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Limit cycles of a predator-prey model with
intratrophic predation.

Joe M. Hill,Noel G. Lloyd,Jane M. Pearson *

Institute of Mathematics and Physics, Aberystwyth University, Penglais,
Aberystwyth, Ceredigion UK SY23 38BZ

Abstract

We present some properties of a differential system that can be used to model
intratrophic predation in simple predator-prey models. In particular, for the model
we determine the maximum number of limit cycles that can exist around the only
fine focus in the first quadrant and show that this critical point cannot be a centre.

Key words: mnonlinear differential equations, limit cycles

1 Introduction

In this paper we show how a planar dynamical system that is of mathematical
interest to us can be used to model certain ecological relationships involving
intratrophic predation. In modelling the dynamics of biological populations in
ecosystems that involve large numbers of species it is seldom feasible to con-
sider individual species [1]. Often aggregates of species are considered leading
to simplified, but tractable, models. The simplest predator-prey systems in-
volve two variables, representing the predator and the prey, and give rise to
planar dynamical systems

= P(z,y), 9=Q(y) (1)

The dependent variables could be biomass or just the size of the populations
and for convenience we always refer to the independent variable as time. The
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models describe the interaction of two trophic levels - for instance plants eaten
by animals or one group of animals eaten by another higher up the food chain.

There may be intratrophic predation within one of the populations - mem-
bers of one trophic group consuming members of the same group or even
cannibalism within a species. Cushing [2] investigated the role of cannibalism
using a discrete age-structured model of the adult and juvenile populations.
Age-structured models with the inclusion of a prey in addition to the juvenile
predators result in systems with three variables, see for example [3], as do
models which use a separate variable for the total food resource [4].

It is possible to include intratrophic predation in two variable models with-
out age-structure by representing the food available as a weighted sum of
the prey and predator populations. In [5] Kohlmeier and Ebenhéh extend a
cannibalistic model to cover intratrophic predation, which is applicable where
the biological units are not individual species but aggregates of species within
which predatory links are significant. The differential system they consider is

jj:x(ﬁ_gx_ay), y:y(a’(w+ny)—any_5>7 @

T+ T+
L+ 55" L+ 55

where all parameters except 1 are positive, n > 0 and o/ < «. They explain
some unexpected observations in a large ecosystem model [6] by demonstrating
that intratrophic predation by the predator not only stabilizes the system and
increases the prey population, but also increases the predator population in
some situations. Pitchford and Brindley [7] present a technique for incorporat-
ing intratrophic predation into two variable predator-prey models in general
and demonstrate their approach by reference to (2).

We will show that (2) can be transformed to a system of the form

T=\r +y+ kzy,
U=—2 4+ \y + a12> + asxy + asy® + aux® + asx’y + agry® + ary’, (3)

where a;, k, A € R. When A = 0 this system is derived from a second order
scalar equation and it has an invariant line, kz = —1. System (3) with £ =0
(known as the Kukles system) has been studied extensively, see for example
8], [9] and [10]. The behaviour of (3) when k # 0 is explored in some detail
in [11].

Critical points are significant features of models represented by (1) as the
populations are in equilibrium at such points. For completeness we recall that
a critical point satisfies P = Q = 0 and its type is determined as follows. Let
A = P,Q, — P,Q., ¥ = P, +Q, and p = ¥* — 4A, where subscripts denote
partial differentiation. These quantities are evaluated at the critical point. The



critical point is degenerate if A = 0. It is a saddle point if A < 0, a node if
A >0and p >0, and a focus if A > 0,p < 0 and ¥ # 0. A node or focus is
linearly stable if ¥ < 0.

A critical point is a centre if all orbits in its neighbourhood are closed, whereas
a limit cycle is an isolated closed orbit. If a non-degenerate critical point is
a centre then certainly ¥ = 0 (and A > 0 necessarily), but this is far from
sufficient. If ¥ = 0 and the critical point is not a centre, it is said to be a fine
focus. We shall say that a critical point is of focus type if it is a focus, a fine
focus or a centre.

In both [5] and [7] the effect of changes in the parameter values on the position
and linear stability of critical points that are nodes for (2) is considered. We
extend the analysis to cover the stability of critical points that are fine foci;
this requires consideration of the nonlinear terms in the differential equations
representing the model. Deriving the conditions under which a critical point
is a centre is a significant, and often difficult, problem which has attracted
much attention and is the question that stimulates much of the interest in the
Kukles system (to which we refer above). The centre conditions are required
in order to investigate the bifurcation of limit cycles from a critical point and
in the discussion of stability. In terms of the model the existence of centres
and limit cycles can lead to multiple steady states.

In section 2 we outline the background to the techniques we will use in the
analysis of system (2) and in section 3 we give details of the derivation of
the system of equations (2). Sections 4 and 5 contain our analysis of the
transformed system and the results in relation to the model. We show that at
most one critical point of focus type can exist in the first quadrant: for the
model this point cannot be a centre but it can be a fine focus surrounded by
at most two limit cycles. Our conclusions are contained in section 6.

2 Mathematical background

Suppose that P and () are analytic and suppose, without loss of generality,
that the origin is a critical point. If the critical point at the origin is non-
degenerate and of focus type then there are coordinates in terms of which the
system takes the form

where pg, ¢, are homogeneous polynomials of degree k. The degree of system
(4) is that of the highest degree monomial present. If the origin is a centre
then A = 0 and there is an analytic first integral; the system is then sometimes
described as being integrable.



