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Abstract

The ongoing growth of cities due to better job opportunities is leading to increased labour-related
commuter flows in several countries. On the one hand, an increasing number of people commute
and move to the cities, but on the other hand, the labour market indicates higher unemployment rates
in urban areas than in the surrounding areas. We investigate this phenomenon on regional level by
an alternative definition of unemployment rates in which commuting behaviour is integrated. We
combine data from the Labour Force Survey (LFS) with dynamic mobile network data by small area
models for the federal state North Rhine-Westphalia in Germany. From a methodical perspective, we
use a transformed Fay-Herriot model with bias correction for the estimation of unemployment rates
and propose a parametric bootstrap for the Mean Squared Error (MSE) estimation that includes the
bias correction. The performance of the proposed methodology is evaluated in a case study based on
official data and in model-based simulations. The results in the application show that unemployment
rates (adjusted by commuters) in German cities are lower than traditional official unemployment rates
indicate.

Keywords: Commuting zones, Fay-Herriot model, Signalling data, Small area estimation, Unemploy-

ment rates

1 Motivation

Since jobs in Germany are predominantly located in cities, more people move to the cities (see e.g. an

interactive map on growing and shrinking German cities and communities (Federal Institute for Research

on Building, Urban Affairs and Spatial Development, 2017)). In Germany, the continuous growth of

cities is creating shortages on the housing and real estate markets (Möbert, 2018). Most large cities have

higher population growth rates than the national average. Due to the comparatively high urban labour

migration, the number of people living in cities is steadily increasing nationwide. As Buch et al. (2014)

showed, smaller cities recorded less net immigration than large cities, which in turn is characterized by

the attractiveness of larger cities and the benefits of living in them. This is mainly due to the urbanization

advantages, which are reflected in better infrastructure, more extensive education and work opportunities,

a more extensive cultural infrastructure, and other location-specific amenities (Buch et al., 2014; Gans,

2017).

In contrast to this trend, unemployment rates in Germany are higher in the cities compared to its sur-

roundings. Identifying the cities as job magnets and finding high unemployment rates at the same time
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seems contradictory. According to Grözinger (2018), this phenomenon is a “false” effect and can be

explained by the common definition of unemployment. Traditional unemployment rates are defined by

the International Labour Organization (ILO) as the number of unemployed persons counted at their place

of residence divided by the total number of persons in the labour force who are resident in the target area.

This definition includes only the place of residence as a focal point for calculating these rates. In contrast

to traditional unemployment rates, an alternative definition using the workplace as a focal point enables

other insightful interpretation possibilities. Following Grözinger (2018), this alternative definition puts

the resident unemployed of an area in relation to the labour force of the same area counted at the work-

place. Thus, this definition provides valuable information on missing workplaces in regional areas and

therefore support policy decisions in urban planning. Thereby policymakers can identify regions where

it might be useful to promote the settlement of companies in order to lower their unemployment rate and

shorten commuter movements. For cities, lower alternative than traditional unemployment rates are as-

sumed. Low alternative unemployment rates contribute to the attractiveness of cities and the moving and

commuting behaviour towards these urban areas. Grözinger (2018) investigates this difference, among

others, for regional areas in the German federal states Bavaria and Schleswig-Holstein.

For analysing unemployment rates in the context of commuter behaviour, the regional target areas

are city cores and their commuting zones. For European countries and other member countries of the

Organisation for Economic Co-operation and Development (OECD), Functional Urban Areas (FUA)

have been created as harmonised geometries describing urban areas (Dijkstra and Poelman, 2011). A

FUA is composed by a city core and its commuter zone. However, we are interested in the spatial

level below, which considers the city core and commuter zone separately. We therefore refer to our

regional target level in the following as the FUA sublevel. This regional level is available for all OECD

countries. Thus, our comparison of unemployment rates presented here for the German federal state of

North Rhine-Westphalia (NRW) is transferable to other OECD countries. Using the FUA sublevel as

regional layer, the observation area is divided into city cores and commuting zones and does not consider

remaining regions, as the FUA sublevel does not cover the whole territory of a country. This spatial level

is particularly suitable for comparing both unemployment rates, which differ in whether commuters are

included or not.

To estimate unemployment rates, our primary data source is the European Union Labour Force Sur-

vey (LFS). The LFS enables the estimation of both unemployment rates. The survey is designed on the

governmental district level, which is a higher regional level than the FUA sublevel (Eurostat, 2019b).

Hence, estimates on this spatially finer sublevel that are only based on survey data (called direct esti-

mates throughout the paper) are likely to have large variances due to relatively small sample sizes. To

increase the accuracy of the direct estimates on lower spatial levels Small Area Estimation (SAE) meth-

ods can be used (see e.g., Rao and Molina, 2015; Tzavidis et al., 2018). SAE methods generally combine

survey data with other data sources. For example, Costa et al. (2006), Pereira et al. (2011) or Martini

and Loriga (2017) estimate unemployment rates using SAE methods by using administrative data as

auxiliary information. Molina and Strzalkowska-Kominiak (2020) discuss different types of small area

estimators to calculate the percentage of people in the labour force for Swiss communes out of the LFS.

They use administrative data that are provided on unit level as auxiliary information. For other studies,

appropriate register or administrative data is not always available. Especially, the access to unit-level

data is mostly not possible due to data protection regulations. In the case of suitable aggregated data,

the problem often occurs that these data are only available on more aggregated spatial areas than the

desired target level. Due to a lack of finer spatial register or administrative data, one possibility is to use

2



alternative data sources as covariates. Toole et al. (2015) or Steele et al. (2017) propose the usage of

passively collected mobile phone data as auxiliary information. The advantages of mobile phone data

or mobile network data are their finer spatial resolution and their timeliness, as they are available in real

time. For example, Steele et al. (2017) use Call Detail Records (CDRs) from the mobile network and

remote sensing data for estimating poverty indices in developing countries. Toole et al. (2015) estimate

changes in unemployment rates after shocks in the economy in case of mass layoffs at a plant by using

mobile phone data. Marchetti et al. (2015) have investigated solutions for a broad range of applications

in using new digital data. They suggest three ways to use new digital data together with SAE techniques

and show the potential of these data sources to mirror aspects of well-being and other socioeconomic

phenomena.

Our analyses are based on dynamic mobile network data. It is advantageous that this data source

reflects commuting behaviour as well as daytime and resident population. Since commuters and daytime

population affect unemployment rates, the usefulness of these covariates for estimating the traditional

and alternative unemployment rates becomes apparent. Our application combines mobile network data

with data from the LFS to improve the estimation of both unemployment rates on our regional target

area, the FUA sublevel. The aim is to compare both definitions of unemployment rates at the level of

interest, thus highlighting the influence of commuters. From a methodological perspective, we consider

the Fay-Herriot (FH) model (Fay and Herriot, 1979) using mobile network data as auxiliary informa-

tion. In general, the FH model produces estimates on a continuous range. However, the unemployment

rate should be within the interval [0, 1]. One possible solution is to use a transformation. In particular,

we transform the dependent variable with an inverse sine transformation following Casas-Cordero et al.

