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Abstract
Automatic range image registration and matching is an attractive but unresolved

problem in both the machine vision and pattern recognition literature. Since automatic
range image registration and matching is inherently a very difficult problem, the al-
gorithms developed are becoming more and more complicated. In this paper, we propose
a novel practical algorithm for automatic free-form surface matching. This method dir-
ectly manipulates the possible point matches established by the traditional ICP criterion
based on both the collinearity and closeness constraints without any feature extraction,
image pre-processing, or motion estimation from outliers corrupted data. A comparat-
ive study based on a large number of real range images has shown the accuracy and
robustness of the novel algorithm.

Keywords Collinearity constraint, closeness constraint, automatic matching, free form
surface, ICP, motion consistency.

1 Introduction

In the last decade, laser range finders (range cameras) have been popular tools for scanning
objects with free form surfaces. Since laser range finders can directly capture the depth in-
formation from the camera to the objects, the images captured are at least theoretically easier
to analyse than projective images. Free form surfaces are represented as sets of structured
3D data points in the form of range images (Figure 1). Thus laser scanning systems provide
fresh impetus for the fundamental research on 3D free form surface registration and match-
ing in the machine vision and pattern recognition literature. Free form surface registration
and matching has two goals: one is to determine correspondences between different data sets
representing the same free form surface from different viewpoints, the other is to estimate the
motion parameters bringing one data set into alignment with the other. In practice, these two
goals are often interwoven, thus complicating free form surface matching. Registration and
matching techniques find applications in many areas such as, for instance, object recognition,
motion estimation, scene understanding, and computer aided geometric design (CAGD).
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1.1 Related work

Many methods have been proposed to tackle the registration problem, such as techniques
based on the scatter matrix [1], iterative closest point (ICP) [2, 3, 4], extremal points [5],
maximization of mutual information [6], interactive method [7], surface fitting [8], geometric
histogram [9] and others. Among these methods, the ICP algorithm implements a natural
idea: given motion parameters, for all points in the first image, the closest points in the
second image to the transformed points must represent their correspondents. This idea is
so practical and effective that it has attracted much attention from the machine vision and
pattern recognition community. However, false matches occur in almost every iteration of the
algorithm since unless the motion is tiny and no occlusion and appearance and disappearance
of points occur, a single distance constraint cannot completely determine the position of
correspondents in 3D space. As a result, a large number of techniques have been proposed
to improve the traditional ICP algorithm. The main improvements to the traditional ICP
algorithm are summarised in Table 1.

An overall analysis reveals that logically, there are two kinds of information that can be
used to automatically match overlapping free form surfaces (Figure 2): one is the information
extracted from a single image and the other is the information bridging points in different
images. But these kinds of information cannot guarantee that the established correspondences
between different free form surfaces are real. Thus, the key to successfully use these two
kinds of information to match different free form surfaces is to eliminate false point matches.
However under special situations, the correspondences between different images can be directly
determined without the need to evaluate them. Thus, the existing free form surface matching
algorithms can be classified into the following three basic categories, or a combination of them:

1. Structural consistency based methods [11, 12, 14, 18]. This class of methods have dom-
inated image registration and matching techniques. The characteristics of this class of
methods lie in that they assume that the objects are independent of viewpoints. As
a result, the representation of object structure is independent of coordinate frames in
which the object is described. In general they first extract some features from the struc-
tured data points and then examine the consistency between these features to establish
or evaluate the possible point matches between different images. Structural consistency
describes interpoint relationship in a single coordinate frame and it refers here not only
to geometrical features, but also to optical features. The methods in this class have to
deal with four primary problems: (1) the features to be extracted from images must
be expressive in representing different views of objects; (2) the features to be extracted
from images must be robust to noise, occlusion, and appearance and disappearance of
points; (3) the similarity metric must be powerful in discriminating different features;
and (4) since the features attached to a point in one image have to match those attached
to each candidate in another, the established point matches could be completely wrong.
Solving any of these problems is a challenging task;

2. Motion consistency based methods [27, 28, 29]. This class of methods are relatively new
and need to be further explored. The characteristics of this class of methods lie in that
they first use the traditional ICP criterion to establish a set of possible correspondences,
then define a quality measurement for point matches based on rigid motion constraints
and finally reject false matches based on their quality measurements. Rigid motion con-
straints describe the relationship between the point matches and the motion parameters
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of interest. Since the algorithms can make full use of redundant data points for the
estimation of the parameters of interest, they are in general accurate and robust. How-
ever, for accuracy and robustness, some parameters necessary for rejecting false matches
must be properly defined; and finally

3. Mapping consistency based methods [1, 2, 15]. The characteristics of this class of meth-
ods lie in that they use a special mapping to determine point correspondences between
the images to be registered. In order to make sure that the established correspond-
ences are feasible, they often impose some constraints on image acquisition or require
pre-processing of images. For example, the algorithm described in [1] assumes that the
objects can be completely seen without occlusion and appearance and disappearance of
points from two different viewpoints. The disadvantage of the existing methods in this
class is that their assumptions are very restrictive.