We obtain the necessary conditions for the critical point at the origin to be a
centre by calculating the focal values, which are polynomials in the coefficients
arising in P and @. There is a function V| analytic in a neighbourhood of the
origin, such that its rate of change along orbits, V, is of the form o1+ pugr* +
..., where 72 = 22 4+ y? and the jy, are the focal values. Further details can be
found in [12], for example. The stability of the critical point is determined by
the sign of the first non-zero focal value.

For a given system there are infinitely many focal values, all of which must
be zero for the origin to be a centre. By the Hilbert Basis Theorem the set
of focal values has a finite basis, but the number of focal values making up
this basis is not known a priori. We use the computer algebra procedure
FINDETA [13] to calculate the first few focal values. Each of these is then
expressed modulo the ideal generated by the previous ones; that is the relations
Mo = iy = ... = o, = 0 are used to eliminate some of the variables in fig .
The reduced focal value pigg1 o, with strictly positive factors removed, is known
as the Liapunov quantity L(k). The circumstances under which the calculated
L(k) are zero simultaneously yield necessary centre conditions; the sufficiency
of these conditions is proved independently. The origin is a fine focus of order
kif L(i) =0fori=0,1,...,k—1 and L(k) # 0. At most k small amplitude
limit cycles can bifurcate out of a fine focus of order k and the sign of the first
non-zero L(k) determines the stability of the origin. We note that for system
(4), L(0) = A.

Various methods are used to prove the sufficiency of the centre conditions; in
this paper we need only one of them, that is a search for an integrating factor.
If the origin is of focus type then it is a centre if there is a function D such

that p 5
B (DP) + @ (DQ) =0

in a neighbourhood of the origin. Such a function is called an integrating factor
or Dulac function. We make a systematic search for an integrating factor of
the form D =[], Ci", where each C; = 0 is an invariant algebraic curve. In
this context, a function C'is invariant with respect to system (4) if C' = CL,
where L is a polynomial whose degree is at most one less than the degree of the
system. The «; and the coefficients in the C; are functions of the coefficients
in P, (. The INVAR suite of programs which we use as an aid in the search
for Dulac functions is described in [14].

3 A predator-prey system

We summarise the derivation of system (2) given by Pitchford and Brindley
in [7]. Let x > 0 represent the prey and y > 0 the predator. The hypotheses



of the model are as follows:

(1) The specific grazing rate for y is g(X), an increasing function of the food
available (X)) to the predators, which is zero when no food is available.

(2) The specific rate of higher predation (‘external mortality’) on y is yh(y),
where h is a positive, increasing (or constant) function of y.

(3) In the absence of y, the prey growth rate, A(z), is of a general logistic
form. This may be interpreted as incorporating some form of environ-
mental carrying capacity ( = Zpq,) into the model.

(4) The trivial equilibrium (4., 0) must be unstable, so that prey and
predator can coexist. This condition is satisfied if g(zmqz) — 2(0) > 0.

The model differs from a standard predator-prey model in that the food avail-
able to the predator is a linear combination of both the prey and predator
densities, that is

X=x+ny, 0<n<L

Thus 7 measures the amount of intratrophic predation in the predator popu-
lation; n = 1 corresponds to the predator grazing indiscriminately on predator
and prey alike. It is supposed that the effect of intratrophic predation is small,
so that n < 1.

The ordinary differential equation representation of the population dynamics
is derived as follows:

& = (growth rate of x) — (grazing rate of y on z)
T
=A(z) = ——=yg(z +ny),
) (z +ny) ( )

y = y(total grazing rate of y) — (external mortality rate)
—(loss rate due to intratrophic predation)

=yyg(x +ny) — vyh(y) — n(y)yg@i +ny)

r+ny

— S y —_
=yg(z +ny) (7 U ny)> Yyh(y).

The condition v < 1 is imposed so that ~ is a measure of the inefficiency of
conversion of food into predator reproduction. As we require x > 0,y > 0, the
behaviour of the system in the first quadrant is relevant.

Pitchford and Brindley use system (2) to illustrate their approach. Let A(z) =
z(B —ex), g(X) = 2%, h(y) = 2 and v = o where X = z 4 7y, then the

14227 a

Pitchford and Brindley model becomes (2).



System (2) is non-dimensionalised in [5] with time in units of %, x in units of

H and y in units of %IH to give:

A S /A U DO /)
x_x<1 (1+$+ny)>’ y_y<§(1+w+m/) 5)’ ®)

where € represents the logistic growth limitation of prey x, £ predation inten-
sity, 0 mortality of predator y, x uptake effect due to intratrophic predation
and 7 is the intratrophic predation parameter. Again all parameters are posi-
tive, except 7, which is non-negative. Assumption 4 is satisfied if 1%6 —0>0.

Kohlmeier and Ebenhoh [5] studied (5) numerically and observed that intra-
trophic predation has a stabilizing effect: for specific parameter values the
model exhibits a limit cycle when 1 = 0, but making 7 > 0 destroys the limit
cycle. In this paper we show analytically that, when n = 0, the system can
have no more than one bifurcating limit cycle (and hence an oscillatory stable
state) surrounding the only critical point of focus type in the first quadrant. In
contrast, under the conditions for which this limit cycle exists, but with > 0,
there are no bifurcating limit cycles surrounding the critical point. Moreover
we determine the conditions under which the model, with n > 0, can have up
to two bifurcating limit cycles.

4 Analysis of the system

Consider the possible critical points (steady states) for system (5), in which
all parameters are non-negative. Clearly the origin is a critical point. When
x =0 (with y # 0) we have y = n(g%ré) < 0; this point is a saddle point and
is not in the first quadrant. When y = 0 and x # 0 then 1 — ez = 0. Further

investigation shows that the origin and (%, 0) are saddle points.