(2016), Burgard et al. (2016), and Schmid et al. (2017). They all apply a naive back-transformation

to obtain FH estimates and their confidence intervals on the original scale. In contrast, we use a bias

corrected back-transformation following Sugasawa and Kubokawa (2017). To measure the uncertainty

of the bias corrected back-transformed FH estimates, we propose a parametric bootstrap procedure ori-

entated on González-Manteiga et al. (2008) to receive not only confidence intervals but also estimates

for the Mean Squared Error (MSE). The methodology is validated with official rates based on the Urban

Audit. In a model-based simulation study we show the benefit of a bias corrected back-transformation

compared to a naive one.

The paper is structured as follows: Section 2 defines both types of unemployment rates and explains

how they deal differently with commuters. Subsequently, this section introduces the data sources for

constructing these indicators. Section 3 describes the statistical methodology. The SAE methods and the

corresponding MSE estimation is applied in Section 4 to estimate the difference of both unemployment

rates for the German federal state NRW on FUA sublevel. For evaluation reasons, Section 5 investigates

the methodology on German data for estimating the traditional unemployment rates and compares the

results with official data. Furthermore, in Section 6, we conduct a model-based simulation study to assess

the quality of the proposed estimator. Section 7 discusses further research potential.

2 Data sources and definitions for regional unemployment rates

In this section we first introduce the two definitions of unemployment rates each dealing differently with

commuters, and the FUA sublevel as our geographical unit of interest for the analysis of these indicators

(Subsection 2.1). Subsequently, our two data sources are described (Subsection 2.2 and 2.3) in particular,
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the LFS survey data and mobile network data. Subsection 2.3 emphasizes the advantages of dynamic

mobile network data as an alternative data source to create covariates.

2.1 Traditional and alternative definition of unemployment rates

The Federal Statistical Office of Germany (Destatis) publishes traditional unemployment rates accord-

ing to the definition of the International Labour Organization (ILO), which provides an international

comparable indicator (International Labour Organization, 2018). Following the ILO-definition, the un-

employment rate is given by

θUR1,i =
Ni,unemployed

Ni,unemployed + Ni, employed counted at residency
, (1)

where θUR1,i is the traditional unemployment rate for the regional area i. This unemployment rate is

defined by the number of unemployed persons living in area i (Ni, unemployed) divided by the labour force

of area i. The labour force is composed of the number of unemployed and employed persons living in

area i (Ni, unemployed + Ni,employed counted at residency). For traditional unemployment rates, the focal point

for counting employed and unemployed persons is their place of residence, where persons aged 15 to 74

are considered in the ILO-definition (International Labour Organization, 2018; Eurostat, 2018a). Please

note that for reasons of comparability we use the age range of 15-64 years. Therefore, the traditional

unemployment rates are estimated with a modified age group throughout the analysis. For traditional

unemployment rates, employed persons are counted at area i where they live. However, there is another

possible reference point for employed persons: Employed persons can be counted in area i where their

workplace is located. Unemployed persons are counted exclusively in area i where they live in because

they have no place of work. Thus, the second definition proposed by Grözinger (2018) uses the workplace

of employed persons as a focal point and thus the definition changes to

θUR2,i =
Ni, unemployed

Ni, unemployed + Ni, employed counted at workplace
. (2)

θUR2,i is the alternative definition of unemployment rates for the regional area i. In (2), the number of

unemployed persons (Ni,unemployed) is divided by the labour force aged 15 to 64. In contrast to traditional

unemployment rates, the labour force of alternative unemployment ratse is composed of the number of

unemployed persons living in area i and the number of employed persons having their workplace in area

i (Ni, unemployed + Ni,employed counted at workplace).

In comparison, both unemployment rates treat commuting behaviour differently. A traditional un-

employment rate of 5% would mean that in an area i with a labour force of 100 persons 5 persons are

unemployed. If in contrast the alternative unemployment rate of the same area i is considered, then,

according to Grözinger (2018), the commuter flows of the labour force are taken into account and con-

sequently, the unemployment rate of area i should change. Based on the scenario above, the following

changes occur: 60 people work and live in the same area i, 35 people commute to area i where they work

and 25 persons commute from area i to other areas for work. This changes the number of labour force

at the place of work from 100 to 110 persons due to the inclusion of commuters and leads to a lower

alternative unemployment rate of 4.55%. Therefore, the difference of both unemployment rates reveals

the influence of commuters. If θUR1,i is higher than θUR2,i, then there is a stronger commuter movement

from other areas to area i.

FUAs are in general composed of city cores and their commuting zones. In this study, however,
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we are interested in a separate consideration of city core and its commuting zone. In the following, we

will refer to this spatial level as FUA sublevel. This regional level is particularly suitable to illustrate

the difference in both definitions of unemployment rates caused by commuter flows. To the best of

our knowledge, the FUA sublevel is the only OECD harmonised geometry that allows a distinction

between city centres and their commuter zones. Therefore, these analyses are transferable to other OECD

countries. City cores are urban centres with at least 50 000 inhabitants. The commuting zone contains

the surrounding travel-to-work areas of the city core where at least 15% of their employed residents are

working in the respective city (Eurostat, 2018b). Germany has in total 208 units, which are relevant

for determining FUAs. These are composed of 125 city cores and 83 commuting zones. Since some

commuting zones can be assigned to several city cores, there are fewer commuting zones than city cores.

2.2 Labour Force Survey

The LFS (Eurostat, 2019b) enables the estimation of the traditional and alternative unemployment rates

introduced in Subsection 2.1. The LFS is a household survey conducted in 35 countries including all

27 EU member states and the United Kingdom, which provides information about the labour market

participation. In Germany, the LFS is part of the German Microcensus, which is a one-percent sample of

the population and collected annually.

In the used LFS data, regional disaggregation is carried out using the administrative nomenclature

of territorial units for statistics (NUTS) classification. These NUTS-levels are harmonised geometries

in Europe to compare specific areas with each other and get geographically finer from NUTS 1-level to

NUTS 3-level (Eurostat, 2018c). In Germany, the NUTS 1-level corresponds to the 16 federal states, 38

areas are related to governmental regions (NUTS 2-level) and the smallest unit of this nomenclature, the

NUTS 3-level, refers to the 401 administrative districts (Europäisches Parlament und Rat der Europäis-

chen Union, 2003). The next finer resolution are the 11 059 municipalities. Unemployment rates using

LFS data are published on governmental regions level (NUTS 2-level). However, our target level is the

smaller FUA sublevel. In Germany, the FUA sublevel can be composed directly from the finer geome-

try of the municipalities or by using the administrative districts (NUTS 3-level) and the administratively

independent cities to determine the sublevel. As all LFS observations contain information about the asso-

ciated administrative districts (NUTS 2-level) and municipalities, we can use the individual information

of the LFS participants to allocate them to the FUA sublevel. Thus, we have to match a) the place of

residence and b) the place of work to the corresponding sublevel. For the assignment of individuals to

the place of work, we use a proportional allocation in a few cases.

In this work, we consider the year 2016 with an overall sample size of 369 986 observations. Since

we evaluate the FUA sublevel, the sample size decreases to 271 587 observations. As unemployment

rates are different for both sexes, the following analyses are carried out separately by sex. Table 1

represents the sample sizes in the LFS based on the published NUTS 2-level and on the FUA sublevel

by sex. It can be seen that the sample sizes are smaller in case of the FUA sublevel. On average, the

sample sizes decrease by a factor of 7.3. Since the LFS was designed to produce reliable estimates

on NUTS 2-level, the challenge of this work is to estimate reliable unemployment rates on the smaller

FUA sublevel. Even if the sample sizes for FUA sublevel appear to be rather high, with a median of

368 and 421 for men and women, we have problems with the reliability of the direct estimators in this

application. In particular, Eurostat considers estimators with a Coefficient of Variation (CV) less than

20% to be reliable (Eurostat, 2019a). In Section 4 we will show, that the direct estimators exceed this

threshold in many cases. Therefore, we apply SAE methods and we will discuss the reliability, measured
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Table 1: Distribution of sample sizes in the LFS on NUTS 2-level and FUA sublevel in Germany by sex.

