leibfried et al., 2005; 

Barton, 2010; Wang et al., 2017), the leaf senescence (Gan and Amasino, 1995), the 

development of the female gametophyte (Hejátko et al., 2003; Deng et al., 2010; 

Kinoshita-Tsujimura and Kakimoto, 2011; Bencivenga et al., 2012; Cheng et al., 2013), the 

size of the flower organs (Bartrina et al., 2011), the seed size (Riefler et al., 2006), the 

regulation of cell proliferation and differentiation in root apical meristem (Werner et al., 2003; 

Dello Ioio et al., 2007; Zhang et al., 2013), the root nodule organogenesis (Tirichine et al., 
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2007), the root vascular differentiation (Mähönen et al., 2006b; Hejátko et al., 2009), the 

development of the lateral root (Chang et al., 2013), and the responses to biotic and abiotic 

stress (Frugier et al., 2008; Werner et al., 2010). Cytokinin regulates many of these processes 

in a crosstalk with other phytohormones (Zhao et al., 2010; Wang et al., 2011; A Seif El-Yazal 

et al., 2015; Schaller et al., 2015). Molecular mechanisms involved in the cytokinin-mediated 

control of four developmental programs will be discussed. 

 

1.1.5.1 Cytokinin function in the shoot apical meristem 

 

In Arabidopsis, the shoot apical meristem (SAM) forms during embryogenesis between the 

two cotyledons. The dome-shaped SAM contains distinct zones determined by master 

regulatory gene expression. The homeodomain transcription factor WUSCHEL (WUS) 

specifically expresses in the organizing center (OC), and then moves from OC to stem cells in 

the overlaying central zone (CZ), which is defined by the specific expression of the 

CLAVATA3 (CLV3) (Barton, 2010). WUS promotes the stem cell activity and CLV3 

expression, while CLV3 in turn suppresses stem cell activity and restricts the WUS expression 

domain via the CLAVATA1,2 (CLV1/2) receptor signaling pathway (Soyars et al., 2016). The 

WUS-CLV3 feedback loop is necessary for the maintenance of cell populations in both the 

OC and CZ (Truskina and Vernoux, 2018). Cytokinin has long been known to play a crucial 

role in regulating SAM (Werner et al., 2001). Plants treated with exogenous cytokinin or the 

ckx3,5 mutants, which contains increase cytokinin levels, show increased WUS expression 

and form larger SAM (Gordon et al., 2009; Bartrina et al., 2011). This cytokinin-induced WUS 

expression requires cytokinin receptor AHK2 and AHK4 (Gordon et al., 2009). In turn, the 

accumulation of the WUS leads to the repression of type-A ARRs and promotes further the 

cytokinin signaling (Leibfried et al., 2005). Moreover, the expression of CLV1 is suppressed in 

response to cytokinin treatment, causing further increase in WUS transcription (Gordon et al., 

2009).    

 

1.1.5.2 Cytokinin regulates leaf development   

 

The final size and shape of leaves are determined by a tight control of cell division and cell 

expansion (Gonzalez et al., 2012). The Arabidopsis cyclin D3 (CYCD3) genes are expressed 

in lateral organs and play key roles in promoting cell division (Gaudin et al., 2000; Dewitte et 

al., 2007). The CYCD3-containing cyclin-dependent kinase complexes promote cell entry into 

S-phase by phosphorylating retinoblastoma-related protein (RBP) and hence relieving its 

inhibition of the E2F transcription factors (Dewitte et al., 2003). Ectopic expression of CYCD3 

in plants accelerates the progression from G1 to S phase, resulting in the accumulation of 
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cells in G2 and promoting mitotic cycles (Menges et al., 2006). Cytokinin promotes cell 

division in Arabidopsis through inducing the expression of these CYCD3 genes 

(Riou-Khamlichi et al., 1999). Constitutive CYCD3-expression induced the formation of green 

calli from callus cells regardless of the presence of exogenous cytokinin (Riou-Khamlichi et al., 

1999). In contrary, the cycd3;1-3 triple mutant calli did not develop shoots even in the 

presence of high cytokinin (Dewitte et al., 2007).    

In addition to the regulation of cell division, cytokinin also modulates the process of cell 

expansion (Holst et al., 2011; Li et al., 2013a). Holst et al. (2011) have shown that ectopic 

expression of CKX3 under the control of the ANT promoter causes a specific cytokinin 

deficiency in young leaves. The epidermal cell size in ANT:CKX3  leaves was on average 2.5 

times increased compared to the wild type (WT), but the leaf blade was much smaller due to 

the early ceased cell proliferation. Interestingly, ANT:CKX3 cells were about 60% larger than 

those of 35S:CKX3 leaves, which display constitutive cytokinin deficiency during the whole 

lifespan, suggesting that cell expansion was restrained by cytokinin deficiency during the 

differentiation phase (Holst et al., 2011). The interdigitated pattern of Arabidopsis leaf 

pavement cell (PC) is determined by a series of local expansions towards multi polar site 

(Yang, 2008). Li et al. (2013a) has shown that cytokinin signaling is involved in the regulation 

of the PC morphogenesis. In the ahk3/cre1 cytokinin receptor mutant, the PC interdigitation 

pattern is enhanced, whereas in plants over-producing cytokinin or overexpressing a B-type 

ARR, ARR20, the PC lobes are reduced, demonstrating a role of cytokinin in controlling the 

local expansion of PCs.         

The leaf margin architecture is mainly controlled by the CUP-SHAPED COTYLENDON (CUC) 

transcription factors, encoded by three genes in Arabidopsis (Bilsborough et al., 2011). CUC2 

and CUC3 are specifically expressed in leaf primordia and are required for leaf serration 

(Hasson et al., 2011). Plants expressing a miRNA164-resistant CUC2 gene form deeper 

serrations, whereas the cuc2 and cuc3 loss-of-function mutants showed reduced serrations 

(Nikovics et al., 2006; Hasson et al., 2011). Cytokinin controls this process partially through 

the induction of CUC genes. It has been reported that ectopic expression of IPT4 elevates the 

expression of both CUC2 and CUC3 genes in Arabidopsis (Li et al., 2010). 

Additionally, other transcription factor families have been reported to regulate leaf size and 

shape via modulating cytokinin signaling pathway (Bar et al., 2016). One of them is the 

TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) family 

(Efroni et al., 2013). TCPs can be subdivided into two types, based on differences within their 

TCP domains (Martin-Trillo and Cubas, 2010), that antagonistically mediate the cytokinin 

signaling pathway to control the growth of leaves. For example, overexpression of one of the 

class I type TCPs, TCP14, produced plants hypersensitive to cytokinin, whereas the 

tcp14tcp15 double mutants were hyposensitive to the hormone (Steiner et al., 2012). 
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Conversely, the reduction in expression of CIN-TCPs, which contains 8 genes belonging to 

class II TCP, increased plants sensitivity to cytokinin and produced crinkly leaves (Palatnik et 

al., 2003; Efroni et al., 2013).  

 

1.1.5.3 The role of cytokinin in regulating root growth and development  

 

The Arabidopsis primary root is initiated during embryogenesis and is maintained via the 

activity of the root apical meristem (RAM) (Tian et al., 2014). Cells in the meristematic zone 

(MZ) divide several times before entering the transition zone (TZ) in which they stop dividing, 

and undergo rapid elongation and differentiation in the elongation zone (EZ). Cell division 

coordinated with cell elongation and differentiation contributes to the continuous growth and 

development of the primary root (Moubayidin et al., 2013). Cytokinin and auxin 

antagonistically control the cells division and cell elongation in the root apex (Kong et al., 

2018). Auxin promotes cell division in the proximal meristem, whereas cytokinin inhibits the 

root growth by dampening auxin output and redistribution via SHY2 to promote cell 

differentiation in the TZ (Dello Ioio et al., 2007; Dello Ioio et al., 2012). Application of 

exogenous cytokinin or overexpression of a gain-of-function ARR1 gene cause a decrease in 

root meristem size, resulting in a short primary root; cytokinin-deficient plants or signaling 

mutants display a larger root owing to an accumulation of meristematic cells (Werner et al., 

2003; Dello Ioio et al., 2007; Kurepa et al., 2014). Cytokinin also inhibits lateral root initiation, 

acting as a positional cue to regulate lateral root spacing in Arabidopsis (Laplaze et al., 2007; 

Chang et al., 2013, 2015).  

 

1.1.5.4 Cytokinin signaling mediates drought stress responses 

 

Water deficit is a major environmental factor that limits plant productivity worldwide (Bray, 

1997). As sessile organisms, plants have to develop elaborate and sensitive protection 

systems to protect them from dehydration (Tran et al., 2007b). Cytokinin signaling 

components have been reported to have both positive and negative effects on plant drought 

tolerance (Li et al., 2016). Regarding the positive effect of cytokinin on drought tolerance, 

studies of transgenic plants with higher endogenous cytokinin levels revealed enhanced 

drought tolerance through delaying premature plant senescence (Rivero et al., 2007; Golan et 

al., 2016). The negative effect of cytokinin on drought tolerance is evidenced in studying the 

cytokinin deficient plants, such as CKX overexpression lines and ipt1,3,5,7 quadruple mutants, 

or cytokinin-signaling mutants, such as ahk2,3, ahp2,3,5, and arr1,10,12 multiple mutants, 

that have improved drought tolerance through elevating abscisic acid (ABA) hypersensitivity 

(Werner et al., 2010; Nishiyama et al., 2011; Nishiyama et al., 2013; Nguyen et al., 2016). 
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Interestingly, although cytokinin deficiency increased plants ABA hypersensitivity, the plants 

had a significant reduction in endogenous ABA contents which is due to a downregulation of 

key ABA biosynthetic genes (Nishiyama et al., 2011). Huang et al., (2018) has recently 

reported that the Sucrose nonfermenting1-related kinases (SnRKs) of the ABA signaling 

pathway directly phosphorylate Ser residues of ARR5, resulting in the enhancement of the 

ARR5 protein stability, and that ARR5 overexpression increases ABA sensitivity and drought 

tolerance. Several B-type ARRs physically interact with SnRKs and repress the kinase activity, 

suggesting an integrated cytokinin-ABA crosstalk mediating plant growth under drought stress 

(Huang et al., 2018).      

 

1.2 Cytokinin oxidase/dehydrogenase  

 

Cytokinin degradation is irreversibly catalyzed by cytokinin oxidase/dehydrogenase (CKX) 

enzymes encoded by seven genes in Arabidopsis (Schmülling et al., 2003). The study of 

transgenic plants overexpressing CKX genes, which cause CKs deficiency, has provided us 

with knowledge of cytokinin functions during plant growth and development. However, 

individual CKX proteins differ in their basic biochemical properties and subcellular localization 

(Werner et al., 2003; Köllmer et al., 2014). For instance, comparing with other CKX proteins, 

CKX2 and CKX4 displayed higher enzymatic activity when tested with isoprenoid CK 

substrates (Werner et al., 2003). Whereas CKX1 has been shown to act as cytokinin 

dehydrogenase with low activity in in vitro assays (Galuszka et al., 2007). Therefore, it’s 

necessary to learn the molecular features of different CKX genes and proteins, including their 

structure and catalytic properties, their expression patterns, subcellular localizations, and 

factors that could regulate CKX activity.  

 

1.2.1 Structure and catalytic properties of CKX 

 

Despite the low overall sequence homology between the different Arabidopsis CKX proteins, 

about one-third of all amino acid positions are highly conserved (Schmülling et al., 2003). The 

three-dimensional structure of Zea mays ZmCKX1 protein displays that a large part of these 

conserved regions are domains for FAD and substrate binding (Malito et al., 2004). CKXs 

belong to the group of flavoproteins with the FAD co-factor covalently linked to the apoprotein 

(Bilyeu et al., 2001; Malito et al., 2004). The covalent FAD linkage has been shown to be  

important for maintaining the enzyme’s structural integrity, stability and high rates with 

electron acceptors (Kopečný et al., 2016). Additionally, short highly conserved motifs are also 

found at the N- and C- termini of CKX proteins. For instance, a GlWeVPHPWLNL motif is 

found around position 390 and a PGQxIF signature is at the C-terminal ends of the proteins 
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(Schmülling et al., 2003). These conserved domains may function in electron transport, 

substrate recognition or other aspects of molecular activity of CKX.  

CKX was originally thought to serve as an oxidase, which utilizes molecular oxygen as an 

electron acceptor (Armstrong, 1994), but the reaction efficiency is generally low. Detailed 

kinetic study on recombinant ZmCKX1 demonstrated that the enzyme acted preferentially in 

the dehydrogenase mode and its activity was dramatically enhanced in the presence of a 

suitable organic electron acceptor (Frébortová et al., 2004). Although, a possible natural 

electron acceptor has been proposed in maize (Frébortová et al., 2010), the identity of the 

CKX electron acceptor(s) in Arabidopsis is unclear. Individual CKX proteins display maximum 

activities at different pH (Bilyeu et al., 2001; Galuszka et al., 2001; Frébort et al., 2002; 

Galuszka et al., 2004; Galuszka et al., 2007), which may reflect differential pH optima for the 

different electron acceptors.  

The elucidation of the crystal structure of maize ZmCKX1 revealed the mechanisms of 

cytokinin degradation by the CKX enzyme. Taking the breakdown of iP as an example (Fig. 3), 

the N10 atom of the isoprenoid side chain is bound with Asp169 residue inside the CKX 

protein and the adenine ring is bound in a funnel-shaped site on the protein surface (Malito et 

al., 2004). The C11 carbon atom is in contact with the flavin N5 atom facilitating thus probably 

a direct transfer of the electrons and the proton to the flavin (Malito et al., 2004). Subtle 

variation in the amino acid composition in the binding funnel of different CKX enzymes is 

considered part of the causal mechanism for the enzyme specificity towards different 

cytokinin substrates (Galuszka et al., 2007; Kopečný et al., 2016).  

 

 

 
Figure 3. Scheme of the reaction catalyzed by the CKX enzyme with isopentenyladenine. (Figure from 
Werner et al., 2006). 

 

Galuszka et al. (2007) have demonstrated that the secreted Arabidopsis CKX enzymes, 

CKX2 and CKX4, have the overall highest activity, especially against free cytokinin bases, 

whereas CKX1 and CKX3 show preference for the nucleotides as substrates. Moreover, 

CKX1 also shows a high affinity for the glycosylated cytokinin iP9G. Similar preference has 
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been also observed for CKX7 (Galuszka et al., 2007).  Based on the specific binding of the 

CKX enzymes towards their substrates, new synthetic cytokinin derivatives have been 

developed to function as CKX inhibitors. For example, INCYDE (2-chloro-6-(3-methoxyphenyl) 

aminopurine), which strongly binds into the CKX enzyme active site, but is weakly sensed by 

the cytokinin receptors, competitively blocks the CKX activity (Zatloukal et al., 2008). This 

inhibitor has been used to probe the function of cytokinin during environmental stress 

repsonses. It has shown positive effects on seedling growth under heavy metal stress 

(Gemrotová et al., 2013) and protected tomato plants against sodium chloride (NaCl)-stress 

(Aremu et al. 2014).   

 

1.2.2 Expression pattern and subcellular localization of CKX 

 

In higher plant species, CKX proteins are encoded by multigene families. Whereas there are 

seven distinct CKX genes (CKX1-CKX7) encoding the enzymes in Arabidopsis, eleven and 

thirteen CKX homologues are, for instance, identified in the rice and maize genome, 

respectively (Gu et al., 2010). The seven CKX genes in Arabidopsis have shown distinct 

expression patterns, while the overall expression levels of all CKX genes are very low, and 

specifically restricted to small distinct expression domains (Werner et al., 2003). For example, 

most of the CKX genes are expressed in zones of cell division, like the shoot apex 

(CKX1-CKX3, CKX5), stomatal meristemoids (CKX4), the developing petiole of the youngest 

leaves (CKX5), and the procambial region of the root meristem (CKX5), whereas CKX6 and 

CKX7 are expressed in the vascular tissue (Werner et al., 2003; Bartrina et al., 2011; Pillitteri 

et al., 2011; Köllmer et al., 2014). Interestingly, Miyawaki et al. (2004) have shown that the 

expression domains of some cytokinin-biosynthesis IPT genes partially overlap with the 

expression domains of the CKX genes, suggesting that the steady state cytokinin 

concentration in a certain tissue is strictly controlled by the cytokinin biosynthesis and 

degradation process. 

The expression of CKX genes is induced by the exogenous application of cytokinin, 

functioning as a negative feedback loop to maintain cytokinin homeostasis (Brugière et al., 

2003; Motyka et al., 2003; Werner et al., 2006; Bhargava et al., 2013). Moreover, CKX genes 

are also found to be regulated by other phytohormones (Werner et al., 2006). For example, 

CKX4 has been identified as auxin-repressed gene (Goda et al., 2004; Rashotte et al., 2005). 

Several CKX genes (CKX1, CKX3, CKX4, and CKX6) have been shown are down-regulated 

by ABA (Werner et al., 2006). The effects of other hormones on the expression of these CKX 

genes indicate a potential role of CKX in the crosstalk between cytokinin with other hormones.  
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Furthermore, the expression of CKX genes is also found to response to a numerous biotic and 

abiotic cues (Uhde-Stone et al., 2003; Zimmermann et al., 2004; Werner et al., 2006). For 

instance, the expression of a putative CKX homologous gene is increased in response to 

drought stress in leaves of pea (Pisum sativum) (Vaseva-Gemisheva et al., 2005). White lupin 

(Lupinus albus) and other plant species could adapt to phosphate deficiency by differentially 

regulating CKX genes expression to promote the development of the specialized short, 

densely spaced lateral roots (called proteoid root or cluster root) (Neumann et al., 1999; Watt 

and Evans, 1999; Uhde-Stone et al., 2003). Canopy shade significantly increases the 

expression of CKX6, which causes a rapid and transient arrest in leaf development (Carabelli 

et al., 2007). 

Several previous analyses have shown that individual CKX proteins from Arabidopsis are 

targeted to different subcellular compartments. Sequence analyses predict that most of the 

CKX proteins (CKX1-CKX6) have a signal peptide or a signal anchor at their N-termini 

(Niemann et al., 2018). CKX2, CKX4, CKX5 and CKX6 are thought to be targeted to the ER 

by the cleavable signal peptide at their N-termini and subsequently transported through the 

secretory pathway to the apoplast (Werner et al., 2003; Niemann et al., 2018). CKX1 and 

CKX3 have been shown to localize in the ER, endomembrane system and vacuole (Werner et 

al., 2003; Niemann et al., 2018). Intriguingly, the vacuolar localization of CKX1 was detected 

mainly in smaller root cells but not in leaf epidermal cells (Werner et al. 2003). Recently, 

Niemann et al., (2018) have shown that CKX1 is a type II integral membrane protein with a 

short N-terminal cytoplasmic tail, a single TM domain, and a luminally oriented catalytic 

domain and that the protein localizes predominantly in the ER. The authors have shown that 

the GFP-fused CKX1 proteins could not be detected in the vacuole and pointed out that the 

vacuolar targeting observed previously might be an overexpression artefact. Interestingly, it 

has been demonstrated that the CKX1 TM helix mediates largely the protein 

homodimerization as well as its retention in the ER. It has been proposed that oligomerization 

is an important parameter regulating CKX1 biological activity and the cytokinin concentration 

in the ER (Niemann et al., 2018). In contrast to CKX1-CKX6, CKX7 does not have a signal 

peptide and is localized in the cytosol (Köllmer et al., 2014). Different subcellular localization 

of the individual CKX isoforms is an important feature of the proteins and might be relevant to 

define their specific functions, extracellularly or in different subcellular compartments. For 

example, the AHK cytokinin receptors in Arabidopsis have been shown to be predominantly 

localized in the ER (Caesar et al., 2011; Wulfetange et al., 2011), suggesting that the 

ER-resident CKX1 might play an important role in controlling cytokinin concentrations, which 

are directly perceived by the cytokinin receptor AHK, in the ER compartment. On the other 

hand, a physiologically relevant function of the apoplastic cytokinin has been recently 
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proposed as well (Zürcher et al. 2016), suggesting that the secreted CKX isoforms may 

participate in controlling cytokinin concentrations in this compartment. 

 

1.2.3 Regulation of CKX activity  

 

Previous works have reported discrepancy between the calculated and apparent molecular 

masses of the CKX proteins, indicating that the proteins might undergo posttranslational 

modifications. Indeed, CKX proteins isolated from different plant species have been reported 

to be glycoproteins (Armstrong, 1994; Morris et al., 1999; Schmülling et al., 2003; Niemann et 

al., 2015) and all Arabidopsis CKX proteins are predicted to have several N-glycosylation 

sites (Schmülling et al., 2003). Glycosylation sites could be found in the identified maize 

ZmCKX1 crystal structure (Malito et al., 2004). Deglycosylation of the recombinant ZmCKX1 

enzyme produced heterologously in yeast (Yarrowia lipolytica) decreased its activity and 

thermostability, suggesting the functional importance of ZmCKX1 glycosylation (Kopečný et 

al., 2005; Franc et al., 2012). Similarly, Motyka et al. (1996) have shown that both 

glycosylated and nonglycosylated CKX isoforms exist in cultured tobacco callus cells. After 

cytokinin induction, the CKX activity is enhanced predominantly with the secreted 

glycosylated enzyme isoform, indicating a possible function of N-glycosylation in the 

regulation of CKX activity (Motyka et al., 2003).   

Recently, Niemann et al., (2015) have shown that Arabidopsis CKX1 is an N-glycoprotein and 

contains mainly high-mannose N-glycans. They also reported that mutation of an ER-resident 

protein REPRESSOR OF CYTOKININ DEFICIENCY 1 (ROCK1), which functions as a 

nucleotide sugar transporter transporting UDP-N-acetylglucosamine (UDP-GlcNAc) and  

UDP-N-acetylgalactosamine (UDP-GalNAc) as main substrates, could suppress phenotypes 

caused by overexpression of the ER-resident CKX1 as well as other secretory CKX proteins, 

but not the cytosolic CKX7 (Niemann et al., 2015). Intriguingly, it has been shown that ROCK1 

is apparently not involved in CKX1 N-glycosylation as the protein was still glycosylated in the 

rock1 mutant (Niemann et al., 2015). Rather, it has been proposed that ROCK1 regulates the 

ER-mediated protein quality control (ERQC) system (Niemann et al., 2015; Strasser, 2018). 

The abundance of CKX proteins could be controlled by ERQC and the terminally misfolded 

CKX proteins are removed from the ER and degraded by the proteasome-dependent 

ER-associated degradation (ERAD) mechanism (Niemann et al., 2015; Berner et al., 2018; 

Wu and Rapoport, 2018).  
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1.2.4 ER-mediated protein quality control (ERQC) and ER-associated 

degradation (ERAD) 

 

The endoplasmic reticulum (ER) is the entry gate to the secretory pathway and serves as a 

dynamic protein-folding organelle where the ER-resident molecular chaperones and folding 

catalysts promote newly synthesized proteins to attain their native conformations (Strasser, 

2018). Misfolded proteins not only lead to dysfunction but also induce cellular toxicity effects. 

Therefore, ER evolves a highly efficient ER-mediated protein quality control (ERQC) system 

to monitor an efficient and accurate folding process, recognize non-native protein 

conformations for additional rounds of chaperone-assisted folding, and target terminally 

misfolded proteins and unassembled proteins for ER-associated degradation (ERAD) (Berner 

et al., 2018).  

 

1.2.4.1 N-linked glycosylation-regulated protein folding and quality control in the ER 

 

The promotion of protein folding in the ERQC system is controlled by protein N-linked 

glycosylation (Ferris et al., 2014). The majority of proteins produced in the ER are 

co-translationally glycosylated with an oligosaccharide attaching to the asparagines (Asn) in 

the Asn-X-Ser/Thr sequons (X can be any amino acid except proline while Ser/Thr denote 

serine/threonine residue) when entering the ER (Aebi, 2013). These oligosaccharides, termed 

N-linked glycans or simply N-glycans, play an important role in the protein folding and quality 

control (Schwarz and Aebi, 2011). The current model for protein N-glycosylation, which is 

mainly based on the studies in yeast and animals, includes two parts: the first part is the 

assembly of a glycan molecule and the second part is the transferring of the glycan to an Asn 

residue on a nascent protein. In the first part, multiple glycosyltransferases, including a series 

of highly specific asparagines-linked glycosylation (ALG) proteins, sequentially add a 

monosaccharide onto an ER-membrane-anchored lipid called dolichol-pyrophosphate 

(Dol-PP) to assemble a oligosaccharide consisting of three glucose, nine mannose and two 

N-acetylglucosamine residues (Glc3Man9GlcNAc2) (Fig. 4) (Strasser, 2016). In the second 

part of N-glycosylation, this 14-sugar oligosaccharide is transferred to the Asn residues within 

the sequon of a nascent polypeptide catalyzed by a membrane-bound multi-subunit complex 

oligosaccharyltransferase (OST) associating with the translocon pore on the ER membrane 

(Fig. 4) (Hong et al., 2009; Mohorko et al., 2011). For ERQC, sequential cleavage of the 

terminal and middle Glc residues from the N-glycans is a major factor in determining the fate 

of ER glycoproteins (Fig. 4) (Strasser, 2016). The outermost Glc residue is removed almost 

immediately by the membrane-bound enzyme glucosidase I (GI) (Hubbard and Robbins, 1979) 

and the middle Glc residue is sequentially removed by glucosidase II (GII), generating a 
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monoglucosylated N-glycan, GlcMan9GlcNAc2, which is recognized by the ER 

membrane-anchored lectin-like chaperone calnexin (CNX) and its ER luminal homolog 

calreticulin (CRT) (Rutkevich and Williams, 2011; Wijeyesakere et al., 2013).  

 

 

 
Figure 4. Scheme of assembly of N-glycan precursor Glc3Man9GlcNAc2. 
The assembly of the N-glycan precursor initiates at the cytoplasmic surface of the ER by adding two cytoplasmic 
UDP-GlcNAc and five GDP-Man residues to the membrane-anchored dolichol-pyrophosphate (Dol-PP) linker and 
the resulting Dol-PP-Man5GlcNAc2 is flipped over into the ER lumen. Four Man and three Glc residues are 
sequentially added to the flipped Dol-PP-Man5GlcNAc2 by mannosyltransferases ALGs to form the 14-sugar 
precursor, Dol-PP-Glc3Man9GlcNAc2, that is transferred to nascent proteins by OST. The added glycoresidues, the 
corresponding glycosyltransferases, and three types of mannosyl bonds are shown. The enlarged 
Glc3Man9GlcNAc2 structure is shown with circled numbers representing the order of each Man residues addition. 
The enzymes that remove the three Glc residues and Man residues (GI, GII, and α-1, 2-mannosidase) are 
indicated, respectively. Figure from Hong et al., (2009).  
 

Glycoprotein association with CNX/CRT is crucial for folding of nascent polypeptides because 

CNX/CRT can recruit other ER-chaperones and folding enzymes which assist the nascent 

polypeptides in achieving a native conformation and correct disulfide bonds (Caramelo and 

Parodi, 2008). A second deglucosylation by GII releases the glycoprotein from the CNX/CRT 

(D’Alessio et al., 2010). If the protein has achieved the native conformation, it will be 

transported to its final destination. In contrast, protein with non-native folds will be recognized 

by an ER-resident folding sensor UDP-glucose:glycoprotein glucosyltransferase (UGGT), and 

undergo reglucosylation. As a result, a Glc residue is added back to the glycoprotein, that 

permits it once again entering the CNX/CRT cycle for folding assistance (D’Alessio et al., 

2010). However, if glycoprotein fails to achieve its native conformation within a given time 

window, it will be eliminated by ERAD (Vembar and Brodsky, 2008).  

 

1.2.4.2 ER-associated degradation (ERAD) 

 

ERAD is a conserved, multistep process involving the recognition of terminally misfolded 

proteins from folding intermediates and reparable misfolded proteins, retrotranslocation from 

the ER to cytosol, polyubiquitination, and degradation by the ubiquitin-proteasome system 

(Strasser, 2018).  The ERAD signal for misfolded glycoproteins is generated by the removal 

of the terminal α-1,2-Man residues from the N-glycan, catalyzed by homologous of yeast 
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mannosidase 1 (Htm1) (MNS4 and MNS5 in Arabidopsis) (Quan et al., 2008; Clerc et al., 

2009; Liebminger et al., 2009; Hüttner et al., 2014). The ERAD signal sensor, ER-luminal 

lectin osteosarcoma9 (Yos9 in yeast; Os9/EBS6 in Arabidopsis), specially recognizes 

terminal misfolded proteins in the ER (Yoshida and Tanaka, 2010). In yeast, an ER-resident 

protein, HMG-CoA reductase degradation 3 (Hrd3; HRD3A/EBS5 in Arabidopsis), which is a 

type I transmembrane protein, is also required for the selection of ERAD clients (Hirsch et al., 

2009; Liu et al., 2011). Once the ERAD clients were chosen by the Yos9 and Hrd3, the ERAD 

substrates will be brought to the membrane-anchored ERAD complexes for retrotranslocation 

and ubiquitination (Fig. 5). In yeast, there are at least two such ERAD complexes differing in 

their core component, which is a membrane-embedded protein with a RING finger-type 

ubiquitin ligase (E3) activity exposed to the cytosolic surface of the ER membrane, including 

Hrd1 and Degradation of alpha2 (Doa10) (Fig. 5) (Strasser, 2018). Based on the studies from 

mammals and yeast, three different ER-associated degradation pathways have been 

identified, depending on the location of folding lesions. ERAD-L substrates, having a lesion in 

the ER luminal area, can be soluble or membrane-anchored proteins. ERAD-M substrates are 

membrane proteins, which have a lesion in the transmembrane segment. ERAD-C substrates 

are membrane-bound proteins that expose a defect in the cytosolic domain (Vembar and 

Brodsky, 2008). In the most cases, ERAD-L/M substrates are eliminated by Hdr1 complexes 

and ERAD-C substrates are degraded by the Doa10 complexes (Liu and Li, 2014). Because 

the catalytic domains of these E3 ligases expose to the cytosolic surface of the ER membrane, 

ERAD clients need to undergo retrotranslocation for ubiquitination. However, the molecular 

mechanism underlying this retrotranslocation is largely unknown (Hampton and Sommer, 

2012). Studies suggested that the Sec61 channel, which is responsible for the importing of 

nascent polypeptides into the ER lumen, also serves as retrograde protein exporting ERAD 

substrates from the ER into the cytosol (Römisch, 2017). However, a recent study has shown 

that the E3 ligase Hrd1 itself can form a ubiquitin-gated protein-conducting channel for the 

retrotranslocation of ERAD clients (Baldridge and Rapoport, 2016). The retrotranslocation by 

the Hrd1 complex is in cooperation with Ui-Snp1 associating-1 (Usa1) and Degradation in the 

ER (Der1) (Fig. 5). Usa1 is an ER membrane protein that is important for the stability and 

oligomerization of Hrd1, while the integral ER membrane protein Der1 might function as an 

alternative retrotranslocation channel (Wu and Rapoport, 2018). 

Once the ERAD clients expose to the catalytic domains of the E3 ligase, ubiquitin is attached 

to the substrates through a three-step process, including activation, conjugation and ligation 

catalyzed by ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and E3 

ligase, respectively (Pickart, 2004). The ubiquitinated proteins are sequentially extracted from 

the ligase complex by the Cdc48 ATPase complex (Fig. 5) (Wolf and Stolz, 2012). An ER 

membrane protein Ubx2 is responsible for recruiting Cdc48 to the E3 complex (Neuber et al., 



INTRODUCTION 

 

20 
 

2005). The transfer of ERAD substrates from Cdc48 to the 26S proteasome is not well 

understood. Recent studies showed that the extracted ERAD substrates are further 

processed by deubiquitinating enzymes (DUBs) to trim the polyubiquitin chain, which triggers 

the release of the substrates from the Cdc48 complex (Bodnar and Rapoport, 2017). The 

released ERAD substrates are delivered to the cytosolic proteasome with the help of two 

ubiquitin receptors, Rad23 and Dsk2, and degraded (Medicherla et al., 2004).  

 

Figure 5. Schematic model of core steps of the ERAD. 
Stepwise degradation of ERAD-L and -M substrates is shown. 1. The terminally misfolded luminal glycoprotein is 

removed from the folding cycle by trimming of the terminal α-1,2-Man residues from the N-glycan. 2. The 

generated terminal α1,6-linked mannose residue is recognized by the ERAD sensor Yos9 and an ER membrane- 

anchored protein Hrd3. The ERAD clients insert into the Hrd1 retrotranslocation channel with the help of Usa1 and 

Der1. 3. ERAD-M clients, having folding lesion in the transmembrane segment (indicated by an ‘x’), enter Hrd1 

sideways. 4. Both ERAD-L and ERAD-M clients are polyubiquitinated by Hrd1 ligase at the cytosolic surface of the 

ER membrane. 5. The Cdc48 ATPase complex is recruited to the ER membrane by binding to the ER membrane 

protein Ubx2 and by binding to the ubiquitin chain of the ERAD clients. 6. Cdc48 pulls the polypeptide substrate out 

of the membrane using the energy from ATP hydrolysis. The extracted ERAD substarte is processed by a series of 

enzymes, including a DUB to trim the ubiquitin chain. 7. The substrate is delivered to the 26S proteasome with the 

help of ubiquitin receptors and degraded. The figure was adapted from Wu and Rapoport (2018).  

 

ERAD-L

ERAD-M
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1.3 Heavy metal-associated isoprenylated plant proteins 

 

Based on a genome-wide yeast two-hybrid (Y2H) screen with the CKX1 protein as bait, which 

has previously been performed in the Dr. Werner’s group, a group of positive CKX-interacting 

proteins, which belongs to the plant-unique heavy metal associated isoprenylated plant 

protein (HIPP) family, were identified. HIPP proteins are characterized by the presence of one 

or two heavy metal binding (HMA) domains and a lipid modification site, isoprenylation motif, 

at the protein C terminus. In addition, most HIPPs contain glycine- and proline-rich regions 

between these domains (Barth et al., 2009; Tehseen et al., 2010; de Abreu-Neto et al., 2013). 

45 HIPPs and additional 22 HMA-containing proteins (HPP) lacking the isoprenylation site 

have been identified in Arabidopsis (Fig. 6) (Barth et al., 2009; Tehseen et al., 2010; de 

Abreu-Neto et al., 2013). Based on the sequence homologies all HIPP and HPP proteins are 

divided into seven distinct phylogenetic clusters (I-VII) (Tehseen et al., 2010). HIPP proteins of 

cluster I are the only members containing two conserved HMA domains. 

Limited experimental data to deduce the biological function of HIPP proteins are currently 

available. Because of the occurrence of HMA domain, HIPPs have been previously discussed 

as metallochaperones that act mainly in heavy metal homeostasis and detoxification (Suzuki 

et al., 2002; Chandran et al., 2008; Gao et al., 2009; Tehseen et al., 2010). Recent studies 

have shown that HIPPs may interacting with other proteins and facilitate thereby, for example, 

transcriptional responses to biotic and abiotic stresses (Barth et al., 2009; Cowan et al., 

2018).  
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Figure 6. Phylogenetic tree of HIPP and HPP proteins in Arabidopsis. (Figure from Dr. Werner’s group 
unpublished data). 
The nomenclature of HIPP and HPP proteins and the numbering of phylogenetic groups was adopted from 

Tehseen et al., (2010). Full-length amino acid sequences were retrieved from The Arabidopsis Information 

Resource (TAIR; http://www.arabidopsis.org/). HIPP41 corresponds to AT1G55790.2 according to the TAIR10 

genome annotation. A neighbor-joining tree was constructed using MEGA4 (Tamura et al., 2007) with 1000 

bootstrap replicates. Arrows and arrowheads indicate proteins interacting and noninteracting with CKX1 in Y2H 

assays, respectively.   
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1.3.1 Function of HMA domain 

 

Intensive studies on heavy metal-associated (HMA) domain containing proteins had 

previously mainly focused on the copper-binding capacity of the HMA domain, suggesting a 

function of these protein in heavy metal transport and heavy metal homeostasis (Huffman and 

O'Halloran, 2001). HMA domains are found in bacteria, yeast, animal and plants, and are 

characterized by a ferredoxin-like structural fold containing the conserved M/LXCXXC heavy 

metal binding sequence. Several well characterized HMA-containing proteins play an 

important role in regulating cellular heavy metal homeostasis. They function as 

metallochaperones, which tightly bind metallic ions (including copper, nickel and zinc), to 

prevent their toxic effect and transport them to specific cellular sites for sequestration or to 

target proteins requiring metal ions either as a structural component or as a catalytic factor 

(Wernimont et al., 2000; Rubino and Franz, 2012). It has been shown that HMA domains often 

mediate the protein-protein interactions between metallochaperone and the cognate target 

protein. For instance, the interaction between the copper chaperone Atx1 and the Ccc2 

ATPase are mediated by the transition of copper. And the Cys residues of the HMA domain 

are essential for the transfer of copper (Arnesano et al., 2001; Banci et al., 2006). In plants, a 

HMA domain-containing protein NaKR1 (HPP2) has been shown to interact with 

FLOWERING LOCUT T (FT) in vitro and in vivo. Interestingly, a truncated protein containing 

only the HMA domain of NaKR1 was sufficient for interacting with FT, implying that HMA 

domain mediates the interaction (Zhu et al., 2016). Similarly, the interaction of HIPP26 with 

the zinc finger homeodomain transcription factor ATHB29 was abolished by mutation of Cys 

residues in the HMA domain of HIPP26 (Barth et al. 2009). In contrast, the recently reported 

interaction between HIPP26 homologue from Nicotiana benthamiana and the potato mop-top 

virus movement protein TGB1 was not mediated by the HMA domain (Cowan et al. 2018).  

