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Abstract. A massively parallel processor array which combines image
sensing and processing is utilized for the implementation of a simple Cel-
lular Automaton. This automaton is essential part of an image processing
task supporting object detection in real-time for an autonomous robot
system. Experiments are presented, which demonstrate that objects will
be detected only if they move below a specific velocity in the visual
scene. Based on these experiments we will discuss the role of configu-
rations changes if a Cellular Automaton is seen as a parallel processing
computer. This leads us to the conclusion that if CA are performing
non-static data processing tasks they might be better approached as
sensor-driven parameterized dynamical system rather than as parallel
computers operating on initial configurations only.

1 Motivation

Recent progress in chip design provides massively parallel processor arrays where
each processor is linked to its neighbor processors. Such systems are ideally suited
to perform low-level pixel-parallel image processing tasks. The SCAMP (SIMD
Current-mode Analogue Matrix Processor ) vision chip is one example of such a
parallel processor array that integrates image sensing and processing on a single
silicon die providing low-cost, low-power and high-performance vision system for
autonomous robot systems [5].

Unfortunately, the majority of current low-level pixel-based image processing
approaches are focused on 2-dimensional convolution operators and the analysis
of static features in static images. However, image processing in autonomous
robots is rather confronted with permanently changing signals and noise.

On the other hand, architecture and data processing of the SCAMP vision
system are able to instantiate 2-D Cellular Automata (CA). It is well known that
CA provide a rich reservoir of dynamical properties and behavior on a global scale
[7]. Our assumption is that nonlinear dynamical properties generated by CA are
a promising substrate for the processing of complex and changing image data for
autonomous robot systems. However, methods and frameworks are missing which
allow a targeted design of CA supporting specific processing tasks on image data.



2 M. Hülse et al.

The following investigation is a first step towards CA-based processes with high
update rates (100 kHz) performing image processing in real-time in embodied
autonomous robot systems.

This contribution summarizes first simple experiments that demonstrate how
a CA can support image processing for a robot platform in a changing environ-
ment (including an active vision system and a manipulator). In particular we will
present an image processing task performed on different time scales. Based on
this example we will discuss the utilization of CA as data processing devices. This
discussion emphasizes the importance of changes in CA configurations during the
evolution of the system (here caused by visual input data). This view might be
contrary to traditional approaches, where CA are seen as discrete dynamical
system working as a parallel processing computer, “where data is considered to
be the initial CA configuration” [7]. Our hypothesis is that an application of
CA for “non-static” / robotic related image processing has to consider CA as
sensor-driven parameterized dynamical systems [6]. In consequence, the data the
system is operating on are the parameter values of the Cellular Automaton and
their changes over time caused by the visual input.

2 The SCAMP vision system

The SCAMP vision chip is a sensor/processor device, including a 128x128 array
of processor cells, arranged in a 4-connected neighborhood. Each processor also
integrates image sensor, for pixel-parallel image input. The processors operate
in a single-instruction multiple-data (SIMD) mode, i.e. all processors execute
the same instruction, issued by a central controller. The instruction set includes
arithmetic operations and neighbor transfers, which allows implementation of a
variety of pixel-parallel local computations, characteristic of early vision appli-
cations. SCAMP executes instructions at 1MHz rate, so that even fairly complex
operations can be easily implemented at video frame rates.

The general-purpose, software-programmable nature of the device enables the
execution of a variety of algorithms. In particular, CA can be easily implemented,
by writing simple programs to execute state update rules. The neighborhood
needs not be restricted to 4-connectivity, as data can be easily passed between
processors in several steps over larger distances.

The processors in the SCAMP chip operate on analogue data values, which
by convention are assumed to be in the range [−128, 128] (non-integer values
are possible). The out-of-range operation results in a soft saturation (sigmoid
function), which can be exploited to implement nonlinearities in the system
[2]. Logic operations, and discrete state-space CA can be implemented using
thresholds (comparison operations), however the native mode of operation of
the chip is continuous-value.
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Fig. 1. Robotic arm and manipulator system mounted on a table and the active vision
system, scanning the scenario with two cameras and a SCAMP vision system.