Sex Min. 1st Qu. Median Mean 3rd Qu. Max.
NUTS 2-level Female 1 162 2 916 4 104 4 623 5 521 10 684

Male 1 318 3 304 4 565 5 114 6 108 11 675
FUA sublevel Female 100 216 368 635 646 7 973

Male 97 244 421 702 749 8 559

by the CV, for the direct and the model-based estimates on the FUA sublevel. Since SAE methods require

auxiliary variables from other data sources, such as census, register or mobile network data, the auxiliary

information used here is described in more detail in the following.

2.3 Mobile network data

To estimate unemployment rates for FUA sublevel using SAE methods, suitable auxiliary information is

needed. Many SAE applications are based on register or survey data, which seem to be suitable for most

applications due to the extensive information available. Besides numerous possibilities of use, these data

sources also have some disadvantages, such as the missing timeliness or the higher regional aggregation.

Alternative data sources have the potential to overcome these disadvantages. Toole et al. (2015) or

Steele et al. (2017), for example, have shown that mobile phone data are a promising alternative data

source in the context of SAE. Mobile network data are also explored to estimate daytime population,

commuter patterns or tourism behaviour (see e.g., De Meersman et al., 2016; Galiana et al., 2018). The

major advantage of these data are the availability in real-time and their finer spatial resolution, which

means that one can get the latest mobile network data, or more exactly mobile activities, at the spatial

resolution of cities, communities or grid cells. This is not always the case for register or administrative

data. In addition, mobile network data are dynamic, which means that the movement of activities can be

observed over the course of the day as well as daily, during a week or a month. This means in turn that

commuter movements can be illustrated and used more quickly and more up-to-date. Even the daily and

the resident population can be mapped with these data. Furthermore, the mobile network data reveal rural

and urban areas due to the distribution and intensity of mobile activities. This can be used to determine

approximately whether the activities were carried out at the workplace or at the place of residence. This

information cannot be obtained via administrative or register data, since these data are static and provide

only information at a specific time or reporting date.

In Germany, there are three mobile network operators, Deutsche Telekom AG, Vodafone, and Tele-

fónica, with a respective market share of one-third each. The data records available to Destatis and used

for this work contain mobile activities of Deutsche Telekom customers. This includes contract, prepay,

and further customers. A mobile activity is defined as an event caused by a length of stay at a location or

in a specific geometry without movement (also known as dwell time), with all (mobile) signalling data

being evaluated. Furthermore, signalling data are produced automatically, regularly and only register

the location of the cell tower to which a mobile device is connected at a specific time. In compliance

with data protection rules, the mobile activities are anonymised and aggregated. In addition, mobile

network data contain information on socio-demographic characteristics of mobile device users, such as

age group, sex, and nationality of the SIM card owner. However, the characteristics are only available for

contract customers. Furthermore, the mobile activities are subject to some assumptions or prerequisites

in order to obtain the data record. Since the number of mobile activities depends on the dwell time of

mobile devices, long mobile device activities corresponding to the length of the dwell time are counted
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and included in the data record, while short mobile activities are not taken into account. The dwell time

in the data record available is two hours in order to filter out short mobile device activities which result,

for instance, from quick movements between the grid cells. Finally, only values based on a minimum

number of 30 activities per geometry were provided.

Our aim is to analyse the effect of commuters on both unemployment rates. Since we use a model-

based method, suitable covariates are crucial. Hence, we create a comprehensive tailor-made data record

with dynamic aggregated mobile activities of Deutsche Telekom customers, which we used to construct

covariates for the model-based estimation. The mobile activities in this data set refers to the municipality

level of NRW and thus can be aggregated up to the FUA sublevel since municipalities are nested within

these subareas. The data contains mobile activities for a statistical week that consists of 24-hour days.

These were selected from the months April, May, and September in 2017 without school or public hol-

idays in order to avoid distortions in the representation of commuters. The mobile activities comprise

the average activities on the weekdays selected. The weekdays are categorized according to five types

of days, with the days from Tuesday to Thursday being grouped together. Since the counted activities

of mobile devices alone are not meaningful enough to estimate the alternative unemployment rates and

to illustrate the difference between both rates, further covariates are constructed from the available mo-

bile network data at the FUA sublevel. The aim in creating the covariate is to highlight the differences

between the daily and resident population and thus the commuters themselves. This is particularly re-

flected in the changes in the intensities of mobile activities in the regions under consideration. Based on

this, covariates are calculated in the form of ratios, shares, and change values which reflect exactly these

differences. Since it is assumed that the unemployed persons are more likely to stay at home during the

day and the employed are more likely to stay at the place of work, the rate and change of activities in the

morning and evening hours are calculated. This means, that the change from place of work to the place of

residence and vice versa is modelled. This includes the change in mobile activities of working hours and

hours spent at home as well as the change in activities of potential commuters. In addition, the change in

activities during the day is calculated and the differences in core times or peaks in mobile activities are

determined. The core times are based on the usual working times in Germany, which are also very well

reflected in the mobile activities. Furthermore, when estimating unemployment rates, we distinguish

between sex and other socio-demographic characteristics such as age, since different characteristics are

assumed to have different influences on commuting behaviour and thus on the rate. Therefore, the shares

of women and men in mobile activities were still calculated, as well as persons over and under 50 years

old. Furthermore, the shares of young mobile device users as well as the shares of nationalities, summa-

rized by continents, were calculated. Especially in areas with a high volume of tourists, this can have an

influence on the unemployment rates. In total, we have 27 predictors that have the potential to explain

possible differences and the variation of both unemployment rates in NRW. An overview of the calcu-

lated mobile network covariates can be found in the supplementary material in Table 6.

3 Small area method

In this section, the statistical methodology for estimating unemployment rates from the LFS on FUA

sublevel is described. More generally, our target indicator is a small area mean. For this indicator, we

propose an estimator, which helps to increase the accuracy of the direct estimates. As the survey is

designed for higher regional levels, auxiliary variables from mobile network data are used. For this pur-
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pose, we use the FH model (Fay and Herriot, 1979), an area level model that links direct estimates to

area level covariates. The FH model is especially useful in countries with strict data protection require-

ments like Germany, as the auxiliary variables and the direct estimators only need to be available on an

aggregated level. The FH model produces estimates on a continuous range, but on the opposite the un-

employment rate for each area is located within the interval [0, 1]. To produce only FH estimators on the

desired interval, transformations offer important possibilities. For this reason, we select the inverse sine

transformation, which ensures that all estimates are within the mentioned range. Following Sugasawa

and Kubokawa (2017) we derive an inverse sine transformed FH model including a bias correction for

the back-transformation. A parametric bootstrap which incorporates the bias correction is proposed.