The improvements to the traditional ICP algorithm can be reclassified in depth as follows:

• Increase the dimensionality of points from 3D [2, 3] to higher dimensions by incorpor-
ating other geometrical or optical features, such as normal vectors [10], laser reflectance
strength value [16], colours [18], invariants [19] or curvature [20].

• Establish correspondences from matching points to matching curves [11, 12] to matching
2D images [13, 14].

• Establish correspondences from matching local structural features to examining motion
consistency [27, 29] to combining both [31].

• Estimate motion parameters from using least squares method to using weighted least
squares method [17], M-estimator [16] or simulated annealing [30].

• Estimate motion parameters from Euclidean space to frequency space [15].

From the above classification of the improvements, it can be seen that the algorithms developed
are becoming more and more complicated. From machine learning theory [34], it is known that
the more complex the algorithms are, the more likely the algorithms overfit the experimental
data, and thus the less robust the algorithms are. Hence, while new methods and techniques
need to be explored, we should not neglect the information in the existing algorithms that
have not yet been fully investigated.

1.2 A novel solution

Given that the registration parameters rotation matrix R and translation vector t have been
initialised or estimated, the traditional ICP criterion can be used to establish a set of possible
correspondences (p,p′) between the images to be registered. There are two basic different
methodologies to evaluate whether or not a pair of points (p,p′) represents a real correspond-
ence: one methodology is to apply information associated with this pair of points without
involving motion parameters. This corresponds essentially to the structural consistency based
methods. The other is to apply information associated with this pair of points involving mo-
tion parameters. This corresponds essentially to the motion consistency based methods. The
motion information involved in the latter methodology can be represented as rigid motion con-
straints bridging the points p and p′ described in two different coordinate frames before and

3



after a rigid motion (R, t). Rigid motion constraints can be further classified into two categor-
ies: (1) rigid motion constraints involving the motion parameters that have to be estimated
from the possible point matches (p,p′) (this corresponds to the existing motion consistency
based methods that have to estimate the motion parameters of interest such as the critical
point [27] or the essential point [28, 29]); and (2) rigid motion constraints involving only the
existing motion parameters (R, t) without requiring motion estimation from the possible point
matches (p,p′). The focus of this paper is to develop rigid motion constraints involving only
the existing motion parameters for the evaluation of possible point matches established by the
traditional ICP criterion for accurate and robust automatic free form surface matching.

The collinearity constraint is widely used to estimate the motion parameters in the object
centred coordinate frame from a projective image [32, 33]. Unfortunately, to our knowledge,
it has not yet been proposed that it be used for the evaluation of the established 3D-3D
correspondences (p,p′). The collinearity constraint described in [33] means that the object
point, the image point, and the optical centre are collinear. By analogy, given the motion
parameters rotation matrix R and translation vector t for the registration and matching of free
form surfaces, if (p,p′) represent a real 3D-3D correspondence, then points Rp+t, p′, and the
optical centre O should be as collinear as possible (due to noise, p′ is only approximately equal
to Rp + t). This means that the collinearity constraint is a necessary condition for (p,p′) to
represent a real correspondence. Hence the collinearity constraint can also be used to evaluate
whether the possible point matches (p,p′) between two range images to be registered represent
real correspondences.

