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Semi-Supervised OWA Aggregation for Link-Based Similarity
Evaluation and Alias Detection

Tossapon Boongoen and Qiang Shen

Abstract— Within the past decades, many fuzzy aggregation
techniques, ordered weighted averaging (OWA) in particular,
have proven effective for a wide range of information processing
tasks, such as decision making, image analysis, database and
machine learning. Despite reported successes, their potentials
have yet to be explored for the emerging problem of link anal-
ysis, which aims to discover similarity and relations amongst
objects through their associations. Recently, several link-based
similarity methods have been put forward to identifying similar
objects in the Internet and publication domains. However, these
techniques only take into account the cardinality property of
a link structure that is highly sensitive to noise and causes
a great number of false positives. In light of such challenge,
this paper presents a novel OWA aggregation model that is
capable of efficiently deriving a similarity measure through
the integration of multiple link properties. The underlying
approach is based on the methodology of stress function by
which the aggregation behavior can be easily interpreted and
modeled. In addition, a semi-supervised method is introduced
to assist a user in designing a stress function, i.e. the weighting
scheme of link properties, appropriate for a particular link
network. The application of the OWA aggregation approach to
alias detection is demonstrated and evaluated, against state-of-
art link-based techniques, over datasets specifically related to
terrorism, publication and email domains.

I. INTRODUCTION

Within the past decades, many aggregation techniques
have been invented for a variety of fuzzy information pro-
cessing tasks [1], [18]. Particularly to the ordered weighted
averaging (OWA) operator [21], it has been applied to a vast
number of fields since its introduction in 1988, including
fuzzy logic controller [22], market analysis [25], image
compression [16], query system [20], feature selection [2]
and decision making [4], [21]. In spite of this, its potential
has yet to be investigated for the emerging problem of link
analysis (i.e. link mining) [9], [13].

As a response to the increasing amount of link oriented
information (e.g. online resources), many link analysis tech-
niques have been developed to disclose similarity amongst
objects through the pattern of their relations [13]. They are
effective to overcome the fundamental pitfalls of conven-
tional text-based methods, which require large storage and
long computing time due to the need of full-text comparison
[6], [14]. The advantages of link analysis have been espe-
cially recognized for problems such as the World Wide Web
where text-based methods are sometimes inapplicable with
pages containing little texts but a large amount of multimedia
objects [14], and for intelligence data analysis where content-
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based approaches can be misleading due to fraud descriptions
of terrorists’ name, appearance and contact details [3], [19].

Essentially, several link-based methods, such as SimRank
[11], Connected-Triple [12] and PageSim [14], analogously
justify the similarity between any two objects in a link
network upon the cardinality of joint neighbors to which
these two are linked. Despite its simplicity, by not taking into
account other link characteristics, this measure is sensitive to
noise and usually causes a great number of false positives.
However, the quality of the similarity evaluation may be
enhanced by including uniqueness aspect of links within the
overlapping neighbor context [3].

Recognizing the aforementioned shortfall, this paper
presents a new OWA aggregation model that is efficient to
derive link-based similarity measure through the integration
of multiple properties of a link pattern. With the methodology
of stress function [24], the underlying aggregation behavior,
and hence the weighting scheme of link properties, can
be effectively modeled and comprehended. Yet, a human-
directed stress function can not be uniformly formulated for
a variety of problems, whose characteristics can vary greatly.
As a result, a semi-supervised mechanism is introduced to
assist analysts to obtain an appropriate function. Particularly,
a set of heuristics with graphical projection of link measures
are provided to support the relevant analysis process.

The rest of this paper is organized as follows. Section 2
introduces the OWA aggregation with stress function, upon
which the present research is developed. Following that,
Section 3 presents the motivation and details of the OWA
aggregation model for link-based similarity evaluation, es-
pecially different link properties and stress functions used
in this aggregation process. The forth section describes the
semi-supervised method to assist data analysts to design an
appropriate stress function. Section 5 details the experimental
evaluation of the application of the present work to detecting
alias names or duplicates in different datasets. The paper is
concluded in Section 6, with the perspective of further work.