3.1 Fay-Herriot estimates

In the following, we assume a finite population of size N , which is divided into d areas. The present

sample consists of areas with different sample sizes n1, . . . , nd drawn by a complex design from the

population. To refer to the actual area, we use the subscript i. The population size and sample size of

this area is indicated with Ni and ni, respectively. The FH model is a linear mixed model consisting of

covariates xi, an area-specific random effect ui, and a sampling error ei for each area i ∈ 1, ..., d

θ̂direct
i = xTi β + ui + ei, ui

iid∼ N (0, σ2
u), ei

ind∼ N (0, σ2
ei).

The model assumes that the random effects ui are identically independently normally distributed and the

sampling errors ei are independently normally distributed. Out of this model, the regression parameters

β̂ can be estimated as best linear unbiased estimator of β and the random effect ûi as empirical best linear

unbiased predictor of ui (Rao and Molina, 2015). The variances σ2
ei of the sampling errors are assumed

to be known. In many applications, this assumption is not met and the variances must be approximated.

Since the variances of the sampling errors are not known in our investigation, the next subsection explains

how they are obtained. For the estimation of the variance of the random effect σ2
u, several approaches

are available: The FH method of moments, the maximum Likelihood Method (ML), and the Residual

Maximum Likelihood Method (REML) (Rao and Molina, 2015) among others. For our analysis, we use

the REML method.

Through this combination, we obtain the resulting FH estimator, which is an empirical best linear

unbiased predictor of θi. It is as a weighted combination of the direct estimator θ̂direct
i and the synthetic

estimator xTi β̂ as follows:

θ̂FH
i = xTi β̂ + ûi

= γ̂iθ̂
direct
i + (1− γ̂i)xTi β̂, (3)

where the shrinkage factor γ̂i = σ̂2
u

σ̂2
u+σ2

ei

defines the weights on both parts for each area i. Whenever the

variance of the sampling error is relatively small, more weight lies on the direct estimator. To assess the

accuracy of the FH estimator, its MSE is determined. If the variance of the random effects ui is estimated

with ML or REML methods, following Prasad and Rao (1990) and Datta and Lahiri (2000), an analytical

solution is provided to obtain the MSE of the FH estimator.
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3.2 Back-transformed Fay-Herriot estimates

Since the FH model produces estimates on a continuous range, whereas the unemployment rate is a

percentage, we transform the dependent variable to obtain FH estimators in the desired range. Thus, we

use an inverse sine transformation h(x) = sin−1(
√
x) as in Casas-Cordero et al. (2016), Burgard et al.

(2016), and Schmid et al. (2017). While they all use a naive back-transformation h−1(x) = sin2(x), we

transform the FH estimator back to the original level with consideration to the back-transformation bias.

Burgard et al. (2016) mentioned the methodology for a bias corrected back-transformation. We derive

the back-transformation following Sugasawa and Kubokawa (2017), which introduce the FH model for

general transformations on the dependent variable. In our application, we do not have access to the

variances of the sampling errors at the target level. Therefore, we have to approximate the variances of

the direct estimates. Following Jiang et al. (2001), we get the sampling variances for the inverse sine

transformed direct estimates
(

sin−1

(√
θ̂direct
i

))
using the effective sample size ñi and thus obtain

σ̃2
ei = 1/4ñi. For the model on the transformed scale, we consider the assumptions of the FH model

sin−1

(√
θ̂direct
i

)
= xTi β + ui + ei, ui

iid∼ N (0, σ2
u), ei

ind∼ N (0, σ̃2
ei). (4)

In applications, the model parameters must be estimated. Out of the FH model on transformed scale (4),

β̂ and ûi can be estimated, as described in the previous Subsection 3.1. Replacing the model parameters

with their estimates leads to the FH estimator on the transformed level

θ̂FH∗
i = γ̂i sin−1

(√
θ̂direct
i

)
+ (1− γ̂i)xTi β̂.

However, the goal is to get the FH estimator on the original scale
(
θ̂FH, trans
i

)
. For this reason, θ̂FH∗

i

must be back-transformed. According to the Jensen-inequality (Jensen et al., 1906), a naive back-

transformation
(

sin2
(
θ̂FH∗
i

))
leads to biased results due to the non-linearity of the transformation. To

avoid this bias, the following formula using the known distribution of the FH estimator on the trans-

formed level θ̂FH∗
i ∼ N

(
θ̂FH∗
i ,

σ̂2
uσ̃

2
ei

σ̂2
u+σ̃2

ei

)
is used

θ̂FH, trans
i = E

{
sin2

(
θ̂FH∗
i

)}
=

∫ ∞
−∞

sin2(t)fθ̂FH∗
i

(t)dt (5)

=

∫ ∞
−∞

sin2(t)
1

2π
σ̂2
uσ̃

2
ei

σ̂2
u+σ̃2

ei

exp

−
(
t− θ̂FH∗

i

)2

2
σ̂2
uσ

2
ei

σ̂2
u+σ̃2

ei

 dt,

where θ̂FH, trans
i denotes the transformed FH estimator. To solve this integral, numerical integration tech-

niques are applied. In Section 6, the proposed bias correction for the FH model using the inverse sine

transformation is evaluated.

3.3 Uncertainty estimation

As a measurement of uncertainty for θ̂FH, trans
i , a parametric bootstrap MSE as well as parametric boot-

strap confidence intervals are constructed. When using a FH model without transformations or with a

log transformation, analytical solutions to determine the MSE are known (Prasad and Rao, 1990; Datta

and Lahiri, 2000; Slud and Maiti, 2006). Up to our knowledge, no analytical solution is available in the
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case of an inverse sine transformation. Therefore, bootstrap methods are very promising to estimate the

MSE. Casas-Cordero et al. (2016) construct confidence intervals using a parametric bootstrap procedure,

in which the thresholds of the confidence intervals from the bootstrap are built on the transformed scale

with subsequent naive back-transformation.

In contrast to this methodology, our goal is to estimate confidence intervals and a MSE for FH

estimates from a model using the inverse sine transformation. Another difference is that, instead of the

naive back-transformed FH estimates, the bias corrected back-transformed FH estimates are included

within the bootstrap procedure. Our parametric bootstrap is orientated on the bootstrap procedure of

González-Manteiga et al. (2008). In the following, the steps of the used bootstrap method to construct

both measurements of uncertainty are shown:

1. Out of the model on the transformed scale (4), estimate σ̂2
u and β̂ using the sampled areas. Ap-

proximate the sampling variance of the direct estimator on transformed scale
(

sin−1

(√
θ̂direct
i

))
with σ̃2

ei = 1/4ñi, where ñi denotes the effective sample size (Jiang et al., 2001).

2. For b = 1, ..., B

• Generate area specific random effects u∗i ∼ N (0, σ̂2
u) and sampling errors e∗i ∼ N (0, σ̃2

ei).
• Using the bootstrap sample

sin−1
(√

θ̂direct
i,(b)

)
= xTi β + u∗i + e∗i

to determine the FH estimates on the original scale
(
θ̂FH, trans
i,(b)

)
with (5) to account for the

bias correction.
• For each bootstrap population, calculate the population mean on the original scale:

θtrans
i,(b) = sin2

(
xTi β + u∗i

)
.