In this paper, we propose a novel motion consistency based approach to improve the tradi-
tional ICP algorithm for automatic free form surface matching without any feature extraction,
image pre-processing, or motion estimation from the possible point matches (p,p′). This is
in the spirit of the Occam’s razor [34] in machine learning theory which claims that simpler
algorithms are preferred. The novel approach makes full use of both the collinearity and close-
ness constraints to evaluate the possible correspondences (p,p′) established by the traditional
ICP criterion. The collinearity constraint minimises the distance between the transformed
point Rp + t and the ray passing through p′. The closeness constraint minimises the dis-
tance between points Rp + t and p′. The implementation of the collinearity constraint is in
agreement with the assumption that the scanning error occurs mainly along the ray shooting
from the range camera [24]. In order to improve the robustness of the proposed algorithm,
when we have detected that the algorithm is about to terminate, we add a tiny perturbation
to the estimated motion parameters so that the algorithm is forced to search for an optimal
solution in the neighbouring region of the estimated motion parameters. The novel algorithm
not only can deal with occlusion, appearance and disappearance of points, but also has the
advantage of easy implementation since it is based on the rigid motion constraints involving
just the existing motion parameters rotation matrix R and translation vector t.

For a comparative study of performance, we also implemented another two algorithms:
one is the Pulli pair-wise registration algorithm [25] based on traditional ICP and orientation
consistency examination and the other is the motion consistency based GICP algorithm [28].
While the Pulli algorithm was initialised by the GICP algorithm, the initialisation of the novel
algorithm was the same as for the GICP algorithm. Different algorithms have different criteria
to define point correspondences. In order to overcome the bias toward different numbers of fi-
nally established correspondences, we propose to normalise the performance measurement for
different free form surface matching algorithms. The normalisation is implemented through
computing the parameters of interest uniformly based on the reciprocal correspondences [35],
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rather than on the correspondences defined or refined by different algorithms. Since recip-
rocal correspondences are one-to-one mapping established correspondences [29] that tend to
represent the overlapping area between the free form surfaces to be matched, are completely
determined by the motion parameters calibrated by different free form surface matching al-
gorithms and their determination involves no thresholds set by the user, they provide a more
objective and accurate measurement of the performance of different free form surface match-
ing and registration algorithms. A large number of experiments based on real images have
indeed demonstrated the advantages of the novel algorithm. Thus we argue that future re-
search may focus on tiny motion registration and matching with occlusion and appearance
and disappearance of points, rather than on initialisation of the traditional ICP algorithm.

The rest of this paper is organised as follows. Section 2 proposes the novel algorithm,
Section 3 presents experimental results, and Section 4 analyses the reasons why the novel
algorithm does work. Finally, some conclusions are drawn in Section 5.

2 The novel algorithm

Assume that the given two images to be matched can be described as point sets P =
{p1,p2, · · · ,pn1} and P′ = {p′

1,p
′
2, · · · ,p′

n2
}. Due to occlusion, appearance and disappearance

of points, n1 is not necessarily equal to n2. The sizes of n1 and n2 depend on the representation
accuracy required to approximate the free form surfaces to be matched. The points in the two
images with the same subscript do not mean that they represent 3D correspondences. Given
the registration parameters rotation matrix R and translation vector t, for any point pi in
the first image P, the traditional ICP algorithm uses the following criterion to determine its
possible correspondent p′

i in the second image P′:

p′
i = argminp′∈P′ ||p′ −Rpi − t|| (1)

which minimises the Euclidean distance between the transformed point Rpi + t and p′ in
the second image P′. The search space is determined by the size of the second image P′.
Due to inaccurate initial motion parameters, occlusion, appearance and disappearance of
points and noise distribution in image data, some point matches (pi,p

′
i) established by this

criterion must be false matches. Thus a large number of techniques (as described in the
last section) have been proposed to evaluate whether the point pair (pi,p

′
i) represents a real

correspondence. To this end, all these methods have to either extract features from images or
estimate the motion parameters of interest from the false matches corrupted correspondence
data (pi,p

′
i). Unfortunately, both feature extraction from images and motion estimation from

the outliers corrupted data (pi,p
′
i) are challenging tasks themselves in the machine vision and

pattern recognition community. Thus, in this paper, we propose directly manipulating the
possible correspondences (pi,p

′
i) without feature extraction and motion estimation, while still

achieving accurate and robust automatic free form surface registration and matching.
Given that the registration parameters rotation matrix R and translation vector t have

been initialised or estimated, based on the ICP criterion (Equation 1), a set of possible point
correspondences (pi,p

′
i)(i = 1, 2, · · · , n1) between images P and P′ to be registered can be

established. For each possible correspondence (pi,p
′
i), if they represent a real correspondence,

then points Rpi + t, p′
i and the optical centre O are as collinear as possible and the distance

between points Rpi + t and p′
i is as small as possible. For the sake of reference, the former is

called the collinearity constraint and the latter is called the closeness constraint. Since, at the
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beginning of matching, the motion parameters rotation matrix R and translation vector t are
not accurate, the established correspondences (pi,p