When zy # 0 we have £ =0, y = 0 if

—&y —enry — ex’ —ex +ny +x+1=0, (6)
—&nky + Ex — dny — dxr — 5 =0. (7)

Solving (6) and (7) simultaneously gives at most two critical points that do
not lie on an axis. There are values of the parameters for which there is a
critical point in the first quadrant provided that & — ¢ > 0. If there are no
such critical points there are no bifurcating limit cycles in the first quadrant.
Henceforth we consider parameter ranges for which there is a critical point in
the first quadrant and scale coordinates so that it is at (1,1). Then

E=@2+n)(1—¢), d=(1-nr)1—e¢) (8)



We require all parameters to remain positive so we must have ¢ < 1 and
nk < 1. The critical point (1,1) can be a focus or a node. The second critical
point is at (7:7;’(’7:17)1, :;Z’Z:ji’%’;;ﬂiﬂ For this point to be in the first quadrant
we require —enk +€ —1 > 0 and —enk + € —nxk —n — 1 > 0. These can only
be satisfied if € — 1 > 0, whence £ < 0, which is a contradiction. In fact this

critical point is a saddle point.

We conclude that there can be only one critical point with strictly positive
coordinates.

Lemma 1 System (5) has at most one critical point inside the first quadrant.

Lemma 2 The scaled system (5) has a critical point at (1,1). There are pa-
rameter ranges for which it is a focus.

Proof. We have seen in the above that there can only be one critical point in
the first quadrant. Scaling such that this critical point is at (1,1) we find that

A=n+2)(e—1)(e(l=2nk —n) —1), ¥ =n(2ex —2k — 1) — 3e + 1.

To maintain the positivity of ¢ we require ¢ < 1, hence A > 0. There are
non-negative values of the parameters such that p = 9? — 4A < 0; the critical
point can be of focus type. It is a fine focus when ¥ =0. =

We investigate the possibility that the critical point at (1,1) for the scaled
system can be either a centre or a focus surrounded by limit cycles. After a
scaling of time by 1+ x + ny, (5) becomes

i=x(1+z—ex — 2y + 2ey + eny — ex® — enxy),
y=y(s —u+ux — sy), (9)

where s = n(142k)(1—¢),u = (1+n+nkK)(1—e¢). We transform (9) to canonical
form with the origin at (1, 1). The new origin is a fine point if s+ 3e+en =1

and it is a focus if 02 = —2eu — s? + 2u > 0. Clearly we must have u # 0, else
0?2 < 0. Let
5 L si -
x:1+ax Sy7 y:1+g
ou o

and scale time by o~!. Then

I= —§ + m@ + aok§ + a3y’ + as®’ + asTY + aZY* + ary’,

P
y=1+ -0y, (10)



where

s—¢€ 25% — 2es + Heu — 3u s(s? — es + Heu + su — 3u)
a; = , A2 = 2 , a3 = 3 )

ou o%u odu

—€ —3es + 3eu + su—u —5(3es — 6eu — 2su + 2u)
ay — —— as — ag —

ou?’ o%u? ’ odu? ’

2

s*(—es + 3eu + su — u)
ar = 12 .

otu

Clearly this system is of the form (3).

We use FINDETA to calculate the focal values for system (10) and hence
determine the Liapunov quantities. Recall that strictly positive factors are
removed from the Liapunov quantities and that u # 0 if the origin is of focus
type. We have

L(0)=1—5—3e—en.
The origin is a fine focus of order at least one, or it is a centre, if L(0) = 0.

Consider first € = 0. To satisfy L(0) = 0 we must have s = 1. Then 02 = 2u—1
and system (10) becomes the quadratic system

1, (Bu=-2) 1,

=TT o u(2u — l)x ou’

. 1

§=7+ 7. (11)
o

Using the technique described in [14] we find functions that are invariant with
respect to (11). We can then construct a Dulac function and prove that the
origin is a centre in this case. The centre conditions for quadratic systems in
general are well known.

Lemma 3 Suppose thate =0, s =1, 02 = 2u—1 > 0. The origin is a centre
for system (10).

Proof. There is a function

~\ a1 ~ ~ Q9
D:(1+y> <1+x+y> ,
o u ou

g = i’gz, such that

where o = 2%,

0 /.- 9 /-

Hence the origin is a centre. m



We assume from now on that eu # 0 and let n = 1’%36 The origin is a fine
focus of order at least one or it is a centre. We calculate from p4 that

L(1) = u(Au + B),

where

A= 26>+ 3¢%s + 8¢® + €5% + 2¢5 — 6e + 5% — s,
B =2es(—26* — 4es + 2 — 5% + 25s).

We note that when n = 0, by definition s = 0 also, so B = 0 and A # 0 if
L(0) = 0. Hence L(1) # 0; so the origin is a fine focus of maximum order one
and it cannot be a centre. At most one limit cycle can be bifurcated from the
critical point when n = 0.

Assume for the time being that A # 0. Let u = —B/A; then L(1) = 0. To
maintain % > 0 we must have u # 0, so B # 0 also. Now the origin is a fine
focus of order at least two or it is a centre. For a fine focus of order three or
more we require pg = 0, that is

esA(3e+s—1)(2e+s)(e+s—1)© =0,

where
O = =36 + 2¢%5 + 126% + €5® + 10es — 9e + 5% — 4s.

We must have 02 = _SC(2€+Z)(E+S_1) > 0, where

C =4€* + es — de + s.
In particular, therefore, sC(2¢ + s)(e +s — 1) # 0 and
L(2) = —eC(3e+ s —1)0O.
When 3¢ + s =1, then n = 0 and s = 0 also; hence o = 0.