3. Predict the MSE and the 95% confidence intervals

MSE(θ̂FH, trans
i ) =

1

B

B∑
b=1

(
θ̂FH, trans
i,(b) − θtrans

i,(b)

)2

CI(θ̂FH, trans
i ) =

[
θ̂FH, trans
i + q0.025

(
θ̂FH, trans
i,(b) − θtrans

i,(b)

)
;

θ̂FH, trans
i + q0.975

(
θ̂FH, trans
i,(b) − θtrans

i,(b)

)]
,

where q0.025 is the 2.5% quantile over the bootstrap replications and q0.975 respectively the 97.5%

quantile.

The methodology presented above to construct uncertainty measurements for the back-transformed FH

estimates is evaluated within a simulation study (cf. Section 6).

4 Alternative unemployment rates including commuters in North Rhine-
Westphalia

In this section, we consider and evaluate the influence of commuting behaviour on traditional and al-

ternative unemployment rates. For this purpose, we use the LFS data from Section 2.2 and the mobile
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network data from Section 2.3. The aim of the application is to illustrate the difference between tradi-

tional and alternative unemployment rates by sex for the FUA sublevel in NRW, and thus demonstrating

the influence of commuting behaviour on the rates.

4.1 Difference between traditional and alternative unemployment rates

The traditional definition of unemployment rates, as defined in (1), corresponds to the proportion of un-

employed persons at the place of residence. As Grözinger (2018) remarks this definition may lead to

contradictory results. While the city centres are the job engines, unemployment hotspots are often also

located in the city centres. How does this contradiction arise? One reason is the non-inclusion of the

increasing commuting behaviour of the working population. The traditional definition of unemployment

rates leads to an overestimation of these rates in the city cores and an underestimation in the surrounding

travel-to-work areas. This regional distinction is represented at the FUA sublevel that is defined by the

commuter behaviour of the employed persons working in the city centres. Is it thus appropriate to cal-

culate the unemployment rates only based on the place of residence, which shows higher unemployment

rates in the cities? A possible alternative is to count the working population at their workplaces as in

(2). It is assumed that unemployment rates will increase in the commuter zones and decrease - due to

the definition of the FUA sublevel - in the city centres. To verify this, we focus on calculating the differ-

ence between the traditional and alternative estimated unemployment rates, which can be determined as

follows

θ̂∆,i = θ̂FH,trans
UR1,i

− θ̂FH,trans
UR2,i

. (6)

θ̂FH,trans
UR1,i

is the transformed FH estimate for the traditional unemployment rate and θ̂FH,trans
UR2,i

for the alterna-

tive unemployment rate. The estimator θ̂∆,i is thus composed of two parts. In order to determine MSEs

and confidence intervals for θ̂∆,i out of the MSEs and confidence intervals of both unemployment rates,

we estimate conservatively. This means that we do not include the covariances and thus overestimate

the MSE of θ̂∆,i. To construct the confidence intervals, we use the Mover method (Dormer and Zou,

2002; Newcombe, 2011). The Mover method assumes independence of both FH estimates and thus the

covariance is also not taken into account.

4.2 Model selection and validation

In order to calculate the difference between the two unemployment rates, first suitable models are created.

For both sexes one model each is needed to obtain θ̂FH,trans
UR1,i

as well as one for θ̂FH,trans
UR2,i

. Thus we have to

build four different models. For this purpose, a model selection is performed. Therefore, the Bayesian

information criterion on a simple linear regression model on inverse sine transformed dependent variables

is constructed following Schmid et al. (2017). As dependent variable, we use the direct estimates out of

the LFS. By applying an automatic stepwise and backward selection procedure, we obtain the selected

models. Note that there are also corrected information criteria for FH models like the corrected Akaike

information criterion from Marhuenda et al. (2014). Since such criteria are not implemented within the

stepwise procedure in R (R Core Team, 2019) we use the simple information criteria. In total, 6 to 16

of 27 potential mobile network covariates are selected depending on the model. Four models are needed

to estimate unemployment rates by place of residence and place of work for each sex. To investigate

the explanatory power of the models, we use the modified R2 from Lahiri and Suntornchost (2015) and

obtain values of at least 57% as shown in Table 2. Furthermore, we check whether meaningful results are
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obtained for estimating the variance of the random effects using REML estimation. As Table 2 shows,

values above 0 were estimated in all cases. Thus, the potential problem of negatively estimated variances

does not occur in our models. For each FH model on the transformed scale (cf. (4)), the assumptions on

the error terms are checked. The normality assumptions of the random effects as well as of the residuals

are tested. The p-values of the Shapiro-Wilk test in Table 2 confirm that in all cases the normality

assumption for both error terms cannot be rejected.

Table 2: Measurements to validate the FH models for the two unemployment rates (UR1 and UR2) for
both sexes. This table shows the estimated variance of the random effects (σ̂2

u), the Shapiro-Wilks (S.-
W.) p-value for the random effects (ran. effects) as well as for the standardized residuals (stand. res.)
and the modified R2.

Men Women
UR1 UR2 UR1 UR2

σ̂2
u 0.000320 0.000361 0.000716 0.000880

S.-W. p-value: ran. effects 0.695112 0.549476 0.861257 0.901708
S.-W. p-value: stand. res. 0.308668 0.495064 0.809323 0.866098
modified R2 0.772521 0.908642 0.632059 0.575550

All four models contain meaningful covariates. Since the models are built on the transformed scale

(cf. (4)), the exact values of the coefficients cannot be interpreted. The chosen covariates reflect most

likely relationships between working and non-working hours and the changes in mobile activities due

to commuting during the day and evening. The latter is represented less strongly in the females model.

An increase of covariates with regard to possible commuter movements generally lead to a decrease of

unemployment rates with focal point place of work. The reverse is the case for unemployment rates with

focal point place of residence. All models also include changes from night to day activities of other

nationalities, most likely tourists, which have a positive impact on regional employment. As expected,

negative values have been observed for these coefficients. Furthermore, all available covariates were

included in one of the four models.

4.3 Gain in accuracy

As the LFS is designed to estimate indicators at higher regional levels, we use the SAE methodology for

estimating at the FUA sublevel. To assess the gain in the reliability of the estimators, we first compare the

coefficients of variation. Part (a) of Figure 1 visualises this measurement for the different methods and

definitions of unemployment rates. Eurostat considers estimators with a CV below 20% to be reliable

(Eurostat, 2019a). If we use direct estimation 53.7% (men, place of residence), 29.3% (women, place

of residence), 53.7% (men, place of work), and 31.7% (women, place of work) of the CVs are below

20%. The use of the transformed FH model achieves a distinct increase of CVs below this threshold.

As a result, 85.4% (men, place of residence), 73.2% (women, place of residence), 82.9% (men, place of

work), and 78.0% (women, place of work) of the CVs are below 20%. This illustrates that the use of

dynamic mobile network data within a small area setting is a powerful tool to heighten the accuracy of

the estimated unemployment rates for NRW on FUA sublevel. Another way to assess the accuracy of the

estimators is to compare the distribution of the confidence interval lengths in Figure 1 (b). It can be seen

that the confidence interval lengths are reduced by applying the transformed FH model compared to the

direct estimation. These lengths decrease for all areas. In median, they reduce around 37% for men and

35% for women. This result confirms the necessity for the application of SAE methods.
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Figure 1: Reduction of the uncertainty by using the transformed FH model instead of the direct estima-
tion: Coefficient of variation (a) and confidence interval lengths (b) for estimating unemployment rates
in NRW.
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Figure 2: Confidence intervals for the difference of both definitions of the unemployment rate for men
(a) and women (b) in NRW.
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Figure 2 illustrates the estimates for the difference of both unemployment rates in the FUA sublevels

of NRW ordered by increasing sample size. In addition to the differences of the estimates from the trans-

formed FH model, the calculated differences of the direct estimates are shown. In most cases, the direct

estimates and the FH estimates are really close to each other. However, in particular for regions with

smaller samples sizes like Witten and Paderborn, these values can deviate more clearly from each other.

