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Abstract

Crisp decision trees are one of the most
popular classification algorithms in cur-
rent use within data mining and machine
learning. However, although they pos-
sess many desirable features, they lack the
ability to model vagueness. As a result of
this, the induction of fuzzy decision trees
(FDTs) has become an area of much in-
terest. One important aspect of tree in-
duction is the choice of feature at each
stage of construction. If weak features are
selected, the resulting decision tree will
be meaningless and will exhibit poor per-
formance. This paper introduces a new
measure of feature significance based on
fuzzy-rough sets for use within fuzzy ID3.
The measure is experimentally compared
with leading feature rankers, and is also
compared with traditional fuzzy entropy
for fuzzy tree induction.

1 Introduction

A decision tree can be viewed as a partitioning of
the instance space. Each partition, represented
by a leaf, contains the objects that are similar
in relevant respects and thus are expected to be-
long to the same class. The partitioning is car-
ried out in a data-driven manner, with the final
output representing the partitions as a tree. An
important property of decision tree induction al-
gorithms is that they attempt to minimize the
size of the tree at the same time as they optimize
a certain quality measure.

The general decision tree induction algorithm
is as follows. The significance of features is com-
puted using a suitable measure (in C4.5 this is
the information gain metric [11]). Next, the
most discriminating feature according to this
measure is selected and the dataset partitioned
into sub-tables according to the values this fea-
ture may take. The chosen feature is represen-

ted as a node in the currently constructed tree.
For each sub-table, the above procedure is re-
peated, i.e. determine the most discriminating
feature and split the data into further sub-tables
according to its values.

This is a similar process in the fuzzy case.
However, a measure capable of handling fuzzy
terms (instead of crisp values) must be used.
Data is partitioned according to the selected fea-
ture’s set of fuzzy terms. There must also be a
way of calculating the number of examples that
belong to a node. In the crisp case, this is clear;
objects either contain a specific attribute value
or they do not. In the fuzzy case this distinction
can no longer be made, as objects may belong
to several fuzzy terms. A suitable stopping con-
dition must also be chosen that will limit the
number of nodes expanded.

Clearly, one important aspect of this proced-
ure is the choice of feature significance measure.
This measure influences the organization of the
tree directly and will have profound effects on
the resulting tree’s accuracy.

It has been shown that the fuzzy-rough met-
ric is a useful gauger of (discrete and real-valued)
attribute information content in datasets [7].
This has been employed primarily within the
feature selection task, to benefit the rule in-
duction that follows this process. It is there-
fore interesting to investigate how an induction
algorithm based on the fuzzy-rough measure
would compare with standard algorithms such
as fuzzy ID3 [6], both in terms of the complexity
of the trees constructed and the resulting accur-
acy.

The rest of this paper is structured as fol-
lows. The second section summarises the the-
oretical background of the basic ideas of fuzzy-
rough sets and their use for feature evaluation.
Section 3 provides results of the application of
the fuzzy-rough measure to artificial data in or-
der to locate the relevant features. Its perform-
ance is gauged in comparison to that of several
leading feature rankers. A brief introduction to



fuzzy decision trees is then given in section 4,
and experimental results comparing fuzzy ID3
with fuzzy-rough ID3 are presented in section 5.
Finally, the paper is concluded and future work
is outlined.

2 Fuzzy-Rough Feature
Significance

Although FDTs based on the fuzzy entropy se-
lection measure have been successful, there have
been few attempts to investigate radically dif-
ferent selection measures. Research has concen-
trated primarily on fuzzy entropy and its exten-
sions [2, 13]. Here, the focus is on introducing
a new measure of feature significance based on
fuzzy-rough sets for FDT induction.

2.1 Fuzzy Equivalence Classes

In the same way that crisp equivalence classes
are central to rough sets [3], fuzzy equivalence
classes are central to the fuzzy-rough set ap-
proach [4]. For typical applications, this means
that the decision values and the conditional val-
ues may all be fuzzy. The concept of crisp equi-
valence classes can be extended by the inclusion
of a fuzzy similarity relation S on the universe,
which determines the extent to which two ele-
ments are similar in S. The usual properties of
reflexivity (µS(x, x) = 1), symmetry (µS(x, y) =
µS(y, x)) and transitivity (µS(x, z) ≥ µS(x, y) ∧
µS(y, z)) hold.