 

1.3.2 Protein prenylation  

 

Protein isoprenylation (prenylation) is one of the post-translational lipid modifications, which 

are required for regulatory molecules to directly interact with the hydrophobic core of 

membranes or with other proteins (Hemsley, 2015). Protein prenylation is conserved among 

eukaryotes and involves the process by which proteins bearing a C-terminal CaaX motif 

(where C = Cys, a = aliphatic amino acid reside, and X = Met, Ala, Gln, Ser, or Cys) are 

posttranslationally modified by the covalent attachment of either a 15-carbon farnesyl or a 

20-carbon geranylgeranyl isoprenoid via a thioether bond (Fig. 7) (Galichet and Gruissem, 

2003; Crowell and Huizinga, 2009). Three distinct heterodimeric protein isoprenyltransferases 

mediate protein prenylation in fungi, animals and plants (Casey and Seabra, 1996; 
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Maurer-Stroh et al., 2003; McTaggart, 2006). Protein farnesyltransferase (PFT) and protein 

geranylgeranyltransferase type I (PGGTI) are soluble enzymes that are localized in the 

cytoplasm. They share a common α-subunit but have distantly related β-subunits. PFT 

transfers a farnesyl group from farnesyl diphosphate (FPP) to the cysteine residue of a 

carboxyl terminal CaaX motif, whereas PGGT I usually transfers a geranylgeranyl group to 

the cysteine residue of a similar CaaX motif (where ‘X’ is leucine or isoleucine). Protein 

geranylgeranyltransferase type II (PGGT II, also called RAB geranylgeranyltransferase) 

transfers two geranylgeranyl groups to the cysteine residues of XCCXX, XXCXC, XXCCX, 

XXXCC, XCXXX, or CCXXX motifs at the carboxyl terminus of RAB proteins bound to the 

RAB Escort Protein (REP) (Casey and Seabra, 1996; Maurer-Stroh et al., 2003; McTaggart, 

2006).  

Prenylated proteins undergo two additional posttranslational modifications collectively 

referred to as CaaX processing (Young et al., 2001). This involves cleavage of the 

carboxy-terminal three amino acids ‘aaX’ catalyzed by STE24 and RCE1 endoproteases 

(Boyartchuk et al., 1997; Young et al., 2001), and methylation of the free carboxyl group of the 

isoprenyl cysteine by an isoprenylcysteine methyltransferase (ICMT) (Fig. 7) (Young et al., 

2001). Arabidopsis contains single STE24 and RCE1 and two ICMT homologs, which are 

localized in the endoplasmic reticulum membranes (Bracha-Drori et al., 2008). The CaaX 

processing not only increase the affinity of the prenylation protein for membranes, but also 

protect them from degradation, and facilitate their functional interactions with other proteins 

(Hancock et al., 1991; Michaelson et al., 2005). The fully processed prenylated proteins are 

then trafficked to their appropriate cellular location, which is often the endomembrane system, 

through mechanisms that are still poorly understood (Winter-Vann and Casey, 2005). 

Protein prenylation appears to serve as a membrane anchor and, in some cases, mediate 

protein-protein interactions, which are important for correct hormone signal transduction, cell 

division and immune responses in plants (Turnbull and Hemsley, 2017). For example, the 

cytokinin biosynthesis enzyme IPT3 is farnesylated. The farnesylation directed the location of 

IPT3 in the cytoplasm and nuclei, whereas the non-farnesylated form was located in plastids 

(Galichet et al., 2008). Interestingly, the different subcellular localization of the farnesylated 

and nonfarnesylated protein was associated with either iP- or Z-type cytokinin biosynthesis 

(Galichet et al., 2008). The plant protein Rho-related GTPase ROP6 is prenylated, which 

determine its membrane localization (Sorek et al., 2007).  

Prenylation is a weak membrane anchor that usually serves as a primary signal that targets 

prenylated protein to the membrane, where a second signal, such as S-acylation, is added to 

the protein for a stable membrane attachment (Hemsley, 2015). S-acylation is another lipid 

modification, which involves the addition of saturated fatty acids to Cys residues of proteins 

through thioester bonds (Li and Qi, 2017). In the case of ROP6, the protein is not only 
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prenylated, which provide a signal for membrane anchoring, but also S-acylated, which is 

required for active ROP function (Sorek et al., 2007). Similar double-lipid modification 

responsible for a stable attachment to the plasma membrane has been recently reported for 

the NbHIPP26 protein (Cowan et al. 2018). 

Protein prenylation has also been found to be important for mediating protein-protein 

interactions. This is more evidenced in yeast and mammals. For instance, deletion of the 

CaaX motif or substitution of the Cys residue within the CaaX motif to Ser of a prenyled 

protein RPGR in mammalian cells completely abolished the interaction with its partner protein 

(Lee and Seo, 2015). In plants, RhoGDI proteins are reported to bind the prenyl group of 

inactive ROPs to shuttle the ROP proteins between membrane and cytosolic compartment 

(Bischoff et al., 2000).  

 

 
Figure 7. Overview of the protein prenylation pathway. 
Proteins that contain a carboxy-terminal CaaX motif are initially modified by the cytosolic protein 

prenyltransferases farnesyltransferase (PFT) or geranylgeranyltransferase I (PGGT I), which add a 15-carbon 

farnesyl or a 20-carbon geranylgeranyl, respectively, to the Cys residue of the CaaX motif of the substrate proteins 

such as RAS. Following prenylation, the CaaX protein travels to the cytosolic surface of the ER, where the three 

C-terminal amino acids (aaX) are proteolytically cleaved by Ras-converting CaaX endopeptidase (RCE1) resulting 

in the prenylcysteine is exposed at the C terminus. The newly exposed Cys residue is then carboxyl methylated by 

isoprenylcysteine methyltransferase (ICMT), which is also an intrinsic ER membrane protein. The fully processed 

prenylated proteins are directed to their final destinations, which are often the endomembrane system.  AdoHcy, 

S-adenosyl-L-homocysteine; AdoMet, S-adenosyl methionine; FPP, farnesyl diphosphate; GGPP, geranylgeranyl 

diphosphate. The figure has been adapted from Wang and Casey (2016).  

 

Cytosol
aaX

aaX

aaX
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1.3.3 Biological function of HIPP proteins  

 

HIPP proteins have been previously mainly discussed as functioning in heavy metal 

homeostasis and detoxification, because of the capability of the HMA domain to bind and 

distribute metal ions (Dykema et al., 1999; Suzuki et al., 2002; Gao et al., 2009; Tehseen et 

al., 2010). For instance, Arabidopsis plants overexpressing CdI19/HIPP6 gene has been 

shown more tolerant to Cd stress than WT plants (Suzuki et al., 2002). Similarly, 

overexpression of the HIPP26 gene from cluster IV confers Cd tolerance in transgenic 

Arabidopsis plants, whereas mutation of the three genes (HIPP20, HIPP21 and HIPP22) from 

the same cluster increases the plants sensitive to Cd, suggesting the role of HIPPs in Cd 

detoxification (Gao et al., 2009; Tehseen et al., 2010). Recently, several studies have shown 

that HIPP proteins are involved in plant adaptation to biotic and abiotic stresses (Barth et al., 

2009; de Abreu-Neto et al., 2013; Zhang et al., 2015; Imran et al., 2016; Cowan et al., 2018; 

Radakovic et al., 2018). For example, the expression of a wheat HIPP gene (TaHIPP1) is 

shown to be induced by exogenous ABA application and wounding (Zhang et al., 2015). 

Similarly, overexpression of one clade-I HIPP gene (HIPP3) affected expression of genes 

involved in pathogen responses, and in abiotic stress responses (Zschiesche et al., 2015). 

Moreover, the expression of AtHMAD1 (HIPP40) is significantly increased when exposed to 

nitrosative-mediated stress conditions, and the athmad1 knock-out is more resistant to 

virulent Pseudomonas syringae (DC3000) (Imran et al. 2016).  Although all these studies 

indicate a role of HIPP proteins in plant responses to biotic and abiotic stresses, the 

mechanisms underlying their functioning in these biological processes, are unknown. 

 

1.4 Research objectives and work flow 

 

The aim of the present work was to elucidate the biological function of the CKX-interacting 

HIPP proteins. Recent studies have shown that most of the CKX proteins in Arabidopsis are 

secretory proteins, and the steady-state levels of these proteins are controlled by the ER 

protein quality control system, which significantly impacts on the cytokinin responses in 

Arabidopsis.  However, the molecular mechanisms underlying the regulation of CKX proteins 

are largely unknown. Yeast two-hybrid (Y2H) screen with CKX1 proteins as bait, which has 

previously been performed in the Dr. Werner’s group, identified several CKX-interacting 

candidate proteins which could be a key component involved in the regulation of CKX proteins. 

The proteins analyzed in this work belong to a largely uncharacterized family of plant-specific 

heavy metal-associated isoprenylated plant proteins (HIPPs). Selected group of HIPP 

proteins belonging to a phylogenetic cluster I were specifically addressed. 
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In order to study the feature of the CKX-HIPP interaction and to understand the mechanism 

behind it, the full-length cDNA encoding several HIPP and CKX proteins were cloned, 

respectively, and the interactions between CKX and HIPP proteins were tested in 

independent interaction assays. HIPP protein variants with mutations in distinct functional 

motifs were also tested for their requirement for the protein-protein interactions. Previous 

studies have demonstrated that most of the Arabidopsis CKX proteins are localized to various 

compartments of the secretory pathway, including the ER. To gain insight into cellular 

mechanism underlying the CKX-HIPP interaction, the subcellular localizations of individual 

HIPP proteins and CKX-HIPP interacting complexes were investigated. In addition, the 

potential protein-protein interactions among the isolated HIPP proteins were tested. 

The second part of this work aimed to explore the physiological function of the isolated HIPP 

proteins. Therefore, the phenotypes of HIPP gain- and loss-of-function plants were isolated 

and studied in details, with particular emphasis on changes in responses to cytokinin and 

other phytohormones. To gain further information about the biological function of the 

individual HIPP genes in cluster I, their expression patterns were studied.  

Last but not least, several HIPP proteins have been shown to be involved in plant adaptation 

to biotic and abiotic stresses. Therefore, it was addressed whether the analyzed cluster 

I-HIPP proteins play a role in stress responses. For that, the endogenous levels of the classic 

stress hormones ABA and SA were determined and the behaviors of the isolated HIPP gain- 

and loss-of-function plants were investigated under drought stress.  
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2 Materials and Methods  

 

2.1 Chemicals and consumables  

 

Standard chemicals and consumables were purchased from AppliChem (Darmstadt, DE), 

Bioline (London, UK), Bio-Rad (Munich, DE), ChromoTek (Planegg-Martinsried, DE), 

Clontech (California, US), Fluka  (Buchs, CH), Invitrogen/Thermo Fisher Scientific (Waltham, 

US), Macherey-Nagel (Düren, DE), Merck (Darmstadt, DE), OlchemIm (Olomouc, CZ), 

Qiagen (Hilden, DE), Roche (Mannheim, DE), Roth (Karlsruhe, DE), Sarstedt 

(Nümbrecht-Rommelsdorf, DE) and Sigma Aldrich (Steinheim, DE). The chemicals for culture 

media were from Becton Dickinson (Sparks, US) and Duchefa Biochemie (Haarlem, NL). 

 

2.2 Enzymes, kits, DNA and protein ladders  

 

The enzymes, kits, DNA and protein ladders that were used in this study are listed in Table 1. 

 

Table 1: Enzymes, kits and DNA ladders. 

Name Manufacturer 

Restriction enzymes Thermo Fisher Scientific, Waltham, US 

DNase I  Thermo Fisher Scientific, Waltham, US 

Immolase DNA Polymerase Bioline, Luckenwalde, DE 

Phusion High-Fidelity DNA Polymerase Thermo Fisher Scientific, Waltham, US 

SuperScript® III Reverse Transcriptase Invitrogen/Thermo Fisher Scientific, Waltham, US 

Taq DNA Polymerase AG Schuster, FU Berlin, DE 

NucleoSpin RNA Plant Macherey-Nagel, Düren, DE 

Gateway® BP Clonase™ enzyme mix  Invitrogen/Thermo Fisher Scientific, Waltham, US 

Gateway® LR Clonase™ enzyme mix Invitrogen/Thermo Fisher Scientific, Waltham, US 

PierceTM BCA Protein Assay Kit Pierce Biotechnology, Rockford, US 

QIAGEN Plasmid Mini Kit Qiagen, Hilden, DE 

Wizard® SV Gel and PCR Clean-Up System Promega, Mannheim, DE 

HyperLadder™ I Bioline, Luckenwalde, DE 

P405  MBBL, Bielefeld, DE 

PageRuler™ Prestained Protein Ladder (10-180kDa) Thermo Fisher Scientific, Waltham, US 

 

2.3 Cloning vectors  

 

The cloning vectors used and generated in this work are listed in Table 2. 
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Table 2: Plasmids list. 

Plasmid names Selection 
markers in 
Bacteria 

Selection 
markers in 
Plants 

References 

pCB302 KanR BastaR Xiang et al., 1999 

pCB308 KanR BastaR Xiang et al., 1999 

pDONR221 KanR - Invitrogen/Thermo Fisher Scientific, Waltham, US 

pB2GW7 SpecR BastaR Karimi et al., 2002 

pK7WGF2 SpecR KanR Karimi et al., 2002 

pB7WGF2 SpecR BastaR Karimi et al., 2002 

pB7WGFUBQ102 SpecR BastaR This study 

pGWB18 KanR, HygR KanR, HygR Nakagawa et al., 2007 

pACT2-GW AmpR - pACT2 Clonetech®, mofidied by Dortay et al. 2006  

pACT2-GW-empty AmpR - pACT2 Clonetech®, mofidied by Dortay et al. 2006  

pBTM116-D9-GW AmpR - Goehler et al., 2004; Dortay et al., 2006 

pBTM116-D9-GW-empty AmpR  Goehler et al. 2004, modified by Dortay et al., 2006 

pDOE-08 KanR BastaR Gookin and Assmann, 2014 

pDOE-08-CKX1 KanR BastaR Niemann et al., 2018 

pRS300 AmpR - Ossowski et al., 2008 

pJet AmpR - Invitrogen/Thermo Fisher Scientific, Waltham, US 
 

2.4 Yeast and bacteria strains  

 

The yeast and bacteria strains used in this work are listed in Table 3. 

 

Table 3: Yeast and bacteria strains. 

Organism Strain Genetic marker Reference 

Saccharomyces 
cerevisiae  

L40ccua MATa his3Δ200 trp1-901 leu2-3, 
112 LYS::(lexAop)4-HIS3 
URA3::(lexAop)8-lacZ 
ADE2::(lexAop)8- URA3 GAL4 
gal80 can1 cyh2 

Goehler et al., 2004 

Escherichia coli DH5α F- endAI hsdRJ7 (rk-, mk+) supE44 
thi-J λ- recAl gyrA96 relAI 
deoRΔ(lacZYA-argF) U169 
Φ80dlacZΔM15 

Grant et al., 1990 

Escherichia coli DH3.1 F- gyrA462 endA1 glnV44 
Δ(sr1-recA) mcrB mrr hsdS20(rB -, 
mB-) ara14 galK2 lacY1 proA2 
rpsL20(Smr) xyl5 Δleu mtl1 

Bernard and Couturier, 
1992 

Agrobacterium 
tumefaciens 

GV3101:pMP90 RifR, GentR Koncz and Schell, 1986 

 

2.5 Antibiotics, herbicides and amino acids 

 
The antibiotics, herbicides and amino acids used in this study are listed in Table 4. 
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Table 4: Antibiotics and herbicides used in this study. 

Antibiotic/herbicide Stock solution Final concentration in medium 

Carbenicillin 50 mg/ml in ddH2O 50 mg/L 

Gentamicin 25 mg/ml in ddH2O 25 mg/L 

Hygromycin B 50 mg/ml in HEPES 50 mg/L 

Kanamycin 50 mg/ml in ddH2O 50 mg/L 

Phosphinothricin 10 mg/ml in ddH2O 10 mg/L 

Rifampicin 50 mg/ml in DMSO 50 mg/L 

Spectinomycin 50 mg/ml in ddH2O 50 mg/L 

BASTA - 0.1% 

Amino acid Stock solution Final concentration in medium 

L-Histidine HCl (His) 2 mg/ml in ddH2O 20 mg/L 

L-Leucine (Leu) 10 mg/ml in ddH2O 100 mg/L 

L-Tryptophane (Trp) 2 mg/ml in ddH2O 20 mg/L 

Uracil (pH 8) (Ura) 2 mg/ml in ddH2O 20 mg/L 
 

2.6 Plants 

 

In the present study Nicotiana benthamiana (N. benthamiana) WT plants were used for 

transient protein expression and if not stated otherwise Arabidopsis thaliana ecotype 

Columbia-0 (Col-0) plants were used as wild type (WT) in all other plant experiments. Table 5 

lists all transgenic and mutant Arabidopsis plants used throughout this work.  

 

Table 5: Transgenic and mutant Arabidopsis plants. 

Name  References  Source1)/Comments 

Transgenic Arabidopsis plants    

35S:HIPP6 

35S:HIPP7 

This study Created by Dr. Henriette Weber, FU 
Berlin2) 

UBQ10:HIPP1 This study -- 

UBQ10:HIPP7 

UBQ10:HIPP7hma 

UBQ10:HIPP7C352G 

This study -- 

pHIPP1S:GUS 

pHIPP1L:GUS 

pHIPP5:GUS 

pHIPP6S:GUS 

pHIPP6L:GUS 

pHIPP7:GUS 

This study -- 

rock4 Bartrina, 2006; Jensen, 2013 Dr. Isabel Bartrina, FU Berlin 

35S:ARR15 Ren et al., 2009 Prof. Dr. Jianru Zuo, Chinese 
Academy of Sciences (China) 
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TCSn:GFP Zürcher et al., 2013 Dr. Bruno Müller, University of 
Zürich (Switzerland) 

ATML1:CKX1-myc Werner, 2016 Dr. Sören Werner, FU Berlin 

pARR5:GUS D'Agostino et al., 2000 Prof. Dr. Joe Kieber, University of 
North Carolina  (Chapel Hill, USA ) 

amiRNA-Tri 

amiRNA-Mul 

This study -- 

Insertion mutant Arabidopsis plants   

hipp1-1, SALK_028133C This study N659265 

hipp3-1, SALK_021602C 

hipp5-1, SALK_004387 

hipp5-2, SALK_069207 

hipp6-1, SALK_111020C 

hipp7-1, SALK_091924C 

 N665488 

N504387 

N569207 

N656867 

N663322 

hipp8-1, SM_3_25599 

hipp9-1, SM_3_30660 

This study N113215 

N117371 

hipp3,5 

hipp3,6 

hipp3,8 

hipp5,6 

hipp5,7 

hipp6,7 

hipp6,8  

This study Derived from crosses between hipp 
single mutants 

hipp5,6,7 This study Derived from crosses between 
hipp5,6 and hipp6,7 

1) NASC ID if ordered from The Nottingham Arabidopsis Stock Centre or seeds kindly provided by the indicated 
researcher. 

2) The selection of 35S:HIPP7 homozygous plants were conducted by Dr. Henriette Weber, FU Berlin. The 
selection of 35S:HIPP6 homozygous plants and the characterization of both 35S:HIPP6 and 35S:HIPP7 
transgenic plants were conducted by myself (see also 3.2).  

 
2.7 Growth conditions 

 

If not stated otherwise all described media were autoclaved at 1 bar for 20 min at 120°C. 

Appropriate antibiotics, amino acids or hormones were added to media after autoclaving, and 

heat instable components were sterile filtrated before use. 

 

2.7.1 Bacteria and yeast growth conditions  

 

The microbiological cultures were grown under standard conditions as described (Bertani, 

1951; Rose et al., 1990; Sambrook and Russell, 2001). E. coli and A. tumefaciens strains 

were grown in liquid or on solid Luria Broth (LB) media (10 g/L tryptone, 5 g/L yeast extract, 5 

g/L NaCl and 15 g/L agar for solid LB-medium, pH 7.5) (Bertani, 1951) containing the 
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appropriate antibiotics (Table 4). Liquid YEBS medium (1 g/L yeast extract, 5 g/L beef extract, 

5 g/L sucrose, 5 g/L bacto-peptone, 0.5 g/L MgSO4, pH 7.0) was used for the propagation of A. 

tumefaciens cells which were used for plant transformation (Davis et al., 2009). E. coli strains 

were grown overnight at 37°C and A. tumefaciens at 28°C for 2-3 days.  

S. cerevisiae was grown at 30°C in liquid or on solid YPD medium (10 g/L yeast extract, 20 

g/L peptone and 15 g/L agar for solid medium, pH 6.5) with 50 ml/L 40% glucose added after 

autoclaving or minimal SD medium (6.7 g/L YNB, yeast nitrogen base without amino acids, 

and 15 g/L agar for solid medium, pH 5.8) with 50 ml/L 40% glucose added after autoclavation 

(Rose et al., 1990). The appropriate amino acids were added to SD medium for plasmid 

selection and different concentrations of 3-amino-1,2,4-triazole (3-AT, a competitive inhibitor 

of the product of the HIS3 gene) were added to SD medium for autoactivation tests. Liquid 

cultures were grown while shaking with 200 rpm (E. coli), 160 rpm (A. tumefaciens) or 150 

rpm (S. cerevisiae) at the respective temperatures. The selection medium used for S. 

cerevisiae was listed in Table 6.  

 

Table 6: Selection medium used for S. cerevisiae. 

Plasmid Selection medium Amino acid 

pACT2-GW SDI-L His, Ura, Trp 

pBTM116-D9-GW SDI-T His, Ura, Leu 

pACT2-GW/pBTM116-D9-GW SDII His, Ura 

 SDIV -- 
 

2.7.2 Plant growth conditions  

 

2.7.2.1 In vitro culture 

 

For growth of Arabidopsis seedlings under sterile conditions, seeds were surface-sterilized by 

soaking and shaking for 5 min in 70% ethanol with the addition of 0.01% (v/v) Triton X-100. 

Afterwards, seeds were rinsed three times with 70% ethanol under a clean bench and finally 

transferred by pipetting for drying to a sterile filter paper. The dried seeds were transferred 

onto solid Murashige and Skoog (MS) medium (4.3 g/L MS basal salt mixture, 0.5 g/L MES, 

30 g/L sucrose and 10 g/L agar for solid medium, pH 5.7) (Murashige and Skoog, 1962). After 

stratification (4°C) for two days, plants were transferred to a climate chamber and cultivated 

under long day (LD) conditions (light/dark: 16 h/8 h) at 21°C and light intensities of 110-140 

μmol m-2 s-1. 
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2.7.2.2 Growth on soil 

 

Arabidopsis seeds were sown on thoroughly watered “sowing soil” (2:2:1, Soil Type P:Soil 

Type T:Sand). After stratification (4°C) for three days, plants were transferred to a 

greenhouse or a climate chamber. For the first 2-3 days the plant trays were covered with a 

clear plastic dome to protect seeds and germinating seedlings from desiccation. Twelve days 

after germination, plantlets were singled out onto soil containing Perligran G instead of sand. 

If not otherwise specified, plants were grown under lLD conditions at 20-22°C and light 

intensities of 130-160 μE m-2 s-1.  

N. benthamiana was grown at 24°C under 14 h light/10 h dark conditions. 

 

2.8 Genetic crosses 

 

To perform genetic crosses, parental plants were grown until they reached the stage of 

flowering. Two to three flower buds from one parent were selected in which the tips of the 

petals were barely visible and before the anthers began to release pollen. Siliques, open 

flowers as well as flower buds which were not used for crosses were removed. Afterwards, a 

selected flower bud was opened with a small pair of precision clamping tweezers and 

emasculated by removing all stamens. Anthers of a newly opened flower from the second 

parent were used to fertilize the receptive gynoeceum by brushing the anthers over the bare 

stigma of the female parent. Crosses were successful when siliques started elongating after 

2-3 days. Finally, seeds from the developed siliques were harvested and used for propagation. 

The progeny (F2) of the heterozygous F1 plants were used for genotyping. 

 

2.9 Transformation techniques 

 

2.9.1 Bacteria transformation 

 

For transformation of plasmid DNA to E. coli cells, chemical competent cells were used. For 

heat shock transformation, tube containing 100 μl chemically competent E. coli cells was 

thawed on ice for 5 min and 1 μl plasmid DNA (approximately 50-200 ng) was added and 

thoroughly mixed. The cell suspension was incubated on ice for 30 min, then incubated at 

42°C in a water bath for exactly 45 s and immediately transferred on ice for 2 min. 400 μl of 

SOC medium (20 g/L tryptone, 5 g/L yeast extract, 500 mg/L NaCl, 2.5 mM KCl, 10 mM 

MgSO4, 10 mM MgCl2, 20 mM glucose, pH 7.4) were added and incubated for 60 minutes at 

37°C on a shaker. Aliquots of the transformation mix were then plated on LB-agar plates 

supplemented with the appropriate antibiotics (Table 4) and incubated at 37°C over night. 
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Transformation of A. tumefaciens cells was done by electroporation. 1 μl plasmid DNA 

(approximately 50-150 ng) was added to tubes containing 50 μl thawed electrocompetent A. 

tumefaciens cells and thoroughly mixed. The transformation mixture was transferred into a 

pre-chilled electroporation cuvette and an electric pulse (200 Ω, 1.8 kV, 2.5 to 5 ms) was 

applied by using the Genepulser II (Bio-Rad, Munich, DE). Immediately 950 μl of SOC 

medium was added to the transformation. The mixture was transferred into a 1.5 ml reaction 

tube, incubated at 28°C on a shaker for 2 h, plated on selection medium and incubated at 

28°C for two days. 

 

2.9.2 Yeast transformation 

 

Yeast transformation was performed according to the protocol from Gietz and Woods (2002) 

with minor modifications: The yeast strain was inoculated in 4 ml YPD medium, incubated 

overnight at 30°C on a shaker, and the freshly grown 4 ml S. cerevisiae culture was used to 

adjust 50 ml YPD medium to an OD600 of 0.3. This starting culture was incubated on a shaker 

at 30°C until reaching an OD600 of 0.6‒0.9. Cells were centrifuged at 2.000 rpm for 5 min at 

room temperature (RT). The pellet was resuspended by pivoting in 10-15 ml freshly made Mix 

1 solution (0.1 M LiAc, 1 M sorbitol, 0.5 mM EDTA and 5 mM Tris/HCl pH 7.5) and centrifuged 

again 5 min with 2.000 rpm at RT. The pellet was resuspended in 1 ml Mix 1 and incubated at 

RT for 10 min. In a 2 ml reaction tube, 1 μg plasmid-DNA, 15 μl (10 μg/μl) salmon sperm DNA, 

700 μl Mix 2 solution (0.1 M LiAc, 40% PEG 3350, 1 mM EDTA and 10 mM Tris/HCl pH 7.5) 

and 100 μl of the in Mix 1 resuspended cells were mixed by vortexing. The transformations 

were incubated at 30°C for 30 min. After incubation, 30 μl DMSO were added, mixed by 

vortexing and heat shock transformation was conducted in a water bath at 42°C for 15-30 min. 

The transformed cell suspension was centrifuged for 3 min with 4.000 rpm at RT, and 

resuspended in 200 μl ddH2O, plated on SD media lacking the appropriate amino acid and 

incubated for 3 days at 30°C. 

 

2.9.3 Stable transformation of Arabidopsis thaliana 

 

Plasmids were transformed into Arabidopsis plants by the floral dip method according to the 

protocol from Clough and Bent (1998) with minor modifications. A single colony of A. 

tumefaciens bearing the desired binary vector was inoculated into 4 ml of LB medium 

containing selective antibiotics and grown as starting culture at 28°C for two days. 1 ml of this 

culture was then added into 250 ml LB selection media and grown for another 24 h at 28°C. 

Bacteria were centrifuged at 5,500 × g for 20 min at RT and resuspended in 250 ml infiltration 

medium (50 g/L sucrose, 2.19 g/L MS salts, 50 μl/L Silwet 77). Inflorescences of 
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four-week-old plants were dipped into the A. tumefaciens suspension for 30 seconds, under 

gentle agitation. Dipped plants were then sealed in a plastic bag for 24 hours to maintain high 

humidity and then transferred to the greenhouse. Transformants were selected using 

appropriate antibiotics or herbicides (Table 4).  

 

2.9.4 Transient expression in N. benthamiana  

 

Plasmids were transiently expressed in N. benthamiana epidermal cells following the method 

described by Sparkes et al., (2006) using A. tumefaciens and 6-weeks-old N. benthamiana 

plants. For co-expression, the Agrobacterium cultures harbouring different expression 

constructs were mixed in infiltration medium to a final OD600 of 0.1 for each sample. 35S:p19 

(Voinnet et al., 2003) was included in all infiltrations.  

 

2.10 Nucleic acid methods 

 

2.10.1 Nucleic acid extraction methods 

 

2.10.1.1 Extraction of plasmid DNA from bacteria 

 

The plasmid DNA from bacteria was isolated by the QIAGEN Plasmid Mini Kit from Qiagen 

(Hilden, DE), according to the manufacturer’s instructions.  

 

2.10.1.2 Extraction of genomic DNA from Arabidopsis 

 

Genomic DNA was isolated from Arabidopsis by the CTAB method according to the protocol 

from Weigel and Glazebrook (2002), if DNA was used for PCR amplification and construct 

cloning.  

A “quick prep” method was used, if the genomic DNA was used for genotyping. One or two 

younger leaves were shredded in 400 μl extraction buffer (250 mM NaCl, 25 mM EDTA, 200 

mM Tris/HCl pH 7.5) using a Retsch mill (Retsch, Haan, DE). 20 μl of 5% SDS was added, 

mixed and plant material centrifuged at 13.000 rpm for 3 min at RT. The supernatant was 

transferred into a new reaction tube and one volume of isopropyl alcohol was added, 

thoroughly mixed, incubated at RT for 2 min and centrifuged at 10.000 rpm for 5 min at RT. 

The pellet was washed with 70% ethanol, air dried and resuspended in 100 μl ddH2O.  
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2.10.1.3 Extraction and purification of total RNA from Arabidopsis 

 

Arabidopsis plant material for the extraction of total RNA was shock frozen in liquid nitrogen in 

2 ml tubes containing two steel beads and homogenized in pre-cooled (liquid nitrogen) 

adapters using a Retsch mill (Retsch, Haan, DE). Total RNA was extracted from tissues using 

the NucleoSpin RNA Plant Kit (Macherey-Nagel, Düren, DE) according to the manufacturer’s 

protocol, including an on-column DNase (Table 1) digestion. 

In order to check the quality and quantity of the isolated RNA, the RNA samples were 

measured photometrically using the NanoDrop ND-1000 spectrophotometer (PeqLab, 

Erlangen, DE) with the RNA-40 program. The RNA was considered clean if the ratios of 

260/280 and 260/230 were both >2. 

 

2.10.2 Polymerase chain reactions (PCR) 

 

2.10.2.1 Standard polymerase chain reaction (PCR) 

 

Standard polymerase chain reaction (PCR) (Mullis and Faloona, 1987) was performed for 

validation of bacterial or yeast clones and genotyping plants by using the heat resistant Taq 

polymerase and 10x Taq PCR buffer (160 mM (NH4)2SO4, 0.1% (v/v) Tween 20, 20 mM 

MgCl2, 670 mM Tris/HCl pH 8.8). For the amplification of DNA used for cloning, the Phusion 

high-fidelity DNA polymerase (Thermo Fisher Scientific, Waltham, US) with 

proofreading-function (3´→5´ exonuclease) was used according to manufacturer’s 

instructions. The compositions of the PCR reaction mixtures are shown in Table 7. 

 

Table 7: PCR reaction mixtures. 

Component Volume for Taq PCR Volume for Phusion PCR 

Buffer  2 μl (10x Taq buffer) 4 μl (5x Phusion HF buffer) 

5 mM dNTPs 0.5 μl  0.4 μl  

10 μM forward primer 1 μl 0.5 μl 

10 μM reverse primer 1 μl 0.5 μl 

Polymerase  0.5 μl (1 U/μl) 0.2 μl (2 U/μl) 

DNA/cDNA1) x μl x μl 

ddH2O ad 20 μl ad 20 μl 
1) For genotyping bacteria or yeast, a single colony was picked with a pipette tip and stirred in the PCR reaction 

mixture. For genotyping plants or amplification of promoters used for cloning, 1 μl DNA (50‒100 ng) was used 
as template. For amplification of genes used for cloning, 10 μl cDNA (50 ng) was used as template. 

 

Programs used for PCR were dependent on the enzyme and the length of the amplification 

product and the annealing temperature of primers (Table 8). Primers used for PCRs can be 

found in the respective chapters. 
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Table 8: PCR programs. 

PCR step Program for Taq PCR Program for Phusion PCR 

Initial denaturation step 95°C, 2 min 98°C, 1 min 

Denaturation 95°C, 30 sec  98°C, 10 sec 

Primer annealing1) x°C, 30 sec  x°C, 30 sec  

Elongation 72°C, 1 kb/min  72°C, 2 kb/min  

Final elongation 72°C, twice as long as the amplicon, 

16°C hold 

72°C, 5-10min, 4°C hold 

1) The annealing temperature of primers depended on the melting temperature of the primers and was 
calculated 5°C lower than the averaged melting temperature of forward and reverse primer when used in Taq 
PCR. 

 

2.10.2.2 Reverse transcriptase (RT)-PCR   

 

For cDNA synthesis 1 μg RNA and SuperScript® III Reverse Transcriptase (see Table 1) 

were used. First, 1 μg RNA was mixed with 2 μl dNTPs (5 mM), 1 μl oligo(dT) primers (50 μM), 

1.8 μl random hexamers (50 μM) and ddH2O added to 14.5 μl and incubated for 5 min at 65°C. 

Afterwards, the reaction mixture was placed on ice for at least 2 min and 4 μl 5x first strand 

buffer,1 μl DTT (0.1 M) and 0.5 μl SuperScript® III (200 U/μl) were added. This reaction 

mixture was incubated for 5 min at 25°C, 60 min at 50°C, and 15 min at 70°C. After cDNA 

synthesis the cDNA was diluted 1:10 and stored at -20°C. 

 

2.10.2.3 Semi-quantitative RT-PCR 

 

The semi-quantitative RT-PCR was used to determine whether the isolated T-DNA insertion 

lines are loss-of-function mutants by analyzing transcripts of the respective genes of interest. 

For semi-quantitative RT-PCR, 10 μl cDNA (50 ng) was used as template. Control reactions 

were performed by using Actin7-specific primers. The sequences of primers (see in 3.3.2) are 

shown in Table 9. 

 

Table 9: Primer sequences used for RT-PCR. 