For a spatial assignment of city names to corresponding FUA city cores, see Figure 7 in the appendix.

Due to the higher uncertainty of the direct estimates for regions with lower sample sizes, the synthetic

part within (3) is weighted more highly and bigger differences to the direct estimator appear. However,

we are interested, whether both definitions of unemployment rates lead to significant different results in

NRW. Figure 2 shows, that both unemployment rates are different for some areas. For the males model,

we get significant negative differences of both unemployment rates for the commuter zone belonging to

Bonn, Duisburg, and Paderborn as well as for the city core Recklinghausen. These areas are commuter

zones that belong to large cities in NRW or, as in the case of Recklinghausen, a smaller city that is close

to large cities (Dortmund and Essen). This means that these areas are the place of residence of many em-

ployed people who commute from those areas to their workplace. Consequently, the unemployment rates

with focal point workplace for the abovementioned areas are higher than the traditional ones. In the op-

posite direction, we obtain significantly positive values for the cities of Cologne, Düsseldorf, Paderborn,

and Siegen. Concerning the females model, we get only two positive significantly estimated differences

between the two unemployment rates. This is the case for Düsseldorf and Paderborn, as in the males

model, which means that unemployment rates with a focal point workplace are lower than the traditional

ones. These areas are city centres and the place of work of many employed women who commute from

the surrounding commuter areas to the two city centres. Further comparing the confidence interval plots

for men and women, the differences between men’s unemployment rates are more significant, which is

related to the more pronounced commuting behaviour of men.

4.4 Discussion of the estimated unemployment rates for NRW

Figure 3 illustrates the calculated differences of the unemployment rate, as defined in (6). If the unem-

ployment rates by the place of residence are the same as by the place of work, the commuter behaviour

has no influence on unemployment rates. The calculated difference would be zero. Please note, that

the FUA sublevels do not cover the entire federal territory in NRW and are represented as white areas

in Figure 3. The bluish areas indicate that the unemployment rate by place of work is higher than the

unemployment rate by place of residence. Those are mainly the commuter zones of the FUAs in both

models. Blue coloration means that the commuter flow is directed out of this area. The reddish areas,

however, imply that the unemployment rate by place of work is lower than the unemployment rate by

place of residence. This is mainly the case for the city cores of the FUAs in both models. These results

indicate that the alternative unemployment rate in city cores would be generally lower than calculated

based on traditional unemployment rates. This in turn implies that many employed people living the

surrounding travel-to-work areas, their place of residence, commute into the city centres to work. In the

males model, the differences are higher than in the females model, which leads to the assumption that

women are not commuting as often or as far as men, just as shown in Landesbetrieb Information und

Technik Nordrhein-Westfalen (2019). Possible reasons for this could be the conservative role model of

women a spatial closeness to the family that is guaranteed by the woman (to the school/kindergarten of

the children, etc.) or, for example, a work in small, nearby companies/enterprises (Bauer-Hailer, 2019).
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Figure 3: Difference of unemployment rates due to including commuters for men (a) and women (b).
The spatial assignment of city names to the FUA sublevels is shown in Figure 7.
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5 Validity of the proposed method

In the following, we evaluate the methodology used in the Section 4 to estimate unemployment rates at

the FUA sublevel based on official data. For Germany, the database Urban Audit provided by Eurostat

in cooperation with the Federal Statistical Office of Germany and Kommunales Statistisches Informa-

tionssystem (KOSIS) is the only source for German unemployment rates at the FUA level (KOSIS-

Gemeinschaft Urban Audit, 2013; Eurostat, 2017; Eurostat, 2019c). This official data source provides

traditional unemployment rates, but no alternative unemployment rates for all German FUAs. The Urban

Audit thus enables a comparison of traditional unemployment rates estimated by using the transformed

FH estimator with mobile network data as auxiliary information with the officially published values. As

mentioned in Subsection 2.1, we have used the 15-64 age range for the definitions of unemployment

rates to ensure comparability with the Urban Audit. Please note, the comparison in this section is made

on the entire FUA level and not on the FUA sublevel as in the application in Section 4.

For the German federal state NRW, we have an extensive mobile network data record available as

auxiliary information. However, for the whole of Germany, we have only limited access to mobile

network data and accordingly a data set with less information. Thus, less covariates are available for

the validation. In contrast to Section 4, where we use dynamic signalling data, we only have static

mobile network activities of a typical Sunday evening for the whole of Germany. We focus on the

time period from 8 to 11 pm of the average of eight Sundays of the months April, June, and July in 2018

without school or public holidays. For the Sunday evening, it is useful that a high correlation between the

population figures from the 2011 census and the mobile network activities on the weekend and especially

on Sunday evening (Hadam, 2018) was identified. As traditional unemployment rates are based on the

place of residence, it is reasonable to assume that mobile network data of a Sunday evening is suitable

as auxiliary variables.

In the following, we validate the proposed transformed FH model by comparing the FH estimates

with official unemployment rates of the Urban Audit. Since the Urban Audit does not provide alternative

unemployment rates and unemployment rates for the commuter zones, we can validate only traditional

unemployment rates for the entire FUA. Therefore, we use the SAE method as applied in Section 4 with

the difference that a) the regional focus is now the whole of Germany and b) we can only use mobile

network data from Sunday evening. Thus, we have built two models at the German level: One for

women and one for men. Again, we followed the same model selection procedure as in Section 4.2. In

the males model, the selected mobile network covariates explain around 47% of the variance in terms

of the modified R2 following Lahiri and Suntornchost (2015) and in the females model around 37%.

Normality assumptions concerning the random effect and the sampling errors have been checked.

For the validation of the proposed method, Figure 4 shows the estimated unemployment rates using

mobile network covariates (FH Trans), the direct estimates, and the official published ones from Urban

Audit by sex. First, it can be seen that we get similar rates compared to the Urban Audit by using the

transformed FH model. If we compare the direct estimator from the LFS with the FH Trans estimator,

it is noticeable that in most cases the FH Trans estimator corrects the direct estimator in such a way

that the resulting value is closer to the Urban Audit. This trend is quantified in Table 3. It reports

the distribution of the absolute bias of the females and males unemployment rates obtained by the two

estimation methods for all FUAs in Germany compared to the Urban Audit. In particular, for almost

all distribution values we get a higher absolute bias for the direct estimator compared to the FH Trans

estimator. Only in the males model the 25% quantile for the absolute bias is slightly higher for the
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Figure 4: Comparison of traditional unemployment rates (UR1) published in Urban Audit (black), esti-
mated with the transformed FH model (dark blue) and the direct estimates from the LFS (light blue) for
men (a) and women (b) for all German FUAs.

Table 3: Distribution of the absolute bias of the females and males traditional unemployment rates over
all German FUAs and in particular over FUAs with small sample sizes below 600.