Using the fuzzy similarity relation, the fuzzy
equivalence class [x]S for objects close to x can
be defined:

µ[x]S(y) = µS(x, y) (1)

The following axioms should hold for a fuzzy
equivalence class F :

• ∃x, µF (x) = 1

• µF (x) ∧ µS(x, y) ≤ µF (y)

• µF (x) ∧ µF (y) ≤ µS(x, y)

The first axiom corresponds to the require-
ment that an equivalence class is non-empty.
The second axiom states that elements in y’s
neighbourhood are in the equivalence class of y.
The final axiom states that any two elements in
F are related via S. Obviously, this definition
degenerates to the normal definition of equival-
ence classes when S is non-fuzzy. The family of
normal fuzzy sets produced by a fuzzy partition-
ing of the universe of discourse can play the role
of fuzzy equivalence classes [4].

2.2 Fuzzy Lower and Upper
Approximations

From the literature, the fuzzy P -lower and P -
upper approximations are defined as [4]:

µPX(Fi) = infxmax{1− µFi(x), µX(x)} ∀i
(2)

µPX(Fi) = supxmin{µFi(x), µX(x)} ∀i (3)

where Fi denotes a fuzzy equivalence class be-
longing to U/P which in turn stands for the par-
tition of U with respect to a given subset P of
features.

For an individual feature, a, the partition of
the universe by {a} (denoted U/IND({a})) is
considered to be the set of those fuzzy equi-
valence classes for that feature. For example,
if the two fuzzy sets Na and Za are generated
for feature a during fuzzification, the partition
U/IND({a}) = {Na, Za}.

Note that although the universe of discourse
in feature reduction is finite, this is not the case
in general, hence the use of sup and inf above.
These definitions diverge a little from the crisp
upper and lower approximations, as the mem-
berships of individual objects to the approxima-
tions are not explicitly available. As a result of
this, the fuzzy lower and upper approximations
are redefined as:

µPX(x) = sup
F∈U/P

min(µF (x),

inf
y∈U

max{1− µF (y), µX(y)})(4)

µP X(x) = sup
F∈U/P

min(µF (x),

sup
y∈U

min{µF (y), µX(y)}) (5)

In implementation, not all y ∈ U are needed
to be considered - only those where µF (y) is
non-zero, i.e. where object y is a fuzzy mem-
ber of (fuzzy) equivalence class F . The tuple
< PX, PX > is called a fuzzy-rough set.

If the fuzzy-rough approach is to be useful,
it must be able to deal with multiple features,
finding the dependency between various subsets
of the original feature set. For example, it may
be necessary to be able to determine the degree
of dependency of the decision feature(s) with re-
spect to feature set P = {a, b}. In the crisp case,



U/P contains sets of objects grouped together
that are indiscernible according to both features
a and b. In the fuzzy case, objects may belong
to many equivalence classes, so the cartesian
product of U/IND({a}) and U/IND({b}) must
be considered in determining U/P . In general,

U/P = ⊗{a ∈ P : U/IND({a})} (6)

For example, if P = {a, b}, U/IND({a}) =
{Na, Za} and U/IND({b}) = {Nb, Zb}, then

U/P = {Na ∩Nb, Na ∩ Zb, Za ∩Nb, Za ∩ Zb}
Clearly, each set in U/P denotes an equi-

valence class. The extent to which an object
belongs to such an equivalence class is there-
fore calculated by using the conjunction of con-
stituent fuzzy equivalence classes, say Fi, i =
1, 2, ..., n:

µF1∩...∩Fn(x) = min(µF1(x), µF2 (x), ..., µFn(x))
(7)

2.3 Positive Region

The crisp positive region in the standard RST
is defined as the union of the lower approxima-
tions. By the extension principle, the member-
ship of an object x ∈ U, belonging to the fuzzy
positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (8)

Object x will not belong to the positive region
only if the equivalence class it belongs to is not a
constituent of the positive region. This is equi-
valent to the crisp version where objects belong
to the positive region only if their underlying
equivalence class does so.

