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1. Introduction

Let Γ be a continuous and piecewise smooth curve extending to infinity in the
plane R2, and consider the spectrum σ associated with the perturbed Laplacian

H := −∆− α(x)δ(x− Γ) (1.1)

in R2 where δ is the Dirac delta function and α(x) ≥ 0 is a given continuous
and bounded function. In this spectral context, Γ is called a leaky wire and the
Hamiltonian (1.1) represents the motion of a particle under the influence of a
singular attraction (since α(x) ≥ 0) along Γ. We refer to the recent extensive
survey [5] for the physical motivation of studying this model and details of the
influence that the geometry of Γ has on the nature of the spectrum. In the simplest
case where α is constant and Γ is a straight line, we have σ = [−α2/4,∞) [6, (5.1)]
but, for much more general curves Γ, it was shown in [6, section 5] that the essential
spectrum σess is

σess = [−α2/4,∞) (1.2)
under certain global conditions of Γ which include the idea of asymptotic straight-
ness [6, (3.1) and (3.2)]. An example of this idea [6, Remark 5.6] is that, in terms
of the arc length s, the curvature k(s) of Γ satisfies | k(s) |≤ (const.) | s |−β for
some β > 5/4.

There are two aspects to the proof of (1.2) in [6]. One is that

σess ⊃ [−α2/4,∞) (1.3)
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and the other is that (−∞,−α2/4) is not in σess. In this paper we are concerned
with (1.3) and, in view of the considerable technicalities in [6], we give a much
simpler proof of (1.3) using the singular (or Weyl) sequence method. Further, our
approach covers the case of α(x), a bounded and continuous function, tending to
a finite limit at infinity. This approach is in the spirit of the early work on the
Schrödinger operator in [2], [3] and [8, section 49] and requires conditions imposed
only on long disjoint sections of Γ, rather than globally. Our main result is given
in Theorem 3.1.

2. Operator realisation

The formal definition (1.1) can be made precise by the procedure indicated in [1,
section 4] and [5, section 2] (see also [6] and [7]). Thus we assume that Γ is a
piecewise C1 curve without cusps and that for each compact subset K of R2 we
have

∫
K
α(x)δ(x − Γ)dx < ∞. (For simplicity we only consider the case when Γ

divides the plane into two regions R1 and R2.) In addition we assume that α(x)
is non-negative, bounded and continuous on Γ. In this case we have that∫

R2
(1 + α(x)) | ψ(x) |2 δ(x− Γ)dx ≤ c

∫
R2

(
| ∇ψ(x) |2 + | ψ(x) |2

)
dx

for ψ(·) ∈ C∞0 (R2). Therefore we can define the quadratic form

q(f, g) :=
∫
R2
∇f(x)∇ḡ(x)dx−

∫
Γ

α(x)f(x)ḡ(x)ds

with the domain W 1,2(R2) which gives rise to the selfadjoint operator H from
(1.1) by the same construction as described in [5, section 2]. The same operator
can be constructed from the essentially self-adjoint operator H̃ defined by

H̃ψ (x) = −∆ψ(x) (x ∈ R2\Γ) (2.1)

with domain D(H̃) consisting of functions ψ ∈W 2,2(R2\Γ) which are continuous
at Γ and with the normal derivatives having a jump in the sense that

∂ψ

∂n1
(x) +

∂ψ

∂n2
(x) = −α(x)ψ(x) (x ∈ Γ). (2.2)

Here n1 and n2 denote the normals directed away from Γ on the two sides of Γ.
This operator reproduces the form q on the core C∞0 (R2) of q (see [5, Section 2]
and [1, Remark 4.1]). ThusH is the closure of H̃ and, in particular,D(H̃) ⊂ D(H).

A real number λ is in σess if and only if there is a sequence fm in D(H) such
that

‖ fm ‖= 1, fm ⇀ 0 (weak convergence)

and
‖ (H − λI)fm ‖→ 0 (2.3)
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as m → ∞ [4, p.415]. Such a sequence is called a singular (or Weyl) sequence. In
section 3, our choice of fm will lie in D(H̃) so that (2.3) becomes simply∫

R1

| (∆ + λI)fm |2 dx +
∫

R2

| (∆ + λI)fm |2 dx → 0 (2.4)

by (2.1), subject to fm satisfying the normal derivative condition (2.2).