Consider © = 0, with ABC(2¢ + s)(e + s — 1)(3¢ + s — 1) # 0. Substituting
u = —B/A into the focal values us, 110 gives

L(3) = —€As(3e+s—1)®, L(4) =eC(3e+s—1)T,

where @, a polynomial of degree 17 in € and degree 12 in s, and I, which is of
degree 31 in € and 22 in s, are in the Appendix. By calculating resultants to
eliminate s, we find that ©® = ® =0 if

e(€®—1)(e—3)(96>—1)(4e—3) (2 —10e+5) (46 —11e+3) (Te*~Te+4)¥ = 0, (12)

where
U = ¢* 4+ 9¢ — 53¢ + 31e — 4.



Similarly we calculate that © =T" = 0 if
e(€?—1)(e—3)(96?—1)(4e—3) (2~ 10e+5) (46> —11e+3) (7 ~Te+4) Z = 0, (13)

where Z is an irreducible polynomial of degree 18 in €. Substituting the values
of €, that satisfy (12) and (13) simultaneously, into © = 0,® = 0, = 0, or
by calculating resultants with respect to €, we find corresponding values for s.
With € given by e(e* — 1)(e — 3)(€* — 10e + 5)(4e* — 11le + 3)(Te* — Te+4) = 0
all €, s pairs satisfying © = & = ' = 0 are such that AB = 0. Similarly
0?2 <0, if (9¢2 — 1)(4e — 3) = 0 with corresponding values for s. Hence, under
current assumptions, we cannot have L(2) = L(3) = L(4) = 0 and there are no
conditions under which the origin is a centre for (10). However, when ¥ = 0,
0 =s"—385%+235>+125s —4 =0, then © = ® = 0 and L(4) # 0. The origin
can be a fine focus of maximum order four in this case.

Lemma 4 Suppose that es # 0, 1—s—3c—en = 0 and 0? = —2eu—s>+2u > 0.
The origin is a fine focus of order at most four for system (10).

Proof. When 1 — s — 3¢ — en = 0 and 0% = —2eu — s? + 2u > 0 the origin is
a fine focus for system (10). We have shown that when es # 0, there are no
values of the coefficients in system (10) for which L(i) = 0, for i = 0, 1, 2, 3, 4.
Hence the origin cannot be a fine focus of order greater than four. m

Lemma 5 Suppose thates #0, 1 —s5—3c—en =0, 02 = —2eu— 52 +2u > 0,
u= 7268(72&274;%26752”3) JA =263+ 36?5+ 8% +es? +2es — be+ 52— 5 £ 0,
U =¢"49 - 532 +3le —4 =0 and Q = s* — 3853 + 2352 + 125 — 4 = 0.
The origin is a fine focus of order four for system (10).

Proof. When the conditions of Lemma 5 hold L(0) = L(1) = L(2) = L(3) =0
and L(4) # 0. The origin is a fine focus of order four. m

Corollary 6 Up to four limit cycles can be bifurcated from the origin in sys-
tem (10) when the conditions given in Lemma 5 hold.

Proof. The origin is a fine focus of order four when the conditions of Lemma
5 hold. Then

(0)

(1)
L(2)=-CBe+s—1)© =0,

(3)=—As(Be +s—1)P =0,

(4)

where A, B,C,0,®,T" are as given above. Let €* be the unique root of ¥ =0
in I = (0.4570539979549, 0.45705399795495) and s* the unique root of 2 = 0

10



in (0.850095,0.850096). When € = €*,s = s* we have © = 0, = 0, A <
0,B>0,C<0and 3e+s—1>0.

The stability of the origin is given by the sign of L(4), which is the sign of
—I". We use © = ) = 0 to eliminate s from I'. Then I' = %, where
M = 10€% 4 20565 + 913€* + 25673 — 71e? — 836¢€ + 220 and N is a polynomial
of degree 49 in €. We find M = 0 and N = 0 have no roots in the interval I.
Furthermore both M and N are positive for € in I. We conclude that I' > 0

when € = €*, s = s*. Hence L(4) < 0; the origin is stable.

We bifurcate limit cycles by successive perturbation of the parameters €, s, u
and 7. At each perturbation the stability of the origin is reversed and a limit
cycle bifurcates. Provided the perturbations are small enough existing limit
cycles are not destroyed.

If we perturb €, so that L(3) becomes positive, the stability of the origin is
reversed and a limit cycle bifurcates. The sign of L(3) is the sign of —®. We
use {2 = © = 0 to eliminate s from ®. Then ¢ = %, where T is a
polynomial of degree 23 in €. Here T = 0 has no roots in I and T < 0 in
I. We decrease €, so that U becomes positive and hence & < 0, L(3) > 0.
We adjust s so that © = 0 still holds and, provided that the perturbations
are small enough so that all other conditions are still satisfied, a limit cycle is

bifurcated.

Similarly we perturb s such that © becomes non-zero and L(2) < 0. When
€ = €*, © is a quadratic in s with a positive leading coefficient and negative
trailing coefficient. We decrease s, then © < 0 and hence L(2) < 0. The
stability of the origin is reversed and a second limit cycle is bifurcated.

A third limit cycle is bifurcated by increasing w so that L(1) becomes posi-
tive and the stability of the origin is reversed. Again, provided that all the
perturbations are small enough the other limit cycles are not destroyed.

Finally we increase n so that L(0) < 0. The stability of the origin is reversed
and provided the perturbation is small enough the other three limit cycles
persist. A fourth limit cycle is bifurcated. =

We return to the possibility that A = B = 0, and hence L(1) = 0. We still
assume that € # 0. When s # 0, then A = B =10, if e =1 and s = —2 or if
€2 —10e +5 = 0 and s + 30s — 20 = 0. In either case the origin is no longer
a focus. When s = 0, then B =0 and A = —2¢(e — 1)(e — 3), 0% = 2u(l — ¢).
The origin remains of focus type, with A = B = 0, only if ¢ = 3; then the
origin is a centre.