2.4 Dependency Measure

Using the definition of the fuzzy positive region,
the new dependency function can be defined as
follows:

γ′P (Q) =
|µPOSP (Q)(x)|

|U| =
∑

x∈U
µPOSP (Q)(x)
|U|

(9)
As with crisp rough sets, the dependency of

Q on P is the proportion of objects that are dis-
cernible out of the entire dataset. In the present
approach, this corresponds to determining the
fuzzy cardinality of µPOSP (Q)(x) divided by the

total number of objects in the universe. It is this
fuzzy-rough measure of dependency that will be
used in the fuzzy-rough ID3 process.

3 Evaluating the Fuzzy-Rough
Metric

In order to evaluate the utility of the new fuzzy-
rough measure of feature significance, a series of
artificial datasets were generated and used for
comparison with 5 other leading feature ranking
measures. The datasets were created by gener-
ating around 30 random feature values for 400
objects. Two or three features (referred to as
x, y, or z) are chosen to contribute to the final
boolean classification by means of an inequal-
ity. For example, in table 2, if the inequality
(x + y)2 > 0.25 holds for an object then it is
classified as 1, with a classification of 0 other-
wise. The task for the feature rankers was to
discover those features that are involved in the
inequalities, ideally rating the other irrelevant
features poorly in contrast.

The tables presented in the metric compar-
ison section show the ranking given to the fea-
tures that are involved in the inequality that de-
termines the classification. The final row indic-
ates whether all the other features are given a
ranking of zero. For the data presented in table
1, the first feature, x, is used to determine the
classification. The values of features y and z are
derived from x: y =

√
x, z = x2.

3.1 Compared Metrics

The metrics compared are: the fuzzy-rough
measure (FR), Relief-F (Re), Information Gain
(IG), Gain Ratio (GR), OneR (1R) and the stat-
istical measure χ2. Metrics other than the fuzzy-
rough measure were obtained from [14]. A brief
description of each is presented next.

3.1.1 Information Gain

The Information Gain (IG) [11] is the expected
reduction in entropy resulting from partitioning
the dataset objects according to a particular fea-
ture. The entropy of a labelled collection of ob-
jects S is defined as:

Ent(S) =
c∑

i=1

−pilog2pi (10)

where pi is the proportion of S belonging to class
i. Based on this, the Information Gain metric
is:



IG(S, A) = Ent(S)−
∑

v∈values(A)

|Sv|
|S| Ent(Sv)

(11)
where values(A) is the set of values for feature
A, S the set of training examples, Sv the set of
training objects where A has the value v.

3.1.2 Gain Ratio

One limitation of the IG measure is that it fa-
vours features with many values. The Gain Ra-
tio (GR) seeks to avoid this bias by incorporat-
ing another term, split information, that is sens-
itive to how broadly and uniformly the attribute
splits the considered data:

Split(S, A) = −
c∑

i=1

|Si|
|S| log2

|Si|
|S| (12)

where each Si is a subset of objects generated
by partitioning S with the c-valued attribute A.
The Gain Ratio is then defined as follows:

GR(S, A) =
IG(S, A)

Split(S, A)
(13)

3.1.3 χ2 Measure

In the χ2 method [10], features are individually
evaluated according to their χ2 statistic with re-
spect to the classes. For a numeric attribute, the
method first requires its range to be discretized
into several intervals. The χ2 value of an attrib-
ute is defined as:

χ2 =
m∑

i=1

k∑

j=1

(Aij − Eij)2

Eij
(14)

where m is the number of intervals, k the number
of classes, Aij the number of samples in the ith
interval, jth class, Ri the number of objects in
the ith interval, Cj the number of objects in the
jth class, N the total number of objects, and
Eij the expected frequency of Aij (Eij = Ri

* Cj/N). The larger the χ2 value, the more
important the feature.

3.1.4 Relief-F

Relief [8] evaluates the worth of an attribute by
repeatedly sampling an instance and considering
the value of the given attribute for the nearest
instance of the same and different class. Relief-
F extends this idea to dealing with multi-class

problems as well as handling noisy and incom-
plete data.