′
i) are just pseudo correspondences since in

the strict sense, none of them may represent a real correspondence. However, we can compute
these two constraints as a quality measurement of possible point matches (pi,p

′
i) from which

relatively good matches can be selected and used for motion re-estimation. To this end, the
transformed first image points and the second image points are all synthesised into the same
coordinate system. The consequence of this synthesis is to normalise the imaging process in
which, while the cameras keep static, the objects are in motion. For each possible point match
(pi,p

′
i), the collinearity constraint is computed as the distance di (collinearity error) between

transformed point Rpi + t and the ray passing through p′
i and the closeness constraint as the

distance ei (registration error) between points p′
i and Rpi + t (Figure 3):

di = (| ||p′
i −Rpi − t||2 − (p

′T
i (Rpi + t))2

p
′T
i p′

i

|)0.5, ei = ||p′
i − (Rpi + t)||

where ||x|| denotes the Euclidean norm of vector x, |x| denotes the absolute value of scalar
x, and superscript T denotes transpose. di and ei are measurements of the quality of possible
point matches (pi,p

′
i). The smaller di and ei, the better the possible point match (pi,p

′
i). If

(pi,p
′
i) represents a real correspondence, then both di and ei are small positive real numbers

due to noise in the imaging process.
Then we compute the means µd and µe and standard deviations σd and σe of di and ei

respectively over the possible point matches in which no points lie on boundaries. Finally we
use the following rule to reject false matches: If |di−µd| ≤ κσd, |ei−µe| ≤ κσe, and both pi and
p′

i are non-boundary points, then (pi,p
′
i) is regarded as a feasible correspondence. Otherwise,

it is regarded as a false one. As a result of this procedure, a set of refined correspondences
is obtained from which the quaternion method [2] can be used to re-estimate the registration
parameters rotation matrix R and translation vector t.

Parameter κ here plays an important role in rejecting false matches [27, 29]. If it is set
too large, then false matches remain. If it is set too small, then good matches are rejected.
All these cases will bias the algorithm for motion estimation. Our experience has shown that
when κ is defined in the interval [1.0, 2.0], good free form surface matching results can be
expected. In the experiments described in the next section, we let κ = 1.4.

The above procedure can be iterated until convergence. In this paper, either when the
variation of the average registration errors between two successive iterations is smaller than
the desired registration error ε and the variation of either the rotation or translation vector
at two successive iterations is smaller than ρ, or when the iteration number is larger than the
maximum M , the algorithm terminates. Parameters ε and ρ here again cannot be set too large
or too small [27, 29]. If they are set too large, then the algorithm can converge prematurely
at an early stage, leading to inaccurate free form surface matching results. If they are set too
small, then the algorithm requires more intensive computation or even diverges or fluctuates
in some extreme cases. Our experience has shown that when they are defined within the
intervals ε ∈ [0.00001, 0.001] and ρ ∈ [0.001, 0.005], good free form surface registration and
matching results can be achieved. In the experiments as described below, the following values
were used: ε = 0.0001, ρ = 0.001, and M = 200.

Sometimes, however, the proposed algorithm does get stuck at a local minimum, leading
to inaccurate image registration and matching results. In order to overcome this problem,
when we have detected that the algorithm is about to terminate and the maximum iteration
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number M has not yet been reached, we add a small perturbation to the estimated motion
parameters quaternion q̂ = (q0, q1, q2, q3)

T , representing rotation matrix R, and translation
vector t̂ = (t1, t2, t3)

T :

qi ← qi ∗ (1 + δqi)(i = 0, 1, 2, 3), tj ← tj ∗ (1 + δtj)(j = 1, 2, 3)

where δqi and δtj are small real numbers. Since the calibrated quaternion q̂ should be of
unit length, renormalization is thus required: q̂ ← q̂/||q̂||. δqi and δtj again cannot be set
too large or too small. If they are set too large, then the algorithm has to repeat the free
form surface matching process from a quite different solution without making full use of the
existing relatively good one and this leads the algorithm to be less efficient. If they are set
too small, then no significantly different solution is examined and thus, no better solution
will be found. In the experiments as described in the next section, δqi and δtj were randomly
generated with uniform distribution within the interval [-0.0025, 0.0025]. Then we apply the
perturbed registration parameters to the first image points and re-compute the variation of
the parameters of interest at two successive iterations and repeat the steps as described above.