Lemma 7 Let s =0, ¢ =3, n = —25 0% = —4u > 0. The origin is a centre

37
for system (10).

11



Proof. There exists a Dulac function

~\ Q1 ~\ —3 _
D= (1 + y) (1 + x) e,
o u
u+2

where ap = =%, ag = —373, such that

J /.- 0 /-

Consequently the origin is a centre for system (10). =

We summarise the results of Lemmas 3, 4, 5, 7 and Corollary 6 for system
(10) in the following two Theorems.

Theorem 8 The origin is a centre for system (10) if and only if one of the
following holds.

(i) e=0,s=1,02=2u—1>0;

(ii)) s=0,e=3,n=—% 0> =—4u>0.

Theorem 9 Suppose that es #0, 1 —s—3c—en =0, 02 = —2eu — 5%+ 2u >
0. The origin is a fine focus of order at most four for system (10). It is
of order four when A = —2¢3 4 3e?s + 8¢% + €52 + 2es — 6e + s> — s # 0,
u = 2el2fdeieid) g = 49 — 532 4 3le—4 = 0 and Q) =
st —38s% + 2352 + 125 — 4 = 0. Then four limit cycles can be bifurcated from
the origin.

5 Analysis for the model

In system (5) all the parameters are strictly positive, except 1, which is non-
negative. Assumption 4 of the model requires £ — §(1 + €¢) > 0 and there is a
critical point in the first quadrant if £ > §. We can satisfy these requirements
in the scaled system (10) if we maintain £k > 0, 0 < e < 1, 0 < nx < 1, and
hence u > 0, s > 0. With these restrictions on the parameter values neither
of the conditions of Theorem 8 can be satisfied; the origin cannot be a centre
for system (10).

Lemma 10 Suppose that k > 0, 0 < e < 1, 0 < nx < 1. The origin cannot
be a centre for system (10).

Proof. The origin is a centre for system (10) if and only if one of the conditions
of Theorem 8 holds. Then the requirement that 0 < ¢ < 1 is not satisfied; the
origin cannot be a centre. m

12



Lemma 11 Suppose that Kk > 0, 0 < e < 1, 0 < nk < 1. The origin cannot
be a fine focus of order four for system (10).

Proof. The origin is a fine focus of order four for system (10) when the
conditions of Theorem 9 hold. In particular ¥ = €* + 9¢3 — 53€2 +31le —4 = 0
and Q = s* — 38s% + 2352 + 125 — 4 = 0. The only root of ¥ = 0 that satisfies
0 < e < 1isin (0.186694,0.186695). The corresponding root of Q = 0 is
negative. We require s > 0; the origin cannot be a fine focus of order four. m

We demonstrate that for system (10), with £k > 0,0 <e <1, 0 <nk < 1, the
origin can be a fine focus of order two but no more and two limit cycles can
be bifurcated from a fine focus of order two at the origin.

Theorem 12 Suppose that Kk >0, 0 < e <1, 0 < nk < 1. The origin can be
a fine focus of mazimum order two for system (10).

Proof. The origin is a fine focus for system (10) if 02 = —s? +2u(1 —¢) > 0
and s+ 3¢ +en =1, where s =n(1 4+ 2k)(1 —¢), u = (1 +n+nx)(1 —¢€). We
must have € < 1, so with n > 0, kK > 0 we require s > 0, u > 0.

Consider first n = 0. By definition, s = 0 and for the origin to be a fine point
we must have € = % Then u = % and 02 = %. The origin is a fine focus. When
s =0, ¢= 1 then B =0, A <0 and hence L(1) = Au? < 0. The origin can
be a fine focus of maximum order one and when it is of order one the origin

is stable.

We assume from now on that 7 > 0 and hence s > 0. The origin is a fine point
itn = 1_%36; for n > 0 we require s + 3¢ < 1 and to maintain s > 0 we must

have 3¢ < 1. From the definition of s we have k = % and k > 0 if
s > (1 —¢€)(1 — 3¢). Replacing x in u we have o2 = 7(6“71)(;”(671)2) > 0 if

s + € < 1, which is satisfied when s + 3¢ < 1. The origin is a fine focus if

1
0<e<§, Be—1)(e—1) <s<1-—3e, (14)
and it can be of order one.

The origin is a fine focus of order greater than one if L(1) = u(Au + B) = 0.
With v > 0, this can only be satisfied if AB < 0. The sign of B is given by the
sign of D = —s*+2(1—¢)s+2¢(1—¢). The roots, s, of D = 0 are of opposite sign
when 0 < € < % In particular the positive root s, = 1—2e+ /22 —2¢+ 1 >
1 — 3e. We conclude that B > 0 when ¢, s satisfy (14). Similarly A, when
viewed as a quadratic in s, has roots of opposite sign when 0 < ¢ < % Here

sy = UMD where 12 = (e + 1)(17€* — 29¢2 4 19¢ + 1). As 54 > 1 — 3¢,
when 0 < € < %, we have A < 0 for €, s satisfying (14). The origin can be a

fine focus of order two for (10).
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The origin is a fine focus of order three if and only if © = 0. Consider © as
a quadratic in s. For 0 < € < 1 there is only one positive root of ©® = 0, this

is sy = W where 72 —4(46 + €3 + 18¢* — 11€ + 4). However, when

0<e< :1,) then s, > 1 — 3e and © < 0. The origin cannot be a fine focus of
order three and the maximum order of the origin as a fine focus is two. m

Lemma 13 Suppose that k > 0, O<e<%, 0<nk<1l,1-—5—3—en=0,
Be—1)(e—1)<s<1—3c 0= 2eu—s*+2u>0,u==2>0 A=
—2e34+3€?s+8e* +es? +2es—6e+s*—s # 0, B = 2es(—2€* —des+2e—s?+2s),
C = 4€% + es — 4e + 5 # 0. The origin is a fine focus of order two for system
(10).