3 The use of SCAMP in a robotic setup

The robotic scenario in which SCAMP is used consists of an active vision system
and a robot manipulator with 7 degrees of freedom (DOF). As one can see in Fig.
1, the robot manipulator is mounted on a table. Sensory input driving reaching
and grasping is delivered from the active-vision system scanning the table. Apart
from SCAMP two additional cameras deliver visual inputs that can drive the
pan, tilt and verge motors of the active vision system. In the following we present
experiments where only SCAMP is used for visual input and the pan-tilt-verge
configuration is fixed. In other words the SCAMP camera doesn’t move while
scanning the table.

Confronted with such a robot system the first step is the implementation of
control systems performing goal-directed and robust gaze and reaching behav-
ior. However, for autonomous robots it is important that the system itself, i.e.
without human interaction, is able to trigger action sequences for reaching or
gazing. In consequence, the system needs to measure not only where an object
is located on the table but also whether or not it is moving, and if so, does it
move slow enough in order to reach it with its manipulator.

Due to the physical reality of our robot hardware, a simple pan-tilt-system,
obviously, can operate in a much faster way than an 7 DOF robot arm. Successful
reach movements can only be performed with object much slower than it is
necessary for a visual based object tracking with our pan-tilt system. Therefore,
we have implemented a process that detects objects in real-time depending on
the speed the objects move in the visual field. If an object is faster it becomes
invisible to the system. If an object emerges in the visual field then it is implicitly
given that it doesn’t move at all or at least slow enough to reach for it. The
sensitivity to changes in the visual input depends on a single parameter and
therefore the system can easily be adapted to different time scales of the different
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(a) (b) (c)

Fig. 2. Resulting processor values staring from an random initial configuration (a).
The grey values representing values around zero. The patterns in (b) emerge from the
inhibitory coupling (w = −0.25), while the pattern in (c) is generated by the excitatory
linking (w = 0.25).

actuators in the robot system (here we have a manipulator and a pan-tilt-verge
system). The core application of this image data processing task is provided by
a Cellular Automaton. The automaton is instantiated by the SCAMP system,
which we will explain in the following section.

4 Embedding a Cellular Automaton into a robotic

scenario

The structure of the applied CA is very simple and straightforward to implement
with SCAMP. Each processor Pn receives input from its four direct neighbor
processors Pn,N , Pn,S , Pn,E and Pn,W . Due to the analogue character of SCAMP
operating on currents, we have continuous values for all Pn. As we have already
mentioned, the lower and upper saturation domain resulting from out-of-range
operations match with a sigmoid function f [2]. The system can be formally
written as:

Pn(t + 1) = f (w · (Pn,N (t) + Pn,S(t) + Pn,E(t) + Pn,W (t))) ,

where w < 0 (here w = −0.25). In fact this CA implementation on SCAMP is
continuous-value Cellular Automaton with a nonlinear update rule, or as it is
called in the literature a Discrete-Time Cellular Neural Network (DT-CNN) [4].

Since the values of the processors can be positive or negative this inhibitory
linking scheme generates an interplay of excitation and inhibition. Without vi-
sual input and random initialization, the processor array evolves to a state where
the value of a processor is very likely the same of its direct and indirect neighbors.
This is represented by large regions and patches colored either black or white,
as shown in Fig. 2(b). These black and withe regions indicate the emergence of
clusters and closed regions containing processors whose values are driven into the
same saturation domain, either in the upper or lower saturation. It is interesting
to see, that the opposite is the case for positive links between the processor (i.e.
w > 0). Such an excitatory coupling generates almost a chess-board pattern,



Cellular Automata for robot vision 5

. . . . . . . . . . . .