Name Forward sequence (5'-3') Reverse sequence (5'-3') 

hipp3-1, SALK_021602C AAACGCCTTCCATCACCG ACAACACAAGCATTCGGATTC 

hipp5-2, SALK_069207 ATGGGAGAGGTCCAAGAAG TTACATAACAGAGCAAC 

hipp6-1, SALK_111020C TTCTCCAAACCAGAC ATCACGAACTTCCAC 

hipp7-1, SALK_091924C GTTGTCTCAAAGGCTTCG TTACATTACAGTACATGC 

hipp9-1, SM_3_30660 TTAGGGGTCCAAACAACTGTG GATACCAAACACACGTAC 

Actin7, (At5G09810) TACAACGAGCTTCGTGTTGC TCCACATCTGTTGGAAGGTG 
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2.10.2.4 Quantitative real-time PCR (qRT-PCR)  

 

Quantitative real-time PCR (qRT-PCR) reactions were performed in an ABI PRISM 7500 

sequence detection system (Applied Biosystems/Thermo Fisher Scientific, Waltham, US), 

using SYBR Green I (Fluka, Buchs, CH) to monitor dsDNA synthesis and Immolase DNA 

Polymerase (Bioline, Luckenwalde, DE) as hot start enzyme. The reactions were prepared in 

20 μL volume containing 10 ng cDNA as template, 0.01 U/μl Immolase DNA-Polymerase, the 

corresponding 1x buffer, 2 mM MgCl2, 100 μM each dNTP, 0.1x SYBR Green I, 50 nM ROX 

as internal reference dye (Sigma, Buchs, CH) and 300 nM each primer. For qRT-PCRs, the 

“FAST” cycling set up of the Applied Biosystems 7500 Software was used. After heat 

activation of the DNA polymerase (95°C, 15 min), 40 PCR cycles followed comprised of 

denaturation (95°C, 5 sec), annealing (55°C, 15 sec), and elongation (72°C, 10 sec). Finally, a 

dissociation curve was generated to analyze the specificity of amplification. Two 

housekeeping genes (PP2AA2 and UBC10) were used as a control to normalize the relative 

transcript abundance of each gene of interest according to Vandesompele et al., (2002). All 

primers used for qRT-PCR are listed in Table 10.  

 

Table 10: Primer sequences for quantitative real-time PCR. 

Gene AGI number Forward Primer Reverse Primer 

PP2AA2 AT3G25800 CCATTAGATCTTGTCTCTCTGCT GACAAAACCCGTACCGAG 

UBC10 AT5G53300 CCATGGGCTAAATGGAAA TTCATTTGGTCCTGTCTTCAG 

HIPP1 AT2G28090 AGACTCAGACTGTGGTTGCTGTG TCTTGATGCAACCATCACAAGAG

HIPP3 AT5G60800 AACCGATTCATCATGGGCGAGAA GGTGATGGAAGGCGTTTCGTTC 

HIPP5 AT2G36950 CGGTGGCGATGGTGAATAAGAT TGCCAATGCATAGGAGCCGTTG 

HIPP6 AT5G03380 GAAGAAACCTACCGATGGTG GGATCTACGTTTCCGATCAC 

HIPP7 AT5G63530 GACGGTGAAAGGAGTTTTTG TCAGGTGGTGGTGGAG 

HIPP8 AT3G02960 ACATGCACTGTGAAGGATGTGTT TCTGGTTCCACCGATTGAATGCC 

HIPP9 AT5G24580 GCCTCCACCCTTCATACTC ATCACCACTTCTTCCACACC 

GA3OX1 AT1G15550 CCCAACATCACCTCAACTACTGC GGCCCATTCAATGTCTTCTTCGC 

GA20OX1 AT4G25420 AGATTACTTCTGCGATGCGTTGG TCTTGATACACCTTCCCAAATGG

GA2OX1 AT1G78440 AACGTTGGTGACTCTCTCCAGGT AACCCTATGCCTCACGCTCTTG 

GA2OX2 AT1G30040 AGATGGAAGTTGGGTCGCTGTC CCCGTTAGTCATAACCTGAAGAG

TCSn:GFP  ACAACAACAAACAACAAACAACA GAATTCGGCCGAGGATAATGA 

IPT1 AT1G68460 TCACCAAACGAAGACGAAAA AAGGGAAACGAGTAGCGAGA 

IPT3 AT3G63110 ACCATCTCCTCGGCGTCT CCATTCCACTCTCCACCATC 

IPT5 AT5G19040 ATCATAGCCGGTGGTTCCAA GCAATCGTTGACCAGAGCCT 

ARR5 AT3G48100 CTACTCGCAGCTAAAACGC GCCGAAAGAATCAGGACA 

ARR6 AT5G62920 GAGCTCTCCGATGCAAAT GAAAAAGGCCATAGGGGT 

ARR7 AT1G19050 CTTGGAACCAATCTGCTCTC ATCATCGACGGCAAGAAC 
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ARR8 AT2G41310 CATCGCCACAAATTCATCAG GCCGCTGATTCCTTAACTTTC 

ARR9 AT3G57040 TCACCAGGTAGTTGAAGTGAATC TCTCTGAGGACATGATAACTACT

ARR15 AT1G74890 GAGAGGTGGTGAAGCTGAA GATGGAGTGTCGTCATCAAG 

ARR16 AT2G40670 CCTGTAACGTTATGAAGGTGAGT GACTCCTTCACTTTCTTGAGTAG

CKX1 AT2G41510 GGATTGACCTCATCCTTACG GAAGAAGGTAATTCTTTTGGGG 

TCP4 AT3G15030 CACGACGGTCTCACTCACAA AATCTAAGTCAAGCTTCAATGTG

TCP5 AT5G60970 TATTCCCGACATACCCTTCG CTCCATCGACGACATGATGA 

TCP10 AT2G31070 CCACGGAGAAGAAGCTACTCA TCATCATGAATTTGAACCTCCA 

TCP12 AT1G68800 AGAAGTTTCTTGGACTAACCAGT ATTCCTCGGAGTCACCAAAA 

TCP14 AT3G47620 TTCAACAAGCTGAACCATCTGT AATTCGCCGGGATTGTTC 

TCP18 AT3G18550 ATCGCGACAACCCTTTCTC GAAGATGTGTCCATGGATCCTAA 
All primer pairs were designed using the Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) under 
the following conditions: optimum Tm at 60 °C, GC content between 20 % and 80 %, product size 100-200 bp. 
These primers were used in a final concentration of 300 nM. 
* Specific qRT primer pair for TCSn-driven GFP. 

 

2.10.3 Agarose gel electrophoresis 

 
Agarose gel electrophoresis was performed to check RNA quality (2.10.1.3), to detect PCR 

amplification products (2.10.2), or to separate DNA fragments by size after restriction digests 

(2.10.6). Depending on the expected DNA/RNA fragment size, 1% to 3.5% agarose gels in 1x 

TAE (40 mM Tris, 20 mM acetic acid, 1 mM EDTA (pH 8.0)) were used. The 1x TAE buffer 

was used as running buffer. DNA/RNA fragments were visualized by staining with ethidium 

bromide (0.2 μg/mL gel) using an ultraviolet (UV) transilluminator (SynGene Bioimaging 

system, SynGene, Cambridge, UK). Prior to electrophoresis the samples were mixed with the 

suitable amount of 10x gel loading buffer (30% glycerol, 0.25% bromophenol blue, 0.25% 

xylene cyanol). For DNA size determination, the DNA ladder P405 (154-2176 bp, MBBL, 

Bielefeld, DE) or the HyperLadderTM I (200-10000 bp, Bioline, Luckenwalde, DE) were used.  

 

2.10.4 Purification of PCR products 

 

In order to directly purify PCR products or to isolate DNA fragments after restriction digests 

from agarose gels, the Wizard® SV Gel and PCR Clean-Up System (Promega, Mannheim, 

DE) was used according to manufacturer’s instruction manual. After that DNA concentration 

was measured photometrically using the NanoDrop ND-1000 spectrophotometer (PeqLab, 

Erlangen, DE). 
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2.10.5 Genotyping of plants 

 

T-DNA insertion lines were genotyped after ordering seeds from NASC or in the F2 and F3 

generation following genetic crosses by PCR (2.10.2). Insertional mutants were genotyped via 

PCR using two primer pairs. One pair comprised of a gene-specific and a T-DNA-specific 

primer (binding to the left border of the T-DNA) was used to amplify the mutant allele. The 

second primer pair flanking the insertion was used to amplify the WT allele. All primers used 

for genotyping are listed in the following Table 11. 

 

Table 11: Primer sequences for genotyping. 

Primer Sequence (5'-3') Purpose of use 

LBb1.3 ATTTTGCCGATTTCGGAAC T-DNA-specific primer to amplify the 
mutant allele of SALK lines, e.g. hipp1-1 

Spm32 TACGAATAAGAGCGTCCATTTTAGAGTG
A 

T-DNA-specific primer to amplify the 
mutant allele of SM lines, e.g. hipp8-1 

HIPP1 RP AAACGCCTTCCATCACCG Gene-specific primer to amplify both the 
WT and mutant alleles of  HIPP1 

HIPP1 LP TCCTTCAGACTTTACTT Gene-specific primer to amplify the WT 
allele of HIPP1 

HIPP3 RP ACAACACAAGCATTCGGATTC Gene-specific primer to amplify both the 
WT and mutant alleles of  HIPP3 

HIPP3 LP TTCCACGGAATCTGTAACTGG Gene-specific primer to amplify the WT 
allele of  HIPP3 

HIPP5 RP CATTAGTTGATCGAGAAAATGGC Gene-specific primer to amplify both the 
WT and mutant alleles of  HIPP5 

HIPP5 LP TTGTTTGTTGTTCAGAGCGTG Gene-specific primer to amplify the WT 
allele of HIPP5 

CKXin2_228bp_3 ATCACGAACTTCCAC Gene-specific primer to amplify the 
mutant allele of  HIPP6 

proHIPP6_-948_FW CAGTCTAGAGAAAACCCTAGACGGCTA
ACC 

Gene-specific primer to amplify the WT 
allele of HIPP6 

proHIPP6_-25_RV CAGCCCGGGCGTAGTAGTAGTAGTAGA
GAGAATC 

Gene-specific primer to amplify the WT 
allele of HIPP6 

HIPP7 RP CCTACCAATACACCCCATGTG Gene-specific primer to amplify the 
mutant allele of  HIPP7 

HIPP7_qRT_RV1 ATCGGAGACAGAAGCTGAAC Gene-specific primer to amplify the WT 
allele of HIPP7 

FW-hipp7-exon2 GTTGTCTCAAAGGCTTCG Gene-specific primer to amplify the WT 
allele of HIPP7 

HIPP8 RP TTGATCGTAAAACCTCTCTGACC Gene-specific primer to amplify the 
mutant allele of  HIPP8 

Hipp8_gen_3 TCACATGATTGAACAAG Gene-specific primer to amplify the WT 
allele of HIPP8 

hipp8-exon-B GGAGAATCAGACAACAAG Gene-specific primer to amplify the WT 
allele of HIPP8 
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HIPP9 RP TTAGGGGTCCAAACAACTGTG Gene-specific primer to amplify both the 
WT and mutant alleles of  HIPP9 

HIPP9 LP ATCCCTTCCAAAACATTCCAC Gene-specific primer to amplify the WT 
allele of HIPP9 

 

2.10.6 Restriction digestion 

 

Restriction enzymes were purchased from Thermo Fisher Scientific (Waltham, US) and used 

with supplied buffers. A typical reaction mixture consisted of 50-500 ng DNA, 10 units of the 

appropriate restriction enzymes, 1x of the recommended reaction buffer and water to a final 

volume of 20 μl. The reaction mixture was incubated at recommended temperatures for at 

least 2 hours.  

 

2.10.7 Gateway® recombination  

 

The cloning of constructs in Gateway® compatible vectors was done according to the 

manufacturer’s protocol (Invitrogen/Thermo Fisher Scientific, Waltham, US). The first step of 

Gateway® cloning was to amplify DNA fragments with gene-specific primers including 

Gateway attachment attB-sites (Table 12). The Gateway® Entry- and Destination-Vectors 

which were used in this study are listed in Table 2.  

 

Table 12: Primer sequences for Gateway® cloning. 

Amplification of Primer sequences (5'-3')1) 

HIPP1 (AT2G28090)2)  

for N-terminal fusion 

F: ggggacaagtttgtacaaaaaagcaggctTGATGGATCCAGTGAAG 

R: ggggaccactttgtacaagaaagctgggtTCACATAACGCTGC 

HIPP5 (AT2G36950)  

for N-terminal fusion 

F: ggggacaagtttgtacaaaaaagcaggctTGATGGGAGAGGTCCAAGAAG 

R: ggggaccactttgtacaagaaagctgggtTTACATAACAGAGCAAC 
1) Small letters in the primer sequences indicate the integrated attB1- or attB2-sites for cloning DNA fragments 

into pDONR 221. Underlined letters are the nucleotides added to keep the sequence in the right frame. 
2) The cloning was based on the gene model AT2G28090.2 and the full length cDNA clone AY924752 was used 

as template (see 3.3.4). 
 

2.10.8 Sequencing of DNA 

 

DNA sequencing was done by the company GATC Biotech (Konstanz, DE). 
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2.11 DNA cloning 

 

2.11.1 Generation of HIPP-overexpressing lines 

 

To generate the binary destination vectors for driving the gene expression by the UBQ10 

promoter, the UBQ10 promoter was amplified by PCR (2.10.2) creating HindIII and SpeI 

restriction sites at the 5’- and 3’-ends, respectively. The fragment was subsequently cloned 

into the Gateway destination vector pB7WGF2 via HindIII/SpeI sites, replacing the cauliflower 

mosaic virus (CaMV) 35S promoter (final vector is called pB7WGFUBQ102). 

To generate N-terminal fusion constructs overexpressing HIPP genes of cluster I, the 

respective cDNAs were first cloned. It was not possible to amplify the HIPP1 cDNA 

corresponding to the annotated At2g28090.1 gene model. Likewise, none of the publically 

available EST sequences supports this model. Therefore, a cDNA sequences corresponding 

to the full-length cDNA clone AY924752 and representing an alternative HIPP1 gene model, 

named here At2g28090.2 (see 3.3.4), was amplified using 500 ng cDNA as template and 

cloned in this work. HIPP6 and HIPP7 genes were amplified using 50 ng cDNA as template. 

PCR products were cloned into pDONR221 and subsequently subcloned by Gateway LR 

recombination into the pB7WGFUBQ102 destination vector for an N-terminal GFP-fusion of 

HIPP1, and into the pK7WGF2 for N-terminal GFP-fusions of HIPP6 and HIPP7. 

The HIPP7C352G and HIPP7hma point mutations were introduced by PCR based mutagenesis 

by Dr. Henriette Weber (FU Berlin). The mutations in the constructs were confirmed by DNA 

sequencing. The HIPP7C352G and HIPP7hma cDNA sequences were amplified by PCR (2.10.2). 

PCR products were cloned into pDONR221 and transferred subsequently into the 

pB7WGFUBQ102 destination vector for N-terminal GFP-fusions.  

 

2.11.2 Generation of amiRNA lines 

 

Because the homologous genes from the same family usually share a large degree of 

functional redundancy, the technique of artificial microRNA (amiRNA) was used (Schwab et 

al., 2006b) to target several genes at once. Two amiRNAs with multiple potential targets from 

clade I of the HIPP gene family were designed (see 3.3.1). The amiRNA sequence targeting 

HIPP5, HIPP6 and HIPP7 was 5'-TTTCACAGTGCATGCGAACTT-3'. The amiRNA sequence 

targeting HIPP3, HIPP5, HIPP6, HIPP7 and HIPP8 was 5'-TTTCACAGTGCATGTCAACCT-3'. 

Sequences were selected and expression constructs were made using the Web MicroRNA 

Designer (WMD3) and the protocol available under http://wmd3.weigelworld.org. The amiRNA 

precursor was cloned into pDONR221 (Invitrogen/Thermo Fisher Scientific, Waltham, US) 



MATERIALS AND METHODS 

 

44 
 

and subsequently into pB2GW7 (Karimi et al., 2002) harbouring the cauliflower mosaic virus 

(CaMV) 35S promoter to yield 35S:amiRNA-Tri and 35S:amiRNA-Mul, respectively.  

 

2.11.3 Generation of pHIPP:GUS lines 

 

In order to analyze the expression patterns of individual HIPP genes of cluster I, promoter 

regions upstream of the translational start ATG of four individual HIPP genes, i.e. the 795 bp 

region of HIPP1 (upstream of the ATG of the At2g28090.1), the 2056 bp region of HIPP5, the 

949 bp region of HIPP6, and the 1580 bp region of HIPP7, were amplified by PCR introducing 

specific restriction sites at the 5’- and 3’-ends.The promoter fragments were subsequently 

cloned into pCB308 destination vector harboring the GUS reporter gene. Additionally, 

because of the alternative HIPP1 gene annotation model (3.3.4), the 1491 bp region, which is 

upstream of the alternative translational start ATG of At2g28090.2, was amplified by PCR and 

fused to the GUS gene. Moreover, promoter-proximal introns can have a large influence on 

the level and pattern of gene expression (Wang et al., 2002; Jeong et al., 2007; Rose et al., 

2008). In order to determine whether the promoter-proximal introns have effects on the 

expression of the HIPP6 gene, a second HIPP6 reporter gene construct was cloned. This 

1364 bp-long construct includes the same ATG-upstream region (see above) as well as parts 

of the coding region and the first two introns (see 3.3.2). 

Primers used for generation of transgenic lines are listed in Table 13. 

 

Table 13: Primer sequences for generation of transgenic lines. 

Amplification of Primer sequences (5'-3') 

Promoter of HIPP1 
(At2g28090.1) 

F: CAGTCTAGAGGGTCTTGAAAGATTTTAGTGAC 

R: CAGCCCGGGTTTCGTCTCTAACTTCTTCTGC 

Promoter of HIPP1 
(At2g28090.2; pHIPP1L) 

F: CAGTCTAGAGGGTCTTGAAAGATTTTAGTGAC 

R: CCCGGGGATAAACCCAATCAGAGTCAGC 

Promoter of HIPP5 
(At2g36950) 

F: GCGCGGATCCATGTGTTGAAATCGTATTTAG 

R: GCGCGGATCCTTCTTGGTTGAAGATAAGG 

Promoter of HIPP6 
(At5g03380; pHIPP6S) 

F: CAGTCTAGAGAAAACCCTAGACGGCTAACC 

R: CAGCCCGGGCGTAGTAGTAGTAGTAGAGAGAATC 

Promoter of HIPP6 
(At5g03380; pHIPP6L)1) 

F: CAGTCTAGAGAAAACCCTAGACGGCTAACC 

R: CAGCCCGGGTTGTCGGCCACTTTATCACG 

Promoter of HIPP7 
(At5g63530) 

F: GCGCTCTAGACGATTATTGCTTGAAGATG 

R: GCGCGGATCCATTTATTTTTTTTGGTTTGAAG 

Promoter of UBQ10 
(AT4G05320) 

F: CAGAAGCTTCGACGAGTCAGTAATAAAC 

R: CAGACTAGTCTCGAGTGTTAATCAGAAAAACTC 
1) Construct includes the same ATG-upstream region of HIPP6 (pHIPP6S) as well as some parts of the coding 

region and the first two introns (see 3.4). 
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2.11.4 Cloning of gene constructs in Y2H, Co-IP and BiFC assays 

 

For yeast two-hybrid (Y2H) studies, HIPP and CKX gene constructs were generated by 

cloning the corresponding cDNAs into destination vectors pACT2 (prey) and pBTM116 

-D9 (bait). Most of the constructs were generated by Dr. Henriette Weber (FU Berlin) as 

described previously (Weber et al., 2005). The HIPP1 and HIPP5 cDNAs were cloned into 

destination vectors pACT2 (prey) and pBTM116-D9 (bait) by me according to the Gateway® 

recombination protocol as described (2.10.7). Primers used for generation of the constructs 

are listed in Table 12. CKX1 to CKX5 were cloned without N-terminal signal peptide/signal 

anchor sequences (Niemann et al., 2018) (http://www.cbs.dtu.dk/services/SignalP) to avoid 

targeting to the secretory pathway.  

Following gene constructs were used for Co-Immunoprecipitation (Co-IP) experiments: 

35S:GFP-HIPP6 (see 2.11.1), 35S:GFP-HIPP7 (see 2.11.1), 35S:GFP-CKX1 (Niemann et al., 

2018) and 35S:myc-CKX1 (Niemann et al., 2015). For the myc-fusion proteins, HIPP6 and 

HIPP7 genes in pDONR221 (see 2.11.1) were subcloned by Gateway LR recombination into 

the pGWB18 destination vector for N-terminal myc-fusions of HIPP6 and HIPP7. 

For protein-protein interaction by the bimolecular fluorescence complementation (BiFC) assay, 

the HIPP1 and HIPP7 cDNAs were amplified using primer pairs listed in Table 14. For  

HIPP7hma, the cDNA sequence of HIPP7hma (see 2.11.1) was used as template, and all the 

resulting fragments were cloned into pJet vector. For CKX-HIPP BiFC,  HIPP1 and HIPP7 

cDNAs were subcloned into the KflI site of MCS3 in pDOE-08-CKX1 (Niemann et al., 2018), 

resulting in pDOE-08-CKX1-HIPP constructs, expressing CKX1 N-terminally tagged with the 

N-terminal fragment of monomeric Venus split at residue 210 (NVen-CKX1) and HIPP 

N-terminally tagged with the C-terminal Venus fragment (CVen-HIPP). For the HIPP7 

homodimeration test, HIPP7 cDNAs was subcloned into BamHI site of the MCS1 in pDOE-08 

(Gookin and Assmann, 2014), resulting in pDOE-08-HIPP7 parent vector expressing 

NVen-HIPP7 and unfused CVen. In the next step, the second HIPP7 cDNA fragment was 

subcloned into the KflI site within MCS3 of the pDOE-08-HIPP7 parent vector, resulting in the 

vector expressing NVen-HIPP7/CVen-HIPP7. 

 

Table 14: Primer sequences for BiFC system. 

Amplification of Primer sequences (5'-3') 

HIPP1 (At2g28090.2) 

for MCS3 

F: AGGGGTCCCCGATGGATCCAGTGAAGATTGC  

R: AGGGGACCCTCACATAACGCTGCAATAG 

HIPP7 (At5g63530) 

for MCS1 

F: AGGGATCCGGAGAGGAAGAGAAG  

R: AGACTAGTTTACATTACAGTACATGC 

HIPP7 (At5g63530) 

for MCS3 

F: AGGGGTCCCCGGGAGAGGAAGAGAAG  

R: AGGGGACCCTTACATTACAGTACATGC 
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HIPP7C352G (At5g63530) 

for MCS3 

F: AGGGGTCCCCGGGAGAGGAAGAGAAG  

R: AGGGGACCCTTACATTACAGTACCTGC 
 

2.12 Histochemical analysis of GUS expression 

 

Histochemical analysis of GUS expression was performed as described by Jefferson et al. 

(1987) with some modifications. Sample tissues were incubated for 1 h in 90% acetone at 

-20°C and washed twice with 50 mM sodium phosphate buffer (pH 7.0). The enzymatic 

reaction was conducted with staining solution (0.5 mg/ml X-Gluc (5-bromo-4-chloro-3 

-indolyl-β-D-glucuronide), 50 mM sodium phosphate buffer (pH 7.0), 10 mM potassium 

ferrocyanide, 10 mM potassium ferricyanide, 0.2% Triton X-100) for 4 h to overnight at 37°C in 

the dark. After staining, plant material was washed with 50 mM sodium phosphate buffer (pH 

7.0) and destained with 70% ethanol and cleared with a chloral hydrate: glycerole: water 

solution (8:1:2, w/v/v) (Berleth and Jurgens, 1993). The GUS staining pattern was visualized 

and recorded with a light stereomicroscope (SZX12; Olympus, Shinjuku, JP) or a microscope 

(Axioskop 2 plus; Zeiss, Jena, DE) equipped with an Olympus C-4040ZOOM (Olympus, 

Shinjuku, JP) photographic device. 

 

2.13 Confocal laser scanning microscopy 

 

To determine the subcellular localization of GFP-HIPP fusion proteins, leaf discs from N. 

benthamiana two day-after-infiltration (DAI) with A. tumefaciens (2.9.4) harboring the 

individual constructs (2.11.1) were used. GFP-fusion proteins and mCherry-marker proteins 

were analyzed by an inverted fluorescence microscope (Leica DMI 6000 CS), equipped with a 

Leica TCS SP5 laser scan unit (Leica Microsystems, Wetzlar, DE) and operated with the 

Leica Application Software. GFP and mCherry were excited at 488 nm and 561 nm and the 

fluorescence detected at 498-538 nm and 600-630 nm, respectively. Analysis of the 

subcellular localization of the interaction complexes in the bimolecular fluorescence 

complementation (BiFC) assay was performed as described by Gookin and Assmann (2014).  

 

2.14 Protein methods 

 

2.14.1 Protein extraction 

 

For the extraction of the total proteins from Arabidopsis and tobacco, the plant material was 

quickly frozen in liquid nitrogen and homogenized using a Retsch mill in precooled (liquid 
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nitrogen) adapters using two steel beads. After that, 500 μl of protein extraction buffer was 

added to approximately 0.5 g homogenized leaf material. The buffer consisted of 150 mM 

NaCl, 50 mM Tris/HCl pH 7.5, 0.1-0.3% Triton X-100 and prior to use the recommended 

amount of protease inhibitor cocktail tablets (1 tablet/10 ml, Roche, Cat. No. 11836170001) 

was added. After the samples have been thoroughly vortexed, they were incubated on ice for 

20 min. The samples were centrifuged for 10 min at 6,000 x g at 4°C and the protein 

concentration of the supernatants were determined prior protein blot analysis. 

 

2.14.2 Determination of protein concentrations 

 

Protein concentrations were determined by the bicinchoninic acid method (Smith et al., 1985). 

This method is based on the reduction of Cu+2 to Cu+1 by protein in an alkaline medium, which 

forms a light blue complex with bicinchoninic acid (BCA). Absorption of the complex at 562 nm 

is measured photometrically. The measurement was carried out with the aid of the BCA 

protein assay Kit (Pierce Biotechnology, Rockford, USA). BSA (bovine serum albumin) 

dilution series (1.0, 0.75, 0.5, 0.25, 0.125 and 0.0 mg/ml) were used to prepare a standard 

curve. Protein extraction buffer was used as blank. Standards, samples, and blanks were 

measured in triplicates. 200 μl of detection reagent was added to 10 μl of BSA standard, blank, 

or sample (see 2.14.1) which was diluted 1:10 or 1:20. The mixture was incubated for 30 min 

at 37 °C before measuring at 562 nm in microplates using the Synergy 2 Microplate Reader 

(Biotek, Winooski, USA). In order to calculate the protein concentrations in the samples, linear 

regression analysis was performed using the values of the BSA standards to obtain the 

equation for the standard curve. 

 

2.14.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE) and protein blotting 

 

Proteins were separated according to their sizes using denaturing discontinuous SDS-PAGE 

(Laemmli, 1970). The upper (stacking) and lower (resolving) gel contained 4% and 10% 

acrylamide, respectively. The composition of gels is shown in Table 15. The electrophoresis 

buffer used consisted of 192 mM glycine, 25 mM Tris and 0.1% SDS. Protein extracts (see 

2.14.1) were mixed with the adequate amount of 4x Laemmli buffer (Laemmli, 1970) and 

protein extraction buffer. The samples were heat treated for 5 min at 95°C and then a specific 

volume (corresponding to 30 μg total protein) loaded onto the stacking gel. PageRuler 

Prestained Protein Ladder (Fermentas/Thermo Scientific, 5 μL) was used as protein 

molecular weight marker. Gel electrophoresis was performed using 20 mA (constant) per gel 

until sufficiently separated (visualized by prestained marker) in a Bio-Rad (Hercules, USA) 

running chamber. 
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Table 15: Composition of SDS polyacrylamide gels. 
Components Stacking gel Separating gel 

Tris-HCl pH 8 - 375 mM 

Tris-HCl pH 6,8 125 mM - 

Acrylamid/Bis-Acrylamid (19:1) 4% 10% 

SDS1) 0.075% 0.1% 

APS2) 0.0375% 0.05% 

TEMED3) 0.06% 0.05% 

1) SDS, sodium dodecyl sulfate 
2) APS, ammonium persulfate 
3) TEMED, N,N,N',N'-tetramethylethane-1,2-diamine 
 

The protein blotting was performed using the Mini Trans-Blot Electrophoretic Transfer Cell 

System (Bio-Rad). For that gels were rinsed briefly with ddH2O after the PAGE and then 

equilibrated for 10 min in the blotting buffer (192 mM glycine, 25 mM Tris). Meanwhile, the 

PVDF membrane (Immobilon-P Membrane, Cat. No. IPVH00010, pore size 0.45 μm, EMD 

Millipore) was activated with methanol (20 sec), rinsed with ddH2O (2 min) and equilibrated in 

the blotting buffer. Also foam (fiber) pads and Whatman papers (grade 3MM Chr, Cat. No. 

3030917) were pre-soaked in the blotting buffer. The blotting sandwich (in the direction of 

transfer: cathode, foam pad, two Whatman papers, gel, PVDF membrane, one Whatman 

paper, foam pad, anode) was inserted into the blotting module and blotting was carried out 

overnight at 4°C with 55 mA (constant). Successful transfer was verified when prestained 

protein marker was visible on the PVDF membrane. 

 

2.14.4 Immuno-detection 

 

After overnight blotting, the PVDF membrane was rinsed briefly with 1x PBS (137 mM NaCl, 

2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4), and then blocked for 1 h in 5% Skim Milk 

(Fluka/Sigma-Aldrich) in 1x PBS-T (1x PBS, 0.1% Tween-20) at RT. Afterwards the primary 

antibody was added to the 5% Skim Milk in PBS-T and incubated at RT for 2 h. Blots were 

washed for 15 min (3x5 min) in 1x PBS-T and incubated with the secondary antibody in the 5% 

Skim Milk in PBS-T for 2.5 h at RT. The same washing procedure was carried out after the 

incubation with the secondary antibody. Chemiluminescence assay using the SuperSignal 

West Pico Chemiluminescent Substrate Kit (Pierce, Rockford, USA) was performed according 

to the manufacturer’s instructions. After incubation with the ECL substrate a CL-XPosure film 

(Thermo Fisher Scientific, Waltham, USA) was used to detect the chemiluminescence 

(exposure time varied, 5 sec to 5 min). The detection of myc epitope was performed with 

anti-myc antibody (clone 4A6; Millipore, Billerica, USA) (dilution 1:2,500) in combination with 

the secondary goat anti-mouse antibody IgG-HRP (sc-2005; Santa Cruz, Dallas, USA) 

(dilution 1:5,000). The detection of GFP was performed with the anti-GFP antibody (JL-8; 
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Clontech, California, USA) (dilution 1:2,000) in conjunction with the secondary bovine 

anti-rabbit antibody IgG-HRP (sc-2370; Santa Cruz, Dallas, USA) (dilution 1:3,000). 

 

2.14.5 Coomassie blue staining 

 

To check whether equal amounts of protein were loaded, the Coomassie blue staining 

method was used as described by Welinder and Ekblad (2011). For this, the membrane was 

washed twice with 1x PBS-T and then stained with 0.1% Coomassie R-250 (Applichem, 

Darmstadt, DE) in methanol/water, 1:1, for 1 min. The membrane was destained in acetic 

acid/ethanol/water, 1:5:4 for 20 min. Finally, the membrane was washed with water and 

air-dried. Pictures were taken (membranes were put in a transparent plastic bag and scanned) 

and the protein bands corresponding to the large subunit of ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RbcL) were used as loading control.  

 

2.15 Yeast two-hybrid and Co-Immunoprecipitation assays 

 

For Y2H studies, yeast transformations were performed (2.9.2) and SDII selection medium 

was used as transformation control, whereas, SDIV minimal medium was used for interaction 

tests. Surviving yeast colonies were picked as primary positives and restreaked on SDIV 

plates. Freshly-grown yeast colonies on SDIV medium were dissolved in liquid SD medium to 

OD600 = 0.1. 2 μL of the resuspended clones were subjected to PCR test. The dissolved 

clones were then diluted 1:10 in liquid SD medium, and 10 μl of the diluted suspension were 

dropped on SDIV minimal medium or SDIV supplemented with 5 mM 3-AT for interaction tests. 

Photographs were taken 5 d after plating.  

For CoIP, GFP- and myc-fusion proteins were co-expressed transiently in tobacco leaves. 

Total protein extracts (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.3% Triton X-100, 0.2% Igepal) 

were incubated with GFP-Trap A beads (ChromoTek, Planegg-Martinsried, DE). Extraction 

and washing buffers contained at all times 1 mM PMSF (Sigma Aldrich, Steinheim, DE) or 

complete protease inhibitor cocktail (Roche, Mannheim, DE) and 10 μM MG132 (Sigma 

Aldrich, Steinheim, DE) to prevent proteolytic and proteasomal activities, respectively. In 

general, proteins were incubated at least 2 h at 4°C under shaking conditions before being 

centrifuged. Precipitates were washed five times to remove unspecific bindings, before they 

were taken up in 1x Laemmli buffer (Laemmli, 1970) and boiled (5 min, 95°C). 
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2.16 Plant experiments 

 

2.16.1 Hormone and CKX inhibitor experiments 

 

For analyzing the responses of HIPP-overexpressing plants to phytohormones, plants were 

sprayed with cytokinin or CKX inhibitor and GA, respectively. For the plants sprayed with CKX 

inhibitor, INCYDE (Zatloukal et al., 2008; Niemann et al., 2015) was used to treat the plants in 

a 3-day interval for four weeks with different concentrations (0, 10 and 50 μM inhibitor; 0.01% 

Silwet 77) after the first two leaves appeared. The fully expanded leaf 7 was photographed 

and the leaf area was measured with ImageJ (Abràmoff et al., 2004). For cytokinin treatment, 

ten plants of each genotype were sprayed in a 3-day interval for three weeks with 50 μM BA 

(Sigma Aldrich, Steinheim, DE) or with Mock (0.05% DMSO) after the first two leaves 

appeared. For the GA treatment, ten plants of each genotype were sprayed in a 3-day interval 

for three weeks with 50 μM GA3 (OlchemIm, Olomouc, CZ) or with Mock (0.05% DMSO) after 

the first two leaves appeared. 

For cytokinin sensitivity tests on root or shoot growth, Arabidopsis seedlings were grown on 

half strength MS medium containing different concentrations of iP (5, 10, 25 and 50 nM for 

root assays; 5, 10 and 25 nM for shoot assays) or 0.002% DMSO as control. 

 

2.16.2 Analysis of growth and developmental parameters 

 

Plants were grown on soil in the greenhouse under the conditions as described (2.7.2.2). 

During the life cycle of the plants the phenotype was monitored. The rosette diameter was 

calculated as a mean value of two measurements per rosette at 23 day-after-germination 

(DAG). Plant shoot height was measured after termination of flowering with a ruler. The final 

number of siliques on the main stem was determined after termination of flowering.  

For flowering time analysis, seeds were stratified for three days at 4°C and then sown on soil 

and grown in the greenhouse under long day conditions (2.7.2.2) or in a phytochamber under 

short day (SD) conditions (light/dark: 8 h/16 h) at 22°C and light intensities of 120-170 μmol 

m-2 s-1. Onset of flowering was defined as the point of time where the first flower was visible. 

Termination of flowering was defined when no more new flowers were formed. The number of 

rosette leaves was scored at the start of flowering.  

For in vitro root measurements, plants were grown in vitro (2.7.2.1) on vertical plates on half 

strength MS medium containing 12 g/L agar under standard long day conditions. The 

elongation of the primary root was determined between three and ten days after germination 

using the software ImageJ (Abràmoff et al., 2004). The number of emerged lateral roots was 

determined ten days after germination. 
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For cell size analysis, leaf tissue was fixed in ethanol/acetic acid (3:1), rehydrated in an 

ethanol series and cleared with chloral hydrate: glycerole: water solution (8:1:2, w:v:v) 

(Berleth and Jurgens, 1993) for 2-3 days and analyzed by a stereomicroscope (SZX12; 

Olympus, Shinjuku, JP) and microscope (Axioskop 2 plus; Zeiss, Jena, DE) equipped with an 

Olympus C-4040ZOOM (Olympus, Shinjuku, JP) photographic device. The 6th leaf of plants 

28 DAG were mounted on microscope slides, and photographed. The average cell size and 

stomatal index were calculated as described by Holst et al., (2011). 