Proof. When the conditions of Lemma 13 hold L(0) =1 —s — 3¢ — en = 0,
L(1)=Au+B =0, L(2) = —C(3¢ + s — 1)© # 0 and ¢* > 0. The origin is a
fine focus of order two. m

Corollary 14 Up to two limit cycles can be bifurcated from the origin in
system (10) when the conditions given in Lemma 13 hold.

Proof. The origin is a fine focus of order two for system (10) when the con-
ditions given in Lemma 13 hold. Then

L0)=1—s—3c—en=0,
L(1)=Au+ B =0,
L(2)=—-C(3e+s5s—1)0 #0,

where A, B, C, © are as given above. For 0 < e < 3, (3e—1)(e—1) < s < 1—3¢
we have © < 0, as shown in the proof of Lemma 12, and 3¢ +s — 1 < 0. The
sign of C' determines the stability of the origin.

We have C' > 0 when s > (i 9 and vice versa. Let €; be the unique root of
3e2+6e—1 = 0in (0.15470,0.15471) and €, be the unique root of €2 —6e+1 = 0
n (0.171572,0.171573). Then C' > 0 for 0 < € < ¢; and for €; < € < €3 when
4e(1—¢) 1

T < s <1—3e Similarly,C’<0f0r62<e<§andf0rel<e<62

when Be—1)e—1)<s< 45 1 209 We note that C' = 0 when s = 46 1 9 then
0% = 0 and the origin is no longer a focus.

We perturb u so that (Au+ B)L(2) < 0; the stability of the origin is reversed
and a limit cycle bifurcates. If C' > 0 we increase u, else we decrease u. Next
we perturb 7 such that (Au+ B)(1 — s — 3e —en) < 0. If C' > 0 we decrease
7, otherwise we increase 7); the stability of the origin is reversed and a second
limit cycle is bifurcated. Provided the perturbations are small enough the first
limit cycle persists. m

In summary we have the following result for system (2).
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Theorem 15 For system (2) there can be only one critical point in the first
quadrant and it cannot be a centre. It can be a fine focus of maximum order
two. Up to two limit cycles can be bifurcated from this fine focus.

Proof. We have shown that, without loss of generality, system (2) can be
transformed to system (10). The proof of Theorem 15 follows from the results
contained in Lemmas 1, 2, 13, Theorem 12 and Corollary 14. =

6 Conclusion

We have analysed system (10) which can be used to represent a predator-prey
model with intratrophic predation. We conclude that system (2) can have only
one critical point of focus type in the first quadrant and this point cannot be
a centre. For certain values of the parameters the critical point can be a fine
focus from which limit cycles can bifurcate. The fine focus can be of maximum
order two and up to two limit cycles can be bifurcated from it when 1 # 0.

We find that when n = 0, system (5) can have a critical point in the first
quadrant at (5%5, %‘;)}5); this is a fine point when § = 5((11:). This critical
point can be a fine focus of maximum order one from which one stable limit
cycle can be bifurcated. Then the critical point is unstable and all orbits are
attracted to the stable oscillatory state. However, when ¢ = 5((11;:)) and 1 # 0,
in system (5), there can be a linearly stable critical point in the first quadrant
but there cannot be a fine critical point if the non-negativity of the parameters
is maintained. Hence no limit cycles can be bifurcated from the critical point
for parameter values satisfying o = 5((11;5). In contrast without this restriction
on ¢, but with n # 0, there can be up to two bifurcating limit cycles.

In considering the stability of the critical points (steady states) Kohlmeier
and Ebenhoh examined the case with € = 0 analytically, then using numerical
simulation perturbed € so that it became positive. Here we have considered the
possible phase portraits when € > 0 analytically. When both ¢ and n are zero
in system (5) then the only critical point in the first quadrant is an unstable
node, it cannot be a fine point. When ¢ = 0 there is a critical point in the
first quadrant at ( E*gtg:fn’ = 571%77]), with £ — § — nk —n > 0. This critical

point is a stable node if 7 > ﬁ and § + k(e — 1) > 0. It is a fine point

)
if e —§ —n(k 4+ 1) = 0. Scaling the system such that this fine critical point
is at (1,1) and transforming the system to canonical form with the origin at
the fine point we have system (11). This is a quadratic system for which the
origin is known to be a centre; both predator and prey populations can be
arbitrarily large. However ¢ = 0 violates assumption 3 of the Pitchford and

Brindley model, the prey growth rate is no longer of parabolic form but is
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linearly increasing with x, so this result is not unexpected. When ¢ > 0, we
find that system (5) can have at most two bifurcating limit cycles. The critical
point is stable/unstable according to the value of €.