3. The singular sequence

Our idea of asymptotic straightness is simply that Γ should lie close to arbitrarily
long disjoint line segments as Γ recedes to infinity. The segments can be located
without restriction in R2 but, purely for convenience in the proof which follows,
we take them to lie along the x−axis. Thus we assume that there are disjoint
intervals Im = (cm−am, cm +am) on the x−axis with cm →∞ and am →∞ and,
for x in each Im, Γ has the equation y = γ(x) with

γ(x) → 0 (3.1)

as x → ∞ through the Im. As in section 2, we take it that α(x) is non-negative,
bounded and continuous on Γ.

Theorem 3.1. Let γ(x) have continuous derivatives up to order 3 in each Im and,
in addition to (3.1), let

γ(r)(x) → 0 (r = 1, 2, 3) (3.2)
as x → ∞ through the Im. For x ∈ Im, we write α(x) := α(x, γ(x)) and assume
that α(x) has a continuous second derivative. As x → ∞ through the Im, let
α(x) tend to a finite limit α0 (> 0) with α(r)(x) → 0 (r = 1, 2). Then σess ⊃
[−α2

0/4,∞).

Proof. In the square Sm = (cm − am, cm + am)× (−am, am) we define

fm(x) = bmhm(x− cm)hm(y) exp{−β(x) | y − γ(x) | +iνx} (3.3)

where bm is the normalisation factor making ‖ fm ‖= 1, ν ≥ 0 and hm is as usual
a C(2)(−∞,∞) function such that

hm(t) = 1 (| t |≤ am − 1) = 0 (| t |≥ am)

and with derivatives independent of m. Finally, β(x) (≥ 0) is chosen so that fm

satisfies (2.2), and we deal with this choice now.
When fm is substituted into the left-hand side of (2.2), the net result comes

only from the modulus term in (3.3). Let θ(x) = tan−1 γ(x) (| θ(x) |≤ π/2). Then
a simple calculation shows that (2.2) holds if

2β(cos θ + γ′ sin θ) = α,

giving

β =
1
2
α cos θ =

1
2
α(1 + γ′2)−1/2. (3.4)
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Then, as x→∞ through the Im, we have from (3.2)

β(x) → 1
2
α0, β(r)(x) → 0 (r = 1, 2). (3.5)

It follows now from (3.1) and (3.3) that

1 = b2m{1 + o(1)}
∫ am

−am

dt

∫ am

−am

exp{−2β(t+ cm) | y |}dy

and hence, by (3.2) and (3.5),

bm ∼ (4am/α0)−1/2 (m→∞). (3.6)

The weak convergence condition fm ⇀ 0 is easily verified from (3.3) and
(3.6). Then, to apply (2.4), we consider ∆fm for x in Sm and x 6∈ Γ. The situation
is similar on the two sides of Γ, and we concentrate on y > γ(x). Then, by (3.3),

∆fm = {β2 + (βγ′ + β′γ − yβ′ + iν)2

+βγ′′ + 2β′γ′ + β′′γ − yβ′′}fm + Em, (3.7)

where Em denotes terms containing derivatives of hm. Now h′m(t) and h′′m(t) are
only non-zero when | am | −1 < t <| am |, and it follows from (3.6) that ‖ Em ‖=
o(1) (m→∞).

Finally, by (3.1), (3.2) and (3.5), we have from (3.7)∫
R1

| (∆+λI)fm |2 dx+
∫

R2

| (∆+λI)fm |2 dx = (α2
0/4−ν2 +λ)2 ‖ fm ‖2 +o(1),

and hence (2.4) is satisfied with λ = −α2
0/4 + ν2. Since ν ≥ 0 is arbitrary, this

proves that σess ⊃ [−α2
0/4,∞) as required. �

The proof includes the case of constant α(x) (= α > 0) in the Im, and then
σess ⊃ [−α2/4,∞). We also note that the theorem remains true when α0 = 0. We
simply choose an fm like (3.3) but with β = 0 and supported on a large square
which does not intersect Γ. We omit the familiar details which are as in [2] for
example.
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