II. OWA AGGREGATION WITH STRESS FUNCTION

The process of information aggregation appears in many
application problems. Despite computationally simplistic,
neither minimum nor maximum may be appropriate for many
such applications. Accordingly, Yager [21] pioneered a new
set of aggregation techniques called the ordered weighted
averaging (OWA) operator. This mean-type operator provides
a flexibility to utilize the entire range of and to or associated
with the actual scenario in which information aggregation is



required. As the current research serves as an initial investi-
gation of bridging the OWA aggregation with link analysis
approach, its fundamental concepts and weight determination
methods are specifically emphasized herein.

An OWA operator of dimension n is a mapping OWA :
Rn → R, which has an associated weighting vector W =
(w1, w2, . . . , wn)T , where wi ∈ [0, 1] and

∑n
i=1 wi = 1.

Given an input argument vector X = (x1, x2, . . . , xn) ∈ Rn,
OWA is defined as follows:

OWA(X) = OWA(x1, x2, . . . , xn) =
n∑

i=1

wixσ(i) (1)

where σ is a permutation function that orders the elements
such that xσ(i) ≥ xσ(i+1),∀i = 1, . . . , n− 1.

Weight determination is crucial to this family of operators,
since associated weights dictate the type of aggregation
operator an OWA exhibits. A number of different techniques
have been proposed for obtaining weights associated with the
OWA operator, for instance, maximal entropy [17], weight
learning [7] and data clustering methods [2] (see more details
in [8]). In addition, another important and useful approach to
weight determination is through the manipulation of a certain
type of function [23], which is outlined below.

Let F be a function F : [0, 1] → [0, 1] such that F (0) = 0,
F (1) = 1 and F (a) ≥ F (b) given a ≥ b. Using this function,
it is possible to derive a weight vector (w1, w2, . . . , wn)T as

wi = F

(
i

n

)
− F

(
i− 1

n

)
, i = 1 . . . n (2)

Following this, Yager [24] recently introduced a simple
weight generation mechanism with stress functions, by which
a user can conceptually specify the type of OWA operator
required for a particular problem. Here, stress reflects sig-
nificance. In particular, a stress function is a non-negative
function s(x) defined on the unit interval x : [0, 1] → R+

(see Figure 1 for examples). Given this function, F (x) can
be defined as follows, where

∫ 1

0
s(y)dy = K:

F (x) =
1
K

∫ x

0

s(y)dy (3)

Fig. 1. Examples of stress function from [24]: (a) linearly decreasing and
(b) centering-type linear functions.

According to Equation 2, OWA weights can be derived as

wi =
1
K

(∫ i
n

0

s(y)dy −
∫ i−1

n

0

s(y)dy

)
, i = 1 . . . n (4)

In essence, this calculation can be simplified as weights
being approximated directly from a stress function s as (see
proof and further details in [24])

wi =
s
(

i
n

)∑n
i=1 s

(
i
n

) (5)

With this method, consistent weight vectors can be ob-
tained for different argument cardinalities and a user can
easily characterize the nature of aggregation through loca-
tions of stress.

III. OWA AGGREGATION MODEL FOR LINK-BASED
SIMILARITY EVALUATION

This section introduces a novel OWA aggregation frame-
work in which multiple link properties are combined to im-
prove the quality of estimated link-based similarity measures.

A. Link Properties for Link-Based Similarity Assessment

The link analysis approach is based on examining relation
patterns amongst references of real-world entities, which can
be formally specified as an undirected graph G(V,E). It
is composed of two sets, the set of vertices V and that
of edges E, respectively. Let X and R be the sets of all
references and their relations in the dataset. Then, vertex
vi ∈ V denotes reference xi ∈ X and each edge eij ∈ E
linking vertices vi ∈ V and vj ∈ V corresponds to a relation
rij ∈ R between references xi ∈ X and xj ∈ X . Each edge
eij ∈ E possess statistical information fij ∈ {1, . . . ,∞},
representing the frequency of any relation occurring between
references xi and xj within the underlying dataset. With
this terminology, several methods have been introduced to
evaluate the similarity between information objects: SimRank
[11], Connected-Triple [12], PageSim [14] and a variety of
random walk methods [15] (see more details in [9] and [13]).