3.1.5 OneR

The OneR classifier [5] learns a one-level decision
tree, i.e. it generates a set of rules that test one
particular attribute. One branch is assigned for
every value of a feature; each branch is assigned
the most frequent class. The error rate is then
defined as the proportion of instances that do
not belong to the majority class of their corres-
ponding branch. Features with the higher classi-
fication rates are considered to be more discrim-
inating than those resulting in lower accuracies.

3.2 Metric Comparison

From the results in table 1, it can be observed
that all metrics successfully rank the influential
features highest. IG, GR, 1R and χ2 rank these
features equally, whereas Re and FR rank fea-
ture z higher. Only FR, IG, GR and χ2 rate all
the other features as zero.

As can be seen from these results, feature
rankers can discover the influential features but
on their own are incapable of determining mul-
tiple feature interactions. Table 1 could be re-
duced to one feature only (either x, y, or z)
without any loss of information as only these
contribute to the classification. However, the
rankers all rate these features highly and would
only provide enough information to reduce the
data to at least these three attributes. Here,
the rankers have found the predictive (or relev-
ant) features but have been unable to determine
which of these are redundant.

Table 2 shows the results for the inequality
(x + y)2 > 0.25. Both features x and y are re-
quired for deciding the classification. All fea-
ture rankers evaluated detect this. FR, IG, GR,
1R and χ2 also rank the tenth feature highly -
probably due to a chance correlation with the
decision. The results in table 3 are for a sim-
ilar inequality, with all the feature rankers cor-
rectly rating the important features. FR, IG,
GR and χ2 evaluate the remaining features as
having zero significance.

In table 4, all metrics apart from 1R loc-
ate the relevant features. For this dataset, 1R
chooses 22 features as being the most discrim-
inating, whilst ranking features x and y last.
This may be due to the discretization process
that must precede the application of 1R. If the
discretization is poor, then the resulting feature
evaluations will be affected.



Tables 5 shows the results for data classified
by x ∗ y ∗ z > 0.125. All feature rankers cor-
rectly detect these variables. However, in table
6 the results can be seen for the same inequality
but with the impact of variable z increased. All
metrics determine that z has the most influence
on the decision, and almost all choose x and y
next. Again, the 1R measure fails and chooses
features 15, 19 and 24 instead.

This short investigation into the utility of the
fuzzy-rough measure has shown that it is com-
parable with the leading measures of feature im-
portance. Indeed, its behaviour is quite similar
to the information gain and gain ratio metrics.
This is interesting as both of these measures are
entropy-based. Unlike these metrics, the fuzzy-
rough measure may also be applied to datasets
containing real-valued decision features, hence
its application within FDT construction.

4 Fuzzy Decision Trees

As with crisp decision trees, fuzzy decision tree
induction involves the recursive partitioning of
training data in a top-down manner. The most
informative feature is selected at each stage, and
the remaining data is divided according to the
values of the feature. Partitioning continues un-
til there are no more features to evaluate, or if
all the examples in the current node belong to
the same class.

4.1 Main Differences

One significant problem that has faced crisp tree
induction is how to effectively handle continu-
ous features. A standard approach that aims to
address this is C4.5 [11] which considers inter-
vals of values during tree construction. However,
some interpretability of the tree is lost as the in-
tervals themselves, although useful for classifica-
tion purposes, may not have any direct physical
relevance or meaning to the problem at hand.

FDTs are able to handle continuous features
through the use of fuzzy sets. Fuzzy sets and
logic allow language-related uncertainties to be
modelled and provide a symbolic framework for
knowledge comprehensibility. Unlike crisp de-
cision tree induction, FDTs do not use the ori-
ginal numerical feature values directly in the
tree. Instead, they use fuzzy sets generated
either from a fuzzification process beforehand
or expert-defined partitions to construct com-
prehendible trees. As a result of this, there are
several key differences between FDT induction
and the original crisp approaches:

• Membership of objects. Traditionally ob-
jects/examples belonged to nodes with a
membership of {0, 1}; now these member-
ships may take values from the interval
[0,1]. In each node, an example has a dif-
ferent membership degree to the current ex-
ample set, and this degree is calculated from
the conjunctive combination of the mem-
bership degrees of the example to the fuzzy
sets along the path to the node and its de-
grees of membership to the classes.