The idea of this perturbation is similar to a genetic algorithm [22] and simulated annealing
[30] where a number of candidates for registration parameters generated from the neighbouring
region of the estimated solution are examined so that the global optimal solution can be found.
Such a perturbation has two roles:

1. It helps the algorithm to traverse the local minimum, leading to more accurate image
registration and matching results. This is demonstrated in Figure 4, from which it can be
clearly seen that the algorithm converged to a local minimum. The perturbation forced
the algorithm to repeat the image matching process from a nearby solution. Eventually,
the algorithm has yielded a more accurate motion estimation result with a smaller image
matching error.

2. It helps the algorithm to verify the existing image matching, leading to more reliable
matching results. This is demonstrated in Figures 6 and 8. In these two cases, the image
registration and matching is already accurate. So the algorithm performed a few more
iterations to verify the existing image registration and matching results.

The improved ICP algorithm is called the Collinear ICP (CICP) algorithm. From the above
description, it can be seen that the CICP algorithm is easy to implement, since it is just
based on the information provided by the ICP criterion (Equation 1) without requiring any
feature extraction, image pre-processing, or motion estimation from the possible point matches
(pi,p

′
i). When the algorithm is about to terminate, a little perturbation is added to the

estimated motion parameters. However, the CICP algorithm does provide very good results
for automatic free form surface registration and matching as demonstrated in the next section.

3 Experimental Results

For a better understanding of the performance of the CICP algorithm, we also implemented the
GICP algorithm [28] and the Pulli algorithm [25] on a Pentium III, 500 MHz computer. The
initialisation parameters were used as described in [28] where q(0) = (

√
99/10, 0.1, 0, 0)T and

t(0) = p̄′−p̄ and p̄′ and p̄ are centroids of the second and first images, respectively. We carried
out a large number of experiments based on real images and all the experiments exhibit similar

7



behaviour. Due to space limit, we here just present three representative experiments. The
real range images depicted in Figure 1 and Table 2 were downloaded from the range image
database hosted by the Signal Analysis and Machine Perception Laboratory at Ohio State
University. The images were acquired using a Minolta 700 range scanner with a resolution of
200×200 pixels. From the name encoding of image files, the rotation angle about an unknown
rotation axis can be derived. Even though an accurate rotation angle in practice is difficult
to measure, it does provide a rough reference for the measurement of the performance of
different algorithms. Both the CICP and GICP algorithms were directly applied to the image
data without any image pre-processing or feature extraction and also without any knowledge
about occlusion, appearance and disappearance of points, or exact motion information. Thus
the experiments based on such images represent typical imaging conditions and can provide
an objective evaluation of different algorithms. In this paper, a boundary point is defined as
the one with at least one of its eight nearest neighbours in the raster image file invalid. The
parameters of interest in this paper are the average collinearity error µd, the calibrated rotation
angle θ̂ and the average registration error µe based on refined correspondences. The evolution
of the parameters of interest are presented in Figures 4, 6 and 8. In the figures, the solid lines
correspond to the CICP algorithm, the dash lines correspond to the GICP algorithm, the lines
with pluses correspond to the Pulli algorithm. For better visualisation effect, we randomly
selected with uniform distribution 200 points from the first tubby, cow and bunny images and
their evolutions of matching are presented in Figures 5, 7 and 9, respectively. In the figures,
the pluses represent the transformed first image points, circles represent the second image
points. The statistics of image matching results are presented in Tables 3 and 4.

From Figures 4, 6 and 8, it can be seen that at the beginning of registration, the calibrated
rotation angles θ̂ are small and both the average collinearity error µd and the average regis-
tration error µe are large. As the registration progresses, even though the calibrated rotation
angles θ̂ are not monotonically increasing and neither the average collinearity error µd nor
the average registration error µe is monotonically decreasing about the iteration numbers, the
overall trend is that the calibrated rotation angles θ̂ approach the expected ones and both the
average collinearity error µd and the average registration error µe become smaller and smaller.
These figures clearly show the desired evolutionary behaviour of free form surface matching
algorithms.