Fig. 3. Sequence of CA configuration (time step: 0,. . . , 9, 50, 70 and 90) without
resetting and continuous image data input.

i.e. each direct neighbor processor is driven into the opposite saturation domain,
Fig. 2(c).

Considering the negative coupling between the processors it seems that the
growing black patches are perfect to indicate salience region within an image.
Therefore, we implemented the CA with negative couplings on SCAMP and
further on, used the visual data provided by SCAMP (128x128 grey value image)
as permanent input for this specific CA. Hence, the CA configuration at time
step (t + 1) is determined by the configuration at time t and the current value
of the corresponding pixel in the image (PIXn(t)):

Pn(t + 1) = f (PIXn(t) + w · (Pn,N (t) + Pn,S(t) + Pn,E(t) + Pn,W (t))) ,

where w = −0.25. In Fig. 3 an example of the resulting sequence of images is
shown. The black circular regions in the image which represent the objects on
the table are growing, even if initially they have very low grey values. This is
the result of adding the current visual input in each time step.

As the sequence in Fig. 3 is indicating, such a setup seems rather inapplica-
ble for non-static image data, i.e. moving objects or a moving camera. After a
number of time steps the whole image is black, because the black regions never
disappear again and the system becomes “blind”. In order to stay sensitive to
new visual stimuli we setup an additional reset mechanism, which resets the CA
configuration every n time steps. The CA configuration before the reset is the
output of our image processing. In this way the image processing is actually
established by two processes: the inner loop that updates the CA involving the
current visual input of SCAMP, and the outer loop reading the CA configuration
every n steps and resetting the CA configuration. As we will show in the next
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Fig. 4. Sequence of images representing the visual input PIX and the CA configuration
between the resets, done every 6th time step. The six images in each line represent one
period starting with the first state after the reset and ending with the last state before
reset. The first five images in each line represent the visual input PIX at the first five
time steps after reset. The last image represents the CA configuration before it is reset,
i.e. the actual output data of the process

section the output stream generated by the outer loop provides the properties
we are aiming for: objects on the table only emerge in the output image, if their
speed in the visual image is below a certain value.

5 Experiments with moving objects

In the following experiments we have reset the system every six time steps (n =
6). In order to give the reader an impression of the relation between output and
visual scene, we have plotted six images between each reset. The first five images
in this sequence represent the visual input data PIX for the first five steps after
each reset. The last image in this line the actual output / result of the process.
It is the CA configuration its reset.

In the first example shown in Fig. 4 we see at the front part of the table a
small object sliding into the scene. The first five images in the first line show this
event. The faster the object moves the more blurred it appears in these images.
Notice, these images represent the visual input data PIX which are fed into
the CA. The last image in this line shows the CA configuration representing
the actual output of this process. One can see, that the new object doesn’t
emerge in this image, despite the fact that it is clearly visible in four out of five
PIX images. Once the object has stopped on the table (second line of images) it
emerges in the output image. In other words, only after it has stopped it becomes
visible for the robot system.
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Fig. 5. The representation of image data processing as in Fig. 4. See text for explana-
tion.

Another example of object detection is shown in Fig. 5. There the new object
remains invisible for more than 12 time steps because it is moving to fast for
this configuration.

6 Conclusion

We have shown that a Cellular Automaton can provide image processing for
an autonomous robot system. Objects are only detected by the vision system if
they move below a certain speed. This quality of object detection simplifies the
triggering of reaching actions because if a stimulus emerges then it is guaranteed
that it isn’t moving to fast for the arm system and the robot can directly perform
the related action sequence without any further data processing.

The “insensitivity” to fast moving objects is determined by the frame rate
SCAMP is providing visual input. Within certain boundaries this frame rate is
a free parameter of the SCAMP vision system and therefore, this process can
easily be tuned to different time scales, even online.