• Measures of feature significance. As fuzzy
sets are used, the measures of significance
should incorporate this membership inform-
ation to decide which features form nodes
within the tree. This is particularly import-
ant as the quality of the tree can be greatly
reduced by a poor measure of feature signi-
ficance.

• Fuzzy tests. Within nodes, fuzzy tests are
carried out to determine the membership
degree of a feature value to a fuzzy set.

• Stopping criteria. Learning is usually ter-
minated if all features are used on the cur-
rent path, or if all objects in the current
node belong to the same class. With fuzzy
trees, objects can belong to any node with
any degree of membership. As a result
of this, fuzzy trees tend to be larger in
size which can lead to poorer generalisation
performance. An additional threshold can
be introduced, based on the feature signi-
ficance measure, to terminate construction
earlier in induction. For classification, the
decision tree is converted to an equivalent
ruleset.

The focus of this paper is the choice of sig-
nificance measure that determines which attrib-
utes form nodes in the resulting decision tree.
The natural choice for FDTs is fuzzy entropy
[6, 9], a fuzzy extension of the crisp entropy
measure used with much success in crisp induc-
tion.

4.2 Fuzzy Entropy Measure

Let I = (U, A) be an information system, where
U is a non-empty set of N finite objects (the uni-
verse) and A is a non-empty finite set of n attrib-
utes, {A1, A2, ..., An}. An attribute Ak takes mk

values of fuzzy subsets {Ak
1 , Ak

2 , ..., Ak
mk
}. Based

on the attributes, an object is classified into C
fuzzy subsets ω1, ω2, ..., ωC .



The fuzzy entropy for a subset can be defined
as

Hk
i =

C∑

j=1

−pk
i (j) log pk

i (j) (15)

where, pk
i (j) is the relative frequency of the ith

subset of attribute k with respect to ωj (1 ≤ j ≤
C) and defined as

pk
i (j) =

|Ak
i ∩ ωj |
|Ak

i |
(16)

The cardinality of a fuzzy set is denoted by | · |.
An attribute s is chosen to split the instances at
a given node according to

s = arg min
1≤k≤n

Ek (17)

where

Ek =
mk∑

i=1

|Ak
i |∑mk

j=1 |Ak
j |

Hk
i (18)

5 Experimentation

To demonstrate the applicability of the proposed
approach, both the fuzzy and fuzzy-rough de-
cision tree induction methods were applied to a
variety of benchmark datasets obtained from [1].
This section presents the results of experiment-
ation carried out on these datasets.

5.1 Setup

In order for both decision tree inducers to op-
erate, fuzzy sets must first be defined for real-
valued attributes that appear in the data. For
this, a simple fuzzification was carried out based
on the statistical properties of the attributes
themselves. It is expected that the classifica-
tion performance would be greatly improved if
the fuzzifications were optimized.

The datasets were then split into two halves
of equal size, one for training with the other
for testing, whilst maintaining the original class
distributions. To show the general applicability
of both approaches, the inducers were also ap-
plied to non-fuzzy data. Datasets WQ2class and
WQ3class are the water treatment datasets with
the original thirteen classes collapsed into two or
three respectively.

5.2 Results

As can be seen from table 7, both approaches
perform similarly for the fuzzy data. The size

Dataset F-ID3 FR-ID3
Train Test Train Test

Iris 0.973 0.947 0.973 0.947
Glass 0.514 0.495 0.523 0.476
Credit 0.890 0.849 0.742 0.641

WQ2class 0.824 0.787 0.824 0.782
WQ3class 0.816 0.696 0.801 0.722
Ionosphere 0.862 0.783 0.852 0.783

Olitos 0.678 0.590 0.695 0.656

Table 7: Classification accuracies for fuzzy ID3
and fuzzy-rough ID3 (real-valued data)

of the resultant rulesets that produce these ac-
curacies can be found in table 8. In general,
FR-ID3 produces slightly larger rulesets than
the standard approach. There is a notable dif-
ference in performance for the Credit dataset,
where FR-ID3 produces a reduced classification
accuracy. From table 8 it can be seen that this is
the only case where FR-ID3 produces a smaller
ruleset. The paired t-tests for training and test-
ing results for F-ID3 and FR-ID3 produce the
p-values 0.368 and 0.567 respectively.