1) Cardinality Property (CT): In essence, existing tech-
niques, such as SimRank and Connected-Triple, have concen-
trated exclusively on the numerical count of shared neigh-
boring objects. Let vi ∈ V be an entity of interest (e.g. a
terrorist name in intelligence data or a paper in a publication
database) and Nvi ⊂ V be a set of entities directly linked to
vi, called neighbors of vi. The similarity between entities vi

and vj is then determined by the cardinality of Nvi
∩ Nvj

,
the set of shared neighbors where Nvi

and Nvj
are sets of

neighbors of entities vi and vj , respectively. Effectively, the
higher the cardinality is, the greater the similarity of these
entities becomes.

2) Uniqueness Property (UQ): Despite their simplicity,
cardinality based methods are greatly sensitive to noise and
often generate a large proportion of false positives [12].
This shortcoming emerges because these methods exclusively
concern with the cardinality property of link patterns with-
out taking into account the underlying characteristics of a
link itself. As the first attempt to extend this approach by
addressing such characteristics, the uniqueness measure of
link patterns has been suggested as the additional criterion
to CT to refine the estimation of similarity values [3].



Given a graph G(V,E) in which objects and their relations
are represented with members of the sets of vertices V and
edges E, respectively, a uniqueness measure UQk

ij of any
two objects i and j (denoted by vertices vi, vj ∈ V ) can be
approximated from each joint neighbor k (denoted by the
vertex vk ∈ V ) as follows:

UQk
ij =

fik + fjk∑
m fmk

(6)

where fik is the frequency of the link between objects i and
k occurring in data, fjk is the frequency of the link between
objects j and k, and fmk is the frequency of the link between
object k and any object m.

To summarize the uniqueness of joint link patterns UQij

between objects i and j, the ratios estimated for each shared
neighbor are aggregated as

UQij =
1
n

n∑
k=1

UQk
ij (7)

where n is the number of overlapping neighbor objects that
objects i and j are commonly linked to.

B. Integrating Multiple Link Properties using OWA Aggre-
gation with Stress Function

Intuitively, the similarity of objects vi, vj ∈ V in a link
network G(V,E) may be justified with the cardinality (CT )
of their joint neighbors or the average uniqueness of links
(UQ) to the common peers. However, neither of these proves
to be effective for all, various domain-specific, real-world
data. Hence, to achieve a robust and accurate similarity esti-
mation model, these link measures are proficiently integrated
such that their significance degrees (i.e. weights) can be
determined for an enhanced performance.

For this purpose, the methodology of stress function [24]
appears appropriate to perform the aggregation if a data
analyst can conveniently dictate the aggregating behavior
through a graphical presentation of stress. Using the stress
functions given in Figure 2, the similarity s(vi, vj) ∈ [0, 1]
of objects vi, vj ∈ V can be approximated as follows:

Fig. 2. Stress functions exploited in the similarity estimation process: (a)
Stress1, constrained constant and (b) Stress2, constrained decreasing.

• Step1: Let CTij and UQij = {UQ1
ij . . . UQ

CTij

ij } be
the number of common neighbors between vi and vj ,
and the set of uniqueness values measured at each
of these shared objects (see Equation 6). Also let
|UQij | denote the cardinality of the uniqueness set,
which initially equals to CTij . Select the value of

β ∈ {1, 2, . . . , CTmax} (where CTmax is the maximum
value of CTij in the studied dataset) that represents
the number of member values in UQij required for
the efficient estimation of similarity, based on past
experience or data-directed guideline. Essentially, the
value of β determines the weighting scheme exploited
to combine CT and UQ measures. The higher β is, the
greater the significance of the CT measure becomes,
as compared to the UQ counterpart. The parameterized
stress function not only allows this aggregation model
to be adapted to a wide range of problems, but also
provides a practical means by which users can encode
their attitude towards the aggregation of link measures.