Areas Sex Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.
all Female Direct 0.017 0.246 0.459 0.638 0.800 5.078

FH Trans 0.005 0.173 0.415 0.512 0.748 1.959
Male Direct 0.009 0.202 0.625 0.713 0.998 2.440

FH Trans 0.008 0.221 0.428 0.573 0.824 1.690

sample size < 600 Female Direct 0.030 0.416 0.628 0.930 1.120 5.078
FH Trans 0.015 0.281 0.516 0.627 0.896 1.959

Male Direct 0.068 0.697 1.095 1.129 1.764 2.073
FH Trans 0.038 0.373 0.676 0.704 1.027 1.690

17



●

●

●●
●

●

●●

●

●

●
●

●

●

●

Men Women

Direct FH Trans Direct FH Trans

5

10

15

 

C
on

fid
en

ce
 in

te
rv

al
 le

ng
th

s 
[%

]

(a)

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

Men Women

Direct FH Trans Direct FH Trans
0

25

50

75

100

 

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

(b)

Figure 5: Reduction of the uncertainty by using the transformed FH model instead of direct estimation:
Confidence interval lengths (a) and Coefficient of variation (b) for estimating unemployment rates in
Germany.

FH Trans estimator. As expected, it can be noted that for FUAs with sample size under 600 estimated

unemployment rates of both estimation methods show higher values for the absolute bias.

After examining the deviation of the direct estimator and the FH Trans estimator from the Urban

Audit, the aim is now to assess the uncertainty of these estimators. Hence, we compare the accuracy

of the direct and the FH Trans estimator. As measurements of uncertainty, we are interested in the

confidence interval lengths and the CVs. Figure 5 (a) shows the distribution of the confidence interval

lengths of the FH Trans estimates and the direct estimates for the females and the males model. It can be

seen that the confidence intervals for the FH Trans estimator are much smaller than those for the direct

estimator. On average, reductions of 31.1% (males model) and 30.3% (females model) are achieved in

both models. Using the FH Trans estimator also achieves lower CVs (cf. Figure 5 (b)). Therefore, much

more CVs fall below the threshold of 20% for reliable estimates according to Eurostat (2019a). For both

models, female and male, more than twice as many CVs are below this limit if SAE methods are applied

in contrast to the use of direct estimation. The reduction of uncertainty is one strong argument for using

the transformed FH model for the prediction. Mobile network data has a great potential as auxiliary data

in this context. In contrast to the direct estimation, the transformed FH model with mobile network data

leads to estimators, which are closer to those of the Urban Audit. Overall, this subsection shows that the

use of SAE techniques using mobile network data improves the estimation of unemployment rates from

the LFS.

6 Model-based simulation

In Section 4, we use the proposed transformed FH model to estimate alternative unemployment rates

taking commuters into account. We evaluated the suggested methodology in a similar environment

where official data (Urban Audit) is available. According to the Jensen-inequality (cf. Subsection 3.2),

the naive back-transformation is biased under the inverse sine transformation. The aim of our model-

based simulation study is to investigate how much we benefit from the more complicated transformed

FH model with a bias corrected back-transformation compared to the naive back-transformation for the
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conducted analyses. Furthermore, we want to show, that the proposed MSE and confidence intervals

for the estimates lead to reasonable results. We investigate these aims in a close to reality environment.

Therefore, the input values of the model-based setting are based on the real data.

The simulation study is implemented withR = 1 000 Monte-Carlo replications. Within each replica-

tion, we generate the covariates (xi) initially from a lognormal distribution with parameters (−0.5, 0.04).

The number of areas is fixed to d = 208 which correspond to the number of the FUA sublevels in Ger-

many. We draw the random effect and the sampling errors from normal distributions: ui ∼ N (0, σ2
u)

and ei ∼ N (0, σ2
ei). According to the males model for the German FUA sublevel (cf. Section 5),

σu = 0.02896193 is defined analogously. In addition, we adopt the sampling errors σ2
ei and keep them

constant over the replications. Table 4 shows the distribution of the sampling errors and the resulting

values for the shrinkage factor. The regression coefficients are set to β0 = 0.01 and β1 = 0.35. As data

generating process, we consider Θ̂direct
i = sin2

(
β0 + xTi β1 + ui + ei

)
to get synthetic direct estimates.

The true small area means are ȳi = sin2
(
β0 + xTi β1 + ui

)
. Table 4 reports information about the dis-

tribution of the direct estimates for the simulation (over all replications) and the actual direct estimated

unemployment rates for males in Germany. The distributions are close to each other.

Table 4: Distribution of relevant parameters in the simulation setting: The sampling error σei and the
resulting shrinkage factor γi are taken from the underlying FUA sublevel data. The direct estimates(

Θ̂direct
i

)
of the simulation study are close to the values from the FUA sublevel.

Min. 1st Qu. Median Mean 3rd Qu. Max.
σei 0.0063 0.0202 0.0275 0.0288 0.0366 0.0785
γi 0.1199 0.3848 0.5265 0.5355 0.6730 0.9548

Θ̂direct
i sim. 0.0000 0.0340 0.0495 0.0538 0.0688 0.2826

FUAs 0.0054 0.0328 0.0484 0.0508 0.0647 0.1134

For each replication, we compute both estimated small area means from the transformed FH model:

With respect to the back-transformation bias
(

Θ̂FH,trans
i , cf. (5)

)
and with naive back-transformation(

Θ̂FH,naive
i

)
. To assess the quality of the estimates we obtained over r = 1, ..., 1 000 Monte Carlo

replications the absolute Bias (aB) and the Root Mean Squared Error (RMSE) of the estimates, defined

as

aBi =

∣∣∣∣∣ 1

R

R∑
r=1

(
Θ̂

FH,(r)
i − ȳ(r)

i

)∣∣∣∣∣ ∗ 100 and RMSEi =

√√√√ 1

R

R∑
r=1

(
Θ̂

FH,(r)
i − ȳ(r)

i

)2
∗ 100,

where Θ̂
FH,(r)
i is the estimated respective FH value and ȳ(r)

i the true value. Figure 6 shows the reduction

of aB. For instance, the median aB using a naive back-transformation is 1.86 times higher than the

median aB under a transformed FH model with a bias corrected back-transformation. At the same time,

we observe nearly the same RMSE when we use a bias corrected back-transformation instead of a naive

back-transformation. Nevertheless, there is a small difference in the RMSE: For the bias corrected back-

transformed estimator, the RMSEs are in median 0.07% higher.

We next investigate the properties of the proposed MSE and the confidence intervals. For calculating

these uncertainty measurements, we use 1 000 bootstrap replications within each Monte Carlo run. As

quality measurements, we use the relative bias of the RMSE (rB RMSE) and the relative RMSE of the
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Table 5: Distribution of the quality measurements for the estimated RMSE and the corresponding confi-
dence intervals using the bootstrap procedure as described in Subsection 3.3

Min. 1st Qu. Median Mean 3rd Qu. Max.
rB −9.34 −2.12 −0.62 −0.55 1.11 7.13
rRMSE 17.04 18.03 18.53 18.74 18.99 44.97
Coverage 86.70 93.90 94.40 94.34 94.90 96.00

RMSE (rRMSE RMSE). They are defined as

rB RMSEi =

(
1
R

∑R
r=1 RMSE(r)

est,i − RMSEtrue,i

RMSEtrue,i

)
∗ 100

and rRMSE RMSEi =

√√√√( 1
R

∑R
r=1 RMSE(r)

est,i − RMSEtrue,i

)2

RMSEtrue,i
∗ 100,

where RMSE(r)
est,i is the estimated root MSE out of the bootstrap procedure (cf. Subsection 3.3) for each

Monte Carlo replication r and RMSEtrue,i is the empirical root RMSE over the Monte Carlo replications.