In Figures 4 and 6, the perturbation positions can be easily recognised. While the CICP
algorithm converged to a local minimum for the registration of tubby images, due to perturba-
tion of the estimated motion parameters, the CICP algorithm successfully traversed that local
minimum, leading to more accurate free form surface matching and motion estimation results.
In contrast, the perturbation forced the CICP algorithm to carry out a few more iterations
to verify the existing cow image registration results. However, in Figure 8, the perturbation
position (at iteration 47) is not easily recognisable. This can be explained as follows. The
parameters of interest are functions of refined correspondences. The determination of refined
correspondences depends not only on the perturbed motion parameters, but the geometry of
the free form surface as well. In the case of the registration of bunny images, the perturba-
tion does not lead to significantly different refined correspondences, yielding much different
calibration of the parameters of interest. Even so, the perturbation is large enough to force
the CICP algorithm to carry out a few more iterations, searching for an optimal solution in
the neighbouring region of the estimated motion parameters.

From Figures 4, 6, and 8 and Table 3, it can be seen that for bunny images, all algorithms
have obtained small average registration errors and the calibrated rotation angles are close
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to 20◦ as expected. This shows that high quality images are easy to match. From Figure 1,
it can be seen that two tubby images are very similar despite the fact that they were taken
from two different viewpoints. As a result, the GICP algorithm has difficulty in registering
the images. This phenomenon is clearly illustrated by Figure 4 and Table 3 where the GICP
algorithm converges at a very early stage with an average registration error of 0.41mm. After
the coarse matching has been refined by the Pulli algorithm, the results have been improved.
However, the result is not perfect since the rotation angle still has an error of 6.10%. So two
similar tubby images lead both the GICP and Pulli algorithms to get stuck at local minima
leading to inaccurate image matching results. For cow images, even though the calibrated
rotation angles are all close to the expected 30◦, all algorithms have obtained relatively large
average registration errors. This shows that the resolution of cow images is not as high as that
of either the bunny or tubby images (Table 2). From this, we can conclude that poor quality
images are difficult to match and often lead different algorithms to show a large variation
among the matching results. Therefore, it will be useful to investigate methods to measure
the quality of images in future so that the image matching quality can be predicted before
the image matching process actually takes place [27, 29].

From Figures 5, 7 and 9, it can be seen that at the beginning of registration, the two sets
of image points show considerable difference in 3D space. But after registration, the two sets
of points are perfectly matched and appearing and disappearing points can be clearly seen.
This visual validation clearly conveys the quality of free form surface matching and shows that
the CICP algorithm is accurate and robust for the automatic matching of free form surfaces
as demonstrated in this paper.

From Figures 4, 6 and 8 and Table 3, it can be seen that the Pulli algorithm is the most
accurate in the sense of average registration error based on refined correspondences for the
registration of range images used in this paper. This is because it removed worst 10% point
matches and established a limited number of correspondences. Our experience has shown
that the Pulli algorithm has two shortcomings: one is that it requires a good initialisation
of motion parameters; the other is that when a good initialisation of motion parameters is
provided, it cannot guarantee to improve the coarse registration results significantly. What is
worse is that it sometimes fails to register the images. However, from Table 4, it can be clearly
seen that even though the CICP algorithm has been initialised by a solution which is far from
correct, it is the most accurate and robust algorithm in the sense of average registration error
based on reciprocal correspondences [35] for automatic free form surface matching. This shows
that a combination of the collinearity constraint with the closeness constraint is powerful in
evaluating the possible point correspondences established by the traditional ICP criterion
(Equation 1). Since we do not know the exact motion parameters, we cannot exactly measure
the performance of the proposed algorithm but we believe that the CICP algorithm is capable
of providing a good initialisation for other even more accurate algorithms and future research
may focus on the matching of free form surfaces undergoing tiny motions with occlusion and
appearance and disappearance of points, rather than on how to initialise the traditional ICP
algorithm. Table 4 shows that different algorithms establish similar number of reciprocal
correspondences between different images. This is because they were used to match the same
free form surface.
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4 Analysis of the Novel Algorithm

From the description of the novel CICP algorithm, it is known that it has the advantage of
easy implementation, while retaining the computational complexity O(n1n2) of the traditional
ICP algorithm (where n1 and n2 denote the numbers of valid points in the first and second
images, respectively). But the experiments based on real images have shown that it is very
accurate and robust for automatic free form surface matching, overcoming the shortcomings of
both the GICP and Pulli algorithms, since the former can easily get stuck at a local minimum
and the latter requires a good initialisation of motion parameters. We analyse the CICP
algorithm as follows.