 

2.16.3 Drought stress experiments 

 

For drought stress experiments, plants were grown on soil under long day conditions. 

Three-week-old plants were exposed to drought stress by withholding water for 5-6 days. 

Plants were photographed after the indicated drought stress periods. 

 

2.17 Databases and software 

 

Sequences were obtained from the National Center for Biotechnology Information (NCBI, 

http://www.ncbi.nlm.nih.gov). Arabidopsis genome sequences and annotated gene model 

were obtained from the Arabidopsis Information Resource (TAIR, http://www.arabidopsis.org). 

Statistical analyses were performed by Microsoft Office Excel 2007 (Redmond, Washington, 

US). The nuclear localization signal (NLS) was predicted by the cNLS Mapper (Kosugi et al., 

2009). The analysis of confocal image was performed by using the LAS AF software (Leica 

Microsystems, Wetzlar, DE). Photographs on the Zeiss Axioskop 2 plus microscope were 

taken with the software AxioVision Release 4.6 (Zeiss, Jena, DE) and the photographs on the 

stereomicroscope with the Olympus software DP-Soft 3.2. Corel Photo-Paint 12 (Corel 

Corporation, Ottawa, Canada) was used to edit image. The elongation of the primary root and 

the leaf area was measured with the software ImageJ (Abràmoff et al., 2004).  The gel 

images were taken with the software GeneSnap (SynGene, Cambridge, UK). 

 

2.18 Contributions 

 

I worked together with Dr. Michael Niemann and Dr. Henriette Weber on the HIPP project. Dr. 

Michael Niemann performed most of the analysis of subcellular localization of GFP-HIPP7 

fusion proteins in N. benthamiana and Arabidopsis (Fig. 12B-G). Dr. Henriette Weber 

performed the CoIP assays as well as parts of the Y2H assays in the CKX-HIPP interaction 

section (3.1). Nevertheless, these data have been included here to provide this essential 
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information in the framework of my thesis. My own contribution to results shown in Figures 

8-10 is specified in Table 16. 

 

Table 16: Contributions to the results shown in the CKX-HIPP interaction section (chapter 3.1). 

Figures My part* Dr. Henriette Weber* 

Fig. 8 A and C (HIPP1 and HIPP5 cDNAs cloning into 

destination vectors, yeast transformations) 

A-C 

Fig. 9 A B and C 

Fig. 10 A and B C and D 

*  Capital letters refer to the respective figure panels.  
 

Dr. Michael Niemann performed cell fractionation and membrane association experiments in 

Arabidopsis. He showed that the membrane association of the HIPP7 protein strongly but not 

exclusively depended on the protein prenylation. The interaction domain of CKX1 has been 

mapped by a deletion approach by Dr. Henriette Weber. The experiments showed that the 

C-terminal part of CKX1 is required for the interaction. These unpublished data are not shown 

in this work, but are mentioned in the discussion, since these data closely relate to the results 

of this study. 

The hormone measurements were carried out in collaboration with Dr. Ondřej Novák and Dr. 

Danuše Tarkowská (Laboratory of Growth Regulators, Centre of the Region Haná for 

Biotechnological and Agricultural Research, Palacký University and Institute of Experimental 

Botany ASCR, Olomouc, Czech Republic). The plant growth, treatment and sampling as well 

as data evaluation were conducted by myself (see also 3.2). 

Prof. Dr. Jianru Zuo, Prof. Dr. Joe Kieber, Dr. Bruno Müller, Dr. Isabel Bartrina and Dr. Sören 

Werner kindly provided seeds of mutant and transgenic plants that were used for this study 

(see Table 5). Prof. Dr. Rongda Qu (Department of Crop Science, North Carolina State 

University, Raleigh, US) kindly provided the pCAMBIA-mCherry vector. Prof. Dr. 

Sarah M. Assmann (Department of Biology, The Pennsylvania State University, PA, US) 

kindly provided the pDOE-08 vector.  
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3 Results 

 

3.1 CKX proteins interact with distinct members of HIPP protein 

family 

 

It has been shown that the cellular levels of CKX proteins are regulated by the protein quality 

control pathway, which significantly impacts on the cytokinin responses in Arabidopsis 

(Niemann et al., 2015). To explore further molecular mechanisms regulating CKX proteins, 

and to identify new CKX-interacting proteins, a genome-wide yeast two-hybrid (Y2H) screen 

with the CKX1 protein as bait has previously been performed in the Dr. Werner’s group.  

Among the positive clones, coding sequences corresponding to six different HIPP proteins 

were recovered with high frequency (~65% of all isolated interactions). Interestingly, the 

isolated HIPP proteins fall into two phylogenetically distinct clades of the HIPP protein family: 

HIPP5, HIPP6 and HIPP7 belong to cluster I, and HIPP32, HIPP33 and HIPP34 form a 

separate cluster III (Fig. 6) (Tehseen et al., 2010).  

 

3.1.1 Confirmation of the interaction between HIPP and CKX proteins  

 

In order to verify the identified protein-protein interactions, the full-length cDNA encoding 

HIPP5, HIPP6 and HIPP7 were cloned and the interactions with CKX1 were confirmed in 

one-on-one Y2H interaction assays. The detected interactions were strong, as only partial 

growth suppression was observed on media supplemented with 3-amino-1,2,4-triazole (Fig. 

8A). 

To test that CKX1 interacts with HIPP proteins and forms complexes in planta, GFP-CKX1 

was transiently coexpressed with myc-HIPP6 and myc-HIPP7 in Nicotiana benthamiana 

leaves and total protein extracts were used for Co-Immunoprecipitation (Co-IP) assays with 

anti-GFP antibody. As shown in Fig. 8B, both tested HIPP proteins were clearly detected in 

the GFP-CKX1 immunocomplex, but they did not coimmunoprecipitate with GFP alone, 

supporting the notion of a direct CKX1-HIPP interaction. Interestingly, immunoblot analysis 

suggested that the CKX1-HIPP complexes are rather stable as the monomeric myc-HIPP 

proteins were not detected upon Co-IP (Fig. 8B). 

Result of our Y2H screen also suggested that only a specific subset of HIPP proteins can form 

complex with CKX1. To test this idea further, additional members of the HIPP family were 

cloned, and their interactions with CKX1 were tested in Y2H assays. Fig. 8A shows that 

HIPP1 and HIPP9, additional members of cluster I, interacted with CKX1. Randomly chosen 
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HIPP proteins outside the cluster I and III, HIPP19 and HIPP35, showed no interaction with 

CKX1 in yeast (Fig. 8A), confirming selectivity in CKX1-HIPP protein interactions.  

 

 

Figure 8. CKX and HIPP proteins interact in vitro and in vivo. 
(A) Interaction between CKX1 and different HIPP proteins detected by yeast two-hybrid (Y2H) assays. Growth of 
yeast strains harboring CKX1 as bait and the indicated HIPP proteins as prey on control medium (SDII) lacking Leu 
and Trp, interaction medium also lacking Ura and His (SDIV), and SDIV supplemented with 10 mM 
3-amino-1,2,4-triazole (3-AT). Empty vector pACT2-GW was used as negative control. 
(B) In vivo interaction of CKX1 with HIPP proteins. The GFP-CKX1 protein was transiently coexpressed with 
myc-HIPP6 or myc-HIPP7 in N. benthamiana and the protein extracts were used for immunoprecipitations with 
anti-GFP antibody followed by SDS-PAGE and immunoblot detection with anti-myc antibody. The left panel shows 
the input (20 µg of crude extracts used for Co-IP assay); the right panel shows the pellet fractions from the Co-IP 
assays. Control Co-IP between myc-HIPP7 and free GFP is shown in Fig. 10D. It should be noted that myc-HIPP6 
and myc-HIPP7 migrates with apparent molecular sizes higher than predicted for monomeric proteins (50 kDa and 
47 kDa, respectively). 
(C) Interaction between different CKX and HIPP proteins detected by Y2H assays as described in (A). 
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To analyze whether CKX proteins other than CKX1 are interacting partners of identified HIPP 

proteins, five other CKX proteins were tested for the interaction with HIPPs in Y2H. Fig. 8C 

shows that all four tested HIPP proteins from clade I interacted with CKX5 in yeast; the 

strongest interaction conferred by HIPP6. In contrast, CKX2 seems to weakly interact with 

only HIPP5, HIPP6 and HIPP7, and even weaker interaction was detected between CKX4 

and HIPP6 and HIPP7. Interestingly, CKX3 and CKX7 showed no interaction with tested HIPP 

proteins in Y2H assays. 

 

3.1.2 Isoprenylation of HIPP proteins is essential for the interaction with CKX1 

 

To understand the mechanism of CKX-HIPP interaction, HIPP protein domains were mutated 

to test whether they are required for the interaction, taking the CKX1-HIPP7 complex as a 

case example (Fig. 9A).   

 

Figure 9. Analysis of interaction motifs in HIPP7 and CKX1.  
(A) Scheme of HIPP7 protein structure with conserved motifs. Introduced mutations are indicated in 
bold/underlined.  
(B) Interaction between CKX1 and HIPP7 mutant variants detected by yeast two-hybrid (Y2H) assays. Growth of 
yeast strains harboring CKX1 as bait and the indicated HIPP7 mutant proteins as prey on control medium (SDII) 
lacking Leu and Trp, and interaction medium also lacking Ura and His (SDIV). Empty vector pACT2-GW was used 
as negative control. HIPP7C352G, HIPP7 variant with mutated prenyl-accepting Cys-residue within the 
isoprenylation motif. HIPP7hma, HIPP7 variant with mutated HMA domains.  
(C) Co-IP assays reveal the loss of CKX1-HIPP7 interaction upon mutating isoprenylation site in HIPP7 
(HIPP7C352G), whereas mutation of HMA domains (HIPP7hma) does not affect the interaction. The GFP-CKX1 
protein was transiently coexpressed with myc-HIPP7, myc-HIPP7C352G or myc- HIPP7hma in N. benthamiana and 
the protein extracts were used for immunoprecipitations with anti-GFP antibody followed by SDS-PAGE and 
immunoblot detection with anti-myc antibody. The pellet fractions from the Co-IP assays are shown on the left; the 
input (20 µg of crude extracts used for Co-IP) is on the right. 
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CKX-HIPP complex formation, a mutation of the prenyl-accepting Cys-residue within the 

isoprenylation motif of HIPP7 was generated (Fig. 9A) and the interaction of this HIPP7C352G 

mutant with CKX1 was analyzed. As shown in Fig. 9B, the mutation completely abolished the 

interaction in yeast. Similarly, no interaction was detected using the in vivo Co-IP experiments 

(Fig. 9C), indicating that the prenylation of HIPP7 is required for the interaction with CKX1. 

Several HIPP proteins, including HIPP7, were previously shown to bind various heavy metals 

via their HMA domain (Dykema et al., 1999; Suzuki et al., 2002). Both HMA domains in HIPP7 

protein were mutated by exchanging metal-binding Cys residues in each HMA domain to 

glycine (HIPP7hma; Fig. 9A) and the resulting mutant variant were tested for interaction with 

CKX1. Y2H and Co-IP assays clearly showed that the interaction was not affected (Fig. 9B 

and C) suggesting that heavy-metal binding is dispensable for CKX-HIPP interactions. 

 

3.1.3 Homodimerization of HIPP proteins requires prenylation and heavy metal 

binding 

 

Next, the potential protein-protein interactions among the isolated HIPP proteins were tested. 

Results showed that HIPP1, HIPP5 and HIPP7 proteins could form homodimers in yeast, but 

did not interact with other tested HIPP proteins (Fig. 10A-C). Similarly, HIPP7 

-homodimerization was also detected in using the in vivo Co-IP experiments (Fig. 10D). 

Interestingly, not like the CKX1-HIPP7 complex, the HIPP7-homodimerization was lost when 

either the HIPP7C352G or HIPP7hma mutant variants was used, suggesting that both the protein 

isoprenylation and metal binding are essential for the HIPP7 homocomplex formation.  

 

Figure 10. HIPP7 homodimerization requires prenylation and heavy-metal binding. 
(A) and (B) HIPP1 (A) and HIPP5 (B) homodimerizes in Y2H assay. Empty vector pACT2-GW was used as 
negative control. 
(C) HIPP7 homodimerizes in Y2H assay but does not form heterodimers with HIPP6 or HIPP34. The 
homodimerization is abolished when HIPP7C352G and HIPP7hma mutants are used as preys. 
(D) Co-IP assays corroborate the in vivo homodimerization of HIPP7. myc-HIPP7 was transiently coexpressed with 
GFP-HIPP7 and free GFP as control in N. benthamiana. The protein extracts were used for immunoprecipitations 
with anti-GFP antibody followed by SDS-PAGE and immunoblot detection with anti-myc antibody. The input (10 µg 
of crude extracts used for Co-IP) is on the left; the pellet fractions from the Co-IPs are shown on the right. 
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3.1.4 Subcellular localization of clade-I HIPP proteins 

 

To gain insight into cellular mechanism underlying the activity of HIPP proteins, their 

subcellular localizations were investigated. HIPP1, HIPP5 and HIPP7 were fused to GFP at 

their N termini to avoid interference with the potential C-terminal prenalytion, and the fusion 

proteins were expressed under the control of the 35S promoter, transiently in N. benthamiana 

leaf epidermis and in stably-transformed Arabidopsis. 

Confocal laser scanning microscopy revealed that the GFP-HIPP1 fusion protein was 

localized mainly in the nucleus and in the cytoplasm in N. benthamiana leaf cells (Fig. 11A). In 

the nucleus, the fluorescence labeled nucleoplasm and small bright foci, which were usually 

localized to nucleolus (Fig. 11B). With lower frequency, GFP-HIPP1 fluorescence was 

observed in distinct puncta at the cell periphery (Fig. 11A); a pattern characteristic of 

plasmodesmal localization (Oparka et al., 1997; Crawford and Zambryski, 2001; Yuan et al., 

2016). Very similar subcellular localization of GFP-HIPP1 was observed also in the stable 

transgenic Arabidopsis plants (Fig. 11C-H), however, the frequency and intensity of 

GFP-HIPP1 signal at the plasmodesmata was significantly stronger than in N. benthamiana 

(Fig. 11G and H). 

The GFP-HIPP5 and GFP-HIPP7 were localized mainly in the cytosol of N. benthamiana cells, 

as indicated by a diffuse staining of the cytoplasmic strands and nucleoplasm (Fig. 12A and 

B). However, in comparison to free mCherry cytoplasmic/nuclear marker, GFP-HIPP7 also 

accumulated at the nuclear envelope (Fig. 12B, arrowhead) and less frequently associated 

with plasmodesmata (Fig. 12C). In the cortical region, GFP-HIPP7 showed cytosolic 

localization adjacent to the ER network labeled with the coexpressed ER marker protein 

RFP-p24 (Fig. 12D) (Lerich et al., 2011). An apparent colocalization of GFP-HIPP7 with 

RFP-p24 was observed, but with only very low frequency (Fig. 12E). Similarly, in 

stably-transformed Arabidospis, GFP-HIPP7 localized to the cytosol, but, in contrast to the N. 

benthamiana system, the protein strongly labeled the plasmodesmata in the analyzed leaf 

cells (Fig. 12F). Interestingly, the frequency of plasmodesmal localization was lower and the 

fluorescence signal associated with plasmodesmata was significantly weaker in Arabidopsis 

plants expressing the GFP-HIPP7C352G mutant form lacking the prenylation site (Fig. 12G). 

These results show that the prenylation is largely required for the localization of HIPP7 to 

plasmodesmata, however, the weak plasmodesmal localization of GFP-HIPP7C352G suggests 

that other targeting determinants might be involved.  
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Figure 11. Analysis of subcellular localization of GFP-HIPP1 fusion protein in N. benthamiana and 
Arabidopsis. 
(A) and (B) Representative confocal microscopy images of N. benthamiana leaf epidermal cells coexpressing 
GFP-HIPP1 with the cytosolic marker pCAMBIA-mCherry (magenta). GFP-HIPP1 localizes strongly in the nucleus 
(arrowhead) and in the cytoplasm. Occasionally, GFP-HIPP1 fluorescence was associated with plasmodesmata 
(magnified in the inset) (A). In the nucleus, the GFP-HIPP1 fluorescence labels the nucleoplasm (arrow) and small 
bright foci within the nucleolus (arrowhead) (B). 
(C) to (E) Confocal microscopy of Arabidopsis root meristem cells expressing GFP-HIPP1. Similar to the results 
observed in N. benthamiana, the fusion protein localizes in the nucleus (arrowheads), cytosol (C) and 
plasmodesmata (arrow) (D). In nucleus, the GFP-HIPP1 fluorescence is particularly associated with small bright 
foci (E). 
(F) to (H) GFP-HIPP1 localizes to the cytosol and strongly to plasmodesmata in Arabidopsis leaf epidermal cells. 
The microscopy of N. benthamiana was performed 2 DAI. Scale bars = 5 μm (B, C, D,E), 7.5 µm (G and H) and 25 
µm (A and F). 
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Figure 12. Analysis of subcellular localization of GFP-HIPP5 and GFP-HIPP7 fusion proteins in N. 
benthamiana and Arabidopsis. 
(A) Representative confocal microscopy images of N. benthamiana leaf epidermal cells expressing GFP-HIPP5. 
GFP-HIPP5 localizes strongly in the cytosol. Occasionally, GFP-HIPP5 fluorescence was associated with 
plasmodesmata (magnified in the inset).  
(B) to (E) Confocal microscopy analysis of N. benthamiana leaf epidermal cells transiently expressing GFP-HIPP7. 
In central plane of the cell, the protein is seen localized in the cytosol, in the nucleoplasm, and at the nuclear 
membrane (arrowhead) (B). At the cell periphery, it additionally localizes to punctate structures reminiscent of 
plasmodesmata (arrowheads) (C). In the cell cortex, GFP-HIPP7 localizes mainly adjacent to the ER (RFP-p24, 
magenta) (D); less frequently, they colocalize (E). 
(F) and (G) Confocal microscopy of Arabidopsis leaf epidermal cells stably expressing GFP-HIPP7 (F) and 
GFP-HIPP7C352G (G). In addition to the cytosol, GFP-HIPP7 localizes strongly to plasmodesmata. HIPP7C352G is 
mainly cytosolic with only weak plasmodesmal localization (arrowheads). 
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3.1.5 HIPP7 interacts with the CKX1 protein apparently relocated from the ER 

 

Previous studies have demonstrated that CKX proteins, identified in this work as interacting 

with HIPP proteins, are localized to various compartments of the secretory pathway including 

the ER (Werner et al., 2003; Niemann et al., 2018). In view of the described CKX-HIPP 

protein interactions, it is therefore intriguing that HIPP1, HIPP5 and HIPP7 proteins are 

apparently localized outside of the secretory system, raising the question about cellular 

mechanisms underlying these protein-protein interactions.  

To address this question, CKX1-HIPP7 interaction was tested using the optimized bimolecular 

fluorescence complementation (BiFC) system which utilizes monomeric Venus split at residue 

210 (Gookin and Assmann, 2014). For this, CKX1 and HIPP7 were fused at their N termini to 

the N- and C-proximal halves of the Venus (NVen and CVen, respectively) in the double ORF 

expression vector pDOE-08. To monitor non-specific assembly of NVen and CVen, the parent 

vector expressing NVen-CKX1 together with unfused CVen was used as control. We 

performed transient transformations of N. benthamiana leaves and examined the 

fluorescence by confocal microscopy. The expressing epidermal cells were identified by 

monitoring the fluorescence of the integrated Golgi-localized mTurquoise2 marker 

(Golgi-mTq2; Gookin and Assmann, 2014). As illustrated in Fig. 13A, no or very weak BiFC 

was detected in cells expressing the control vector. In contrast, all cells transformed with the 

vector expressing NVen-CKX1 and CVen-HIPP7 showed strong Venus fluorescence (Fig. 

13B), indicating BiFC between the fusion proteins and suggesting that CKX1 and HIPP7 

interact also in planta. Most interestingly, in contrast to the GFP-HIPP7 signal predominantly 

localized to cytosol (Fig. 12), the fluorescence of the NVen-CKX1/CVen-HIPP7 complex 

clearly localized to the cortical and perinuclear ER and small punctate structures (Fig. 13I and 

J). This pattern closely resembled the subcellular localization of CKX1-GFP (Niemann et al., 

2018). The BiFC experiments thus indicate that, at least in the N. benthamiana system, the 

CKX1-HIPP7 complex formation involves the HIPP7 protein fraction detected at the ER 

and/or is associated with relocation of HIPP7 to the ER. Moreover, it has been shown that 

CKX1 exhibits a transmembrane topology with the C-terminus residing in the ER lumen 

(Niemann et al., 2018) and, therefore, BiFC between CKX1 and HIPP7 implicates that the 

CKX1 protein in the detected complex represents a form which was relocated to the cytosolic 

site of the membrane. This is consistent with the recent finding that CKX1 is targeted to the 

ERAD pathway (Niemann et al., 2015), which requires retrotranslocation of target proteins 

from the ER prior delivery to the cytosolic/nuclear proteasome (Römisch, 2005). The results 

therefore suggest that HIPP7 might play a role during retrotranslocation of CKX1 or function in 

post-retrotranslocation steps. 
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Figure 13. CKX1 interacts with HIPP7 protein in planta. 
(A) and (E) Confocal microscopy analysis of bimolecular fluorescence complementation assay (BiFC) in N. 
benthamiana epidermal leaf cells shows that no background BiFC fluorescence (A) is produced when the 
NVen-CKX1/CVen parent vector is expressed as indicated by the mTq2 fluorescence (E). 
(B) and (F) The reconstitution of the Venus-derived fluorescence (yellow) demonstrates NVen-CKX1 interaction 
with CVen-HIPP7 (B). mTq2 control (F). 
(C) and (G) No or very weak BiFC signal is produced when NVen-CKX1 is co-expressed with CVen-HIPP7C352G (C). 
mTq2 control (G). 
(D) and (H) The reconstitution of the Venus-derived fluorescence (yellow) demonstrates NVen-CKX1 interaction 
with CVen-HIPP7hma (D). mTq2 control (H). 
(I) NVen-CKX1/CVen-HIPP7 BiFC fluorescence signal localizes to the cortical ER and small punctate structures. 
Yellow, Venus BiFC; magenta, RFP-p24. 
(J) NVen-CKX1/CVen-HIPP7 BiFC fluorescence (yellow) does not colocalize with the cytosolic marker 
pCAMBIA-mCherry (magenta). The BiFC fluorescence mainly labels the cortical ER. 
The microscopy was performed 2 days after infiltration (DAI).Scale bars = 100 μm (A-H), 10 μm (I) and 5μm (J).  
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HIPP7 mutant lacking the prenylation site did not or only very weakly interact with CKX1 in the 

BiFC assay (Fig. 13C), confirming the hypothesis that the posttranslational modification is 

required for the complex formation. The interaction of CKX1 with HIPP7 was not affected in 

the BiFC system when both metal-binding cysteine residues in each of the two HMA domains 

were mutated to glycine, suggesting that heavy metal binding is dispensable for CKX-HIPP 

interactions. Interestingly, unlike the NVen-CKX1/CVen-HIPP7, the NVen-CKX1/CVen 

-HIPP7hma complex signal was mainly localized in the cytoplasm (Fig. 13D).  

Similar BiFC experiment was designed to test interaction between CKX1 and HIPP1. As 

shown in Fig. 14A, a clear BiFC signal was detected for the NVen-CKX1/CVen-HIPP1 pair. 

The fluorescence signal was mainly localized in the nucleus and in the cytoplasm (Fig. 14B), 

suggesting that the protein complex also involves the cellular fraction of the CKX1 protein 

presumably retrotranslocated to the cytosol. However, unlike NVen-CKX1/CVen-HIPP7, the 

NVen-CKX1/CVen-HIPP1 complex was not detected in the ER, suggesting that the 

CKX1/CVen-HIPP1 complex was extracted from the ER membrane upon CKX1 

retrotranslocation. It is worth to note, that the microscopic evaluation of multiple BiFC 

experiments revealed consistently weaker fluorescence of the CKX1-HIPP1 BiFC complex in 

comparison to that of CKX1-HIPP7 BiFC pair, which contrast with the strongest 

protein-protein interaction observed between CKX1 and HIPP1 in yeast. 

 

 

 
Figure 14. CKX1 interacts with HIPP1 protein in planta. 
(A) The reconstitution of the Venus-derived fluorescence demonstrates NVen-CKX1 interaction with CVen-HIPP1. 
(B) NVen-CKX1/CVen-HIPP1 BiFC (yellow) signal is distributed mainly in the nucleus and weakly in the cytoplasm 
as indicated by the colocalization with pCAMBIA-mCherry (magenta). 
The microscopy was performed 2 days after infiltration (DAI). Scale bars = 100 μm (A) and 10 μm (B). 
 

To verify the HIPP7 homodimerization and to confirm the results revealed by Y2H that both 

isoprenylation and metal binding are essential for the HIPP7 homocomplex formation, BiFC 

assays with HIPP7, HIPP7C352G, and HIPP7hma cloned into pDOE-08 vector were performed. 

The parent vector expressing NVen-HIPP7 together with unfused CVen was used as control. 

As illustrated in Fig. 15A, no or very weak BiFC was detected in cells expressing the control 

vector. Similar to the parent vector, the cells expressing the NVen-HIPP7/CVen-HIPP7C352G or 

NVen-HIPP7/CVen-HIPP7hma constructs showed no or weak fluorescence (Fig. 15C and D), 
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contrast, all cells transformed with the vector expressing NVen-HIPP7 and CVen-HIPP7 

showed strong Venus fluorescence (Fig. 15B), indicating the formation of HIPP7 

homocomplex in planta.  

 

 

 
Figure 15. HIPP7 homodimerization in BiFC requires prenylation and heavy-metal binding.  
(A) and (E) Confocal microscopy analysis of bimolecular fluorescence complementation assay (BiFC) in N. 
benthamiana epidermal leaf cells shows that no background BiFC fluorescence (A) is produced when the 
NVen-HIPP7/CVen parent vector is expressed as indicated by the mTq2 fluorescence (E). 
(B) and (F) The reconstitution of the Venus-derived fluorescence (yellow) demonstrates NVen-HIPP7 interaction 
with CVen-HIPP7 (B). mTq2 control (F). 
(C) and (G) No or very weak BiFC signal is produced when NVen-HIPP7 is co-expressed with CVen-HIPP7C352G 

(C). mTq2 control (G). 
(D) and (H) No BiFC signal is produced when NVen-HIPP7 is co-expressed with CVen-HIPP7hma (D). mTq2 control 
(H). 
The microscopy was performed 2 days after infiltration (DAI). Scale bars = 100 μm  
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3.2 Overexpression of clade-I HIPP genes causes pleiotropic 

phenotypes and alters cytokinin activity 

 

Strategy to explore the physiological function of the isolated HIPP proteins is to enhance or 

reduce levels of gene activity. To this end, we first performed gain-of-function experiments by 

expressing HIPP6 and HIPP7 N-terminally fused to GFP tag under the control of the 

cauliflower mosaic virus 35S promoter in Arabidopsis plants. Independent homozygous lines 

expressing 35S:GFP-HIPP6 and 35S:GFP-HIPP7 (called 35S:HIPP6 and 35S:HIPP7, 

respectively, in the following) were identified. The transcript levels of HIPP6 or HIPP7 were 

enhanced in all of the overexpression lines as compared to WT plants (Fig. 16A and C). In 

accordance, immunoblot analysis confirmed that high levels of the GFP-HIPP6 and 

GFP-HIPP7 proteins accumulated in the respective overexpression lines (Fig. 16B and D). 

Interestingly, immunoblot analysis suggested that an apparently stable HIPP7 complex, which 

is more abundant than the monomeric GFP-HIPP7 protein.  

 

 

Figure 16. HIPP gene expression and protein levels in transgenic Arabidopsis plants. 
(A) Relative transcript abundances of the HIPP6 gene in shoots of the 35S:HIPP6 seedlings grown on soil for 15 
days as measured by qRT-PCR. Data are means ± SE (n = 4).  
(B) Representative Western blot analysis of the GFP-HIPP6 protein levels in two independent homozygous 
transgenic lines. 
(C) Relative transcript abundances of the HIPP7 gene in shoots of the 35S:HIPP7 seedlings grown on soil for 15 
days as measured by qRT-PCR. Data are means ± SE (n = 4). 
(D) Representative Western blot analysis of the GFP-HIPP7 protein levels in two independent homozygous 
transgenic lines. 

 

During the course of the PhD project, the 35S-driven HIPP expression was found to be 

occasionally silenced. This part of the project was elaborated in more detail in a master thesis, 

which I co-supervised (Alcaniz Rolli, 2016). In order to avoid gene silencing by using the viral 

35S promoter, transgenic lines expressing GFP-HIPP1 under the control of the UBQ10 

promoter were generated (called UBQ10:HIPP1 in the following). Independent homozygous 
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lines were identified and the transcript abundances and protein levels determined (Fig. 17A 

and B). 

 

Figure 17. mRNA and protein levels in HIPP1-overexpression plants. 
(A) Relative transcript abundances of the HIPP1 gene in shoots of the UBQ10:HIPP1 seedlings grown on soil for 
15 days as measured by qRT-PCR. Data are means ± SE (n = 4). It should be noted that relative transcript 
abundances of the HIPP1 gene in the WT was low and 100 ng instead of 10 ng cDNA was used as template. 
(B) Representative Western blot analysis of the GFP-HIPP1 protein levels in three independent homozygous 
transgenic lines. 

 

3.2.1 Phenotypic characterization of HIPP-overexpression plants 

 

The 35S:HIPP6 and 35S:HIPP7 overexpression lines developed very similar pleiotropic 

phenotypes which have not been observed during previous attempts to overexpress 

HIPP6/CdI19 (Suzuki et al., 2002). Transgenic lines expressing either construct did not differ 

from WT in their seedling morphology. However, the 35S:HIPP6 and 35S:HIPP7 plants 

developed smaller rosettes leaves with strongly altered morphology in their later growth and 

development (Fig. 18A and B). The rosette diameter was 74 to 75% of the WT diameter for 

the two 35S:HIPP6 transgenic lines and 65 to 85% of the WT diameter for 35S:HIPP7 

individual transgenic lines (Fig. 18C). The leaves of the transgenic plants were characterized 

by shorter petioles and smaller and crinkly lamina in comparison to WT (Fig. 18D). As leaf 

size and shape is determined by patterns of cell division and cell expansion, the cell size of 

epidermal cells in the fully developed rosette leaves of WT and 35S:HIPP7 plants were 

compared. Microscopic analysis revealed a strongly increased number of the 35S:HIPP7 

epidermal cells, which were reduced in size by ~60% in comparison to WT (Fig. 18E). 

Moreover, whereas differentiated adaxial epidermal pavement cells of WT plants had 

characteristic puzzle shape morphology, the 35S:HIPP7 cells developed much less 

convoluted shape with fewer lobes and indentations (Fig. 18G), suggesting a delayed 

differentiation. This notion was corroborated by frequent occurrence of apparently recent cell 

division events in the expanded 35S:HIPP7 leaves (newly formed cell walls with a straight 

appearance are indicated by arrowheads in Fig. 18G).  
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Figure 18. Overexpression of clade-I HIPP genes alters the leaf development. 
(A) and (B) 4-week-old plants overexpressing 35S:HIPP6 (A) and 35S:HIPP7 (B). Two independent lines are show 
for each construct. 
(C) Rosette diameter of the wild type (WT) and independent homozygous lines of plants overexpressing 
UBQ10:HIPP1, 35S:HIPP6 and 35S:HIPP7. The rosette diameter was determined 23 DAG. Data are means ± SD 
(n = 25). 
(D) Morphology of 6th rosette leaves of the WT and transgenic plants shown in (A) and (B). 
(E) and (F) Average size of abaxial epidermal cells (E) and the stomatal index (F) of the 5th and 6th rosette leaves 
of the WT and 35S:HIPP7-15 line 28 DAG. Data are means ± SD (n ≥ 15). ***P < 0.005, calculated by Student’s t 
test. 
(G) Abaxial epidermis of 6th leaf of WT and 35S:HIPP7-15 line 28 DAG. Cells at 25% distance from tip to base are 
shown. Examples of apparently recent cell walls are indicated by arrowheads. Scale bars = 50 µm.  

 
Next we analyzed the stomatal cells, which originate in the leaf epidermis through a series of 

cell divisions followed by differentiation of cells of the stomatal lineage (Bergmann and Sack, 

2007). The number of stomata per unit area was decreased by 45% in 35S:HIPP7 leaves and 

the stomatal index, which is the fraction of stomata in the total epidermal cell population, was 

decreased by >60% in comparison to WT (Fig. 18F). Therefore, consistent with the observed 
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delay in differentiation of the pavement cells, the data indicate that HIPP7 expression inhibits 

also differentiation of other cell types in the leaf.  

In addition to the leaf phenotype, the reproductive development of 35S:HIPP6 and 35S:HIPP7 

transgenic lines was also delayed as the transgenic plants flowered significantly later than the 

WT. The WT plants flowered at 22 days after germination (DAG) under LD conditions. In 

contrast, the 35S:HIPP6 and 35S:HIPP7 flowered at 34 and 28 DAG under LD conditions, 

respectively (Fig. 19A). These results indicate that HIPP-overexpression delays the onset of 

flowering. 

 

 

 
Figure 19. HIPP overexpression delays flowering and inhibits inflorescence shoot growth. 
(A) Flowering time under long-day conditions of WT, 35S:HIPP6 and 35S:HIPP7 (n > 20).  
(B) Shoot height of fully grown plants of the wild type (WT) and independent homozygous lines of plants 
overexpressing UBQ10:HIPP1, 35S:HIPP6 and 35S:HIPP7. Data are means ± SD (n = 25).  ***P < 0.005, 
calculated by Student’s t test. 
(C) to (F) Reduced apical dominance of the primary inflorescence stem (arrowhead) and reduced or arrested 
inflorescence meristems (arrows) in UBQ10:HIPP1 (C), 35S:HIPP6 (D), and UBQ10:HIPP7 (E) and (F) plants. 
  

The selected UBQ10:HIPP1 transgenic lines displayed overall similar, in part more severe, 

phenotypic changes as the 35S-driven HIPP6 and HIPP7 (Fig. 21). The rosette diameter was 

18 to 86% of the WT diameter for the three analyzed UBQ10:HIPP1 transgenic lines (Fig. 
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18C), and the phenotypic severity correlated with the transgene transcript and protein levels 

(Fig. 17A and B). 

Moreover, the transgenic plants overexpressing clade-I HIPP genes had a significantly 

retarded shoot height in comparison to WT plants, which was most evident in the 

UBQ10:HIPP1 transgenic plants (Fig. 19B). Furthermore, several HIPP-overexpressing 

plants displayed with incomplete penetrance a loss of primary inflorescence shoot dominance 

and a reduced inflorescence meristem activity (Fig. 19C-E). Interestingly, some transgenic 

lines, in particular the UBQ10-driven HIPP7 transgenic plants (3.2.2.1), exhibited more severe 

defects in shoot apical with completely arrested and differentiated inflorescence meristems 

(Fig. 19F).  

Together, the results described above show that the enhanced expression of different clade-I 

HIPP genes causes similar phenotypic changes. Many of those changes, including the leaf 

margin serration, the promotion of division  and inhibition of differentiation of the epidermal 

cells strongly resemble those in plants with increased cytokinin content or activity (Rupp et al., 

1999; Steiner et al., 2012; Efroni et al., 2013; Li et al., 2013a).   