The relative bias is close to zero as Table 5 shows. On average, we get an underestimation of 0.55%

over all areas. The interquantile range goes from −2.12% to 1.11%. In addition to the relative bias,

the relative RMSE of the estimated RMSE is important to assess its quality. We get a mean relative

RMSE of 18.74% for the estimated RMSE. The low bias and the RMSE show that the proposed MSE

estimator yields good results. In addition to the MSE, we can also get bootstrap confidence intervals

(cf. Subsection 3.3). The coverage is defined as the proportion of the time that the estimated confidence

interval contains the true value. For the proposed confidence intervals, we get in mean a coverage of

94.34%. We can recognize a slight underestimation of the coverage, but the values are close to the target

value of 95%.

Overall, our simulation study shows advantages for the bias of the transformed FH estimator with bias

corrected back-transformation over a naive back-transformation for the used setup, which was adopted

to the underlying real data. We can also show a good performance of the newly proposed MSE estimator

for the FH estimator with bias corrected back-transformation and the confidence intervals.
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7 Concluding remarks

The traditional unemployment rate is based on the place of residence of the labour force by using data

from the LFS. Due to the high level of commuting, however, the picture is reversed and gives a dis-

torted impression of the regional labour market. For Germany, traditional unemployment rates show

higher rates in cities compared to its surroundings. For analysing unemployment rates in the context of

commuter behaviour, the regional target area are city cores and their commuting zones, which can be

extracted from FUAs. In this work, we estimate an alternative unemployment rate, where the focal point

of the labour force is their workplace and adjust this by including commuters in the calculation. Since

the LFS is not designed to produce indicators on smaller areas than NUTS 2-level, a FH approach is used

to estimate alternative and traditional unemployment rates on the FUA sublevel. From a methodological

point of view we use a bias corrected back-transformed FH estimator and propose a MSE estimator to

measure its uncertainty. As the FH approach relies on a model-based method, suitable covariates are

required. Therefore, we select covariates constructed from dynamic mobile network data and validate

the selected models. The benefit of dynamic mobile network data is that they can represent the changes

of the counted aggregated mobile devices during the day and in space. This information can be used

to derive the commuting behaviour of the population. The resulting differences between the traditional

and the alternative unemployment rates show that the rates in city cores are mainly lower than officially

indicated. Therefore, the assumption that the unemployment rate in cities is lower can be confirmed

and thus contributes to the explanation why so many people move to cities due to more job opportuni-

ties. Furthermore, the alternative definition of the unemployment rate removes the static picture of the

population, especially of the labour force. The labour force does not necessarily live in the same place

where they work. This dynamic cannot be achieved with traditional survey methods and with traditional

data. However, exactly this knowledge is necessary to make better decisions regarding urban planning.

Moreover, these rates provides potential employers with additional information about the current re-

gional labour market and on missing workplaces in regional areas. Thus, it can be identified for which

regions it might be useful to promote the settlement of companies in order to lower their unemployment

rate and shorten the commute, as new details of potentially available local workforce are available. The

increasing number of commuters should therefore be taken into account in official statistics in the future.

Although the application in this paper refers to NRW, the model is also applicable to countries that

perform the LFS and have implemented an FUA structure, thus this analysis is transferable to at least

all European countries. In Germany, we are facing some limitations in mobile network data. We do not

have access to individual signalling data or Call Detail Records. That means there is no chance to use

individual activity movements for the estimation or even to take changes in individual social behaviour

into account. For instance, Toole et al. (2015) have shown that unemployed persons have different

mobile phone usage profiles than employed ones. This information may increase the explanatory power

in estimating the unemployment rate compared to the used distribution of mobile activities over time.

For further research, it is of interest to which extend the same differences in unemployment rates

also apply to other countries or whether it is a national phenomenon. Furthermore, a SAE approach with

mobile network data and additional data sources should be considered. Satellite data for example might

include valuable information of building intensities and heights of buildings to differentiate between

socially impoverished people, who live in socially weak urban districts, and wealthy people, who are

living more likely in less densely populated areas. For instance, Steele et al. (2017) use a combination

of satellite and mobile network data to obtain more explanatory power.
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Appendix

Table 6 describes the mobile network covariates used in the paper. Only aggregated signals of mobile

devices originating from the mobile network of Deutsche Telekom for the years 2017 and 2018 are

used. Since no individual data are available, further covariates are created from the aggregated mobile

activities, based on mobile network data on the basis of aggregates of a statistical week. The variables

are categorized according to the absolute values delivered by T-System and according to additionally

calculated covariates. As we also have information on Customer Relationship Management (CRM) data

from the billing system in addition to the number of mobile activities, we can therefore distinguish

between women (F) and men (M), age group (20-29; 30-39; 40-49; 50-59; 60-69; 70-79 years) and

nationality of the SIM card owner.

Table 6: Mobile network covariates.

Name Covariate Description
Based on absolute activities
count a g absolute activities (age,

sex)

The absolute numbers of activities by age group

(a) and sex (g).

share a share activities age group The proportion of age group (a)

share a Sunday evening share activities age group

Sunday evening

The proportion of age group (a) on a Sunday

evening

share g Sunday evening share activities sex Sun-

day evening

The proportion of sex (g) on a Sunday evening

share n share activities nationality

SIM card (n)

The proportion of the nationality of SIM card

owner (n).

share n night share activities nationality

SIM card (n) night-time

The proportion of the nationality of SIM card

owner (n) at the night-time (5 to 11 pm).

share n day share activities nationality

SIM card (n) day-time

The proportion of the nationality of SIM card

owner (n) at the day-time (7 am to 4 pm).

Additionally calculated covariate
ratio morning day ratio activities morning

day-time

The ratio of mobile activities between 12 pm to

6 am (morning time) over mobile activities be-

tween 7 am to 4 pm (day-time).

ratio day evening ratio activities day-time

evening

The ratio of mobile activities between 7 am to 4

pm (day-time) over mobile activities between 5

to 11 pm (night-time).

ratio early peak ratio activities early peak The ratio of mobile activities between 3 to 5 am

(early peak) over mobile activities between 9 to

11 am, which is the peak of the middle of the day.
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ratio late peak ratio activities late peak The ratio of mobile activities between 9 to 11 am

over mobile activities between 8 to 10 pm, which

is the late peak.

ratio home ratio activities home The ratio of mobile activities between 5 pm to 5

am, where the persons are more likely to stay at

home, over all mobile activities.

ratio work ratio activities work The ratio of mobile activities between 6 am to 4

pm, which are typical working hours in Germany,

over all mobile activities.

change work to home change activities work to

home

The change of mobile activities of working hours

to hours spent at home.

change home to work change of The change of mobile activities of hours spent at

home to working hours.

change commuter change activities com-

muter

The change of mobile activities of potential com-

muters between 10 am and 4 pm.

change top work home change activities peak

work to home

The change of mobile activities of the peaks

value of working hours at 10 am to hours spent

at home at 9 pm.

change n night day change activities country

night to day

The change of mobile activities by nationality of

SIM card owner (n) by night- and day-time.
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Figure 7: Assignment of city names to FUA city centres.
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