7 Appendix

P = — 72960b'" — 61040b'%s + 10944000'° — 84648b'°s* + 1738224b s
— 7004160b% 4 1637120 s% + 25041360 s* — 149106565 s+
250982400 + 695244b3s* + 73420803 s> — 23751808b'3 5%+
61327808b'%s — 5559552003 + 39537061255 — 4851932b'2 5% —
2154840062 s% + 10172416062 s* — 14120988855 4 7923456052
— 28217061 s — 6777870b' 5% — 18981606 s* + 110074832b §3
— 227370128b' ! s* + 1940206406 s — 729600006 — 3969556'%5”

— 4439536b'°s® + 966385261°5° + 67175936615 — 241418160553
+ 2852647200'%52 — 160880064b'%s + 420249606 — 1783914°5—
19997006%s" 4 67542466°s° + 268880926%s° — 1570735600° s+
270686096b%s> — 2036487046 5% + 77349056b%s — 13789440b° —
384150%s” — 6757710%s® + 19512086°%s™ + 1102033448 5° —
678618240%s° + 152746824b%s* — 161513040655 + 789161600% s —
19039728b%s + 19699206° — 3647b"s'0 — 14479867 s” + 181449h" s+
4417936b"s” — 22062534755 + 515016326 s° — 70420464b" 5"+
49546608b" s® — 1444800857 s? + 1665648b"s — 32655 — 1299548510
— 32703b%s” 4 10455196°%s® — 48826860°s” + 1068323855 5% —
149211960% s> + 147724485 s* — 7164944855 + 8941200°s? + 126°s'2
+ 6500°stt — 1848b°510 4+ 106794b°s7 — 4827078°s% + 10520166°s”
— 986718b%s% + 776804b°s° — 1113236b°s* + 439088b° s> + 144b* 512
+ 2892b% s 4 8566b%s° — 2050156 s° — 66605b*s® + 246384b* s —
488598h*s% + 3966300 s> — 33100b%s* + 43203512 + 36400 s —
606763510 — 239228357 4 830795%s% — 116096b6%s” + 116632b%s° —
614906°s® + 552b%s2 + 860h%s*t — 8891525 + 9035b%s” + 3769b%s°
— 8383257 + 30586755 + 324bs'? — 1074bs™ — 678050 + 6822bs”
— 8934bs® + 3540bs” + 72512 — 5045 + 10805 — 9365 + 288s°,
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[ =2737256448b3! 4 78221363206°°s — 71168667648b%° 4 23215934464b% 5*
— 245213831168b% s + 8485494988806*° + 81636485126%% 5% —
7287607142406%% s + 33329509867520*% s — 61588270080006%5 —
771660236800°" s — 784868296704b%"s® + 10075785888768b%" 5% —
264906127114246*7 s + 304656642662400%7 — 1546874138885%0 55+
729946487808b*°s* + 15245259456512b6%0 s — 813761463060485% s
+ 139079421739008b*°s — 108970179194880b* — 1630513248645 s°+
3060094178816b%°s° + 6384615036416b%°s* — 1442027733790726* 5°
+ 430501419680768b%° s> — 5145152215695366% s + 2917641647923206%
— 3258825168b**s” + 49816459190406%4s5 — 157323796574726* s° —
138898250458112b%* s + 824292061609984b%*1s* — 1586214386906112h** 2
+ 1393327297646592b* s — 5970777490022406** + 358408836360b% 55+
4518240500704b%%s" — 425388913763200%%s5 — 440989222092806%% 55+
10097756495621126*s* — 31327952211333120%3 5%+
4223114565694464b%3 s> — 2826378374037504b%% s 4+ 9448461807206406%
+ 555293517128b%25% + 1003487505126*2 % — 57674297974304b* 5"+
1090004499815045%2s5 + 829746426083072b%2s° — 4209327156626432b%% 5"
+ 8334714450665472b* s — 83094651203020806%% 52
+ 4350221625919488b*2 s — 11613357931929606% 4 308907235844b%! 510 —
5095149079480b* s° — 45306843240848b%' s® + 240388753833184b%! 5"+
346459385824576b*! 5 — 4194625846312448b** 5%+
11465199863188992b% s* — 159915448344883200%! 53+
12236503115492352b% 5% — 5104636768608256b! s 4+ 1106295040536576b%
— 863863987306% s — 68405567532720%° s — 172641924476566*° 5%+
2624692013594726%°s% — 1763159059024326%°s™ — 31310873200961925%° s°
+ 119723939650588166%s° — 215888108888401926%° s+
224910782693068806%° s> — 135460503877580806%° 5%+
45536446030929926%° s — 809083735412736b%° — 2572470162320 512 —
5342588918296 st + 21311550753126'51% + 1908558419692885* 5
— 4279260342465760'°s® — 1666014313959072b 57+
98224675495363206* s — 221261302276864006 55+
2888102348162201656'%s* — 233281719997952006'% s>+
11234427964443648b" s> — 305351933198336006'% s+
4458169576857600' — 202631959417b'8s'3 — 3104069339792b'8 512
+ 66212604085566'8 s + 1066897909072245'8 510 —
382130177046920b'%s” — 606810077242128b'8s® + 6394230725726816b*% s
— 17829117268452544b'8 5% + 27858435308439040b'% s° —
27734595019205632b'8 s + 17785607449509888b8 53 —
6895588975107072b'8s? 4+ 1505337422897152b'8 s—
1790986893926406'% — 97859799582b17 514 — 1480824316673b7 513+
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4182014044266 7512 + 51717342809056b'7 s't — 2290528842903206'7 510 —
165444278335512b'7s° + 3427820263024432b""s® — 11401261889378208b 75"+
208172491000624006'"s® — 24323277351511552b7 s°+
19059059385844224b' " s* — 98344682510028806' s + 3059750503590912b'7 52
— 524813132734464b'" s + 495169691443206*7 — 3394020726956 515 —
589282441424h'% s + 15011821702215'%s'3 + 22802743709392'6 512 —
104631867090804b'% st — 59583357516536b'6 510 + 1612508643890488516 57 —
588630108735368006'°s® 4+ 12059006053916672b's™ — 161120611778012805" 5°
+ 14669084696316160b s> — 9213456578890752'6 51+
3842203271323648b'°s® — 943121734728704b'%s* + 120872219701248b0 5—
8425275346944 — 9184050486b'°s'® — 1914139771316 s+
2743885277906 s + 8760688486197b's'3 — 36634035146758b'° 5% —
39680585516424b5 s 4 687358778706576b 50 — 2506394431161176b%5 5°