 

3.2.2 Cytokinin status in shoot 

 

3.2.2.1 Clade-I HIPPs enhance leaf responses to cytokinin in a prenylation-dependent 

manner 

 

To find out whether the phenotypic changes in the HIPP-overexpressing plants are related to  

altered cytokinin responses and to know how HIPP proteins influence the cytokinin activity, 

we increased the endogenous cytokinin content in the analyzed plants by treatment with 

INCYDE, an effective inhibitor of CKX proteins (Zatloukal et al., 2008; Niemann et al., 2015), 

and analyzed the leaf growth responses. Fig. 20A and B show that WT responded to the low 

INCYDE concentration by increasing the leaf surface area, which is typical for plants treated 

with low cytokinin concentrations (Efroni et al., 2013) or for plants displaying enhanced 

cytokinin activity (Bartrina et al., 2017). In contrast, the leaf areas of 35S:HIPP6 and 

35S:HIPP7 plants were reduced in response to already low INCYDE concentration and the 

reduction was significantly stronger after treatment with higher concentrations of the inhibitor 

in comparison to WT. Moreover, the crinkly leaf phenotype was strongly enhanced after the 

inhibitor treatment (Fig. 20A). Together, these results suggest that the 35S:HIPP6 and 

35S:HIPP7 plants are hypersensitive to cytokinin. 
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Figure 20. Clade-I HIPPs enhance leaf responses to cytokinin in a prenylation-dependent manner. 
(A) Leaf 7 from wild type (WT) and two independent homozygous lines expressing 35S:HIPP6 and 35S:HIPP7 
treated repeatedly with INCYDE (10 and 50 µM) for 4 weeks. Bar = 1 cm. 
(B) Relative growth of rosette leaf 7 of WT and plants expressing 35S:HIPP6 and 35S:HIPP7 after 4 weeks of 
repeated INCYDE application. Data are means ± SE (n = 8-9). All mutant lines differed significantly from the WT for 
both INCYDE treatments (Student’s t test, P < 0.05). 
(C) Relative growth of rosette leaf 7 of WT and plants expressing UBQ10:HIPP7, UBQ10:HIPP7C352G and 
UBQ10:HIPP7hma after 4 weeks of repeated INCYDE application. Data are means ± SE (n = 8). **P < 0.01, 
calculated by Student’s t test. 

(D) Four-week-old plants expressing UBQ10;HIPP7, UBQ10:HIPP7C352G and UBQ10:HIPP7hma  under the control 
of the UBQ10 promoter. 
(E) Rosette diameter of the wild type (WT) and independent homozygous lines of plants overexpressing 
UBQ10;HIPP7, UBQ10:HIPP7C352G and UBQ10:HIPP7hma. The rosette diameter was determined 23 DAG. Data 
are means ± SD (n = 25). 
(F) Relative transcript abundances of the HIPP7 transgenes in shoots of the UBQ10;HIPP7, UBQ10:HIPP7C352G 
and UBQ10:HIPP7hma seedlings grown on soil for 15 days as measured by qRT-PCR. Data are means ± SE (n = 
4). 
(G) Representative Western blot analysis of the GFP-HIPP7, GFP-HIPP7C352G and GFP-HIPP7hma protein levels in 
selected homozygous transgenic lines. 
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To test the effect of HIPP expression on cytokinin sensitivity in more detail and to avoid the 

strong leaf morphological changes associated with the 35S:HIPP expression, transgenic lines 

expressing GFP-HIPP7 under the control of the UBQ10 promoter (called UBQ10:HIPP7 in the 

following) were generated. Selected UBQ10:HIPP7 lines displayed no detectable changes in 

leaf morphology under the control conditions (Fig. 20D and E). Nevertheless, the 

UBQ10:HIPP7 leaves responded more sensitive towards the INCYDE treatment than WT (Fig. 

20C), corroborating the notion of the increased cytokinin sensitivity through HIPP expression. 

Most importantly, the hypersensitive responses were completely abolished in plants 

expressing the HIPP7 mutant form lacking the prenyl-accepting site (UBQ10:HIPP7C352G; 

Figure 20C), although the mutant protein was expressed higher than the respective HIPP7 

WT protein form in UBQ10:HIPP7 plants (Fig. 20F and G). Plants expressing the HIPP7 

mutant with mutated HMA domains (UBQ10:HIPP7hma) displayed a reproducible, but 

statistically not significant, increase in cytokinin sensitivity (Fig. 20C). These data suggest that 

the CKX-HIPP complex formation triggered by the HIPP7-expression is causal for the 

enhanced cytokinin sensitivity. 

Similarly to HIPP6 and HIPP7, an increased sensitivity towards cytokinin was observed also 

in the generated independent UBQ10:HIPP1 lines. As shown in Fig. 21, compared to WT 

plants, the UBQ10:HIPP1 lines produced smaller yellow leaves with excessive serrations 

when repeatedly sprayed with exogenous cytokinin. Together, these results suggest that 

overexpressing of HIPP proteins elevated plants responses to cytokinin. 

 

 

Figure 21. HIPP1 enhances cytokinin sensitivity in leaves. 
Effects on the growth of shoots of independent UBQ10:HIPP1 transgenic lines after 3 weeks of repeated 50 µM 
benzyladenine (BA) application. 

 

3.2.2.2 IPT3 gain-of-function mutation enhances the HIPP-overexpression phenotypes 

 

To further explore the influence of altered cytokinin activity on the development of 

HIPP-overexpressing plants, 35S:HIPP7 plants were crossed with repressor of cytokinin 
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UBQ10:HIPP1-23WT UBQ10:HIPP1-19 UBQ10:HIPP1-34

UBQ10:HIPP1-23WT UBQ10:HIPP1-19 UBQ10:HIPP1-34



RESULTS 

 

71 
 

deficiency4 (rock4), which is a dominant gain-of-function mutation of cytokinin biosynthesis 

IPT3 gene with increased endogenous cytokinin content (Jensen, 2013). This mutant was 

isolated based on its ability to suppress the cytokinin-deficient phenotypes (Niemann et al., 

2015). Fig. 22 illustrates that the elevated cytokinin biosynthesis in the hybrid plants severely 

enhanced the 35S:HIPP7 leaf developmental defects corroborating the enhanced cytokinin 

sensitivity of the transgenic line. 

 

 

Figure 22. A gain-of-function mutation in IPT3 enhances the 35S:HIPP7 leaf phenotypic changes. 
A dominant gain-of-function mutation of cytokinin biosynthesis IPT3 gene (rock4; repressor of cytokinin deficiency4) 
enhances the 35S:HIPP7 leaf developmental defects. Please note the reduced leaf size and extensive serration in 
the hybrid plants. F1 hybrid plants 28 DAG are shown. 

 

3.2.2.3 Impact of HIPP overexpression on endogenous cytokinin concentration 

 

As next we analyzed whether the observed phenotypic changes in HIPP-overexpressing 

plants were reflected by the content of the endogenous cytokinins. The analysis of 2-week-old 

35:HIPP6 and 35S:HIPP7 shoots revealed that the content of most cytokinin metabolites was 

relatively weakly changed (Table 17).  

 

Table 17: Cytokinin content of 35S:HIPP6 and 35S:HIPP7 Arabidopsis plants. 

 
Whole rosettes (15 DAG) were analyzed. iP, N6-(Δ2-isopentenyl)adenine; iPR, N6-(Δ2-isopentenyl)adenosine; 
iPRMP, N6-(Δ2-isopentenyl)adenosine 5’-monophospate; iP9G, N6-(Δ2-isopentenyl)adenine 9-glucoside; tZ, 
trans-zeatin; tZR, trans-zeatin riboside; tZRMP, trans-zeatin riboside 5’-monophosphate; tZ9G, trans-zeatin 
9-glucoside; tZOG, trans-zeatin O-glucoside; tZROG, trans-zeatin riboside O-glucoside; cZ, cis-zeatin; cZR, 

WT 35S:HIPP7; WT 35S:HIPP7; rock4

Genotype iP iPR iPRMP iP9G tZ tZR tZRMP tZ9G 

WT 0.46 ± 0.09  8.28 ± 1.85  17.62 ± 4.35  0.83 ± 0.03  1.93 ± 0.19  13.09 ± 0.73  33.73 ± 5.94  18.86 ± 0.68  

35S:HIPP6-2 0.55 ± 0.09  6.78 ± 1.44  11.22 ± 2.23  0.84 ± 0.07  1.74 ± 0.31  12.90 ± 2.53  26.14 ± 5.29  18.20 ± 1.92  

35S:HIPP6-21 0.36 ± 0.09  7.64 ± 1.29  8.91 ± 0.87  0.64 ± 0.04  1.29 ± 0.27  12.45 ± 1.74  19.75 ± 4.92  15.65 ± 0.86  

35S:HIPP7-2 0.48 ± 0.09  8.14 ± 0.64  13.84 ± 1.81  0.96 ± 0.12  1.86 ± 0.22  16.07 ± 2.24  29.90 ± 6.02  21.81 ± 2.63  

35S:HIPP7-15 0.48 ± 0.11  6.48 ± 0.90  11.38 ± 2.17  0.97 ± 0.10  1.66 ± 0.18  11.58 ± 2.19  24.36 ± 3.90  20.90 ± 0.62  

Genotype tZOG tZROG cZ cZR cZRMP cZOG cZROG 
 

WT 5.27 ± 0.87  1.12 ± 0.16  0.05 ± 0.01  0.58 ± 0.14  3.21 ± 0.59  0.27 ± 0.04  0.26 ± 0.01  
   

35S:HIPP6-2 6.14 ± 0.70  1.00 ± 0.03  0.13 ± 0.03  1.67 ± 0.42  6.22 ± 0.37  0.43 ± 0.10  0.40 ± 0.10  
   

35S:HIPP6-21 7.48 ± 0.52  1.06 ± 0.09  0.14 ± 0.03  3.13 ± 0.91  7.07 ± 0.78  0.60 ± 0.08  0.66 ± 0.14  
   

35S:HIPP7-2 6.09 ± 0.13  1.04 ± 0.09  0.10 ± 0.01  1.36 ± 0.25  4.66 ± 0.18  0.38 ± 0.03  0.24 ± 0.04  
   

35S:HIPP7-15 6.02 ± 0.35  0.95 ± 0.13  0.09 ± 0.02  1.81 ± 0.52  5.25 ± 0.47  0.43 ± 0.06  0.26 ± 0.02     
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cis-zeatin riboside; cZRMP, cis-zeatin riboside 5’-monophosphate; cZOG, cis-zeatin O-glucoside; cZROG, 
cis-zeatin riboside O-glucoside. Data shown are pmol/g fresh weight ± SD; n = 3. 
 

The strongest changes were detected for isopentenyladenine (iP) and trans-zeatin (tZ) 

nucleotides, which were reduced to 50% of the WT levels, whereas the concentrations of 

cytokinin O-glucosides were significantly increased (Table 17). Interestingly, in contrast to iP- 

and tZ-type cytokinins, all cis-zeatin (cZ) metabolites, including the free cZ base, were 

strongly increased in all transgenic lines in comparison to WT (Table 17).  

Similar changes were detected at the later developmental stages (Table 18). Together, the 

complex changes of the cytokinin profiles indicate that a number of homeostatic reactions 

were activated in response to the expression of different HIPP genes. 

 

Table 18: Cytokinin content of HIPP-overexpressing Arabidopsis plants. 

 
The 6th and 7th rosette leaves (23 DAG) were analyzed. iP, N6-(Δ2-isopentenyl)adenine; iPR, 
N6-(Δ2-isopentenyl)adenosine; iPRMP, N6-(Δ2-isopentenyl)adenosine 5’-monophospate; iP9G, 
N6-(Δ2-isopentenyl)adenine 9-glucoside; tZ, trans-zeatin; tZR, trans-zeatin riboside; tZRMP, trans-zeatin riboside 
5’-monophosphate; tZ9G, trans-zeatin 9-glucoside; tZOG, trans-zeatin O-glucoside; tZROG, trans-zeatin riboside 
O-glucoside; cZ, cis-zeatin; cZR, cis-zeatin riboside; cZRMP, cis-zeatin riboside 5’-monophosphate; cZOG, 
cis-zeatin O-glucoside; cZROG, cis-zeatin riboside O-glucoside. Data shown are pmol/g fresh weight ± SD; n = 3. 
 

3.2.2.4 HIPP overexpression enhances cytokinin activity in shoot 

 

To analyze directly the cytokinin status of the HIPP-overexpressing plants, we introgressed 

the cytokinin output sensor TCSn:GFP (Zürcher et al., 2013) in HIPP1 and 

genotype iP iPR iPRMP iP9G tZ tZR tZRMP tZ9G 

WT 0.97 ± 0.22  1.43 ± 0.21  38.25 ± 6.13  1.28 ± 0.15  1.78 ± 0.35  4.55 ± 1.13  50.89 ± 8.94 30.95 ± 4.09 

UBQ10:HIPP1-23 0.42 ± 0.06  0.89 ± 0.26  15.74 ± 1.80  1.01 ± 0.19  1.44 ± 0.24  2.09 ± 0.53  29.02 ± 4.21 22.70 ± 2.87 

UBQ10:HIPP1-19 1.22 ± 0.35  1.98 ± 0.44  11.85 ± 1.31  0.66 ± 0.06  0.88 ± 0.13  1.74 ± 0.41  13.50 ± 2.96 15.04 ± 0.89 

UBQ10:HIPP1-34 0.85 ± 0.02  1.46 ± 0.11  9.67 ± 0.40  0.77 ± 0.02  0.74 ± 0.07  1.41 ± 0.05  9.59 ± 0.92 11.29 ± 0.61 

35S:HIPP6-2 0.55 ± 0.06  1.05 ± 0.26  23.43 ± 1.38  0.81 ± 0.06  1.24 ± 0.10  3.76 ± 0.64  36.83 ± 3.06 21.24 ± 0.45 

35S:HIPP6-21 0.51 ± 0.15  0.96 ± 0.16  22.65 ± 1.78  0.96 ± 0.08  1.39 ± 0.15  3.72 ± 1.02  36.49 ± 4.87 22.66 ± 1.02 

35S:HIPP7-2 0.62 ± 0.08  1.48 ± 0.34  22.86 ± 3.26  1.20 ± 0.15  1.54 ± 0.12  4.98 ± 0.87  42.45 ± 3.26 25.95 ± 2.28 

35S:HIPP7-15 0.54 ± 0.15  1.73 ± 0.24  18.74 ± 2.35  0.83 ± 0.08  1.28 ± 0.16  4.29 ± 0.59  25.72 ± 3.34 19.09 ± 1.43 

                         

genotype tZOG tZROG cZ cZR cZRMP cZOG cZROG 
 

WT 8.04 ± 1.49 1.28 ± 0.30 0.05 ± 0.01 0.36 ± 0.08 4.98 ± 0.81 0.89 ± 0.18 1.06 ± 0.10 
   

UBQ10:HIPP1-23 7.69 ± 0.77 1.32 ± 0.18 0.05 ± 0.01 0.41 ± 0.08 4.95 ± 0.44 0.79 ± 0.16 1.25 ± 0.22 
   

UBQ10:HIPP1-19 11.31 ± 0.94 1.85 ± 0.11 0.30 ± 0.08 1.33 ± 0.20 10.39 ± 1.32 4.23 ± 0.47 8.93 ± 1.03 
   

UBQ10:HIPP1-34 14.04 ± 1.17 2.40 ± 0.44 0.33 ± 0.04 1.58 ± 0.16 12.00 ± 0.69 7.10 ± 0.55 21.42 ± 2.57 
   

35S:HIPP6-2 9.25 ± 1.07 1.01 ± 0.18 0.06 ± 0.01 0.42 ± 0.09 6.49 ± 1.07 1.28 ± 0.11 1.81 ± 0.11 
   

35S:HIPP6-21 9.66 ± 1.28 1.10 ± 0.21 0.06 ± 0.01 0.46 ± 0.04 6.66 ± 0.58 1.32 ± 0.10 1.93 ± 0.17 
   

35S:HIPP7-2 8.43 ± 0.84 1.12 ± 0.17 0.04 ± 0.00 0.46 ± 0.06 5.56 ± 0.59 0.97 ± 0.12 1.08 ± 0.11 
   

35S:HIPP7-15 9.52 ± 0.87 1.03 ± 0.19 0.10 ± 0.02 0.78 ± 0.13 6.94 ± 0.53 1.25 ± 0.17 1.78 ± 0.32 
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HIPP7-overexpressing lines. Because the TCSn:GFP reporter displays relatively low 

fluorescence signal in rosette leaves, which was not possible to analyze by microscopy, we 

analyzed the TCSn:GFP expression levels by qRT-PCR. Fig. 23 shows that the TCSn:GFP 

expression levels were significantly increased in the transgenic lines compared to WT. These 

results correlate with the increased sensitivity of leaves towards the cytokinin and suggest 

that clade-I HIPP proteins increase cytokinin activities in shoot. 

 

 

 
Figure 23. HIPP-overexpression enhances cytokinin activity in shoot. 
Quantitative RT-PCR (qRT-PCR) analysis of GFP transcript levels in rosettes of 15 DAG F1 plants from the 
crosses of TCSn:GFP with the wild-type (WT), UBQ10:HIPP1-19 and 35S:HIPP7-15 plants. Data are means ± SE 
(n = 3). *P < 0.05, ***P < 0.005, calculated by Student’s t test. 

 

3.2.2.5 Differential regulation of type-A ARR genes in response to HIPP-expression 

 

To further corroborate the results that HIPP-expression increased the sensitivity of leaves 

towards the cytokinin and elevated the expression of cytokinin output sensor TCSn:GFP, we 

analyzed expression of type-A ARR genes encoding downstream component of the cytokinin 

signaling pathway (To et al., 2004). The qRT-PCR analysis revealed a strong upregulation of 

ARR5 and ARR7 in HIPP-overexpressing plants (Fig. 24A).  Interestingly, the steady-state 

transcript levels of most analyzed ARR genes were unaltered or decreased in comparison to 

WT (Fig. 24A), suggesting differential regulation of type-A ARR genes in response to 

HIPP-expression. Among the strongly downregulated type-A ARRs were genes which have 

previously been shown to be specifically expressed in the expanding leaves and to inhibit 

cytokinin response, which promotes cell differentiation during the leaf development (Efroni et 

al., 2013). For example, the ARR16 transcript levels were severely reduced in 

HIPP-overexpressing leaves in comparison to WT. Moreover, the reduction was progressively 

stronger during the later stages of leaf maturation (Fig. 24B), which correlates with the 
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appearance of the severe leaf developmental defects in the transgenic plants. Therefore, in 

agreement with the inhibitory function of the type-A ARR genes on cytokinin response, their 

diminished expression in HIPP-overexpressing plants correlates with the higher steady-state 

cytokinin signaling detected by TCSn:GFP, and with the enhanced cytokinin responsiveness. 

 

Figure 24. Differential regulation of type-A ARR genes in HIPP-overexpressing transgenic Arabidopsis 
plants. 
(A) qRT-PCR analysis of type-A ARRs steady-state transcript levels in rosettes of WT, 35S:HIPP6, and 35S:HIPP7 
plants 15 DAG. Data are means ± SE (n = 4). 
(B) qRT-PCR analysis of ARR16 transcript levels in rosettes of WT and 35S:HIPP6 lines of at indicated 
developmental time points. Data are means ± SE (n = 4). 
 

3.2.2.6 IPT gene expression is reduced in shoot of HIPP-overexpression lines 

 

On one hand, the elevated TCSn:GFP expression levels indicated increased cytokinin 

activities in shoots of HIPP-overexpression lines. On the other hand, the content of some 

cytokinin metabolites such as iP and tZ nucleotides were reduced. To understand the 

apparent discrepancy between higher cytokinin activity and reduced cytokinin levels, the 

expression of several genes for ATP/ADP isopentenyltransferases (IPT) were analyzed. IPTs 

catalyze the first step of cytokinin biosynthesis in Arabidopsis and are downregulated by 

cytokinin through a negative feedback loop (Miyawaki et al., 2004). The qRT-PCR analysis 

revealed a strong downregulation of three analyzed IPT genes in 35S:HIPP6 and 35S:HIPP7 

overexpressing plants (Fig. 25A). Similarly to HIPP6 and HIPP7, all three IPT genes were 

downregulated in the independent UBQ10:HIPP1 lines (Fig. 25B). These results thus indicate 

that cytokinin biosynthesis was partially reduced in response to a higher steady-state 

cytokinin signaling in the HIPP-overexpressing plants. 
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Figure 25. Expression of IPTs in the HIPP-overexpressing plants. 
(A) Quantitative RT-PCR (qRT-PCR) analysis of IPTs steady-state transcript levels in rosettes of WT, 35S:HIPP6, 
and 35S:HIPP7 plants 15 DAG. Data are means ± SE (n = 4). 
(B) qRT-PCR analysis of IPTs steady-state transcript levels in rosettes of the UBQ10:HIPP1 plants 15 DAG. Data 
are means ± SE (n = 4). 

 

3.2.2.7 35S:ARR15 suppresses the HIPP-overexpression phenotypes 

 

To test whether the enhanced cytokinin activity is causally involved in the establishment of the 

HIPP-overexpression leaf phenotype, we performed a genetic cross between a 35S:HIPP6 

transgenic line, which has a pronounced crinkly leaf phenotype, and a ARR15  

overexpression line, which has a reduced cytokinin sensitivity, but does not display any leaf 

phenotypic changes compared with WT (Ren et al., 2009). The resulting hybrid phenotypes 

were analyzed in the F1 generation. Fig. 26A-C show that the leaf phenotype of 35S:HIPP6 

plants was strongly suppressed by the introgression of ARR15. The rosette diameter and 

fresh weight of the 35S:HIPP6; 35S:ARR15 double transgenic line was 121% and 138% 

compared to the 35S:HIPP6; WT control F1 hybrid. The transcript levels of the HIPP6 

transgene were comparable to control cross (Fig. 26D and E). Together, this genetic analysis 

suggested that the altered leaf development in HIPP-overexpressing plants is largely caused 

by enhanced cytokinin activity. 
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Figure 26. 35S:HIPP6 shoot phenotype is suppressed by the expression of 35S:ARR15. 
(A) Suppression of the altered leaf morphology of 35S:HIPP6 plants by the expression of 35S:ARR15. F1 hybrid 
plants 23 DAG are shown. 
(B) Rosette diameter of the wild type (WT) and F1 hybrid plants from the cross of 35S:HIPP6 with WT or 
35S:ARR15 shown in (A). Data are means ± SD (n = 5). ***P < 0.005, calculated by Student’s t test. 
(C) Rosette fresh weight (FW) of plants shown in (A). Data are means ± SD (n = 4).   **P < 0.01, calculated by 
Student’s t test. 
(D) qRT-PCR analysis of HIPP6 transcript levels in rosettes of plants shown in (A). Data are means ± SE (n = 4). 
(E) qRT-PCR analysis of ARR15 transcript levels in rosettes of the WT, F1 hybrid plants shown in (A) and 
35S:ARR15 homozygous plants. Data are means ± SE (n = 4). 
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3.2.3 Cytokinin responses in root 

 

3.2.3.1 Overexpression of clade-I HIPP genes inhibits root growth and development 

 

To understand whether the ectopic HIPP expression influences the root development, we 

tested the primary root elongation and lateral root development in various HIPP 

overexpressing lines. 

 

Figure 27. Arabidopsis plants overexpressing HIPPs exhibit altered root growth and development. 
(A) to (C) Primary root length of the wild type (WT) and independent homozygous lines of plants overexpressing 
UBQ10:HIPP1 (A), 35S:HIPP6 (B) and 35S:HIPP7 (C). Elongation of primary roots between day 3 and 10 after 
germination were measured. Data are means ± SD (n = 15). *P < 0.05, **P < 0.01 and ***P < 0.005, calculated by 
Student’s t test. 
(D) to (F) Number of emerged lateral roots in plants shown in (A) to (C) 10 DAG. Data are means ± SD (n = 15). 

 

It was observed that the UBQ10:HIPP1 lines, which displayed the most severe changes in 

shoot morphology, developed also strongly retarded root system. As presented in Fig. 27A, 

the primary root elongation was reduced to about 40% of the WT in several independent lines. 

The reduction correlated with the degree of the transgene expression (Fig. 27A, Fig. 17A and 

B). Moreover, the formation of lateral roots was also severely affected. The 

HIPP1-overexpressing plants showed a strong decrease of lateral root numbers (65%) 

compared with the WT seedlings (Fig. 27D). Similarly to HIPP1, 35S:HIPP6 and 35S:HIPP7 
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overexpressing plants displayed a retarded primary root growth and a decreased lateral root 

number (Fig. 27). 

 

3.2.3.2 The retarded root development of HIPP-overexpressing plants is associated 

with enhanced cytokinin activity 

 

Provided the altered cytokinin sensitivity in the shoot, it was important to analyze whether the 

observed changes in root development might be a result of altered cytokinin activity in this 

organ as well. As cytokinin has been shown to regulate the size of the root apical meristem 

(Werner et al., 2003; Dello Ioio et al., 2007), the root meristem size was compared in different 

UBQ10:HIPP1 lines and WT by scoring the number of the cortex cells between the quiescent 

center and transition zone. The cortex cell number was strongly reduced in UBQ10:HIPP1 

root meristems (Fig. 28A-D), indicating a premature cell differentiation and suggesting that the 

altered root meristem activity was due to enhanced cytokinin response.  

 

 

 
Figure 28. HIPP1-overexpression plants display a reduced root-meristem cell number. 
(A) to (D) Root meristems of WT (A), UBQ10:HIPP1-23 (B), UBQ10:HIPP1-19 (C), and UBQ10:HIPP1-34 (D) 
plants 7 DAG. Arrows indicate the quiescent center and arrowheads indicate the first elongating cortex cell at the 
transition zone. 

 

To address this experimentally, the TCSn:GFP activity in the root meristems was visualized 

by the confocal microscopy. The analysis revealed that in comparison to control roots (Fig. 

29), the GFP signal was stronger in the procambial cells and it further expanded upward into 

the root vasculature in UBQ10:HIPP1 roots (Fig. 29B). Correlating with the increased 

cytokinin activities in the shoot, these results confirm that the HIPP overexpression enhances 

cytokinin activities also in the root. 
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Figure 29. Increased cytokinin signaling activity in Arabidopsis plants overexpressing HIPP1. 
(A) to (D) Confocal microscopy analysis of root meristems of F1 plants with TCSn:GFP crossed into WT (A) and 
UBQ10:HIPP1-19 (B). Images in (A) and (B) were captured using identical confocal settings. (C) and (D) The 
background GFP fluorescence corresponding to the GFP-HIPP1 protein expressed in the UBQ10:HIPP1-19 line 
was very low (D) and thus not interfering with the analysis of the fluorescence signal resulting from TCSn:GFP 
activity shown in (A) and (B). WT is shown in (C). Images were captured using identical confocal settings as in the 
analysis shown in (A) and (B). 
 

3.2.3.3 Clade-I HIPPs suppress root development in a prenylation dependent manner 

 

Since it was shown that prenylation of HIPP7 was necessary for the establishment of the 

overexpression phenotypes in leaves, it was further tested whether this posttranslational 

protein modification is also important for the HIPP activity in roots. Fig. 30A and B, shows that 

transgenic line expressing UBQ10:HIPP7 displayed significantly reduced (~10%) elongation 

of the primary root and the formation of the lateral roots (~20%). Importantly, the expression 

of the prenylation-deficient HIPP7 protein (UBQ10:HIPP7C352G) did not produce a significant 

change in root development in comparison to WT, suggesting that the changes of cytokinin 

activity in roots were dependent on the HIPP7 prenylation. Plants expressing the HIPP7 

mutant with mutated HMA domains (UBQ10:HIPP7hma) displayed a slightly, but statistically 

not significant, reduced elongation of the primary root and the formation of the lateral roots 

(Fig. 30).  
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Figure 30. Clade-I HIPPs perturb root development in a prenylation dependent manner. 
(A) Length of the primary root of the WT and plants expressing UBQ10:GFP-HIPP7, UBQ10:GFP-HIPP7C352G and 
UBQ10:GFP-HIPP7hma. Elongation of primary roots between day 3 and 10 after germination were measured. Data 
are means ± SD (n = 30). ***P < 0.005, calculated by Student’s t test.  
(B) Number of emerged lateral roots in plants shown in (A) 10 DAG. Data are means ± SD (n = 30). ***P < 0.005, 
calculated by Student’s t test.  

 

3.2.4 Clade-I HIPPs regulate CKX1 protein abundance in Arabidopsis plants 

 

The phenotypic and molecular analysis of HIPP-overexpressing plants provided several 

indications that their cytokinin activity is increased. This suggests that the cytokinin metabolic 

homeostasis or cytokinin responses are altered. Having shown that the HIPP proteins interact 

with CKX in vitro and in vivo, it was aimed to study how HIPP expression influences the CKX 

protein levels. To approach this question experimentally, we crossed the lines expressing 

UBQ10:HIPP1, 35S:HIPP6 and 35S:HIPP7 respectively, with a transgenic line expressing the 

CKX1-myc fusion protein under the control of the Arabidopsis thaliana MERISTEM LAYER 1 

(ATML1) promoter (AtML1:CKX1-myc) (Werner, 2016). Analysis of the AtML1:CKX1-myc, 

UBQ10:HIPP1, F1 progenies revealed that the levels of the CKX1-myc were strongly reduced 

in comparison to the control cross (Fig.  31A and C), suggesting that the CKX1/HIPP1 

complex formation is associated with the enhanced degradation of CKX1. This results 

correlates with the enhanced cytokinin activity in the HIPP1-overexpressing plants. 

In contrast to this, CKX1-myc protein levels were significantly increased upon the expression 

of 35S:HIPP6 and 35S:HIPP7 (Fig. 31B and D), suggesting that the CKX-myc protein was 

more stable in the complex with the respective HIPP proteins. Since the BiFC experiments 

indicated that CKX1/HIPP7 complex is localized at the cytosolic site of the ER membrane, the 

increased CKX1-myc levels suggest that the protein was stabilized in a cytosolic complex. 

Nonetheless, the increased cytokinin activity in HIPP6 and HIPP7 overexpressing plants 
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implicate that CKX1 protein was withdrawn from the ER and less CKX degradation occurs in 

this compartment. 

 

 

 
Figure 31. Overexpression of HIPP genes alters the CKX1 protein levels. 
(A) and (B) Comparison of the CKX1-myc protein abundances in the F1 plants resulting from the crosses between 
the ATML1:CKX1-myc Arabidopsis line and plants expressing UBQ10:HIPP1 (A), 35S:HIPP6 and 35S:HIPP7 (B). 
Hemizygous F1 plants from the cross between ATML1:CKX1-myc and wild type (WT) were used as a control. 30 
µg of the crude protein extracts from shoots 20 DAG were resolved by SDS-PAGE and submitted to immunoblot 
analysis with anti-myc antibody. Coomassie blue staining of Rubisco large subunit (RbcL) was used as loading 
control. 
(C) and (D) Comparable expression of the CKX1-myc transgene in the F1 plants resulting from the crosses 
between the ATML1:CKX1-myc Arabidopsis line with plants expressing UBQ10:HIPP1 (C), 35S:HIPP6 and 
35S:HIPP7 (D) and the F1 plants from the cross with wild type (WT). qRT-PCR analysis of transcript levels in 
shoots 15 DAG. Expression in WT was set to 1. Data are means ± SE (n = 4). 
 

3.2.5 Changes in the expression of genes encoding TCP transcription factors 

 

The dynamic progress of leaf growth and development is modulated by multiple regulatory 

cues, including several transcription factors and phytohormones. It has been reported that the 

TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) 

transcription factors regulate leaf morphogenesis via mediating cytokinin signaling. For 

example, overexpression of TCP14, encoding class I TCP, leads to plants hypersensitive to 

cytokinin (Steiner et al., 2012). In contrast, the reduction in expression of class II TCP 

increased plants sensitivity to cytokinin and produced crinkly leaves (Efroni et al., 2013). To 
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test whether the changes in leaf development in HIPP-overexpressing plants are linked to 

altered expression of TCPs, the mRNA levels of several TCP were analyzed by qRT-PCR. As 

shown in Figure 32A, the expression level of the TCP14 was not increased in 35S:HIPP6 

plants. In contrary, a slight, but not significant, reduction of TCP14 expression was detected, 

suggesting that the 35S:HIPP6 leaf phenotype was not due to the alteration of the expression 

of TCP14. Interestingly, the transcript levels of several class II TCP genes were reduced in 

HIPP6-overexpressing plants. Especially, there was a significant reduction for TCP10 and 

TCP18 (Fig. 32A). The expression of class II TCP was further tested in 35S:HIPP7 plants. 

Intriguingly, a similar reduction in TCP4 and TCP18 transcript levels was detected in these 

transgenic plants (Fig. 32B). These results together suggest that HIPP overexpression could 

affect the leaf development, at least in part, via regulating the expression of class II type 

TCPs. 

 

 

 
Figure 32. Expression of TCP genes in HIPP-overexpressing Arabidopsis plants. 
(A) qRT-PCR analysis of TCP genes steady-state transcript levels in rosettes of wild type (WT) and two 
independent homozygous lines expressing 35S:HIPP6 at 15 DAG. Data are means ± SE (n = 4). *P < 0.05, 
calculated by Student’s t test. 
(B) qRT-PCR analysis of TCP genes transcript levels in rosettes of WT and 35S:HIPP7 plants 15 DAG. Data are 
means ± SE (n = 4). ***P < 0.005, calculated by Student’s t test. 
 

3.2.6 Overexpression of clade-I HIPPs affects the expression of gibberellin 

metabolism genes and gibberellin homeostasis 

 

Leaf shape is determined by a highly flexible process that modulates the balance between 

leaf cell proliferation and differentiation (Bar and Ori, 2014). This flexibility is regulated by 

several phytohormones, one of which is cytokinin as discussed above. Another important 
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plant hormone is gibberellin (GA) which promotes cell differentiation and leaf maturation 

(Achard et al., 2009). To test whether GA is affected in HIPP-overexpressing plants, the 

expression levels of several GA biosynthesis and deactivation genes were analyzed by 

qRT-PCR. Fig. 33A shows that the transcript levels of GA3OX1, which encodes the crucial 

enzyme catalyzing the last step of the biosynthesis of active GA form in Arabidopsis (Sun, 

2008; Yamaguchi, 2008), were reduced to less than 20% in two independent 35S:HIPP6 lines 

in comparison to the WT control. Similarly, the transcript levels of GA20OX1, which also 

modulate active GA content in the late stages (Sun, 2008; Yamaguchi, 2008), were reduced 

in the 35S:HIPP6 lines (Fig. 33A), suggesting a lower GA content in the transgenic plants. 

Moreover, similar to the expression of ARR16 in the 35S:HIPP6 transgenic plants, the 

reduction in the GA3OX1 transcripts was progressively stronger during the later stages of leaf 

maturation (Fig. 33B). Interestingly, the expression level of GA2OX1, which catalyzes the 

deactivation reaction of GA, was also downregulated in the analyzed 35S:HIPP6 lines, but 

another GA 2-oxidase, the GA2OX2 was upregulated (Fig. 33A), suggesting a differential 

regulation of GA deactivation genes in response to HIPP-overexpression. 

 

 

 
Figure 33. Differential regulation of GA metabolism genes in HIPP-overexpressing Arabidopsis plants. 
(A) qRT-PCR analysis of the steady-state transcript levels of GA metabolism genes in rosettes of WT and 
35S:HIPP6 plants 15 DAG. Data are means ± SE (n = 4). 
(B) qRT-PCR analysis of GA3OX1 transcript levels in rosettes of WT and 35S:HIPP6 lines at indicated 
developmental time points. Data are means ± SE (n = 4). 
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GA in Arabidopsis (Yamaguchi, 2008), was strongly reduced to less than 50% of the WT 

levels in the two 35:HIPP6 lines (Fig. 34A). A slight but not significant reduction of GA4 was 

also detected in the analyzed 35:HIPP7 lines (Fig. 34A). Both the WT and HIPP 

overexpression lines had very low or undetected amount of GA1, GA3 and GA7, which are also 

the bioactive GA forms (Appendix Fig. A.1). In contrast to the reduced GA4 levels, the 

concentrations of GA15, one of the precursors of GA4, were significantly accumulated in all 

transgenic lines (Fig. 34B). Together, the complex changes of the GA profiles could due to the 

different regulation of the GA metabolism genes responding to the overexpression of HIPP 

genes. 

 

 

 
Figure 34. GA content in HIPP-overexpressing transgenic Arabidopsis plants. 
(A) and (B) GA4 (A) and GA15 (B) contents in wild type (WT) and two independent homozygous lines expressing 
35S:HIPP6 and 35S:HIPP7. Rosettes (15 DAG) were analyzed. Data shown are means ± SD; n = 3. *P < 0.05, **P 
< 0.01, ***P < 0.005, calculated by Student’s t test. 