• Step2: For each uniqueness set UQij , if |UQij | <
CTmax, additional members with a zero uniqueness
value are appended to UQij such that |UQij | becomes
CTmax. This process is to ensure that the similarities
of all object pairs (vi, vj) with a different cardinality
of UQij are uniformly evaluated, through the same
weighting scheme (i.e. β value).

• Step3: Estimate the similarity s(vi, vj) by aggregating
member values of the corresponding uniqueness set
UQij as

s(vi, vj) = OWA(UQ1
ij , . . . , UQCTmax

ij ) (8)

For the current research, the stress functions shown in
Figure 2 are exploited to generate weight vectors for the
aforementioned OWA aggregation. In particular, given a
stress function that is defined by s : {0, . . . , CTmax} →
[0, 1], a weight vector W = {w1, . . . , wCTmax

} can be
acquired as follows:

wt =
s(t)

CTmax∑
r=1

s(r)
, t = 1 . . . CTmax (9)

It is noteworthy that wt = 0,∀t > β.

IV. SEMI-SUPERVISED METHOD TO DESIGNING STRESS
FUNCTION FOR LINK ANALYSIS

Designing a stress function for the proposed OWA aggre-
gation model, i.e. selecting a value of β ∈ {1, . . . , CTmax},
is non-trivial and proves to be critical towards the quality of
generated similarity measures. A simple approach is to rely
on human experts, who pick up a suitable value, β = CTmax

for instance, in accordance with their personal intuition and
judgment. This is not usually effective regarding the avail-
ability of experts and the diverse nature of different problem
domains. Besides, human input may be rather subjective and
inconsistent. As a result, a data-driven mechanism that can
assist an analyst to obtain an appropriate β is specifically
discussed herein.

At the outset, a density graph is formulated to represent the
proportion of entity pairs (i.e. (vi, vj), vi, vj ∈ V ) with dif-
ferent cardinality measure (CT ). Let D : {1 . . . CTmax} →
[0, 1] be the density function, which is formally defined as



D(t) =
N(t)∑

r=1...CTmax

N(r)
, t = 1 . . . CTmax (10)

where N(t) denotes a number of entity pairs (vi, vj) whose
cardinality measure CTij ≥ t, t ∈ {1 . . . CTmax}. Figure 3
presents the density function derived from the Terrorist
dataset [10], where CTmax = 113 (and the magnified
presentation of D(t), t ∈ {7, 113} is included herein for
better interpretation).

Fig. 3. Example of density function derived from Terrorist dataset.

Another useful functional concept is the average unique-
ness degree. This is calculated from each group of en-
tity pairs with a specific cardinality value. Let UQ :
{1, . . . , CTmax} → [0, 1] be the averaged uniqueness func-
tion, which is specified by

UQ(t) =

∑
∀(vi,vj),CTij= t

UQij

M(t)
, t = 1 . . . CTmax (11)

where UQij and M(t) denote the average value amongst
members in the uniqueness set UQij (of the entity pair
(vi, vj)), and a number of entity pairs whose cardinality
measure CTij = t, t ∈ {1 . . . CTmax}, respectively. In
particular, Figure 4 shows the corresponding function of the
Terrorist dataset.

Fig. 4. The average uniqueness function derived from Terrorist dataset.

With these link-based functions, the following set of
heuristics can be articulated especially to help data analysts
to assess a proper value of β ∈ {1 . . . CTmax}:

• The density value at β, D(β), should not be too large
such that the exclusion of high cardinality measure
(CT > β) is rational; intuitively, D(β) ≤ 0.1.

• A particular value t is considered as a candidate for β if
UQ(t) > UQ(t+1), where t, t+1 ∈ {1 . . . CTmax}. In
other words, any higher cardinality measure that leads
to lower link quality (in term of uniqueness) should be
excluded.

• If two or more values satisfy the previous requirements,
the one with the highest density value D(t) is preferred.

This semi-supervised method is effective to assist analysts
to design an appropriate stress function, based on quality
measures of the particular link network being studied. Unlike
human-directed alternatives, it is data oriented and capable
of being adapted to a variety of problems.