In order to evaluate the possible correspondences (pi,p
′
i) between the free form surfaces

to be matched, the CICP algorithm iteratively minimizes the collinearity error di between
point Rpi + t and the ray passing through p′

i and the registration error ei between p′
i and

Rpi + t for each possible point match (pi,p
′
i). In essence, di and ei define the quality of

point matches (pi,p
′
i). The smaller di and ei, the better the point match (pi,p

′
i). In the ideal

case, both di and ei are zero. At the beginning of matching, since the motion parameters
rotation matrix R and translation vector t are not accurate, the average collinearity error µd

and the average registration error µe are large as illustrated by Figures 4, 6 and 8. But as
the registration progresses, the calibrated motion parameters become more and more accurate
and thus, as expected, leading both the average collinearity error µd and the registration error
µe to become smaller and smaller. Assume that eventually, more than three point matches
(pi,p

′
i) have registration errors ei of zero and these points are not collinear: p′

i = Rpi + t,
then the registration parameters rotation matrix R and translation vector t are uniquely
determined and point matches (pi,p

′
i) do represent real correspondences. From Figure 3

and the definitions of the collinearity error di and the registration error ei, it is known that
0 ≤ di ≤ ei. Since ei = 0, thus di = 0. This shows that points Rpi + t, p′

i, and the optical
centre O are collinear. Hence, in this case, the collinearity constraint provides additional
assurance that the found point match (pi,p

′
i) is real.

In practice, the imaging process often introduces, to data points, noise caused by sampling,
discontinuity of edges, various optical reflection characteristics of surfaces, etc. Even though
the free form surface matching is perfect, the corresponding points are not always exactly
superposed and thus, in this case, small registration errors occur. However, the closeness
constraint only constrains the possible correspondents lying on the spheres centred at the
transformed points (Figure 3), the collinearity constraint only constrains the possible cor-
respondents lying on the cones with the apexes at the optical centre O and the centre axes
defined as the rays passing through the transformed points. Neither the point far away from
the transformed point nor the point through which a ray passes and the ray is distant from
the transformed point is a possible correspondent. Only both constraints can then accur-
ately constrain the possible correspondents close to the transformed points and near the rays
passing through the transformed points and thus, leading to more accurate and robust free
form surface matching results. The implementation of the collinearity constraint is justified
by the assumption that the scanning error occurs mainly along the ray shooting from the
camera [24].

In the case where the algorithm has got stuck at a local minimum, then it still has an
opportunity to traverse that local minimum by using the perturbation of the motion paramet-
ers. So, the perturbation provides again additional assurance that the algorithm will converge
to a correct solution. The experimental results based on a large number of real images have
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shown that such a strategy is effective for automatic free form surface matching.

5 Conclusions

The main contribution of this paper can be summarised as two aspects:

1. We have proposed a novel practical algorithm for automatic free-form surface matching.
The novel algorithm directly manipulates the possible point matches established by the
traditional ICP criterion (Equation 1) based on both the collinearity and closeness con-
straints. In contrast with the existing structural consistency based methods, the novel
algorithm does not require any feature extraction, or image pre-processing. In contrast
with the existing motion consistency based methods, the novel algorithm does not re-
quire motion estimation from the possible correspondences before they are evaluated.
And finally, in contrast with the existing mapping consistency based methods, the novel
algorithm can deal with occlusion and appearance and disappearance of points. As a
result, the novel algorithm inherits the compactness of the traditional ICP algorithm
and has the advantage of easy implementation;

2. We have proposed normalising the performance measurement for different free form
surface matching algorithms uniformly based on reciprocal correspondences [35]. Since
reciprocal correspondences are one-to-one mapping established correspondences [29] that
tend to represent the overlapping area between the free form surfaces to be matched,
are completely determined by the motion parameters calibrated by different free form
surface matching algorithms and their determination involves no thresholds setup by the
user, they provide a more objective and accurate performance measurement for different
free form surface matching and registration algorithms.

A large number of experiments based on real images have shown that even though it was
initialised by a solution which is far from correct, the novel CICP algorithm is very accurate
and robust for automatic free form surface matching.

