ABERYSTWYTH

Citation for published version (APA): Davies, I. T. (2008). *The Stokes experiment in a foam: A summary*. Engineering and Physical Sciences Research Council. Publication date: 2008

General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or

research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

tel: +44 1970 62 2400 email: is@aber.ac.uk

Download date: 18. Apr. 2020

The Stokes experiment in a foam - a summary

One way in which the complex elastic, plastic and viscous properties of a liquid foam can be explored is through the interaction between the foam and an object moving relative to it. This variation on the classic "Stokes" experiment is an important tool to investigate foam rheology. Here, we provide a summary of published experimental or simulation results and categorize them in various ways to highlight common themes and results, and unexplored areas of parameter space.

AUTHOR	TITLE	PUBLISHED	YEAR	Dimensions, Experiment (E) or Simulation (S)	Constant Force / Constant Velocity (CF/CV)	Object in foam	Control Parameters	Data obtained
S.J. Cox, M.D. Alonso, S.Hutzler & D. Weaire	The Stokes Experiment in a Foam	Foams, Emulsions and their applications	2000	3D E	CF	Sphere	sphere size and flow rate	sphere velocity, position of the sphere
A. Wyn, I.T. Davies, S.J. Cox	Simulation of 2D foam Rheology: Localization in linear Couette flow and the interaction of settling discs		2008	2D S	CF	Two circular discs	Size of obstacles, initial separation between discs, initial orientation of discs	Centre- points position, rotation and separation variations between discs
I. Cantat, O. Pitois	Stokes experiment in a liquid foam	Phys. Fluids 18	2006	3D E	CV	Sphere	Bubble size, fluid fraction,	Force fluctuations, shear modulus, plastic threshold
J. R. de Bruyn	Transient and steady–state drag in foam	Rheol. Acta 44, 150-159	2004	3D E	CV	Sphere	size of container, velocity of sphere	steady-state drag force, transient and relaxation of force
J. R. de Bruyn	Age dependence of the drag force in an aqueous foam	Rheol.Acta. 45, 801-811	2005	3D E	CV	sphere	Size of container, velocity of sphere, age of foam	drag force, transient and relaxation of force, yield stress,
I. Cantat, O. Pitois	Mechanical probing of liquid foam ageing	J. Phys. : Condens. Matter 17, S3455- S3461	2005	3D E	CV	Sphere	bubble size, initial liquid fraction, translation of container, sphere size	liquid drainage and coarsening measure

AUTHOR	TITLE	PUBLISHED	YEA R	Dimensions, Experiment (E) or Simulation (S)	Constant Force / Constant Velocity (CF/CV)	Object in foam	Control Parameters	Data obtained
M. Asipauskas, M. Aubouy, J.A. Glazier, F. Graner, Y. Jiang	A texture tensor to quantify deformations: the example of two- dimensional flowing foams	Granular Matter 5, 67-74	2003	2D E	CV	Circular disc	liquid fraction, flow rate	Stress, texture tensor, velocity field, statisticlal strain
B. Dollet, M. Aubouy, F. Graner	Anti-Inertial Lift in Foams: A Signature of the Elasticity of Complex Fluids	Phys. Rev. Lett. 95	2005	2D E	CV	Cambered airfoil	flow rate	torque, lift & drag, velocity, pressure fields,
B. Dollet, F. Elias, C. Quilliet, A. Huillier, M. Aubouy, F. Graner	Two-dimensional flows of foam: Drag exerted on circular obstacles and dissipation	Colloids and Surfaces 263, 101-110	2005	2D E	CV	Circular disc	Flow rate, bubble volume, viscosity of solution, size of obstacle, BCs	Drag force on obstacle, dissipation (pressure gradient)
B. Dollet, F. Elias, C. Quilliet, C. Raufaste, M. Aubouy, F. Graner	Two-dimensional flow of foam around an obstacle: Force measurements	Phys. Rev. E 71	2005	2D E	CV	Circular disc	flow rate, bubble volume, size of obstacle, boundary conditions	yield drag, viscous coefficient,
B. Dollet, M. Durth, F. Graner	Flow of foam past an elliptical obstacle	Phys. Rev. E 73	2006	2D E	CV	Ellipse	Initial orientation of obstacle, flow rate	Drag, lift and torque exerted on the ellipse
I. Cantat, R. Delannay	Dynamical transition induced by large bubbles in two-dimensional foam flows	Phys. Rev. E 67	2003	2D E	CV	Large bubble	flow rate /velocity	pressure fields, velocity threshold & relative velocity

AUTHOR	TITLE	PUBLISHED	YEAR	Dimensions, Experiment (E) or Simulation (S)	Constant Force / Constant Velocity (CF/CV)	Object in foam	Control Parameters	Data obtained
B. Dollet, F. Graner	Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow	J. Fluid Mech. 585 181-211	2007	2D E	CV	Circular disc	Obstacle diameter, flow rate, bubble area, foam thickness (liquid fraction), bulk viscosity	Pressure field, velocity and velocity gradient fields, tensorial fields (texture tensor, statistical elastic strain, T1s)
P. Marmottant, B. Dollet, C. Raufaste, F. Graner	Local observation of plastic rearrangements in a flowing foam		2006	2D E	CV	Circular disc	Flow rate, fluid fraction	Texture tensor, elastic strain tensor, deformation rate tensor, topological tensor
O. Sun, S. Hutzler	Studying localized bubble rearrangements in 2D liquid foams using a hybrid lattice gas model	Colloids and Surfaces A: Physiochem. Eng. Aspects 263, 27-32	2005	2D E	CV	Circular disc	Liquid fraction	spatial variation of bubble rearrangements,
S. Courty, B.Dollet, F. Elias, P. Heinig, F. Graner	Two-dimensional shear modulus of a Langmuir foam	Europhys. Lett. 64, 709-715	2003	2D E	CV	Circular (tip of rod)	Motion of the obstacle	Resistant force on obstacle, stress tensor, statistical stress tensor, shear modulus
P. Marmottant, C. Raufaste, F. Graner	Discrete rearranging disordered patterns, part II: 2D plasticity, elasticity and flows of a foam		2008	2D E	CV	Circular disc	Liquid fraction	Texture tensor, topological tensor, strain tensor, velocity field

AUTHOR	TITLE	PUBLISHED	YEAR	Dimensions, Experiment (E) or Simulation (S)	Constant Force / Constant Velocity (CF/CV)	Object in foam	Control Parameters	Data obtained
S.J. Cox, B. Dollet, F. Graner	Foam flow around an obstacle: simulations of obstacle-wall interaction	Rheol. Acta 45,	2006	2D S	CV	Circular disc	obstacle diameter, bubble area, distance between obstacle and wall	lift and drag forces, pressure & displacement fields, T1 field
C. Raufaste, B. Dollet, S.J. Cox, Y. Jiang, F. Graner	Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction	The European Physics Journal E— Soft Matter 23, 217-228	2007	2D E+S	CV	Circular disc	Liquid fraction, obstacle size, bubble size, channel width	Network and pressure forces in simulation, total force in experiment, yield drag of foam

Acknowledgments

The author would like to thank participants in the Foam Mechanics Workshop (Grenoble, January 2008), and in particular I. Cantat, S. Cox, B. Dollet and F. Graner, for their suggestions that helped to improve this summary.