V. APPLICATION AND PERFORMANCE EVALUATION

A. Application to Alias Detection
Discovering duplicates and similar objects is a major

subject in the fields of information retrieval, database and
intelligence data analysis. Initial attempts to resolve the prob-
lem of aliases rely on text-based comparison, which suffer
from their requirements of domain-specific rules/grammars
for comparison, and of a typically vast amount of compu-
tational time and space [6]. Accordingly, the link analysis
approach to this ambiguation problem has been put forward
to underpin the accountability for unstructured information.
It has proven effective for a wide range of domains, including
personal name resolution in publication databases [12], web-
page similarity [14], personal name resolution in emails
[15], alias detection in spam emails and terrorism-related
datasets [3], [10]. In practice, disclosing an alias pair in a
link network G(V,E) is to find a couple of vertices (vi, vj),
whose similarity s(vi, vj) is significantly high. Intuitively,
the higher s(vi, vj) the greater the possibility that vertices vi

and vj constitute the actual alias pair.
This section presents an application of the OWA aggre-

gation model to detecting alias pairs of references, each
referring to the same real-world entity. Particularly, its per-
formance is empirically evaluated, against state-of-art link-
based algorithms, over a variety of data collections.

B. Experimented Datasets
The performance and applicability of the proposed ap-

proach is evaluated over the following distinct datasets:
Terrorist [10], DBLP [12] and EmailThread [15]. Terrorist is
a link dataset manually extracted from web pages and news
stories related to terrorism. Each node presented in this link
network is a name of person, place or organization, while
a link denotes a co-occurrence association between objects
through reported events. Figure 5 presents an example of this
link network where names Bin laden and Abu abdallah refer
to the same real-world person.

DBLP (Digital Bibliography and Library Project) is the
dataset containing co-authoring information extracted from
the bibliographical database. In this link network of publi-
cation information, each node represents a reference name



Fig. 5. An example of Terrorist dataset.

of an author and a link denotes the fact that two names
appear as the co-authors of a paper (or papers). EmailThread
is the subset of the email graphs used in [15] for the task
of detecting email threads (i.e. similar email messages). The
original dataset was extracted from email accounts in the
Enron corpus. Objects in this dataset are references of email
messages and keywords appearing in email subject fields. In
particular, a link is only formed between a message reference
and a particular keyword, indicating that the message’s sub-
ject contains this keyword. Table I summarizes the number
of links, objects and alias pairs included in these datasets.

TABLE I
DATASET DETAILS (NUMBER OF OBJECTS, LINKS AND ALIAS PAIRS).

Dataset Objects Links Alias pairs
Terrorist 4088 5581 919
DBLP 2796 8157 23
EmailThread 4319 8955 106

C. Performance Evaluation

1) Efficiency of Semi-Supervised Method: Initially, it is
important to examine the effectiveness of the semi-supervised
method for modeling a stress function (i.e. selecting β
value). By following the heuristics previously prescribed,
appropriate β values for Terrorist, DBLP and EmailThread
are 7, 27 and 5 (with corresponding CTmax of 113, 94
and 9), respectively. Figure 6 presents precision measures
of the aggregation model, over EmailThread dataset, with
two different stress functions (i.e. Stress1 and Stress2, see
Figure 2) and two different β values (i.e. max and β
denoting the maximum cardinality CTmax in the studied
dataset and the value achieved from the semi-supervised
method, respectively). Note that around 150 entity pairs with
highest similarity values are included in this assessment.

These results suggest that the β values acquired through
the semi-supervised process are more effective than those
subjectively selected by an expert (e.g. CTmax). Similar
observations are obtained with Terrorist and DBLP datasets,
but they are not included here due to space limitation.

2) Aggregation Method vs. Other Link-based Measures:
The performance of the aggregation model is assessed here,
against three state-of-art link-based methods (Connected-
Triple (CNT ), SimRank (SR) and PageSim (PS)). Particu-
larly, the Connected-Triple approach [12] estimates the sim-
ilarity degree based solely on the cardinality measure. This
neighbor-oriented intuition is extended through an iterative

Fig. 6. Precisions of the aggregation model with different stress functions
and β values, over EmailThread dataset.

refinement of SimRank model [11] to find similar scientific
papers through their citation relations. In a different domain,
PageSim [14] was developed to capture similar web pages
based on associations via their hyperlinks. Note that this
algorithm explicitly uses the page ranking scheme, PageRank
[5], of the Google search engine.