Further research will: (1) investigate the methods to improve the computational efficiency
of the novel algorithm based on techniques such as K-D tree [4, 18]; (2) investigate the methods
for the measurement of image quality so that image matching quality can be predicted before
the matching process actually occurs; (3) fine tune the parameter κ so that more accurate and
robust matching results can be obtained. To this end, it will be useful to consider the quality
of images; and finally (4) investigate the methods to match free form surfaces undergoing tiny
motions with occlusion and appearance and disappearance of points. Research is underway
and the results will be reported in future.
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Figure 1: The real range images used. Top: tubby; Middle: cow; Bottom: bunny.
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i

where d′
i and di are the distances from point Rpi + t to the rays passing through p′′

i and p′
i,

θ′i and θi are the including angles between point vector Rpi + t and point vectors p′′
i and p′

i

respectively.
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Figure 4: Tubby images: the evolution of the parameters of interest at different iterations
for different algorithms. Top: average collinearity error; Middle: calibrated rotation angle;
Bottom: average registration error.
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Figure 5: The evolution of the registration of 200 points randomly selected with uniform
distribution from the first tubby image for the CICP algorithm. Top: registration at iteration
1; Middle: registration at iteration 32; Bottom: final registration 150 points out of 200 in the
first tubby image find their correspondents in the second tubby image. The pluses represent
the transformed first image points, circles represent the second image points.
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Figure 6: Cow images: the evolution of the parameters of interest at different iterations
for different algorithms. Top: average collinearity error; Middle: calibrated rotation angle;
Bottom: average registration error.
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Figure 7: The evolution of the registration of 200 points randomly selected with uniform
distribution from the first cow image for the CICP algorithm. Top: registration at iteration
1; Middle: registration at iteration 45; Bottom: final registration 138 points out of 200 in the
first cow image find their correspondents in the second cow image. The pluses represent the
transformed first image points, circles represent the second image points.
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Figure 8: Bunny images: the evolution of the parameters of interest at different iterations
for different algorithms. Top: average collinearity error; Middle: calibrated rotation angle;
Bottom: average registration error.
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Figure 9: The evolution of the registration of 200 points randomly selected with uniform
distribution from the first bunny image for the CICP algorithm. Top: registration at iteration
1; Middle: registration at iteration 27; Bottom: final registration 147 points out of 200 in the
first bunny image find their correspondents in the second bunny image. The pluses represent
the transformed first image points, circles represent the second image points.
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Table 1: Techniques used to improve the traditional ICP algorithm.

components techniques
distance matching [10]

fingerprint matching [11]
bitangent curve matching [12]

initialisation surface signature matching [13]
spin image matching [14]
Fourier transform [15]

laser reflectance strength [16]
point to triangular mesh [17]

distance colour [18]
measurement normal vector [10]

invariants [19]
curvature weighted distance [20]
constrained nearest point [17]

closest point K-D tree [18]
search grid closest point [21]

genetic algorithm [22]
discarding boundary points [17, 23]

threshold [18, 24]
false matches normal vectors [25]

rejection point-to-point distance consistency [26]
orientation consistency [4]
correspondence vectors [27]

reflected correspondence vectors [28, 29]
M-estimator [16]

motion simulated annealing estimation [30]
estimation weighted least squares [17]

Extended Kalman Filter [10]

Table 2: The number of valid points N , the average µl and standard deviation σl of interpoint
distances in millimetres in different images.

Image Viewpoint N µl(mm) σl(mm)
tubby 1 4354 0.80 0.39

2 4361 0.89 0.66
cow 1 4262 1.59 0.79

2 4864 1.57 0.62
bunny 1 6870 0.69 0.35

2 6874 0.67 0.28
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Table 3: The mean µe and standard deviation σe of registration errors in millimetres, expected
rotation angle θ and calibrated rotation angle θ̂ in degrees, the number N of finally estab-
lished correspondences and the registration time in seconds for different algorithms applied to
different range images.

Image Algo. µe(mm) σe(mm) θ(◦) θ̂(◦) N time(s)
CICP 0.27 0.14 20.09 3161 127

tubby GICP 0.41 0.48 20 18.23 4001 67
Pulli 0.24 0.09 18.78 1411 19
CICP 0.50 0.16 30.41 2915 179

cow GICP 0.56 0.25 30 30.34 3795 100
Pulli 0.45 0.16 30.46 106 10
CICP 0.22 0.09 20.14 5291 251

bunny GICP 0.27 0.16 20 20.02 6338 151
Pulli 0.20 0.08 20.15 3194 27

Table 4: The mean µe and standard deviation σe of registration errors in millimetres and the
number N of finally established reciprocal correspondences for different algorithms applied to
different range images.

Image Algo. µe(mm) σe(mm) N

CICP 0.26 0.16 3075
tubby GICP 0.29 0.17 3135

Pulli 0.28 0.16 3147
CICP 0.51 0.28 3119

cow GICP 0.52 0.28 3119
Pulli 0.52 0.29 3120
CICP 0.22 0.10 5027

bunny GICP 0.22 0.10 5067
Pulli 0.22 0.10 5067
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