The crucial element for detecting slow moving objects only is the continuous
input of new visual data into the Cellular Automaton at each time step. As the
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image sequences in Fig. 4 and 5 clearly show occasional and limited appear-
ance of low activities in the visual data (low grey values) doesn’t immediately
drive the output values into the lower saturation. Only if a low activation in a
region of high activations is continuously measured then the corresponding CA
units change and indicate a object in the visual scene. This mechanism can be
seen as accumulation of evidence and is frequently discussed for action-selection
processes in biological and artificial systems [3].

However, CA are usually referred to as computational devices that operate
only on initial configurations. The setup here could be seen as a counterpart of
this approach and we believe, our experiments give evidence that it is worth in-
vestigating CA operating with continuously changing inputs. Nevertheless, there
is a fundamental difference between an Cellular Automaton operating on initial
configurations only and an automaton driven by permanent changing inputs.
With respect to the update rule describe above we can describe three principal
ways CA can operate on image data. The first possibility is that image data are
only used for determining the initial state of the Cellular Automaton, i.e. each
processor Pn is initialized with the value of the corresponding pixel in the image:

Pn(0) = PIXn(0).

After this initialization the system is updated according to the update rule which
doesn’t involve any image data:

Pn(t + 1) = f (w · (Pn,N (t) + Pn,S(t) + Pn,E(t) + Pn,W (t))) .

In fact we have a dynamical system without free parameter. Hence, its behavior
is determined by its initialization, a single image, only.

Another way of combining visual data and CA uses the image data for the
definition of a constant offset:

On = PIXn(0)

for each unit in the automaton. This offset is a parameter that now determines
the update rule as follows:

Pn(t + 1) = f (On + w · (Pn,N (t) + Pn,S(t) + Pn,E(t) + Pn,W (t))) ,

where Pn(0) is arbitrary chosen. In this case we have a parameterized dynamical
system [1]. The system behavior of CA is determined by the initialization and

the parameter On for each processor.
Comparing these two cases with the original update rule applied for our

robotic experiments:

P (t + 1) = f (PIXn(t) + w · (PN (t) + PS(t) + PE(t) + PW (t))) .

we see that our setup is the only process that can deal with changing image data.
In contrast to the other systems, where there is no way of feeding data changes
into the running process.
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To sum up, the here introduced CA is, precisely speaking, an implementa-
tion of a parameterized dynamical system, which parameters change according
to the image data. This is, what we call an sensor-driven parameterized dynam-
ical system, because parameter changes are driven by the image data which is
the sensory input of an autonomous robot system. Sensor-driven parameterized
dynamical systems seem to be a promising approach to deal with changing in-
puts, since the two other alternatives combining CA and image data are only
operating on static data. This observation let us conclude that CA should be ap-
proached as sensor-driven parameterized dynamical systems, if one is interested
in applications and novel computational paradigms for embodied robot systems.

Further on, as we have outline above our continuous-value CA can also be
seen as Discrete-Time Cellular Neural Networks. Research on DT-CNN has al-
ready emphasized and exemplified the need of continuous input for visual data
processing [4]. However, as it is often the case for complex systems, the phe-
nomena are well know, the challenge is to develop related applications as well
as general mechanisms that might lead to alternative paradigms in informa-
tion processing. In this paper we have demonstrated that the SCAMP system
is able to create complex dynamics in real-time. Therefore, embodied robot sys-
tems equipped with a SCAMP vision chip seem to be an efficient framework
for bridging the complex phenomena of CA with complex image processing in
real-time. In addition, autonomous robot systems and self-organized adapta-
tion processes (e.g. evolutionary algorithms) provide a context where the use of
complex dynamics for real-world application can be systematically explored and
analyzed. This has be done successfully within an evolutionary robotics frame-
work for small discrete-time dynamical systems (small with respect to the state
space) [6]. We believe SCAMP is a promising tool for scaling up this approach
massively.
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