 

To find out whether the reduced GA levels are causal for the altered leaf development in the 

HIPP-overexpressing plants, exogenous GA3 was applied to 35S:HIPP6 plants and the 

phenotypic changes scored. As shown in Fig. 35A and B, the application of GA promoted WT 

leaf growth and resulted in an enlarged rosette compared with the mock control. GA 

application had a similar effect on promoting the leaf growth of the 35:HIPP6 plants. However, 

neither the smaller rosette diameter nor the crinkly leaf phenotype of the 35S:HIPP6 plants 

was rescued by the GA application. Even after 3 weeks of GA application, the 35S:HIPP6 

plants displayed obvious overexpression leaf morphology (Fig. 35C), suggesting that the leaf 

phenotypes of the HIPP-overexpression plants was not caused by reduced GA content.  
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Figure 35. GA application does not rescue the leaf phenotypes of the 35:HIPP6 plants. 
(A) and (B) Wild type (WT) and two independent homozygous lines expressing 35S:HIPP6 treated repeatedly with 
0 µM (DMSO) (A) and 50 µM GA3 (B) for 2 weeks.  
(C) WT and two independent homozygous lines expressing 35S:HIPP6 treated repeatedly with 50 µM GA3 for 3 
weeks. 

 

3.2.7 Overexpression of clade-I HIPPs elevates the concentrations of ABA and 

SA 

 

As only little is known about biological processes controlled by HIPP proteins, the function of 

clade-I HIPP proteins in controlling other plant hormones was further investigated by 

measuring the contents of abscisic acid (ABA) and salicylic acid (SA) in HIPP-overexpression 

plants. The analysis of 2-week-old 35:HIPP6 and 35S:HIPP7 shoots revealed that the 

concentration of ABA is elevated in one 35S:HIPP6 overexpression line and in both 

35S:HIPP7 overexpression lines (Fig. 36A). Especially in the 35S:HIPP7-15 line, the 

concentration of ABA was increased by 86% in comparison to the WT control (Fig. 36A). 

Strong changes in the concentrations of SA were detected in the HIPP-overexpression plants. 

As shown in Fig. 36B, there was a 3 and 4-fold increase of SA content in the 35S:HIPP6 line 2 

and line 20, respectively. Elevated concentrations of SA were also detected in the stronger 

35S:HIPP7 overexpression line. Together, these results suggest that the overexpression of 

clade-I HIPPs affected the expression of genes associated with ABA and SA metabolism or 

altered the distribution of these hormones in the plant. 
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Figure 36. ABA and SA contents in HIPP-overexpressing Arabidopsis plants. 
(A) ABA content in wild type (WT) and two independent homozygous lines expressing 35S:HIPP6 and 35S:HIPP7. 
Rosettes (15 DAG) were analyzed. Data shown are means ± SD; n = 3. *P < 0.05, ***P < 0.001, calculated by 
ANOVA. 
(B) SA content in plants shown in (A). Data shown are means ± SD; n = 3. ***P < 0.001, calculated by ANOVA. 
 

3.2.8 Overexpression of clade-I HIPPs increases drought tolerance in 

Arabidopsis 

To examine whether the changes in the level of endogenous HIPP proteins can affect plant 

tolerance to abiotic stress, drought experiments were performed. Arabidopsis WT and various 

HIPP-overexpression lines were cultivated on soil for 3 weeks under LD conditions with 

regular irrigation. Subsequently, plants were kept under the same conditions except that 

water was completely withdrawn. As early as 6 day after withdrawing water, most of the WT 

plants showed severe damage due to the drought stress, whereas a significantly higher 

number of HIPP-overexpression plants maintained turgor and stayed green (Fig. 37). 

Importantly, it was observed that the drought resistance phenotypes of the 

HIPP-overexpression plants correlated with the transgene expression levels (Fig. 16 and 17), 

suggesting that the HIPP proteins might play a positive role in mediating responses to drought 

stress.   
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Figure 37. Increased drought tolerance of the HIPP-overexpression plants. 
Three-week-old wild type (WT) and HIPP-overexpression plants were exposed to drought for 6 days and 
photographed.  
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3.3 Characterization of hipp loss-of-function mutants in Arabidopsis  

 

An important strategy to explore the physiological function of the isolated HIPP proteins is to 

reduce levels of their respective gene activities by employing reverse genetic methods. 

However, the homologous genes from the same family may share a large degree of functional 

redundancy, which may impede the genetic analysis. Furthermore, the generation of 

multigene knockouts for closely linked genes, especially those present as tandem 

duplications, has imposed further challenges and constraints. In order to circumvent these 

problems and to generate higher-order hipp mutants, an approach employing the expression 

of artificial microRNA targeting multiple HIPP genes was pursued. In an alternative approach, 

T-DNA insertional mutants of individual HIPP genes were isolated and higher-order mutants 

created by genetic crosses. 

 

3.3.1 Generation and characterization of Arabidopsis plants expressing single 

amiRNA constructs for multiple HIPP gene silencing 

 

Artificial microRNA (amiRNA) technology exploits the biogenesis and silencing machineries 

for endogenous miRNA precursors to generate sRNAs that direct gene silencing in either 

plants or animals (Ossowski et al., 2008; Sablok et al., 2011). An amiRNA is designed from a 

native endogenous miRNA precursor, in which the miRNA-miRNA* duplex is replaced with a 

customized sequence. The high-level accumulation of an amiRNA of desired sequence 

redirects the miRNA-induced silencing complex to silence the mRNA target of interest (Zeng 

et al., 2002; Parizotto et al., 2004; Alvarez et al., 2006; Schwab et al., 2006; Ossowski et al., 

2008). Plant amiRNA has significant advantages due to its small size, which make it possible 

to generate constructs expressing multiple and unrelated amiRNAs (Alvarez et al., 2006; Niu 

et al., 2006; Schwab et al., 2006; Ossowski et al., 2008; Li et al., 2013b). Because the 

homologous genes from the same family usually share a large degree of functional 

redundancy, two amiRNAs with multiple potential targets from clade I of the HIPP gene family 

were designed. The amiRNA construct amiRNA-Tri targets three HIPP genes, HIPP5, HIPP6 

and HIPP7. The second amiRNA construct, amiRNA-Mul, was designed to target five HIPP 

genes (HIPP3, HIPP5, HIPP6, HIPP7 and HIPP8), which represent a theoretical maximal 

number of cluster I HIPP genes to be targeted by a single amiRNA according to the 

bioinformatic prediction (Fig. 38A). The amiRNA constructs were placed under the control of 

the 35S promoter and transformed into Arabidopsis. T3 transgenic lines were analyzed by 

means of qRT-PCR. The results revealed that, among four selected homozygous lines 

expressing amiRNA-Tri, the transcript levels of HIPP7 were reduced to around 40 to 70% in 

comparison with that of the WT, while lower transcript levels of HIPP6 were detected only in 
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one transgenic line. None of the selected lines showed reduced HIPP5 mRNA levels (Fig. 

38B). Similarly, none of the analyzed T3 transgenic lines expressing amiRNA-Mul was 

effective in silencing all five potential HIPP target genes. In fact, only the transcript levels of 

HIPP7 were effectively reduced (to around 20% of the WT levels) in the selected homozygous 

lines. There was about 30% decrease in the HIPP3 mRNA levels, while the expression of 

HIPP5 and HIPP6 was not altered in the selected transgenic lines (Fig. 38C). These results 

suggested an intrinsic difficulty in silencing multiple HIPP genes using a single amiRNA. 

Although it can not be excluded that the expressed amiRNA caused translational repression 

of the target HIPPs (Li et al., 2013b), the lack of any obvious morphological changes of the 

selected plants suggested that the approach was ineffective and it was abandoned. 

 

 

 
Figure 38. Genetic approach to target multiple clade-I HIPP genes by a single amiRNA. 
(A) Predicted HIPP targets for two designed amiRNA. Arrows and stars indicate genes targeted by amiRNA-Tri 
and amiRNA-Mul, respectively. 
(B) Relative transcript abundances of the HIPP5, HIPP6 and HIPP7 genes in independent T3 lines expressing the 
amiRNA-Tri construct. Seedlings 10 DAG were measured by qRT-PCR. Data are means ± SE (n = 3). **P < 0.01, 
***P < 0.005, calculated by Student’s t test.  
(C) Relative transcript abundances of the HIPP3, HIPP5, HIPP6 and HIPP7 genes in independent T3 lines 
expressing the amiRNA-Mul construct. Seedlings 10 DAG were measured by qRT-PCR. Data are means ± SE (n = 
3). ***P < 0.005, calculated by Student’s t test. 
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3.3.2 Isolation and molecular characterization of hipp T-DNA insertion mutants 

 

Even though the amiRNA can be designed to target any gene of interest, there are still some 

disadvantages such as off-target effects and the low efficacies to silence gene of interest as 

described above. Traditional genetic crossing is an alternative approach to produce multiple 

gene knockouts and study their respective functions. In an attempt to gain more information 

on the functions of individual HIPP genes in Arabidopsis, a reverse genetic approach was 

followed. Eight T-DNA insertion alleles were obtained from screening different insertional 

populations (Fig. 39).  

 

Figure 39. Positions of T-DNA insertions in the analyzed HIPP genes. 
The length of the genomic HIPP gene sequences are given in base pairs. LB, Left border. Triangles indicate the 
T-DNA insertion sites. White and black boxes indicate untranslated regions (UTRs) and exons, respectively. F and 
R indicate positions of PCR primers used for RT-PCR analysis in Fig. 40B. qF and qR indicate positions of 
HIPP6-specific qRT-PCR primers used in Fig. 40C. S (short) and L (long) indicate the 3’ termini of the two HIPP6 
promoters (3.4).  
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Homozygous mutant lines were isolated by PCR using genomic DNA as template (Fig. 40A). 

In order to determine the exact position of the insertion, the junctions between the left border 

of the inserted T-DNA and adjacent genomic regions were sequenced. In the hipp3-1 allele 

(SALK_021602C), the T-DNA is inserted 1010 bp downstream of the predicted ATG start 

codon. For HIPP5, two T-DNA insertions were found in the SALK collection (Alonso et al., 

2003), hipp5-1 (SALK_004387) located in the 5’-UTR, and hipp5-2 (SALK_069207) was 

localized in the third exon 1459 bp downstream of the presumed ATG start codon. The 

hipp5-2 allele was used for all experiments. In the hipp6-1 mutant allele (SALK_111020C), the 

T-DNA is inserted in the 5’ UTR, 68 bp upstream of the presumed ATG. For the HIPP7 gene, 

the hipp7-1 allele (SALK_091924C) with a T-DNA insertion 907 bp downstream of the ATG 

was identified. In the JIC-SM collection (Tissier et al., 1999) T-DNA insertions SM_3_25599 

and SM_3_30660 were found for HIPP8 and HIPP9, respectively. In the hipp8-1 allele 

(SM_3_25599), the T-DNA is located 221 bp downstream of the predicted start codon. The 

T-DNA insertion site in hipp9-1 (SM_3_30660) is 1664 bp downstream of the ATG. 

 

 

 
Figure 40. Molecular characterization of hipp T-DNA insertion alleles. 
(A) Genotyping PCR. DNA from the wild-type (WT) and insertional mutant seedlings 10 DAG was used as 
template for the PCR. LB, left border T-DNA primer; RP, right genomic primer; LP left genomic primer, according to 
the SALK primer design tool. Primers used are further detailed in the Table 11. 
(B) HIPP transcript levels in WT and individual insertional mutants. RNA from seedlings 10 DAG was used as 
template for the RT-PCR. Primers used for the analysis are depicted in Fig. 39. Actin7 was included as a control.  
(C) Relative HIPP6 transcript abundances in the WT and hipp6 mutant seedlings grown on soil for 10 days as 
measured by qRT-PCR. Data are means ± SE (n = 3). 
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the homozygous mutants of hipp3, hipp5, hipp7 and hipp9 (Fig. 40B), indicating complete 

knockouts of the corresponding genes. The hipp6-1 has an insertion in the 5’ UTR of the gene, 

and RT-PCR did not detect any HIPP6 transcripts using primers flanking the T-DNA insertion 

sequence (Fig. 40B). However, a reduced HIPP6 expression to about 20% of the WT level 

could be detected in the homozygous plants by qRT-PCR using primers downstream of the 

insertion (Fig. 40C), suggesting that the hipp6-1 represents a hypomorphic allele. 

 

3.3.3 hipp single mutant plants display distinct phenotypic changes during 

shoot development 

 

Compared to the WT plants, no visible effects on vegetative growth were observed in the 

analyzed hipp single knockout and knockdown mutants grown under LD conditions (Fig. 41).  

 

 

 
Figure 41. hipp single mutants do not exhibit phenotypic changes during vegetative growth. 
(A-G) In comparison to WT (A), no visible differences were observed in single knockout or knockdown mutants of 
hipp3 (B), hipp5 (C), hipp6 (D), hipp7 (E), hipp8 (F) and hipp9 (G) at 20 DAG. 

 

Interestingly, phenotypic analysis revealed that the hipp5, hipp6 and hipp7 single mutants 

exhibited an earlier flowering phenotype under SD conditions (Fig. 42A). The strongest effect 

was observed for hipp7, which flowered about 10 days earlier than WT (Fig. 42A). The early 

flowering correlated with a reduced number of rosette leaves being formed at the bolting time 

(Fig. 42B). These results indicated a role of HIPP genes in regulation of timing of transition 

from vegetative to reproductive phase. 

Moreover, the hipp7 mutant exhibited an about 13% reduction of shoot height as well as 10% 

less siliques on the main stem compared to the WT under LD conditions (Fig. 42C and D). 

The hipp5 mutant plants also formed 7% less siliques on the main stem compared to the WT 

(Fig. 42D). The data suggest that the activity of the shoot apical meristem was reduced and 

that the HIPP genes may play a role in controlling this process.  
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Figure 42. Phenotypic changes of hipp mutants during reproductive development. 
(A) Flowering time under SD conditions of WT, hipp5, hipp6 and hipp7 mutants. (n > 20).  
(B) Number of rosette leaves as counted at the flowering time point under SD conditions. Data are means ± SD (n > 
20). *P < 0.05, calculated by Student’s t test.  
(C) Shoot height of fully mature plants under LD conditions. Data are means ± SD (n > 20). ***P < 0.005, calculated 
by Student’s t test. 
(D) Number of siliques on the main stem determined at full maturity. Data are means ± SD (n > 20). *P < 0.05, ***P 
< 0.005, calculated by Student’s t test.  

 

Overexpression of clade-I HIPP genes caused pleiotropic phenotypes and altered cytokinin 

activity as described above (3.2). To investigate whether cytokinin activity was affected in hipp 

mutants, responses of selected hipp mutants to various concentrations of exogenous 

cytokinin were assessed. Fig. 43 shows that the primary root growth as well as lateral root 

development were not altered compared to WT upon cytokinin or mock treatment, suggesting 

eventually a higher degree of functional redundancy among the clade-I HIPP genes in 

controlling cytokinin responses. 
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Figure 43. Effects of exogenous cytokinin on root development in hipp single mutants. 
(A) and (B) The inhibitory effect of cytokinin on primary root growth (A) and lateral root density (B) are showed. WT, 
hipp5, hipp6 and hipp7 mutants were grown on vertical agar plates supplemented with 0, 5, 10, 25 and 50 nM iP. 
Primary root length and lateral root density were evaluated 10 DAG, and the results expressed relative to the mock 
(0 nM iP) treatment. Data are means ± SE (n = 20). 

 

To investigate the impact of exogenous cytokinin on shoot development, the shoot fresh 

weight of plants grown in the presence of various concentrations of cytokinin was measured. 

As shown in Fig. 44, cytokinin significantly reduced the WT shoot growth in a concentration 

-dependent manner. Whereas hipp6 and hipp7 showed similar responses, the hipp5 mutant 

was significantly less sensitive to cytokinin treatment than the WT control (Fig. 44). 

 

 
Figure 44. Shoot growth of the hipp5 mutant is less sensitive to exogenous cytokinin. 
Effects of exogenous cytokinin on shoot growth of WT and hipp mutant plants. Seedlings were grown on agar 
plates supplemented with 0, 5, 10 and 25 nM iP. Fresh weight of 10 rosettes 10 DAG was measured per one 
sample and the results expressed relative to the mock (0 nM iP) treatment. Data are means ± SE (n = 3).  *P < 
0.05, calculated by Student’s t test. 
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Although hipp6 and hipp7 mutant plants showed similar morphological responses to WT, it 

might be that the mutant plants differed from WT at the molecular level. Indeed, a reduced 

expression of type-A ARR genes ARR5 and ARR7 was detected in hipp5, hipp6, hipp7 

mutant plants. However, the reduced expression of the type-A ARR genes could not be 

confirmed in all independent biologic experiments and the data are not shown. 

 

3.3.4 hipp1 is a gain-of-function mutant and displays retarded root growth 

 

For the HIPP1 gene, a homozygous T-DNA insertion line hipp1-1 (SALK_028133C) was 

isolated and characterized. The T-DNA insertion site has been annotated in the middle of the 

last exon (Fig. 45A). However, sequencing of the junction between the left border of the 

T-DNA and the genomic region revealed that the insertion was located exactly in the stop 

codon of the gene (Fig. 45A). The insertion changed the original TGA stop codon into the TAA 

stop codon (Fig. 45A), but apparently did not affect the protein coding capacity of the locus. 

However, the influence of the altered sequence of the 3’UTR on the expression of the HIPP1 

gene is unclear. Semi-quantitative RT-PCR was used to analyze this question. However, no 

transcripts of the HIPP1 gene was detected in both WT and hipp1 mutant plants when using 

primers located directly at the beginning and end of the HIPP1 coding sequence At2g28090.1 

according to the TAIR10 genome annotation. Similarly, qRT-PCR did not detect any HIPP1 

transcripts when using PCR primers located in the first annotated exon.  

 

 

Figure 45. Identification and characterization of the T-DNA insertion mutant of HIPP1. 
(A) At2g28090.1 is the annotated protein-coding gene model for HIPP1. The length of the genomic HIPP1 gene 
sequences is given in base pairs. LB, Left border. Arrow indicates the position of the alternative start codon in (B). 
Dashed-lined and full-lined triangle indicates the annotated and the experimentally determined T-DNA insertion 
sites, respectively. White box indicates the 3’ untranslated regions (UTR), and black boxes indicated exons. No 5’ 
UTR is annotated. The hipp1 T-DNA insertion is located in the stop codon of the HIPP1 gene. The original and 
newly formed stop codon are indicated in red. * indicated the T-DNA insertion site. 
(B) At2g28090.2 gene annotation model. The length of the genomic HIPP1 gene sequences is given in base pairs. 
White box indicates the 3’ untranslated regions (UTR), and black boxes indicated exons. No 5’ UTR is annotated. 
qF and qR indicate positions of HIPP1-specific qRT-PCR primers used in (C). 
(C) Relative HIPP1 transcript abundances in the WT and hipp1 mutant seedlings grown on soil for 10 days as 
measured by qRT-PCR. Data are means ± SE (n = 3). 
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Interestingly, there is apparently another, as yet unannotated, open reading frame with an 

alternative start codon located in the second exon of At2g28090.1 (Fig. 45B). This alternative 

gene model, named here At2g28090.2 (Fig. 45B) is supported, for example, by the full length 

cDNA clone AY924752 available through the ABRC stock centre. This clone was also used 

for other experimental works in this thesis (3.1 and 3.2). According to the new gene model, 

new primers were designed (Fig. 45B) to analyze the HIPP1 transcript abundances in the 

hipp1 mutant and WT plants. The analysis showed that HIPP1 transcript levels were 

increased by 3-fold in hipp1-1 in comparison to WT (Fig. 45C), suggesting that hipp1-1 might 

be a gain-of-function mutant allele.  

Phenotypic analysis revealed that the hipp1-1 mutant displayed a strongly retarded root 

growth phenotype (Fig. 46A). As presented in Fig. 46B, the primary root elongation of the 

hipp1 mutant line was reduced to about 65% of the WT. The root meristem size was 

compared by scoring the number of the cortex cells between the quiescent center and 

transition zone. The cortex cell number was strongly reduced in the hipp1 root meristems in 

comparison to WT (Fig. 46C-E). Interestingly, these phenotypic changes of hipp1 are very 

similar to those observed in the HIPP1-overexpressing plants (see 3.2.3), supporting the idea 

that hipp1-1 is a gain-of-function allele. Interestingly, as shown in Fig. 45C, the increase of the 

HIPP1 transcript levels in the hipp1-1 mutant were not dramatic compared to WT, but the 

hipp1 mutant plants revealed a stronger short root phenotype (35% reduction in primary root 

elongation) compared to the UBQ10:HIPP1 overexpression line 23 (20% reduction in primary 

root elongation), in which the expression of HIPP1 was increased 3000 times (Fig. 17). This 

raised the question whether the short root phenotype of hipp1-1 might have been duo to 

another insertion in the genome. To test this, the hipp1-1 was backcrossed to WT, and the F3 

homozygous hipp1-1 plants were reanalyzed. Fig. 46F shows that the backcrossed hipp1 

homozygous plants still had a retarded root growth in comparison to the WT control. 

Intriguingly, the root phenotype was weaker in comparison to the original hipp1-1 mutant, 

indicating some factor enhancing the hipp1-1 effect in the original genetic background. 
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Figure 46. hipp1 displays retarded root growth. 
(A) Primary root of the wild type (WT) and hipp1-1 plants 10 DAG.  
(B) Primary root length of the WT and hipp1-1 plants. Primary root length was evaluated 10 DAG. Data are means 
± SD (n > 20). ***P < 0.005, calculated by Student’s t test.  
(C) and (D) Root meristems of WT (C) and hipp1-1 (D) 7 DAG. Arrows indicate the QC and arrowheads indicate 
the cortex cells at the transition zone. The insert shows a blow-up of elongating cells exiting from the meristem at 
the transition zone. 
(E) Root-meristem cell number of the WT and hipp1-1 mutants depicted in (C) and (D). Data are means ± SD (n = 
20). ***P < 0.005, calculated by Student’s t test.  
(F) Primary root growth of the homozygous hipp1-1 backcrossed to WT (F3 hipp1 x WT) compared to the hipp1-1 
mutant line and WT plants at 10 DAG.  
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3.3.5 Phenotypic analyses of hipp higher-order Arabidopsis mutants 

 

The isolated hipp single knockout and knockdown mutants displayed no obvious differences 

during vegetative growth under normal growing conditions. However, homologous genes from 

the same family may share a large degree of functional redundancy. Therefore, hipp double 

or triple mutants were generated and phenotypically assessed. However, under normal 

conditions hipp double mutants also did not show any visible morphologic changes during 

vegetative growth (Fig. 47).  

 

 

 
Figure 47. hipp double mutants have no visible phenotypic changes during vegetative growth. 
(A-H) In comparison to WT, no visible differences were observed in hipp double mutants. Rosettes of WT (A), 
hipp3,5 (B), hipp3,6 (C), hipp3,8 (D), hipp5,6 (E), hipp5,7 (F), hipp6,7 (G) and hipp6,8 (H) plants 20 DAG. 
 

Whereas, the hipp6,7 mutant displayed an early flowering phenotype, the flowering time of  

hipp5,7 and hipp5,6 was not changed compared with WT control (Fig. 48A). 

During reproductive development, hipp5,6, hipp5,7 and hipp6,7 exhibited a reduced shoot 

height compared to WT under LD conditions (Fig. 48B). Moreover, the hipp5,6 mutant plants 

produced significantly less siliques on the main stem than WT (Fig. 48C). Surprisingly, the 

changes were not stronger than those detected in the single mutants (Fig. 42).  

Since the hipp5 shoots showed a slightly insensitive reaction to cytokinin, the growth 

responses to various cytokinin concentrations were studied in the hipp5,6 and hipp5,7 double 

mutants. The analysis revealed that the response of hipp5,7 to 10 nM cytokinin was further 

compromised in comparison to either of the hipp5 or hipp7 single mutants (Fig. 48D), 

suggesting that these two HIPP genes have partially overlapping functions in regulating 

responses to cytokinin. Intriguingly, hipp5,6 double mutant, did not show any difference 

comparing with WT under these conditions, although the hipp5 single mutant was less 

sensitive to cytokinin (Fig. 44).  
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Figure 48. hipp double mutants exhibited phenotypic changes during reproductive development and 
altered sensitivity to exogenous cytokinin. 
(A) Flowering time under SD conditions of WT, hipp5,6, hipp5,7 and hipp6,7 double mutants. (n > 20).  
(B) Shoot height of fully grown plants under long-day conditions. (n > 20). *P < 0.05, ***P < 0.005, calculated by 
Student’s t test.  
(C) Number of siliques on main stem per plant. (n > 20). *P < 0.05, calculated by Student’s t test. It should be noted 
that the results shown in (B) and (C) originate from the same biological experiments as shown in Fig. 42C and D. 
(D) Exogenous cytokinin inhibits hipp double mutants shoot growth. Seedlings were grown on agar plates 
supplemented with 0, 5, 10 and 25 nM iP. Fresh weight of 10 rosettes 10 DAG was measured per one sample and 
the results expressed relative to the mock (0 nM iP) treatment. Data are means ± SE (n = 3). ***P < 0.005, 
calculated by Student’s t test. The presented results originate from the same biological experiments as shown in 
Fig. 44. 

 

Next, the triple mutant was generated by crossing the double mutants hipp5,6 and hipp6,7. 

Preliminary results showed that the hipp5,6,7 triple mutant developed leaves, which were pale 

green in comparison to WT and which were rounded leaf margin compared to the WT (Figure 

49A-D), suggesting a lower chlorophyll content in this mutant. In addition, the mutants leaves 

were slightly smaller and developed less pronounce serration and crinkly leaf margins as 

compared to WT (Fig. 49). Together, these results may indicate a role of the respective HIPP 

genes during the process of the acquisition of leaf shape and size.  

0

5

10

15

20

25

30

35

40

45

50

S
ho

ot
 h

e
ig

h
t 

(c
m

)

0

10

20

30

40

50

60

70

S
ili

qu
e

 n
um

be
r

B

C

*******

*

0%

20%

40%

60%

80%

100%

120%

55 57 59 61 63 65 67 69 71 73 75 77

[%
] 

of
 f

lo
w

er
in

g 
pl

an
ts

WT hipp5,6

hipp5,7 hipp6,7

DAG

A

0%

20%

40%

60%

80%

100%

120%

0 nM iP 5 nM iP 10 nM iP 25 nM iP

R
el

a
tiv

e 
ro

se
tte

 f
re

sh
 w

e
ig

h
t 

[%
]

WT

hipp5,6

hipp5,7

***

D



RESULTS 

 

100 
 

 

 
Figure 49. The leaf development in the hipp5,6,7 triple mutants.  
(A) to (D) In comparison to WT (A), the hipp5,6,7 triple mutant plants showed paled and smooth leaf margins (B) at 
20 DAG. Arrows indicate leaf 7 from the WT (C) and hipp5,6,7 triple mutant (D) after bolting at 23 DAG. 

 
Interestingly, phenotypic analyses revealed that the hipp5,6,7 triple mutant formed 

significantly less rosette leaves at the bolting time compared to WT under LD conditions (Fig. 

50), suggesting that the flowering of hipp5,6,7 was also slightly accelerate under LD 

conditions. However, this needs to be further analyzed. 

 

 

 
Figure 50. hipp5,6,7 display a reduced number of rosette leaves being formed at bolting time.  
Number of rosette leaves as counted at the bolting time point under LD conditions. Data are means ± SD (n > 7). 
***P < 0.005, calculated by Student’s t test.  
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3.3.6 The hipp5,6,7 triple mutants display enhanced drought sensitivity  

 

To examine whether the reduced expression of HIPPs alters plant’s responses to drought, the 

hipp5,6,7 triple mutant was analyzed under the same drought stress treatment as described in 

chapter 3.2.8. hipp5,6,7 triple mutant seedlings revealed severe significant wilting and 

damage already 5 days after completely withdrawing water, whereas a significantly high 

number of WT plants maintained turgor (Fig. 51). In agreement with the results that the 

HIPP-overexpression plants displayed increased drought tolerance, these results together 

indicate that the HIPP proteins play a positive role in regulating responses to drought stress.   

 

 

 
Figure 51. Drought-sensitive phenotype of the hipp5,6,7 triple mutant. 
Three-week-old wild type (WT) and hipp5,6,7 triple mutant plants were exposed to drought for 5 day and 
photographed. Note that the results shown in this figure originate from the identical biological experiments as 
shown in Fig. 37. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WT hipp5,6,7



RESULTS 

 

102 
 

3.4 Tissue specific expression of individual HIPP gene family 

members 

 

In order to analyze expression patterns of individual HIPP genes of cluster I, promoter regions 

upstream of the translational start ATG of four individual HIPP genes, i.e. the 795 bp region of 

HIPP1, the 2056 bp region of HIPP5, the 949 bp region of HIPP6, and the 1580 bp region of 

HIPP7, were fused to the GUS gene. The resulting reporter gene constructs are called 

pHIPP1S:GUS, pHIPP5:GUS, pHIPP6S:GUS and pHIPP7:GUS, respectively, in the following. 

Additionally, because of the alternative gene annotation model (3.3.4) of HIPP1, the 1491 bp 

region, which is upstream of the alternative translational start ATG of At2g28090.2, was fused 

to the GUS gene and is called pHIPP1L:GUS in the following.  Moreover, promoter-proximal 

introns can have a large influence on the level and pattern of gene expression (Wang et al., 

2002; Jeong et al., 2007; Rose et al., 2008). In order to determine whether the 

promoter-proximal introns have effects on the expression of the HIPP6 gene, a second HIPP6 

reporter gene construct was cloned. This 1364 bp-long construct includes the same 

ATG-upstream region (see above) as well as some parts of the coding region and the first two 

introns as indicated in Fig. 39. The reporter is called pHIPP6L:GUS in the following. 

Arabidopsis plants were stably transformed with these constructs and at least three 

independent lines for each pHIPP:GUS construct were analyzed by scoring the GUS activity 

at different developmental stages.  

 

3.4.1 Individual members of the HIPP gene in clade-I are expressed differentially 

 

No GUS signal was detected in plants expressing neither the pHIPP1S:GUS nor 

pHIPP1L:GUS construct (data not shown), which correlates to the low expression of the 

HIPP1 gene as described above (see 3.2). 

The pHIPP5:GUS reporter was expressed highly and predominantly in the root meristem. It 

was first detectable in the tip of the radicle after its emergence (Fig. 52A). At 2 DAG, the 

activity was detected specifically in the center of the primary root apical meristem (RAM),   

including the stem cell niche and partially the cells of the lateral root cap (Fig. 52B). The GUS 

activity was detected also in the vascular cylinder (Fig. 52C). No pHIPP5:GUS signal was 

detected in the early or late stages of lateral root primordia (LRP) development (Fig. 52D and 

E), in the emerged lateral roots (Fig. 52F), or at the beginning of the fast lateral root 

elongation (Fig. 52G). Interestingly, staining signal appeared later in the lateral root meristem, 

and became progressively stronger with the maturation of the lateral root (Fig. 52H and I). In 

shoot, the pHIPP5:GUS activity was detected in the shoot apex and in the vasculature of 

cotyledons and true leaves (Fig. 52J and K). A strong pHIPP5:GUS expression was also 
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detected at the root-hypocotyl junction (Fig. 52L). During flower development, pHIPP5:GUS 

activity was observed in young developing stamen primordia (Fig. 52M) and was later 

restricted to the central part of filament (Fig. 52N). Overall, the pHIPP5:GUS showed the 

strongest activity among the analyzed HIPP:GUS reporter constructs, potentially indicating a 

higher HIPP5 expression levels at least at the analyzed developmental time points.  

 

 

 
Figure 52. Expression analysis of the HIPP5 gene promoter. 
(A) to (N) The earliest activity of pHIPP5:GUS is detected in the root tip of germinating seedlings (A), in apical 
meristem (B), and in the vasculature (C) of the primary root. pHIPP5:GUS activity is not detected during early (D) 
or late (E) stage of lateral root primordia formation, in the emerged (F) and early elongating (G) lateral roots. The 
staining appeared in the lateral root apical meristem at later stages (H) and became stronger with the maturation of 
lateral root (I). Expression in the shoot is confined mainly to the shoot apex (J), the vascular system of young 
tissues (e.g., cotyledons [J] and young true leaves [K]). The pHIPP5:GUS expression at the root-hypocotyl 
junction (L). In flowers, expression is detected in developing stamen (M) and in the filament (N).  

 

For pHIPP6S:GUS, the expression was first detectable also in the tip of the radicle after its 

emergence (Fig. 53A). In contrast to the specific meristem expression of HIPP5, the 

maximum expression of HIPP6 was restricted to the lateral root cap of the primary root (Fig. 

53B) and no GUS expression was detected in the LRPs or in the apical meristems of mature 

lateral roots (data not shown). Similar to pHIPP5:GUS, the signal could be also detected in 

the root vasculature (Fig. 53C) and at the root-hypocotyl junction (Fig. 53D). Weak 

pHIPP6S:GUS activity was detected in the vasculature of cotyledons (not shown) and 

occasionally at the hypocotyl-cotyledon vascular junction (Fig. 53E). Interestingly, GUS 

activity disappeared in the emerging radicle when promoter-proximal introns were included in 
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the pHIPP6L:GUS construct (Fig. 53F). Moreover, in comparison to the strong expression of 

pHIPP6S:GUS in the lateral root cap, only faint staining was detected in this tissue in plants 

expressing pHIPP6L:GUS (Fig. 53G). Furthermore, the GUS signal was mostly detected in 

the central cylinder of the primary root (Fig. 53G). In contrast to pHIPP6S:GUS, weak or no 

signal was detected in the root vasculature, root-hypocotyl junction and hypocotyl-cotyledon 

vascular junction of the pHIPP6L:GUS plants (Fig. 53H-J). These results indicate presence of 

negative cis regulatory elements in the exon/intron region included in the pHIPP6L:GUS 

reporter.  

 

 

 
Figure 53. Expression pattern of two different HIPP6 gene promoter constructs. 
(A) to (E) Localization of pHIPP6S:GUS activity. The earliest expression of pHIPP6S:GUS is detected in the root 
tip of germinating seedlings (A), in the lateral root cap (B), root vasculature (C) and at the root-hypocotyl junction 
(D). Weak pHIPP6S:GUS expression at the hypocotyl-cotyledon vascular junction (E). 
(F) to (J) Localization of pHIPP6L:GUS activity. The activity is weaker or undetectable in the same tissues as 
shown in (A) to (E).  
 

For pHIPP7:GUS, no GUS activity was detected in the tip of the radicle after its emergence 

(Fig. 54A). At 2 DAG, weak expression was detected in the columella and lateral root cap (Fig. 

54B). GUS signal was also associated with the vasculature and apical meristem of lateral 

roots (Fig. 54C-G). The expression of pHIPP7:GUS was observed in the inner cell layers of 

early stage lateral root primodia (Fig. 54C), and the GUS signal expanded to all cells of the 

LRPs at later stage (Fig. 54D). Strong staining signal was detected in the basal part of lateral 

roots and weakly in the forming vascular cylinder (Fig. 54E). Interestingly, the pHIPP7:GUS 

signal became weaker with the progression of lateral root development (Fig. 54F), and was 

later restricted to the QC and the stem cell niche (Fig. 54G). Only faint GUS signal was 

detected at the root-hypocotyl junction (Fig. 54H). In the shoot, the greatest pHIPP7:GUS 

activity was present in the stomatal guard cells of cotyledons (Fig. 54I). During reproductive 

development, the expression of pHIPP7:GUS was found in anthers (Fig. 54J). 
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Figure 54. Expression analysis of HIPP7 gene promoter. 
(A) to (J) No pHIPP7:GUS expression is detected in the root tip of germinating seedlings (A). Weak expression in 
the columella and lateral root cap of the primary root (B). GUS signal is detectable during early (C) and late (D) 
stages of lateral root primordia development. Signal in the emerging lateral root (E) becomes weaker (F) and 
restricted to the stem cell niche (G). Root-hypocotyl junction (H). pHIPP7:GUS activity in the stomatal guard cells 
of cotyledons (I) and in anthers (J).  