Dataset F-ID3 FR-ID3
Iris 10 13

Glass 32 44
Credit 51 50

WQ2class 108 140
WQ3class 165 328
Ionosphere 22 28

Olitos 9 17

Table 8: Number of rules produced (fuzzy data)

Dataset F-ID3 FR-ID3
Train Test Train Test

Derm 0.514 0.257 0.838 0.615
Derm2 0.932 0.818 0.972 0.906
DNA 0.575 0.348 0.475 0.386
Heart 0.826 0.772 0.826 0.793

WQ-disc 0.798 0.625 0.698 0.563

Table 9: Classification accuracies for fuzzy ID3
and fuzzy-rough ID3 (crisp data)

The results of the application of fuzzy and
fuzzy-rough ID3 to crisp data can be found in
table 9, with the resulting ruleset size in table
10. The results show that FR-ID3 outperforms
F-ID3 in general, as well as producing smaller
rulesets. Here, the paired t-tests for the training
and testing results produce the p-values 0.695



and 0.283 respectively.

Dataset F-ID3 FR-ID3
Derm 53 46
Derm2 20 18
DNA 25 22
Heart 25 30

WQ-disc 28 28

Table 10: Number of rules produced (crisp data)

6 Conclusion

Automated generation of feature pattern-based
if-then rules is essential to the success of many
intelligent pattern classifiers, especially when
their inference results are expected to be directly
human-comprehensible. This paper has presen-
ted such an approach which utilises a fuzzy-
rough measure of feature significance to con-
struct fuzzy decision trees. The results show
that the proposed method performs comparably
to fuzzy ID3 for fuzzy datasets, and better than
it for crisp data. Further experimentation is to
be carried out on a fuller range of datasets in
the future.

One of the issues raised by the experimenta-
tion is the size of ruleset produced by the fuzzy-
rough method. Future research will investigate
the reasons behind this and how this might be
addressed. Decision tree pruning is one prom-
ising solution, as its positive impact on per-
formance for crisp tree-based methods is well
established. Additional future work includes
the application of a feature selection step based
on fuzzy-rough sets before tree induction takes
place. This in itself will significantly reduce tree
complexity and induction runtime.
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Feature FR Re IG GR 1R χ2

x 0.5257 0.31758 0.997 1.0 99.5 200
y 0.5296 0.24586 0.997 1.0 99.5 200
z 0.5809 0.32121 0.997 1.0 99.5 200

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 1: Feature evaluation for x > 0.5, y =
√

x, z = x2

Feature FR Re IG GR 1R χ2

x 0.2330 0.1862 0.2328 0.1579 86.75 128.466
y 0.2597 0.1537 0.1687 0.1690 87.75 71.971

others 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0

Table 2: Feature evaluation for (x + y)2 > 0.25

Feature FR Re IG GR 1R χ2

x 0.2090 0.140067 0.241 0.156 79.0 119.562
y 0.2456 0.151114 0.248 0.165 78.25 122.336

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 3: Feature evaluation for (x + y)2 > 0.5

Feature FR Re IG GR 1R χ2

x 0.2445 0.1486 0.134 0.134 87.75 57.455
y 0.2441 0.1659 0.159 0.164 87.25 73.390

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 4: Feature evaluation for (x + y)3 < 0.125

Feature FR Re IG GR 1R χ2

x 0.1057 0.0750547 0.169 0.123 64.25 73.653
y 0.0591 0.1079423 0.202 0.226 66.75 88.040
z 0.1062 0.0955878 0.202 0.160 67.50 84.283

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 5: Feature evaluation for x ∗ y ∗ z > 0.125

Feature FR Re IG GR 1R χ2

x 0.1511 0.0980 0.1451 0.0947 76.5 65.425
y 0.1101 0.0557 0.0909 0.1080 78.0 35.357
z 0.2445 0.1474 0.2266 0.2271 79.75 93.812

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 6: Feature evaluation for x ∗ y ∗ z2 > 0.125