+ 53940612842500806'°s® — 7929023156453472b'% 5"+
8195689996900288b% s — 5953211274037248b°s° + 3023104576436736H° s*—
1014390527776768bs* + 188766690573312b' 5% — 16124847538176b'° s+
6651533168646 — 2035573215657 — 50349252912b 516 —
245890167500 s + 2727943551644b's'* — 9058535005077b'* 5% —
25401258911600b*s'? + 257864229603980b s — 875775432818152bh 510+
1836409911130152bs? — 2767531196238576b's® + 3133107529752480b 5" —
2601192589182784b 5% + 1529089991694592b* s> — 6290073433693184b's*+
167797281939456b's* — 21694811212800b s? 4+ 900138894336b*s—
36994691802 s'® — 10966897407b*3s'7 — 3457486665003 510+
644993158630013 s — 12315473548700'% s — 11634668495913b3 513+
799731470754106"3 52 — 239864597396784b3 s + 443763374013752b*3 510

— 593646340932136b0'%s” + 656818431864656b's® — 618475745007968b'3 57+
440242544741824b'3s5 — 2137368529433606'3s° + 7178376874240063 5% —
15115139278848b%3 5% + 1077061736448b™3s? — 523213170259 —
2026049220625 — 1305127481562 7 + 107169337444b 2516+
64316282925b'25'° — 3571070223968b' 251 + 18731861838645b'251% —
46790217425488b'?5'? 4 57275250379656b' s — 15591849467432b'2 510 —
43976373250808b'2s” + 48591510113872b'2s% — 6650880269472h'% 5" —
13877450443584b'2s° + 78809265523200'%5% — 2693280975872b2 s+
527407690752b'%s> — 52503460 s*° — 3082006016 s — 3381864702 518+
96712652250 s'7 + 774511088126 51 — 697134349273 515+
2818646481334b s — 4887574423595b 13 — 49129255052306 L5124
41331759423960b' s — 89490409328368b ! s'° + 105384488095128b 57—
73322346702288b ! s® 4 291409356091206' s — 6774616518976b ! 55+
1368409199616b s> — 129512206848b " s* — 325068h'° 5% —
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348183006'°5%° — 6719092245051 — 8850663965 '8+

2077379260665 — 7084889286006'°s'® + 1485152794405 5+
234824776012b'%s1 — 4008450249375 513 4 16328128161808bH1 %512 —
35401419060380b" s 4 464706550887126'%s1° — 38363954673496'% 57+
194171571095846'°s% — 53597052241606'%s + 7203878174085 —
92275750784b'%s% — 92160°5*2 — 2475660075 — 957295365" 520 —
6130407006% s + 30328909566° s + 420124558607 s'" — 338658563166% 510+
124955311508b%s™ — 7771177626506 s'* + 33417025302456% 5% —
8358406584898 52 + 12815960074944b° s — 12398217839184h° 510+
7546037512184b%s° — 2690641280240067s® + 4103120804166 s+
1304413184 s% — 80712b%s%2 — 8334108b%s2! — 13811699268 520+
2505527485 + 33588792560%s® — 6987705598b%s'" — 4597303248b° 516

— 3653873839505 515 4 434458191248b8s'* — 1471985096673b% 513+
2722355768240b6%s'% — 3119900979532%s'! + 226811616015285'°—
10288300962806%s” + 2659875733920°%s® — 23398425136b°%s” — 32385667 22—
1606880457521 — 9783559657 520 + 584854602b" s + 6736551006" 18—
7810687822075 4 665331376257 s'¢ + 6112586059557 s1° —
2551632971420 s'* + 512394040647b" s — 636376882578b" 512+
514128004296b" s — 2660925636006 50 + 84179246904b" s° —
14366578024b" s® — 776160°s%* — 189956526°% %! + 9912326° 520+
503909028b°s® — 13763989920°s1® — 14120678114°s'7 + 15894653048b° s1¢
— 441753635100°s" + 734296381966°s'* — 823649937116°s'3+
61994250224b°%s? — 2942471932465 s + 76261576406°5'° — 668337808b°s”
— 1215360b°s** — 13156476b°s*" + 62960280b° 520 + 80674532b° s —
10015324706°s'8 4 2721458133b°s'7 — 36880352665° 516 4 2102577078b° 517
+ 982780878b° s — 2699774363b°s' + 2500297478b° 5% — 1444266096b° s
+ 39723165200 — 1280736b*s? — 3556932b*s%! + 50737256b*s*°—
1197325250 — 256604606 s 4 640433453b*s'" — 1450586076b" 510+
1724083539551 — 11583120325 s 4 3200035195513 + 79430096 512 —
555591026 s — 9033126%s%2 + 2069364b% 52 + 1418189453520 —
721983935350 + 1304224986358 — 9075967563 s'T — 5635778435165+
189896817b%s — 1950593106 s'* + 994651350 s'* — 20757234 s'* —
409536075 + 2334144b%s? — 26241006%s*° — 10911636b% s+
40572876b%s'® — 57230844b%s7 + 36959796b%s6 — 5055180b%s1° —
5858844b% s + 222332452513 — 1080006522 + 879960bs*! — 2649000552

+ 300816065 + 145560005 — 7674600057 + 8488440bs'6 — 421800065
+ 817440bs' — 126005* + 12600052* — 4914005 + 10080005 —
11970005 + 831600s'" — 3150005'¢ + 504005.
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