 

Because the two different HIPP1 reporter gene constructs did not show activity, the HIPP1 

expression in different tissues was analyzed by qRT-PCR. The analysis confirmed that the 

HIPP1 expression is overall very low (Fig. 55A). The highest transcript levels were detected 

specifically in the inflorescence (Fig. 55A), suggesting its potential function in this restricted 

tissue. The HIPP6 transcripts were most abundant in the root (Fig. 55B), which correlated with 

the histochemical reporter gene analysis. The qRT-PCR analysis revealed that, in contrast to 

HIPP1 and HIPP6, the HIPP7 exhibits a relatively broad expression, with the exception of 

roots (Fig. 55C).  
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Figure 55. Tissue-specific expression of HIPP1, HIPP6 and HIPP7. 
(A) to (C) Relative transcript abundances of the HIPP1 (A), HIPP6 (B), and HIPP7 (C) genes as measured by 
qRT-PCR. Tissues analyzed were root and shoot from seedlings 10 DAG grown on agar plates, 12 and 20 DAG 
soil-grown rosettes, inflorescences, flower buds and flowers, and young siliques. The expression in root was set to 
1 and the other samples were expressed relative to it. Data are means ± SE (n = 3). 

 

 

3.4.2 Cytokinin regulates HIPP gene expression in Arabidopsis 

 

Analysis of microarray data from Arabidopsis exposed to cytokinin has shown that most HIPP 

transcript levels did not change under these conditions. However, the expression levels of 

HIPP5 and HIPP6 were down-regulated in response to cytokinin (Bhargava et al., 2013). To 

examine this in more detail, qRT-PCR analysis of the clade-I HIPP genes in Arabidopsis 

seedlings exposed to cytokinin was performed. As shown in Fig. 56A, the ARR5 transcript 

levels were elevated by 17-fold after 30 min of cytokinin application and then the expression 

declined to 6 fold after 120 min. This was consistent with the previous results (Brandstatter 

and Kieber, 1998; D'Agostino et al., 2000) and confirmed that the cytokinin induction was 

sufficient. After 30 min cytokinin treatment, the HIPP5 and HIPP6 transcript levels were 

downregulated to about 40% relative to the control plants, and then the expression restored to 

normal levels after 2 hour-treatment (Figure 56B). Very similar reaction was detected also for 

HIPP7. Little or no reduction was detected for HIPP3 transcript levels following the cytokinin 

treatment. By contrast, HIPP9 was slightly, but not significantly, downregulated after 30-min 

treatment, but the expression increased 3-fold after 2 hours of cytokinin application (Figure 

56B). 
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Figure 56. Regulation of the HIPP gene expression by cytokinin. 
(A) and (B) Relative transcript abundances of the ARR5 (A) and clade-I HIPP (B) genes as measured by 
qRT-PCR. Total RNA extracted from 10 day-after-germination (DAG) seedlings grown on agar plates treated with 
5 µM BA for 0, 30 or 120 min. The expression level at 0 min was put to 1, and other values were expressed relative 
to it. Control seedlings treated with DMSO for 30 and 120 min displayed no significant changes in the steady-state 
levels of ARR5 or HIPP transcripts. Data are means ± SE (n = 3). *P < 0.05, ***P < 0.005, calculated by Student’s t 
test. 

 

To further confirm the down-regulation of HIPP genes by cytokinin, the expression of the 

pHIPP:GUS constructs in the presence of 10 nM BA was examined. Figure 57 shows that 

control plants harboring the pARR5:GUS fusion displayed higher GUS activity in response to 

cytokinin. In contrast, significantly weaker GUS activity was observed in the pHIPP5:GUS and 

pHIPP6S:GUS reporter lines grown on media with 10 nM BA, indicating that the 

downregulation of these HIPP genes by cytokinin was due to transcriptional repression.  

 

 

 
Figure 57. Reduced pHIPP5:GUS and pHIPP6S:GUS expression in response to exogenous cytokinin. 
Weaker GUS staining signals were observed in lines harboring the pHIPP5:GUS and pHIPP6S:GUS constructs 
when grown on media supplemented with 10 nM BA for 7 days. Three independent lines for each construct were 
examined with similar results and one representative line is shown. 
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4 Discussion  

 

4.1 The interaction between CKXs and HIPPs 

 

The main aim of this work was to identify proteins which could physically interact with CKX 

proteins and sequentially influence cytokinin homeostasis. For that, a genome-wide yeast 

two-hybrid (Y2H) screen with the CKX1 protein as bait has previously been performed in the 

Dr. Werner’s group, and a group of positive CKX-interacting proteins have been characterized 

molecularly and genetically in this work. Intriguingly, six of the candidates are from the 

plant-specific HIPP protein family, which is characterized by the presence of one or two HMA 

domains and an isoprenylation motif at the protein C terminus. The results demonstrated that 

CKX1-HIPP7 interactions were completely abolished when the Cys-residue within the 

isoprenylation motif was mutated (Fig. 9). Furthermore, the yeast results revealed that the 

conserved HMA domains was dispensable for the CKX1-HIPP7 interaction, but was required 

for the formation of HIPP7 homodimer (Fig. 9 and 10). Additional HIPP members from outside 

cluster I and III did not interact with CKX1. Most, but not all CKXs interacted with four tested 

HIPP proteins (Fig. 8C). These findings indicate the selectivity in CKX-HIPP protein 

interactions requiring a specific protein-interacting interface provided apparently by both the 

posttranslational modification of HIPPs and by conserved protein-protein binding motifs in 

HIPP and CKX proteins. BiFC assays revealed that in contrast to the GFP-HIPP7, which 

predominantly localized to cytosol (Fig. 12), the CKX1-HIPP7 complex clearly localized to the 

cortical and perinuclear ER (Fig. 13). These results indicate that the CKX1-HIPP7 complex 

formation involves the relocation of CKX1 to the cytosolic site of the membrane and the 

relocation of HIPP7 to the ER. The major results and conclusions regarding the molecular 

aspects of CKX1-HIPP7 interaction are summarized and will be discussed in details below. 

 

4.1.1 Isoprenylation is required but not sufficient for CKX-HIPP protein 

interaction 

 

The specific interactions between CKX1 with several HIPP proteins were detected with high 

frequency in the Y2H screen (~65% of all isolated interactions), indicating occurrence of some 

particular domains in HIPP proteins, which are specifically required for the interaction. 

Mutation of the Cys-residue within the isoprenylation motif of HIPP7 completely abolished the 

CKX1-HIPP7 interactions (Fig. 9), indicating that the HIPP7 prenylation is indispensable for 

the interaction. However, the fact that other HIPP proteins outside the clade I and III did not 

interact with CKX1 suggests that HIPP protein prenylation itself is not sufficient for the 
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interaction and further suggest that the interaction is mediated either indirectly or not 

exclusively by the prenyl moiety. One possibility is that the isoprenylation mediates the 

subcellular localization of HIPP protein which directly provides an interface for the interaction. 

It has been reported that CKX1 is an integral single-pass membrane protein that localizes 

predominantly to the ER in Arabidopsis to directly regulate the cytokinin signaling output in 

this compartment (Niemann et al., 2018). This indicates that the interaction of CKX1 with 

HIPP proteins may require that the HIPP proteins associate with the ER. It is plausible that the 

ER association is modulated by HIPP prenylation. Although the function of protein prenylation 

is not precisely understood, current evidence suggests that the lipid modification serving as a 

membrane anchor regulates the subcellular location of the protein (Hemsley, 2015). The 

covalent attachment of the isoprenoid intermediates farnesyl diphosphate (FPP) or 

geranylgeranyl diphosphate (GGPP) to cysteines in conserved carboxy-terminal sequence 

motifs enhanced the hydrophobicity of the prenylated proteins and, at least partially, result in 

their association with endomembrane system in the cell, which is essential for their biological 

activity (Galichet and Gruissem, 2003). For example, current study with N. benthamiana 

NbHIPP26 protein has demonstrated that the protein localized in the plasma membrane, 

small motile vesicles, the plasmodesmata, the nucleoplasm and the nucleoli. Mutation of the 

prenylated cysteine residue largely reduced the association of NbHIPP26 with plasma 

membrane and increased the protein accumulation in the cytosol and nucleus (Cowan et al., 

2018). Although the prenylation may promote the protein affinity for the membranes, HIPP 

proteins studied in this work were found to localize in various compartments outside of the 

endomembrane system. For example, HIPP1 protein has a predicted nuclear localization 

signal (NLS; amino acids 100-122 based on gene model of At2G28090.2; cNLS Mapper; 

Kosugi et al., 2009) and was visible mainly in the nucleus and cytoplasm (Fig. 11). Similarly, 

HIPP5 and HIPP7 were localized predominantly in the cytosol of N. benthamiana epidermal 

cells and in the nucleoplasm (Fig. 12). Even though GFP-HIPP7 showed apparent 

colocalization with ER marker of RFP-p24 in the cortical cell region, this colocalization was 

visible with only low frequency (Fig. 12). A similar nuclear and cytoplasm localization of HIPP3, 

which also belongs to cluster I of the HIPP protein family, has been observed previously 

(Zschiesche et al., 2015). Additional, expression of RFP-tagged fusion proteins in protoplasts 

showed that rice OsHIPP21 and OsHIPP41 localize in the cytosol and in the cell nucleus (de 

Abreu-Neto et al., 2013). These results together indicate that many HIPP proteins, including 

those studied in this work, are soluble proteins and are not bound to membranes by the 

hydrophobic anchor provided by the prenylation, at least when expressed in N. benthamiana 

or protoplasts.  

This lack of strong membranes association might be duo to other motifs existing in the HIPP 

proteins that mediate targeting into other subcellular compartments. For example, transient 



DISCUSSION 

 

111 
 

expression of GFP-fused rice calmodulin protein, GFP-CaM61, which has a C-terminal CaaX 

motif, showed that the GFP fluorescence was associated with the cytoplasm, cell periphery, 

ER and the nucleus (Gerber et al., 2009). By contrast, when expressing a truncated version of 

the CaM61, that contains only the C-terminal domain with a series of basic amino acid 

residues followed by the CaaX isoprenylation motif, a clear plasma membrane localization 

was observed (Gerber et al., 2009).  

The association of GFP-HIPP7 with membranes was tested more rigorously by the 

membrane fractionation and protein gel blot experiments using stable Arabidopsis lines 

generated in this work. This analysis did not fit the timeframe of this work and was performed 

by the colleagues in Dr. Werner’s group. Interestingly, this analysis revealed that GFP-HIPP7 

was predominantly associated with microsomal membranes and almost absent in the 

supernatant fraction of soluble proteins, whereas the membrane association of HIPP7C352G 

mutant lacking the prenylation site was strongly reduced (Dr. Werner’s group; unpublished 

data). This indicates that the HIPP7 protein is attached to endomembrane system in the cell 

and prenylation is important for the membrane association. These results are in discrepancy 

with the microscopic observations of the cytosol and nuclear localization of GFP-HIPP7 

protein in N. benthamina cells. One explanation could be that in the subcellular localization 

studies, the 35S promoter was used for ectopic expression of GFP-HIPP7. By contrast, a 

weaker promoter, the UBQ10, was used in the protein fractionation studies in Arabidopsis. 

Thus, in the subcellular localization studies, the overexpressed protein might not be 

prenylated sufficiently in the N. benthamiana epidermal cells, which could partially account for 

the cytosolic localization of GFP-HIPP7. This could be either because the capacity of the 

prenylation machinery in N. benthamiana cells was exceeded or the N. benthamiana 

enzymes involved in the prenylation do not efficiently recognize the Arabidopsis HIPP7 

protein as a substrate. However, in contrast to this idea stands the strong interaction between 

CKX1 and HIPP proteins expressed in N. benthamina; which was dependent on the functionl 

CaaX motif. 

After prenylation, the three C-terminal residues (i.e., the -aaX) are proteolytically clipped off 

and, in turn, the exposed carboxyl group of the prenylated cysteine is methylated. The 

proteolysis and carboxyl-methylation are often referred to as CaaX processing (Bracha-Drori 

et al., 2008). Although prenylation is important for the correct subcellular localization of CaaX 

proteins, often promoting protein peripheral association to plasma or endomembranes, the 

membrane localization of prenylated proteins has been shown to also strongly depend on 

CaaX processing (Hancock et al., 1991). This is more pronounced in the farnesylated (C15) 

proteins than in the more hydrophobic geranylgeranylated (C20) protein (Michaelson et al., 

2005). Interestingly, the two endoproteases STE24 and RCE1, which catalyze the 

prenyl-dependent endoproteolysis, and the two isoprenyl carboxy methyltransferases (ICMTs) 
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are all localized in the ER membrane, indicating that prenylated proteins have to reach the ER 

membrane to undergo the CaaX processing. This implies that, although the final subcellular 

localization of prenylated proteins can be very different, they have to reach the ER during their 

biogenesis. Hence, the ER membrane is the compartment where HIPP proteins may 

encounter CKX1 for interaction. 

In general, prenylation is a weak membrane anchor, and usually requires a second signal to 

enable stable membrane attachment. These signals include S-acylation, a poly basic stretch 

of amino acids for further interacting with phospholipid head groups, or certain number of 

hydrophobic residues to penetrate deeper into the membrane core (Hemsley, 2015). The 

membrane fractionation experiment in Arabidopsis showed that the membrane association of 

the HIPP7C352G mutant protein was strongly reduced but not totally abolished by the lack of the 

prenylation site (Dr. Werner’s group; unpublished data), indicating that a second signal is 

existing in HIPP7 for membrane targeting. Interestingly, most of HIPP proteins contain several 

Cys residues which can be potentially S-acylated (Hemsley et al., 2013). S-acylation is a 

reversible lipid modification involving the addition of acyl lipids to cysteine residues of proteins 

through thioester bonds (Li and Qi, 2017). S-acylation has no defined consensus sequence 

for modification, but usually requires prior modification by N-myristoylation or prenylation 

(Hemsley, 2015). For example, besides prenylation, the NbHIPP26 has been shown to be 

lipid modified by S-acylation through a Cys residue at the N terminus. The S-acylation is 

important for the localization of NbHIPP26 at plasma membrane and PD as the mutation of 

the Cys residue caused the accumulation of the protein in the nucleus and cytosol (Cowan et 

al., 2018). HIPP7 contains seven Cys residues: four in the two HMA domains, one as the 

prenylation site, and two of unknown function (amino acids 93 and 107). The Cys93 residue is 

strongly predicted as a S-acylation site (Ren et al., 2008). S-acylation usually requires a prior 

protein prenylation (Hemsley, 2015). If the membrane association of HIPP7 is required for the 

interaction with CKX1, the lack of prenylation in the HIPP7C352G mutant could prevent its 

S-acylation and reduce thus the ability of the protein to interact. Moreover, an insufficient 

S-acylation of GFP-HIPP7 expressed in N. benthamiana could also partially account for the 

apparent cytosolic localization. However, further experiments are required to clarify whether 

S-acylation exists in HIPP7 and acts as a membrane association anchor. 

The second hypothesis how the prenylation might determine the CKX-HIPP interaction is that 

the prenyl moiety directly mediates the interaction. Indeed, in the case of the interaction 

studies performed in the yeast two hybrid system, CKX1 and HIPP7 proteins were targeted to 

the nucleus by the NLS encoded by the prey and bait vectors. One can thus assume that both 

proteins were in soluble form and not membrane associated when expressed in yeast.  

However, the interaction with CKX1 was strictly dependent on the prenylation, because the 

prenylation mutant HIPP7C352G lost the ability to interact with CKX1 (Fig. 9). This suggests that 
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the prenylation of HIPP7 is not only required for the membrane association (as shown in 

Arabidopsis) but also for the direct protein-protein interaction. However as mentioned above, 

not all tested HIPP proteins interacted with CKX1 suggesting that some amino acid residues 

within the HIPP protein, together with the prenyl moiety, may be required to form the protein 

interaction interface. Indeed, it has been shown that protein residues in close proximity to the 

prenylation site are relevant for mediating the interaction, as for example in the case of 

RPGR-PDE6D interaction (Lee and Seo, 2015). RPGR is an isoprenylation protein with a 

C-terminal CaaX box motif. Deletion of the CaaX motif or substitution of the Cys residue within 

the CaaX motif to Ser completely abolished the RPGR-PDE6D interaction. Interestingly, 

substitution of a Ser residue at the -3 position from the CaaX motif to Ala did not impair the 

RPGR prenylation but largely reduced the ability of RPGR to bind PDE6D, indicating that the 

prenylation and also the amino acid residues near the prenylation site might directly form an 

interaction motif (Lee and Seo, 2015). It is therefore plausible that certain amino acid residues, 

or motifs, which occur only in specific HIPP proteins, are necessary to facilitate the interaction 

with CKX.  

Interestingly, the prenylation appears to be also involved in HIPP7 homodimerization as 

indicated by the complete loss of homodimerization in HIPP7C352G mutant. The hypothesis that 

HIPP-amino acid residues are also relevant for the protein-protein interaction is supported by 

the fact that HIPP7 homodimerization was abolished by the mutation of two Cys residues 

within the HMA domain. HMA domains are found in bacteria, yeast, animal and plants, and 

are characterized by the conserved M/LXCXXC heavy metal binding sequence which usually 

forms a ferredoxin-like structural fold. Several HMA containing proteins displayed a function in 

transporting metallic ions to specific cellular sites or in heavy metal homeostasis (Dykema et 

al., 1999; Chu et al., 2005). Nevertheless, there are also reports showing that the HMA 

domain is essential for protein-protein interaction. For example, the NaKR1 (HPP2) is 

reported to interact with FLOWERING LOCUT T (FT) in vitro and in vivo. Interestingly, a 

truncated protein containing only the HMA domain of NaKR1 has been shown to be sufficient 

for interacting with FT, indicating that the interaction between NaKR1 and FT might be related 

to HMA function in metal binding (Zhu et al., 2016). Similarly, substitution of the two central 

Cys residues of the M/LXCXXC core sequence in HIPP26 completely abolished the 

interaction between HIPP26 and ATHB29 (Barth et al., 2009). However, although the HMA is 

relevant for HIPP7 homodimerization, mutation of the Cys residues in HMA domains of HIPP7 

did not interrupt the CKX1-HIPP7 interaction (Fig. 9). Similarly, the mutation of the HMA 

domain of NbHIPP26 retained the TBG1-NbHIPP26 interaction (Cowan et al., 2018). These 

results suggest that the mechanisms of the HIPP7 homodimerization and CKX-HIPP 

heterocomplex formation are apparently different. 
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In addition to the cytosol and nuclear localization that were seen in the analyzed leaf cells, the 

GFP fused HIPP1, HIPP5 and HIPP7 proteins were also visible in the plasmodesmata (PD) 

(Fig. 11 and 12). Interestingly, in comparison to GFP-HIPP7, the frequency of PD localization 

was lower and the fluorescence signal associated with PD was significantly weaker in 

Arabidopsis plants expressing the GFP-HIPP7C352G mutant form (Fig. 12), indicating that the 

prenylation of HIPP7 is important for the association with the PD. Interestingly, Cowan et al., 

(2018) recently reported that NbHIPP26 was associated with a population of PD in N. 

benthamiana epidermal cells and the PD-localization was weaker in the prenylation-lacking 

mutant protein. Cowan et al., (2018) have proposed that prenylation is not only relevant for 

HIPP protein localization to the PD, but also for the long-distance movement of HIPP proteins 

or for the PD-meditated intracellular signaling. What is the mechanism of targeting HIPP 

proteins to PD and how the prenylation is precisely involved in this process is currently 

unclear. However, interestingly, a proteomics approach has revealed that more HIPP proteins 

might be associated with PD (Fernandez-Calvino et al., 2011). 

  

4.1.2 What are the additional CKX-HIPP interaction determinants in HIPP 

proteins? 

 

As discussed above, HIPP protein prenylation itself is indispensable but not sufficient for the 

CKX-HIPP interaction. Some specific amino acid residues or motifs within the HIPP protein 

may be required to form the protein interaction interface. Interestingly, in addition to the 

characterized HMA domain and isoprenylation motif, most of HIPP proteins have a number of 

glycine-rich and proline-rich regions localized between these elements (de Abreu-Neto et al., 

2013). In plants, glycine- and proline-rich proteins have been reported to be involved in 

cellular stress responses and signaling (Bai et al., 2009; Czolpinska and Rurek, 2018). In 

general, these regions are discussed to be important for structural protein conformation, 

subcellular localization and protein-protein interaction. With respect to the latter, it has been 

proposed that these proteins may act as assembly pieces of multicomponent complexes and 

that the glycine- and proline-rich domains are functioning as structural features that define 

their position and function in such large complexes (Mangeon et al., 2010). For instance, the 

glycine-rich domains can assume a secondary structure as β-pleated sheets composed of a 

varying number of antiparallel strands that generate a large surface with strongly hydrophobic 

regions to interact with other hydrophobic partners (Sachetto-Martins et al., 2000). The 

recognition of proline-rich sequences by intracellular protein domains is essential for 

coordinated assembly of multiprotein complexes during the process of signaling transduction 

(Kay et al., 2000; Gu et al., 2005). The sequence PxxPxxP (x can be any residue) represents 

a majority of proline-rich target sequences, which forms a unique recognition motif for 
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protein-binding (Ball et al., 2005). Interestingly, two such putative core sequences (PIPPPPP 

and PPPPPPP) are present in the proline-rich region (amino acids 141-PIPPPPPPP-149) of 

HIPP7, suggesting that this domain might be involved in the interactions of HIPP7 with other 

proteins. However, further studies are required to clarify whether the proline- and glycine-rich 

regions found in different HIPP proteins are functionally relevant for protein-protein 

interactions.   

 

4.1.3 Are HIPP proteins involved in the ER-associated degradation of CKX 

proteins? 

 

The interaction domain of the CKX1 has been mapped by a deletion approach in Dr. Werner’s 

group (unpublished data). The experiments showed that the C-terminal part of CKX1 is 

required for the interaction and amino acid residues at position 409 to 430 are crucial for the 

interaction in particular. Furthermore, an Asn-Ile-Leu-Thr (NILT) sequence motif within this 

region was identified to be conserved among all CKX proteins interacting with HIPP, but not in 

CKX7. Mutation of this motif abolished the CKX1-HIPP7 protein interaction, which supports 

the idea that the interaction depends on the CKX protein sequence itself and that the C 

terminus of CKX is mediating it.  

CKX1 has been shown to be a type II membrane protein with a short cytosolic N terminus and 

a C-terminal catalytic domain oriented to the ER lumen (Niemann et al., 2018). Interestingly, 

the fluorescence of the NVen-CKX1/CVen-HIPP7 BiFC complex clearly localized to the 

cortical and perinuclear ER and small punctate structures (Fig. 13I and J), indicating that 

either the HIPP7 protein had to enter the ER lumen to encounter the C terminus of CKX1 or 

the CKX1 protein was transported to the cytosol and interacted with HIPP7 at the cytosolic 

side of the ER membrane. The first hypothesis appears very unlikely in the light of the current 

understanding of protein prenylation. Although the prenylated proteins have to reach the ER 

to undergo the CaaX processing, because the corresponding endoproteases (Rce1 and 

Ste24) and ICMTs are localized in the ER membrane (Bracha-Drori et al., 2008), many 

studies have shown that the respective catalytic reactions take place at the cytosolic side of 

the ER membrane (Choy et al., 1999; Apolloni et al., 2000; Romano and Michaelis, 2001; 

Wright and Philips, 2006; Wright et al., 2009; Pryor et al., 2013). For example, studies of the 

crystal structure of an Rce1 homolog from the archaea Methanococcus maripaludis have 

revealed that the core catalytic cavity, which contains the conserved catalytic glutamate and 

histidine residues, opens to the cytosol (Manolaridis et al., 2013; Hampton et al., 2018). 

Similarly, the crystal structure analysis has revealed that the Methanosarcina acetivorans 

ICMT is an integral membrane protein containing several transmembrane helices and a highly 

conserved C-terminal cytosolic loop serving as a catalytic domain (Yang et al., 2011). It is, 
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therefore, reasonable to assume that, similar to other prenylated proteins, HIPP proteins do 

not enter the ER lumen but undergo the CaaX processing at the cytosolic side of the ER. This 

could also partially account for the occasionally observed ER localization of GFP-HIPP7 in the 

N. benthamiana epidermal cells.   

Hence, the second, more plausible, hypothesis how the HIPP7 protein could encounter an 

access to the C-terminal domain of CKX1 protein is that CKX1 is retrotranslocated to the 

cytosol. This hypothesis is strongly supported by the work of Niemann et al., (2015) who have 

demonstrated that CKX1, as well as other CKX proteins targeted to secretory pathway, are 

ERAD substrates and their protein abundances are reduced by the loss of ROCK1, which 

functions as an important part of the ERQC system. ERAD is a conserved, multistep 

degradation process that involves protein retrotranslocation across the ER membrane, 

ubiquitination, and cytosolic/nuclear 26S proteasome (Smith et al., 2011). Misfolded proteins 

must ultimately arrive at the membrane-anchored ERAD complexes for ubiquitination and, 

because the catalytic domain of the core component of the ERAD complexes are on the 

cytosolic surface of the ER membrane, there is a requirement for the retrotranslocation of the 

ERAD substrates into the cytosol to undergo ubiquitination and to access the cytosolic 

proteasome system for their degradation (Deshaies and Joazeiro, 2009). This indicates that 

the CKX1-HIPP interaction may take place during the retrotranslocation of CKX1 to the 

cytosolic side of the ER and the interaction might influence the efficiency of the process and 

thereby the degradation rate of the CKX1 protein. Similar scenario is also conceivable for 

other CKX isoforms capable to interact with the characterized HIPP proteins. It is interesting 

to note that CKX7, which is the single cytosolic CKX isoform apparently not controlled by 

ROCK1-mediated ERQC, did not interact with any of the tested HIPP proteins (Fig. 8). The 

mechanism of how the HIPP proteins connect to ERAD of secretory CKX proteins is currently 

unclear. The fact that all transgenic Arabidopsis lines overexpressing different HIPP proteins 

showed increased cytokinin responses may suggest that HIPP proteins promote protein 

retrotranslocation, which results in reduced CKX protein levels in the ER and upregulated 

cytokinin concentrations in the compartment lumen. This hypothesis is supported by the result 

that the levels of the CKX1-myc were strongly reduced in the AtML1:CKX1-myc, 

UBQ10:HIPP1 double transgenics (Fig. 31A and C), which suggests that the degradation of 

CKX1 by 26S proteasome was increased. Interestingly, in contrast to HIPP1, CKX1-myc 

protein levels were significantly increased upon the expression of 35S:HIPP6 and 35S:HIPP7 

(Fig. 31B and D). This discrepancy could be explained by the different subcellular localization 

of CKX1-HIPP1 and CKX1-HIPP7 complexes in the cell as revealed by the BiFC assays. The 

fluorescence of the NVen-CKX1/CVen-HIPP7 complex clearly localized to the cortical and 

perinuclear ER and small punctate structures (Fig. 13I and J), whereas the fluorescence 

signal of the NVen-CKX1/CVen-HIPP1 complex was mainly localized in the nucleus and 
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cytoplasm (Fig. 14). These results together indicate that, although the interaction between 

CKX1 and different HIPP proteins apparently facilitates the retrotranslocation, the 

CKX1-HIPP7 complex is retained and eventually accumulates at the cytosolic side of the ER 

membrane without being further processed by the ERAD machinery. In contrast, the 

cytosolic/nuclear localization of the CKX1-HIPP1 BiFC complex together with the lowered 

CKX1-myc levels in UBQ10:HIPP1 plants suggest that the interaction with HIPP1 enhances 

the proteasomal degradation of CKX1. More experimental data will be needed to explain this 

discrepancy. One possibility is that different HIPP proteins regulate different steps of the 

ERAD pathway. Whereas HIPP7 might, for example, control more upstream processes such 

as the retrotranclocation at the membrane, HIPP1 may promote more downstream steps of 

ERAD such as to escort the substrate proteins to the proteasome. The observed 

accumulation of CKX1-myc in 35S:HIPP6- and 35S:HIPP7-expressing plants might imply that 

some intrinsic factors are rate-limiting for the protein degradation in the experimental system 

used. However, it should be noted that the knowledge about the plant ERAD processes is 

rather limited, especially for the later stages of the ERAD pathway, such as how the misfolded 

proteins undergo retrotranslocation and sequentially the delivery of the ERAD substrates to 

the 26S proteasome (Liu and Li, 2014). More experiments are required to understand the 

molecular function of the HIPP proteins during the ERAD of the CKX. It will be also interesting 

to explore whether other ERAD substrate proteins are regulated by HIPPs. 

 

4.2 A role of clade-I HIPP genes in regulating plant growth and 

development  

 

4.2.1 Overexpression of HIPP genes increases cytokinin signaling output 

 

The cytokinin signal is perceived by three AHK cytokinin receptor proteins, which have been 

reported to localize to plasma membrane and to a larger extend to the ER (Fig. 58) (Caesar et 

al., 2011; Wulfetange et al., 2011). The ligand binding domain of the latter receptors is 

oriented into the lumen of the ER, whereas the C-terminal kinase domain and receiver domain 

are exposed to the cytoplasm. The current model predicts that the bulk of cytokinin signaling 

is initiated from the ER and the cellular response to this hormone is determined by the 

steady-state concentration in the ER lumen (Fig. 58) (Romanov et al., 2018). The hypothesis 

proposed in this work that the interaction between CKX and HIPP proteins facilitates the 

retrotranslocation of CKX from the ER provides a model for how the overexpression of HIPP 

proteins influence the subcellular levels and degradation of secretory CKX proteins and 

thereby modulate cytokinin homeostasis and cytokinin responses in the cell (Fig. 58). The 

enhanced retrotranslocation of the CKX proteins into the cytosol could reduce the abundance 
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of the active CKX proteins in the ER lumen resulting in less cytokinin degradation in the ER 

(Fig. 58). Increased cytokinin levels in the ER lumen would consequently enhance cytokinin 

signaling through the ER-localized AHK receptors (Fig. 58). Such an elevated signaling will 

trigger cytokinin-related transcriptional programs and corresponding developmental changes.  

 

 

 
Figure 58. Model of CKX-HIPP interaction and its effect on cytokinin homeostasis. 
Cytokinin is perceived by AHK receptors localized to the plasma membrane and, to a larger extend, to the ER. The 
steady-state concentrations of cytokinin in the ER are regulated by CKX1, which is an ER-localized membrane 
protein, and presumably CKX3. CKX2, 4-6 are most likely secreted to the apoplast. The ER-resident as well as 
apoplastic CKXs are monitored by ERQC to attain their native conformations. The misfolded proteins are degraded 
by the ERAD pathway, including retrotranslocation (red arrow) from the ER to cytosol, polyubiquitination, and 
degradation by the ubiquitin-proteasome system. The interaction with HIPPs facilitates the retrotranlocation of 
CKXs from the ER to cytosol, resulting in less cytokinin degradation in the ER, which triggers cytokinin-related 
transcriptional programs and corresponding developmental changes. Whereas the CKX-HIPP7 complex is 
retained at the cytosolic side of the ER membrane, the interaction with HIPP1 promotes CKX protein degradation. 
Gray arrows denote cytokinin signaling pathway; red arrow indicates protein retrotranslocation from the ER to 
cytosol; blue dashed arrows indicate ERAD processes; black arrows indicate a positive effect on the particular 
process; black dashed arrow indicates protein secretion; red rectangles and purple arrowhead indicate the HMA 
domains and prenyl residue in HIPP proteins, respectively. 
 

Several results from this work support this hypothesis. For instance, the expression levels of 

the cytokinin output sensor TCSn:GFP were significantly increased in the shoots of HIPP1 

and HIPP7-overexpressing lines compared to WT (Fig. 23). Similarly, the GFP signal of the 
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TCSn:GFP reporter was stronger in the root procambial cells and the reporter activity 

expanded upwards into the root vasculature in UBQ10:HIPP1 roots (Fig. 29). The synthetic 

TCSn promoter harbors 24 DNA consensus sequence, as recognized by the type-B ARRs, in 

optimized number and spacing, and demonstrates higher sensitivity in response to cytokinin 

signaling in comparing with TCS (Sakai et al., 2000; Hosoda et al., 2002; Imamura et al., 2003; 

Zürcher et al., 2013). TCS or the improved TCSn reporter have been widely used in 

monitoring the cytokinin signaling output in cells, leading to refined existing models of 

cytokinin functions in numerous contexts (Gordon et al., 2009; Bielach et al., 2012; 

Chickarmane et al., 2012) and directing the discovery of previously unknown cytokinin 

activities in different tissues (Müller and Sheen, 2008; Bencivenga et al., 2012; 

Marsch Martínez et al., 2012; Reid et al., 2017)‐ . The higher activities of this reporter 

detected in the different HIPP-overexpressing plants showed that the HIPP overexpression 

enhances cytokinin signaling output in the plant. The elevated cytokinin signaling output is 

further supported by the increased expression levels of two type-A ARRs, ARR5 and ARR7, 

in the HIPP-overexpression lines (Fig. 24). The type-A ARRs genes represent the cytokinin 

primary-response genes, and their expression has been used to monitor transcriptional 

activity in response to cytokinin signal (D'Agostino et al., 2000; Hwang and Sheen, 2001; 

Zubo et al., 2017). However, not all tested type-A ARR genes showed increased transcription 

levels in the HIPP-overexpression lines. Indeed, the expression levels of several type-A ARR 

genes were reduced, such as ARR15 and ARR16. This could be due to the fact that their 

transcription might not be exclusively controlled by cytokinin but also by additional inputs and 

transcription factors, which are eventually expressed in a tissue-specific fashion. Such 

examples have been reported previously. For example, ARR6 and ARR16 are direct target 

genes transcriptionally activated by the TCP transcription factor, such as TCP4, and changes 

in the TCP4 levels have pronounced effects on the expression of these ARR genes and thus 

influence the overall leaf growth (Efroni et al., 2013). Similarly, the transcription factor WUS, 

for example, controls shoot meristem size by directly repressing the transcription of several 

type-A ARR genes (Leibfried et al., 2005). Interestingly, reduced transcript levels of several 

class II TCP genes were detected in HIPP-overexpressing plants, suggesting that the 

reduced expression of several type-A ARR genes in HIPP-overexpression plants could be 

duo to the regulation of class II type TCPs. Importantly, as the type-A ARR proteins generally 

function as inhibitors of cytokinin responses (Hwang and Sheen, 2001; To et al., 2004; To et 

al., 2007), reduction of their expression in HIPP-overexpressing plants could contribute to the 

enhanced cytokinin responses.  

Interestingly, the contents of most cytokinin metabolites were relatively weakly changed. The 

strongest changes were detected for iP- and tZ-nucleotides, which were reduced to 50% of 

the WT levels (Table 17 and 18). Whereas the free cytokinin bases are the major active 
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cytokinin forms in Arabidopsis (Lomin et al., 2015), Cytokinin nucleotides and nucleosides are 

the precursors of the active bases, and the metabolic interchanges between these forms 

determine cytokinin homeostasis in planta (Kieber and Schaller, 2018). The first and 

rate-limiting step in cytokinin biosynthesis, leading to cytokinin nucleotides, is catalyzed by 

IPT proteins. It has been shown that IPT1 and its homologs IPT3, IPT5 and IPT7 were 

downregulated by a cytokinin feedback regulation loop (Miyawaki et al., 2004). Similarly, to 

maintain the balance of cell division and differentiation during root development, cytokinin 

feeds back to negatively regulate IPT7 via repressing the expression of a HD-ZIPIII 

transcription factor PHABULOSA, which directly activates IPT7 (Dello Ioio et al., 2012). 

Therefore, the reduced levels of cytokinin nucleotides in HIPP-overexpressing plants 

indicated that the cytokinin biosynthesis was suppressed as a result of increased cytokinin 

signaling in these plants. Indeed, the strong downregulation of three analyzed IPT genes in 

HIPP-overexpressing plants (Fig. 25) supported this idea and further strengthens the 

hypothesis that the stronger retrotranslocation of CKX proteins from the ER by 

HIPP-overexpression enhanced the ER cytokinin concentrations and cytokinin signaling 

output. It is interesting to note that, in contrast to the enhanced cytokinin signaling, the overall 

concentrations of main active cytokinins were not dramatically increased in HIPP 

overexpressers. This eventually implicates that the cytokinin pool in the ER is small relative to 

the whole cell cytokinin content. Comparably mild changes of overall cytokinin concentrations 

were detected in rock1 plants displaying enhanced ERAD of CKX proteins (Niemann et al. 

2015). 