Table II compares the number of disclosed alias pairs
successfully detected by each method, where K denotes
the number of entity pairs with highest similarity measures.
These results suggest that the OWA aggregation models (i.e.
Stress1 and Stress2) usually performs better than the rest
over Terrorist and DBLP datasets, while being competitive
to other more complex methods with EmailThread data.

TABLE II
NUMBER OF ALIAS PAIRS DISCLOSED BY EACH METHOD.

K Stress1(β) Stress2(β) CNT SR PS

Terrorist
200 43 9 1 0 7
400 81 66 5 0 36
600 117 107 74 1 63
800 150 146 77 1 79
1000 182 181 83 2 92
DBLP
100 4 4 1 0 1
200 5 5 1 1 1
300 5 5 1 2 1
400 6 5 1 2 2
500 9 10 3 3 4
EmailThread
100 12 12 3 13 6
200 19 21 10 13 18
300 27 29 10 36 27
400 33 33 23 36 35
500 36 40 23 47 38

In addition, Table III presents the recall measure as the
number of alias pairs discovered within a whole dataset
(i.e. K = the number of entity pairs identified with non-
zero similarity value) by Stress1 and PS methods (note
that the results of SR and PS are identical, while those
of CNT and Stress2 are identical to that of Stress1).
Accordingly, the performances of Stress1, Stress2 and
other link-based measures are usually analogous, except in
the case of Terrorist dataset where the recalls of Stress1
and Stress2 techniques are lower than those of the PS and
SR. However, the number of false positives generated by the
OWA aggregation models is far less than those by the others.



TABLE III
NUMBER OF ALIAS PAIRS DISCLOSED FROM ALL ENTITY PAIRS WITH

NON-ZERO SIMILARITY VALUE.

Dataset Stress1 PS
Alias Non-Zero Alias Non-Zero

Terrorist 366 81,985 468 708,613
DBLP 21 20,782 21 23,163
EmailThread 70 1,915 70 10,196

3) Computational Complexity: In addition to evaluating
these methods in terms of discovered alias pairs, it is impor-
tant to investigate the computational complexity that would
determine or even limit their actual real-world applications.
Let a link network consist of n distinct entities, each aver-
agely linked to other m entities. The time complexity for both
OWA aggregation (Stress) and CT methods to generate all
pair-wise similarity values is O(n2m2). With f iterations
of similarity refinement, the time complexity of SimRank
is O(n2m2f). Note that the results shown in Table II are
obtained using f = 3 (with its usual range being 3-5).

In contrast, the PageSim is rather complex compared to
the others as it begins with ranking all entities using the
PageRank technique, whose time complexity is O(nmt)
where t is the number of iterations for refining the ranking
values (t is 3 in this experiment). Having accomplished the
ranking process, the similarity of two entities is estimated on
the ranking values propagated from their shared neighbors,
with the maximum connecting-path length of r (r set to 3
for the results given in Table II). As a result, the overall time
complexity of PageSim method is O(n2m2r + nmt).

Hence, the OWA aggregation method introduced in this
paper not only performs well in terms of precision, but also
proves to be practical for alias detection, with efficient time
consumption.

VI. CONCLUSION

This paper has presented a new OWA aggregation model
that can be exploited to derive link-based similarity measures,
efficient for detecting aliases in a variety of real-world data
collections. The proposed method is based on the OWA
aggregation of multiple link measures, in which a stress
function is particularly exploited to determine aggregation
behavior. As a uniformly efficient stress function for various
problems is generally difficult to obtain, a semi-supervised
method is thus introduced such that data analysts can acquire
an appropriate data-dependent function. In spite of successes
reported herein, it is important to further generalize the
proposed methodology with respect to other link datasets,
and also to investigate the use of different types of stress
function.
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