Interestingly, in contrast to iP- and tZ-type cytokinins, all cZ metabolites, including the free cZ 

bases, were strongly increased in all HIPP-transgenic lines (Table 17 and 18). In Arabidopsis, 

the synthesis of the cZ-type cytokinins is catalyzed by two tRNA-IPTs (IPT2 and IPT9).  In 

contrast to the key function of adenylate-IPTs in iP- and tZ-type cytokinins biosynthesis, the 

isopentenylation by tRNA-IPTs is not the rate-limiting step of cZ biosynthesis, and the 

expression of these tRNA-IPT genes is not regulated by cytokinin or other phytohormones 

(Miyawaki et al., 2004; Miyawaki et al., 2006). This suggests that the biosynthesis of the 

cZ-type cytokinins was probably not repressed by the enhanced cytokinin signaling in 

HIPP-overexpressing plants. Moreover, it has been shown that individual CKX isoforms 

possess different capacity to degrade cZ-, tZ-, and iP-type cytokinins (Gajdošová et al., 2011). 

It is conceivable that individual CKX isoforms were differentially affected by HIPP 

overexpression depending, for example, on the relative protein-protein interaction affinities. In 

this respect, it is particularly interesting that CKX3, which showed almost no degradation of cZ 

(Gajdošová et al., 2011) did not interact with the characterized HIPP proteins in Y2H tests. 

Although cZ exhibits generally lower biological activities than tZ and iP in Arabidopsis 
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(Gajdošová et al. 2011), it is possible that the increased cZ concentrations contributed to the 

enhanced cytokinin responses in HIPP-overexpressing plants. 

Another interesting discovery is that, in contrast to the reduced iP- and tZ-nucleotides, the 

concentrations of cytokinin O-glucosides were significantly increased in HIPP-overexpressing 

plants (Table 17 and 18). Cytokinin conjugation involves N- and O-glycosylation (Hou et al., 

2004). In contrast to the N-glycosylation, which is usually irreversible conjugation, the 

O-glucosylated forms of cytokinin can be easily converted into active cytokinin and seem to 

serve as storage, transport and deactivated forms because of their resistance to CKX (Auer, 

2002). The conjugation process is precisely regulated to maintain the steady state 

concentration of cytokinin appropriately in a respective tissue (Bajguz and Piotrowska, 2009). 

The enhanced O-glycosylation in HIPP-overexpressing plants may be a compensation of the 

impaired cytokinin degradation in the ER to maintain the steady-state cytokinin concentration.   

 

4.2.2 Ectopic overexpression of HIPP genes and regulation of leaf morphology  

 

Cytokinin has been reported to play an important role in determining the final size and shape 

of leaves (Riefler et al., 2006; Shani et al., 2010; Bartrina et al., 2017). For instance, 

cytokinins induce the expression of CYCD3 genes, which accelerates the progression through 

the G1-to-S phase, promoting cell division (Riou-Khamlichi et al., 1999). Li et al., (2013a) 

reported that cytokinins control the local expansion of pavement cells through a subset of 

ARR genes. However, it is not well understood how the cytokinin metabolism is coordinated 

during the leaf development. For example, it is unclear how and which CKX proteins are 

involved in the regulation of cytokinin concentration during leaf development. The most 

obvious phenotypic changes displayed by the HIPP-overexpressing plants are their smaller 

rosettes leaves with shorter petioles and crinkly lamina (Fig. 18). Interestingly, very similar 

changes in leaf development have been previously reported for plants overexpressing IPT 

genes (Rupp et al., 1999; Efroni et al., 2013), reinforcing the hypothesis that the leaf 

phenotype of the HIPP-overexpressing plants was directly linked to the increased cytokinin 

activity in these plants. In line with this, microscopic analysis revealed that the number of 

epidermal cells was strongly increased in 35S:HIPP7 plants, whereas the cell size was 

dramatically reduced in comparison to WT (Fig. 18). Moreover, the 35S:HIPP7 pavement 

cells developed much less convoluted shape with fewer lobes and indentations (Fig. 18). 

These cell phenotypes are in accord with the current model of cytokinin activity in leaves, in 

which the hormone controls the duration of the proliferation phase by delaying the onset of 

cell differentiation (Holst et al., 2011; Efroni et al., 2013).  

As discussed above, the CKX-HIPP protein-protein interactions are proposed to cause 

reduced levels of CKX proteins in the ER and thereby stronger cytokinin signaling (see 4.1.3). 
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The phenotypic changes of HIPP-overexpressing leaves suggest that the HIPP-interacting 

CKX proteins are involved in the regulation of leaf growth and that changes in their levels 

altered cytokinin signaling and caused the leaf phenotypic changes in the 

HIPP-overexpressing plants. It has been reported that most of the CKX genes encoding 

respective CKX isoforms, which interacted with HIPPs, are expressed in the shoot (Werner et 

al., 2003). For instance, the CKX1 gene is expressed in the shoot apex and lateral shoot 

meristems. The expression of CKX4 has been detected in epidermal pavement cells and 

stomatal meristemoids within the basal, mitotically active, part of young leaves. The CKX5, 

which displayed strong interaction with most tested HIPP proteins in the Y2H assays, is 

expressed to the edges at the most basal part of the young leaves, specifically the elongating 

leaf petioles (Werner et al., 2003). These leaf-expressed CKX isoforms apparently control the 

cytokinin levels during leaf growth processes and can be hypothesized to be causally involved 

in the HIPP-overexpressing leaf phenotypes. To clarify this, it will be important to analyze leaf 

development in various higher-order ckx mutant combinations. 

Another interesting phenotypic change displayed by the HIPP-overexpressing plants is that 

the number of stomata per unit area and the stomatal index (SI), which is the fraction of 

stomata in the total epidermal cell population, was dramatically decreased in comparison to 

WT (Fig. 18). Recently, Vatén et al., (2018) reported that cytokinin mediates stomatal lineage 

asymmetric division diversity through interaction with SPEECHLESS regulator. Exogenous 

cytokinin application or higher cytokinin signaling input sensed by the stomatal lineage ground 

cell (SLGC) leads to SLGCs undergoing additional asymmetric division (called spacing 

division), resulting in the increased cell number and SI, whereas overexpression of the CKX3 

or ARR16 genes prevent the SLGC division (Vatén et al., 2018). The apparent discrepancy 

between the model of the regulation of stomatal division by cytokinin proposed by Vatén et al., 

(2018) and reduced SI in HIPP-overexpressing plants is currently difficult to explain. CKX4 

has been reported to be expressed in the developing stomata of young growing leaves, 

specifically in stomatal meristemoids (Werner et al., 2003; Pillitteri et al., 2011), it is plausible 

that CKX4 is involved in the cytokinin mediated stomata development. It is therefore 

interesting that SI was unexpectedly not increased in higher-order ckx mutants lacking 

stomatal lineage abundant CKXs (Vatén et al., 2018), suggesting that cytokinin controlled by 

CKX in leaves may regulate other cell division types, including the amplifying cell division 

leading to more pavement cells and lower SI. It should be noted that the ckx4-1 allele 

employed by Vatén et al., (2018) is most probably not a null allele (Bartrina et al., 2011). 

Moreover, the experimental model used in the work by Vatén et al., (2018) has been 

cotyledons whereas true leaves were analyzed in this work. It is probable that true leaves will 

display a more complex pattern of cell divisions during the leaf maturation. In this respect, it is 

interesting to note that mitotic activity was observed in HIPP7-overexpressing epidermal 
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pavement cells very late during the leaf ontogenesis (Fig. 18), which could account for the 

increased number of pavement cells and the reduced relative proportion of stomata in the 

total epidermal cell population. However, more experiments are required to clarify the function 

of CKXs in regulating stomata development.     

Leaf growth is dependent on leaf cell proliferation and cell expansion (Czesnick and Lenhard, 

2015). Cytokinin has been reported to modulate both of these two processes during leaf 

development (Holst et al., 2011; Li et al., 2013a). Interestingly, cytokinin has been shown to 

regulate leaf growth in a dose-dependent manner, in which low cytokinin concentrations 

promote the leaf growth and increase the blade surface area and higher cytokinin 

concentrations inhibit the leaf expansion (Efroni et al., 2013). However, in this work, 

exogenous application of low concentrations of BA or CKX inhibitor (INCYDE) to the 

HIPP-overexpressing plants dramatically repressed the leaf expansion and resulted in the 

reduction of the final leaf area (Fig. 20 and 21). These results indicate that the steady-state 

levels of cytokinin signaling in the HIPP-overexpressing plants were higher than the 

physiological optimum required for leaf growth. This also hints that CKX proteins might play 

an important role in restricting cytokinin to optimal concentrations, which coordinate the 

processes of cell division and cell expansion during different stages of leaf development.      

 

4.2.3 Effect of HIPP overexpression on root development 

 

The most severe changes in root morphology were displayed by the UBQ10:HIPP1 lines. The 

primary root elongation as well as the formation of lateral roots was severely affected in 

independent UBQ10:HIPP1 lines (Fig. 27). Cytokinin control the cells division and cell 

elongation by dampening auxin output and redistribution to promote cell differentiation in the 

transition zone (TZ), resulting in the inhibition of the root growth (Dello Ioio et al., 2007; Dello 

Ioio et al., 2012). Exogenous application of cytokinin or enhancing cytokinin signaling output  

repress primary root elongation, whereas the overexpression of CKXs or dampening cytokinin 

signaling enhance primary root growth (Werner et al., 2003; Dello Ioio et al., 2007; Kurepa et 

al., 2014). Cytokinin also acts as a positional cue to regulate lateral root spacing by inhibiting 

lateral root initiation in Arabidopsis (Laplaze et al., 2007; Chang et al., 2013, 2015). It was 

shown that HIPP1 could only interact with CKX1 and CKX5 in the Y2H assays (Fig. 8). CKX1 

was reported to specifically express in close to the vascular cylinder at the side of growing 

lateral roots (Werner et al., 2003), indicating that CKX1 is plausible involved in the regulation 

of lateral root development. Interestingly, the CKX5 has been shown to be gradually 

expressed from the center of the meristem to the elongation zone; especially strongly 

expressed in the initial cells proximal to the quiescent center, indicating that CKX5 might play 

a crucial role in preventing cytokinin accumulation in the root apical meristem (RAM) to control 
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the sustainable system of cell division and differentiation. Could HIPP1 overexpression affect 

the root development through the suppression of CKX1 and CKX5 activity? The enhanced 

activity of TCSn:GFP in UBQ10:HIPP1 root meristems is in agreement with this idea. 

However, single ckx1 and ckx5 mutants show no obvious changes in root development 

(Bartrina, 2006; Dr. Werner’s group unpublished results), and the respective double mutant 

needs to be analyzed. It is also plausible that not all interactions between HIPP proteins and 

different CKX proteins were reliably captured by Y2H tests and, therefore, the phenotypic 

changes in UBQ10:HIPP1 roots can be results of suppression of additional CKX isoforms as 

well. In line with this, the higher-order ckx mutants has been shown to develop shorter roots 

initiating less lateral branches (Bartrina, 2006). However, as already discussed above, caution 

should be taken when interpreting the HIPP-overexpression phenotypes as these eventually 

may not be fully related to altered cytokinin activity.  

 

4.2.4 HIPPs regulate shoot elongation and flowering time independently of 

cytokinin 

 

In addition to the leaf phenotype, the transgenic plants overexpressing clade-I HIPP genes 

had a significantly retarded shoot height in comparison to WT plants (Fig. 19). The 

reproductive development of HIPP-transgenic lines was also delayed as the transgenic plants 

flowered significantly later than the WT (Fig. 19), whereas the hipp single mutants exhibited 

an early-flowering phenotype under SD conditions (Fig. 42A). It is well established that 

cytokinin plays generally a positive role in regulating shoot development (Zürcher and Müller, 

2016; Kieber and Schaller, 2018). For instance, cytokinin regulates the size of shoot apical 

meristems and the initiation of axillary meristem by inducing the expression of WUS (Bartrina 

et al., 2011; Wang et al., 2017). Similarly, cytokinin-deficient transgenic plants show retarded 

shoot growth, which is attributable mainly to the reduced meristematic cell number, meristem 

size and organogenic activity (Werner et al., 2003). Considering the enhanced cytokinin 

signaling detected in the shoots of HIPP-overexpressing plants, the reduced height of the 

inflorescence stems is plausible caused by other factors than cytokinin that are affected by 

the HIPP overexpression. Similarly, cytokinin acts as a positive regulator in promoting 

flowering (Galvão and Schmid, 2014). For example, the exogenous application of cytokinin 

promotes flowering of plants by inducing the expression of TWIN SISTER OF FT (TSF), as 

well as FD, which encodes a partner protein of TSF, and the downstream gene 

SUPPERSSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) (D'Aloia et al., 2011). 

The repressor of cytokinin deficiency2 (rock2), which encodes a constitutively active 

gain-of-function variant of the AHK2 cytokinin receptor, flowered significantly earlier than the 

WT (Bartrina et al., 2017). In contrast, the HIPP-overexpressing transgenic plants flowered 



DISCUSSION 

 

125 
 

significantly later than the WT, indicating that the altered flowering phenotype was 

independent of cytokinin. Consistent with the delayed flowering in HIPP overexpressers, the 

single hipp loss-of-function mutants flower significantly earlier than WT, underpinning the 

biological function of HIPP genes in regulating flowering time. Curiously, the early flowering 

phenotype was enhanced in respective higher-order hipp mutants, suggesting a complex 

genetic interaction. The molecular basis of HIPP-mediated control of flowering needs remains 

to be clarified. 

However, this work provides some evidence that the activity of other hormones such as, for 

example, GA might have been perturbed by HIPP overexpression. GA has been reported to 

play an important role in regulating plant flowering (Conti, 2017). GA signaling, as one of four 

quantitative floral pathways initially identified in Arabidopsis, promotes flowering through the 

transcriptional activation of FT by triggering the degradation of DELLA proteins 

(Mutasa-Göttgens and Hedden, 2009). For instance, under LD conditions, plants with 

exogenous application of GA or DELLA loss-of-function mutants flower early in comparison to 

the WT, whereas GA-insensitive sly1-10 mutant, which accumulates DELLA proteins, delayed 

flowering (Galvão et al., 2012). In this work, the GA4, which is thought to be the major 

bioactive GA in Arabidopsis (Yamaguchi, 2008), was strongly reduced in the two 35:HIPP6 

lines (Fig. 34), indicating that the reduced GA might account for the delayed flowering 

displayed by the HIPP-overexpressing plants. Moreover, the transcript levels of GA3OX1 and 

GA20OX1, which catalyze the final steps of the active GA biosynthesis in Arabidopsis (Sun, 

2008; Yamaguchi, 2008), were dramatically reduced in 35S:HIPP6 lines (Fig. 33), whereas 

one of the GA 2-oxidase genes (GA2OX2), which contributes to the inactivation and turnover 

of GA, was increased in the transgenic lines, suggesting that the overexpression of HIPP 

genes changes GA concentration via differential regulation of GA metabolism genes. The 

expression of GA metabolism genes is controlled by numerous factors (Frigerio et al., 2006; 

Sun, 2008). Interestingly, the reduction in the GA3OX1 transcripts was progressively stronger 

during the later stages of leaf maturation in the 35S:HIPP6 transgenic plants, which was 

similar to the expression of ARR16 (Fig. 24). This suggests that the expression of these 

genes might be under the control of the same factor, which might have been altered by the 

HIPP overexpression. Intriguingly, it has been shown that the expression of GA3OX1 and 

ARR16 genes are similarly regulated by TCP genes. TCPs promote the expression of 

GA3OX1 and ARR16 genes, whereas the overexpression of the miRNA319b, which targets 

several TCP genes, represses the expression of GA3OX1 and ARR16 (Efroni et al., 2013), 

indicating that the reduced expression of GA metabolism genes might also be a result of the 

decreased expression of TCP genes detected in this work. 
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4.2.5 Stress-related HIPP protein functions 

 

Cytokinin metabolism and signaling pathways have been recognized to play an important role 

in plant adaptation to biotic and abiotic stresses because of their intensive crosstalk with other 

phytohormones, such as ABA and SA (Ha et al., 2012; O'Brien and Benková, 2013). For 

instance, the activity of ABI5, a positive regulator of ABA signaling, is attenuated by the 

interaction with type-A ARRs (Wang et al., 2011). Similarly, a type-B ARR (ARR2) interacts 

directly with the SA transcription factor TGACG sequence-specific (TGA) 3, which promotes 

the expression of two pathogen resistance genes (PR-1 and PR-2) by binding to their 

promoter regions (Choi et al., 2010). Interestingly, the results showed that the concentration 

of ABA was significantly elevated in HIPP-overexpression lines (Fig. 36). Moreover, a 3 to 

4-fold increase of SA content were detected in the 35S:HIPP6 lines. These results indicate 

that the enhanced cytokinin signaling output caused by the overexpression of HIPPs might 

account for the increased ABA and SA by the hormonal crosstalk. The drought experiments 

revealed that HIPP-overexpression plants displayed significant drought tolerance in 

comparison to WT plants (Fig. 37), suggesting that the elevated ABA concentration promoted 

their resistance to drought stress. Intriguingly, cytokinin is usually reported to act as 

antagonists to ABA in responses to environmental stresses (Werner et al., 2010; Nishiyama et 

al., 2011; Nishiyama et al., 2013; Nguyen et al., 2016). Cytokinin signaling deficiency leads to 

the hypersensitivity to ABA and upregulation of ABA-responsive genes under drought stress 

(Werner et al., 2010a; Nishiyama et al., 2011; Nishiyama et al., 2013; Nguyen et al., 2016), 

whereas an increase in cytokinin content results in the repression of stress- and 

ABA-responsive genes (Wang et al., 2011; Guan et al., 2014). However, in contrasting to this, 

the ABA contents have been reported to be reduced in cytokinin-deficient plants (Nishiyama 

et al., 2011). Taken together, it is currently difficult to draw conclusions about causal relation 

between cytokinin, ABA and SA and it also cannot be excluded that that the elevated ABA 

and SA contents in HIPP-overexpression plants are independent of cytokinin. 

Several HIPP proteins have been reported to be involved in plant adaptation to biotic and 

abiotic stresses (Suzuki et al., 2002; Barth et al., 2009; Gao et al., 2009; de Abreu-Neto et al., 

2013; Imran et al., 2016; Cowan et al., 2018; Radakovic et al., 2018). For example, 

overexpression of one clade-I HIPP gene (HIPP3) affected expression of ca. 400 genes and 

almost half of the most strongly affected genes are involved in pathogen responses, and a 

smaller number in abiotic stress responses (Zschiesche et al., 2015). HIPP26 has been 

shown to interact with the drought stress-related zinc finger transcription factor 29 (ATHB29) 

and the potato mop-top virus (PMTV) movement protein, TGB1 (Barth et al., 2009; Cowan et 

al., 2018). Plants infected with PMTV are shown to be drought tolerant, indicating that HIPP26 

might be involved in the upregulation of dehydration-responsive genes leading to the 
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establishment of a drought-tolerant state in the plant (Cowan et al., 2018). Moreover, the rice 

OsHIPP41 gene, which possesses 61.6% coding sequence identity with the Arabidopsis 

AtHIPP26, is shown to be highly induced in response to cold and drought stresses (de 

Abreu-Neto et al., 2013). All these data suggest that HIPPs play an important role in plant 

responses to biotic and abiotic stresses and these stress responses might be, at least in part, 

independent from their influence on cytokinin activity.  

 

4.2.6 Future perspectives 

 

In the present work, several clade-I HIPP proteins have been shown to interact with CKXs in a 

prenylation dependent manner. Protein prenylation is a post-translational lipid modification, 

which is important for protein-membrane targeting and protein-protein interaction (Crowell 

and Huizinga, 2009). In this work, the relevance of prenylation for the function of HIPP 

proteins was addressed. It was shown that this modification is essential for mediating 

CKX-HIPP interaction, however, the exact mechanism was not fully resolved. It could serve 

as a membrane targeting signal, which enables HIPP proteins to encounter CKXs at the 

cytosolic surface of the ER, because the attachment of the lipid increases the hydrophobicity 

of the protein per se, and also because the prenylated proteins undergo CaaX processing by 

enzymes located to the ER membrane. Additionally, protein prenylation could function as a 

prime determinant, which targets protein to the membrane system to undergo further 

modification, which is required to confer tight membrane association, such as S-acylation. It is 

also possible that the prenylation motif directly act as the interaction domain, which forms the 

correct conformation for the interaction via the lipid modification. In this context, further 

experiments, such as acyl-RAC assay and mutations of the amino acid residues near the 

prenylation motif, are required to test whether the studied HIPP proteins are S-acylated and 

whether the prenylation region could directly form the interaction interface, respectively.  

The ERQC system is a highly stringent and efficient protein quality control mechanism that 

allows only correctly assembled proteins to be exported to their final destinations but retains 

incompletely folded proteins for additional rounds of chaperone-assisted folding and degrades 

terminally misfolded proteins via ERAD (Liu and Li, 2014). CKX1, as well as other CKX 

proteins, which have been shown to be targeted to secretory pathway, are apparently ERAD 

substrates and their protein abundances are reduced by the loss of ROCK1, which functions 

as an important part of the ERQC system (Niemann et al., 2015). In this work, several results 

indicate that the CKX-interacting HIPP proteins are involved in the ERAD of CKXs. However, 

because the current knowledge of the plant ERAD processes is rather limited, especially 

about the retrotranslocation and the delivery of the ERAD substrates to the proteasome, it is a 

big challenge to conclude in which step(s) in ERAD of CKX the identified HIPP proteins are 
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involved. Similarly, it will be important to examine whether other ERAD clients are regulated 

by the HIPP identified in this work. To answer these questions, it will be important to identify 

other proteins interacting with HIPPs, for example, in a new Y2H assays using HIPP as bait. 

CKXs, which carry out the irreversible degradation of cytokinin, play an important role in 

maintaining the hormone at the proper physiological levels in certain tissues (Armstrong, 1994; 

Carabelli et al., 2007; Bartrina et al., 2011; Li et al., 2013c). Overexpressing HIPP proteins in 

Arabidopsis caused plant growth changes and triggered higher cytokinin response in 

individual tissues, which might be mediated by controlling the CKX protein levels. However, 

because of the ectopic expression of these HIPP genes, the phenotypic changes may not fully 

reflect their true spatial and temporal biological functions. Reverse genetic approaches using 

multiple T-DNA insertional mutants together with CRISPR/Cas9-mediated mutagenesis of 

candidate HIPP genes will certainly promote our understanding of the molecular functions of 

the HIPP proteins in the plant ERAD system as well as their role in regulating developmental 

and physiological processes. Unfortunately, the studied HIPP genes belong to a large gene 

family and to a phylogenetic cluster containing nine genes. Given that the homologous genes 

from the same family may share a large degree of functional redundancy, the genetic analysis 

of the identified HIPP genes may prove to be difficult.  

HIPP5 and HIPP6 genes have been identified as cytokinin downregulated genes by 

microarray-meta analysis (Bhargava et al., 2013). In this work, qRT-PCR analysis of 

Arabidopsis seedlings exposed to cytokinin showed that the HIPP5, HIPP6 and HIPP7 

transcript levels were downregulated after 30 min of cytokinin treatment. Moreover, the 

activity of the pHIPP:GUS constructs was reduced in the presence of cytokinin.  These 

results indicate that cytokinin represses the transcription of these HIPP genes and the rapid 

repression suggests that these HIPP genes are eventually cytokinin primary response genes. 

Considering that HIPP proteins enhance cytokinin signaling by controlling CKX protein levels 

in cells, the repressed transcription of specific HIPP genes by cytokinin might represent a 

cytokinin feedback regulation loop. However, more experiments, such as chromatin 

immunoprecipitation (ChIP), are required to determine whether the transcription of these 

HIPP genes is directly controlled by cytokinin signaling.     

One of the biggest challenges for the plant biologists today is to improve plant performances 

under numerous environment stresses and pathogen threats. HIPP proteins have been 

reported to be involved in plant responses to biotic and abiotic stresses (Suzuki et al., 2002; 

Barth et al., 2009; de Abreu-Neto et al., 2013; Zschiesche et al., 2015; Cowan et al., 2018; 

Radakovic et al., 2018). In the present work, the HIPP-overexpressing plants have been 

shown to have higher tolerance to drought stress, whereas hipp triple mutant plants are more 

vulnerable to drought stress. Moreover, the concentrations of several stress-related 

hormones, such as ABA and SA, are elevated in the HIPP-overexpressing plants, indicating 
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that HIPP proteins play a positive role in plant responses to biotic and abiotic stresses. 

However, whether the stress-tolerant phenotype of the HIPP-overexpressing plants is a result 

of the crosstalk between cytokinin and stress-related hormones or is a cytokinin-independent 

effect is still not clear. To uncover this, it is necessary to experimentally manipulate the 

cytokinin activity in the HIPP-overexpressing plants and to analyze levels of these 

stress-related hormones as well as the plant responses to stress stimuli. For instance, 

approaches such as introducing loss- and gain-of-function mutant variants of AHK receptors 

into the HIPP-overexpressing plants could certainly provide additional knowledge about the 

mechanism underlying the increased resistance of the HIPP-overexpressing plants against 

the drought stress. It will be also interesting to study whether other abiotic and biotic stresses 

are controlled by the identified HIPP genes. 
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5 Summary 

 

The plant hormone cytokinin controls various processes in plant development and responses 

to environmental stresses. Cytokinin degradation is catalyzed by a group of CKX enzymes. 

Cellular levels of these proteins significantly impact the cytokinin homeostasis in plants and it 

is, therefore, important to understand the mechanisms regulating their activities. In this study, 

several CKX-interacting proteins, belonging to a plant-unique protein family (HIPP), were 

molecularly characterized and their biological function elucidated, particularly in respect to the 

regulation of cytokinin homeostasis.  

In the first part of this work, the molecular basis of the CKX-HIPP interaction, such as the 

essential interaction motifs, interaction specificity, and the subcellular compartmentation of 

the CKX-HIPP complex, were investigated. Interaction assays performed in yeast and in 

planta revealed protein-protein interactions between specific members of the CKX and HIPP 

protein families. CKX1 interacted with HIPP proteins from the phylogenetic cluster I and III, 

but not other members of the family. The analyzed cluster I-HIPP proteins interacted 

additionally with most CKX proteins targeted to the secretory system but did not interact with 

the cytosolic CKX7 isoform. The CKX1-HIPP7 interaction required the prenylation motif at the 

C-terminus of HIPP7, implying that the lipid modification mediates the CKX-HIPP interaction. 

In addition, the tested HIPP proteins were found to form homodimers, which required both the 

functional prenylation and HMA domains, suggesting that metal binding could mediate the 

HIPP homodimerization.  

The Arabidopsis CKX1 protein, a case example in this study, has been shown to be a type II 

membrane protein that localizes predominantly to the ER. However, the subcellular 

localization studies in this work revealed that HIPP1, HIPP5 and HIPP7 are localized 

apparently outside of the secretory system, predominantly in the cytosol and nucleus. To 

address this discrepancy, bimolecular fluorescence complementation (BiFC) assays were 

performed. The fluorescence of the BiFC CKX1/HIPP7 complex clearly showed that the 

interaction occur at the cortical and perinuclear ER. Moreover, a strong BiFC signal mainly 

localized in the nucleus and cytosol was detected for the CKX1/HIPP1 pair. These results 

suggest that CKX1 in the detected complexes represents a protein form that was relocated to 

the cytosolic site of the ER membrane.  

The second part of this work aimed to uncover the biological function of the identified HIPP 

proteins, especially in respect to their potential role in regulating CKX protein levels and 

cytokinin responses in Arabidopsis. The HIPP-overexpressing plants displayed 

cytokinin-related phenotypic changes and were hypersensitive to cytokinin. This was 

correlated with an increased cytokinin activity in these plants. It could be further shown that 
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HIPP proteins differentially affected the abundance of the CKX1 protein. Given that CKX1 has 

been previously shown to be an ERAD substrate protein, it is proposed that the analyzed 

HIPP proteins might play a role during the retrotranslocation of CKX proteins from ER into the 

cytosol or during their cytosolic proteasomal degradation. It is hypothesized that the increased 

cytokinin activity displayed by HIPP-overexpressing plants is due to reduced levels of CKX 

proteins in the ER, which results in more cytokinin being sensed by the AHK cytokinin 

receptors localized in this compartment. 

Analysis of the concentration of other phytohormones or key genes determining their 

biosynthesis revealed that HIPP-overexpression resulted in the accumulation of stress-related 

hormones, i.e. ABA and SA, and downregulation of genes related to GA biosynthesis. These 

changes probably accounted for the enhanced drought tolerance and delayed onset of 

flowering of the HIPP-overexpressing plants. These data suggest that HIPPs may have 

broader biological activity beyond the regulation of CKX. 

Additionally, the effects of hipp loss-of-function mutations and the expression patterns of the 

analyzed HIPP genes were investigated in this work. In comparison to the phenotypic 

changes of the HIPP-overexpressing plants, hipp single and double mutants did not display 

obvious phenotypic changes, suggesting a higher degree of functional redundancy among the 

cluster I HIPP genes in controlling cytokinin responses and plant development. The HIPP 

genes were found to be expressed in distinct tissues, including mainly root and shoot apical 

meristems, and vascular tissues. Interestingly, HIPP transcript levels were repressed by 

exogenous cytokinin applications, suggesting a regulatory feedback loop between cytokinin 

and analyzed HIPP genes. 
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6 Zusammenfassung 

 

Das Pflanzenhormon Cytokinin steuert verschiedene Prozesse in der Pflanzenentwicklung 

und die Reaktion der Pflanzen auf Umweltstress. Der Cytokininabbau wird durch CKX 

Enzyme katalysiert. Die zelluläre Konzentration dieser Proteine hat einen signifikanten 

Einfluss auf die Cytokinin-Homöostase der Pflanzen. Daher ist es wichtig die Mechanismen 

zu verstehen, welche ihre Aktivität regulieren. In dieser Studie wurden mehrere 

CKX-interagierende Proteine, die zu einer neuen pflanzen-spezifische Proteinfamilie (HIPP) 

gehören, molekular charakterisiert und ihre biologische Funktion untersucht, insbesondere in 

Bezug auf die Regulation der Cytokinin-Homöostase. 

Im ersten Teil dieser Arbeit wurden die molekularen Grundlagen der CKX-HIPP-Interaktion 

analysiert, wie z. B. die wesentlichen Proteininteraktionsmotive, die Interaktionsspezifität und 

die subzelluläre Lokalisation des CKX-HIPP-Komplexes. Durchgeführte Interaktionsassays in 

Hefe und in Pflanzen demonstrierten Protein-Protein-Wechselwirkungen zwischen 

spezifischen Mitgliedern der CKX- und der HIPP-Proteinfamilien. CKX1 interagierte mit 

HIPP-Proteinen aus den phylogenetischen Clustern I und III, jedoch nicht mit Mitgliedern aus 

anderen Clustern. Die analysierten Cluster-I-HIPP-Proteine interagierten zudem nur mit den 

sekretorischen CKX-Proteinen jedoch nicht mit der cytosolischen CKX7-Isoform. Die 

CKX1-HIPP7-Wechselwirkung erforderte das Prenylierungsmotiv am C-Terminus von HIPP7, 

was impliziert, dass diese Lipidmodifikation die CKX-HIPP-Wechselwirkung vermittelt. 

Außerdem wurde festgestellt, dass die getesteten HIPP-Proteine Homodimere bilden, was 

sowohl die funktionelle Prenylierungs- als auch die HMA-Domäne erforderte, was darauf 

hindeutet, dass Metallbindung die HIPP-Homodimerisierung vermitteln könnte. 

Das Arabidopsis CKX1-Protein (ein Fallbeispiel in dieser Studie) ist ein 

Typ-II-Membranprotein, das vorwiegend im ER lokalisiert ist. Die subzellulären 

Lokalisationsstudien in dieser Arbeit zeigten jedoch, dass HIPP1, HIPP5 und HIPP7 

scheinbar außerhalb des sekretorischen Wegs lokalisiert sind, hauptsächlich im Cytosol und 

im Zellkern. Um diese Diskrepanz näher zu untersuchen, wurden Bimolekulare 

Fluoreszenzkomplementation (BiFC) Tests durchgeführt. Die Fluoreszenz des BiFC CKX1/ 

HIPP7-Komplexes zeigte deutlich, dass die Wechselwirkung am kortikalen und perinukleären 

ER auftritt. Darüber hinaus wurde für das CKX1/HIPP1-Paar ein starkes, hauptsächlich im 

Kern und im Cytosol lokalisiertes BiFC-Signal nachgewiesen. Diese Ergebnisse legen nahe, 

dass CKX1 in den nachgewiesenen Komplexen eine Proteinform darstellt, die an die 

cytosolische Seite der ER-Membran verlagert wurde. 

Der zweite Teil dieser Arbeit zielte darauf ab, die biologische Funktion der identifizierten 

HIPP-Proteine aufzudecken, insbesondere hinsichtlich ihrer potenziellen Rolle bei der 
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Regulation des CKX-Proteinspiegels und der Reaktion auf Cytokinin in Arabidopsis. Die 

HIPP-überexprimierenden Pflanzen wiesen Cytokinin assoziierte phänotypische 

Veränderungen auf und waren hypersensitiv gegen Cytokinin. Dies korrelierte mit einer 

erhöhten Cytokininaktivität in diesen Pflanzen. Es konnte weiter gezeigt werden, dass 

HIPP-Proteine die Menge des CKX1-Proteins unterschiedlich beeinflussten. In Anbetracht 

dessen, dass CKX1 zuvor als ein ERAD-Substratprotein identifiziert wurde, wurde postuliert, 

dass die analysierten HIPP-Proteine eine Rolle bei der Retrotranslokation von CKX-Proteinen 

aus dem ER in das Cytosol oder während ihres cytosolischen proteasomalen Abbaus spielen 

könnten. Es wird vermutet, dass die erhöhte Cytokininaktivität der HIPP-überexprimierenden 

Pflanzen auf reduzierte CKX-Proteine im ER zurückzuführen ist, was dazu führt, dass mehr 

Cytokinin von den in diesem Kompartiment lokalisierten AHK-Cytokininrezeptoren 

wahrgenommen wird. 

Die Analyse der Konzentration anderer Phytohormone oder Schlüsselgene, die deren 

Biosynthese bestimmen, ergab, dass die HIPP-Überexpression zur Anhäufung von 

stressbedingten Hormonen, wie ABA und SA, und zur Herunterregulierung von Genen führte, 

die mit der GA-Biosynthese in Verbindung stehen. Diese Veränderungen waren 

wahrscheinlich für die erhöhte Toleranz gegenüber Trockenheit und den verzögerten Beginn 

der Blüte der HIPP-überexprimierenden Pflanzen verantwortlich. Diese Daten deuten darauf 

hin, dass HIPPs eine breitere biologische Aktivität aufweisen, die über die CKX-Regulierung 

hinausgeht. 

Zusätzlich wurden hipp-knockout-Mutanten und die Expressionsmuster der analysierten 

HIPP-Gene in dieser Arbeit untersucht. Im Vergleich zu den phänotypischen Veränderungen 

der HIPP-überexprimierenden Pflanzen wiesen hipp-Einzel- und Doppelmutanten keine 

offensichtlichen phänotypischen Änderungen auf, was auf einen hohen Grad an funktioneller 

Redundanz zwischen den Cluster I-HIPP-Genen bei der Kontrolle von Cytokinin-Antworten 

und der Pflanzenentwicklung schließen lässt. Es wurde festgestellt, dass die HIPP-Gene in 

verschiedenen Geweben exprimiert werden, hauptsächlich in den apikalen Meristemen der 

Wurzel und des Sprosses sowie im Vaskulargewebe. Interessanterweise wurden die 

Expression HIPP-Transkripte durch exogene Cytokinin Zugabe unterdrückt, was auf eine 

regulatorische Rückkopplungsschleife zwischen Cytokinin und den analysierten HIPP-Genen 

schließen lässt. 
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Figure A.1. Profiles of endogenous GA metabolites in HIPP-overexpressing Arabidopsis plants. 
Contents of different GA metabolites were determined in rosettes of wild type (WT) and two independent 

homozygous lines expressing 35S:HIPP6 and 35S:HIPP7 15 DAG. Data shown are means ± SD; n = 3. *P < 0.05, 

**P < 0.01, ***P < 0.005, calculated by Student’s t test 
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